
ABSTRACT

TATEOSIAN, LAURA GRAY. Nonphotorealistic Visualization of Multidimensional Datasets.

(Under the direction of Christopher G. Healey)

The huge quantities of data that are being recorded annually need to be organized and ana-

lyzed. The datasets often consist of a large number of elements, each associated with multiple

attributes. Our objective is to createeffective, aesthetically appealingmultidimensional visual-

izations. By mapping element attributes to carefully chosen visual features, such visualizations

support exploration, encourage prolonged inspection, and facilitate discovery of unexpected

data characteristics and relationships.

We present a new visualization technique that uses “painted” brush strokes to represent

data elements of large multidimensional datasets. Each element’s attributes controls the visual

features of one or more brushstrokes. To pursue aesthetic appeal, we draw inspiration from the

Impressionist style of painting and apply rendering techniques from nonphotorealistic graphics.

We construct our mappings to harness the strengths of the human visual system. The resulting

displays arenonphotorealistic visualizationsof the information in the datasets.

Studies confirm that existing guidelines based on human visual perception apply to our

painterly styles. Additional studies investigate the artistic appeal of our visualizations, along

with the emotional and visual features that influence aesthetic judgments. Finally, we use the

results of these studies to combine painterly styles to build a tool which creates visualizations

that are both effective and aesthetic and we apply our method to a real-world dataset.



NONPHOTOREALISTIC VISUALIZATION OF MULTIDIMENSIONAL DATASETS

by

LAURA G. TATEOSIAN

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Master of Science

COMPUTER SCIENCE

Raleigh, North Carolina

2002

APPROVED BY:

Chair of Advisory Committee



BIOGRAPHY

Laura Gray Tateosian was born to Louis Hagop Tateosian and Sarah Gray Tateosian in York,

Pennsylvania. She received a Bachelor of Arts degree in Mathematics from Towson Univer-

sity, Baltimore, MD and a Master of Mathematics from the University of Oklahoma, Norman,

Oklahoma, after which she taught mathematics at Shippensburg University in Shippensburg,

PA. Laura is currently enrolled in the computer science masters program at North Carolina

State University. She plans to continue her studies at North Carolina State University in the

computer science doctoral program.

ii



AKNOWLEDGEMENTS

My advisor, Dr. Chris Healey, offered guidance, assistance, wisdom, and understanding, and

generously shared his knowledge, time, and energy. I want to thank him for being determinedly

dedicated to my success in this endeavor. Most importantly, I’m lucky he has a good sense of

humor.

Thanks Dad and Mom for sharing your appreciation of science and art. You are alway

supportive, even at the beach! Thanks for reading my thesis there. I’m glad to provide nap-

inducing material.

My sister and her family also encouraged me along the way. As I wondered if I would ever

finish this report, I recalled Sarah’s little voice proudly saying, ”bigger and bigger.” She was

talking about a hole we were digging in the sand, but it reminded me of my growing thesis.

My lab group, Amit, Brent, Jason, Jiae, Mike, Reshma, Sarat, Vivek, helped my through the

process with assistance and encouragement. Amit, thank you for screening my presentation,

proofreading my thesis, and bringing me up to date on practical issues when I surfaced. Brent,

thanks for your help with anything and everything throughout my entire time here. I was glad

to supply distractions from your own drudgery. Also, thanks for the company through the final

stretch (misery loves it) and the doughnuts one morning after a particularly rough night in the

lab. Jason, thank you for introducing me to the basics in the graphics. Jiae, thanks for being a

good friend and blazing the trail. Mike, thanks for providing your hacker knowhow. Reshma

thanks for the good company. It’s nice to have another female in the lab! Sarat, thanks for

being a very good friend and a great listener. Vivek, thanks for making me laugh.

Additionally, I want to thank my friends Hema, Mark, Lory, and Pankaj. Hema, thank you

iii



for arriving at midnight with essential reinforcement: the best chocolate bar I’ve ever tasted.

Mark, thank you for being a kind friend. Lory, my long-time dear friend from college at

Towson, thank you being there through the stormy parts of my life. This was monsoon season.

The computer was a great idea. Remind me to take your advice more often. Finally, Pankaj,

thank you for giving so much of yourself to help me succeed in this. You probably read my

thesis more times than I did. You listened to my presentation so many times, you could have

given it yourself. You heard my doubts and worries and did all the right things. Merci bien

pour tous, mon cheri.

I was lucky enough to find a roommate, Sarah, who is also a friend and mentor. Though she

doesn’t understand the value of home-cooked dolmas, she is quite brilliant. She has unselfishly

offered support, guidance, and encouragement. Aurora, our cat, made her contributions by

getting up of my thesis long enough for me to finish it.

Professoressa O.Nagel provided a useful motto ”Forza e coraggio–Coraggio e forza!” -

Thanks for the fortification.

iv



Contents

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Paper Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Nonphotorealistic Graphics 9

2.1 Methodology for Simulating Artwork . . . .. . . . . . . . . . . . . . . . . . 11

2.2 The Texture Approach to Painting . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Painting Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Visualization Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Painterly Style 21

4 Visual Perception 23

4.1 Color Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

v



4.2 Texture Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Feature Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Effectiveness and Aesthetics Studies 36

5.1 Effectiveness Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.3 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Aesthetic Judgment Studies . . .. . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2.4 Relationships Between Scales . . . . . . . . . . . . . . . . . . . . . . 55

5.2.5 Individual Differences . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.6 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Nonphotorealistic Visualization 60

6.1 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2 Painting the Segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.3 Underpainting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.4 Highlighting Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.5 Practical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

vi



7 Conclusions 80

7.1 Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.2 Multidimensionality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.3 Aesthetic Appeal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Bibliography 84

vii



List of Figures

1.1 Minard’s Visualization of Napoleon’s 1812 March on Russia . . .. . . . . . . 3

1.2 Data Mapping Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Photorealistic Topiaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Watercolor Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Nonphotorealistic Pen-and-Ink (Raccoon) . .. . . . . . . . . . . . . . . . . . 12

2.4 Pebble Texture Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Texture Synthesis Paintings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Nonphotorealist Volume Rendering of Abdominal CT Scans . . .. . . . . . . 19

4.1 Saccades Superimposed onThe Execution of Lady Jane. . . . . . . . . . . . . 24

4.2 Color Models: RGB Cube, CIE XYZ, and CIE LUV . . . . . . . . . . . . . . 27

4.3 Simultaneous Contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 EXVIS Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5 Textured brush strokes versus Rectangular Glyphs . .. . . . . . . . . . . . . . 33

4.6 Frog Glyph Target Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

viii



5.1 Color Targets with Constant Orientation . . . . . . . . . . . . . . . . . . . . . 39

5.2 Color Targets with Random Orientation . . .. . . . . . . . . . . . . . . . . . 40

5.3 Orientation Targets with Constant Color . . . . . . . . . . . . . . . . . . . . . 41

5.4 Orientation Targets with Random Color . . .. . . . . . . . . . . . . . . . . . 43

5.5 Affective States Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.6 Aesthetic Judgment Studies Painterly Visualization and Nonphotorealistic Ren-

dering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.7 Summary of Aesthetic Judgment Results . . .. . . . . . . . . . . . . . . . . . 53

5.8 Artistic Beauty Rankings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.9 Arousal Rankings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.10 Pleasure Rankings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.11 Meaningfulness Rankings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.12 Complexity Rankings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.1 Les Chataigniers a Osny Seen as a Collection of Segments . . . . . . . . . . . 62

6.2 Poppy Image Segmented . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.3 Halftone Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.4 Three Layers of Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.5 Nonphotorealistic Visualization of March Weather Conditions . .. . . . . . . 75

6.6 Highlight Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.7 United States January and July Weather Conditions . . . . . . . . . . . . . . . 79

7.1 Impressionist Painting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

ix



List of Tables

5.1 Color Target Trial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Orientation Target Trial Conditions . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Mean Inefficiency Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

x



Chapter 1

Introduction

Extraordinary amounts of digital data, over 1 quintillion1 bytes, are being recorded annually

[Lym00]. For raw data to be useful, it must be organized and presented in a format that fa-

cilitates analysis and interpretation. Numerical format of massive datasets is clearly difficult

to interpret. Statistical analysis alone may not yield as many insights as visualization. Visual

exploration is more effective than computational exploration in certain situations. Visualiza-

tions allow for open-ended exploration of the data, so that unexpected discoveries can be made.

McCormick et al. cite an example of an astrophysicist who found an erroneous boundary con-

dition in his code after examining an image of a jet stream with an obvious irregularity not

apparent in the numbers [Mcc87]. A combination of statistical analysis and visualization may

be appropriate for some data.

Effective scientific visualizations convert datasets into images which allow viewers to an-

alyze and explore their data, and to discover and/or validate patterns, anomalies, or other im-

11 quintillion = 1018.
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portant characteristics [Hea01]. Discussions of visualization amongst experts in Earth science,

aerospace research, molecular biology, defense, and medicine emphasize its vital importance

in these fields [Ger94, Smi98]. Visualization has been described as “a major component of

computational science and engineering, and critical to understanding the results of large-scale

scientific simulation.” [Smi98]. A 1987 NSF panel on scientific visualization noted that an

estimated 50 percent of the brain’s neurons are associated with vision and called visualization

essential for providing and communicating insights to others [Mcc87]. The panel strongly rec-

ommended launching a national program in scientific visualization, declaring that visualization

would “change the way science is done.”

More than a decade later, information sources and categories had expanded enormously

and challenges in representing abstract and highly-dimensional data were still being discussed

[Smi98]. Large multidimensional datasets, i.e., sets in which each element has multiple at-

tributes, still present challenges for visualization. To create a visualization of anm-dimensional

dataset ofn elements, we must choose a set of visual features,V = {V1, ..., Vm} to represent

the data’s set of attributes,A = {A1, ..., Am}. In figure 1.1, for example, which shows a map

of Napoleon’s 1812 march on Russia,A = {size of the army, 2D − location, direction

of the army′s movement, temperature during the retreat} andV = { line thickness,

xy-coordinates of top bands, color,y-coordinates of red line}.

OnceV is established, we define a mapping,M , from values of each attribute to values of

a visual feature. In figure 1.1, the mapping is as follows:army size → line width,location →

xy-coordinates of top bands,direction → color, andtemperature → y-coordinate of red line.

The viewer can rapidly observe the army’s numbers dwindling as troops advance, and quickly

2



Figure 1.1: Charles Joseph Minard’s 1861 map of Napoleon’s 1812 campaign on Russia [Min61], is considered
remarkable for how much information it encodes. E.R. Tufte describes the map [Tuf83]: ”Beginning at the left on
the Polish-Russian border, the thick band shows the size of the army (422,000 men) as it invaded Russia in June
1812. The width of the band indicates the size of the army at each place on the map. The retreat is depicted by the
darker, lower band, which is linked to the temperature scale and dates at the bottom of the chart. It was bitterly
cold and many froze on the march out of Russia. The army struggled back to Poland with only 10,000 troops
remaining.”A = { size of the army, 2D − location, direction of the army′s movement, temperature
during the retreat} andV = { line thickness,xy-coordinates of top bands, color,y-coordinates of red line}.

estimate the army to be 1/4 of its original size by the time it reaches Moscow, by comparing the

thickness of the left and right ends of the top band. The luminance of the bands representing

the army’s advance greatly differs from the luminance of the bands representing the retreat, so

that even color-blind viewers can perceive the difference.

Minard’s visualization has not lost its effectiveness over time, perhaps because it lends

itself well to our perceptual abilities. Visualization designers have begun to recognize the

importance of studying human perceptual abilities. A 1998 Panel on Visualization identified

it as one of the difficult problems in visualization. Specifically, they asked, “How can human

perceptual and cognitive talents be enhanced and amplified through visualization?” [Zei98]

We are asking similar questions: How can we harness human perception skills? Could we

3



(a) Mapping,Ma (b) Mapping,Mb

Figure 1.2: Different visualizations of the same dataset: [Cha01] (a) Mapping,Ma: temperature → color
∈ [green,...,yellow],wind speed → luminance∈ [dark,...,bright], wind direction → directed contours,
∈ [0◦, ..., 360◦], precipitation → semi-transparent color∈ [green,...,red] (b) Mapping,Mb: temperature →
color∈ [dark green,...,bright pink],wind speed → density∈ [sparse,...,dense],wind direction → orientation
∈ [0◦, ..., 360◦], precipitation → size∈ [small,...,large]

create more effective mappings by studying the low-level human visual system and how human

perception works?

The mapping in figure 1.2b was created in such a fashion, though figure 1.2a was not. Fig-

ures 1.2a and 1.2b both visualize the same weather dataset, but the effect is very different.

Each element in the dataset has the following attributes:temperature, wind speed, wind

direction, andprecipitation. Figure 1.2a was created by forming a composite of three tra-

ditional weather maps. The three traditional maps had the following individual mappings:

Map1. temperature → color, Map2. precipitation → semi-transparent color, and Map3.

wind speed → color anddirection → directed contour lines. The result of combining these

three maps is a familiar TV news-like weather display, but a rather faulty visualization. For

example, the semi-transparent color used to indicate precipitation causes some problems. In

areas where precipitation is high, is it cold? Is it windy? The overlap interferes with our ability

to perceive other attributes. A simplistic alternative to using semi-transparent colors, such as

4



outlines tracing clouds, would suppress precipitation data. What would then indicate higher

levels of precipitation shown now by the yellow clouds? Luminance was chosen to represent

wind speed since opaque color was already being used for temperature. However, perceiving

the changes in luminance is difficult.

The mapping used in figure 1.2b was designed with the aid of ViA, a visualization agent

created in our lab [Cha01]. ViA suggests mappings based on perceptual guidelines. The agent

chooses mappings that minimize interference and assign the most salient features to the at-

tributes that are of greatest interest to the viewer. Data attributes were mapped to the color, size,

orientation, and density of the small rectangles that comprise the visualization. The mapping

is as follows:temperature → color,wind speed → density,wind direction → orientation,

andprecipitation → size. This mapping eliminates the interference of cloud coverage that oc-

curred in the original mapping. To find cold regions in areas of high precipitation, for example,

we look for large, dark, green rectangles. Finding combinations of wind speed and temperature

means attending to density and color, as opposed to the luminance and color combination used

in figure 1.2a. Warm, low wind speed areas have sparsely placed pink glyphs. The colors were

selected to be easily differentiable and balanced to accurately reflect the changes in the under-

lying data values. This mapping appeals to the low-level human visual system by employing

features like color, orientation, and size.

To enhance the effectiveness of the mappings we choose, we also want to entice viewers

into prolonged inspection of the images. We believe that images that are engaging and attractive

will encourage viewers to study them, thereby improving the likelihood that they may discover

anomalies or trends not immediately obvious. This brings us to another question posed by the
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1998 Visualization Panel: “How can the long and rich history of visualization in the arts be

exploited by the information age?” [Zei98]

The influence of the fine arts on graphics can be seen in the relatively new field of graph-

ics called non-photorealistic rendering. This is a diverse category of graphics, ranging from

projects like simulating pencil marks to automating the cartoon creation process. For years

scientists in (traditional) graphics modeling and rendering have studied the physics of light and

color to develop techniques for creating images that look amazingly like photographs. Con-

trary to this trend some are studying the techniques of artists to create artistic images with

computer graphics. These techniques lend themselves well to our goal of creating appealing

visualizations. Also, there seems to be a correlation between the techniques used by artists and

techniques revealed to be effective by studies of low-level human perception.

1.1 Main Contributions

The current data visualization environment as described in the previous section, points to the

need for continued research on displaying multi-dimensional datasets. These displays must

facilitate analysis and exploration and engage the viewer. These requirements motivated our

work. Specifically, the goals of this project are to create visualizations which are:

• Effective. As discussed above, the need for effective visualizations is essential for the

scientific community[Ger94, Lym00, Mcc87, Smi98].

• Multidimensional.Most applications generate datasets of high dimensionality [Kir99,

Rhe01, Lym00]. Multidimensional visualizations provide important information about

6



relationships between attributes. The example shown in figure 1.2a gives a taste of the

challenges involved in visualizing multiple attributes in a single display.

• Engaging and aesthetically pleasing. Creating aesthetically pleasing visualizations may

enhance the effectiveness of the visualizations, since viewers will be encouraged to gaze

at them for extended periods.

To achieve these goals, we plan to: (1) create mappings based on human perceptual strengths,

(2) employ a painterly style based on artistic characteristics, and (3) test the resulting styles for

effectiveness and aesthetic appeal.

We will create visualizations that look as if they are “painted” with textured glyphs that

resemble brush strokes. The glyphs will be distributed as if they are being painted on a canvas.

Data attributes will be mapped to the visual features of the glyphs (e.g. color, size) to support

multi-dimensionality. Mappings will be determined based on human visual perception of color

and texture so that our visualizations will take advantage of human perceptual strengths.

We will seek guidance for our painterly styles from groups in two distinct fields: computer

scientists in nonphotorealistic rendering and artists in Impressionist painting. By studying the

techniques in nonphotorealistic rendering, we can build on the research of scientists who are

already using computer graphics to “paint.” To create aesthetically pleasing “painted” images,

we will study the techniques of master Impressionist artists. The characteristics of Impression-

ist artwork may provide insights on creating expressive and appealing visual displays.

Since we intend to “paint” our visualizations, the techniques we will use to create our

visualizations will be different from existing ones. In order to confirm that existing human

7



perceptual guidelines apply to our techniques, we will conduct studies with images created in

this painterly manner. Results from these studies will serve as an indication of the effectiveness

of the technique. In order to test for aesthetic appeal, we will ask observers to judge our

painterly images on artistic merit. We will also try to identify the basic emotional and visual

factors that influence these judgments.

The results of this work may influence scientists in visualization to consider the impact

of aesthetic appeal on scientific visualizations. This project raises some general questions.

Could existing techniques be enhanced by adjusting visualizations to be more engaging? Could

other new visualization techniques be discovered by studying artistic techniques along with

perceptual guidelines? More exploration of this methodology may lead to the discovery of

new ways to effectively visualize more dimensions simultaneously. Additionally, our studies

of the effectiveness of new painterly styles may offer insights into how we perceive certain

combinations of visual properties.

1.2 Paper Organization

The remaining chapters progress as follows: Chapter 2 surveys related work in nonphotoreal-

istic rendering. Chapter 3 elaborates on the research in human visual perception guidelines on

color and texture. Chapter 4 briefly highlights important Impressionist principles. Our studies

on effectiveness and aesthetic judgment are discussed in Chapter 5. Chapter 6 describes the

implementation of a system to realize nonphotorealistic visualizations and describes a practical

application of the tool. Last, Chapter 7 discusses conclusions and future work.

8



Chapter 2

Nonphotorealistic Graphics

Nonphotorealistic graphics applies drafting and artistic techniques to imaging. Photorealistic

rendering involves careful modeling how light interacts with the materials in the world and

understanding how we perceive the light rays entering our eyes [Jen01]. Imagine modeling a

tree realistically with computer graphics. A tree’s bark is knotted, multi-colored, and creased.

Thousands of unique leaves catch the sunlight at different angles and cast thousands of shad-

ows. Scientists at the University of Calgary, for example, render plant topiaries like the one

shown in Figure 2.1 [Pru94]. A great deal of detail must be included to create a realistic look.

Although such renderings are a great accomplishment, nonphotorealistic renderings offer their

own unique advantages [Win94, Goo01, Str02]. For example, nonphotorealistic images can:

• convey information better by omitting extraneous details

• focus attention on relevant features, by clarifying and simplifying shapes

• expose hidden features

9



Figure 2.1: Computer graphics rendering of the topiary garden at Levens, England, created by R. Mech, P.
Prusinkiewicz [Mec96].

• utilize less storage space and be more easily reproduced and transmitted

• provide a more natural vehicle for conveying information at different levels of detail

Figure 2.2, a simple hand-painted watercolor tree, exhibits some of these characteristics. When

artists depict foliage, they don’t paint every leaf. Instead they use brush strokes to abstractly

represent the leaves [Mei96]. Introducing some abstraction enables the image to be drawn with-

out alluding to each minute detail. Released from physical constraints of realism, a rendering

often more succinctly communicates its content.

10



Figure 2.2: Hand-drawn tree in watercolor markers by the author.

2.1 Methodology for Simulating Artwork

Many researchers in nonphotorealistic rendering create artistic images based on photographic

images or 3D models. Even though our basis, i.e., datasets, is more abstract, their methodolo-

gies and techniques influence our work. Some of their projects are focused on producing con-

vincing physical simulations of artistic media, such as pen-and-ink, colored pencil, or graphite

pencils. Their approach involves choosing a specific artistic medium, compiling a list of prop-

erties exhibited by artistic works in that medium, and developing algorithms to draw images

that conform to these rules.

11



Winkenbach and Salesin, for example, developed a pen-and-ink modeling system [Win94].

They began by listing the properties of pen-and-ink sketches. For example, they observed that

lines vary in thickness, absence of detail indicates glare, crisp lines are used for glass, and

sketchy lines are used for weathered materials. Next they selected algorithms to draw images

that conform to these rules. A collection of hatching strokes vary in direction, style, and density

to reproduce texture and tone differences. They also use outlines sparingly to indicate but not

overdo boundaries. In later work, they added the ability to sketch curved objects by developing

a method to vary stroke direction on curved surfaces and introducing a new controlled-density

hatching algorithm [Win96]. Work on modeling pen-and-ink renderings has been continued

by Salisbury et al [Sali97]. Figure 2.3 demonstrates a rendering of a difficult-to-model non-

smooth furry surface.

Figure 2.3: Computer generated pen-and-ink style raccoon sketch created by Michael P. Salisbury, Michael T.
Wong, John F. Hughes, David H. Salesin. [Sale02].
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Other projects similarly base their work on artistic properties, but also model the micro-

scopic media-paper interactions. Takagi et al. simulate colored pencils by modeling the micro-

structure of paper and particle dispersion when round-tipped colored pencils mark the paper

[Tak99]. The model uses 3D pixels, i.e., voxels, to model the paper content (initially pulp fibers

and talc) and record the changes occurring during the drawing process. Sousa and Buchanan

model the interaction of graphite pencils, erasers, blenders, and paper based on electron mi-

croscope images of paper [Sou99a, Sou99b, Goo01]. The model allows for variation of a large

number of parameters. How the pencil is held by the artist, the pressure on the pencil, pencil

hardness and sharpness and paper roughness are simulated.

2.2 The Texture Approach to Painting

Other scientists approach nonphotorealistic rendering by focusing on texture. Inherent in hand-

drawn images due to the paintbrush bristles, the pencil tip’s wear, the paper’s fibers, or the

canvas weave, texture must be added as a separate step in computer graphics images. Texture

mapping, a common technique for adding realism to computer-generated scenes, overlays an

image onto an object. A wall may be drawn by laying a brick texture over a rectangle or a

semi-transparent texture may be mapped to create clouds. Haeberli and Segal draw layers of

translucent textures on a background image to simulate air-brushing and other types of paint

strokes [Hae93].

The texture synthesis process involves generating texture based on a texture sample. Ashik-

hmin worked on synthesizing natural textures. Given a small image of pebbles, Ashikhmin
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could create an image that covers a driveway with what look like authentic pebbles [Ash01].

Figure 2.4 shows an example of texture synthesis created by Ashikhmin. Figure 2.4a is the sam-

ple image used to create figure 2.4b, a synthesized pattern of pebbles. Using texture synthesis,

(a) Sample image (b) Synthesized image

Figure 2.4: Example of texture synthesis applied to a natural texture.

Lewis developed an interactive painting system [Lew84]. Figure 2.5 shows some examples of

images created with this system. In Lewis’s program the painter designs a texture sample and

specifies several variables that effect how the edges of the texture are drawn. The program

generates textured areas, as if painting brush strokes of varying sizes, based on the size of the

synthesis region.
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Figure 2.5: Digital paintings with texture synthesis. The painter designs a sample texture and the program gener-
ates textured areas.

2.3 Painting Programs

We hope to visualize data using “painted” strokes, as if an Impressionist artist were rendering

our datasets. The collection of projects described below, though diverse in focus and outcome,

all synthesize brush strokes to “paint” non-photorealistic renderings. We are interested in their

brush stroke techniques, as well as how they composed the overall image.

In 1986 Strassmann developed a system for painting in a style of Japanese art chosen for

its minimalist qualities. Only a few brush strokes are used and ink is only shades of gray. This

allows for focus on the quality of each stroke [Stra86]. The system uses four objects: brush,

stroke, dip, and paper. The brush is composed of numerous bristles. Strokes have trajectory,

color, and pressure. Dip is the set amount of ink in the well. Paper stores the results of each

stroke.

Haeberli’s “Paint by Numbers” program allows users to interactively convert synthetic or

natural scenes into Impressionist images [Hae93]. The user “paints” the strokes over the source

image, varying the size, direction, and shape (footprint of the brush) using various mouse ges-
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tures. The location and color of the stroke are based on the location of the mouse. The source

image color at the current location establishes the color of the stroke, freeing the user from

choosing the color as in previous painting programs. Advanced extensions include “pushing

edges” and painting 3D synthetic scenes. “Pushing” an edge is a technique that exaggerates

important edges. This is achieved by making dark edges slightly darker and light edges slightly

lighter where dark and light edges meet.

Hsu and Lee produced a painting program with a style suitable for Chinese brush art and for

cartoons [Hsu94]. Defined by a reference backbone and reference thickness, “skeletal strokes”

constitute their vector-based drawing primitives. The strokes are based on a transformation

of the localized parametric coordinate system. A user may choose to simulate various effects,

such as, water-based ink, wood-cut, or flat-nib pen. Each stroke varies in thickness, an attribute

not available in previous painting programs.

Meier used partial placement to create animated painterly renderings that have an Impres-

sionist look [Mei96]. The program divides the surface of a source image into triangles that

approximate the shape. Particles are then placed in each region. The number of particles in

each region is based on the size of the region. The orientation, size, and color of the strokes

may be stored within the particles. The particles are depth sorted and rendered as 2D strokes

using a painter’s algorithm.

Painterly rendering programs usually apply some randomness to placement, color, and

other stroke features to reduce the rigidity inherent in computer-generated images. This ran-

domness can cause undesirable jumpiness when painterly images are animated. Thus, frame-

to-frame coherence is a challenging issue. To maintain coherence, Meier stored a seed with
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each particle so that the same random perturbations are used throughout the animation. In 1997

Litwinowicz presented another algorithm for producing painterly animation with an Impres-

sionist style [Lit97]. While Meier used computer-generated animations as input, this program

used video clips as input. brush strokes, oriented normal to the gradient direction of the origi-

nal image, are clipped at detectable edges in the source image. The program maintains a list of

strokes and uses optical flow fields to maintain temporal coherence.

In 1997 Curtis et al. designed a system for creating computer-generated watercolors [Cur97].

Though not focused on the medium, the previous two examples must have assumed oil or

acrylic paint which yields defined, distinct brush strokes, whereas watercolor can be much

more fluid. This project models the nuances of watercolor painting by simulating unique ef-

fects, such as edge-darkening, granulation, backruns, separation of pigment, and glazing. Three

different applications were developed: an interactive watercolor system, an automatic image

“watercolorization,” and non-photorealistic rendering of 3D scenes.

Another program designed to paint a wide range of visual styles, from color wash to Im-

pressionist, creates images with a hand-drawn look from photos [Her00]. The program “paints”

with curved brush strokes rendered in layers. Larger strokes are drawn first, then the image is

painted over and over with successively smaller strokes in areas with more detail. The designer

can vary parameters to create different styles. For example, the painting can be sketchier or

more precise and brush stroke curvature may be limited or exaggerated.
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2.4 Visualization Applications

Scientists in visualization have recently begun to focus on how studies of human perception

and nonphotorealistic rendering can be applied to visualization. Interrante investigated human

perception of textures to create visualizations using natural textures, such as bubbles or bee

hives or woven materials [Int00]. These textures offer intricate variety and subtle richness,

qualities lacking in regular synthetic textures on a flat plane.

Several scientists have been investigating the use of nonphotorealistic rendering techniques

to supplement established visualization techniques for applications such as flow and volume

illustration. The results are promising.

For example, Ebert and Rheigans augment physics based rendering techniques with non-

photorealistic techniques to create volume illustrations [Rhe01]. Depth-cueing dims the color

of objects far from the viewer. Null-halos leave the areas just outside surfaces empty, even if an

accurate depiction would show a background object there. Tone is varied based on orientation

to the light. Surfaces facing the light get a warm cast and those facing away from the light get a

cool cast. These are just a few examples of the enhancements employed. Their techniques are

demonstrated on volume illustrations of human internal organs with impressive results. Fig-

ure 2.6 shows some examples. Figure 2.6a shows the original gaseous image of an abdominal

CT Scan (Computed Tomography Scan). CT Scans are used for imaging soft tissue, bone,

and blood vessels. Figure 2.6b demonstrates tone enhancement. Figure 2.6c demonstrates

boundary and silhouette enhancement and halos.

Laidlaw et al. constructed a visualization technique for diffusion tensor images that may
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(a) Original gaseous image
of an abdominal CT Scan.

(b) Tone enhancement (c) Boundary and silhou-
ette enhancement and ha-
los

Figure 2.6: Ebert and Rheigans enhance volume illustrations using nonphotorealistic techniques.

provide early diagnostic value for neurogenative diseases [Lai98]. The rate of diffusion of

water molecules in a biological system can provide important information about the structure of

the underlying tissue. The relevant data yields seven values in each spatial location. Applying

concepts borrowed from artists, Laidlaw et al. created an effective visualization using varied,

layered brush strokes.

These methods are extended to problems in fluid mechanics [Kir99]. A combination of

discrete and continuous visual elements are arranged in multiple layers to illustrate attributes

such as velocity and vorticity. The techniques also allow them to visualize several additional

quantities that had rarely been visualized before. The visual features include a primer, an

underpainting, an ellipse layer, an arrow layer, and a mask layer.

Laidlaw, involved in both of the latter two projects described above, made the following

observations about what scientists in visualization can learn from paintings [Lai01]:

Paintings are multiscale.When viewed from different distances they can be seen and under-
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stood differently.

Paintings have a temporal component.We see different aspects of an image at different

viewing times. Some parts stand out quickly, like the overall composition or palette of a

painting, and some take more time to become apparent, like texture or shape of individual

strokes.

These concepts extend to reading painterly visualizations. Laidlaw expanded on this point

with the following comments [Lai98]: brush strokes encode information individually showing

specific values and collectively showing spatial connections and generating a texture and sense

of speed corresponding to the speed of diffusion. To summarize, the strokes represent data

more qualitatively from a distance and more quantitatively up close.

Laidlaw was particularly influenced by Impressionist artwork, as were several other scien-

tists mentioned in the previous section [Hae93, Hsu94, Mei96, Lit97, Her00]. The next chapter

describes the influence of Impressionism on our project.
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Chapter 3

Painterly Style

The painterly style created by Impressionist artists, e.g., Monet, Renoir, Pisarro, Cezanne, and

Van Gogh, provided inspiration for our project. The Impressionist art movement consisted of

a small group of painters who departed from the dominant artistic practices of the time. The

term “Impressionism” was derived from the Monet painting“Impression Sunrise (Le Havre)”,

which was characterized by a sketchy form and attempted to capture certain atmospheric ef-

fects [Nov95]. Monet, whose work exemplifies the Impressionist principles, held that the first

real look at the motif was likely to be the truest and most unprejudiced one [Per27]. The Im-

pressionist style of painting is characterized chiefly by concentration on the general impression

produced by a scene or object [Pio02].

We chose the Impressionist style to lend focus to our project, though we consider our

methodology to be a general one that could use other painterly styles as a basis. Our design

echos the Impressionist principles. The points below further describe the main features of the

Impressionist style.
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Typically, they used small, quick brush strokes to simulate the reflected light.Our tool applies

a sprinkling of brightly colored strokes that portray high spatial frequency details.

Primary importance was given to tiny, moving, brightly colored strokes that depict movement

and create form [Whi78].Our visualization consists of small, directed, colorful brush

strokes that vary in length and surface texture.

Monet said that the first (layer of a) painting should cover as much of the canvas as possible,

no matter how roughly, so as to determine at the outset the tonality of the whole [Per27].

Our underpainting covers the canvas and sets the tone by deriving size and orientation

from data that determines the size and orientation of the final coat.

Impressionist artists studied color and light methodically. Some studied results of color scien-

tists like Chevreul and Rood, while others developed their own scientific models of color

[Che67, Bro50, Roo79]. In a 1905 letter, Monet emphasized the use of colors that would

make the painting brighter [Mon05].Following their example, our palette consists of

colors chosen from a carefully developed scientific model.

Finally, the following statement by art historian Fritz Novotny reveals the essence of the

art form: “The highly ingenious artistic system of illusion in Impressionist painting ultimately

depends on two types of purely formal structure: the structure of marks created by the visible

pattern of brush strokes and the structure established by color relations [Nov95].” The next

chapter describes the perceptual considerations that influenced the structure of the marks and

colors that constitute our visualizations.
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Chapter 4

Visual Perception

Human perception is based on a sophisticated and complex information processing system

designed to optimally extract environmental information. A visualization’s effectiveness, to

some extent, depends on how well it is designed as an input to this system [Ira00]. To address

this we study how visual perception operates. People commonly believe that they see “what is

there” by merely opening their eyes and looking, like a camera taking a snapshot. However,

human vision differs greatly from modern photography [Hea02]. Although a camera creates a

two-dimensional replica of the scene, the human visual system cannot fully process all of its

input [Wol94]. Healey compiled a list of significant findings that differentiate human vision

from photography [Hea02]:

The retinal image is only fully processed at the fovea [Wol94].Detailed form and color vision

is only possible for a tiny window of several degrees of arc surrounding a gaze location.

23



Inspecting an entire scene requires a series of eye movements.Even when the eye seems

to be fixed at one point, the eye jumps ballistically. Wooding et al. are interested in

how people view paintings [Woo00]. They recorded observers’ eye movements as they

viewed images of paintings at the National Gallery in London. Figure 4.1 shows a trace

of an observer’s eye saccades (ballistic eye movements) as he inspectsThe Execution of

Lady Janeby Grey Paul Delaroche.

Figure 4.1:The Execution of Lady Janeby Grey Paul Delaroche with fixations and scan-paths of eye movements
of an observer inspecting the painting. The series of discrete saccades that are required to see a “whole scene,”
are time-consuming.
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The series of discrete saccades that are required to see a “whole scene,” are time-consuming.

While the eye is moving, image blur makes the visual system effectively blind. Saccadic

suppression imposes an additional sensitivity loss for a period that outlasts the saccade

by 50 ms or more [Tri02].

Memory of what is seen in a glance is extremely limited and dependent on where attention is

directed and what is sought.

Human vision is honed to be drawn to objects that are very different from their surroundings,

or that change or move, because of the different signals emanating from these locations.

Objects that remain unchanged may escape notice.

Only a few basic features can be used to guide attention.The most prominent properties are

hue and luminance. The next level includes orientation, motion, and texture, followed

by length, area, and convexity.

Research in human perception indicates that visualizations should be carefully tailored to har-

ness human visual perception skills [War00, Wol94]. Research in perception and visualization

guided our work. Specifically, color and texture selection and visual feature perception hierar-

chy research steered the development of our visualization tool.

4.1 Color Selection

Color names are too imprecise to be useful in descriptions of color. Scientists have dealt with

this issue by creating various color models that define colors precisely in terms of a physical
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model and associated mathematical equations.

Early publications on the study of color include work by M.E. Chevreul in 1839 and A.H.

Munsell in 1905. Chevreul’s “Principles of Harmony and Contrast of Colors,” a collection of

notes from work in the color lab of his textiles factory, was a major influence on artists of the

time, including Delacroix, Pisarro, Monet, and Seurat [Che67].

In order to describe the colors on his sketches to his color composition classes in definite

terms, Munsell arranged colors on a sphere [Mun45]. In “‘A Color Notation” he first describes

his model as a peeled orange divided into five parts still connected at the bottom. One section

contains all the greens. Another contains all the blues, etc. The sphere models hue, value, and

chroma (i.e., saturation). Munsell describes hue, value, and chroma as the name of a color, the

lightness of a color, and the strength of a color, respectively. In physical terms these correspond

to dominant wavelength, excitation purity, and luminance and together they are necessary and

sufficient to specify a color precisely.

The RGB (Red Green Blue) Color Cube is used to specify these three color components

on computer monitors [Fol97]. An RGB cube is shown in Figure 4.2a. Each corner of the

cube is a unique fully saturated hue. Colors are denoted by triples(r, g, b) for 0 ≤ r, g, b ≤ 1

where r, g, and b represent the amount of red, green, blue. For example,(1, 0, 0) represents

red and(1, 1, 1) represents white. The model is based on the notion that all colors of light can

be specified by some combination of the three primary light colors red, green, and blue. Since

this is not entirely true, no computer monitor can produce all visible colors and the subset that

it does produce is called its gamut.

In the 1920’s W.D. Wright and J. Gould employed this additive color notion [War00]. They
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conducted a series of experiments on a large number of normal-sighted people to establish

three color matching functions that show the amounts of red, green, and blue light needed for

the average observer to match each color in the visible spectrum. Many of the colors could be

matched by additive combinations of red, green, and blue. However, hues with wavelengths be-

tween 438.1 nm and 546.1 nm could not. To match these colors some red needed to be added to

the color being compared. A segment of the red curve is negative. This corresponds to adding

red to the target patch to produce the match. This problem was addressed by the Commission

International D’Eclairage (French for “International Commission on Illumination”).

In 1931 the Commission International D’Eclairage (CIE) applied a linear transformation

to the originalr, g, b curves to produce three new functionsx, y, andz. These new functions

contain only positive values over the visible color spectrum. This resulted in the CIE XYZ

model and later the CIE LUV model (shown in Figure 4.2 b and 4.2c, respectively [Ado02])

[Fol97]. Both models are horseshoe shaped color maps that specify the entire spectrum of

colors. The CIE LUV model has the advantage of being roughly perceptually balanced, an

important property for data visualization.

(a) RGB Cube (b) CIE XYZ (c) CIE LUV

Figure 4.2: Some examples of color models.
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Perceptual balance is a measure of whether perceived color differences between pairs of

colors correspond to the physical distances between the color pairs in a given model. Does the

difference between yellow and red appear to be the same as the difference between black and

red? The pairs are the same distance apart in the RGB Color Cube Model. To compare pairs

of numerical values, we find the relative differences by subtracting. How our visual system

compares pairs of colors is more mysterious. Mapping data values to colors to reflect data

accurately is a challenge.

Researchers have built systems to let users interactively explore different color mapping

schemes. Rheingans and Tebbs developed a tool for dynamic exploration of color mappings

[Rhe90]. The tool displays the current color mapping on a dataset, a three-dimensional color

space, and a chart which relates distance traveled along a color path to data value increments.

The color space is a three-dimensional cloud of color samples from a color model. The system

allows the user to choose an RGB cube, an HSV cone or an HSL double cone for the color

model. A curve inside the color space shows the color path which defines the sequence of

colors used to represent the data values. The user could also select a linear or exponential

mapping. Each setting could expose different aspects of the data. For example, an exponential

mapping would map most of the data values to a relatively small range of colors, mapping the

remaining portion to a larger part of the path, exposing subtle details in the high values of data.

Bergman et al. presented a rule-based tool for assisting colormap selection [Berg95]. The tool

assists the user in finding color mappings to display data faithfully by giving advice based on

characteristics of the dataset and the kinds of information the user wants to be revealed.

Other scientists propose color mappings based on principles of color perception. Colin
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Ware, an experimental psychologist and computer scientist, developed guidelines for choosing

color sequences for visualization [War00]. He recommends a spiral in color space, so that as

the sequence varies through a range of colors, the luminance increases as well. The mono-

tonically increasing luminance facilitates the perception of forms. This model also addresses

the perceptual problems caused by contrast. A patch of color may appear to have different

luminance or to be a different hue when placed on different backgrounds. Figure 4.3 shows an

example [Kai02]. The circles are all the same color, though we perceive the one on the far left

to be brighter than the one on the far right. This effect, undesirable for visualizations, is called

simultaneous contrast. Errors such as this are reduced by choosing a cyclic pattern in color

space.

Figure 4.3: An example of simultaneous contrast: The circles are all the same color. The luminance of the grey
squares behind the circles is affecting our perception of the circles’ colors.

Healey and Enns describe a technique for choosing multiple colors to maximize the number

of distinguishable colors that can be displayed [Hea96, Hea99]. They indicated a need to

consider the three separating criteria: color distance, linear separation, and color category.

Color distance is the Euclidean distance between two colors in a perceptually balanced color

model. Linear separation requires every color to be separable by a single straight line from all

others. A color’s category means the name of the color region in which it resides in the model.

Tests employing this method of color selection yielded successful results for rapid, accurate
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color detection.

Our tool employs elements of each of the techniques described to map data to color effec-

tively. Our colors are selected along a spiral about the luminance pole in the monitor’s gamut

within the CIE LUV color model. As in Ware’s guidelines, we use an upward spiral, so that

luminance increases as data values increase. Uniform sized groups of colors reside in different

color categories, maintaining color name separation. The technique also reduces simultaneous

contrast effects, since the colors are chosen cyclically. Overall, the result is a perceptually

balanced selection of colors.

4.2 Texture Selection

Webster’s dictionary defines texture as the visual or tactile surface characteristics and appear-

ance of a surface or object. A surface may feel smooth or coarse and look spotted or striped,

for example. In this context “visual texture” is a perceptual property analogous to color. Just

as color can be described in terms of hue, luminance, and saturation, texture can be described

by various properties, such as size, slant, density, and regularity.

Grinstein et al. use the texture properties shape, length, thickness, and slant to visualize

data [Gri89]. They built a visualization tool called EXVIS (Exploratory Visualization). EXVIS

maps data to glyphs called “stick-figure icons.” The stick-figures have various basic configu-

rations determined by the family to which they belong, i.e., they may have two, three, or four

limbs on one end of the body attached in various ways. Data attributes mapped to parts affect

each limb’s length, width, slant, and color, so that data elements with similar attribute values
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produce visually similar icons. When the icons are arranged spatially, spatial coherence and

boundaries between groups of elements with different attribute values are visible. Figure 4.4

demonstrates the application of EXVIS to five-parameter data, weather satellite imagery of the

Great Lakes region. The basic stick-figure icon is shown in the upper-right corner. The upper

four segments are limbs. Properties of these limbs vary across the image to display the data.

This visualization conveys boundaries patterns in data attributes.

Figure 4.4: An image created with EXVIS. This iconographic image visualizes a five-attribute dataset: weather
satellite imagery of the Great Lakes region. The insert shows the basic stick-figure icon that is varied across the
image.

Scientists are interested in which texture properties and combinations of properties can be

detected at a glance. This is calledpreattentive detection. An eye movement takes at least

200 ms. A visual task completed in less than 200 ms is considered to be processed preatten-

tively. Researchers investigating the saliency of visual features typically conduct experiments

in which viewers search for a particular element in a field of distracter elements. For example,

the observer might attempt to find a diagonal element in a field of vertical elements.
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Treisman ran experiments with grids of glyphs to test the preattentive processing of human

vision [Tre85]. She tested skills like boundary detection and target detection. She suggested

that early visual analysis results in separate mental maps for separate properties that pool their

activity across locations allowing rapid access to information about the presence of a target.

Ware and Knight developed a mathematical model based on neurological and psychophysical

research to describe the orientation, size, and contrast of glyphs [War95]. Healey and Enns

created visualizations of multidimensional data with glyphs varying in height, regularity, and

density and then tested them for effectiveness [Hea00]. Though regularity is a commonly

used texture property, it did not perform as well as expected in their experiments. However,

results showed that visualizations employing height and density could be rapidly, accurately,

and effortlessly analyzed. Weigle et al. focused specifically on texture orientation [Wei00].

Their research indicated that a target oriented±15◦ or more from its background resulted in

discrimination with high accuracy and fast response times.

Our visualization tool employs several textural properties. Data is mapped to brush strokes

varying in location, size, orientation, and coverage (percentage of canvas covered). Figure 4.5a

shows a small patch of brush strokes varying in size, orientation, and coverage. Also, a texture

map created from real brush strokes is mapped to each stroke. This serves two purposes: to

synthesize painted brush strokes, and to increase discernibleness of features in densely packed

monochromatic areas. Figure 4.5b shows the same sample before brush stroke texture was

added.
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(a) Strokes with texture mapping (b) Strokes without texture mapping

Figure 4.5: A patch of brush strokes generated by our tool: (a) and (b) show the same patch of strokes. But the
stroke size and orientation are difficult to detect upper right corner of (b), where the strokes are monochromatic
and densely packed.

4.3 Feature Hierarchy

The previous sections discussed issues like choosing distinguishable colors and perceptible ori-

entation variations. Since we are visualizing multidimensional datasets, we are also interested

in how visual features interact. In figure 4.5 the addition of brush stroke texture maps enhances

the saliency of the size and orientation of each stroke. In other cases, additional features may

interfere with the perception of existing ones. Evidence indicates that the low-level human

vision system filters preattentive input, ordering visual features hierarchically. Researchers in-

vestigating feature hierarchy and interference typically conduct boundary or target detection

experiments, similar to those described in the texture selection section. For example, figure 4.6

shows some textures with several varying features. In each, one feature is held constant over the

entire field, except for a 3 x 3 target in which that feature is set to some other value. Different

features vary in the background ( e.g., orientation varies in figure 4.6a and color varies in fig-

ure 4.6b ). Though the target in figure 4.6a is quickly evident, the viewer may need to conduct

a serial search to detect the target figure 4.6b. Experimental results explain this phenomenon.
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(a) Color target (b) Orientation target

Figure 4.6: Target detection examples: (a) The target of pink frogs pops out from a background of randomly
oriented frogs. (b) The target of frogs oriented5◦ does not pop out from the background of frogs oriented20◦.
The target is masked by the random coloring.

The results indicate that color produces a small interference effect during texture segmen-

tation [Sno98, Hea99]. Color variation interferes with an observer’s ability to see textural

regions. On the other hand, variations in texture have no effect on color region detection. Fig-

ure 4.6 demonstrates this asymmetric relationship. Even though texture orientation and shape

vary randomly in figure 4.6a, the pink area can be detected preattentively. The color target

jumps out despite the random texture variations of the frogs. But the tilted patch of frogs may

be difficult to detect in figure 4.6b. All but the target are at a20◦ angle, and the target orientation

is 5◦. Despite the15◦ difference in orientation, the color pattern masks the texture property.

The relationship between hue and luminance is similar to the one between texture and color.

Luminance variations interfere with spatial patterns formed by hue, though random variations

in hue have no effect on the viewer’s ability to see luminance patterns [Cal90]. According to

these results, in visualizations data attributes of most interest to the observer should be mapped
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to luminance, then hue, and then various texture features.
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Chapter 5

Effectiveness and Aesthetics Studies

Two main questions emerged as we developed our tool:

1. Would the perceptual guidelines discussed in the previous chapter apply to our painterly

images?

2. Would observers find artistic merit in our computer-generated displays and what emo-

tional and visual factors influence this judgment?

In conjunction with the psychology department at the University of British Columbia, we

conducted two experiments to address these questions.

5.1 Effectiveness Studies

The effectiveness studies were designed to answer the first question by measuring speed and

accuracy of preattentive perception. The tests were similar to the perception experiments de-

scribed in the previous chapter, except that the textures used in our tests were patches of brush
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strokes like the brush strokes used by our visualization tool. The brush stroke colors and tex-

tures varied according to which properties were being tested. Figures 5.1, 5.2, 5.3 and 5.4

show a few of the trials used in the experiment. Some contained a patch of strokes, called

a target, with a unique color or orientation. The target was a randomly located 3x3 patch of

strokes within a 22x22 patch. For example, Figure 5.1 has a target patch of green stokes in a

pink background and Figure 5.3 has a target patch of45◦ in a30◦ background. Some trials like

the ones shown in Figure 5.1f and 5.3f did not contain a target. Observers were shown each

trial briefly (200 milliseconds), then asked to report the presence or absence of the target. The

images were maximized on a 17 inch screen with observers sitting at a normal distance from

the screen. The following sections describe the configuration of the texture patches in the two

effectiveness studies.

5.1.1 Design

In experiment 1 observers were asked to report the presence or absence of a color target. Color,

orientation, density, and regularity were varied over the brush strokes to test for feature inter-

actions. The factor levels are listed in Table 5.1.1.

The trials shown in Figure 5.1 have constant orientation. Those in 5.2 have random orien-

tation. Columns one, two, and three of figures 5.1 and 5.2 show dense, sparse, and very dense

trials, respectively. The brush strokes are jittered in b, c, and d of both figures 5.1 and 5.2.

The color pairs, orange with pink and green with orange were chosen based on results

from earlier studies that showed they were rapidly distinguishable from one another when no

other visual features varied [Hea99, Hea00]. Displays were calibrated to ensure accurate color
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Table 5.1: Four factors were varied to create the trials: a color, orientation, density, and regularity. Each factor
has two or three settings. All combinations of levels of these factors generate 24 unique conditions.

Experiment 1
Factors Levels
color orange target in green target in

a pink background an orange background
orientations constant random
densities sparse dense very dense
regularities regular grid pattern jittered randomly

reproduction. We used a Macintosh computer with a 24-bit color display.

Each observer was shown 192 trials. Half of these contained a target. The other half didn’t.

These were created by varying the color (2 levels), the orientation1 (2 levels), the density (3

levels), and the regularity (2 levels) to generate 24 unique conditions. We created 8 sets of these

variations, 192 trials. For each condition the target was present in 4 of the trials and absent in

the other 4 trials.

Experiment 2 was like experiment 1, except the roles of orientation and color were swapped

(See Table 5.1.1). Color was a secondary feature, held constant or varied randomly2 and tar-

gets were sets of strokes oriented differently from the rest. Observers attempted to detect the

presence or absence of an orientation target.

Figures 5.3 and 5.4 shows some examples of the trials that were used. Figure 5.3 shows

trials with constant color. Figure 5.4 shows trials with random color. Columns one, two, and

three of figures 5.3 and 5.4 show dense, sparse, and very dense trials, respectively. The brush

1Constant orientation was a constant45◦ angle or a constant60◦ degree angle. Random orientation was
randomly30◦ and45◦ or 45◦ and60◦.

2Constant color means every stroke was the same color, either green or pink. Random color means the strokes
were randomly colored green and orange or randomly colored orange and pink.
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(a) (b) (c)

(d) (e) (f)

Figure 5.1: Examples of color target detection with constant orientation. (a)-(e) Green or orange target (f) target
absent.

strokes are jittered in b, c, and d of both figures 5.3 and 5.4.

Orientation differences of15◦ were chosen based on the texture orientation results de-

scribed in the previous chapter [Wei00]. This research indicated that a target oriented±15◦

or more from its background (with all other visual features held constant) was detected with

high accuracy and fast response times. Again, 192 trials were created, half of which contained

targets.

The participants and procedure were the same in both experiments. Eighteen observers (six

males and 12 females ranging in age from 18 to 28) with normal or corrected acuity and normal

color vision participated. Each observer met or exceeded our minimum accuracy requirement
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(a) (b) (c)

(d) (e) (f)

Figure 5.2: Examples of color target detection with random orientation. (a)-(e) Orange or green target (f) target
absent.

(60%) on both trials.

Half the observers participated in experiment 1, followed by experiment 2. The other half

did them in reverse order. Each completed a practice session of 24 trials before each experiment

type (color or orientation). Observers were told that half of the trials would contain a target

and half would not. Each trial was shown on the screen for 200 milliseconds. Then the screen

was cleared and the system waited for a response of “target present” or “target absent” to be

registered. Observers were instructed to respond quickly while maintaining a high level of

accuracy, not sacrificing accuracy for time.
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(a) (b) (c)

(d) (e) (f)

Figure 5.3: Examples of orientation target detection with constant color. (a)-(e)45◦ target in a30◦ background or
a60◦ target in a45◦ background. (f) target absent.

5.1.2 Results

Response time, in milliseconds, and accuracy, 0 for incorrect or 1 for correct, were recorded

for each trial. Anaverage response time, t and anaverage accuracy, a, over all trials were

computed for each experiment condition (i.e., for all trials where the choice of target and back-

ground was identical for all subjects who participated in the experiment). Preliminary tests

showed a high inverse correlation betweent anda (i.e.,an increase int corresponded to a de-

crease ina), so we measured our results in terms of the ratio oft to a. This ratio is called

the inefficiency measure, e. e = t/a is commonly used when the direction of change in accu-
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Table 5.2: The roles of color and orientation were swapped in experiment 2

Experiment 2
Factor Levels

color constant random
orientations 45◦ target in a30◦ background 60◦ target in a45◦ background
densities sparse dense very dense
regularities regular grid pattern jittered randomly

racy and the direction of change in time are consistent across experimental conditions. Notice

that both an increase in time or a decrease in accuracy cause inefficiency to rise. Also, when

accuracy is perfect (i.e.,a = 1), e = t.

Average values ofe for each condition are shown in Table 5.1.2. Target presence versus

target absence is not listed, because preliminary analysis showed that this factor was not sig-

nificantly related to our measures of performance. The target background pairings (i.e., orange

target in pink background versus green target in an orange background, or45◦ target in a30◦

background60◦ target in a45◦ background) were not included for the same reason.

Looking at the table, we can see that color targets were easy to detect for all tests (average

over all conditions,e = 811.9, a = 91.1%). Orientation targets were easy to detect in a

constant color background(e = 1327.7, a = 71.9%), although performance was not as good

as for color targets. Significant differences in mean values were identified using analysis of

variance (ANOVA) tests.

The values ofe are mean values of a finite sample in an infinite population. When com-

paring two different values ofe, some analysis is necessary to decide if the population means

are also different. Statisticians use ANOVAs to make this decision. We conducted ANOVAs
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(a) (b) (c)

(d) (e) (f)

Figure 5.4: Examples of orientation target detection with constant color. (a)-(d)45◦ target in a30◦ background
or a60◦ target in a45◦ background. (e)-(f) target absent.

on e using a standard 95% confidence interval. The ANOVA results for random background,

variations in density, variations in regularity, and density× regularity interaction are listed

here:

• A random background had a significant effect on orientation targets, but not on color

target performance.Random orientation had no negative effects on color target detection

(F (1, 17) = 0.01, p < 0.94, with e = 813.7, a = 91.2% for constant orientation, and

e = 810.2, a = 90.9% for random orientation). Random color had a significant effect on

orientation target detection(F (1, 17) = 8.08, p < 0.05, with e = 1327.7, a = 71.9% for

43



Table 5.3: Mean values of inefficiency measuree = t/a under 24 different conditions (t = average response time
for a treatment anda = average accuracy for a treatment). s, d, and v stand for sparse, dense, and very dense. The
density is varying column-wise and the regularity varies row-wise.

Mean Inefficiencies for Color Targets
Constant Orientation Random Orientation
s d v s d v

regular 893.8 784.9 690.3 919.2 776.5 670.1
jittered 1007.3 770.1 735.4 995.3 763.4 736.6

Mean Inefficiencies for Orientation Targets
Constant Color Random Color

s d v s d v
regular 1276.6 1105.6 1046.1 1336.9 1477.9 1117.1
jittered 1699.0 1537.9 1264.9 1732.3 1409.3 1499.0

constant color ande = 1437.8, a = 67.9% for random color).

• Density had a significant effect on both color and orientation targets

(F (2, 34) = 30.84, p < .001 for color targets andF (2, 34) = 7.85, p < .01 for orienta-

tion targets). Denser displays produced improvement in performance.

• Regularity had a significant effect on both color and orientation targets

(F (1, 17) = 5.10, p < .04 for color targets andF (1, 17) = 24.89, p < .001 for orienta-

tion targets). Irregular displays caused a reduction in performance.

• Density× regularity interaction had a significant effect on performance in color targets

(F (2, 34) = 5.34, p < .01) and a marginally significant effect for orientation targets

(F (2, 34) = 2.93, p < .07). Variation in performance was larger for more difficult

trials. For example, the negative effect of irregularity was larger in sparse color trials

(like Figure 5.1b), compared to very dense color trials (like Figure 5.1c). Recall that
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sparse trials were less efficient (i.e., more difficult) than dense trials. Similarly, the effect

of density was larger in irregular color trials, compared to regular ones.

5.1.3 Interpretation

Recall that we set out to determine if the perceptual guidelines discussed in the previous chapter

apply to our painterly images. Our results support this hypothesis. Feature hierarchy results

indicated that color interfered with texture. Color outperformed orientation in our experiments

(F (1, 17) = 71.51, p < .01). Also, psychophysical and visualization results show that random

variation in color interfere with an observer’s ability to see texture features, but variations in

texture have no effect on color tasks. Thus, our results mirror the previous findings.

Another notable result was the improvement in performance of color and orientation target

detection for increased density. We had been concerned that for brush strokes drawn closer

together or overlapping, as in paintings, orientation might not be as easily discernible, espe-

cially for monochromatic patches. The results imply that our style of glyphs with brush stroke

texture mappings facilitates discrimination of individual strokes in densely packed patches.

The list in the previous section also indicates a decline in performance for irregularity. We

believe that trials with regularity may have provided the observer with a secondary clue, due

to the underlying spatial arrangement of the glyphs. For example, compare Figure 5.3a with

5.3d. Both contain a45◦ target in a30◦ background, but in Figure 5.3a the presence of the

target patch breaks the underlying regularity pattern, providing an additional visual signal of

the target’s presence. Jittering the strokes, like in Figure 5.3d, removes this extra cue. So we

view the decline in performance for irregularity not as a measure of interference, but rather as
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the removal of a secondary cue that regularity provides.

Our overall conclusion is that existing perceptual guidelines can be applied to construct

perceptually salient data-feature mappings, even when used in a nonphotorealistic setting.

5.2 Aesthetic Judgment Studies

Our effectiveness studies confirm that we can follow existing perceptual guidelines to create

effective mappings, but the question of aesthetic appeal still remains. The goals of our initial

research on the aesthetics of visualization images are as follows:

• To determine if a group of relatively homogeneous observers find any artistic merit in

our computer-generated displays.

• To identify the basic emotional and visual factors that influence these preferences.

If successful this would provide a solid foundation to guide further, more detailed studies on

the effects of the individual differences and past experiences of the viewers.

Since it is generally accepted that art is beautiful and appealing when it evokes a sense of

pleasure, an intuitive theory of aesthetics might begin with some measurement of emotional

reaction. In fact, Berlyne proposed just such a theory when he tried to position aesthetic expe-

rience within a two dimensional model of emotionality [Berl70]. The axes of Berlyne’s model

represent hedonic value (or pleasure) and autonomic activity (or arousal). Others have since

followed suit, for example the two dimensional pleasure-arousal model of affect proposed by

Barrett and Russell (shown in Figure 5.5) [Bar99, Rus80]. In spite of these promising results, it
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Figure 5.5: The structure of consciously experienced affective states modeled by Barret and Russell with two
dimensions: pleasure and arousal. [?]

is generally agreed that there is more to visual aesthetics than emotionality alone; visual factors

play a role. A study by Baltissen and Ostermann illustrates this point [Ost98]. These authors

compared aesthetic judgments of famous artistic paintings and emotionally provocative pho-

tographs. They found that although emotionality was an important factor in the ratings of all

the images, the judgments of the artistic paintings involved an additional cognitive-evaluative

factor that is influenced by properties like meaning, familiarity, complexity, and interest. This

finding is consistent with previous attempts to measure visual aesthetics using concepts like

order and complexity [Bir33].

Based on these ideas, we chose to begin our study of the artistic merit of our visualizations

by conducting a set of aesthetic judgment studies designed to study three important problems:
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• How do observers rank images created with our computer painting method relative to

paintings by master artists?

• Can we identify any fundamental emotional factors that predict when viewers will per-

ceive an image to be artistic?

• Can we categorize individual viewers as preferring different types of art (e.g. realism

or abstractionism), and how do these preferences impact the emotional responses that

predict artistic rankings?

To investigate these questions we designed experiments in which observers were asked to

assign numeric rankings to a collection of images taken from four separate sources: Impres-

sionist works by famous masters, Abstractionist works by famous masters, nonphotorealistic

data visualizations made by our computer algorithms, and nonphotorealistic renderings of nat-

ural scenes made by our computer algorithms. Each observer evaluated the images based on

their artistic beauty, two emotional factors: pleasure, arousal, and two compositional factors:

meaning, and complexity. Results were used to measure the level of artistic merit the observers

attached to each type of image, and to identify the fundamental image properties that influenced

these judgments.

5.2.1 Design

For each question, observers were asked to rank 28 images on a seven point scale (1 = lowest

to 7 = highest). Seven images were presented from four different categories: nonphotorealistic

visualizations (visualization), master Abstractionist works (abstractionism), painterly render-
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ings (nonphotorealism, and master Impressionist works (impressionism) The nonphotorealistic

visualizations were computer-generated visualizations of a weather dataset using the painterly

techniques developed in this thesis. The initial visualizations look like weather maps with

clearly defined landforms. To create the images we used here, we cropped the images so that

no land formations were apparent, resulting in an abstract collection of strokes. Although real

weather conditions are being represented (temperatureby color,wind speedby coverage,pres-

sureby size, andprecipitationby orientation), no explanation was provided to an observer

about what was being depicted. Figure 5.6a shows one of the visualizations used in the ex-

periment. We paired these abstract visualizations against reproductions of seven paintings by

Abstract masters:

• Untitled XXby Willem de Kooning (Staatsgalerie, Stuttgart)

• Corpse and Mirrorby Jasper Johns (University of Oklahoma Museum of Art)

• Mapby Jasper Johns (Museum of Modern Art, New York)

• Untitled, 1995by Franz Klien (Kunstsammlung Nordrhein-Westfalen, Dusseldorf)

• Untitled, 1916by Kazmir Malevich (Peggy Guggenheim Collection)

• Broadway Boogie-Woogieby Piet Mondrian (Museum of Modern Art, New York)

• Lavender Mist Number 1by Jackson Pollock (National Gallery of Art, Washington,

D.C.)

Since many of our painterly styles are derived from Impressionist paintings, we also in-

cluded reproductions of the following seven paintings by Impressionist masters in our study:
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• Montagnes en Prov́ence (Mountains in Prov́ence)by Paul Cezanne (National Gallery,

London)

• Water Liliesby Claude Monet (The Art Institute of Chicago)

• Cache-cache (Hide-and-Seek)by Berthe Morisot (Mrs. John Hay Whitney Collection)

• Les Chataigniers a Osny (The Chestnut Trees at Osny)by Camille Pissarro (Private Col-

lection, New Jersey) (See Figure 6.1.)

• The Lighthouse at Honfleurby George Seurat (National Gallery of Art, Washington,

D.C.)

• L’automne: Bords de la Siene pres Bougival (Autumn: Banks of the Seine near Bougival)

by Alfred Sisley (Museum of Fine Arts, Montr´eal)

• Olive Trees with the Alpilles in the Backgroundby Vincent van Gogh (Mrs. John Hay

Whitney Collection)

We generated painterly renderings to pair against these master works, by creating non-

photorealistic renderings based on photographs. We applied our tool to the RGB data in the

photographs. The resulting images are realistic in nature, since they portray a real underlying

scene. Figure 5.6b shows one of the painterly renderings we used in our studies.

Twenty-five observers (6 males and 19 females aged 17 to 26) with normal or corrected

vision participated. Each observer was given 28 printed images that they could spread out on

a table and move around to compare. They were asked to rank the images five times based on

five different questions that asked aboutartistic beauty, pleasure(how emotionally pleasing
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(a) A painterly visualization (b) A painterly rendering

Figure 5.6: The images used in the study were printed on 8.5×11-inch glossy film ink-jet paper at 1400×720
dots-per-inch resolution using an Epson 900N ink-jet printer. Example images: (a) A painterly visualization of a
weather dataset. Temperature is mapped to color, wind speed to coverage, pressure to size, and precipitation to
orientation. (b) A painterly rendering based on a photograph of Lake Moraine in Banff, Canada.

the images were),arousal(how active the images were),meaning(how meaningful the images

were), andcomplexity. For example, during the ranking of artistic merit, observers were given

the instructions below. The remaining four questions were framed in a similar manner.

“As a first step, I would like you to look through this entire set of pictures in order
to choose one picture that you like the best. This is a picture that you would like
to place as art somewhere in your house or at your place of work. Its the one you
think is the best example of ‘good art.’

Now look through the remaining pictures and choose the one that you think is the
worst example of art.

I would like you to go through the rest of these pictures in the order in which they
come up and assign each one a number from 1 to 7. If the picture is as good as the
one you chose to be ‘best,’ then give it a 7. If it is as bad as the one you chose to
be ‘worst,’ give it a 1. If it is somewhere in between, then choose an appropriate
number between 1 and 7. Remember, 7 represents the best art. Please use the
range of numbers to the best of your ability.”
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5.2.2 Results

Each observer rating was classified by content of image (realisticor abstract), source of image

(masteror computer generated), and specific image within each category (arbitrarily numbered

1 through 7). Figure 5.7 shows overall rankings for each category. These results were tested for

significance with a multi-factor analysis of variance (ANOVA) and multiple regression analysis

(MRA). We used a standard 95% confidence interval to denote significant variation in mean

ratings. In summary, our results showed:

• Viewers rated the paintings made by master artists and those with realistic content as

generally more artistic overall, and as more pleasurable, more meaningful, and more

complex.

• Viewers made an exception to this pattern when it came to the emotional quality of

arousal. For this scale they rated the visualizations as most arousing and the nonphoto-

realistic images as least arousing. This means that the pleasure and arousal scales were

applied differentially by the viewers.

• Only one of the emotionality scales (pleasure) and one of the compositional (meaning)

were needed to predict artistic beauty rankings with a high degree of accuracy. These two

scales were themselves not highly correlated, meaning that viewers were distinguishing

between their emotional and visual experiences when they chose their rankings.

• Viewers were not homogeneous in their artistic ranking of our images. A small subset of

the viewers identified the visualizations as “better than average” relative to the nonphoto-
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Figure 5.7: Summary of the aesthetic judgment results for the four image categories.

realistic images and master paintings. The emotional property of arousal influenced these

viewers’ artistic beauty judgments. The higher level of arousal for the visualizations was

therefore a positive feature that improved their artistic beauty ranking.

5.2.3 Analysis

We first conducted ANOVA’s to examine how the viewers rated each of the four categories. The

dependent measure was the average ranking on a scale from 1 to 7. Categories were examined

as a factorial design involving content (realisticor abstract) and source (masteror computer).

The mean rankings for artistic beauty are shown in Figure 5.8. The ANOVA showed that view-

ers ranked master paintings as more artistic than computer-generated paintings,F (1, 24) =

24.56, p < .01. Similarly, the ANOVA showed that viewers ranked master paintings as

more pleasing and more meaningful than computer-generated paintings(F (1, 24) = 24.56,
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Figure 5.8: Artistic beauty rankings of the seven images for the four categories.

p < .01 andF (1, 24) = 16.49, p < .01, respectively), and that realistic content was judged

more pleasant and more meaningful than abstract content(F (1, 24) = 90.54, p < .01 and

F (1, 22) = 43.79, p < .01, respectively; see also Figures 5.10 and 5.11). Mean rankings

for the arousal scale are shown in Figure 5.9. The ANOVA reported that viewers rated Im-

pressionist and Abstractionist paintings as equally arousing, regardless of content, but that the

visualizations were significantly more arousing than the nonphotorealistic images. This was

reflected in a significant source× content interaction,F (1, 24) = 23.20, p < .01, in addition to

a main effects of content,F (1, 24) = 44.05, p < .01. Finally, mean rankings for complexity

are shown in Figure 5.12. Although there was less variation in these rankings than in the other

scales, the ANOVA showed that viewers judged paintings by the masters as more complex

than computer-generated paintings,F (1, 24) = 8.73, p < .01. There was no effect of content;

realistic and abstract paintings were seen as equally complex.
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Figure 5.9: Arousal rankings of the seven images for the four categories.

5.2.4 Relationships Between Scales

Correlation analysis was used to make an initial inspection of the relationships between the two

emotionality scales and the two visual composition scales. The independent measure was the

mean ranking for each of the 28 different images, calculated across all four image categories.

Results showed that pleasure and arousal were negatively correlated,r = −.63. This implies

that paintings with high arousal rankings tended to be those with low pleasure rankings. The

meaning and complexity ratings, on the other hand, were moderately correlated in the positive

direction,r = .55. Paintings with high meaning also tended to be those with higher complexity.

When all four scales were tested as predictors of artistic beauty using a simultaneous mul-

tiple regression, they accounted for 91% of the variability in the rankings(R-squared= .91,

F (4, 23) = 58.01, p < .001). An examination of the relative contributions of each of the four

scales to the overall artistic beauty rankings revealed that only two made significant contri-
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Figure 5.10: Pleasure rankings of the seven images for the four categories.

butions: pleasure (partialr = .592, t(23) = 3.53, p < .01) and meaning (partialr = .450,

t(23) = 2.42, p < .02). When these two scales alone were used to predict the artistic beauty

they accounted for almost the same amount of variability as when all four scales were included

(R-squared= .90, F (2, 25) = 118.86, p < .001). Importantly, these two scales were them-

selves not highly correlated (partialr = .122). This indicates that these scales were used by

the viewers to index different aspects of their artistic judgments.

5.2.5 Individual Differences

The preceding results were derived from treating all 25 viewers as an undifferentiated group.

However, an inspection of the data revealed that there were clear differences in the way some

groups of viewers experienced the images. For example, although most viewers (20 of 25)

ranked the Impressionist images as “better than average” overall, there was a subset of viewers
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Figure 5.11: Meaningfulness rankings of the seven images for the four categories.

(6 of 25) who ranked the visualizations as “better than average art,” and another subset (8 of 25)

who rated the Abstractionist paintings as “better than average art.” To examine the underlying

factors behind these rankings, we repeated the MRA calculations for each subset.

The analysis for viewers who rated the visualizations as better than average revealed that

the arousal rankings were able to predict artistic beauty rankings almost entirely on their own.

Unlike the trend among viewers as a whole, this group had a positive correlation between

arousal and artistic beauty. An MRA model that included all four scales as predictors had a

modestly good fit(R-squared= .33, F (4, 23) = 2.80, p < .05). Only the arousal scale made

a significant contribution (partialr = .510, t(23) = 2.81, p < .01) A model that included only

arousal was still a significant fit to the artistic beauty rankings(R-squared= .18, F (1, 26) =

5.21, p < .03).

Finally, the analysis for viewers who ranked the Abstractionist paintings as better than
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Figure 5.12: Complexity rankings of the seven images for the four categories.

average revealed that meaning was able to predict artistic beauty almost entirely on its own.

The MRA model for this group of viewers that included all four scales as predictors had a

modestly good fit(R-squared= .59, F (4, 23) = 8.21, p < .01). Only the meaning scale

made a significant contribution (partialr = .550, t(23) = 3.16, p < .01). The model that

included only meaning was still a significant fit to the artistic beauty rankings(R-squared

= .56, F (1, 26) = 32.58, p < .01).

5.2.6 Interpretation

Our results indicate that it is possible to measure the relative aesthetic beauty of a set of images

in a systematic and reliable way. Viewers’ rankings of artistry were influenced reliably by both

the source and the content of the images they were shown. Viewers tended to prefer images

with realistic or recognizable content over more abstract patterns. They were also sensitive to
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the skills of the artist. For example, nonphotorealistic images of natural scenes are not rated

as artistic as paintings of similar scenes by the masters, even when they are both rendered with

impressionistic brush strokes. Presumably this is because the master painter knows something

about composition that the computer algorithm has not learned (or cannot learn) to capture.

In this context, our images based on data visualization fared least well in most viewers’

judgments of artistic merit. This does not mean the visualizations were all seen as “poor art,”

but rather that many viewers preferred other types of images over the visualizations. The data

hint at several reasons why this is so. First, a high degree of meaningfulness is important in

most viewers’ judgments of artistic beauty. The visualizations were rated among the lowest of

all images on the meaning scale. Second, most viewers indicated that arousal was negatively

correlated with their experience of artistic beauty. Since the visualizations were among the

most arousing images, their artistic beauty rankings suffered as a result. Third, within the

context of the 28 images tested, the seven data visualizations were the most homogeneous of

the four categories. This may have had a negative effect on the rankings of this group as a

whole. Further studies will be necessary to explore these hypotheses.
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Chapter 6

Nonphotorealistic Visualization

In order to realize nonphotorealistic visualizations of real datasets, we implemented a visual-

ization system based on our perceptual brush stroke model. Our visualizations consist of an

underpainting, an overpainting, and a highlight layer. We created the first two layers using

a segmentation algorithm and a painting algorithm. The highlight layer was created with an

error diffusion algorithm. The next sections will describe the motivation for and steps of each

algorithm.

6.1 Segmentation

To render a two-dimensional visualization of a dataset, we must first choose two data attributes

to map tox andy coordinates. For spatial datasets these values are normally encoded in the

data itself either explicitly or implicitly (e.g., by the elements’ ordering). We divide the result-

ing two-dimensional space into 4× 4 grids with a data sample at each corner to discretize our
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canvas. Positions interior to each grid are assigned attribute values by linearly interpolating the

known values at the corners. This scaling of the dataset is performed to construct an appropri-

ately sized canvas on which to paint our brush strokes. Our algorithm uses the nonspatial data

attributes to segment this canvas and place a set of brush strokes in each segment. The first

challenge is segmenting the data.

In Impressionist paintings, the scene contents provide a natural subdivision of two-dimensional

space into distinct regions. For example, in the painting by Pissarro shown in figure 6.1, the

grassy area and tall chestnut trees in the foreground and the fields and ridges in the background

act as delimiters.

Data values may also provide natural subdivisions, though care must be taken to create

connected segments that are not undesirably coarse or fine. Figure 6.1a illustrates a coarse

subdivision of Pissarros painting into foreground and background. The foreground is isolated

in figure 6.1b. The background is isolated in figure 6.1c. An observer might view figure 6.1c

as a collection of segments, since there are five disconnected portions. To avoid this ambiguity,

we build connected segments, i.e., there exists a path from any point in the segment to any

other point in the segment such that every point on the path is a segment member. Figure 6.1d

shows the same painting more finely divided into twenty-one connected segments.
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(a) Coarse Segmenta-
tion

(b) Foreground Seg-
ment

(c) Background Seg-
ments

(d) Fine Segmentation

Figure 6.1:Les Chataigniers a Osny (The Chestnut Trees at Osny)by Camille Pissarro. The scene can be thought
of as being subdivided by the content. (a) A coarse segmentation of the scene outlined in white. The two segments
are foreground and background. (b) The background segment isolated. (c) The foreground segment isolated. (d)
Another possible segmentation (with finer granularity) of the scene outlined in white.
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We use the following algorithm to subdivide a dataset withm non-spatial attributes into

connected segments:

While unsegmented elements exist
Start new segmentRk

Select a starting elemente that does not belong to any segment
Initialize median vectormed to e’s attribute values
Add e to queue
While queue not empty

Remove next itemq from queue
Add q to current segment
For each neighbornbr of q

If |nbri − medi| ≤ δi ∀i = 1, ..., m
Add nbr to queue
Updatem based onnbr’s attributes

The algorithm grows each segment around a starting element by considering its neighbors

for membership. Neighbors are the eight adjacent elements. A neighbor is accepted if all its

attribute values are “close enough” to the median vector values. An element that is accepted

is added to the segment and its neighbors are then considered for membership. The algorithm

ensures that the segments are connected by only considering neighbors of existing segment

members. The segment stops growing when no more neighbors are eligible. If unsegmented

elements still exist, the algorithm grows another segment in the same manner.

The membership criterion, “attribute values areclose enoughto the median vector values,”

is defined precisely by|nbri −medi| ≤ δi ∀i = 1, ..., m, wherenbri is theith attribute value of

the neighbor element under consideration,medi is theith median value, andδi is a user-defined

percentage of the range of theith attribute.δi is fixed whereasmedi is updated as new elements

are added. The granularity of the segments, which can be regulated byδi, can also be regulated

by themethod used to update the median vector values. In the series of examples below, we

segment a JPG file using different update methods to illustrate this point.
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The datasets in practical applications are not usually JPG files, but using them as an exam-

ple provides a lucid explanation, because the segments can be shown with color.

JPG files consist of pixels that encode three data values: red, green, and blue. Figure 6.2

shows the results of applying several different procedures for updating the median. The large

image of poppy petals on the left was the basis for these segmentations. The top row of smaller

images shows segments in grey, the results of four different median update procedures. The

bottom row shows these segments laid over the original image.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.2: Examples of different segmentation algorithms applied to an RGB image of a golden poppy; (a,b,c,d)
segments in grey with a fixed, running average, weighted average withr = 1, and weighted average withr = 7

8 ,
respectively; (e,f,g,h) segments overlaid on the original RGB image.

In the first example, we consider a fixed median, i.e., suppose the median is initialized, but

not updated. Since the median vector is initialized to the starting element’s values, the results

of this method depend very heavily on the choice of initial element. Figures 6.2a and 6.2e

show that using a fixed median can lead to a segmentation which is too fine. Since a randomly

selected element may not be truly representative of the region, this method is too sensitive to

the initial element. We adjust for this problem by allowing every new element to influence the
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median.

A simple approach to allowing a new element to influence the median is to average the new

element’s attribute values with the current median:

medi =
medi + nbri

2
, ∀i = 1, ..., m. (6.1)

With this method, the new element has a great effect on the median. In particular, the new

element may tugm’s value up or down enough so thate’s neighbors are very likely to be

included. The result is very coarse segmentation. Figures 6.2b and 6.2f show the results of

using this method on the poppy JPG. We want the incoming elements to affect the median, but

not as strongly.

The algorithm we implemented allows new elements to have a monotonically decreasing

influence on the median vector. With this method the amount of influence wielded by each

incoming element is determined by a variable,r. When thekth element is being added, the

median is updated as follows:

medi =
1

∑k−1
x=0 rx

[r0e1,i + r1e2,i + ... + rk−1ek,i], ∀i = 1, ..., m (6.2)

whereej,i is the value of theith attribute of thejth member of the segment. Dividing by the

geometric series,
∑k−1

x=0 rx, ensures thatmedi lies within the range of the data ( i.e.,mini ≤

medi ≤ maxi). medi ≤ maxi, since,
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medi = 1∑k−1

x=0
rx

[r0e1,i + r1e2,i + ... + rk−1ek,i]

≤ 1∑k−1

x=0
rx

[r0maxi + r1maxi + ... + rk−1maxi]

= 1∑k−1

x=0
rx

[maxi][
∑k−1

x=0 rx]

= maxi.

(6.3)

An analogous argument holds formini ≤ medi.

Figures 6.2c, 6.2d, 6.2g, and 6.2h were created using this method. Figures 6.2c and 6.2g

show an example in whichr = 1. Whenr = 1,
∑k−1

x=0 rx = k. So that at stepk, medi is the

average of thek members (medi = 1
k
[r0e1,i + r1e2,i + ...+ rk−1ek,i] = 1

k
[e1,i + e2,i + ...+ ek,i]).

With 0 < r < 1, the terms are monotonically decreasing. Elements that join late in the

process wield less influence on the median values than early members. Since new elements

are processed in order of proximity, the greater the Euclidean distance from the initial value,

the less the impact on the median. This falloff averts the problem encountered in the method

where the new elements pushed the median, stretching the segment too much. In figures 6.2d

and 6.2h,r = 0.875. The falloff in this case means that the fifth element added has a 5.6%

impact (0.8754/
∑4

x=0 0.875x = .056). The segment is much smaller than whenr = 1. Yet

the segment is larger than the one created with the constant method shown in figures 6.2a and

6.2e. These examples demonstrate that this update method balances the desire to reduce the

importance of the choice of starting element and the need to temper the influence of incoming

elements. The variabler also retains some flexibility for the outcome.

Finally, note that this segmentation algorithm can easily be extended to an arbitrary dataset

with any number of attributesm. Each segment represents a collection of elements whosem
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attribute values are “relatively similar” to one another. This is how we segment a multidimen-

sional dataset.

6.2 Painting the Segments

Once we have segmented the data, we paint each segment by randomly placing brush strokes

inside it, so that a certain percentage of the segment is covered. We assign one pixel in the

final painting to each element in a segment. Therefore, coverage can be computed as the per-

centage of a segment’s pixels covered by brush strokes. In our procedure we have associated

coverage with our segments; whereas, in the examples in figure 6.2, the segments were dis-

played with color. In paintings, the depiction of objects subdivides the scene. Artists reinforce

these subdivisions with the visual features in each segment. In figure 6.1a the segmentation

into foreground and background is a logical division of a scene, reinforced by the artist. Fore-

ground strokes are well-defined and separately distinguishable. Those in the background blend

together. The trees in the background are only distinguishable as overall shapes; whereas, indi-

vidual branches are drawn in the foreground. In figure 6.1d, the grassy region in the foreground

is separated from the chestnuts. The fields, ridges, and sky make up their own regions. Again,

the artist communicates this segmentation by using colors, styles, and direction of brush strokes

within each region that are varying, but relatively similar.

Visual features provide unification within segments of paintings. We use coverage to help

to unify the members of a segment. Coverage is the percentage of pixels covered by brush

strokes. Coverage is a property which is global to the entire segment, unlike visual features
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such as size, color and orientation which vary locally for each brush stroke. The data-feature

mappingM defines a data attribute to map to coverage. The average value of that attribute

within segmentRk determines the desired coverage,Ck, for that segment. Coverage gives

different segments individual definition, without creating the illusion of sharp changes where

none exist.

To paint the data, we create a list of strokes for each segment. As strokes are added, the

current coverage,c, is computed. This continues until the segment’s coverage has been met.

The following algorithm creates a stroke list for segmentRk:

While c < Ck

Randomly pick an unpainted positionp within Rk

Identify elementei associated withp
Set size and orientation of new strokes base onei

Centers atp and scan convert
Compute amount ofs outside segment,outside
Compute amount ofs overlapping existing strokes,overlap
If outside or overlap are too large

Shrinks until it fits or it cannot be shrunk
If s fits, add to stroke list and updatec

To “paint” a segment, the algorithm randomly picks uncovered positions to place strokes

within the segment until the desired coverage is met. A strokes is not accepted if it overlaps

existing strokes too much or if too much ofs lies outside of the segment. To determine if the

stroke is acceptable, it is centered on positionp, scaled, rotated, and finally, scan converted.

(The size, orientation, and color are determined by attribute values of the element associated

with positionp.) Scan convertings identifies which pixels it covers, allowing us to compute

outside andoverlap. If either is too large,s is reduced in size until it fits or it can no longer

be made smaller. Ifs fits, it is added to the stroke list. When the segmented layer is painted,
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the strokes in the lists for each segment are rendered. Our painting algorithm distributes the

strokes randomly within each segment and maintains an accurate representation by ensuring

that strokes do not completely obscure one another and that the borders of the segments are

respected (although some flexibility is permitted in both cases to achieve a painted look.

6.3 Underpainting

The segmentation algorithm and the painting algorithm are used to create the first two layers

of our three layer display, the underpainting layer and overpainting layer. The underpainting is

an addition inspired by the underpainting technique used by many artists. Monet, for instance,

said that the first layer should cover the entire canvas to define the tonality of the scene [Per27].

We paint our entire canvas using a color not available in our overpainting. The underpainting is

drawn first, and then the overpainting is drawn over top. The underpainting shows through the

top coat in areas of low coverage and around the edges. Since stroke orientation and size are

determined by the same attributes used in the overpainting, the underpainting reinforces infor-

mation about these attributes. This information would otherwise be missing in low coverage

sections of the overpainting.

The stroke lists for the underpainting are created using of the same segmentation computed

for the overpainting. In the underpainting each segment is painted with a coverage of 100%.

This means the entire canvas is covered by underpainting strokes (in our case, “the entire

canvas” means the entire data sample area). Figure 6.4 shows how we set the tonality for the

painting. The underpainting in figure 6.4a covers the sample area with strokes of varying size

69



and orientation.

6.4 Highlighting Algorithm

The final layer in our painting is the highlight layer. This layer produces an additional visual

feature designed to visualize a high spatial frequency attribute, i.e., an attribute whose values

have a high rate of change within a given unit area of the canvas. We use a sprinkling of bright

strokes across the canvas to display the trends in this attribute.

To create this layer we were faced with the challenge of producing a global pattern of

highlights that accurately captures the local variations of an attribute. This problem is similar

to halftoning in computer graphics. Halftoning produces approximations of greyscale image

using only black and white dots (see examples in Figure 6.3b and 6.3c). This technique is

commonly used in newspapers. When the dots are spaced closely together, they merge to form

the appearance of a greyscale image. A naive solution to this problem uses a threshold: If

a pixel is more than 50% white, display it as a white dot, otherwise display it as a black dot.

Figure 6.3b shows the results of using a threshold method on the greyscale image in Figure 6.3a.

Because this method approximates, without accounting for error, it gives poor results.

Error occurs for any pixel in the original greyscale image that is not completely black or

completely white. For example, suppose we approximate a pixel that is 75% white with a

white dot. This introduces a 25% error at that position in the image. Thresholding ignores

these errors, producing local regions with an average ratio of black and white (i.e., greyscale

level) that does not match the corresponding ratio in the original image.
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(a) Original continuous
greyscale image

(b) Threshold (c) Floyd-Steinberg error dif-
fusion

Figure 6.3: Halftone approximations.

A better solution is to diffuse error forward during halftoning. Error diffusion algorithms

address the issue of approximation by diffusing the rounding error across the data. Floyd-

Steinberg, for example, sweeps from left to right and top to bottom across the images. As

each pixel is approximated, any error that results is propagated forward to neighboring pixels

that have not been processed yet (i.e., to the pixels to the right, directly below, to the bottom-

left, and to the bottom-right). For example, if a pixel that was 75% white was approximated

with a white dot, the 25% error would be propagated to the three unprocessed neighbors by

darkening them by a combined total of 25%. This increases the likelihood that these pixels will

be approximated with a black dot, thereby, maintaining the proper greyscale in the local area

around the current pixel. This produces a much more accurate representation of the original

image (see Figure 6.3c, for example).

Choosing locations for highlight strokes is very much like halftoning. Halftoning decides

where to place black and white dots to properly recreate a target greyscale image. Highlight

strokes must be placed to accurately represent an underlying data attribute. We used Floyd-

Steinberg error diffusion to solve our problem. The algorithm can be applied almost directly to
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normalized data attribute values, just as it applies to greyscale data. Given a grid of normalized

attribute values, Floyd-Steinberg traverses this grid and adds highlight strokes at high attribute

value positions exactly like it adds white dots to light pixel positions of a greyscale image.

The main difference lies in the intended use of our display. We desire only a small number of

highlight strokes, so that the layers below are not obscured and so that the highlights retain their

ability to stand out. To achieve this sparseness, we multiply the normalized attribute values by

a fractional constanth, so that each value begins on the range between zero andh. This would

be equivalent to lightening an image prior to halftoning. More white space would appear in the

resulting halftone. Figure 6.6 shows the results of varyingh on a visualization. The number of

highlight strokes increases ash increases.

When the highlight stroke list is complete, the stroke positions are jittered, so that they do

not lie exactly on a regular grid. Highlight strokes are representative of the general trend in

the attribute mapped to the highlight layer. Drawing strokes exactly on a grid could imply the

existence of some horizontal or vertical boundaries; whereas, the grid merely functions as a

convenient tool for processing the data.

The same attributes that control size and orientation in the overpainting coat are mapped

to size and orientation of the highlight strokes. The rotation is then incremented by90◦ so

that the highlight strokes produce cross-hatching. The highlight strokes are drawn on top of

the underpainting and overpainting in a bright color not used by the other layers. Figure 6.4

demonstrates the process. Figure 6.4a shows the underpainting. The overpainting is added in

figure 6.4b. Finally, the highlight layer is added in figure 6.4c. In this application the highlights

indicate high levels of precipitation. Figure 6.4 represents average weather conditions for De-
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(a) Underpainting (b) Overpainting added (c) Highlights added

Figure 6.4: December weather data on the southern California coastline. The matte light blue on the left is the
Pacific Ocean. Three layers are painted: (a) the underpainting covers the land mass where data samples were
taken, (b) the overpainting encodes is painted next with coverage varying according to data values, and (c) the
highlight layer is painted, providing an additional visual feature, creating the finished visualization.

cember in southern California. The weather data visualized here is described in more detail in

section 6.5.

6.5 Practical Application

This section describes an application of our tool to a weather dataset. Weather data is a con-

venient example, since real data is plentiful and weather attributes, such as temperature, pre-

cipitation, wind speed, and pressure, are commoly used in day-to-day settings. This dataset,

collected by the International Panel on Climate Change between the years 1961 and 1990,

consists of 30 year mean monthly weather conditions. Figure 6.5 shows an example where

March mean weather conditions (calculated as the averages of March conditions between 1961

and 1990) are visualized.Mean temperature, precipitation, wind speed, pressure,andwet day
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frequencyare visualized separately in figures 6.5a-6.5e using a simple coloring, ranging from

bright pink for high values to dark green for low values. This visualizes the patterns of each

attribute in isolation. In the largest map, temperature, precipitation, wind speed, pressure, and

wet day frequency are displayed simultaneously with the following mapping:

temperature → color∈ [dark green,...,bright pink ]

precipitation → highlighting∈ [absent, present ]

wind speed → coverage∈ [low,...,high]

pressure → size∈ [small,...,large]

wet day frequency → orientation∈ [horizontal,...,vertical]

The colors range from bright pink in the south to dark green in the north. Though March

weather is already quite warm in the south, the northern temperatures remain cold.Temperature

rises consistently from north to south, with the exception of some green spots in the West. The

Rocky Mountains explain these cold areas.

In figure 6.5f,precipitation is represented by green highlight strokes. Figure 6.6a magni-

fies the precipitation pattern shown in figure 6.5b. The same highlight strokes used in figure 6.5f

are also included in figure 6.6a, so that both background color and highlights represent precipi-

tation. The highest precipitation occurs in the Northwest, where this map is bright pink. Yellow

areas in the Southeast also indicate a region with high levels of rainfall relative to surround-

ing areas. The amount of highlight stroke coverage is limited by the variable,h, discussed in

section 6.4. Figures 6.5f and 6.6a were created withh = 12%. Figures 6.6b and 6.6c show
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(a)Temperature (b) Precipitation (c) Wind speed (d) Pressure (e) Wet day fre-
quency

(f)

Figure 6.5: Mean March weather conditions in North America. (a)-(e) visualize one attribute each with color. (f)
visualizes the five attributes simultaneously, mappingtemperature, precipitation, wind speed, pressure, andwet
day frequencyto color, highlighting, coverage, size, and orientation, respectively.
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the change in highlight coverage as a result of varyingh. The value ofh was decreased by 5%

in Figure 6.6b and increased by 5% in Figure 6.6c.h affects the sensitivity of the highlight

process. Higher values ofh allow lower values of the attribute to trigger highlight stroking.

Thus, the number of highlight strokes is directly proportional toh for a given attribute.

(a)h = 12% (the same as in figure 6.5f)

(b) h = 7% (c) h = 17%

Figure 6.6: All three maps show March precipitation levels represented by both background color and highlights,
with different highlight coverage,h in a, b, and c. Colors range from bright pink for very high precipitation to
dark green for low precipitation. The number of highlight strokes generated by high precipitation areas is affected
by the value ofh.

Wind speedis represented by coverage in figure 6.5f. The coverage is the percentage of the

canvas covered by the overpainting layer, i.e., coverage is lower where more of the underpaint-

ing is visible. The high mid-continent coverage corresponds to high wind speed (also seen as

bright pink patches in Figure 6.5c). The coverage is lower in the areas with lower wind speed

in the west and northeast (shown as dark green in the windspeed map in Figure 6.5c.
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Stroke size is used to representpressure. High pressure areas appear on the southern coasts

and Florida. Figure 6.5f indicates these high pressure areas with large strokes (red areas in

Figure 6.5d.) The stroke sizes decrease towards the north, where the pressure is low.

Higher wet day frequency appears in the northeast and further north in the west. Figure 6.5f

represents this pattern with the orientation of the brush strokes. Horizontal strokes in the south

represent low wet day frequency (shown in green in Figure 6.5e); whereas, strokes are close to

vertical in the higher wet day frequency areas (shown in pink and red in Figure 6.5e).

Figure 6.5 shows the early spring weather conditions. Figure 6.7 visualizes winter and

summer conditions from the same dataset. Figure 6.7a and 6.7b show January and July weather

conditions, respectively. These visualizations apply the same mapping as the one used to create

figure 6.5f.

Figure 6.7a shows the cooler weather covering more of the land with darker colors stretch-

ing further south. Precipitation patterns, shown by highlights, are similar to those seen in

March. Wind speeds are high mid-continent. The east coast shows lower wind speed in Jan-

uary than in March. Wind speeds north of the Great Lakes and west of the Rockies are even

lower than those on the east coast. The low coverage in these regions indicates these condi-

tions. Low wet day frequency dominates the west coast with the exception of a high wet day

frequency in Washington state, where the strokes are drawn vertically. Pressure is fairly low,

except in Florida which is covered with larger strokes.

With respect to figure 6.7a, the strokes in figure 6.7b are mostly larger, indicating a higher

pressure in July than in January. The overall pinkish color shows that the temperatures are

much higher at every data sample, and precipitation is higher south and east of the Rockies. The
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Rockies, colored a dark pink, are still cooler than surrounding regions. Wind speeds are quite

low in some portions of the east and northeast where coverage is very low.Wet day frequency

shows a sharp change in the southwest, with vertical strokes (high wet day frequency) on the

coast changing abruptly to horizontal strokes (low wet day frequency) as they move away from

the coast. Visualizations such as these could provide experts in climate change with insights

into patterns and anomalies that might not otherwise be perceived. Additionally, they could

provide a means of communicating trends to non-expert observers.
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(a) January weather conditions

(b) July weather conditions

Figure 6.7: Visualizations of winter and summer conditions: The mapping is the same as the one used to create fig-
ure 6.5f:temperature → color∈ [dark green,...,bright pink],precipitation → highlighting∈ [absent, present],
windspeed → coverage∈ [low,...,high],pressure → size∈ [small,...,large], andwet day frequency → orien-
tation∈ [horizontal,...,vertical].
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Chapter 7

Conclusions

We have created a new visualization method that uses “painted” brush strokes to represent the

data elements of large multidimensional datasets. In the formulation of this project, we iden-

tified three desirable characteristics for our visualizations: effectiveness, multidimensionality,

and aesthetic appeal. To this end, we created nonphotorealistic visualizations influenced con-

siderably by Impressionism, and tailored to the strengths of human visual perception. We con-

ducted studies to objectively measure the effectiveness and aesthetic appeal of our visualiza-

tions (multidimensionality is inherently linked with both, since introducing higher dimensions

to a visualization increases the complexity of both issues). The remaining sections discuss our

progress toward each goal and directions for future work.
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7.1 Effectiveness

Experimental results support the hypothesis that existing guidelines on human visual percep-

tion of color and texture hold for our painterly styles. This means that we can create effective

visualizations by employing these guidelines to map data attributes to the visual features of

our brush strokes. As we continue to develop and implement new painterly techniques, further

testing may be required to ensure continued compliance with the guidelines.

7.2 Multidimensionality

Our nonphotorealistic visualizations map data element attributes to the physical features of

brush strokes. Thus, we can visualize multiple data attributes (five non-spatial attributes per

element).

Our system currently supports variations in the color, size, orientation, and coverage of

brush strokes, as well as undercoating and highlight layers. We would like to build upon our

current system by identifying some additional visual features that can be used to effectively

display data attributes. To this end, we are pursuing two complementary approaches: (1) ex-

amining visual features that are known to be perceptually salient that may correspond to new

painterly properties, and (2) reviewing literature on technical and stylistic characteristics of

Impressionist art.

The brush strokes in Impressionist paintings offer a rich variety of styles. Figure 7.1 offers a

close view of an acrylic Impressionist-style painting. Some brush strokes are long and curved;

others are rounded and staccato. The paint is thinly applied in some areas, while other areas
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Figure 7.1: A close-up of an acrylic painting that demonstrates the variety brush strokes in an Impressionist
painting. The entire painting is shown in the upper left corner. This piece was painted by the author.

show heavier strokes, with thick blobs of paint. Some strokes are course and grainy, while

others are smooth. We are considering adding curved strokes, coarseness, and weight to our

system.

These additions may be difficult to implement using the simple texture map that we cur-

rently apply. We may need to take a different approach to modeling our brush strokes. These

are some of the alternatives that we are considering: (1) creating a larger library of texture

mapped brush strokes that explicitly vary the styles that are not easy to modify within an indi-

vidual brush stroke, (2) modeling the brush strokes with spline surfaces to construct continuous

representation of the multiple styles in a brush stroke, and (3) modeling the brush strokes with

a physical simulation to vary painterly styles and construct visually realistic strokes.
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7.3 Aesthetic Appeal

Our results show that some observers identified our visualizations as “better than average”

relative to nonphotorealistic images and master Abstract and Impressionist paintings, though

they fared least well in most viewers’ judgments of artist merit. We are interested in learning

more about the properties that influence viewers’ judgments. Preliminary analysis of the data

indicates that we should begin by exploring two factors:

1. In the context of the 28 images, the seven data visualizations were the most homoge-

neous of the four categories. We would like to explore the effect of presenting a more

heterogeneous set of data visualizations. To do so, we can visualize datasets with sharp

discontinuities. Visualizations of such data would exhibit abrupt changes within the im-

age.

2. Many viewers felt highly artistic paintings were also highly meaningful. We will inves-

tigate the effect of increasing the meaningfulness of the nonphotorealistic visualizations.

By informing the viewers that the images are data visualizations and by describing the

dataset and data mappings to the observers, we hope to put the images in a meaningful

context. This will allow us to test for increased meaning rankings for the visualizations,

and for any corresponding increases in artistic beauty that may result.
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