
  
 

ABSTRACT 
 
MCCOY, JESSICA.  The Impact of Internet Disruption to an Information-Sharing Supply 
Chain.  (Under the direction of Russell E. King.) 
 
As more business transactions rely on the internet, a sudden system failure that shuts down 

the internet could leave companies and factories without the ability to communicate.  In this 

paper we investigate the impact of an information disruption on the expected gain of a single-

product two-stage information-sharing supply chain.  

 

A supply chain consisting of a supplier and a retailer can be modeled as a completely 

observable Markov decision process (MDP) when inventory information is fully shared.  The 

system state space is two-dimensional, composed of the local states (inventory levels) of 

supply chain members. When information is not fully shared, the system can be modeled as a 

partially observable Markov decision process (POMDP).  Wei et al. [19] develop a 

methodology to determine the value of information in a serial supply chain.  The results show 

that a supplier and retailer who share inventory information dominate a pair which does not 

share information.  This paper considers a supply chain operating at steady state under an 

optimal information sharing policy (i.e. the expected revenue under that policy is the 

maximum attainable for that configuration and cost structure). 

 

Suppose that some unexpected event eliminates internet communication between the supplier 

and the retailer of that supply chain, and the two can no longer share their inventory 

information.  The supplier and the retailer may choose to make decisions based on their 

optimal “no information sharing” policies until internet communication is reestablished.  To 

model an information disruption and the subsequent recovery, the per-period expected gain 

can be calculated from the iteration of different information sharing policies using successive 

approximation techniques first proposed by White [21].  The proposed contingency plan can 

be simulated and analyzed to study the effects that it has on the expected gain of the supply 

chain.  Experimentation involving the underlying cost structure of the policies can determine 

which system parameters have the most effect on revenue loss in the event of an information 

disruption. 



  
 

In general, increases in the holding cost to the supplier, holding cost to the retailer, the lost 

sales cost to the retailer, the fixed ordering cost to the supplier, and the unit wholesale cost to 

the supplier all lead to greater losses of revenue for the supply chain as a whole.  Increases in 

the fixed ordering cost to the supplier and the unit wholesale cost to the supplier primarily 

drive the revenue loss.  Changes in the cost parameters have little effect on the amount of 

time necessary for a full recovery from an information disruption; the variability of the 

demand distribution is responsible for the length of the recovery period.  In addition, we find 

that longer information disruptions lead to greater loss for the supply chain. 
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1 Introduction and Background 

Current issues such as rising fuel costs and shorter product cycles have thrust the study of 

supply chain and logistics into the spotlight.  Competition between rivals is asserted not only 

through product differences, but also through the speed with which a company can respond 

to demand and changes in the market and in the supply chains of which that company is part.  

Due to drastic improvements in technology over the last several decades, the most modern 

businesses have turned to digital information to communicate data along supply chains.  

Recent work regarding the value of information to the operation of a supply chain has 

introduced some of the opportunities inherent in this shift.  Wei et al. [19] use Markov 

decision processes (MDPs) to quantify the value of sharing inventory information to various 

supply chain members.  Their work demonstrates that a supply chain without information 

sharing may operate suboptimally.   

 

Lee et al. [11] describe the sources of and costs associated with the bullwhip effect in supply 

chains.  Fuller et al. [6] estimate that 25-33% of the annual grocery industry is tied up in 

excess inventory exacerbated by the bullwhip effect.  Sharing inventory information is 

critical in diminishing the distortion of information that increases as one moves further from 

the final point of sale in a supply chain.  The policy adopted for an information-sharing chain 

reduces costs and therefore raises the profit of involved members.  This paper investigates 

the effects of a disruption to the flow of information on such a supply chain, which is heavily 

dependent on real-time information sharing. 

 

When studying the effects of supply chain disruptions and the merits of different risk 

management strategies, much work has been done on production disruptions (for example, 

the loss of the production of a supplier due to a natural disaster).  Tomlin [18] compares risk 

management strategies in the case of a production failure by natural causes; he references the 

fire that paralyzed chip production for a Philips plant and sent shock waves through the cell 

phone manufacturing industry [10].  A series of economic reforms in Eastern Europe 

changed the communication structure between dairy farmers and processors, and a case study 

of the situation in Moldova concluded that the supply chain disruption resulted in a “market 

failure” [7].  Bartholomew [1] describes more recent supply chain catastrophes and asserts 



2 
 

that, due to ever-leaner operations, supply chains have become “more unwieldy to manage.”  

Blackhurst et al. [2] agree:  “the trend towards customer response time, increased agility and 

lower inventory levels, in essence, increase the potential negative impact of a disruption.” 

 

Reduction in safety stock across supply chains is not the only modern trend that increases the 

consequences of a major disturbance.  Widespread technological vulnerabilities such as the 

Y2K problem as well as heightened security due to 9/11 have greatly affected contingency 

policies across the board.  One researcher estimates additional annual logistics costs due to 

new security regulations in the United States alone at $65 billion [4].  In light of increased 

probability of a production or transportation disruption, organizations should prepare 

contingency plans to employ until recovery.  Unfortunately, as little as 5-25% of Fortune 500 

companies have such policies in place to implement in the case of crisis [14]. 

 

To recover more quickly from a disruption – either in demand or supply – communication 

with the other members of the supply chain is critical [12], [15], [17].  In today’s world, 

“communications is essential in bringing about action,” and “without communications 

support, a manufacturer could not operate” [13].  The sharing of inventory data has been 

shown to be advantageous not only in the day-to-day operation of a supply chain, but is also 

crucial in rapid recovery in the event of a production disruption.  However, disruptions in a 

supply chain are not limited to production.  As more and more business transactions occur 

with strong reliance on the internet, a sudden system failure that reduces or even eliminates 

internet communication would cripple many organizations.  A massive power outage or the 

criminal elimination of the router infrastructure could leave businesses and factories unable 

to communicate.  The consequences of a sudden loss of information on the ordering or 

production policy and therefore on the expected profit of a supply chain are addressed in this 

paper, as well as the length of the recovery period once information communication is 

reestablished. 

 

As in previous work, the system here can be modeled as a Markov decision process with 

restricted observations (ROMDP) which is a special case of a partially observable Markov 
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decision process (POMDP).  Wei et al. [20] develop a computationally efficient technique 

for supply chain problems, using work by Serin and Kulkarni [16] as a basis for 

understanding MDPs with observability constraints.  This allows larger and more realistic 

problems to be analyzed over what can be studied with existing computing methods.  By 

iterating efficiently through the state space to reach optimality using the methods elaborated 

by Davis et al. [5] and Wei et al. [20], the transition probabilities matrix and steady-state 

probabilities for the whole supply chain can be generated for both the full and no information 

sharing models.  These matrices can be used to model a supply chain operating in steady 

state under an information sharing policy, an information disruption to that supply chain, and 

subsequent recovery when internet communication is reestablished.  Figure 1 illustrates these 

three phases: 

Figure 1:  Expected gain of an information-sharing supply chain before, during, and after a 
five-period information disruption. 

 

During an information disruption, the optimal control policy for the no information sharing 

case is applied.  State probabilities are determined using this control policy starting with the 

steady state probabilities of the full information sharing model to reflect decision making.  
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probabilities to simulate the contingency plan.  By calculating the expected gain at each step, 

the effects that an information disruption has on the profit of the system can be analyzed.  

The procedure is reversed to simulate the return of internet; that is, the optimal policy for the 

full information sharing model is applied starting with the most recent state probabilities 

from the disruption phase until steady state is reached again. 

 

2 Methodology 

As a system with a definable state space and set of probabilistic transitions, a two-stage 

supply chain can be modeled as an MDP.  The one-step, transition probability matrix P 

records the probability of transitioning from one state to another over one transition or 

period, for all combinations of states.  For a completely ergodic MDP, the probability of 

transitioning into a state is the same regardless of the initial system state.  The transition 

matrix is used to calculate the state probabilities π; for a completely ergodic process, 

 = ⋅Pπ π  (1) 

In addition, there may be some reward or cost associated with transitioning from one state to 

another; the expected rewards for the next transition for each state are tabulated in the matrix 

q.  The gain g of a supply chain in steady state can be calculated in vector form using these 

expected rewards as  

 g = ⋅qπ  (2) 

where π is the vector of steady state probabilities, and q is the vector of expected immediate 

rewards for all states.  The notation used here is borrowed from Howard [9]. 

 

For a simple two-stage system with only one alternative for any given state, P is a two-

dimensional matrix and π and q are vectors.  Element pij is the probability of transitioning 

from state i to state j, πi is the steady state probability associated with state i, and qi is the 

expected one period reward of state i.  The dimensions of P and q increase accordingly when 

multiple alternatives are considered for each state; pij
k and qi

k are defined as before for i and j, 

under alternative k.  The two-phase method described in Howard [9] cycles between the 

value-determination operation and the policy-improvement routine and results in an optimal 

policy for the system.  Since the state space is composed of inventory levels, an optimal 
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policy dictates the best decision (order/production quantities) to be made at any given state; 

for example, “when the retailer’s inventory is 3 units and the supplier’s inventory is 5 units, 

the retailer should order 2 units and the supplier should order 1 unit.” 

 

Work done by Wei et al. [19] determines the optimal policies for a series of information-

sharing models, including a model where the supplier and the retailer share information (the 

information sharing model) as well as a model where the supplier and retailer do not share 

inventory information (the no information sharing model).  The information sharing model 

can be solved as a centralized MDP where a central observer can see the states of both the 

retailer and the supplier.  The no information sharing model is decentralized and must be 

solved iteratively; alternately, either the supplier’s policy or the retailer’s policy is fixed and 

the other entity’s policy is optimized.  From analysis of their five two-stage models, Wei et 

al. [19] conclude that sharing information is beneficial to the expected gain of the supply 

chain, and that information flowing contrary to the flow of material is equivalently profitable 

to a full two-way information sharing model. 

 

Wei et al. [19] use Howard’s two-phase method as the basis for their heuristic.  Howard’s 

method solves simultaneous equations in two phases (value determination and policy 

improvement; equations 3 and 4, respectively) to reach an optimal control policy: 

 
1

    1, ,
N

i i ij j
j

g v q p v i N
=

+ = + ⋅ ∀ =∑ K  (3) 

 
1

max 1, ,
N

k k
i ij jk j

q p v i N
=

⎧ ⎫
+ ⋅ ∀ =⎨ ⎬

⎩ ⎭
∑ K  (4) 

where vi is the reward of starting the process in state i.  In the value determination operation 

(equation 3), the transition probabilities P and the expected immediate rewards q are used to 

solve the set of n linear equations for vi and g.  The value determination operation must be 

applied to a policy, either an initial policy (e.g., a vector of ones) or the policy resultant from 

the previous iteration of the policy improvement routine. Using the solution set of vi from the 

value determination procedure, the policy improvement routine is applied to find the policy 
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that maximizes the expected reward (equation 4).  This policy is returned to the value 

determination phase; optimality is guaranteed when each phase is allowed to converge. 

 

The simultaneous equations approach is a powerful modeling tool, but falls short 

computationally when the state space is large.  White [21] builds on Howard’s techniques 

with the introduction of the successive approximations method to improve computational 

efficiency for large-scale problems.  To combat roundoff error inherent in problems with 

long horizons, White proposes that the absolute rewards be scaled relative to an arbitrarily-

chosen vi: 

 

( ) ( )

( ) ( )
( ) ( ) ( )

1
max

                                 1, 2,...

N
k k

i i ij jk j

N

i i

V n q p v n 1

g n V n

v n V n g n i N

=

⎧ ⎫
= + ⋅ −⎨ ⎬

⎩ ⎭
=

= − =

∑
  

where Vi is the absolute reward and vi is the relative reward (scaled arbitrarily by VN) of 

starting the process in state i with n periods left to go in the horizon; the above equations 

assume the existence of V(n-1) and g(n-1). 

 

Hodgson and Koehler [8] apply cheap iterations to a value-determination operation to 

approximate the steady state vi before applying a policy optimization phase (instead of  

optimizing every period as in White’s method).  Using a restricted number of iterations 

instead of iterating until convergence reduces computational time needed to calculate the 

relative rewards, but may require more cycles to reach the optimal policy. 

 

Wei et al. [19] use Markov decision processes and the methodology developed by Howard 

[9], White [21], and Hodgson and Koehler [8] to model supply chains that utilize several 

levels of information sharing.  As a system with MDP characteristics (i.e., a definable state 

space and set of probabilistic transitions) where all information is available to a single 

viewer, a full information sharing supply chain can be modeled as a completely observable 

MDP with a central omniscient decision maker.  Wei et al. [19] apply their solution 

methodology to this model in order to find the ordering policies of the supplier and retailer 
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which maximize the revenue of the supply chain.  Supply chain profits gained from sharing 

inventory information can be split between members via negotiations.   

 

The case of a supply chain which does not share information is more complex, and Wei et al. 

[20] employ a decentralized restricted observation Markov decision process (DEC-ROMDP) 

to accommodate multiple decision makers (in this case, the supplier and the retailer) in the 

absence of full observability.  Their model alternates between the policies of the supplier and 

retailer, fixing one and optimizing the other until both converge to policies that maximize net 

supply chain revenue.  The DEC-ROMDP is a subset of the restricted observation Markov 

decision process (ROMDP) developed by Davis et al. [5] for a two-stage supply chain where 

the retailer follows a fixed policy (e.g., a (Q,r) policy with given parameters) and the only 

supplier’s policy need be determined.   

 

For the models where information is not fully shared, the state of the system is not known 

precisely at any given point in time.  Whereas in a completely observable model, a supplier’s 

policy might be different for any combination of the supplier and retailer inventory levels, if 

the retailer’s inventory level is unknown to the supplier then the supplier’s policy is wholly 

dependent on the supplier’s own inventory.  Similarly, if the inventory level of the supplier is 

unknown to the retailer, then the retailer’s ordering policy relies only on the retailer’s own 

inventory level.  Consider the following example of a system where the supplier and retailer 

each have capacity 2: 

Figure 2:  Illustration of state groups 
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In a completely observable scenario, the supplier and retailer each have a policy as tabulated 

in (a) where the order quantity ki depends on both inventory levels.  If the supplier does not 

have access to the retailer’s inventory level, her policy would resemble (b) where the policy 

only depends on the supplier’s inventory level.  Similarly, if the retailer does not have access 

to the supplier’s inventory level, her policy would resemble (c) where the policy only 

depends on the retailer’s inventory level.  The lack of full observability reduces the state 

space into state groups; a supply chain member’s policy must be consistent across the groups. 

 

Instead of applying Howard’s policy improvement routine (equation 4) to optimize the policy 

for all states, Wei et al. [20] find the set of alternatives k that maximizes the gain for all state 

groups G through the following equation: 

 
( ) 1

max
N

k k
i i ij jk i G j j

q P vπ
∈ =

⎧ ⎫
+ ⋅⎨ ⎬

⎩ ⎭
∑ ∑  (5) 

The global optimality guaranteed under Howard’s assumed conditions and methods cannot 

be guaranteed under the relaxation for state groups. 

 

To find the steady-state characteristics of both information sharing models, Wei et al. [19] 

apply Hodgson and Koehler’s methodology to Howard’s two-phase procedure.  The system 

cycles back and forth between the two phases until the same policy is obtained twice in a row 

and the cumulative change in the relative values vj over all states j, is small (or until the 

differences between a policy and the previous policy are below a small defined limit, to 

account for loss of precision due to roundoff error).  Because of the state group relaxation, 

the solution can only be guaranteed to be a local optimum.   Wei et al. [20] apply a series of 

perturbations to the solution reached by the two-phase cycle to further improve upon the 

successive approximations methods.  Improved solutions are sought by slighting changing 

and rescaling the steady state probabilities or by substituting a sub-optimal policy for the best 

policy (e.g., the second-best policy) in the policy improvement phase, and then applying the 

two-phase routine to the newly perturbed system.  The perturbations potentially allow the 

system to move away from one local maximum to a better local maximum.  Wei et al. [20] 
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find that a combination of small perturbations on the policy and on the steady state 

probabilities of a system yields solutions with higher net revenues for the supply chain. 

 

Wei et al. [19] define a set of parameters (e.g., inventory capacity, holding costs, and 

customer demand) derived from experience with the apparel retail industry for their 

experimental designs.  By applying their methods to that set of parameters, the defining 

matrices and policies of an information sharing policy and of a no information sharing policy 

for the chain can be calculated.  This output – steady state probabilities, transition probability 

matrices, expected immediate reward matrices, and policies – is in turn used for the 

investigation at hand. 

 

Suppose a two-stage supply chain has adopted the optimal information sharing policy and is 

operating at the expected gain according to that policy.  Some unexpected and potentially 

catastrophic event eliminates internet communication between the supplier and the retailer 

and the entities are unable to share their respective inventory information.  At the loss of 

internet communication, the supplier and the retailer may choose to implement the optimal 

no-information-sharing policy immediately as the primary contingency plan; this policy is 

associated with the maximum expected revenue for the supply chain as a whole when no 

information is shared between the supplier and retailer.  This paper models and analyzes just 

such an occurrence. 

 

2.1 Model Assumptions 

Consider a two-stage supply chain consisting of a supplier and a retailer; the supplier here is 

thought of as having her own upstream supplier.  Without loss of generality, the model could 

be a production model where the supplier is a manufacturer who produces goods to be passed 

on to the retailer.  For the purposes of this investigation, the supply chain is focused on a 

single product and is operating over an infinite horizon.  The supplier and retailer are both 

limited in their order quantities by inventory capacity and have a series of costs associated 

with operation such as inventory holding costs, penalty or lost sales costs, and ordering costs 

(fixed and variable).  The per-period event sequence for each member is detailed as follows: 
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• Supplier:  The supplier’s inventory holding cost is incurred at the beginning of the 

period based on inventory held at that time.  The supplier may choose to place an 

order such that she does not exceed her own capacity; the upstream supplier is perfect 

and both fixed and variable ordering costs are incurred. After ordering decisions have 

been made, the supplier receives the order from the retailer and ships product from 

current inventory.  If the retailer’s order quantity exceeds the supplier’s on-hand 

inventory, unmet demand is lost.  At the end of the period, the supplier’s newly-

arrived shipment is added to on-hand inventory. 

 

• Retailer:  The retailer’s inventory holding cost is incurred at the beginning of the 

period based on inventory held at that time.  The retailer may choose to place an order 

such that she does not exceed her own capacity, but that order will only be filled to 

the extent that the supplier has sufficient inventory.  Over the course of the period, the 

retailer experiences demand and meets that demand as possible.  If demand occurs in 

excess of the inventory held at the retailer, the retailer incurs a stock out cost as lost 

demand is not backordered.  If applicable, the retailer receives a shipment from the 

supplier at the end of the period (resultant from any previously-placed order). 

 

The event sequences and parameters values are important assumptions in the development of 

the cost structure, which is delineated more clearly in the following section.  These 

assumptions are used to construct the parameters of the MDP models such as the transition 

probability matrix and the expected immediate rewards vector.  The aforementioned 

methodology is, in turn, applied to these MDP parameters to maximize the performance of 

the supply chain through the optimization of supplier and retailer ordering policies. 

 

2.2 Model Parameters 

The notation here is borrowed from Wei et al. [19]; they define the following parameters: 

 x: A member of the supply chain; either the supplier (s) or the retailer (r). 

 cx: The inventory capacity for supply chain member x. 

wx: The unit purchase (wholesale) cost for supply chain member x. 
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hx: The unit holding cost per period for supply chain member x. 

fx: The fixed cost per order for supply chain member x. 

lx:  The unit lost sales cost for supply chain member x. 

ix:  The inventory level of supply chain member x; ix = 0,1,…,cx. 

kx:  The order quantity placed by supply chain member x. 

V:   The unit selling price to the customer. 

D: The random variable representing customer demand.  It is assumed that the 

demand each period is independently and identically distributed and is in the 

range ],0[ rc .  The value d represents a particular instance of this random 

variable. 

N: The length of the horizon under evaluation. 

T: The length of information disruption. 

 

Of the above cost parameters, some are considered internal costs of the supply chain (i.e., 

those that result from transactions between the retailer and the supplier) and do not factor 

into the expected gain calculations.  Specifically, the unit lost sales cost to the supplier (ls), 

the fixed order cost for the retailer (fr), and the unit purchase cost for the retailer (wr) are 

assumed to be zero for the purposes of calculating expected gain for the whole supply chain. 

 

The state space for the MDP models is two-dimensional; system state i corresponds to local 

states (is, ir) where is is the supplier’s inventory level and ir is the retailer’s inventory level.  

State i = (is, ir) transitions to state j = (js, jr) where 

 
( )
( ) ( )

max ,0

max ,0 min ,
s s r s

r r s r

j i k k

j i d i k

= − +

= − +
 

If the system is in state i, experiences demand d, and the supplier and retailer follow policies 

(ks, kr), the immediate reward for each the supplier and the retailer can be calculated as 

 
( )

( ) ( )
( ) min ,1

( ) min , max ,0
s s s s s s s

r r r r r r

q d h i w k f k

q d v d i l d i h i

= − ⋅ + ⋅ + ⋅⎡ ⎤⎣ ⎦
= ⋅ − ⋅ − + ⋅⎡ ⎤⎣ ⎦
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The immediate reward for the supply chain as a whole is the sum of the two, and the 

expected immediate reward out of state i is calculated using the probability mass function of 

the demand distribution: 

 ( ) ( )
0

( ) ( )
rc

i D s r
d

q p d q d q d i
=

= ⋅ + ∀∑  

These expected immediate rewards are then used in conjunction with the state probabilities π 

to determine period gain for the supply chain as will be addressed in section 2.3.  To analyze 

the effects that specific parameters (e.g., the holding cost of the supplier) have on the gain, q 

can be partitioned into parts associated with the different parameters and then used to 

calculate a partitioned expected gain. 

 

2.3 Modeling a Disruption and Contingency Action 

Modeling a disruption and the implementation of the proposed contingency plan is 

straightforward.  Before the internet disruption occurs, the period gain is calculated by 

equation 2 and the new state probabilities for the next period are determined with equation 1 

using the probability transition matrix PIS and the expected immediate reward matrix qIS 

from the optimal information sharing policy: 

 
( )

( )
0

(0) 0g

= ⋅

= ⋅

IS IS

IS

P

q

π π

π
  

At the loss of information, the same two equations are used to track the expected gain, but 

with PN and qN from the optimal solution under no information sharing instead: 

 
( ) ( )

( )( )

n n 1

g n n

= − ⋅

= ⋅

N

N

P

q

π π

π
  

When internet communication with the retailer is reestablished, PIS and qIS from the optimal 

information sharing policy can be applied again to calculate the profit per period: 

 
( ) ( )

( )( )

n n 1

g n n

= − ⋅

= ⋅

IS

IS

P

q

π π

π
  

The expected gain per period can be calculated for a supply chain following an information 

sharing policy; this per-period gain can be multiplied by the length of a horizon for a total 

anticipated expected gain in the absence of an information disruption.  Across the same 
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horizon, the expected gain per period in the event of an information disruption and 

subsequent switch to a no information sharing policy can be calculated according to above 

equations.  These period gains can be summed over the horizon to represent the actual 

expected gain in the event of an information disruption.  To compare different scenarios, the 

Percent Revenue Loss (PRL) is defined as: 

 1
( )

N
IS

n
IS

g N g n
PRL

g N
=

⋅ −
=

⋅

∑
  

where gIS is the expected per-period gain under an information sharing policy, g(n) is the 

expected gain of the system of period n, and the horizon under consideration is N periods 

long (N includes the disruption as well as initial recovery). 

 

3 Experimentation 

Two experimental designs are performed to investigate the effects of changing the cost 

parameters on the expected gain of the supply chain (as measured by PRL).  The first design 

is a factorial arrangement, where each factor has a “low” and “high” level.  This design 

reveals both the effects of increasing one parameter at a time and the effects of increasing 

multiple parameters simultaneously.  The second design is more simple in nature; each 

parameter is increased individually to study the effects of a single parameter increase on the 

expected supply chain gain.  The range of values selected for each parameter is chosen to 

reflect potential applications; the upper bound of that range is pushed until the expected gain 

for the supply chain becomes negative. 

 

The initial values for both experimental designs are primarily based on the design used by 

Wei et al. [19], where values were chosen from experience in the retail apparel industry.  The 

demand profiles used are truncated normal distributions with mean 5 and coefficients of 

variation (CV) ranging from 0.2 to 0.8. 

 
 



14 
 

3.1 Experimental Design 1 

For the first design of experiments, a factorial arrangement is applied to six parameters (hs, 

hr, ws, lr, fs, and T) for each of four demand profiles with varying standard deviations.  This 

arrangement results in 256 different sets of parameters as inputs to the model. 

Table 1:  Experimental Design 1 – Factorial design. 

Mean CV cs cr hs hr ws wr ls lr fs fr V T 
5 0.2 15 15 1 1 10 0 0 100 50 0 100 1 
 0.4   2 2 20   200 100   5 
 0.6             
 0.8             

 
 
In general, an increase in any parameter or combination of parameters except for the holding 

cost of the supplier results in an increase in PRL.  All cases where the holding cost for the 

supplier is set to its high level of $2/unit/period result in a lower PRL; that is, the higher 

value of hs reduces the effects of an information disruption on the expected gain of the supply 

chain.  The base case (where all parameters are set to their low level) is compared with five 

cases in Figure 4 through Figure 7.  These cases were selected from the larger population 

tested because they demonstrate high levels of revenue loss.  Each scenario is a different 

combination of hs, hr, ws, lr, and fs, as applied to each of the four demand profiles.  Figure 3 

demonstrates the expected gain of a supply chain during and after an information disruption 

of one period under one of the scenarios tested in the factorial design.  At time 1, the supply 

chain is operating at steady state under an information sharing policy.  Internet 

communication is lost at time 2 for one period, and decisions made during that period are 

pursuant with the optimal no information sharing policy.  Even though internet 

communication is restored in period 3, the system does not return to steady state until 53 

periods after the disruption. 
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Figure 3:  Expected gain during a one-period disruption and initial recovery for case where 
hr, fs, and ws are set to high and CV = 0.2. 

 

The length of the recovery phase used for PRL calculations has a large effect on the reported 

loss.  For a scenario where the system converges quickly to steady state after a disruption, a 

lengthy recovery phase could imply that little revenue was lost during the disruption.  On the 

other hand, for a scenario such as that in Figure 3, a short recovery phase in the PRL 

calculation may imply that the system actually profited from the information disruption (for 

example, a recovery phase of two periods would include the initial spike after the return of 

information communication, where a higher-than-normal expected gain was achieved).  In 

both of these extreme cases, a recovery phase that is too short or too long may correspond 

with misleading revenue loss values; comparisons drawn from such values are not useful.  

For purposes of calculating the PRL with the intent of comparing several cases, a recovery of 

five periods was assumed.  From the trials performed, five periods appeared to capture the 

oscillation of the expected gain during the recovery phase without overly emphasizing either 

the disruption or the subsequent return to steady state.  In Figure 3, this translates into using 

the expected gain for periods 2 through 7 (one period of disruption and five periods of initial 

recovery) in PRL calculations.  Figure 4 and Figure 5 illustrate the revenue loss results (in 

terms of percentages and absolute dollars) for an information disruption of one period, and 

Figure 6 and Figure 7 show results for the same scenarios under a disruption of five periods. 
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Figure 4:  Percent Revenue Loss for six cases of the factorial experimental design; T = 1. 

 

Figure 5:  Revenue loss in dollars for six cases of the factorial experimental design; T = 1. 
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Figure 6:  Percent Revenue Loss for six cases of the factorial experimental design; T = 5. 

 
 

Figure 7:  Revenue loss in dollars for six cases of the factorial experimental design; T = 5. 
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As demonstrated in Figure 4, several of the PRL results for T = 1 are negative, implying that 

the supply chain benefited from an information disruption of one period.  Figure 5 shows that 

all of these negative values are associated with expected gains no greater than $20.  These 

results are dependent on the arbitrary definition of the recovery period for the PRL 

calculation; if the expected gain for a given scenario oscillates such that the recovery period 

ends when the expected gain is at a high point rather than a low point, the PRL may actually 

be negative.  For all scenarios, over the long run of the systems’ return to steady state, 

revenue was lost.  The PRL calculations merely capture the short run for purposes of direct 

comparison of the different scenarios.  When each of those six scenarios is subjected to a 

lengthier information disruption, all PRL values become positive.  That is, when the 

information disruption lasts for a longer amount of time, the supply chain has the potential to 

lose more money.  Some of the absolute losses experienced by the supply chain exceed $100, 

corresponding with around 4-5% of the gain expected during the disruption period and the 

five subsequent periods. 

 

To identify the parameters responsible for any loss in gain, the expected gain was partitioned 

into costs associated with each of the nonzero parameters.  Without exception in the 256 

trials of this experimental design, changes in the expected gain were driven by either the 

order cost to the supplier (fs) or the unit wholesale cost (ws) to the supplier.  That is, the 

largest portion of the change between the expected gain under the steady state information 

sharing policy and the minimum expected gain achieved during the disruption was 

attributable to one of those two costs.  This result is supported by the analysis of variance of 

the model.  Table 2 lists the sums of squares associated with each of the five cost parameters 

and their interaction effects.  The sums of squares in each column represent how much of the 

variation of the percent revenue loss data is attributable to each of the 31 main and 

interaction effects.  In each column (i.e., combination of information disruption length and 

demand profile), the largest component of the total sum of squares corresponds to either the 

fixed order cost to the supplier or the unit wholesale cost to the supplier. 
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Table 2:  Sums of squares for components of factorial design. 

These data correspond to the PRL values expressed as percentages. 
 T = 1 T = 5 
 CV = 0.2 CV = 0.4 CV = 0.6 CV = 0.8 CV = 0.2 CV = 0.4 CV = 0.6 CV = 0.8 

hs 0.8105 0.0881 0.0236 0.0349 1.9895 0.3861 0.2770 0.1910 
hr 1.7764 0.0035 0.0003 0.0166 1.4837 0.0040 0.0422 0.1041 

lr 0.8638 0.1445 0.3362 1.0031 0.0691 0.9806 3.9977 13.2798 

fs 2.5789 0.2235 0.2183 0.2957 8.8807 10.3797 19.1856 34.2316 

ws 0.6110 3.0227 3.1138 3.2421 0.0063 0.1266 0.0016 0.3484 

hs*hr 1.4567 0.0119 0.0001 0.0021 1.2183 0.0021 0.0007 0.0019 
hs*lr 0.7384 0.0104 0.0352 0.0046 0.0415 0.0004 0.0055 0.0015 

hs*fs 0.2241 0.0493 0.0095 0.1422 0.1510 0.0002 0.0047 0.0025 

hs*ws 0.0494 0.0297 0.0007 0.0030 0.0583 0.0026 0.0002 0.0003 

hr*lr 0.0276 0.0003 0.0028 0.0015 0.0004 0.0000 0.0019 0.0096 

hr*fs 0.5495 0.0002 0.0002 0.0281 0.2206 0.0003 0.0029 0.0037 

hr*ws 0.0571 0.0015 0.0004 0.0069 0.0649 0.0013 0.0012 0.0001 

lr*fs 0.0022 0.0002 0.4857 1.1638 0.0010 0.0326 0.8803 2.6793 

lr*ws 0.1316 0.0045 0.0057 0.0002 0.0177 0.0008 0.0083 0.1812 

fs*ws 0.0735 0.0372 0.0136 0.0564 0.0758 0.0525 0.1045 0.2474 

hs*hr*lr 0.1636 0.0091 0.0000 0.0171 0.0068 0.0015 0.0001 0.0011 
hs*hr*fs 0.7823 0.0123 0.0046 0.0008 0.2740 0.0020 0.0003 0.0008 

hs*hr*ws 0.0339 0.0015 0.0000 0.0113 0.0546 0.0000 0.0002 0.0003 

hs*lr*fs 0.0358 0.0565 0.0015 0.0124 0.0349 0.0000 0.0146 0.0085 

hs*lr*ws 0.1346 0.0163 0.0207 0.0073 0.0116 0.0007 0.0046 0.0001 

hs*fs*ws 0.0003 0.0275 0.0032 0.0070 0.0026 0.0026 0.0000 0.0006 

hr*lr*fs 0.0079 0.0001 0.0000 0.0006 0.0117 0.0001 0.0024 0.0011 

hr*lr*ws 0.0007 0.0060 0.0006 0.0272 0.0013 0.0011 0.0001 0.0003 

hr*fs*ws 0.0496 0.0066 0.0001 0.0029 0.0149 0.0000 0.0010 0.0002 

lr*fs*ws 0.0045 0.0003 0.0281 0.0614 0.0024 0.0014 0.0300 0.0801 

hs*hr*lr*fs 0.0192 0.0146 0.0030 0.0192 0.0002 0.0018 0.0015 0.0011 
hs*hr*lr*ws 0.0057 0.0008 0.0001 0.0013 0.0000 0.0000 0.0001 0.0016 

hs*hr*fs*ws 0.0765 0.0005 0.0006 0.0220 0.0164 0.0001 0.0000 0.0021 

hs*lr*fs*ws 0.0041 0.0354 0.0664 0.0092 0.0001 0.0028 0.0143 0.0000 

hr*lr*fs*ws 0.0070 0.0042 0.0000 0.0182 0.0006 0.0001 0.0004 0.0001 

hs*hr*lr*fs*ws 0.0000 0.0011 0.0003 0.0029 0.0000 0.0001 0.0011 0.0022 

Total SS 11.2764 3.8203 4.3753 6.2220 14.7109 11.9841 24.5850 51.3826 
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The number of periods to recovery was measured in addition to comparing the PRL for each 

case.  During the simulation, if two consecutive state probability vectors were arbitrarily 

close to each other, the system was considered to have converged to steady state operation.  

There appeared to be very little variability involved in the length of the recovery period 

across the test scenarios of the factorial design; each of the eight columns in the following 

summary table lists statistics from 32 scenarios.  For the purposes of this summary, a system 

was said to have converged if the sum of the absolute values of the differences between two 

consecutive state probability vectors was less than 0.01. 

 
Table 3:  Expected number of periods required for a system to return to steady state after an 
information disruption 

The following statistics are averaged over all cases of the factorial design for each of four 
demand profiles (CV = 0.2, 0.4, 0.6, and 0.8). 

 T = 1 T = 5 
CV 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 

Minimum 34 11 7 5 34 11 7 5 
Maximum 54 13 8 6 53 13 8 6 

Mean 49.75 11.91 7.09 5.91 49.22 11.84 7.03 5.88 
Standard 
Deviation 4.16 0.64 0.30 0.30 4.26 0.57 0.18 0.34 

 

The choice of 0.01 as the convergence requirement is arbitrary; the following graph 

illustrates the fall of the difference between two consecutive state probability vectors as the 

system iterates towards steady state for a representative case.  The two peaks illustrate the 

system’s tendency towards steady state during a five-period information disruption, and then 

again during recovery. 
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Figure 8:  Convergence of state probability vectors for the scenario where hr, lr, fs, and ws are 
set to high. 

 

The demand profile with CV = 0.2 yielded the most variation.  In all cases tested, models 

using this distribution took longer to return to steady state than the other distributions.  

Similarly, models using the distribution with CV = 0.4 took longer to converge than those 

using CV = 0.6, and models using the distribution CV = 0.8 took the least amount of time to 

converge.  The lesser amount of demand variability associated with the distributions with 

smaller coefficients of variation causes processes that are nearly cyclic in nature; these 

processes take longer to converge.  Because the transition probability matrices are stochastic, 

the absolute value of the largest eigenvalue is one.  The second-largest eigenvalue determines 

the rate of convergence of the matrix; the closer the absolute value of this eigenvalue is to 1, 

the longer it takes for the matrix to converge [3].  Information on these eigenvalues for the 

transition matrices of the optimal information sharing policy for 32 sets of cost parameters is 

summarized in Table 4.  This data supports the behavior of the system gain in the trials: 

Table 4:  Absolute values of second-largest eigenvalues of the transition probability matrix 
for the optimal information sharing policy. 

CV 0.2 0.4 0.6 0.8 
Minimum 0.8660 0.6531 0.5089 0.4274 
Maximum 0.9190 0.7084 0.5805 0.4836 

Mean 0.9103 0.6883 0.5392 0.4615 
Standard 
Deviation 0.0107 0.0197 0.0178 0.0151 
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3.2 Experimental Design 2 

The second design of experiments investigates the effects of changing one parameter at a 

time on the expected gain of the system.  Each of the five nonzero cost parameters (hs, hr, ws, 

lr, and fs) was increased individually for each of four demand profiles and two lengths of 

information disruption.  Each parameter increase was halted when the increase drove the 

expected gain of the supply chain below zero.  This arrangement resulted in 224 different sets 

of parameters as inputs to the model; these combinations are outlined in Table 5 through 

Table 9. 

 

As in the first experimental design, the losses experienced when the information disruption 

endured for one period were less significant than those experienced by the supply chain when 

the disruption lengthened to five periods.  Half of the PRL values for a disruption of one 

period were negative, but the majority of those represented losses of less than $20.  In 

contrast, only ten of the 112 trials conducted for a disruption of five periods resulted in 

negative revenue losses; all ten values occurred when the unit wholesale cost to the supplier 

was increased beyond 30.  Because many of the results for the second experimental design 

are similar to those of the first experimental design, only the results from trials with an 

information disruption of length five periods are outlined here in Figure 9 through Figure 13 

and in Tables 5 through 9.  For results corresponding to an information disruption of a single 

period, please refer to the appendix. 

 

In addition to affecting the expected gain of the supply chain, changes in the parameters 

affected the optimal policies for the supplier and the retailer.  Increasing the inventory 

holding costs (hs or hr) corresponded with intuitive decreases in the order quantities for the 

supplier and the retailer, respectively.  Increasing the fixed order cost to the supplier (fs) 

caused the supplier to only order when their on-hand inventory level was two units or less.  

Changes in the lost sales cost to the retailer (lr) and the unit wholesale cost to the supplier 

(ws) had less effect on the policies. 

 

 



23 
 

3.2.1 Results from Experimental Design 2a 

The holding cost for the supplier (hs) was increased from its base level of $1 per unit per 

period to an eventual maximum of $40 per unit per period, as outlined in Table 5.  The first 

increase from $1 to $10 elicits only a small response in the revenue loss; only when the 

holding cost increases beyond $20 does the PRL begin to respond wildly (Figure 9).  Such a 

large increase in the holding cost has a strong effect on the supplier’s ordering policy.  

Higher per-unit inventory costs drive the supplier to hold less inventory and to order less to 

maintain that smaller inventory. 

Table 5:  Experimental Design 2a – Increasing the holding cost for the supplier, hs. 

Mean CV cs cr hs hr ws wr ls lr fs fr V T 
5 0.2 15 15 1 1 10 0 0 100 50 0 100 1 
 0.4   10         5 
 0.6   20          
 0.8   30          
    40          

 

Figure 9:  Increasing the holding cost for the supplier, hs. 

The four series correspond with demand profiles of differing coefficients of variation (CV = 
0.2, 0.4, 0.6, and 0.8).  The graph illustrates results for an information disruption of length 
five periods (T = 5); for results pertaining to an information disruption of length one period, 
see the appendix. 
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3.2.2 Results from Experimental Design 2b 

The holding cost for the retailer (hr) was increased from its base level of $1 per unit per 

period to $30 per unit per period (Table 6).  Increases in hr have less effect than the increases 

in hs.  Even when the holding cost is $30, only one demand profile corresponds with a PRL 

greater than 15% (Figure 10).  Beyond hr of $30, the retailer’s costs are sufficient to push the 

expected net revenue of the supply chain below zero.  As with the holding cost of the 

supplier, a higher per-unit inventory cost to the retailer causes the retailer to hold less 

inventory and to order less to maintain that smaller inventory. 

Table 6:  Experimental Design 2b – Increasing the holding cost for the retailer, hr. 

Mean CV cs cr hs hr ws wr ls lr fs fr V T 
5 0.2 15 15 1 1 10 0 0 100 50 0 100 1 
 0.4    10        5 
 0.6    20         
 0.8    30         

 

 

Figure 10:  Increasing the holding cost for the retailer, hr. 

The four series correspond with demand profiles of differing coefficients of variation (CV = 
0.2, 0.4, 0.6, and 0.8).  The graph illustrates results for an information disruption of length 
five periods (T = 5); for results pertaining to an information disruption of length one period, 
see the appendix. 
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3.2.3 Results from Experimental Design 2c 

The unit wholesale cost for the supplier (ws) was increased from $10 per unit per period to 

$70 per unit per period before the expected net revenue of the supply chain became negative 

(Figure 11).  Changes in this cost parameter have less effect on the PRL than other parameter 

changes; even a 700% increase failed to budge the PRL beyond ± 2% in all but one case.  In 

addition, changes to ws failed to cause noticeable changes in the ordering policy for the 

supplier. 

Table 7:  Experimental Design 2c – Increasing the unit purchase cost for the retailer, ws. 

Mean CV cs cr hs hr ws wr ls lr fs fr V T 
5 0.2 15 15 1 1 10 0 0 100 50 0 100 1 
 0.4     20       5 
 0.6     30        
 0.8     40        
      50        
      60        
      70        

 

Figure 11:  Increasing the unit purchase cost for the supplier, ws. 

The four series correspond with demand profiles of differing coefficients of variation (CV = 
0.2, 0.4, 0.6, and 0.8).  The graph illustrates results for an information disruption of length 
five periods (T = 5); for results pertaining to an information disruption of length one period, 
see the appendix. 
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3.2.4 Results from Experimental Design 2d 

As with the unit wholesale cost to the supplier, the lost sales cost to the retailer has little 

effect on the policies of the supplier and retailer.  Three of the demand profiles are not very 

sensitive to changes in lr (Figure 12).  The demand profile with the highest coefficient of 

variation (CV = 0.8) reacts most strongly to changes in the penalty cost; beyond an lr of 

$600, the expected gain of the supply chain becomes negative. 

 

Table 8:  Experimental Design 2d – Increasing the lost sales cost for the retailer, lr. 

Mean CV cs cr hs hr ws wr ls lr fs fr V T 
5 0.2 15 15 1 1 10 0 0 100 50 0 100 1 
 0.4        200    5 
 0.6        300     
 0.8        400     
         500     
         600     

 

Figure 12:   Increasing the lost sales cost for the retailer, lr. 

The four series correspond with demand profiles of differing coefficients of variation (CV = 
0.2, 0.4, 0.6, and 0.8).  The graph illustrates results for an information disruption of length 
five periods (T = 5); for results pertaining to an information disruption of length one period, 
see the appendix. 
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3.2.5 Results from Experimental Design 2e 

Changes in the fixed ordering cost to the supplier are very influential on the revenue loss for 

all demand profiles (Figure 13).  As the fixed ordering cost increases, the supplier’s policy 

shifts to where she only orders when her on-hand inventory is very low (when fs = 900, the 

supplier only orders when on-hand inventory is two units or less).  When the ordering cost 

exceeds $900 per order, the expected net revenue for the supply chain becomes negative. 

Table 9:  Experimental Design 2e – Increasing the fixed order cost for the supplier, fs. 

Mean CV cs cr hs hr ws wr ls lr fs fr V T 
5 0.2 15 15 1 1 10 0 0 100 50 0 100 1 
 0.4         100   5 
 0.6         200    
 0.8         300    
          400    
          500    
          600    
          700    
          800    
          900    

Figure 13:  Increasing the fixed order cost for the supplier, fs. 

The four series correspond with demand profiles of differing coefficients of variation (CV = 
0.2, 0.4, 0.6, and 0.8).  The graph illustrates results for an information disruption of length 
five periods (T = 5); for results pertaining to an information disruption of length one period, 
see the appendix. 
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4 Conclusions and Future Research 

Of the factors investigated here, the probability distribution of the end customer demand and 

the length of the information disruption have the most effect on the revenue loss due to an 

information disruption.  Longer information disruptions and demand distributions with 

higher coefficients of variation each lead to greater loss for the supply chain.  The models 

appear to be relatively insensitive to reasonable changes in the five cost parameters tested (hs, 

hr, lr, fs, and ws).  The following table lists the limit of each parameter (scaled to the unit price 

V) at which the Percent Revenue Loss exceeds ± 2% ∗.  For example, when the holding cost 

to the supplier hs exceeds 20% of the unit price V, the PRL is greater than 2%.  The cases 

where parameters were increased to the point of forcing the expected gain of the supply chain 

below zero without pushing the PRL beyond ± 2%, entries are omitted.  In all cases tested, 

the fixed order cost to the supplier was at least 100% of the unit price before the PRL 

exceeded ± 2%. 

 

Table 10:  Parameter value relative to unit price where PRL exceeds ± 2%. 

These data correspond to the PRL data expressed as percentages. 
 T = 1 T = 5 

Parameter / CV 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 
hs 0.2 0.3 0.3 0.2 0.2 0.2 0.2 0.2 
hr - - 0.3 0.3 - 0.3 0.2 0.1 
lr - - - - - - 2 2 
fs 9 6 5 6 2 1 1 1 
ws 0.6 0.4 0.4 0.4 - 7 - - 

 

More extreme changes in the cost parameters elicited greater percent revenue loss for the 

supply chain, and without exception changes in the expected gain of a supply chain due to an 

information disruption were driven by the fixed and variable ordering costs of the supplier (fs 

                                                 
∗ The threshold of 2% was determined as a point at which revenue loss as a result of 
information disruption became more significant.  Many scenarios, even with unreasonably 
large cost parameters, did not reach a higher considered threshold of 5%.  On the other hand, 
almost all scenarios reflected some loss.  The choice of 2% distinguishes the cost scenarios 
where an information disruption would begin to take a toll on a supply chain’s net revenue. 
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and ws).  Changes in the cost parameters and in the length of the information disruption had 

little effect on the number of periods required for a disrupted system to return to steady state.  

Instead, the length of the recovery phase was dependent on the demand distribution. 

 

The models that Wei et al. [19] developed to quantify the value of information sharing lend 

themselves to the investigation of the impact on a supply chain by an information disruption.  

This paper presents the results of an information disruption on a single-product, two-stage 

supply chain under one contingency plan.  Similar methodology could be applied to different 

supply chain structures.  In addition to their two-stage models, Wei et al. [19] develop eight 

models for a three-stage serial supply chain consisting of a manufacturer, a supplier, and a 

retailer.  These eight models illustrate various combinations of inventory information sharing 

between the three supply chain members; the effects of an information disruption to each of 

the different models could be explored.  Future work could also investigate the impact of a 

local information disruption (e.g., the retailer can no longer communicate with either the 

manufacturer or the supplier) versus a global information disruption where no supply chain 

member is able to communicate with any other member.   

 

This paper analyzes the impact of an information disruption under the implementation of a 

single contingency plan.  Other contingency plans may be reasonable; in working on this 

problem, another plan has been partially developed.  Suppose that the two-stage supply chain 

is operating at steady state under an optimal information sharing policy and internet 

communication is eliminated.  At that point in time, both the supplier and the retailer have 

the other’s inventory information from the last period before the information disruption.  A 

viable contingency plan for each supply chain member might be to continue applying the 

information sharing policy where decisions are based on the member’s own inventory and 

the last-known inventory of the other member.  This assumption creates system belief states 

composed of what the supplier and retailer assume the state to be; these belief states may or 

may not be the same as the actual system state.  With each member making decisions based 

on inaccurate information, the expected gain of the supply chain will degrade. 
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A subset of this case includes a supplier who has lost communication with a retailer that 

follows a fixed policy (the supplier knows the parameters of the policy; e.g., “order up to 

five”).  In this scenario, each time the retailer places an order with the supplier, the supplier 

knows not only her own inventory but has a better estimate of what the retailer’s inventory 

level is given the order quantity.  The impact of an information disruption on such a system 

depends not only on the cost structure of the supply chain but also on the order frequency 

from the retailer to the supplier. 

 

At this point, the work considers only single-product supply chains.  Additional issues to be 

explored may include multiple products. 
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Additional Results from Experimental Design 2a 

When the holding cost of the supplier (hs) is increased beyond its base value of 1, the revenue 

loss initially drops.  Increasing hs beyond $10 (i.e., a 1000% increase) causes an increase of 

the PRL as illustrated in Figure 14.  Such a dramatic increase in the holding cost would 

influence the supplier to hold less inventory, thereby contributing to leaner operation and 

higher vulnerability to stockouts.  These results are similar to those for a longer information 

disruption of five periods.  The number of periods to recovery is considerably more varied 

than in the other subsets of the second experimental design; the descriptive statistics are 

listed in Table 11. 

Figure 14:  Increasing the inventory holding cost for the supplier, hs. 

The four series correspond with demand profiles of differing coefficients of variation (CV = 
0.2, 0.4, 0.6, and 0.8); these results are for an information disruption of one period. 
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Table 11:  Recovery for Experimental Design 2a (hs) 

Expected number of periods required for a system to return to steady state after an 
information disruption; averaged over five cases of Experimental Design 2a for each of the 
four demand profiles (CV = 0.2, 0.4, 0.6, and 0.8) and two lengths of information disruption 
(T = 1 and 5). 
 

 T = 1 T = 5 
CV 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 

Minimum 6 4 5 5 5 4 4 5 
Maximum 53 12 7 7 47 12 7 7 

Mean 24.40 6.60 5.60 6.00 14.00 6.40 5.20 5.80 
Standard 
Deviation 23.90 3.21 0.89 1.00 18.47 3.21 1.10 0.84 

 
 
 
Additional Results from Experimental Design 2b 

In contrast to the results for an information disruption of five periods, the revenue loss due to 

increases in the holding cost of the retailer is primarily negative for an information disruption 

of one period (see Figure 15).  This is partially due to the arbitrary definition of PRL; in the 

short run a disruption may appear to improve revenue because of which periods are taken 

into account.  As an example, reference Figure 3.  The information disruption dislodges the 

system from steady state operation, and the reestablishment of internet communication again 

upsets the state probabilities.  The expected gain cycles above and below the gain expected 

under the information sharing policy until converging again to steady state.  Depending on 

the behavior of the expected gain for a given scenario, the periods where the expected gain 

exceeds the expected gain under steady state operation could be more numerous than the 

periods where the expected gain is below that of steady state operation.  Such a snapshot 

could imply that the supply chain revenue increased as a result of the disruption when in 

actuality revenue was lost over the course of a more extensive horizon.  This is the case here, 

where the holding cost of the retailer is increased.  Figure 10 reveals that an information 

disruption of length five periods does in fact correspond to revenue losses which are all 

positive. 
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As in all other trials, the periods necessary for recovery from an information disruption 

depend heavily on the distribution of the end customer demand; refer to Table 12 for 

descriptive statistics. 

 

Figure 15:  Increasing the inventory holding cost for the retailer, hr. 

The four series correspond with demand profiles of differing coefficients of variation (CV = 
0.2, 0.4, 0.6, and 0.8); these results are for an information disruption of one period. 
 
 

Table 12:  Recovery for Experimental Design 2b (hr) 

Expected number of periods required for a system to return to steady state after an 
information disruption; averaged over four cases of Experimental Design 2b for each of the 
four demand profiles (CV = 0.2, 0.4, 0.6, and 0.8) and two lengths of information disruption 
(T = 1 and 5). 
 

 T = 1 T = 5 
CV 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 

Minimum 29 12 7 6 28 12 7 6 
Maximum 48 12 10 8 47 14 11 8 

Mean 36.50 12.00 8.00 6.50 36.25 12.50 8.25 6.50 
Standard 
Deviation 8.10 0.00 1.41 1.00 7.89 1.00 1.89 1.00 
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Additional Results from Experimental Design 2c 

As illustrated in Figure 11 and again in Figure 16, increases in the unit wholesale purchase 

cost of the supplier (ws) lead to decreases in the revenue loss.  For an information disruption 

of a single period, all of the results are either negative or nearly so.  The periods to recovery 

(Table 13) are more uniform than those corresponding with increases in hs and hr. 

Figure 16:  Increasing the unit wholesale cost for the supplier, ws. 

The four series correspond with demand profiles of differing coefficients of variation (CV = 
0.2, 0.4, 0.6, and 0.8); these results are for an information disruption of one period. 
 
 

Table 13:  Recovery for Experimental Design 2c (ws) 

Expected number of periods required for a system to return to steady state after an 
information disruption; averaged over eight cases of Experimental Design 2c for each of the 
four demand profiles (CV = 0.2, 0.4, 0.6, and 0.8) and two lengths of information disruption 
(T = 1 and 5). 
 

 T = 1 T = 5 
CV 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 

Minimum 48 12 7 6 47 12 7 6 
Maximum 53 13 7 6 52 13 7 6 

Mean 52.29 12.14 7.00 6.00 51.29 12.14 7.00 6.00 
Standard 
Deviation 1.89 0.38 0.00 0.00 1.89 0.38 0.00 0.00 
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Additional Results from Experimental Design 2d 

Unlike the strong increasing trend in revenue loss corresponding to increases in the lost sales 

cost to the retailer for an information disruption of five periods (Figure 12), the revenue loss 

for an information disruption of one period is more erratic (Figure 17).  However, even a 

600% increase in the penalty cost over the base case results in a loss (or gain) of more than a 

single percent.  In absolute terms, all but one of the revenue differences between the 

disrupted system and the undisrupted system are less than $10.  That is, the difference in 

expected gain over the horizon under consideration is $10 different from the expected gain 

over the same horizon with no information disruption. 

 

The periods to recovery for Experimental Design 2d vary little and depend more on the 

demand distribution than the changes in the lost sales cost to the retailer; see Table 14.   

Figure 17:  Increasing the lost sales cost for the retailer, lr. 

The four series correspond with demand profiles of differing coefficients of variation (CV = 
0.2, 0.4, 0.6, and 0.8); these results are for an information disruption of one period. 
 

PRL as l r  Increases (T=1)

-0.6%
-0.4%
-0.2%
0.0%
0.2%
0.4%
0.6%
0.8%
1.0%

0 100 200 300 400 500 600 700

l r  ($)

Pe
rc

en
t R

ev
en

ue
 L

os
s (

%
)

CV = 0.2
CV = 0.4
CV = 0.6
CV = 0.8



39 
 

Table 14:  Recovery for Experimental Design 2d (lr) 

Expected number of periods required for a system to return to steady state after an 
information disruption; averaged over six cases of Experimental Design 2d for each of the 
four demand profiles (CV = 0.2, 0.4, 0.6, and 0.8) and two lengths of information disruption 
(T = 1 and 5). 
 

 T = 1 T = 5 
CV 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 

Minimum 48 8 6 5 47 9 6 5 
Maximum 51 12 7 8 49 12 7 8 

Mean 49.17 10.00 6.50 6.33 48.67 10.33 6.50 6.33 
Standard 
Deviation 0.98 1.67 0.55 1.37 0.82 1.21 0.55 1.37 

 

 

Additional Results from Experimental Design 2e 

Experimental Design 2e involves more trials than the other components of the second 

experimental design because increases in the fixed order cost to the supplier did not push the 

expected gain of the supply chain below zero as quickly as increases in the other cost 

parameters.  The trend for both an information disruption of one period (Figure 18) and an 

information disruption of five periods (Figure 13) is positive; as fs increases, so does the 

revenue loss experienced by the supply chain.   

 

Table 15 describes the periods necessary for the system to return to steady state; as in all 

other cases, the recovery periods depend more on the demand distribution than on changes to 

the cost parameter. 
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Figure 18:  Increasing the fixed ordering cost for the supplier, fs. 

The four series correspond with demand profiles of differing coefficients of variation (CV = 
0.2, 0.4, 0.6, and 0.8); these results are for an information disruption of one period. 
 

 
Table 15:  Recovery for Experimental Design 2e (fs) 

Expected number of periods required for a system to return to steady state after an 
information disruption; averaged over ten cases of Experimental Design 2e for each of the 
four demand profiles (CV = 0.2, 0.4, 0.6, and 0.8) and two lengths of information disruption 
(T = 1 and 5). 
 

 T = 1 T = 5 
CV 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 

Minimum 38 12 7 6 30 11 6 6 
Maximum 53 15 9 7 52 13 8 6 

Mean 44.90 12.90 8.20 6.20 39.20 11.70 7.00 6.00 
Standard 
Deviation 4.28 0.99 0.79 0.42 6.99 0.67 0.47 0.00 
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