
ABSTRACT

ORUGANTI, SAI. Performance of Robust Active Queue Management Schemes and Window Adap-

tation Schemes in IP Network. (Under the direction of Dr. Mihail Devetsikiotis)

The Internet today has emerged as a ubiquitous network consisting of globally-shared

resources. Optimal sharing of these resources raises the issue of resource and cost allocation which,

in turn, leads to network performance modelling. In our work we emphasize the importance of

performance evaluation and monitoring of network resources to achieve their optimal utilization.

We analyze the network as a decoupled system consisting of end nodes and routers. We analyze

the algorithms running on each component and propose modifications. For the router we study the

existing and widely-deployed active queue management scheme, Random Early Detection (RED)

and its predecessor, TailDrop scheme. Emphasizing robustness and end-to-end delay, we propose

our modification to RED and show that it achieves better results compared to RED. Similarly,

for the end nodes, we explore the window adaptation scheme of the widely-deployed cooperative

transport protocol, TCP Reno. Stressing packet re-sent ratio and power, we show that our proposed

modification of window adaptation schemes achieves better performance than TCP Reno. For a

more balanced research we compute the algorithmic complexity of each algorithm to show that

better results can be achieved at the expense of increased algorithmic complexity.
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Chapter 1

Introduction

1.1 Motivation: The Need for Network Analysis

The Internet today has emerged as a ubiquitous network consisting of globally shared re-

sources. A key feature of the Internet is the role of the constituent networks. These networks are

integrated entities which actively contribute their resources which range from backbones to regional

transmission services to local area networks (LANs) [11]. Pooling resources of so many constituents

into a massively interconnected environment raises the issue of resource and cost allocation. Address-

ing these issues requires an exhaustive evaluation of network performance modelling. Performance

monitoring of the network resources can yield a tremendous amount of information about the compo-

nent’s efficiency with respect to the network traffic that it handles. Performance evaluation, on the

other hand, can reveal the necessary steps (or precautions) to take to maintain an optimal allocation

of resources for ever-changing network traffic.

In our work we considered the issue of performance evaluation of network components for

an IP network. We logically divided the IP network into a combination of two components: the

end nodes and the routers. We studied the algorithms running on the network components: the

end nodes running cooperative transport protocols (like TCP) and the routers implementing active

queue management (AQM) schemes. We investigated the currently implemented algorithms in the

network components and proposed our algorithms to show that better network performance is a

tradeoff between algorithmic complexities.
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1.2 Components of an IP Network

For our research we logically divided the IP network as consisting of two components -

the AQM schemes at routers and the window adaptation scheme used by the cooperative transport

protocols at end nodes.

Active queue management schemes are congestion-avoidance schemes in packet switched

networks. They are designed to detect incipient network congestion and proactively drop1 packets

in order to avoid future congestion. The packet dropping is proportional to the congestion it faces.

This action of an AQM scheme not only avoids “global synchronization” but also ensures bandwidth

proportional to each connection’s share.

The window adaptation scheme used by the cooperative transport protocol serves a dual

purpose. It carefully injects packets into the network until it claims its share of bandwidth. Upon

sensing congestion it reacts by decreasing its packet sending rates. Thus, it participates not only to

obtain its fair share of bandwidth but also to ensure that it takes part in relieving congestion.

These two components form a coupled system. The routers drop packets to send the end

nodes a signal to slow down, and slowly increase their packet sending rates to avoid congestion.

Hence, the action of one network component is dependent on the other.

1.3 Network as a Decoupled System

We observed that, for a best effort network such as an IP network, the router does not

distinguish between various traffic classes. Its packet dropping rate depends exclusively on its avail-

able buffer capacity and on its estimate of future arrivals. Moreover, the behavior of the end nodes

is dictated only by the end-to-end behavior experienced by their packets. Hence, we inferred that,

although the IP network consists of a coupled system of end nodes and routers, their behavior is

basically defined only by their observations. So, we had to analyze the network as a decoupled

system.

In our work we analyzed each network component independently of the other. We first

concentrated on the AQM schemes at the router and treated the rest of the network as a “black-

box.” We analyzed scheme behavior with respect to robustness and queueing delay and proposed our

modifications. We then dealt with the cooperative transport protocols at the end nodes, focusing

especially on their window adaptation schemes and modelled the rest of the network as a “black-

box.” We analyzed scheme behavior with respect to packet loss ratio and power and propose our
1Based on their implementation, the routers either mark or drop packets. In our work we have considered both

marking and dropping effects. Since dropping is the default action of routers, we refer to packet marking explicitly
where indicated.
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modifications.

1.4 Summary of the Thesis

In this thesis our efforts can be divided into six parts: In the first part we analyze AQM

schemes as a combination of a measurement module and a control module. This method of analysis

allows us to carefully observe the effect of each module on the performance of the AQM scheme. For

each of the modules, we implement different predictors and controllers and compare the performance

of an AQM scheme for various combinations. In our simulations we show that careful control

decisions based on prediction of future packet arrivals always lead to an increase in performance.

In the second part we study the effects of the fact that traffic generated by TCP sources

is correlated in nature. Dependence of future traffic measurements on current value is a result

of (positively) correlated traffic, and we use this property of dependence to predict future traffic

intensity. We also suggest ways to exploit the dependence using different predictors.

In the third part we emphasize the relevance of using robustness and delay jitter as reliable

performance metrics of an AQM scheme rather than goodput. In this regard, we define our idea of

robustness. We concentrate our attention on the performance of robust AQM schemes that exploit

the correlation that exists in the network traffic. We show that, with our definition of robustness,

a positive correlation can be established between robustness, goodput and link utilization. We use

goodput, link utilization and algorithmic complexity strictly as additional measures of performance.

In the fourth part we concentrate on the study of window adaptation schemes of cooper-

ative transport protocols running on end nodes. We also mention related work done in the area of

developing new window adaptation algorithms to increase TCP throughput. In this part we sum-

marize the IETF recommended guidelines to be followed before proposing a new window adaptation

scheme for a cooperative transport protocol.

In the fifth part we propose a way to estimate the congestion level for real networks only

through the ECN bit marks on the ACKs. Our belief that the ratio of marked packets to the

transmitted packets (packet mark ratio) is an indicator of congestion is the basis for our window

adaptation scheme. We use an existing predictor to record and “predict” the packet mark ratio and

use an existing utility model to determine the optimum window size for the next transmission to

reduce the number of re-sent packets.

In the sixth part we combine our observations of AQM scheme analysis and window adap-

tation analysis to produce results for a combination of robust AQM schemes at the network level

and efficient window adaptation scheme at the end node level.

3



1.5 Thesis Organization

This thesis is organized as follows. Chapter 2 discusses the various existing AQM and

window adaptation schemes. Chapter 3 introduces the AQM schemes and describes the need for

robust AQM schemes. It also discusses the characteristics and importance of robustness in an

AQM scheme. Chapter 4 introduces the essential features of a cooperative transport protocol and

reiterates the Internet Engineering Task Force (IETF) recommended guidelines for proposing new

cooperative protocols. This chapter illustrates the fact that all new window adaptation schemes

have to be compared with their existing counterparts with respect to performance and algorithmic

complexity. Chapter 5 provides the results of our work and inferences drawn from it. Finally,

in Chapter 6, we summarize our work done in this thesis and provide insight into possible future

research areas. In Appendix I we list individual performance graphs for scenarios not covered in the

text. In Appendix II we show the algorithmic complexity for each algorithm used in our work.

4



Chapter 2

Related Work

In this chapter we discuss both components of an IP network, the Active Queue manage-

ment schemes implemented in the routers and the window adaptation schemes used by the Coop-

erative Transport Protocols implemented on the end nodes. We also discuss in detail their various

attributes and limitations.

2.1 Active Queue Management Schemes

Here we discuss the existing active queue management schemes, their characteristics and

their advantages and limitations, where applicable. We also compare each of the schemes in order

to assess network performance with respect to fairness in allocation of bandwidth, penalty for user

misbehavior, ability to remove bias against bursty traffic and power to avoid global synchronization.

For historical reasons we also discuss the operation of a TailDrop scheme, which was the first scheme

to be implemented in the routers before the AQM schemes.

2.1.1 TailDrop (DT)

This was the first and, by far, the simplest scheme to be implemented at the routers. A

TailDrop (or DropTail) scheme works by accepting all arriving packets into the buffer until the buffer

has reached capacity after which it begins to drop packets until some space in the buffer becomes

available.

5



2.1.2 Random Early Detection (RED)

TailDrop has drawbacks, such as: throughput loss due to global synchronization, unsuc-

cessful control of misbehaving users and inability to deal with connections with different round-trip

times (RTT). Random early detection (RED) [19, 9] was developed to address these shortcomings.

RED is somewhat similar in nature to the DECbit congestion avoidance scheme.

Characteristics

• Four variables are required:

wq = weight of the queue;

minth = minimum threshold;

maxth = maximum threshold; and

maxp = maximum value for packet marking probability pb.

• For each incoming packet, the new average queue size is calculated as:

avg queue size ← α ∗ inst queue size + (1− α) ∗ avg queue size.

Packet drop decision is then taken as:

avg queue size < minth means accept the packet;

minth ≤ avg queue size ≤ maxth means accept the packet with a probability; and

avg queue size > maxth means drop the packet.

• The queue size is calculated by Exponential Weighted Moving Average (EWMA), which

means that, depending on the weight factor α, the new queue average will resemble the

previous average. This is essential for removing bias against bursty traffic. A high value

of α will make the queue average sensitive to bursty traffic, whereas with a low value of

α, the average queue value will change slowly with traffic.

• The fraction of packets of a connection marked by RED is, roughly, in proportion to the

connection’s share of bandwidth. This is how RED achieves its fairness.

• The RED gateway was evaluated with different traffic mixes (FTPs and Telnets), and

it was tested for the following goals: congestion avoidance, global synchronization, win-

dow reduction at transient congestion, overhead in implementation, maximizing power,

achieving fairness and is applicable for network connections with a range of RTTs and

goodput.

• RED has been known to have no bias towards bursty traffic, and hence, it is capable of

handling transient connections which have a small window and a long delay-bandwidth

product.

• RED identifies misbehaving users by randomly marking the incoming packet. Since

misbehaving connections are known to send large numbers of packets, they would be the

6



connections which will have a higher marked fraction of packets. These connections can

reduce their windows once they sense a higher fraction of marked packets.

Advantages

• RED is simple and efficient to implement.

• RED can be implemented in high-speed networks since it has little overhead in calculating

various parameters.

Limitations

• RED’s non-bias against bursty traffic is proven only for FTP sources. It would be

beneficial and more informative if it were studied for different traffic mixes, such as a

network having FTP, Telnet and UDP sources with different RTTs and window sizes.

• Similarly, in the case of misbehaving users, RED has been tested only on TCP connections

that cooperate with the gateways in congestion control. Testing RED for non-cooperative

UDP connections will probably clearly reflect RED’s ability to control misbehaving users.

• The values of wq, minth, maxth and maxp have to be determined for each network,

depending on its configuration (window size, RTT, number of nodes) and traffic mixes.

2.1.3 Flow Random Early Detection (FRED)

The limitation of the above RED algorithm is that it ensures fairness by marking a fraction

of packets from a connection based on that connection’s share of bandwidth. This, however, has

only been tested for TCP sources. When given a mixture of different traffic types, RED allows

unfair bandwidth sharing as it imposes the same rate loss, irrespective of bandwidths. FRED [30]

uses per-active-flow accounting to improve fairness when different traffic types share a router.

Characteristics

• The traffic types have been categorized as non-adaptive, robust and fragile.

Non-adaptive - This type of traffic takes as much bandwidth as it requires and does

not slow down when congestion is detected. It competes with adaptive sources for buffer

space and bandwidth. An example includes UDP traffic.

Robust - This type of traffic is aware of congestion and reduces its window when

congestion is detected. When extra bandwidth is available robust traffic increases its

window size. It always sends data and its packets are always buffered at the gateway,

which ensures fair share of bandwidth. An example includes TCP traffic.
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Fragile - This type of traffic is also aware of congestion, but it is either sensitive

to packet losses or slower to adapt to more available bandwidth. It has fewer packets

buffered at the gateway. An example includes Telnet traffic.

• The following variables are used:

wq, minth,maxth and maxp: as defined earlier;

minq and maxq, minimum and maximum number of packets each flow is allowed to

buffer;

avgcq, average per flow buffer count;

qleni, queue length (packets buffered) for each flow i; and

strikei, number of defaults (over-runs) by flow i.

• FRED maintains separate buffer for each active flow. Hence the “bulkiness” of a system

increases in proportion to the number of active flows at the gateway.

• Fragile flows: An incoming packet is always accepted if the connection has less than

minq packets buffered and the average buffer size is less than maxth. For a flow with

buffer size between minq and maxq, the incoming packet is accepted probabilistically.

Hence, FRED protects fragile flows.

• Heterogeneous robust flows: When the number of active connections is small, it might

be possible for some flows to have more than minq packets buffered leading to queue

size greater than maxth, thus forcing FRED to randomly drop packets (by imposing the

same rate loss on each defaulter). To avoid this packet drop, which is independent of the

bandwidth, FRED dynamically increases the limit minq to avgcq.

• Non-adaptive flows: FRED keeps a count of the number of times a connection buffers

more than maxq packets in the strike variable. Flows with high strike values are not

allowed to buffer more than avgcq packets. Since non-adaptive flows are bound to have

high strike values, they will not be allowed to consume a large bandwidth. This allows

adaptive flows to increase their windows when spare bandwidth is available, and hence

get their fair share.

• FRED also has the ability to support many flows. Every time the buffer needs to be

allocated, the inactive flows are given priority over the active ones.

Advantages

• FRED provides more equitable bandwidth sharing by implementing per-flow accounting

for each flow and selectively dropping packets from flows that take more than their share

of bandwidth.

• FRED is able to provide fairness to various connections having a range of RTT and
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window sizes.

Limitations

• FRED uses many state variables to keep account of each flow. This makes it very “bulky”

to implement.

2.1.4 Stabilized RED (SRED)

The previous variant of RED, FRED, suffers from the drawback that it has to keep an

extensive list of all connections that have packets buffered at the gateway. Moreover, for each active

connection it has to maintain its min and max buffer sizes and strike values. This variant of RED

requires buffer space in proportion to the number of active connections at the gateway. The basic

goal of SRED [35] is to increase the occupancy of the (FIFO) buffer, independently of the number

of active flows, by estimating the number of active flows.

Characteristics

• Zombie list: This is a list created to augment the buffer’s memory. It stores a list of few

recently seen flows (zombies). This list stores information about each packet along with

the time stamp of its arrival. It also implements Count, which is a measure of number of

hits. As long as the zombie list is empty, all packets are added to it along with their time

stamp. When the zombie list is full, each arriving packet is compared with a randomly

selected zombie from the list.

Hit: When the arrival packet’s flow matches the zombie. Count is increased by one

and the timestamp is reset to the arrival time of packet in the buffer.

Miss: When the two are not of the same flow. With a probability p the flow identifier

of packet is written on that zombie and count decreased by one. It remains unchanged

with a probability 1− p.

The drop probability, however, does not depend on a hit or a miss. If the buffer occupancy

demands it, then a packet is dropped.

• Relationship between hits and number of active flows:

Πi - probability that a packet belongs to flow i;

Pr{hit of kth packet occurs} =
∑N

1 Π2
i ;

For N active flows of identical traffic intensity, Πi = 1
N ; and

Pr{hit of kth packet occurs} = 1
N .

However, for non-identical flows, we have
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1
N ≤ ∑N

1 Π2
i ≤ 1.

• Simple SRED and Full SRED

In simple SRED the buffer is divided into 3 parts, and depending on the instant buffer

size, the packet is either kept or dropped with a probability pzap which is a function of

q - instantaneous queue size and

Pr{packet hit}
In simple SRED the hits are used to estimate the number of active flows, which are

then used to set the dropping probabilities.

In full SRED the hits are used directly to calculate the dropping probabilities. The

dropping probability for full SRED is pzap ∗ (1 + hit(k)/P (k)). The value of hit(k), for

kth packet, is 1, if a hit occurs, and 0, otherwise.

Advantages

• Estimating of the number of active connections without maintaining per-active-flow ac-

counting really reduces the “overhead” that is incurred in the case of FRED. Maintaining

a zombie list is far simpler than keeping a list of all active flows.

• SRED achieves a great deal in stabilizing the buffer occupancy so that by adjusting the

drop probability the buffer occupancy can be controlled. For number of flows (N) less

than 256, the buffer occupancy is independent of the number of flows; but, for greater

values of N , the buffer occupancy gradually increases with N .

• The hit-or-miss scheme can be used to identify misbehaving flows without the need to

keep per-flow accounting. Flows with high hit count can be monitored and controlled.

Limitations

• The buffer occupancy is decided by pzap and pmax, and these values probably have to be

determined for each network configuration to maximize occupancy.

2.1.5 RED with the Unresponsive Flow Identification

This variant of RED is basically designed to promote end-to-end congestion control in a

network [17]. The increased use of non-congestion-controlled traffic on the Internet causes unfair

sharing of bandwidth and buffer space and might eventually lead to congestion collapse. During con-

gestion this variant tries to identify each high-bandwidth flow as unresponsive, not-TCP friendly and

disproportionate-bandwidth flow and tries to restrict its bandwidth. Instead of trusting transport

protocols the network itself participates in congestion avoidance and control.
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This paper discusses the problems of fairness and the dangers of congestion collapse. It

also suggests that presently there are no concrete incentives for implementing end-to-end congestion

control and misbehaving flows manage to get more than the allotted share of bandwidth and the

routers have to strictly enforce certain schemes, like weighted round robin (WRR), to ensure fairness.

Characteristics

• First approach - High-bandwidth flows are divided into 3 categories:

• Not TCP-friendly - A flow is not TCP-friendly when its arrival rate is more

than the arrival rate of a conformant TCP connection. In other words:

T = maximum sending rate for a TCP connection;

B = TCP connection sending packets of B bytes;

R = RTT + queuing delays; and

p = packet drop probability.

T ≤ 1.5 ∗
√

2/3 ∗B

R ∗ √p
. (2.1)

Therefore, any flow sending more than T Bps data can be treated as a non

TCP-friendly flow. This test of TCP-friendliness does not imply that a flow

responds to every packet drop as a conformant TCP. It simply tests whether,

during congestion, a flow is using more bandwidth than the most aggressive

conformant TCP would.

• Unresponsive flows - A flow is unresponsive when an increased packet drop

from that flow does not lead to a decrease in its window size. Equation (2.1)

shows that if the long-term packet drop rate increases by a factor of k, then

the arrival rate should decrease by a factor roughly equal to
√

k . If a flow

does not follow this guideline, then it can be considered an unresponsive flow.

This test is only applied to high-bandwidth flows.

• Flows using disproportionate bandwidth - Flows that use significantly larger

portions of bandwidth during times of congestion come under this category. If

we let n be the number of flows with packet drops in the recent interval, the

first component of a disproportionate bandwidth test defines a disproportion-

ate bandwidth flow as one whose fraction of aggregate arrival rate is greater

than log(3n)/n.
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The second component of this test takes into account the level of congestion.

Here a disproportionate bandwidth flow is defined as one whose arrival rate is

greater than c/
√

p Bps for some constant c.

• Second approach - Another approach is to use per-flow scheduling mechanisms such as,

WRR or fair queuing, to isolate all best-effort flows at the routers and to prevent them

from using a large share of bandwidth.

2.1.6 CHOKe

All of the above-mentioned RED variants incur some overhead by maintaining certain types

of state information. This factor makes them either simple to implement or provides fairness, but

not both. This variant of RED provides a stateless active buffer management scheme called CHOKe

(CHOose and Keep for responsive flows, CHOose and Kill for unresponsive flows) [36, 38].

Characteristics

• For each incoming packet:

avg. queue size ≤ minth means allow the packet;

minth ≤ avg. queue size ≤ maxth means compare with a randomly selected packet

(drop candidate packet)from the queue. If they have the same flow ID, both are dropped

else the incoming packet is accepted; and

avg. queue size > maxth means drop the packet.

• The algorithm can also be modified so that instead of one drop candidate packet, we can

select m > 1 packets. This definitely improves CHOKe’s performance. This is especially

true when there are multiple unresponsive flows, as more drop candidate packets would

increase the chances of packets being dropped from the queue.

• Another way to modify the above algorithm would be to divide the region (maxth −
minth) into k regions and select a different m for each region.

Advantages

• CHOKe has been tested for three network configurations:

Single congested link;

Multiple congested link; and

Multiple drop candidates and misbehaving flows.

In all of the cases CHOKe has been tested for different traffic mixes and has been found to achieve
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fair queuing with minimal implementation overhead. It would be interesting to test it on more

complicated network topologies.

2.1.7 Weighted RED

Weighted RED (WRED) [1] combines the capabilities of the RED algorithm with IP prece-

dence to provide for preferential traffic handling of higher priority packets. Packets with higher IP

precedence are less likely to be dropped than packets with a lower precedence. WRED can selec-

tively discard lower priority traffic when the interface begins to get congested. Thus, higher priority

traffic is delivered with a higher probability than lower priority traffic. In other words, WRED has

differentiated performance characteristics for different classes of service.

WRED is used in the core routers of a network. The edge routers assign IP precedence to

packets as they enter the network. WRED uses these precedences to determine how to treat the

packet.

Characteristics

• The entire algorithm of WRED is similar to RED with the following changes noted below:

• WRED treats non-IP traffic as precedence 0, the lowest. Precedence allocation for Cisco

class is:

Gold - highest precedence of 7 - guaranteed latency and delivery for mission critical ap-

plications. An example includes voice sent over the Internet as an IP packet.

Silver - medium precedence of 3 and 4, which means guaranteed delivery

Bronze - low precedence of 0, which means best effort. Examples include e-mail and ftp.

• Average queue size calculated as

avg = (old avg ∗ (1− 2−n)) + (current queue size + 2−n).

As explained previously, a moderately high value of n will prevent WRED from fluc-

tuating a lot, and a moderately low value of n will make the buffer sensitive to bursty

traffic.

Advantages

• Unlike other variants, WRED attempts to anticipate and avoid congestion rather than

controlling it.

Limitations
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• WRED is useful only when the bulk of traffic is TCP/IP because TCP/IP sources are

adaptive, and hence, they will respond to congestion.

2.1.8 Double Slope RED (DSRED)

Every RED variant that has been mentioned above is either simple to implement or provides

fairness, but not both. As mentioned before, SRED takes care of both but has to implement a simple

data structure called “zombie list.” Although SRED is scalable, it suffers from low throughput. In

fact adaptive RED also has its drawbacks, as dynamic/adaptive determination of RED parameters

complicates buffer management of high-speed routers.

DSRED [42] modifies the original RED slightly, in that, instead of having a single linear

drop probability function, it has double linear drop probabilities.

Characteristics

• The entire buffer space (of size N) is divided into four parts: minth is represented by

Kl; maxth is represented by Kh; and Kl < Km < Kh.

• The algorithm is the same as RED’s except that the drop probability is calculated in the

following manner:

pd(i) = average (avg) packet drop probability at state i;

pa(i) = average (avg) packet accepting probability at state i; and

pa(i) = 1− pd(i).

pd(avg) =





0 avg < Kl,

α ∗ (avg −Kl) Kl ≤ avg ≤ Km,

1− γ + β ∗ (avg −Km) Km ≤ avg ≤ Kh, and

1 Kh ≤ avg ≤ N ,

where,

average queueing delay D =
∑N

i=0
(i+1)V (i)

µ pa(i),

α = 2∗(1−γ)
Kh−Kl

, β = 2∗γ
Kh−Kl

, avg = (1− w) ∗ avg + wq, and

γ = mode selector for adjusting drop function slopes.

Advantages

• Compared with RED and its variants, this variant of RED shows marked improved

performance with respect to queuing delay, average queue size and packet drop. Its

results are compared with similar network configuration as mentioned in [19] for both
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heavy and light load.

Limitations

• As this variant is compared with [19], so it, too, carries the same limitations as [19].

2.1.9 Self-Configuring RED Gateway

As mentioned in [19], the self-configuring RED gateway [15] depends on five parameters.

They are minth, maxth, maxp, wq and f(t), packet drop probability function.

With the exception of DSRED, however, in all of the variants, the parameter values are

set and remain constant throughout the entire simulation, no matter how the traffic load changes.

Although a few variants have managed to demonstrate a high degree of fairness, high throughput and

scalability with constant parameters, it is clear that adjusting a few of these parameters dynamically

for different network traffic and load would lead to better attainment of the goals mentioned above.

This paper proposes a method to dynamically change the parameters in order to increase link

utilization and decrease packet loss.

The algorithm implements the dynamic adjustments by the Multiplicative Increase Multi-

plicative Decrease (MIMD) scheme.

Characteristics

• Three extra variables are defined. They are α, β and status.

• The algorithm follows.

After every Qavg update:

If (minth < Qavg < maxth),

status = between;

If (Qavg < minth and (status != below),

status = below, and

maxp = maxp/α; and

if (Qavg > maxth and (status != above),

status = above, and

maxp = maxp ∗ β.

• The adaptive RED is tested against two maxp values of static RED (conservative de-

tection: maxp = 0.016; aggressive detection: maxp = 0.250) with number of sources

switching between 8 and 32.
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It is seen that in case of static RED with aggressive detection, the queue remains almost

utilized when the number of sources is 32, but remains underutilized when the number

of sources is 8.

However, for conservative detection, the queue remains almost utilized for 8 connections

but fluctuates between packet loss and underutilization.

In case of adaptive RED, with a starting maxp, the RED queue adapts well, such that

it remains almost utilized throughout the simulation, even when the number of sources

keeps changing.

• The adaptive RED is also compared with static RED for throughput and packet loss,

and its performance lies between the two (conservative and aggressive) static REDs for

both the throughput and packet loss.

Advantages

• This gateway studies the two types of congestion avoidance schemes: RED with packet

drop and RED with Explicit Congestion Notification (ECN).

Limitations

• As usual, Self Configuring RED Gateway does not deal with non-adaptive sources and

different network configurations.

2.1.10 Adaptive RED

Adaptive RED [18] is largely influenced by the above-mentioned, self-configuring RED. A

few changes are made to the algorithm as stated above. Two parameters, maxp and wq, are studied

for the sensitivity of RED. RED’s performance (Qavg and throughput) is a function of both wq and

maxp. Hence, a careful selection of these parameters is required to achieve good throughput and

reasonable, average queue lengths.

This algorithm implements an Additive Increase Multiplicative Decrease (AIMD) scheme.

Characteristics

• maxp is varied to ensure that the Qavg lies approximately midway between minth and

maxth.

• maxp lies in the range of [0.01, 0.5], that is, in the range of [1%, 50%]

• The algorithm follows.

At every interval seconds:
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If (avg > target and maxp ≤ 0.5),

maxp = maxp + α; or else

if (avg < target and maxp ≥ 0.01),

maxp = maxp ∗ β;

where

interval = 0.5 sec;

target = [minth + 0.4 ∗ (maxth −minth),minth + 0.6 ∗ (maxth −minth)];

α = min(0.01,maxp/4); and

β = 0.9.

• wq is set as

wq = 1− e−1/C . C = link capacity in packets/sec

• Oscillations: Simple RED (with one flow) exhibits extreme variations of the average

queue length over the period of simulation. This variation greatly reduces, in case of

adaptive RED, as maxp keeps on adjusting to the traffic load and, hence, the oscillations

lie in a small range. The results are similar in case of more realistic multiple traffic flows.

• Effects of queue weight: Sensitivity of RED to wq shows that for both low and high

values of wq the average queue size suffers and, hence, the automatic setting for wq is

prescribed so that an optimum balance can be sought.

• Routing changes: This section studies the effect of sharp changes in the load due to

routing changes. The results show that as soon as an output link becomes available, the

sources fill in the queue to maximize the link utilization.

• Setting average queue size: The optimal average queue size is a function of both through-

put and delay and, hence, there is a relative tradeoff between the two. The tradeoff can

be decided by the characteristics of aggregate traffic and its burstiness.

Advantages

• This gateway performs well and achieves high link utilization and throughput with low

queuing delays.

Limitations

• This gateway has no results for mixed traffic. A mixture of traffic loads might show

interesting results.
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2.2 Existing and Proposed Window Adaptation Schemes

In this section we mention the window adaptation scheme of the Internet Engineering Task

Force (IETF) recommended cooperative transport protocol, TCP Reno, for the Internet. We also

mention various other window adaptation schemes and discuss their relative features.

2.2.1 Window Adaptation Scheme of Transmission Control Protocol (TCP)

A series of congestion collapses, which first started in October of 1986, led to the develop-

ment of a cooperative transport protocol that would address the issue of congestion control. The

proposed Transmission Control Protocol (TCP) [5, 24] has become the dominant transport protocol

of today’s Internet. The widely-deployed TCP variant, TCP Reno1, does not generally guarantee

a fair or efficient allocation of bandwidth among connections. Moreover, TCP Reno exhibits oscil-

latory behavior, which results in inefficient use of available bandwidth due to retransmissions. It is

for this reason several other variants like NewReno [21], SACK [33], Vegas [10] and models based on

utility and game-theoretic frameworks have been proposed.

2.2.2 Pricing-Based Window Adaptation Scheme of TCP

In [27] the authors propose maximization of total user utility in a distributed environment

using only the information available at the end hosts. The authors acknowledge the fact that the

network and users cannot dynamically exchange pricing information. The authors also show that

their algorithm converges to a socially optimum value. However, the authors do not provide any

analysis of the tradeoffs between their method and the widely-used TCP Reno.

2.2.3 ECN-Enabled TCP

Since in the real networks, neither the user nor the network can instantaneously exchange

pricing information, hence, we have to rely on indirect methods of estimating the network congestion

level. In [28] the authors assume a generic form of packet marking where the congestion notification

is issued, using explicit congestion notification (ECN) bits. In the ECN framework the data packets

contain a field which is used by the user to determine if congestion has occurred. Initially the value

in the field is set to 0. If congestion develops at the router, then the router sets the value in the field

to 1 instead of dropping the packet. This way the router does not lose goodput and still conveys the
1For simplicity, we sometimes refer the window adaptation scheme of TCP Reno as TCP Reno. The same notation

applies to other TCP variants and to our proposed Obj-TCP.
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end user of congestion. The receiving user acknowledges the packet receipt through ACKs. These

ACKs have the same field and have values as shown on the packets. That is, a marked packet will

have a marked ACK and a non-marked packet will have a non-marked ACK.

2.2.4 Utility-Based Models

In [25] the authors formulate the TCP sending rate as a utility-based problem where they

assume that the data packets contain a field R, and the ACK packets contain a field E. The value

in R lets the router know the current sending rate of that source, and the value in field E lets the

source know the total number of congested links on its path. Implementation of this method is

clearly not possible within the currently proposed ECN architecture.

In [31] the authors have formulated the source flow rate problem as a primal maximization

problem and the network optimization problem as the dual minimization problem. The authors

perform a good analysis of the synchronous and asynchronous cases. However, their scheme would

work only if network resources actively participate in recording the total rate going through them

and convey the information to the sources, which then, accordingly, would adjust their prices. Use

of such a scheme is not possible with today’s limited support (only ECN) of network resources for

such an information transfer.

In [6] the authors consider a fluid model of the network and set up the utility and pricing

functions as a logarithmic and linear function of the flow rate. The pricing function also linearly

depends on the total queueing delay on its path. However, the authors assume that the total

queueing delay on its path can be considered independent of the individual flow rate of the source.

This might not be totally accurate when the rest of the users make a similar assumption about total

queueing delay.

2.2.5 Game Theory-Based Models

In [3] and [7] the authors model the TCP behavior on each end node as a noncooperative

game where each node attempts to maximize its throughput by modifying its congestion control

behavior.

Noncooperative games are decentralized control problems and determination of Nash equi-

librium in such a scenario requires coordination among the other noncooperative users. This would

require that all users are aware of each others’ strategies and, hence, make their decisions accordingly.

This situation is highly impossible in real networks and, hence, cannot be implemented.
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Chapter 3

Analysis of Robust Active Queue Management

Schemes

3.1 Features of Robust AQM Schemes

Most of the proposed AQM schemes require frequent tuning of various parameters for

optimal performance. This tuning of parameters depends on several factors such as network con-

figuration, resources available and the nature and intensity of traffic expected to pass through the

gateway. It is usually desirable for the routers to display steady performance in spite of changes in

network conditions and adjust the parameters themselves without much assistance from a network

operator. Robust AQM schemes take into account such fluctuations and require very little input

from a network operator. With the above arguments and the discussions in [8], we are of the opinion

that robust AQM schemes should take precedence over strictly optimal ones.

A robust AQM technique should be capable of switching from one traffic environment to

another without sustained loss of performance. A robust AQM technique should be capable of

handling traffic environments such as [8]:

• small number of high-bandwidth flows;

• large number of low-bandwidth flows;

• heterogeneous round trip times;

• heterogeneous bandwidths due to upstream constraints (broadband vs. modem access

rate constraints);

• heterogeneous flow durations; and
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• non-stationary flow duration distribution.

Figure 3.1 illustrates the difference in performance between a hypothetical DropTail scheme

and an AQM scheme, AQM1, under the same network traffic conditions. It also shows the difference

in performance between the same AQM scheme but under different traffic conditions, AQM1 and

AQM2. For a given queueing delay, an AQM scheme should perform better than a DropTail scheme.
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Figure 3.1: The graph compares the behavior of an AQM scheme, AQM1, with a DropTail scheme
under similar traffic conditions. Similarly, it compares the behavior between the same AQM scheme
but under different traffic conditions, AQM1 and AQM2. Given a delay, an AQM1 scheme should
produce a better goodput than a DropTail scheme. Similarly, given a goodput, an AQM1 scheme
should have a smaller delay than a DropTail scheme. (Source: Authors’ impression of the scheme)
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3.2 Characteristics and Prediction of TCP Traffic at the Router

3.2.1 Adaptive, Bursty and Chaotic Nature of TCP Traffic

It has been observed in [16] and [32] that TCP traffic can be interpreted as “pseudo self-

similar” in nature, which means that TCP displays self-similarity or scaling only on short-time scales.

It is the nature of TCP to saturate the outgoing link of a router, and it achieves this saturation

by ramping up its packet sending rate until it reaches its maximum window size or experiences

congestion, whichever occurs earlier. Similarly, packet losses (or delayed acknowledgements) lead

to a decrease in packet sending rate. This window scaling phenomenon reflects the adaptive nature

of TCP. Also, TCP traffic shows a bursty nature. A stream of packets arrive from a source, which

is then followed by a period of silence. This behavior is quite different from the behavior of UDP

traffic where a steady flow of packets is guaranteed by the UDP source. The third characteristic of

TCP traffic is that it is chaotic [41]. Although periodicity is induced due to round-trip time and

retransmission timeout calculations, in the event of continued packet losses, the exponential back-off

behavior of TCP changes this periodicity, making the packet-sending behavior chaotic. Therefore,

in order to predict the aggregate behavior of TCP traffic at a router, we have to take into account

its adaptive, bursty and chaotic nature.

3.2.2 Motivation for a Predictive AQM Technique

The discussions in Chapters 3.1 and 3.2.1 highlight the fact that the next generation AQM

schemes should not only be robust in their performance but also should take into account the pseudo

self-similar traffic generated by TCP. The traffic values at the present time contain a significant

amount of information about the traffic values in the future. This property of short-range dependence

can be used to predict future traffic intensity. Combining complete traffic information with rate-

based adaptive controllers, it is possible to design AQM schemes that are more robust and perform

better than the one implemented at the current time.

3.3 Definition and Quantification of Robustness

Robustness signifies insensitivity against small deviations in the assumptions [23]. In this

paper we have quantified AQM robustness as the ability of a router to maintain its performance

even under harsh changes in its environment. Referring to Figure 3.1, the robustness of an AQM

scheme, under two different types of network traffic conditions (AQM1 and AQM2) and with an
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average queueing delay of d1 is:

Rg =
g2 − g1

g2
. (3.1)

With this definition it is clear that more robust schemes have smaller robustness index values. We

would also like to emphasize that this value gives only a comparison metric and does not give a

normalized value of robustness.

3.4 Logical Modules of an AQM Scheme

In this section we dissect the operation of an AQM scheme into two logical modules:

• Measurement module, or Predictor ; and

• Control module, or Controller.

The purpose of predictors is to capture traffic intensity and estimate future arrivals over a

prediction interval. The accuracy of prediction depends a great deal on the length of the sampling

interval [39]. Our sampling interval was 10ms.

The information collected by the predictors is used by the control module to adjust the

aggressiveness of packet drops in the next interval.

3.5 Measurement Module or Predictor

We focus on the four following predictors:

• Predictive Congestion Control;

• Double-Threshold Moving Window;

• Weighted Double-Threshold Moving Window; and

• Phase Lag.

3.5.1 Predictive Congestion Control (PCC)

The detailed operation of this predictor is mentioned in [37]. In this paper we have used

the same notations as mentioned in [37]. The traffic arrival rates are divided into eight intervals

based on its past mean (µ) and standard deviation (σ) values1. These intervals (or quantized levels)

from l = 1 to l = 8, are, respectively:

(−∞, µ− 3σ), [µ− 3σ, µ− 2σ), [µ− 2σ, µ− σ), [µ− σ, µ), [µ, µ + σ), [µ + σ, µ + 2σ), [µ + 2σ, µ + 3σ)

1For the purpose of simulation eight divisions were found to be sufficiently granular to capture the traffic rates.
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and (µ + 3σ,∞).

Based on these intervals, an 8×8 conditional probability matrix M(lt1, lt2) = P{Xt2|Xt1} is created

corresponding to each of the eight current quantized levels mapping into the same eight quantized

levels into the future. For every slot in the training period (that consists of the sub-slots (lt1, lt2)),

the corresponding value of M(lt1, lt2) is increased by one. Finally, the values of M are normalized

across rows to give the conditional probability P{Xt2|Xt1}.
After the training period the probability matrix M should be updated at suitable intervals.

For our simulations we updated the matrix at the end of every slot.

3.5.2 Double-Threshold Moving Window (DTMW)

This predictor is a type of low-pass but nonlinear finite impulse response (FIR) filter. The

details of its operation and its original application are mentioned in [22]. It consists of a moving

window of size N where each slot in the window records the traffic rate for that slot. DTMW

maintains two thresholds, T1 and T2. At each measurement interval the arrival traffic is measured

and compared with the first threshold T1. If the arrival rate equals or exceeds the threshold T1

then a bit is set in the moving window corresponding to that slot. A control action for the next slot

can then be based on the second threshold T2 and the summation of all bits in the N slots. The

schematic diagram of a DTMW predictor is redrawn from [22] and shown in Figure 3.2.

S
S
 S
 S


N

Y(i)


T1


S(i)


C


T2


C


Figure 3.2: Flow diagram of DTMW predictor. (Source: Reproduced from [22])
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3.5.3 Weighted Double-Threshold Moving Window (wDTMW)

This is a modified version of the DTMW predictor. Instead of assigning equal weightage

to the observations over the N slots in a moving window, higher priority is assigned to more recent

observations and lower priority to older ones. This type of measurement captures the continuous

occurrence of high traffic rates and is relatively unbiased towards the window size N . Occurrences

of high traffic rates at close proximity to each other is an indication that future traffic will follow

similar trends. Similarly, for large window sizes, all observations in the past affect the current

packet-marking decision. This method of marking may not be optimal, especially for bursty sources

which show high correlation to past data. This implies that the window size N should be large

enough to capture the correlation of the past data and, at the same time, small enough to exclude

data of no importance to the present packet-marking decision. In order to address these problems,

observations are assigned weights such that these weights decrease as the observations become older.

The weights of observations are assigned according to a polynomial of binary power. Let

n be an integer with values between 1 and N , where the oldest slot in the window has value 1 and

the latest slot has value N . The weight polynomial is constructed as:

P =
1∑

i=N

(2i−1 ∗Xi)

= (2N−1 ∗XN ) + (2N−2 ∗XN−1) + . . . + (20 ∗X1) (3.2)

where Xn is bit status of slot n and is defined as:

Xn =

{
1 if arrival rate at slot n ≥ T1 and

0 otherwise.

The packet-marking decision is taken based on P and T2.

3.5.4 Phase Lag (PL)

This is a representation of an ideal predictor where, instead of predicting the future traffic

rate, its value is obtained from a lookahead into the simulation model. It works as follows: for a

phase lag predictor with prediction interval length h, traffic generation is started at a time t = −h

but is not fed into the simulation system until at time t = 0. In this way a router can see the

future traffic rates that are going to arrive in the next h intervals. Since such a scheme discounts for
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prediction errors, it can be used as a benchmark to compare the performance of other predictors.

Although this is not realizable in practice, we use it to set bounds on performance based on exact

knowledge of traffic arrivals. The schematic diagram of a Phase Lag predictor is shown in Figure

3.3.

t=-h
 t=-h+1
 t=-h+2
 ...
 t=0
 t=1


a(t=0)

a(t=1)


Figure 3.3: Figure of an idealized prediction scheme enforced by a phase lag predictor. (Source:
Authors’ impression of the scheme.)

3.6 Control Module or Controller

We study the following two controllers:

• Estimated Future Average Queue Length; and

• Least Mean Square Fixed Queue Occupancy.

The Least Mean Square Fixed Queue Occupancy (LMSFQO) is an existing rate-based controller,

and the details of its operation are cited in [20]. We propose a modification to the EWMA of queue

length calculation to achieve a different control action exhibited by Estimated Future Average Queue

Length controller (EFAQL). Finally, we design a rate-based controller that fixes the average queue

occupancy, as calculated by EWMA scheme, to a certain desired level. The details of each controller

are mentioned in the following subsections.

3.6.1 Estimated Future Average Queue Length (EFAQL)

This controller is an extension of the EWMA of queue length. Although it has been used

both as a predictor and as a controller in the traditional RED, we implement it here strictly as a

controller. It makes a packet-marking decision based on past information of average queue length

and estimated future arrival rates. Its control action is similar to the one in [19] and is mentioned
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below:

p =





0 QAvg(t = n) < Minth,
QAvg(t=n)−Minth

Maxth−Minth
∗Maxp Minth ≤ QAvg(t = n) < Maxth, and

1 Maxth < QAvg(t = n),

where

p = drop probability for the next interval, n + 1,

Maxth, Minth = maximum and minimum threshold values for average queue size,

Maxp = maximum drop probability, and

QAvg(t = n) = average queue size at the interval, n.

The estimated future average queue length is calculated as:

QAvg(t = n) = w1 ∗QAvg(t = n− 1) +

w2 ∗QAvg(t = n + M) + (1− w1− w2) ∗QInst(t = n) (3.3)

In (3.3) w2 is the weight attached to the future average queue length obtained from the estimate of

future arrival rates in the measurement intervals (n + 1, n + M). Future arrival rates are estimated

from the predictors. Qavg(t = n + M) is calculated recursively as:

QAvg(t = n + M) = (1− u1) ∗QAvg(t = n + M − 1)

+ u1 ∗QInst(t = n + M) (3.4)

where, u1 = 0.002 and,

QInst(t = n + M) = QInst(t = n + M − 1) + Âr(t = n + M)

− Se(t = n + M)−Dr(t = n + M) (3.5)

where, Âr(t = n + M) is the predicted arrival at time t = n + M and QInst(t) := Max(0, QInst(t)).

For DTMW and wDTMW, Âr(t = n + M) was calculated as:

Âr(t = n + 1) =

{
T1 if sum of bits ≥ T2, and
T1
2 otherwise.
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Equation (3.5) represents buffer dynamics at time t = n + M . A special case of (3.3) is when w2

becomes equal to zero. For this value it is reduced to the ordinary RED.

3.6.2 Least Mean Square Fixed Queue Occupancy (LMSFQO)

The operation of this controller is to keep the queue occupancy close to a target fraction,

Qfixed, of the maximum queue size. This controller does not allow the instantaneous queue occu-

pancy to deviate largely from a predetermined value, and so implementing such controllers helps to

achieve low-buffer size variations and low delay jitter. The detailed operation of this controller is

described in [20]. The instantaneous queue length at slot n + 1 is represented as:

Q(t = n + 1) = Q(t = n) + Ar(n + 1)− Se(n + 1)−Dr(n + 1) (3.6)

where Ar(n + 1), Se(n + 1) and Dr(n + 1) are the total number of arrived, serviced and dropped

packets, respectively, in the slot n + 1. The distance, dn+1, of this instantaneous queue length from

the target queue occupancy is:

dn+1 = Q(t = n + 1)−Qfixed (3.7)

and the squared sum, J , of this distance over the M future slots is defined as:

J =
M∑

i=1

d2
n+i =

M∑

i=1

(Q(t = n + i)−Qfixed)2. (3.8)

The aim of the controller is to find a dropping sequence {Dr(n + 1), Dr(n + 2), · · · , Dr(n + M)}
for the M future slots that achieves a minimum for J .

In [20], the authors point out that the instantaneous queue length is restricted as Q(t =

n+1) ≥ 0 and so J cannot be differentiated over its domain. Instead they obtain the infimum for J .

The procedure of finding the infimum for J to obtain the dropping sequence is mentioned in detail

in [20]. Here, we show only the final result of packet dropping probability.
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The control action for the next sampling interval is:

p =





0 Q < Se + Qfixed − Âr,
Q+Âr−Se−Qfixed

Âr
Se + Qfixed − Âr < Q < Se + Qfixed, and

1 Q > Se + Qfixed.

where

p = drop probability for the next interval, k + 1,

Q = instantaneous queue size at current interval, k,

Se = service rate at current interval, k, and

Âr = estimated arrival rate of next interval, k + 1.
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Chapter 4

Analysis of Window Adaptation Schemes

In this chapter we describe the characteristics of a generalized window adaptation scheme

of a cooperative transport protocol and its widely-deployed implementation, TCP Reno. We also

mention the IETF recommended guidelines for proposing new cooperative protocols. Finally, we

discuss the need for a more objective implementation of TCP Reno and propose our version of

window adaptation for TCP, which we call Objective TCP or Obj-TCP.

4.1 Function of a Window Adaptation Scheme

The function of a window adaptation scheme is to utilize the full bandwidth it requires

and, at the same time, to actively participate in reducing network congestion. A window adaptation

scheme estimates network congestion after the receipt of acknowledgements (ACKs) and carefully

injects its packets into the network in order to avoid congestion. Upon the successful transmission

of all its packets, it increases its packet sending rate to its maximum allowed value. On the other

hand, upon congestion detection, it immediately backs off by decreasing its sending rate. This

behavior ensures that the network congestion is controlled and avoided. A window adaptation

scheme estimates the network congestion by a combination of packets losses and packet round-trip

times.

For our work we select the window adaptation scheme used by TCP Reno which is the

widely-deployed cooperative transport protocol in today’s Internet. We compare its behavior with

our proposed window adaptation scheme and discuss their relative characteristics with respect

to packet re-sent ratio, power and algorithmic complexity. We call the TCP using our scheme,

Objective-TCP or Obj-TCP.
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4.2 Operation of TCP Reno

The detailed operation of TCP Reno is mentioned in [40]. The pseudo code for TCP Reno

is shown in Appendix II. TCP Reno contains four intertwined algorithms: slow start, congestion

avoidance, fast retransmit, and fast recovery. The widespread implementation of TCP Reno in the

Internet is due to the fact that TCP Reno quickly increases its congestion window to detect network

capacity. Its elegant congestion detection scheme allows it to detect real congestion based on the

order of acknowledgements (ACKs) it receives. Hence, TCP Reno injects packets into the network

without choking its current sending rate even at the receipt of duplicate ACKs.

4.3 Objective-Driven TCP (Obj-TCP)

Obj-TCP measures the network congestion at the end of every transmission instant and

then uses these values to estimate the congestion at the next transmission instant. The estimated

value of congestion will determine the best window size which will minimize the packet losses for

the next sending instant. One way for the Obj-TCP to infer the network congestion is through

the ratio of number of marked packets to the number of transmitted packets. In our work we have

carried out a black box analysis of the network whereby sources can infer “incomplete” information

about network congestion through the number of ECN bits on the ACKs it receives. Retransmission

timeout (RTO) is also an indicator of congestion; however, in our work we have modelled Obj-TCP

to behave similarly to TCP Reno in case of RTO.

The standards track IETF mechanisms mentioned for all TCP implementations is repro-

duced in the next chapter. We would like to state that in our work we have not violated the standards

track IETF mechanisms proposed for TCP implementation. Rather, we propose a modification to

the window updating scheme based on history of packet losses.

4.4 Testing and Evaluation of a New Cooperative Protocol

As shown in Chapter 2, several utility-based, game-theory-based and window-based schemes

have been proposed which mention different window adaptation techniques that promise better

performance. It has been shown that the flow rate governed by such schemes achieve convergence

and global optimum values in the limit. And also, such window adaptation schemes promise enhanced

throughput. We observe that in all of these schemes no performance comparison has been done with

the TCP, which is the widely-deployed transport protocol; and it still remains to be shown how

31



these methods fare with respect to the currently-deployed TCP Reno.

Since TCP Reno is the dominant transport protocol of the Internet, hence it becomes

necessary that all new TCP-like protocols have to be tested before they can be recommended for

use in the Internet. Testing methods serve to compare and evaluate the working of the proposed

cooperative protocol with that of existing TCP variants. Detailed performance evaluation of a new

cooperative protocol will reveal the protocol’s mechanisms, dynamics and interactions with other

traffic sharing the network path. We have followed the testing methods mentioned in [4].

The standards track IETF mechanisms mentioned for all TCP implementations are:

• Basic Congestion Control;

• Extensions for High Performance;

• Selective Acknowledgements;

• Delayed Acknowledgements; and

• Nagle Algorithm.

In our work we have emphasized the suitability of our proposed scheme with respect to high per-

formance. We propose a different window calculation algorithm that leads to higher performance

compared to TCP Reno. This means Obj-TCP still pursues the basic congestion control mechanism

of fast retransmit and fast recovery whenever affected by congestion.

4.5 Calculation of Optimal Window Size

The window updating scheme, at any transmission slot k + 1, for our proposed Obj-TCP

works as follows. We use the following notation:

Wk = Number of packets sent (window size) during transmission slot k;

Wmk = Number of packets marked during transmission slot k;

Wmax = Maximum window size;

ρk = Packet marked ratio at transmission slot k;

ρ̂k+1 - Estimated packet marked ratio for transmission slot k + 1;

Uk = Utility at transmission slot k;

Ûk+1 = Estimated net utility for transmission slot k + 1; and

Ĉk+1 = Estimated cost at transmission slot k + 1.

We consider a simple utility function (mentioned in [6]) and an estimated cost which is a func-

tion of the number of estimated marked packets Ŵm in the next transmission slot. The net utility
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for the next transmission slot is then given by

Ûk+1 = Uk+1 − Ĉk+1 = log(Wk+1)− Ŵmk+1 = log(Wk+1)− ρ̂k+1 ∗Wk+1 ∀ k ≥ 0. (4.1)

Prediction of ρ̂k+1 is mentioned in the next subsection. A good approximation of ρ̂k+1 implies that

we can find a near optimal window size, Wk+1, for the next transmission slot which will maximize

Ûk+1. Differentiating (4.1) we obtain

Wk+1 =
1

ρ̂k+1
ρ̂k+1 > 0 (4.2)

or for integer values of Wk+1 we have

Wk+1 ≈ d 1
ρ̂k+1

e ρ̂k+1 > 0 (4.3)

where dne denotes the smallest integer greater than or equal to n. Since window size in any slot k

is constrained as 1 ≤ Wk ≤ Wmax, ρk is constrained as ε ≤ ρk ≤ 1, where ε = 1
Wmax

.

4.6 Implementation of Obj-TCP

Obj-TCP maintains a training period and an implementation period. In the training period

the Obj-TCP records the ratio of marked packets to build a history in order to estimate the ratio for

the next transmission slot. In our experiments we have discovered that the DTMW predictor with

a window size of 2 is a good tradeoff between the complexity of the system and the performance

increase. More details on the DTMW predictor can be found in [22, 34]. The pseudo-code for the

Obj-TCP follows

While (time ≤ Training Period) do the following:

1. At the end of every transmission slot, k, get Wk and Wmk; and

2. Calculate ρk.

3. If (ρk ≤ T1)

D[index] ← 0,

else

D[index] ← 1.
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4. Set

ρ[0] ← ρ[1],

ρ[1] ← ρk,

T1 ← 1
2 ∗ (ρ[0] + ρ[1]), and

index ← index + 1.

While (time > Training Period) do the following:

1. At the end of every transmission slot, k, get Wk and Wmk; and

2. Calculate ρk.

3. Perform a moving window operation on D

D[0] ← D[1].

4. If (ρk ≤ T1)

D[1] ← 0,

else

D[1] ← 1.

5. Set

ρ[0] ← ρ[1],

ρ[1] ← ρk, and

T1 ← 1
2 ∗ (ρ[0] + ρ[1]).

6. Estimate ρ̂k+1 as:

ρ̂k+1 =





Min(ρ[0], ρ[1]) , (D[0] + D[1]) = 0,

1
2 ∗ (ρ[0] + ρ[1]) , (D[0] + D[1]) = 1, and

Max(ρ[0], ρ[1]) , (D[0] + D[1]) = 2.

7. The window size Wk+1 is calculated as:

Wk+1 =

{
Min(d 1

ρ̂k+1
e,Wmax) , ρk+1 > 0

W , else

where W is obtained by the usual TCP Reno window calculation under packet loss.
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Chapter 5

Experimental Results and Inferences

In this chapter we provide details of comparative results of the various AQM schemes and

of the window adaptation of cooperative transport protocols. We begin by explaining our carefully

designed experiments. We simulate a simple network to test our ideas. We model our test traffic on

the dominant internet traffic which is heavy-tailed http traffic. We also mention how we collect and

analyze the simulation data to remove any bias due to warm-up or randomness. In order to give

credibility to our results, we also present the 95th percentile confidence intervals for all performance

metrics.

In this chapter we have attached plots for selected scenarios of AQM schemes. The rest of

the plots of goodput performance and robustness of each combination is shown in Appendix I.

5.1 Test Network Configuration

For our experiments we model a simple network as shown in Figure 5.1. The network

consists of 30 sources each sending their packets to the same destination. All sources are connected

to their destination through a single router. The output link of this router acts as a bottleneck. The

network has the following specifications:

Number of sources - 30;

All links of capacity - 20Mbps;

Router service capacity - 20Mbps; and

Buffer capacity - 100 packets (1 packet = 1000 Bytes).

The OFF period duration and File size distribution are obtained from [13].

OFF period ∼ Pareto(1.21, 2)seconds;
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File size ∼ Pareto(1.21, 2)*10000 Bytes;

RTT ∼ U(80, 120) msec; and

Sampling time - 10msec.

The simulation is carried out on a TCP stack which models the widely-used TCP Reno with delayed

...
S1


Router


S30
S2


Dst


Figure 5.1: The network consists of 30 independent sources connected to the same destination
through a single router. This router acts as a bottleneck.

ACKs. It is assumed that ACKs are never lost. The end nodes and the router support ECN bit.

The increase in congestion at the router results in packet marking instead of dropping for moderate

congestion and packet dropping for heavy congestion. The marked packets are then received by the

destination which sends ACKs for these packets with an ECN mark. The sources detect congestion

through the ECN marks on the ACKs and change their window size accordingly.

The modelled traffic is http traffic, the dominant network traffic [14]. The document sizes

and user “think times” are assumed to be heavy-tailed. At the start of the simulation all of the

sources remain in the OFF state which is distributed as mentioned above. After the source switches

to the ON state, it receives a file size request which is distributed as mentioned above. During the

ON state the sources engage in continuous page transfers. After the file transfer is complete, each

source switches back to the OFF state. This cycle continues till the end of the simulation.

For the Obj-TCP the window size calculation algorithm of the above setup was modified

to implement the algorithm proposed by us in Chapter 4.6.

5.2 Data Collection and Analysis

The statistics that were collected during the simulation for testing the AQM schemes were

goodput, average queueing delay and delay jitter. A robustness graph like the one shown in Figure

36



3.1 was created by varying the buffer capacity from 100 packets to 1000 packets and recording the

corresponding goodput. For each predictor-controller combination, several runs of simulation were

conducted in order to remove bias in measurements during the warm-up period and to calculate the

95th percentile confidence intervals during the steady-state period1.

Similarly, the statistics collected during the simulation for comparison between the two

window adaptation schemes were packet re-sent ratio and power for varying number of sources. As

in the case of AQM schemes, in this case also we provide the 95th percentile confidence intervals for

each performance metric.

5.3 Statistical Accuracy of Experimental Results

In our experiments we have taken several measures to ensure the consistency and validity

of our results. Each result in the following tables and graphs is an average of several runs. In the

graphs we have presented the metrics of power and packet re-sent ratio for 30, 60 and 90 sources.

Each point on the graph is an average of several observations. In the tables we have provided the

average values along with their 95th percentile confidence interval for the metrics of power and packet

re-sent ratio for 30 sources.

Detailed analysis of the detection of the warm-up period by the use of the moving window

method and the calculation of 95th percentile confidence interval is mentioned in [29].

5.4 Results and Inferences for AQM Schemes

In this section, we present and discuss the results for robustness, delay jitter, goodput,

link utilization and algorithmic complexity. Exhaustive results for the various predictor-controller

combinations are presented in tabular fashion, which we believe, gives a clearer idea of their relative

merits and tradeoffs. To maintain the brevity and to display the Goodput variation with respect to

w2 and Average queueing delay, we have attached only the plots for schemes based on DTMW. Plots

for other combinations display similar trends. Also, we refer to Estimated Future Average Queue

Length and Least Mean Square Fixed Queue Occupancy as ‘EFAQL’ and ‘LMSFQO’ respectively

throughout the rest of this paper. We calculate the robustness of different predictor-controller com-

binations for all of the scenarios (except 4 and 6) mentioned in Chapter 3.1. Figures 5.2 through 5.4

show the plots obtained for DropTail scheme and schemes based on various controller combinations

with DTMW for a small number of high-bandwidth flows and a large number of low-bandwidth
1Similarly, several runs were conducted for each value of w2 mentioned in (3.3)
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Figure 5.2: Plot of Goodput vs. Average queueing delay of DTMW predictor with (5.2(a)) EFAQL
and (5.2(b)) LMSFQO controller for a fixed RTT setup.

flows with a fixed and variable RTT setup. A small number of high-bandwidth flows were simulated

by 30 sources with maximum window size of 128 and a large number of low-bandwidth flows were

simulated by 100 sources with a maximum window size of 16. The value of robustness between two

traffic scenarios, for an average queueing delay of 0.2 seconds2, is presented in Table 5.1.

Since a lower robustness index indicates better performance, the results show that realistic

traffic scenarios, under variable RTT sources, are less robust than their ideal counterparts. This

is due to a high degree of variability inherent in real traffic. Table 5.1 shows that AQM schemes

with stochastic-based traffic prediction (PCC) are usually more robust when the control is based

on EWMA of queue length. Similarly, AQM schemes with traffic prediction based on finite impulse

response filters (DTMW) are more robust when the control is based on fixed-queue occupancy. Along

the same lines we observe that for most part the robustness results in Table 5.1, between fixed and

variable RTT setup for the same combination of predictor and controller, are strongly and positively

correlated with goodput values in Tables 5.3 and 5.4 (with the exception of the phase-lag predictor

with an EFAQL controller). Also, for the same RTT setup, robustness is usually higher for AQM

schemes with higher goodput.

Delay jitter was obtained for parameters displaying the best performance in robustness. The

average queue occupancy is between 5 and 15 packets with EFAQL and 90 packets with LMSFQO.

LMSFQO help control the delay variations more effectively than EFAQL, which is evident from the
2In some cases the simulation results did not go beyond 0.2 seconds due to bounds in programming; in those cases

robustness index values for 0.1 seconds was quoted
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Figure 5.3: Plot of Goodput vs. Average queueing delay of DTMW predictor with (5.3(a)) EFAQL
and (5.3(b)) LMSFQO controller for a variable RTT setup.

Table 5.1: Robustness, x10−3, for a fixed RTT setup (in parentheses, results for a variable RTT
setup). The robustness of a DropTail scheme is 4x10−3 (8x10−3).

(Robustness) EFAQL LMSFQO
PCC 1.16 (83) 18.62 (140)
DTMW 5.32 (2.86) 3.27 (2.56)
mDTMW 5.32 (9.12) 3.23 (4.1)
PL 5.75 (0.388) 6.67 (30.3)

fact that even with high average queue occupancy, LMSFQO displays comparable delay jitter values.

This can be explained by the fact that the maximum waiting time in the queue in bounded if the

controller is LMSFQO, which results in smaller delay variations. Whereas, the EFAQL controller

allows the instantaneous buffer occupancy to vary widely resulting in degraded performance of

delay jitter. The results for different predictor-controller combinations are presented in Table 5.2.

Delay jitter values for RED and DropTail (in units of 10−6) are 85.3 ± 9548.5×10−6 and 138.1 ±
7934.8×10−6 seconds, respectively.

The goodput obtained for different predictor-controller combinations, for a fixed RTT of

100ms, is presented in Table 5.3; and for variable RTTs, the goodput is presented in Table 5.4.

The first row lists all predictors, and the first column lists all controllers. Goodput of RED and

DropTail, for a fixed RTT setup, is 2 469 668 ± 3700 bytes/sec and 2 428 928 ± 4480 bytes/sec,

respectively. Similar values for RED and DropTail for a variable RTT setup are 1 718 002 ± 42040

bytes/sec and 1 652 542 ± 10820 bytes/sec, respectively. The values in parentheses show percentage

improvement over RED. EFAQL with w2 = 0 becomes RED. The graphs corresponding to these
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Table 5.2: Delay jitter, in units of 10−6 seconds, for various predictor-controller combinations for
a fixed RTT setup.

(Delay jitter) EFAQL LMSFQO
PCC 21.83 ± 13.37×10−6 56.4 ± 286.18×10−6

DTMW 41.51 ± 548.08×10−6 36.9 ± 1606.27×10−6

wDTMW 41.63 ± 1207.6×10−6 57.5 ± 675.04×10−6

PL 53.76 ± 783.13×10−6 95.0 ± 3349.7×10−6

Table 5.3: Comparison of goodput, in units of bytes/sec, for a fixed RTT setup. The first term in
each cell shows goodput in excess of 2 420 000; that is, for PCC-EFAQL combination, the goodput
is (2 420 000 + 50 870) = 2 470 870 bytes/sec.

(Goodput) EFAQL LMSFQO
PCC 50 870 ± 5 140 (0.05) 20 776 ± 2 657.6 (-1.17)
DTMW 59 530 ± 1 359.2 (0.4) 58 390 ± 1 317.8 (0.35)
wDTMW 57 684 ± 1 800 (0.32) 56 230 ± 2 420 (0.27)
PL 44 367 ± 4 260 (-0.21) 180 890 ± 4 340 (5.31)

Table 5.4: Comparison of goodput, in units of bytes/sec, for a variable RTT setup. The first term
in each cell shows goodput in excess of 1 400 000; that is, for PCC-EFAQL combination, the goodput
is (1 400 000 + 659 596) = 2 059 596 bytes/sec.

(Goodput) EFAQL LMSFQO
PCC 659 596 ± 43 320 (19.8) 148 316 ± 32 000 (-9.88)
DTMW 324 494 ± 37 440 (0.38) 338 844 ± 50 940 (1.21)
wDTMW 336 006 ± 33 800 (1.05) 333 726 ± 34 580 (0.92)
PL 82 020 ± 4 588 (-13.74) 258 726 ± 33 660 (-3.45)
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Figure 5.4: Plot of Goodput vs. Average queueing delay of DropTail for (5.4(a)) fixed and (5.4(b))
variable RTT setup.

tables, for the DTMW predictor, are shown in Figures 5.5 and 5.6. As stated earlier, the results

of goodput are presented here solely to support our assertion that the robustness of AQM schemes

is not achieved at the expense of degraded goodput. The results of goodput for various predictor-

controller combinations show that the performance is usually better when traffic characteristics are

exploited. However, the percentage improvement of goodput over RED, with PAQM schemes is mild

in most of the cases. Moreover, Figures 5.5 and 5.6 show that although there is gain in goodput

with increasing values of w2 in (3.3), the goodput is quite sensitive to the weight of predicted future

arrivals. These observations impose a bound on the optimistic performance of an AQM scheme since

they expose the limitations in greatly improving the goodput of AQM schemes even if the underlying

traffic structure is exploited to predict the future arrivals. We have used the minimum and maximum

threshold values and buffer size as mentioned in [20]. Although we have been conservative in using

a relatively small buffer size of 100 packets, we know that for larger buffer sizes the results are

expected to be better.

We also present the results of link utilization for various combinations of predictors and

controllers. We measure the link utilization values to assess the efficiency of robust AQM schemes.

Link utilization is defined as:

link utilization =
total bytes transmitted

elapsed time

link capacity
. (5.1)

Equation (5.1), which gives the rate of data transfer as a percentage of link capacity, gives an indi-

cation of the amount of drops that are triggered. Packet size is an important factor in determining
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Figure 5.5: Plot of Goodput vs. w2 of DTMW predictor with (5.5(a)) EFAQL and (5.5(b))
LMSFQO (at 1) controller for a fixed RTT setup. The dotted lines represent the 95% confidence
interval of the solid line.

Table 5.5: Link utilization values, in percent, for a fixed RTT setup (in parentheses results for a
variable RTT setup).

(% Utilization) EFAQL LMSFQO
PCC 98.8 (82.7) 95.4 (62.0)
DTMW 99.1 (69.0) 99.1 (70.0)
wDTMW 99.1 (69.4) 99.0 (69.3)
PL 98.4 (59.3) 98.5 (62.0)

link utilization. Small packet sizes (64 bytes) will produce low utilization values since high processor

overhead is associated with examining many packets [2]. The utilization values for RED and Pre-

dictive AQM schemes are mentioned in Table 5.5. These utilization values are for a buffer size of

100 packets. Link utilization values for a DropTail scheme and RED are 97.2% (66.1%) and 98.3%

(68.1%), respectively. The result in parentheses is utilization value for a variable RTT setup, and

the value outside parentheses is for a fixed RTT setup. Referring to Table 5.5, it can be seen that

the utilization values for Predictive AQM schemes are almost always greater than either RED or

DropTail for any RTT setup. Since the measurement of utilization does not make any assumption

about the configuration of network and the end hosts, this performance metric can be used quite

reliably in calculating the efficiency of an AQM scheme.

To conclude our analysis of the robust AQM schemes and to impart an objective approach

to our findings, we have calculated the algorithmic complexity of the AQM schemes for the various

combinations of predictors and controllers. The algorithmic complexity of DropTail scheme or RED

is O(1). This means that they are of constant order and, hence, their execution time is independent
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Figure 5.6: Plot of Goodput vs. w2 of DTMW predictor with (5.6(a)) EFAQL and (5.6(b))
LMSFQO (at 1) controller for a variable RTT scheme. The dotted lines represent the 95% confidence
interval of the solid line.

Table 5.6: Algorithmic complexity of the AQM schemes.

(Complexity) EFAQL LMSFQO
PCC O(N) O(N)
DTMW O(N) O(N)
wDTMW O(N) O(N)
PL O(N) O(N)

of any other system parameter.

Table 5.6 shows the combined complexity for the different combinations of predictors and

controllers. Interestingly, the complexity of all predictors is the same and is of order O(N), and

the complexity of all controllers is the same and is of order O(1). The combined complexity of any

predictor controller combination is O(N + 1) or more precisely O(N). The complexity calculation

of each module is mentioned in detail in Appendix II.

5.5 Results and Inferences for Window Adaptation Schemes

For a comparative analysis between the window adaptation schemes of TCP Reno and Obj-

TCP, we use the performance metrics of packet re-sent ratio, power and computational complexity

of algorithms. The definition and importance of each of these metrics is explained in the following

subsections. We evaluate the performance for three scenarios where three different AQM schemes
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were implemented at the router. The AQM schemes we select are TailDrop (DT), Random Early De-

tection (RED) and Double-Threshold Moving Window-Least Mean Square Fixed Queue Occupancy

(DTMW-LMSFQO). In [34] we had shown that the DTMW-LMSFQO combination of predictor and

controller exhibits the highest value of robustness among all AQM schemes. In consistence with our

previous work in this thesis, we select the DTMW-LMSFQO combination at the router to study the

performance of Obj-TCP under robust network conditions. Also, in the following subsections we

present graphs of selective scenarios. The remaining graphs are shown in Appendix I.

Packet re-sent ratio is a performance metric which we define to evaluate the efficiency of a

window adaptation scheme in terms of bandwidth reuse. We define packet re-sent ratio as the ratio

of the number of retransmitted packets to the total number of packets transmitted by the source.

Packet Re-sent Ratio = Total Retransmitted Packets
Total Transmitted Packets

The results in Table 5.7 show that Obj-TCP achieves a reduction in the number of retransmitted

packets as compared to TCP Reno. Moreover, the reduction is pronounced when the AQM scheme

implemented at the router is very robust. Lower packet re-sent ratio implies that the Obj-TCP

uses relatively less bandwidth and injects a relatively smaller number of packets into the network, a

possible use for security applications that favor less packet losses. Figure 5.7 shows the packet re-sent

ratio for TCP Reno and Obj-TCP for a DTMW-LMSFQO AQM scheme at the router for increasing

load. The packet re-sent ratio increases as the number of competing flows increase. However, it is

interesting to note that the packet re-sent ratio for an Obj-TCP always remains better than TCP

Reno, even for increasing load. Similar results for TCP Reno and Obj-TCP for RED and TailDrop

AQM schemes are shown in Figures 7.5(a) and 7.5(b) in Appendix I.

Table 5.7: Packet Re-sent Ratio, in percent, for TCP Reno and Obj-TCP under various AQM
schemes implemented at the router.

(Packet Re-sent Ratio, %) TCP Reno Objective TCP
TailDrop 9.9 ± 3.4 7.8 ± 0.2
RED 4.0 ± 1.6 1.7 ± 1.0
DTMW-LMSFQO 3.7 ± 1.2 0.9 ± 0.5

Power is a standard performance metric which can be used by the end nodes to evaluate

the efficiency of their algorithms to transmit a file in minimum time under general network operating

conditions [26]. Higher power of a window adaptation scheme means that the scheme is able to send

its entire file in less overall time including the queueing delays and retransmission timeouts.

Power = Throughput
Total T ime Taken

44



30 40 50 60 70 80 90
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of sources

P
ac

ke
ts

 R
es

en
t (

%
)

TCP Reno
Objective TCP

Figure 5.7: This figure shows the dependence of packet re-sent ratio on the number of sources for
TCP Reno and Obj-TCP implemented on the end nodes and DTMW-LMSFQO active queue man-
agement scheme implemented at the routers. The figure illustrates that Obj-TCP clearly exhibits a
lower packet re-sent ratio than TCP Reno for any number of sources.

Table 5.8 shows the difference in power between TCP Reno and Obj-TCP for various AQM

schemes. The results reveal that, for any AQM scheme, Obj-TCP always displays a higher power

than TCP Reno. Moreover, Obj-TCP shows an increase in power roughly by a factor of 1.28. Figure

5.8 shows the difference in power observed between TCP Reno and Obj-TCP for a DTMW-LMSFQO

AQM scheme at the router for increasing load. For increasing competing flows at the router, the

transmission time for each source increases resulting in a decrease in power. Similar results for TCP

Reno and Obj-TCP for RED and TailDrop AQM schemes are shown in Figures 7.5(c) and 7.5(d) in

Appendix I.

Table 5.8: Power, in bytes/second2, for TCP Reno and Obj-TCP under various AQM schemes
implemented at the router.

(Power, Bytes/Second2) TCP Reno Objective TCP
TailDrop 1051 ± 51 1323 ± 90
RED 1194 ± 72 1515 ± 88
DTMW-LMSFQO 1370 ± 54 1600 ± 91
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Figure 5.8: This figure shows the relationship between power and the number of sources for TCP
Reno and Obj-TCP implemented on the end nodes and DTMW-LMSFQO active queue management
scheme implemented at the routers. The figure illustrates that Obj-TCP clearly exhibits a higher
power than TCP Reno for any number of sources.

For an objective evaluation of TCP Reno and Obj-TCP algorithms, we calculate and

compare their algorithmic complexity. We carry out the complexity analysis as mentioned in [12].

We show that by a simple first-order increase in the complexity of TCP Reno’s window calculation

algorithm, we get Obj-TCP which displays an increase in performance over TCP Reno. Table 5.9

shows that TCP Reno has a complexity of constant order and Obj-TCP’s complexity is proportional

to the size of the DTMW predictor. In effect, better performance of TCP entails a relatively more

complex congestion detection algorithm. Selection of TCP Reno or Obj-TCP, or any utility-based

model, is a tradeoff between performance and complexity.

Table 5.9: Algorithmic complexity of window adaptation schemes.

Complexity
TCP Reno O(1)
Objective TCP O(N)
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Chapter 6

Summary and Future Work

In this chapter we provide a brief summary of the work done in this thesis and future

possibilities for research.

6.1 Summary

Our efforts in this work can be divided into six parts: In the first part we have analyzed

AQM schemes as a combination of a measurement module and a control module. This method of

analysis allows us to carefully observe the effect of each module on the performance of the AQM

scheme. For each of the modules we implemented different predictors and controllers and compared

the performance of an AQM scheme for various combinations. In our simulations we saw that

careful control decisions based on prediction of future packet arrivals always lead to an increase in

performance.

To summarize our simulation results for the AQM schemes:

• With a proper selection of the weight of future observations, Predictive AQM schemes

achieve better delay bounds than the traditional (non-PAQM) ones.

• AQM schemes with stochastic-based traffic prediction (PCC) are usually more robust

when the control is based on EWMA of queue length. Similarly, AQM schemes with

traffic prediction based on finite impulse response filters (DTMW) are more robust when

the control is based on fixed queue occupancy.

• More robust AQM schemes usually have higher goodput for comparable average queueing

delay values. We also believe that Explicit Congestion Notification (ECN) based packet

marking, rather than packet dropping, would help boost the goodput performance of an
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AQM scheme.

• Excessive dependence on predicted future arrivals always results in deterioration of per-

formance. This sets bound on the optimistic performance of AQM schemes even using

prediction.

• It is inappropriate to evaluate an AQM scheme based only on the goodput performance,

which is highly sensitive to the duration of flows (long-lived ftp versus short-lived http).

Robustness, on the other hand, is relatively independent of the traffic flow structure and

so can be used reliably for AQM performance evaluation.

• Delay jitter is another important yardstick of performance. Large delay jitter values

imply large queue length variations which renders the AQM scheme less robust to ac-

commodate delay-sensitive traffic like telnet. Goodput and link utilization were used

strictly as additional measures of performance.

• Predictive AQM schemes, for most cases, display higher link utilization values than the

traditional ones.

• Predictive AQM schemes clearly show an improvement in performance over nonpredictive

ones. This improvement in performance comes in the form of increased algorithmic

complexity.

It is known that the precision of prediction degrades as the prediction interval increases.

For the same prediction interval, Figures 5.5 and 5.6 show that even though the prediction of future

packet arrivals helps to achieve better performance, it performs worse than RED when the current

packet marking decisions are too heavily relied upon for future prediction.

In the second part we studied the effects of the fact that the traffic generated by TCP

sources is correlated in nature. Dependence of future traffic measurements on current value is a

result of (positively) correlated traffic, and we have used this property of strong and even short-

range dependence to predict future traffic intensity. We have also suggested ways to exploit the

short-range (if not “strong”) dependence using different predictors.

In the third part we emphasized the relevance of using robustness and delay jitter as

reliable performance metrics of an AQM scheme rather than goodput. In this regard, we have

defined our idea of robustness. We have concentrated our attention on the performance of robust

AQM schemes that exploited the strong correlation that exists in network traffic. We have shown

that, with our definition of robustness, a positive correlation exists between robustness, goodput

and link utilization.

We have considered delay jitter as another important yardstick of performance. Large

delay jitter values imply large queue length variations which renders the AQM scheme not so robust

to accommodate delay-sensitive traffic like telnet. We have used goodput, link utilization and
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algorithmic complexity strictly as additional measures of performance. We have used link utilization

to evaluate the AQM scheme efficiency as it remains independent of the network configuration and,

hence, a reliable performance metric. We have measured the link utilization values of predictive

schemes over non-predictive ones. Our results indicate that predictive schemes usually have higher

link utilization values than the nonpredictive schemes. Algorithmic complexity of AQM schemes

allowed us to compare the relative performance and the execution cost of an algorithm. Selection of

an algorithm is a tradeoff between its complexity and performance. We strongly support the use of

robustness and delay jitter as performance metrics as they tend to provide better evaluation of an

AQM scheme. Extensive simulations over varied traffic environments in this paper have supported

our propositions.

In the fourth part we concentrated on the study of window adaptation schemes of cooper-

ative transport protocols running on end nodes. We observed that much work has been done in the

area of developing new window adaptation algorithms to increase the throughput of TCP. In this

part we mentioned in detail the IETF recommended guidelines to be followed before proposing a

new window adaptation scheme for a cooperative transport protocol. We argued that a new window

adaptation scheme not only has to conform to the IETF recommended guidelines, but also has to

be compared with other existing protocols for its complexity. Complexity is an important issue in

proposing a new window adaptation scheme as the selection of any utility-based model over the

existing TCP is a tradeoff between their performance and their complexity. We noticed that most

of the proposed schemes do not show the complexity tradeoff of their proposed algorithms.

In the fifth part we proposed a way to estimate the congestion level for the real networks

only through the ECN bit marks on the ACKs. Our belief that the ratio of marked packets to the

transmitted packets (packet mark ratio) is an indicator of congestion is the basis for our window

adaptation scheme. We used a DTMW predictor to record and “predict” the packet mark ratio. We

then used an existing utility model and the estimated value of packet mark ratio to estimate the

optimum window size for the next transmission to reduce the number of re-sent packets. Unlike other

schemes, where elaborate congestion level estimations have been proposed, we estimated the network

congestion level only through ECN bit marks and, hence, we called our scheme as congestion level

estimation under “incomplete” information. We proposed an Objective driven TCP whose purpose

was to reduce the number of marked packets. We then compared its performance to TCP Reno.

In the sixth part we combined our observations of AQM scheme analysis and window

adaptation analysis to produce results for a combination of robust AQM schemes at the network

level and efficient window adaptation scheme at the end node level.

Our results confirm our view that the analysis of coupled network components, routers and

end nodes, can be done independent of each other.
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6.2 Future Work

Extension to our work can be, once again, broadly categorized under two areas: one in-

volving the AQM schemes and the other involving the window adaptation scheme of cooperative

transport protocols.

6.2.1 Future Areas of Research in AQM Schemes

Although much work has been done in the area of AQM schemes, the selection of one AQM

scheme over the other is still an open question. In this regard we mention some interesting research

areas that are worth exploring.

• Predicting web traffic by building their regression models instead of predicting by heuris-

tic methods. Such regression models will contain the dependence structure of the various

web traffic that comprises the aggregate network traffic which can then be used to make

more precise judgement about packet mark or drop.

• Studying the effect of round trip times (RTT) on queue dynamics. By isolating the

network dependencies, that is interactions due to other users, a correlation can be built

between the structure of RTT for one user and the queue length variation due to it.

Such a knowledge will allow the AQM schemes to adjust their aggressiveness (packet

mark/drop rate) in a more scientific manner.

• Instead of a general network topology, effort should be expended to analyze a specific

topology. For example studying a BellSouth network or the NC State campus network

would reveal the precise traffic characteristics of the users (like long file transfers or short

SMS messages) and allow us to investigate the important metrics related to such traffic.

This, in turn, would facilitate the design of good AQM schemes that take into account

such traffic characteristics.

6.2.2 Future Area of Research in Window Adaptation Schemes

All cooperative protocols implement a delay feedback loop to adjust their window sizes

depending on input from the network. Instead of adjusting their window size by a heuristic algorithm

they can employ stochastic feedback control under disturbance to determine the optimal window

size for the next transmission depending on the response from the network. To exploit the stochastic

control, the interactions of the other users have to be modelled as disturbances while keeping the

objective to optimize some cost by a proper selection of window sizes.
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Chapter 7

Appendix I: Individual Performance Graphs

In Chapter 5.4 we present the graphs of Goodput Performance against Average Queue-

ing Delay and against w2 the weight of future average queue length for a DTMW predictor. In

this chapter we present the remaining performance graphs of the various other predictor controller

combinations.

The plots from 7.1(a) to 7.1(c) have estimated future average queue length controller, and

the plots from 7.1(d) to 7.1(f) have least mean square fixed queue occupancy controller (at 1). The

dotted lines represent the 95% confidence interval of the solid line.

The plots from 7.2(a) to 7.2(c) have estimated future average queue length controller, and

the plots from 7.2(d) to 7.2(f) have least mean square fixed queue occupancy controller (at 1). The

dotted lines represent the 95% confidence interval of the solid line.

The plots from 7.3(a) to 7.3(c) have estimated future average queue length controller, and

the plots from 7.3(d) to 7.3(f) have least mean square fixed queue occupancy controller. The traffic

environments were: a small number of high-bandwidth sources and a large number of low-bandwidth

sources. The sources had fixed RTTs.

The plots from 7.4(a) to 7.4(c) have estimated future average queue length controller, and

the plots from 7.4(d) to 7.4(f) have least mean square fixed queue occupancy controller. The traffic

environments were: a small number of high-bandwidth sources and a large number of low-bandwidth

sources. The sources have variable RTTs.
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Figure 7.1: Goodput performance of an AQM scheme for increasing weights of the three predictors
under a fixed RTT scheme.
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Figure 7.2: Goodput performance of an AQM scheme for increasing weights of the three predictors
under a variable RTT scheme.
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Figure 7.3: Variation in performance of the three predictors for increasing values of averaging
queueing delay.
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Figure 7.4: Variation in performance of the three predictors for increasing values of averaging
queueing delay.
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Figure 7.5: This figure shows the dependence of packet re-sent ratio on the number of sources for
TCP Reno and Obj-TCP implemented on the end nodes and DT and RED active queue management
schemes implemented at the routers. The figure illustrates that Obj-TCP performs better than TCP
Reno.
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Chapter 8

Appendix II: Computational Complexity

Calculation

We use the following notations throughout our work:

p = Drop probability for the next slot;

Ar = Arrival rate at current slot;

q = Instantaneous queue size at current slot;

qf = Instantaneous queue size at a future slot;

qfixed = Target fraction of instantaneous queue size at current slot;

avg = Weighted average queue size at current slot;

avgf = Weighted average queue size at a future slot;

Se = Service rate at current slot;

Arf = Expected arrival rate for next slot;

Minth,Maxth = Minimum and maximum thresholds for weighted average queue size;

D[.] = Double Threshold Moving Windows;

T1, T2 = Thresholds for Double Threshold Moving Window;

Arr[.] = Array of arrival rates for past slots;

M(a, b) = Conditional probability matrix. The probability of future arrival quantum being b given

that the current arrival quantum is a; and

PL[.] = Array of arrival rates for future slots.
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8.1 Double-Threshold Moving Window

At each sub slot (1ms):

1. For i ← 2 to N ,

D[i− 1] ← D[i], and

Arr[i− 1] ← Arr[i].

2. If (Ar > T1)

D[N ] ← 1,

Else

D[N ] ← 0.

3. Set,

Arr[N ] ← Ar, and

T1 ← 1
N

∑N
1 Arr[i].

4. Set,

T2 =
∑N

1 D[i],

U ∼ U(0, 1),

If (U ≤ T2
N )

Arf ← T1,

Else

Arf ← 1
2T1.

5. Expected arrival rate for the next slot is Arf .

Here N is the window length. D[0] and D[N ] are windows for oldest and latest arrival rates,

respectively.

Complexity: O(N)
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8.2 Weighted Double-Threshold Moving Window

At each sub slot (1ms):

1. For i ← 2 to N ,

D[i− 1] ← D[i], and

Arr[i− 1] ← Arr[i].

2. If (Ar > T1)

D[N ] ← 1,

Else

D[N ] ← 0.

3. Set,

Arr[N ] ← Ar, and

T1 ← 1
N

∑N
1 Arr[i].

4. Set,

T2 =
∑N

1 (D[i] ∗ 2i−1),

U ∼ U(0, 1),

If (U ≤ T2
N )

Arf ← T1,

Else

Arf ← 1
2T1.

5. Expected arrival rate for the next slot is Arf .

Here N is the window length. D[0] and D[N ] are windows for oldest and latest arrival rates respec-

tively.

Complexity: O(N)
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8.3 Predictive Congestion Control

At each slot (10ms) consisting of two sub slots, s1, s2 (5ms) get arrival rates at the sub

slots a1, a2:

1. Set,

M(a1, a2) ← M(a1, a2) + 1,

temp ← 0, and

Ex(s1) ← 0.

2. For i ← 1 to N ,

temp ← temp + M(a1, i).

3. For i ← 1 to N ,

M(a1, i) ← M(a1,i)
temp , and

Ex(s1) ← M(a1, i) ∗ i.

4. Expected quantum level for the next slot is ← Ex(s2) =
∑N

1 (M(a2, i) ∗ i).

5. For i ← 1 to N ,

Find arrival rate corresponding to quantum Ex(s2), and

Set Arf .

6. Expected arrival rate for the next slot is Arf .

Here N is the level of quantas into which the arrival rate has been divided (also the matrix size).

Complexity: O(N)

8.4 Phase Lag

At each slot (10ms):

1. Ar ← PL[1]

2. For i ← 2 to N ,

PL[i− 1] ← PL[i].
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3. Set,

PL[N ] ← total arrivals at future N + 1th slot, and

Arf ← PL[1].

4. Expected arrival rate for the next slot is Arf .

Here N is the window length.

Complexity: O(N)

8.5 Random Early Detection

At each slot (10ms):

1. If (q > 0)

avg ← avg + wq ∗ (q − avg),

Else

avg ← avg ∗ (1− wq)(time−idle time)/s.

2. If(minth ≤ avg < maxth)

count + +,

pb ← maxP

maxth−minth
∗ avg − maxP

maxth−minth
∗minth.

If ((count > 0) and (count ≥ Approx[U/pb]))

Mark packet, and

count ← 0.

If (count = 0)

U ← U(0, 1).

Else If (maxth ≤ avg)

mark the packet, and

count ← −1.

Else count ← −1

3. If(q = 0) idle time ← time

Complexity: O(1)
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8.6 Estimated Future Average Queue Length

At each slot:

1. Get future arrival rate, Arf

2. Estimated future average queue length = avg ← avg ∗ w1 + avgf ∗ w2 + q ∗ (1− w1− w2)

avgf ← (1− u1) ∗ avgf + u1 ∗ qf

qf ← qf + Arf − Se

3. If(avg < minth)

No packet marking.

Else If (minth ≤ avg < maxth)

Packet mark probability = p ← maxP

maxth−minth
∗ avg − maxP

maxth−minth
∗minth.

Else

Packet mark probability = p ← 1.

Complexity: O(1)

8.7 Least Mean Square Fixed Queue Occupancy

At each slot:

1. Get future arrival rate, Arf

2. Packet mark probability is

p =





0 q < Se + qfixed −Arf ,
q+Arf−Se−qfixed

Arf
Se + qfixed −Arf < q < Se + qfixed, and

1 q > Se + qfixed.

Complexity: O(1)
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8.8 TCP Reno

Pseudo-code for TCP Reno is:

1. After new ACK is received:

If (cwnd < ssthresh)

cwnd ← cwnd + 1.

Else

cwnd ← cwnd + 1
cwnd .

2. If congestion due to timeout

ssthresh ← cwnd
2 , and

cwnd ← 1.

3. If 3 duplicate ACKs received in a row

ssthresh ← Max(2, cwnd
2 )

Retransmit the lost segment,

cwnd ← ssthresh + 3 ∗ segment size.

For each additional duplicate ACK,

cwnd ← cwnd + segment size, and

Transmit a packet if allowed by new value of cwnd.

If new ACK arrives,

cwnd ← ssthresh, and

Transmit a packet if allowed by new value of cwnd.

Complexity: O(1)

8.9 Obj-TCP

The complexity of Obj-TCP is the same as that of DTMW, which is, O(N).
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