
ABSTRACT 

TADINADA, SASHI KANTH. Consideration of Uncertainties in Seismic Analysis of  

Non-classically Damped Coupled Systems. (Under the Direction of Dr. Abhinav Gupta and 

Dr. Vernon Matzen.) 

The objective of this study is to investigate the effect of uncertainties in modal properties of 

uncoupled primary and secondary systems in the seismic analysis of non-classically damped 

Multi Degree of Freedom (MDOF) primary – MDOF secondary coupled systems by response 

spectrum method.  

The design response of the secondary system is evaluated by conducting multiple 

analyses of coupled system with randomly sampled sets of uncoupled natural frequencies of 

primary and secondary systems. Generating the random samples of frequencies require 

knowledge of their probability density functions. When the individual probability density 

functions overlap, generating sample sets by assuming the frequencies to be independent 

random variables can lead to incorrect sets of frequencies in the sense that the frequencies do 

not remain as ordered pairs or ordered sets. The frequencies of any uncoupled primary or 

secondary system should all be in an ascending order. This necessitates the need for 

considering correlations between such closely spaced frequencies. However, determination 

of correlations between the natural frequencies of a structure is either not possible or 

impractical. So, any sampling scheme should consider the constraint that any randomly 

sampled set of uncoupled frequencies be an ordered set. Moreover, rejecting the incorrect 

samples result in individual density functions that are significantly different from the 

distributions initially assumed for sampling of each natural frequency. A formulation for a 

joint probability density function for the frequencies is developed using fundamental 



probability approaches. Sampling the frequencies by using the joint density function ensures 

that each sampled set remains ordered while maintaining the individual density functions. 

 Development of formulation for the joint density function of frequencies enabled the 

application of the Square-root-of-mean-of-squares (SRMS) method proposed by Gupta and 

Choi (2005) to MDOF primary – MDOF secondary systems. Two types of MDOF primary – 

MDOF secondary system configurations considered in this validation and verification study 

are (i) singly-connected secondary systems and (ii) multiply-connected secondary systems. 

Various degrees of tuning between primary and secondary systems were considered. The 

modified SRMS method is validated for both types of configurations. 
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CHAPTER - 1 

INTRODUCTION 

 

1.1 Background 

The operation of any nuclear power plant relies on a variety of secondary systems such as 

pipelines, mechanical and electrical equipment which are supported on the primary systems 

such as the buildings. The importance of secondary systems in seismic performance of a 

nuclear power plant is now well recognized by researchers and practicing engineers. It is 

clear that non-performance of the secondary systems during an earthquake can result in 

major economic losses as well as pose real threat to the safety and integrity of a nuclear 

plant.  

Secondary system response, in addition to its own dynamic properties also depends 

on the primary system it is supported on. Tuning between primary and secondary system 

modes can significantly affect the response of a secondary system. Also, the damping 

characteristics of the primary and secondary systems are generally different, thus making the 

system non-classically damped. Uncertainty in frequencies can cause the modes of uncoupled 

primary and secondary systems to be tuned or detuned. Therefore, incorporation of these 

uncertainties during the seismic analysis of these structural systems is essential. 
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It is non-pragmatic to perform dynamic analysis of the coupled system by treating it 

as a single large scale model. Large differences in stiffnesses and mass properties between 

primary and secondary systems can cause numerical instability. As the secondary systems are 

light, conventional methods commonly assume that they do not interact with their supporting 

structure - an assumption that the primary and secondary structures can be ‘decoupled’ for 

analysis purposes. In these methods, the seismic analysis of primary and secondary systems 

is done separately. The primary system is analyzed for the input ground motion to obtain the 

support excitations (floor time histories or spectra) that define the input to the secondary 

system from which its response is evaluated.  

The above approach is reasonable if the secondary structure is very light and the 

dynamic interaction effect is negligible. The effect of mass interaction and non-classical 

damping becomes more prominent when the decoupled systems are tuned or nearly tuned 

(Gupta and Jaw, 1986; Gupta, 1992). Also, multiply-connected secondary systems require 

consideration of spatial coupling (cross-correlations between support excitations). To account 

for the effects of mass interaction and non-classical damping, a coupled analysis can be 

performed by modal synthesis (Gupta, 1992; Igusa and Der Kiureghian, 1992; Gupta and 

Gupta, 1998). The coupled analysis requires only the input spectrum at the base of the 

primary system and thus eliminates the need for generating floor spectra at support locations. 

Also, the responses evaluated from such a coupled analysis are shown to be significantly 
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lower than those calculated from a conventional uncoupled analysis (Gupta and Gupta 1995; 

Gupta and Aradhya, 1996). 

 

1.2 Coupled System Analysis  

The equation of motion for an N-DOF coupled primary – secondary system is given by: 

   ̈ +   ̇ +   = − .  .   ̈ (1.1) 

where  ,  and   are the mass, damping and stiffness matrices of the coupled system;  , ,̇  ̈ are the displacement, velocity and acceleration vectors of the coupled system relative 

to the fixed base of the primary system;    the static displacement vector of the coupled 

system and   ̈ is the ground acceleration. 

The uncoupled mode shapes [ ] are given by  

 
[ ] =    00       =         …   ;   = [       … ] (1.2) 

where    and    are mass normalized mode shapes of the uncoupled primary and secondary 

systems respectively. We can write  
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 = [ ]. ( )   = [         ]    =         …  ;     =  [       … ] 
(1.3) 

Pre-multiplying Equation (1.1) by [ ]   and using Equation (1.3), the Equation (1.1) 

transforms into 

   ̈ + [  ]  ̇ + [  ]{ } = −{ }.  ̈  (1.4) 

{ } is the vector of modal participation vectors for the uncoupled systems defined as  

 

  =          
  =  γ   γ   …  ,         = [γ   γ   … ] (1.5) 

where γ   and γ  are the modal participation factors of the primary and secondary systems 

respectively.  

The elements of [  ] and [  ] matrices can be written in terms of the primary and 

secondary system frequencies, damping ratios, participation factors, the modal mass ratios     and the increment in frequency due to static constraint imposed by the secondary system 

on the primary system, Δ     (Gupta, 1990). The elements of [  ] and [  ] matrices are given 

in Equations (1.6) - (1.7):  
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    =     +            ,  =   =            =  Δ     +         .     ,  ≠   
  ̅ = 2      +            ,  =   =            = 2          .     ,  ≠   
    =           = −        /    ̅ =           = −2          /      =      ,  =      = 0 ,  ≠     ̅ = 2       ,  =           = 0 ,  ≠   

(1.6) 

  (1.7) 

where     and     are the circular frequency and the damping ratio, respectively, for the ith 

uncoupled mode of the primary system;     and     are the corresponding values for the  αth 

secondary system mode. In Equations (1.6) – (1.7), subscript c denotes the primary system 

DOF which are connected with the secondary system; and subscript s denotes the secondary 

DOF. The matrices      and      are the stiffness and damping contributions of the secondary 

systems. The modal mass ratio     is given by 

      =                   (1.8) 
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 In typical building piping systems, the modal ratios are significantly very small (to the order 

of 10-4 or less). Also, relatively light secondary systems such as piping do not impart any 

meaningful static constraint to the primary system i.e. ∆    → 0. 

The free vibration solution of the Equation (1.4) yields complex eigenvalues   , and 

eigenvectors   , which in turn could be used to determine the coupled frequencies   , 
coupled damping ratios    and mode shapes. The ith eigenvalue,    is written as 

   = −    +     ,    =    1−      (1.9) 

Each complex eigenvector    and its conjugate         give 2 real modal vectors     and    . 

    = −2Re          ,         = −2Re     (1.10) 

where    are given by  

   = 1        ,           = 2        +        (1.11) 

In the time history analysis, the recorded ground acceleration data   ̈( ) can be used 

to perform the time step integration of the following SDOF equation of motion 

corresponding to each coupled mode i.  

   ̈ + 2      ̇ +      = −  ̈( ) (1.12) 
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Equation (1.12) yields   ( ),   ̇ ( ) and    ̈ ( ) for each coupled mode i, after which the 

displacement vector  ( ) is obtained by 

 

 ( ) =      
   ( ),   =    ( ) −    ( ) 

   ( ) =      ( ),    ( ) =      ̇ ( ) 
(1.13) 

In the Response Spectrum method, the spectral displacement      and spectral velocity      corresponding to coupled frequency and damping ratio of the ith coupled mode are 

defined as  

     = max|  ( )|,     = max|  ̇ ( )| (1.14) 

The      and      are obtained from the input response spectrum. Equations (1.9) and (1.10) 

give 

       =    .      ;        =    .      (1.15) 

For each complex mode i, Equation (1.10) gives two displacement vectors        

and       . These vectors can be used to evaluate any response values,     and     for each 

mode. The combined responses are obtained by combining     and     in accordance with the 

rules for combining modal responses (Gupta et al, 1996). 
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1.3 Incorporation of Uncertainties in Primary-Secondary System Analysis 

The response of the secondary system is sensitive to uncertainties in both structural 

characteristics as well as loading. Uncertainty in excitation is commonly modeled as a 

random process by many researchers. Classical random vibration theory can be used to 

evaluate the response variability due to uncertain excitation (Lin, 1967). The effect of 

uncertainty in structural properties on the secondary system response has been studied by 

many researchers.  Igusa and Der Kiureghian (1988) studied the reliability of uncertain 

systems subjected to stochastic excitation by modeling the frequencies and damping ratios as 

continuous random variables and employed first and second order reliability methods to 

evaluate the reliability of simple secondary systems. Sensitivity measures of the reliabilities 

with respect to the uncertain variables are derived as well. Jensen and Iwan (1992) developed 

a method for the dynamic analysis of linear systems with uncertain parameters to stochastic 

excitation and applied it to primary-secondary system to illustrate that uncertainty in 

stiffnesses can have a strong influence on the secondary system response. Huang et al (1994) 

studied the extent of response amplification and reliability reduction of secondary systems 

due to primary-structure yielding and tuning of the secondary system frequencies with the 

fundamental frequency of the primary system.  Key (1999) examined the frequency 

dependence of the relationship between damping and response in single-degree-of-freedom 

systems and extended it to secondary systems. While the observations made in all the above 
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studies are very similar, they cannot be directly used to account for uncertainties in coupled 

analysis by response spectrum method. 

In the conventional analysis, several methods focus on modification of the auto-floor 

spectra (Liu et al, 1973; Singh, 1980; Igusa and Der Kiureghian, 1985; Chen, 1993; Reed et 

al, 1994 etc.) The most widely employed techniques for accounting these uncertainties in 

conventional analysis are simplified methods referred to as “Peak-Broadening” and “Peak-

shifting” methods (USNRC, 1978).  

1.3.1 Peak Broadening & Peak Shifting 

In Peak Broadening (ANSI/ASME BPV-III-I-A 2007, NUREG 1.122 1978), the narrow 

banded floor response spectra computed by analyzing the primary system, are smoothened 

and the peaks associated with the structural frequencies broadened. It is recommended that 

the amount of peak broadening associated with each primary structure frequency   , be 

determined from the variation in the structural frequency.  This variation may be caused by 

uncertainties in the material properties of the structure and soil. The total variation in the 

primary structure frequency ±∆   is then computed by considering the square-root-of-sum-

of-squares of 0.05   and the individual variations  ±∆     caused due to each influencing 

parameter n. A minimum value of 0.1   is recommended if the actual computed value of ∆   
is less than 0.1  . If the above procedure is not used, then USNRC (1978) recommends that ∆   be taken as 0.15  . 
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Peak shifting (ANSI/ASME BPV-III-I-A 2007) is recommended as an alternative to 

the peak broadening. This method is based on the premise that the actual natural frequency of 

the primary structure can assume only a single value within the frequency range defined 

by   ± ∆  . Consequently, for a given value of the primary system frequency, only one of 

the secondary system modes can receive the peak spectral acceleration associated with the 

given value. In this method, the secondary system frequencies (  )  which lie within the 

±15% range of variation in the primary system frequency    are selected. If   such secondary 

system frequencies exist, the secondary system responses are then evaluated by performing  + 3 separate analysis. These N+3 analysis are performed by shifting the unbroadened floor 

spectrum by factors of 0, -0.15  , +0.15   and  (  )        , where n = 1 to N. This procedure is 

applied separately to floor spectra in three orthogonal directions if needed. 

Both methods tend to increase conservatism in conventionally evaluated responses 

(Aradhya and Gupta, 1999). Moreover, such methods cannot be applied directly in a coupled 

analysis where the floor spectra are neither generated nor required. 

Gupta and Choi (2005) modeled uncertainties in dynamic properties (natural 

frequencies and damping ratios of primary-secondary system) and ground motion input 

within a coupled system analysis framework using response spectrum method and evaluated 

design response of the secondary system statistically. In this study, a limited number of 

simulations were conducted for coupled systems with uncertain uncoupled frequencies and 
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damping ratios using an input design spectrum. A method “Square-Root-of-mean-of-

Squares” (SRMS) based on total probability theorem was proposed to obtain the design 

response   .   as 

   .  ≅  1    .  /    
     /  (1.16) 

where   .  /   is the conditional response for a given simulated set of modal parameters   ≡ (  ,   ) and N is the total number of simulated sets of modal parameters. The SRMS 

method is described in detail in Chapter 4 of this thesis. The results from the SRMS method 

agreed well with the time history results for simple SDOF primary-SDOF secondary systems. 

However, the application of the SRMS procedure was not illustrated for multi degree of 

freedom (MDOF) primary - MDOF secondary systems. This thesis focuses on additional 

considerations required for implementation of SRMS method to MDOF primary – MDOF 

secondary systems. 

1.4 Objective 

The objective of this study is to investigate the effect of uncertainties in modal properties of 

MDOF primary – MDOF secondary systems and ground motion on secondary system 

response. The thesis focuses on verification and application of the SRMS approach (Gupta 

and Choi, 2005) to MDOF primary – MDOF secondary systems. Specific tasks needed to 

achieve the objective of the study are: 
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• Task-1: Study the nature of variations in natural frequencies of an uncoupled 

MDOF system due to uncertainty in structural properties. This task focuses on 

understanding the nature of the probability density functions of natural 

frequencies of a structure and to evaluate if the probability density functions of 

the higher order modes have significant overlap. 

 

• Task-2: Study the validity of the SRMS approach to the cases in which multiple 

modes of primary system may be tuned or nearly tuned to a secondary system 

mode. Such a case involves simulating random sets of closely-spaced natural 

frequencies. 

§ Sub-Task 2.1: Identify the limitations in application of the SRMS 

approach proposed by Gupta and Choi (2005) to this case. The purpose of 

this task is to evaluate if the independently simulated sets of natural 

frequencies in MDOF systems is correct. In cases where the probability 

density functions of modes with closely-spaced frequencies have 

significant overlap, it is anticipated that the independently sampled sets of 

natural frequencies may not be in correct order. 

 

• Task-3: Use fundamental probability approaches to develop a procedure for 

simulation of frequencies in correct order. 
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• Task-4:  Interface the proposed approach with the SRMS method. 

 

• Task-5: Use numerical examples to test the validity of the SRMS method for 

coupled systems with  

§ Varying degrees of tuning between the multiple modes of uncoupled 

primary and secondary systems. 

§ Multiply connected secondary systems with tuning between single and 

multiple modes of uncoupled systems. 

1.5 Organization  

Chapter 2 describes Task-1 listed above in Section 1.4 of this thesis. It also discusses the 

existing studies on eigenproperties’ statistics. It is illustrated that when the individual 

probability density functions of modes with closely-spaced frequencies overlap significantly, 

independent sampling of the frequencies can result in incorrect order of frequencies in a 

MDOF system. This chapter establishes the need for developing a joint density function for 

closely-spaced frequencies (Task-2). 

Chapter 3 describes formulation of a joint density function for modes with closely-

spaced frequencies. This chapter addresses the Task-3 of the objectives listed in section 1.4 
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of this thesis. The joint probability density function developed ensures that sampled natural 

frequencies always remain as an ordered set. 

 Chapter 4 presents a detailed overview of the SRMS method as developed by Gupta 

and Choi (2005). 

Chapter 5 considers various numerical examples for verification of the SRMS method 

using MDOF primary - MDOF secondary systems as described in Task-5 of Section 1.4 of 

this thesis. The design response values obtained from SRMS method are compared with the 

design response value obtained from time history analyses. 

Lastly, Chapter 6 discusses the conclusions as well as the limitations of this work and 

provides recommendations for future work. 
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CHAPTER - 2 

MODELING UNCERTAINTY IN MODAL PROPERTIES FOR MDOF 

SYSTEMS 

 

Implementing the SRMS method comprises of conducting multiple analyses of the coupled 

system. This involves generation of multiple sets of random natural frequencies for 

uncoupled primary and secondary systems. In this chapter, we study the various 

considerations that need to be addressed in generation of these random sets. Let us begin by 

considering the natural frequencies of a structure obtained from the solution of an eigenvalue 

problem: 

   =      (2.1) 

where K and M are the stiffness and mass matrices of the structure. The statistics of the 

frequencies in turn depend on the statistics of the elements of mass and stiffness matrices. 

Any uncertainty in these matrices induces randomness in all natural frequencies to some 

extent. Consequently, the frequencies tend to be correlated with each other to some degree. 

Furthermore, the probability density functions of closely-spaced frequencies may overlap 

significantly. Overlap of such probability density functions can give incorrect set of 

frequencies when sampled independently in the sense that the modal frequencies do not 

remain as ordered pairs or ordered set. The frequencies of any uncoupled primary or 
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secondary system should all be in ascending order. So, considering correlations between 

closely-spaced frequencies in some way is necessary for correct sampling. 

 In order to evaluate these two aspects, we begin by examining the case of a simply 

supported beam of length L, modulus of elasticity E, moment of inertia I and mass per unit 

length m. The nth order frequency,    of the beam (Humar, 2002) is given by 

   =            (2.2) 

Equation (2.2) can be rewritten to describe the relationship between the nth order frequency,     and flexural rigidity R as 

   =   √       where   =     √    and  =    (2.3) 

For any two random variables X and Y with probability density functions   ( ) and   ( ) 
respectively and given that  =  ( ), we have 

   ( ) =   (   ( )).        (2.4) 

From Equation (2.3), 

 
     = 2      (2.5) 
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If Ω  and   be the random variables representing the nth frequency    of the beam 

and flexural rigidity EI respectively, the Equations (2.3) - (2.5) yield 

  Ω (  ) = 2         =         (2.6) 

where  Ω (  ) is the probability density function of nth order natural frequency of the beam 

and   ( ) is the probability density function of variations in flexural rigidity of the beam.  

Figure 2.1 plots the probability density functions of the first 10 natural frequencies as 

given by Equation (2.6) of a 12 meter long simply supported concrete beam with a 

rectangular cross-section of height 1.1 m and width 0.25 m. The Young’s modulus and 

density of concrete are taken as 25 GPa and 2400 Kg.m-3 respectively. The rigidity R is 

assumed to be normally distributed with a coefficient of variation of 0.15. It can be seen that 

the density functions of the frequencies for lower order modes are relatively narrow banded 

and do not overlap in any significant way. However, there is a significant degree of overlap 

among the density functions for the frequencies of higher modes.  

From Equation (2.2), the ith and jth frequency are related as 

   =          (2.7)  

Equation (2.7) indicates a linear relationship between    and   . This implies that the 

correlation coefficient   Ω , Ω  = 1.0. 
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Figure 2.1: Probability density function of first 10 natural frequencies of a beam 
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In the above example, a closed-form expression for probability density functions of 

the natural frequencies was derived based on a variation in a single parameter i.e. flexural 

rigidity (EI). Similar expressions can be derived for a shear beam considering variations in 

shear rigidity parameter (see Appendix - A). Though, the probability density functions of 

natural frequencies can be seen to be over-lapping, the natural frequencies can be 

independently simulated without any problem because the correlation between any two 

frequencies is unity. However, the correlation between the frequencies will not always 

necessarily be unity as illustrated by the following example. 

Consider a discretized 4-storey structure modeled as shown in Figure 2.2. Ki and Mi 

represent the storey stiffness and mass associated with ith storey respectively. 

 

Figure 2.2: A 4-DOF system considered to evaluate the correlations between the natural frequencies 

For  i = 1,2 
Mi = 100 Kg; Ki = 100000 N.m-1     
 
For  i = 3,4 
Mi = 25 Kg; Ki = 25000 N.m-1     
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The natural frequencies of the structure are 2.3, 4.1, 7.9 and 8.6 Hz respectively. All 

Ki are modeled as independent random variables varying uniformly within ± 15% of their 

respective means. A Monte Carlo simulation with 5000 sample sets of random stiffnesses is 

conducted to evaluate the natural frequencies of the system each time, and the correlation 

matrix   is presented in Equation (2.8). 

  =   1.0 0.78570.7857 1.0 0.6756 0.72880.6091 0.69670.6756 0.60910.7288 0.6967 1.0 0.80710.8071 1.0   (2.8) 

where     is the correlation coefficient between ith and jth natural frequencies of the system. 

  It can be seen that if an uncertainty exists in multiple structural parameters, the 

correlation between the frequencies are not always unity though they are strongly correlated. 

However, obtaining the correlation coefficients between frequencies in this manner for a 

large scale structure is highly impractical. The next section presents a summary of existing 

studies in evaluation of statistics of natural frequencies of a structure. 

 

2.1 Existing Studies in Evaluation of Eigenproperties’ Statistics 

Early work in obtaining the statistics of natural frequencies with variations in structural 

parameters employed perturbation methods. In a typical perturbation method, the mass and 

stiffness matrices are considered to be non-linear functions of some random vector x.  ∈ ℝ  
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can denote all the physical, material and geometrical parameters of the structure.  The mass 

and stiffness matrices are represented as  ( ) and  ( ). 
If the mean of x is  ∈ ℝ  and considering  

  ( ) =    and  ( ) =    (2.9)  

where    and    are the ‘deterministic parts’ of the mass and stiffness matrices of the 

structure. The deterministic part of the eigenvalues    =   ( ) is obtained from solution of 

the eigenvalue problem: 

       =            (2.10) 

It is assumed that   ( ) is a continuous, differentiable function of the random parameter 

vector x. In the mean-centered perturbation approach,   ( ) is expanded by its Taylor series 

about the point   =    : 

 
  ( ) =     +     ( )( −   ) + 12! ( −   )    ( )( −   )+ ⋯ 

(2.11) 

where  

     ( )  =     ( )           (2.12) 
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    ( )   =      ( )              

The matrices    ( ) ∈ ℝ  and    ( ) ∈ ℝ  ×   represent the sensitivities of the 

natural frequency   ( ) with respect to changes (or “perturbations”) in elements of x. The 

series expansion can be truncated after one (first-order perturbation) or two terms (second-

order perturbation) by neglecting the higher order terms for small perturbations. One may 

refer to (Kozin and Klosner, 1989; Lin and Cai, 2004) for a detailed discussion on 

perturbation methods. 

Many earlier studies employed this methodology to obtain the statistics of the natural 

frequencies of a structure. Soong and Bogdanoff (1963) studied discretized shear beams with 

random stiffness and masses and obtained individual probability density functions of natural 

frequencies. Collins and Thomson (1969) employed the first order perturbation expansion 

(linear) to derive the second moment statistics of the frequencies and mode shapes of MDOF 

systems establishing that if the random variables in x are assumed to be Gaussian, the 

resulting natural frequencies results in a joint Gaussian distribution of natural frequencies. 

Similar approach had been employed by Shinozuka and Astill (1972); Hasselman and Hart 

(1972); Hart (1973); Song et al (1995). However, the mean-centered perturbation approaches 

yield agreeable results only when the perturbations are assumed to be small. 

Adhikari and Friswell (2007) addressed this “small-randomness” assumption 

associated with mean-centered methods and proposed a new method based on perturbation 
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expansion about an optimal point other than the mean. The same paper along with Adhikari 

(2007) illustrates a method of deriving joint probability density function of natural 

frequencies based on asymptotic approximation of multidimensional integrals to obtain a 

closed-form solution of a generalized rth moment of the eigenvalues. These methods are able 

to predict the higher moment statistics of natural frequencies satisfactorily but the methods 

do not give accurate results for structures with closely-spaced frequencies. 

Given the practical difficulties of characterizing the probabilistic information (density 

functions, correlations between different variables etc.) for uncertain structural parameters 

linked with the above cited studies, some researchers (Gao, 2006; Modares et al, 2006; Sim 

et al, 2007) even employed ‘possibilistic’ approaches to treatment of uncertainty where the 

properties are assumed to lie within certain ranges without specifying any probability 

distributions, and the bounds of natural frequencies are computed by interval calculus 

methods. Estimation of such bounds for each physical parameter in a large-scale structural 

model is impractical. Consequently, some researchers have developed non-parametric 

methods of determining joint distributions. 

The Principle of Maximum Entropy has been used in wide areas of structural 

engineering research to determine probability density functions when only minimal data 

(average values of some moments of the variables) is available. The entropy H of a 

probability distribution function is the measure of uncertainty associated with the random 

variable. For a one-dimensional probability density function   ( ), the entropy is defined as  
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  = −   ( ). ln [  ( )]    
   (2.13) 

Given a “state-of-knowledge” about the distribution, it is possible to find a probability 

distribution function whose entropy is a maximum for the given information. Such a 

distribution is generally regarded as the most unbiased approximate density function befitting 

the “state-of-knowledge”. 

Sobczyk and Trebicki (1990) demonstrated that the principle of maximum entropy is 

a formidable tool for solving stochastic differential equations and derived the probability 

distribution of the response of a harmonic oscillator subjected to random non-Gaussian 

excitation. Soize (2001) presented an approach of modeling random uncertainties of a 

mechanical system by a nonparametric model using entropy optimization principle to predict 

transient responses subjected to impulse loading in the context of linear structural dynamics. 

Livingston and Shuang (2005) used maximum entropy method to estimate the probability 

density function of nonlinear or chaotic behavior in structural health monitoring data. 

Adhikari and Friswell (2006) used the Maximum Entropy Method to obtain the joint 

distribution of natural frequencies having determined the moments of eigenvalues. Mignolet 

and Soize (2008) formulated a non-parametric probabilistic model based on maximization of 

entropy under a set of constraints representing standard deviations of eigenvalues. While the 

principle of maximum entropy can be used to determine the joint distribution of natural 

frequencies given the information about their moments, the procedure is computationally 
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intensive for even simple systems and can be quite impractical to implement in real life 

complex structures.  

All the above studies concentrate on the variability of natural frequencies considering 

uncertainty in structural parameters. Another factor that can cause a large variation in natural 

frequencies of the primary system is the soil-structure interaction (SSI). Hamilton and 

Hadjian (1976) studied the variation statistics of natural frequencies due to variations in 

material properties for fixed-base structures and as well as structures with soil-structure 

interaction. A study on real-time structural monitoring of a building by Clinton et al (2006) 

established that factors like moderate local seismic activity, saturation of the soil, extreme 

temperature conditions and winds can significantly, over time, shift the natural frequencies of 

buildings. 

It is a complex exercise to consider all possible uncertainties in physical and 

geometrical parameters of a full scale structural model to obtain a joint distribution function 

or correlations between the natural frequencies that can be used to sample the random sets. 

Also, knowing or estimating the correlations between the natural frequencies of a structure 

does not solve the sampling problem completely. To illustrate this, let us assume that we 

arrive at a correlation matrix as given by Equation (2.8) for the 4-storey structure in Figure 

2.2 earlier in this chapter. Assuming all the four natural frequencies to be Gaussian with a 

coefficient of variation of 0.15, 5000 sets of random natural frequencies are generated using 

the correlation matrix. It is found that 17% of the samples are still not in order (while only 
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65.6% of the samples are in order if the frequencies are independently sampled). Thus, 

explicit consideration of correlation coefficients between the natural frequencies may not 

ensure correct sampling unless the frequencies are perfectly correlated which is not always 

the case. The subsequent discussion suggests a method for sampling natural frequencies of an 

uncoupled system that avoids considering unordered sets. 

 

2.2 Necessary Constraints for Sampling of Natural Frequencies 

USNRC (1978) recommends a ± 15% uncertainty in the frequencies of the primary system in 

order to account the effect of uncertainties on secondary system response. It is reasonable to 

consider a uniform distribution of these frequencies within the prescribed frequency region of 

interest. Furthermore, it may be observed that a uniform distribution is the maximum entropy 

distribution of a random variable in a bounded interval among all continuous distributions 

supported in that interval. The SRMS method proposed by Gupta and Choi (2005) samples 

the frequencies of the uncoupled systems by treating each frequency as an independent 

random variable. This sampling is acceptable when the frequencies are far apart. For two 

modes with closely spaced frequencies, if the higher limit of the lower order mode’s 

frequency range is greater than the lower limit of the higher order mode’s frequency range, 

there is a chance of that sampled frequencies do not remain in order. If     represents the 
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mean frequency of the lower order mode and     represents the mean frequency of the 

subsequent higher order mode, this condition can be represented as 

 1.15   >  0.85    (2.14) 

which implies    <  1.353    i.e. if the mean frequencies are closer by 35.3% or less, the 

chance of incorrect sampling increases significantly with increasing closeness of the 

frequencies. Consequently, any sampling scheme should consider a definite constraint 

that  (Ω <  Ω )  =  0  where Ω  and Ω  denote the random variables representing two 

closely-spaced frequencies respectively.  

2.2.1 Problem in Rejection of Disordered Samples 

A simple consideration of the above constraint in the simulation process does not give correct 

results. While a simulation can begin with the assumption that random variables Ω  & Ω  
representing the frequencies of two modes are uniformly distributed between (0.85  ,1.15  ) and (0.85  , 1.15  ) respectively, an explicit constraint   (Ω < Ω )  =  0 

considering both frequencies to be independent gives the sample sets for both Ω  & Ω  that 

do not result in uniformly distributed density functions as illustrated by the following 

example. 

Let us consider   = 10 rad/s and   = 11 rad/s. A total of 5000 samples are simulated 

for Ω  and Ω  are by assuming uniform distribution within ±15% of     and    respectively. 

Since,   (Ω < Ω ) =  0, only those samples (  ,   ) where   >    are considered. 
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These simulated values are used to plot the probability density functions for both Ω  and Ω  

in Figure 2.3. As seen in this figure, the individual distributions are not uniform. 

Therefore, the implementation of such a constraint would require a joint density 

function for  Ω  and  Ω . In the next chapter, a formulation of a joint probability density 

function  Ω ,Ω (  ,   ) is derived such that the constraint   (  <   )  =  0 always holds 

good. 
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Figure 2.3: Probability Density Functions of  Ω  and  Ω  
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CHAPTER – 3 

JOINT PROBABILITY DENSITY FUNCTION OF NATURAL 

FREQUENCIES OF A STRUCTURE 

 

In the previous chapter, it was illustrated that considering the natural frequencies of a 

structure to be independent random variables can result in incorrect sampling when the 

frequencies are closely-spaced and their density functions overlap. Moreover, rejecting the 

incorrect samples result in individual density functions that are significantly different from 

the intended distribution for each natural frequency. Hence, this necessitates the need for a 

joint distribution that  

• Produces the random samples of frequencies as an ordered set  

• Maintains the individual density functions of all natural frequencies to be uniformly 

varying between ± 15% about their respective means. 

In this chapter, we present a formulation for the joint probability density function that 

overcomes the problems encountered in the simulation of closely-spaced frequencies. Let (Ω , Ω …Ω ) represent a random sample set of natural frequencies of a structure. The 

formulation describes a joint probability density function between any two successive natural 

frequencies (Ω   , Ω ) in a structure.  
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3.1 Problem Statement 

Let Ω  & Ω  represent the random variables for the two successive frequencies such that they 

are uniformly distributed within ±15% of their respective mean values    and   . A joint 

density function  Ω ,Ω (  ,   ) is to be determined such that the density functions  Ω (  ) 
and  Ω (  ) obtained from the simulated values are uniform. The constraint    (  <   )  =  0  can be rewritten as  Ω ,Ω (  ,   )  =  0 when   <   . We can write 

   Ω ,Ω (  ,   ) .    
 .        =  Ω (  ) = 1   (3.1)  

   Ω ,Ω (  ,   ) .    
 .        =  Ω (  ) = 1   (3.2)  

where   = 1.15  − 0.85  =  0.3   and   =  0.3   
Also, 

 fΩ ,Ω (  ,   ) = 0 ∀   <    (3.3)  

The individual distributions for  Ω  & Ω  are shown in Figure 3.1 where the width of 

the overlap region    is defined as  
   = 1.15  −  0.85   (3.4)  
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Figure 3.1: Individual probability density functions of   &    

 

The possible sample space is represented in Figure 3.2. As we can see, any sampled point 

(  ,   ) can lie only in the region ODEBC. 

To determine the joint density function, it would be convenient to work with 

transformed random variables X and Y representing Ω  & Ω  respectively: 

  = Ω − 0.85    (3.5)  

  =  Ω − 0.85   (3.6)  

Note that X is uniformly distributed between 0 and B1 and Y is uniformly distributed between 

0 and B2. Defining   and    as  
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Figure 3.2: The sampling space 

 

  =   −    (3.7)  

  =   −    (3.8)  

The problem space can be now represented in the transformed coordinates as shown in 

Figure 3.3. The physical dimensions for   and   are shown in the figure. 
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Figure 3.3: The transformed space 

 

If the joint probability density function between X and Y is denoted by    , ( ,  ), 
then we can write 

  Ω ,Ω (  ,   ) =   , (  − 0.85  ,   − 0.85  ) (3.9)  

Notice that the line   =    becomes  =  −    upon transformation. We now proceed to 

find   , ( ,  ) such that 

    , ( ,  )  
    =   ( ) = 1   (3.10)  
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    , ( ,  )  
    =   ( ) = 1   (3.11)  

Subject to the constraint that 

   , ( ,  ) = 0 ∀ y <  −   (3.12)  

 

3.2 Central Symmetry of the Distribution 

In order to develop a formulation for   , ( ,  ), it is important to understand the property of 

centrally symmetric distributions. The distribution of a random vector X is centrally 

symmetric (or “reflectively” or “diagonally” or “simply” or “antipodally” symmetric) about θ 

if  

   −   ≡   –  (3.13)  

The density, if it exists, satisfies  ( −  )  =   ( −  ), so that the Equation (3.13) 

represents the most direct nonparametric extension of uni-variate symmetry (Serfling, 1999). 

Bi-variate uniform random variables are independent if and only is their joint 

probability density function is constant (Kimeldorf and Sampson, 1975). The joint density in 

this case cannot be a constant because of a constraint. On the other hand, the evaluation of 

joint density function would be simplified if the joint density function is assumed to be 

centrally-symmetric. In the case of two modes with closely spaced frequencies, the 



 

 

36 

assumption of central symmetry appears reasonable because the frequencies tend to be 

strongly and positively correlated as observed in the previous chapter. The assumption, 

however, would not hold when the two frequencies are negatively correlated. 

Assuming    , ( ,  ) to be centrally symmetric, we can write  

   , ( ,  ) =   , (  −  ,  −  ) (3.14)  

The location of points ( ,  ) and (  −  ,   −  ) in a centrally-symmetric sample space is 

illustrated in Figure 3.4. 

Let us now consider the constraint  =  −    in the sample space of   , ( ,  ). If the 

volume below  =  −    is non-existent then the volume above  =  +    would also be 

zero. So, the effective sampling space is confined between the two parallel lines DE and FG 

as shown in Figure 3.5. The effective sampling space is denoted by the region ODEBGF in 

Figure 3.5. 

The constraints can be thus summarized as  

   , ( ,  ) = 0 if  <  −   (3.15)  

   , ( ,  ) = 0 if  >  +   (3.16)  
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Figure 3.4: Illustration of Central symmetry in the joint density  

 

 

Figure 3.5: Effective sample space due to central symmetry of the density 
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3.3 Derivation of the Bi-variate Joint Probability Density Function 

Let us start by considering the simplest case in which Ω  , Ω  (or   ,  ) are simulated as 

independent variables. For independent variables with no constraint, the joint density 

function would simply be: 

   ( ,  ) =  1  . 1   (3.17)  

The total volume under this surface is 1.0 as should be the case for any probability density 

function. When the constraints  =  −    and  =  +    are imposed, the volume under 

the surface of the sample space shown in Figure 3.5 will no longer remain unity. 

Since   ( ,  ) is a constant surface, the volume lost due to the constraints can be given by the 

area bounded by the constraints multiplied by the value of    ( ,  ). We can see from the 

Figure 3.5 that the area bounded by each of the constraints described in Equations (3.15) and 

(3.16) is      . Therefore, the volume lost by each constraint is          ( ,  ). From Equation 

(3.17), the total volume lost due to both the constraints is      .  . The volume under   ( ,  ) 
is  1 −      .    . 

Therefore, the definition for the joint density function   , ( ,  ) would require 

addition of this lost volume. To do so, an additional layer   ( ,  ) is superimposed onto   ( ,  ) within the constraint space: 
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   , ( ,  ) =   ( ,  ) +   ( ,  ) (3.18)  

Where, 

 
   ( ,  )                 

    =      .    
(3.19)  

Since   , ( ,  ) is assumed to be centrally symmetric,   ( ,  ) should be centrally symmetric 

as well. 

In order to achieve uniform density for Ω  and Ω , the integrated volume as shown in 

Figure 3.6 would be  

 ∫  ( ,  )   = ∫   ( ,  )     =         for any  <     (3.20)  

 ∫  ( ,  )   = ∫   ( ,  )     =          for any  <     (3.21)  

From Equation (3.19), we can rewrite Equation (3.21) as  

    ( ,  )     
 +   ( ,  )     

 = 1   (3.22)  

 i.e.  ∫   ( ,  )      =    − ∫    .          (3.23)  

which gives 
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    ( ,  )     
 =    −    .        0 <  <    (3.24)  

It must be noted that the condition in Equation (3.24) on   ( ,  ) holds for any  ∈ (0,  ). 
This region is illustrated as ODEJ in Figure 3.6. 

Similar integration along the y direction from Figure 3.6 yields, 

    ( ,  )   
    =    −    .        0 <  <    (3.25)  

Again, it can be noted that condition on   ( ,  ) in Equation (3.25) holds for any  ∈ (0,  ). 
This region is illustrated as OHGF in Figure 3.6. 

Ideally,   ( ,  ) should be defined in the region that is common to ODEJ and OHGF 

i.e. over the region denoted by OHIJ in Figure 3.6. Furthermore, Equations (3.24) and (3.25) 

imply that   ( ,  ) would take the following form over 0 <   ,  <     

   ( ,  ) =    . (  −  ). (  −  ) (3.26)  

The constant    can be evaluated as 

 
  −    .   =    . (  −  ). (  −  )   

   =    . (  −  ).   2  (3.27)  

which gives 
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Figure 3.6: Formulation of   ( ,  ) 
 

   = 1  .   . 2    (3.28)  

Equation (3.26) can be rewritten as 

   ( ,  ) =  1  .   .  2. (  −  ). (  −  )         0 <   ,  <    (3.29)  

The volume under the surface   ( ,  ) over OHIJ is then given by 
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     ( ,  )      =    2   .     
 

  
  (3.30)  

Notice that this is the half of the additional volume that was intended to be provided 

by   ( ,  ) according to the Equation (3.19). This   ( ,  ) within the limits 0 <   ,  <    

makes up for a volume of     .  .   which is exactly the volume lost due to the constraint  =  −   in the space DAE when integrating with respect to x. It is also equal to the volume 

lost due to the constraint  =  +   in the space FGC when integrating with respect to y.  

By inference and also by central symmetry, we can say that a similar symmetric 

surface should exist between  ∈ (B −  , B )      ∈ (B −  ,B ) i.e. region LMBK of 

Figure 3.6. 

Since    ( ,  ) is centrally symmetric, we have  

   ( ,  ) =   (  −  ,   −  ) (3.31)  

We can write the expressions for   ( ,  ) when ( ,  ) ∈ LMBK space using Equation (3.31) 

as   

 

  ( ,  ) =   (  −  ,   −  )
= 1B . B .  2.    − (  −  ) .    − (  −  )      

(3.32)  
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Noting that the region LMBK can also be denoted as  <   < B       <   < B , 
Equation (3.32) can be simplified to rewrite   ( ,  ) in this space as  

   ( ,  ) =  1B . B .  2. ( −  ). ( −  )          <   < B       <   < B  (3.33)  

Again, 

     ( ,  )      =    2. B . B   
 

  
  (3.34)  

As before, this is exactly the volume lost due to the constraints  =  −   when integrating 

with respect to y. It is also equal to the volume lost due to constraint  =  +   when 

integrating with respect to x.  

So, the function   ( ,  ) can now be defined completely as: 

 

  ( ,  )
=

⎩⎪⎪
⎨⎪
⎪⎧ 1B . B .  2. (  −  ). (  −  )     ,   0 <   ,  <   

1B . B .  2. ( −  ). ( −  )     ,  <   < B  and  <   < B 
0 ,   elsewhere    

  (3.35)  

Figure 3.7(b) shows  ( ,  ) and the contributions of   ( ,  ) and   ( ,  ) in various regions. 

The dotted region in the Figure 3.7(a) represents   ( ,  ) as formulated above. Notice, that 



 

 

44 

  ( ,  ) has non-zero values only in the dotted regions. Elsewhere, it is zero because there is 

no volume ‘lost’ due to the applied constraints. 

 

 

Figure 3.7(a):    ( ,  ) 
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Figure 3.7(b):    , ( ,  ) 
 

So, the joint probability density function  ( ,  ) can be interpreted as being 

composed of 2 layers: layer-0 representing   ( ,  ) and layer-1 representing   ( ,  ). The 

former layer has a density as if the two random variables are independent, and the latter layer 

‘makes up’ for the lost volume in the former layer.  

It must also be noted that surface   ( ,  ) needs an area of     x   =      in the space 

OHIJ and LMBK. Many times this may not be possible. We can easily see from the Figure 
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3.7 (b) that the above formulation is valid only when  ≥   . The above formulation is NOT 

valid if  <   . This condition can be written as 

   −   <    

    < 2      .  .    < 1.176   (3.36)  

which implies that if    is 17.6% or closer to   , the formulation of the joint probability 

density would not be accurate. 

A schematic representation of the sampling space when  <    can be visualized as 

shown in Figure 3.8. 

 

Figure 3.8: The sample space when  <     
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We can see from the Figure 3.8 that the constraint  =  −   can cut into the space 

OHIJ (of the dimensions    x   ) needed to define   ( ,  ), implying that the volume under 

the surface would be less than     .  .  . Consequently, we need to again ‘make up’ for the ‘lost’ 

volume of    ( ,  ) by trying to add another layer – ‘Layer-2’, in the same manner as we 

added ‘Layer-1’ to make up for the lost volume of ‘Layer-0’.  

Once again, we invoke central symmetry for the between regions OHIJ and KLMB. 

To facilitate the illustration for adding Layer-2, the region OHIJ is shown by itself in Figure 

3.9. Let the Layer-2 be represented by   ( ,  ).  
Noting the similarity between Figure 3.9 and Figure 3.6, we impose another 

constraint  =  +   (line QR) to achieve symmetry. Notice that the imposed constraint  =  +   exists only for    ( ,  ) implying that for this case -    ( ,  ) = 0  if  >  +   as 

well. 

We can then write, 

 

   ( ,  )  =   
    1B . B .  2. (  −  ). (  −  )        

   
= 1B . B . (  −  ). (  −  −  )    
=    ( ,  )      

     0 <  <   −   

(3.37)  
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Figure 3.9: Space OHIJ when  <    

 

Similarly, we can get the integration volume lost while integrating in the y-direction 

as  
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   ( ,  )  =   
    1B . B .  2. (  −  ). (  −  )        

   
= 1B . B . (  −  ). (  −  −  )    
=    ( ,  )      

     0 <  <   −   

(3.38)  

From Equations (3.37) and (3.38),   ( ,  ) for 0 <   ,  <   −    takes the form: 

    ( ,  ) =    . (  −  ). (  −  ). (  −  −  ) . (  −  −  )  (3.39)  

It can be shown that the constant    can be evaluated in the same way the constant    
was evaluated in Equation (3.27) i.e. 

   = 1B . B .  12   . (  −  ) . (3  +  )  (3.40)  

 

This gives, 

 

  ( ,  ) =     .  .       .(    ) .(     ) . (  −  ). (  −  ). (  −  −  ) . (  − −  )  for 0 <   ,  <   −     (3.41)  

Next, symmetry is used to define   ( ,  ) for the region  <   ,  <   . The Figure 

3.10 illustrates both the regions of   ( ,  ).  Figure 3.10 is identical to Figure 3.6. Figure 

3.11 illustrates the contributions of various different layers over the region OHIJ. When  <
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  , the region between the lines  =  +    and  =  +   would just have   ( ,  ) due to 

the imposed constraint, whereas      and      contain all the 3 layers. 

 

 

Figure 3.10:    ( ,  ) 



 

 

51 

 

Figure 3.11:    , ( ,  ) in space OHIJ showing various layers when  <    

 

Now, let us generalize the proposed formulation. To do so, observe the limitation 

with the formulation i.e. the surface   ( ,  ) requires an area of size (  −  )  (region      

of Figure 3.11). This is possible only as long as   −   is less than   i.e.   < 2 . If   > 2 , 

another layer   ( ,  ) has to be added to make up for the loss in   ( ,  ) due to the 

constraint  >  −  . The formulation of   ( ,  ) can be developed in a manner similar to 

that used for   ( ,  ) and   ( ,  ). 
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To generalize, the joint density  ( ,  ) would have ‘N’ such layers over   ( ,  ), 
where ‘N’ is the minimum integer such that   <   . Also, each layer intends to make up for 

the volume loss of the volume incurred by the previous layer due to the basic constraint  > −  .  

 

  <      .  .   <  (  −   )  ( + 1)  <     (3.42)  

Expanding the expressions of    and   , it can be shown that N layers over   ( ,  ), are 

required if   

   <  1.150.85 − 1 +       (3.43)  

The joint density surface may be completely described as 

   , ( ,  ) =   ( ,  ) +   ( ,  ) 
    (3.44)  

Table 3.1 lists the number of layers required to be formulated for   , ( ,  ) as a function of 

closeness of ω1 and ω2. 

A generic kth layer shall require an area of size (  − ( − 1) )  at the origin. The 

generalized expressions of the kth layer for 0 <   ,  <   − ( − 1)   can be obtained as   
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   ( ,  ) =        ( ,  )   (   ) 
          ( ,  )   (   ) 

      (3.45)  

where    is given by 

 
  = 1∫ ∫     ( ,  )         (   )       (   )   

(3.46)  

 

Table 3.1: Number of layers in   , ( ,  ) as a function of mean frequency ratio     < N  Layers required 

1.353 1 

1.176 2 

1.118 3 

1.088 4 

1.070 5 

1.059 6 

 

It must be duly noted that the necessary conditions of central symmetry within the 

layer as well as in the entire sample space should be applied to build the entire surface of the 

kth layer. The symmetry conditions in kth layer are summarized in Equation (3.47) below. 
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  ( ,  ) =   (  − ( − 2) −  ,   − ( − 2) −  )     0 <   ,  <   − ( − 2)       ( ,  ) =   (  −  ,   −  ) (3.47)  

We can see that from the Table 3.1 that the numbers of layers in the complete 

formulation increase with increasing closeness of the frequencies. For example, if the 

frequencies are 2% apart, we can estimate using Equation (3.43) that as many as 17 layers 

would be required to describe the complete formulation. Formulation of so many layers is not 

only tedious but also proves to be superfluous. It has been observed that the function  ( ,  ) 
described up to a maximum of 2 layers over   ( ,  ) and normalizing thereof to obtain the 

total volume under the surface of  ( ,  ) to be equal to 1.0 is found to be sufficiently 

accurate enough to sample the frequencies. The sampling procedure is discussed in detail in 

section 3.5. 

Finally, we can obtain the joint probability density function between the frequencies 

from:  

  Ω ,Ω (  ,   ) =   , (  − 0.85  ,   − 0.85  ) (3.48)  
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3.4 Plots of the Probability Density Function 

To illustrate the shape of the joint density function  Ω ,Ω (  ,   ), four different cases of    ,     are considered whose details are given in Table 3.2.  

Case 1 is the trivial case with the means of frequencies far apart such that the joint 

density function can just be described by   ( ,  ). Case 2 is selected such that it requires one 

layer above   ( ,  ) while Case 3 is selected such that two layers above   ( ,  ) describe the 

complete distribution function. Case 4 discusses a case where the frequencies are extremely 

close (2% apart) where 17 layers are required. 

Table 3.2: Different cases considered for plots of the joint probability density function 

Case   (Hz)   (Hz)          N 
1 10 14 1.4 - 0 
2 10 12 1.2 1.3 1 
3 10 11.4 1.14 1.81 2 
4 10 10.2 1.02 2.83 17 

 

The Figures 3.12, 3.13 and 3.14 each plot two views of the probability density 

function  Ω ,Ω (  ,   )  for cases 2, 3 and 4 respectively. One can see that in cases 2, 3 and 

4, the red region represents the region of symmetric constraints given by Equations (3.15) 

and (3.16) indicating  Ω ,Ω (  ,   )   = 0. As the mean of the second frequency (  ) draws 
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closer to the mean of the first frequency (  ), the actual sampling space is constrained to a 

very small region about the diagonal (as for Case 4 in Figure 3.14). 

The perspective views of the joint density functions in Figures 3.12, 3.13 and 3.14 

show additional layers as they rise from   ( ,  ) for cases 2, 3 and 4 respectively. The plot of 

the joint density function in Figure 3.12(b) for Case 2 has two crests rising at the bottom left 

and top right corners indicating the layer 1 i.e.    ( ,  ). Similar crests representing layer 1 

can be observed in the perspective views of the density functions for cases 3 and 4 as well. 

The two small crests rising in the middle of the surface in the plot of the joint density 

function for Case 3 in Figure 3.13(b) indicate the layer 2. The Figure 3.14(b) of case 4 shows 

perspective view only up to 2 layers. In this case, the mean frequencies are only 2% apart. 

From Table 3.2, 17 layers are required to describe the whole function. From Figure 3.14(a), 

we can see that the sample space is constrained within a small region about the diagonal. So, 

instead of computing all the 17 layers (which involves considerable computational effort), it 

is reasonable to normalize the surface after computation of the first 2 layers. The 

normalization can be done by simply scaling the surface up to 2 layers such that the total 

volume under the surface is 1.0. 



 

 

57 

 

Figure 3.12(a):   Ω1,Ω2( 1, 2) for case 2 (view of the    −   plane) 
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Figure 3.12(b):     Ω1,Ω2( 1,  2) for case 2 (perspective view) 
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Figure 3.13(a):     Ω1,Ω2( 1, 2) for case 3 (view of the    −   plane) 



 

 

60 

 

Figure 3.13(b):     Ω1,Ω2( 1,  2)  for case 3 (perspective view) 



 

 

61 

 

Figure 3.14(a):     Ω1,Ω2( 1, 2) for case 4 (view of the    −   plane) 
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Figure 3.14(b):     Ω1,Ω2( 1,  2) for case 4 (perspective view up to 2 layers only) 
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3.5 Sampling of Frequencies from Inverse CDF Method 

For a uni-variate random variable   with a continuous cumulative distribution function 

(CDF) –   ( ) then the random variable   has a uniform distribution between 0 and 1.   

can be written as 

  =    ( ) (3.56) 

This means that we can generate samples for   given   by  

  =     ( ) (3.57) 

This technique is sometimes called the inverse CDF method. 

The principle can be extended to multivariate distributions (Gentle James, 2005) 

where if the CDF of the multivariate random variable (  ,   …   ) is decomposed as  

 
   ,  …   (  ,   …   )=    (  )   |  (  |  ) …   |  ,  …     (  |  ,   …     ) (3.58) 

And if the functions are invertible, the inverse CDF method is applied sequentially using the 

independent realizations of  (0, 1) random variables   ,   …   : 
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  =       (  ),   =    |    (  ), ⋯              ⋯   =     |  ,  …       (  ) 
(3.59) 

The same procedure is used to sample the frequencies from the joint density function 

formulated in the previous section. We can find the cumulative distribution functions from  Ω ,Ω (  ,   )  as 

  Ω (  ) =   Ω ,Ω (  ,   ) .    
 .       = 1   (3.60) 

  Ω ,Ω (  ,   ) =  Ω |Ω (  |  ).  Ω (  ) (3.61) 

  Ω |Ω (  |  ) =  Ω ,Ω (  ,   ) Ω (  )  (3.62) 

  Ω (  ) =   Ω (  )  
 .        (3.63) 

  Ω |Ω (  |  ) =   Ω |Ω (  |  )  
 .        (3.64) 

The functions  Ω |Ω (  |  ) and  Ω |Ω (  |  ) indicate respectively the conditional 

probability density function and conditional cumulative distribution function for Ω  given 

that Ω =   . Steps for sampling    from    : 
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1. Generate n uniformly distributed random numbers   = {   , …    , …   }, where     represents the ith random number.  

2.  Generate n samples of Ω =  Ω  , …Ω  ,…Ω    by Ω  =      (   ) 
where Ω   is the ith sample of Ω . 

3. Generate n uniformly distributed random numbers   = {   , …    , …    }, where     represents the ith random number of the set   .  

4. The n samples of Ω =  Ω  , …Ω  ,…Ω     can be generated from   

 Ω  =    |     (   ) 
where Ω   is the ith sample of Ω . 

So, if a structure has m frequencies, the frequencies are generated sequentially. 

Firstly, Ω  is sampled using the above detailed steps from the joint density function   Ω ,Ω (  ,   ). Having obtained samples for Ω ,  Ω  is sampled similarly by constructing the 

distribution  Ω ,Ω (  ,   ) and so on. 
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3.6 Illustrative Example for Sampling of Frequencies 

Section 3.5 describes the method for sampling the natural frequencies of a structure by 

inverse CDF method. This method is used to obtain random sets of natural frequencies in a 

structure based on the joint distribution function developed in this chapter. 

Here, an example of sampling is illustrated for the case 4 described in Table 3.2. A 

total of 4000 random sample sets were generated. The samples for Ω  are generated using 

Latin Hypercube Sampling method. Samples for Ω  are generated as per the detailed steps 

given in Section 3.5. The cumulative distributions and their inverses required are computed 

numerically using a MATLAB code. 

Since the constraints are implicitly defined in the formulation of the joint density 

function, it is always ensured that the random sample sets of frequencies are ordered sets. 

The sample set of Ω  passes the Kolmogorov-Smirnov test with confidence limits of 0.03 for 

uniform distribution between ± 15% of the mean value. Figure 3.15 compares the probability 

density functions of Ω  as obtained from sampling with the expected uniform distribution. 

Figure 3.16 plots the cumulative distribution function of sampled values of Ω . It can be seen 

that the obtained probability distribution functions are close to the expected distribution 

curves. 

Thus, the described procedure presents a method to randomly sample the natural 

frequencies of a structure such that any randomly sampled set is always an ordered set while 
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maintaining their individual density functions. Since the joint density functions formulated in 

this chapter depend only on the mean values of the natural frequencies of a system, the 

method can be employed for any given set of means of natural frequencies. 

 

  Figure 3.15: Probability density function of sampled    (Case 4) 
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Figure 3.16: Comparison between Empirical CDF and the expected CDF for Ω  (Case 4) 
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CHAPTER – 4 

SQUARE ROOT OF MEAN OF SQUARES METHOD OF 

DETERMINING DESIGN RESPONSE 

4.1 Design Response 

Gupta and Choi (2005) proposed the Square-Root-of-Mean-of-Squares (SRMS) method to 

determine the ‘design response’ of the secondary system. The design response, R0.84, is 

defined as the response corresponding to a non-exceedence probability (NEP) of 0.84 over 

the set of all possible responses i.e. 

  [ ≤   .  ] = 0.84 (4.1) 

The design response,   .  , can also be statistically determined as the ‘84th percentile’ value 

(or “mean plus one standard deviation” value for a generic non-Gaussian distribution) from 

the responses obtained from a Monte Carlo simulation with multiple time history analyses 

with different sets of sampled natural frequencies, damping ratios of the uncoupled systems 

and input excitations normalized to the same value of peak ground accelerations (PGA).  

 Estimating the design response by multiple time history analyses is computationally 

intensive. Alternatively, the design response   .   can also be determined by conducting a 

Monte Carlo simulation with response spectrum. The design spectrum at a nuclear facility is 

typically defined at a non-exceedence probability of 0.84 over multiple earthquake time 
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histories all normalized to a unit PGA to account for the uncertainties in ground motion 

input. Specifying the design response at a non-exceedence probability of 0.84 over the 

responses obtained from multiple response spectrum analyses yields values that are 

excessively conservative as the input spectrum is itself specified at a NEP of 0.84, and 

selecting a value corresponding to NEP of 0.84 in response spectrum method is likely to be 

much higher than the corresponding value from multiple time history analyses. 

For a Monte Carlo simulation with response spectrum analysis, we need to generate 

sets of modal parameters consisting of uncoupled natural frequencies and damping ratios,   ≡ (  ,   ) to account for the uncertainty in modal properties of the system. The individual 

sets of    are generated according to the assumed probability criteria for the uncoupled modal 

parameters of both the primary and secondary systems. For any given ith set of modal 

properties   , the response value from a response spectrum analysis using the design spectra 

is called the “conditional design response” and is denoted by   .  /  .  Gupta and Choi 

(2005) proposed the following two methods based on the conditional responses of the system 

given a particular set of modal properties. 

 

4.2 Mean of Conditional Responses 

The design response   .   according to the mean of conditional responses is given by: 
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   .  = 1    .  /   
      ,   = 1 +   1 +   /   (4.2) 

where N is the number of simulated sets of modal properties,    ,   .  /   is the conditional 

response and    is a factor dependent upon the coefficient of variation    for the response R 

and   /   for the conditional response   .  /  . 
If   ≈   /  ,   = 1  then we have  

   .  ≈ 1    .  /   
    ,   (4.3) 

 

4.3 Square Root of Mean of Squares (SRMS) 

This section presents the detailed formulation for the SRMS method of determining the 

design response of   .  . 

 Let us begin by expressing the variance of response R 

    = ∑ (  −   )         (4.4) 



 

 

72 

where     is the variance of design response;    the mean of design response;    the 

conditional response for ith set of earthquake and modal properties;    the total number of 

responses over all earthquake inputs and modal property sets. 

According to the law of conditional expectations, 

  [ ] =       =       (4.5) 

Equations (4.4) and (4.5) give 

    = 1      − 1         
       

    (4.6) 

where      is the mean of conditional response using earthquake inputs for a given jth set of 

modal properties; Zj is the jth set of modal properties and NS is the total number of sets for 

modal properties. 

 Next, we can simplify the following expression 
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   − 1         
     =    − 2         

   + 1           
     

=    − 2       +  
           

   + 2         
   −        

   
− 2         

   + 1           
     =   +    

(4.7) 

where    and    are given as 

 

  =    − 2       +  
           

   ;  
  = 2         

   −        
   − 2         

   + 1           
       (4.8) 

 Let us subdivide NT into NS intervals such that 1 <    < ⋯   < ⋯ <     . We 

can then write 
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1       
   = 1       − 2       +  

           
      

   
= 1       − 2       +  

           
       

   
+ 1       − 2       +  

           
    +⋯   

       
+ 1       − 2       +  

           
    + ⋯+⋯     

       
+ 1       − 2       +  

           
          

          
+ 1       − 2       +  

           
        

           

(4.9) 

Note that     =   . 

 Equation (4.9) can be rearranged as  
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1       
   = 1       −       − 2       +  

           
       

   +⋯
+ 1       −        − 2       +    

             
        

          
= 1       −          

   − 2      
        +         

   
   
   

  
   +⋯

+     −            
          

− 2        
               +            

   
    

          
    
     

(4.10) 

For simplicity, let each interval be equal i.e.    =    = ⋯   = ⋯ =     =  . Note 

that   = ( )(  ). Equation (4.10) can then be simplified as  

 

1       
   = 1        − 2          +  

            
   +⋯+       

− 2           +           
   

    
    = 

1          
   − 2             

        + (  − 1)        
   

  
     

(4.11) 

Next, we simplify    in Equation (4.8) following the same procedure as above 
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1       

   = 1    2 − 1           
     −          

     (4.12) 

 

Substituting Equations (4.7), (4.11) and (4.12) into Equation (4.6), variance     can be 

expressed as  

 

   = 1          
   − 2             

        + (  − 1)        
   

  
    

+ 1    2 − 1           
     −          

    
= 1          

   − 2             
          

   −        
   

+  2 − 1           
      

= 1          
   +       − 1          

       
     

(4.13) 

 

or 
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     =       
   +         

   − 1          
     

=       
   +         

   −     
=      + 2       +         

   − 2          
   −      

(4.14) 

   (   +    ) =         
   − 2          

    (4.15) 

where     is the mean plus one standard deviation for ith set of modal properties. 

Let us add   (2    ) to both sides of Equation (4.15) and rearrange it. 

   (   +    + 2    ) =         
   − 2          

   + 2       (4.16) 

   = (  +   ) = 1          
   − 2          

   + 2        (4.17) 

Further if   is the coefficient of variation for R,      can be expressed by 

     =  1 (  +   )  ;     =       (4.18) 
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    =      (1 +   )  (4.19) 

 
1  =   (1 +   )  (4.20) 

where    is a constant. Substituting Equation (4.20) into (4.18), we can write 

 

    =  √  (1 +   ) (  +   )  =   (1 +   ) (  +   ) =   (1 +   )    
(4.21) 

Similarly,        can be written as 

        =     1 +          ,    =          (4.22) 

Equations (4.17), (4.21) and (4.22) give 

   = 1          
   − 2     1 +          

  
   + 2    (1 +   )     (4.23) 

Equation (4.23) upon simplification gives 
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   = 1         
   

 1 − 2    1 +        
 1 − 2  (1 +   )    (4.24) 

Finally, the response corresponding to mean plus one standard deviation can be obtained by 

  =  1            
     / ,    =  1 − 2    1 +        

 1 − 2  (1 +   )    (4.25) 

The expression for   .   is given by 

  

  .  =  1    .  /    
       /    

  = ⎝⎜⎜
⎛1 − 2  /   1 +   /     

1 − 2  (1 +   )  ⎠⎟⎟
⎞

 

(4.26) 

where N is the number of simulated sets of modal properties,    ,   .  /   is the conditional 

response obtained as the response value from the analysis using the ith modal property set and    is a factor dependent upon the coefficient of variation    for the response R and 

coefficient of variation   /   for the conditional response   .  /  . 
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Again, with the assumption that   = 1 , Equation (4.26) simplifies as 

   .  ≈  1    .  /    
     /  (4.27) 

In Gupta and Choi (2005), four SDOF primary - SDOF secondary systems with 

various degrees of tuning between them were considered. The natural frequencies and 

damping ratios of both primary and secondary systems were assumed to be independent 

Gaussian random variables with a coefficient of variation of 0.15. For each coupled system, a 

total of 7500 secondary system responses using time history analysis are evaluated 

considering combinations of 75 real earthquakes records normalized to the same value of 

peak ground acceleration (PGA) and 100 sets of randomly sampled frequencies and modal 

damping ratios. 

The design response from multiple response spectrum analyses was calculated 

according to the two methods described above. These values are compared with the design 

response values obtained from the time history analyses as the 84th percentile value over the 

total of 7500 responses. The mean of conditional responses method gave design responses 

that were consistently a little less than the 84th percentile value from the time history 

analyses. The SRMS method yielded results that were close to the corresponding results from 

the time history analysis. 
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CHAPTER – 5 

NUMERICAL EXAMPLES 

This chapter describes the Task-5 listed under Section 1.4 of this thesis. As mentioned 

before, the objective of the thesis is focused on verification and application of the SRMS 

method to MDOF primary – MDOF secondary systems. Numerical examples are presented 

here to illustrate the same. 

5.1 Relative Significance of Uncertainties in Earthquake Input and Modal Properties 

Gupta and Choi (2005) used SDOF primary – SDOF secondary system to illustrate that 

uncertainties in frequencies and modal damping ratios can result in significant variation of 

secondary system responses if the frequencies of the uncoupled systems are tuned or nearly 

tuned. In this section, a numerical study is conducted to examine the relative importance of 

uncertainties in ground motion input and uncoupled modal properties in a MDOF primary – 

MDOF secondary system. A simple 4-DOF coupled system is considered as shown in Figure 

5.1. This is representative of a simple model of a two-storey building and base-supported 

equipment. The primary and secondary structures each consist of two massless shear beam 

elements and two lumped masses. The base of the secondary system is coupled to the lower 

storey of the primary system. Two different coupled systems of this type are considered for 

the study. One of these coupled systems comprises of detuned primary and secondary 

systems while the other coupled system considers the case where the fundamental mode of 
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the primary system is tuned with the fundamental mode of the secondary system. Table 5.1 

gives the characteristics of two uncoupled systems in each of the two 4-DOF coupled 

systems. 

 

Figure 5.1: The 2 DOF primary – 2 DOF secondary system model 

 

Table 5.1: Modal properties of uncoupled primary and secondary systems 

Model 
# 

Model 
Description 

PRIMARY SYSTEM SECONDARY SYSTEM 
Natural Frequencies  

(Hz) Damping 
Ratio (ξp) 

Natural Frequencies  
(Hz) 

Damping 
Ratio 
(ξs) ωp1 ωp2 ωs1 ωs2 

1 Detuned 0.5 1.0 6% 2.5 6.0 2% 

2 Tuned 
(ωp1≈ ωs1) 

2.4 4.8 6% 2.5 6.0 2% 
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The relative effect of uncertainties in earthquake input, frequencies and modal 

damping ratios of the uncoupled primary and secondary system is evaluated by conducting 

multiple time history analyses for each of the two coupled systems. To model uncertainty in 

earthquake input, 75 real earthquake records normalized to the same value of Peak Ground 

Acceleration (PGA) have been considered (see Appendix – B for characteristics of 

earthquake records). Each earthquake time history yields one set of secondary system 

responses. Next, the responses are calculated using only a single normalized earthquake 

record but considering variations in uncoupled natural frequencies of primary and secondary 

systems. Finally, the secondary system responses are evaluated by considering a variation in 

only modal damping ratios of the uncoupled systems. The natural frequencies and damping 

ratios are assumed to be uniform random variables varying within ± 15% of their respective 

mean values. Figure 5.2 shows the relative values of displacements of the lower mass (ms1) of 

the secondary system for each of the three types of analyses described above. In the figure, 

the displacements are normalized with respect to the maximum displacement evaluated in a 

particular type of analysis. 
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Figure 5.2: Relative significance of uncertainties in earthquake input and modal properties on the secondary 

system response. 

As evident from Figure 5.2, the effect of uncertainty in base excitation has relatively 

greater significance in the case of detuned systems. However in tuned systems, the effect of 

uncertainty in uncoupled frequencies is similar to that due to the uncertainty in base 

excitation. Hence, possibility of tuning between various modes of primary and secondary 

systems tends to affect the response of secondary systems appreciably. It can also be seen 

that in the tuned systems, the uncertainties in base excitation and frequencies have relatively 

greater influence compared to that of damping ratios alone. 
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5.2 Examples 

As seen in Section 5.1, uncertainties in uncoupled frequencies and modal damping ratios can 

play a vital role in influencing the secondary system response of a tuned system. Hence, it is 

necessary to consider variations in modal properties of tuned systems along with 

uncertainties in base excitation in order to calculate the design response of the secondary 

system. Chapter 4 introduced the SRMS method of determining the design response as 

proposed by Gupta and Choi (2005). In this section, the application and verification of the 

SRMS method of determining the secondary system design response for multi-degree of 

freedom systems is illustrated using two different coupled system configurations. Different 

variations of these configurations are considered to evaluate the effect of tuning between 

modes of primary and secondary systems on the response of the secondary system. For each 

coupled system, the evaluation of the design response using SRMS method is illustrated 

using the following steps: 

1. To model the uncertainties associated with modal properties of uncoupled systems, 

the natural frequencies and damping ratios are assumed to be uniform random 

variables varying within ± 15% of their respective mean values. 100 sets of randomly 

sampled uncoupled frequencies and modal damping ratios for primary and secondary 

systems are generated for each coupled system using the formulation developed in 

Chapter -3. 
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2. The variation in input excitation is considered through 75 real earthquake records all 

normalized to a unit PGA. The details of the earthquake records are given in Table 

B.1 of Appendix - B. For estimation of design responses using response spectrum 

method, the design spectrum is specified at a non-exceedence probability of 0.84 over 

the 75 earthquakes (see Appendix – B). This design spectrum forms the input at the 

base of the primary system for the response spectrum analyses. 

3. Using the design spectrum developed in Step 2, the conditional responses of the 

secondary system are obtained from multiple response spectrum analyses. The 100 

responses obtained from response spectrum analysis using each of the 100 sets of 

randomly generated modal properties are used to determine the SRMS value of the 

design response,   .   using Equation (4.27). 

4. To validate and compare the design responses from the SRMS method, the design 

response value is directly obtained from conducting multiple time history analyses. A 

total of 7500 responses are evaluated by considering combinations of 75 earthquakes 

and 100 sets of randomly sampled frequencies and modal damping ratios. The 

secondary system design response   .   is statistically determined by Equation (4.1) 

over these 7500 responses. 

5. Finally, the values of SRMS responses from Step 3 are compared with the design 

responses evaluated from multiple time history analyses in Step 4 for each system. 
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Example –A: 2-DOF primary – 2-DOF secondary coupled system (singly-connected) 

In this example, five different variations (A-1 to A-5) of the model shown in Figure 

5.1 are considered to illustrate the application of SRMS method to singly-connected MDOF 

primary – MDOF secondary systems. The models are designed as described below in order 

to study the effect of different kinds of tuning between primary and secondary system modes: 

• Model A-1 considers a case where the fundamental mode of the primary 

system is tuned with the fundamental mode of the secondary system. 

• Model A-2 is the case where the fundamental mode of the primary system is 

tuned with the second mode of the secondary system. 

• Model A-3 is the case where the first mode of the primary system is tuned 

with the first mode of the secondary system and the second mode of the 

primary system is tuned with the second mode of the secondary system.  

• Model A-4 is the case where the fundamental mode of the primary system is 

tuned with the first as well as second mode of the secondary system. The two 

modes of the secondary system are closely-spaced. 

• Model A-5 considers a case where the fundamental mode of the secondary 

system can be tuned with either of the modes of the primary system. Both the 

modes of the primary system are closely-spaced. 
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The details of models are presented in Tables 5.2 and 5.3. The mean values of modal 

damping ratios for the uncoupled primary system and secondary system are considered to be 

6% and 2% respectively.  

In models A-1 to A-3, the uncoupled natural frequencies of both primary and 

secondary systems are far apart. Therefore, the frequencies can be treated as independent 

random variables for generating the random sample sets required in Step 1. However, the 

secondary system modes of model A-4 (3.81 Hz & 4.21 Hz) and primary system modes of 

model A-5 (3.81 Hz & 4.21 Hz) are closely-spaced with overlapping probability density 

functions. This means that the frequencies cannot be sampled independently. To avoid 

incorrect sample sets, a joint probability density function between the closely-spaced 

frequencies based on the formulation developed in Chapter – 3 has been used for generating 

the random sample sets. Figure 5.3 plots the probability density functions of the sampled 

frequencies of the secondary system of model A-4.  
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Table 5.2: Properties of uncoupled primary and secondary systems in Example - A 

Model 

# 

Mass - Primary 

System (Kg) 

Stiffness - Primary 

System (Nm-1) 

Mass - 

Secondary 

System (Kg) 

Stiffness - Secondary 

System (Nm-1) 

mp1 mp2 kp1 kp2 ms1 ms2 ks1 ks2 

A-1 3x105 2x105 5x108 5x108 500 300 7.97x105 5.80x105 

A-2 3x105 2x105 7.5x107 7.5x107 500 300 7.7x105 5.6x105 

A-3 3x105 2x105 5x108 5x108 500 300 7.98x105 7.98x105 

A-4 5x105 1x105 3.91x108 3.55x108 3000 30 1.9x106 1.9x104 

A-5 3x106 3x104 1.9x109 1.9x107 500 100 3.9x105 3.5x105 

 

Table 5.3: Mean values of natural frequencies for uncoupled primary and secondary systems for Example- A 

Model  
# 

Model 
Description 

Natural Frequencies - 
Primary System (Hz) 

Natural Frequencies - 
Secondary System (Hz) 

ωp1 ωp2 ωs1 ωs2 

A-1 ωp1 ≈ ωs1 4.6 11.25 4.5 9.9 

A-2 ωp1 ≈ ωs2 1.78 4.36 4.4 9.76 

A-3 ωp1 ≈ ωs1 
ωp2 ≈ ωs2  

4.59 11.25 4.63 11.25 

A-4 ωp1 ≈ ωs1 
ωp1 ≈ ωs2 

3.99 10.58 3.81 4.21 

A-5 ωp1 ≈ ωs1 
ωp2  ≈ ωs1 

3.81 4.21 3.99 10.58 
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Figure 5.3: Probability density function of sampled values of frequencies of the secondary system in model A-4 

 

After randomly generating the sample sets of modal properties, the secondary system 

design response values of each model are obtained by conducting multiple time history and 

response spectrum analyses as described in Steps 3 and 4. Figures 5.4 – 5.8 compare the 

secondary system design response from the time history analyses and the SRMS value 

evaluated from multiple response spectrum analyses. The figures also plot the value of 

response corresponding to a non-exceedence probability of 0.84 over the responses from the 

multiple response spectrum analyses (Step 3).  
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Figure 5.4: Secondary system design responses for model A-1 (Example - A) 

 

 

Figure 5.5: Secondary system design responses for model A-2 (Example - A) 
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Figure 5.6: Secondary system design responses for model A-3 (Example - A) 

 

 

Figure 5.7: Secondary system design responses for model A-4 (Example - A) 
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Figure 5.8: Secondary system design responses for model A-5 (Example - A) 

 Table 5.4 presents the error between the design responses from the SRMS method 

and the design response from multiple time history analyses. It can be seen from Figures 5.4 

– 5.8 that the design value of element forces for all the five models obtained from the SRMS 

method agree very well with the design value of forces obtained from the multiple time 

history analyses. However, the design response specified at a non-exceedence probability of 

0.84 over multiple response spectrum analyses is excessively conservative with respect to the 

corresponding design response evaluated from time history analyses in all cases.  

 

  

0

20

40

60

80

100

120

140

0.05 0.1 0.15 0.2 0.25

Se
co

nd
ar

y 
Sy

st
em

Fo
rc

e 
(k

N
)

Time History Response 
(84%nep response)
Response Spectrum Input 
(84% nep response)
Response Spectrum 
Results (SRMS)

Member - 1

Member -2

A - 5



 

 

94 

Table 5.4: Comparison between the values of design member forces in the secondary system obtained from time 

history input and SRMS method (Example – A) 

MODEL 

# 
Member # 

R0.84 (kN) 
Error (%) 

Time history input 
(Equation 4.1) 

SRMS Method 
(Equation 4.27) 

A-1 
1 12.55 13.04 3.9% 
2 6.29 6.54 4.0% 

A-2 
1 3.53 3.38 -4.3% 
2 1.68 1.61 -4.1% 

A-3 
1 12.88 13.36 3.7% 
2 6.00 6.23 3.8% 

A-4 
1 447.19 447.78 0.1% 
2 38.65 39.14 1.3% 

A-5 
1 99.69 101.64 2.0% 
2 19.45 19.87 2.2% 

   

Example – B: Multiply-Connected 8-DOF primary – 3-DOF secondary coupled system 

In Example – B, an 11-DOF coupled system model as shown in Figure 5.9 is 

considered to illustrate the applicability of the SRMS method to coupled systems in which 

the secondary system is connected at multiple locations to the primary system. The case of 

multiple modes of primary system being tuned with a secondary system mode is also 

considered in this example. The primary system consists of eight storeys with massless shear 

beam elements and lumped masses and is fixed at the ground. The ith storey masses and ith 

storey stiffness of the primary system are denoted by mpi and kpi respectively. The secondary 
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system comprises of four shear beam elements (stiffness ksj) and three lumped masses (msj). 

The secondary system is connected to the primary system at two different loactions as 

shown. Two different variations of the model are considered as follows: 

• Case B-1 considers a case where the fundamental mode of the primary system is 

tuned with the fundamental mode of the secondary system. 

• Case B-2 examines a case where a secondary system mode can be tuned with either 

of the two closely-spaced modes of the primary system. Here, the fundamental mode 

of the secondary system can be tuned with either of the third or the fourth mode of the 

primary system. 

The properties of models B-1 and B-2 are given in Figures 5.9 and 5.10 respectively. 

Table 5.5 lists the uncoupled frequencies and modal damping ratios of primary and 

secondary systems of models B-1 and B-2.  
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Figure 5.9: The 8 DOF primary – 3 DOF secondary system structure for model B-1 

 

 

 

 

PRIMARY SYSTEM 

mpi   =  1.34 x 106  kg for i = 1, 2, 3, 4 

            = 3.34 x 105 kg for i = 5, 6, 7, 8 

kpi    = 1.34 x 1010 N m-1 for i = 1, 2, 3, 4 

           = 3.34 x 109 N m-1 for i = 5, 6, 7, 8 

SECONDARY SYSTEM 

msi   =  211 kg  for j = 1, 2, 3 

ksi    =  2.09 x 105 N m-1 for i = 1, 2, 3, 4 
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Figure 5.10: The 8 DOF primary – 3 DOF secondary structure for model B-2 

 

 

 

 

 

PRIMARY SYSTEM 

mpi   =  1.34 x 106  kg  for i = 1, 2, 3, 4 

            =  3.34 x 105  kg  for i = 5, 6, 7, 8 

kpi    =  8.35 x 108  N m-1 for i = 1, 2, 3, 4 

           =  2.09 x 108 N m-1 for i = 5, 6, 7, 8 

SECONDARY SYSTEM 

msi  =  211 kg  for i = 1, 2, 3 

ksi    =  2.32 x 105 N m-1 for i = 1, 2, 3  
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Table 5.5: Modal properties of uncoupled primary and secondary systems in Example - B 

Model 
# 

Model 
Description 

UNCOUPLED FREQUENCIES (Hz) DAMPING 
RATIO Primary System Secondary System 

B-1 

     ωp1 4.0 ωs1 3.8   
    ωp2 7.3 ωs2 7.1   
    ωp3 14.8 ωs3 9.3  

ωp1 ≈ ωs1 
  

  ωp4 17.5   ξp = 0.06 
  ωp5 23.8   ξs = 0.02 

    ωp6 25.4     
    ωp7 29.8     

    ωp8 30.2       

B-2 

     ωp1 1.0 ωs1 4.0   
    ωp2 1.8 ωs2 7.5   
    ωp3 3.7 ωs3 9.8  

ωp3≈ ωs1 
ωp4 ≈ ωs1  

  

  ωp4 4.4    ξp = 0.06 

  ωp5 6.0    ξs = 0.02 

    ωp6 6.4      
    ωp7 7.4      
    ωp8 7.6       

 

It can be seen that in primary systems of both models, the frequency sets (ωp3, ωp4) and 

(ωp5, ωp6, ωp7, ωp8) are closely-spaced. The individual probability density functions of these 

frequencies overlap. Hence, the simulation of random sample sets for the uncoupled 

frequencies cannot be achieved by independent sampling. The sampling for each model is 

conducted based on the formulation developed in Chapter- 3. Figure 5.11 compares the 
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probability density functions of sampled frequencies with the expected uniform distributions 

for primary system frequencies in Model B-2. 

 

 

Figure 5.11: Probability density functions of sampled uncoupled frequencies of primary system in Model B-2 

 

Following the similar procedure as in Example – A, the design values of forces in the 

secondary system are computed from SRMS method as well as from Monte Carlo 

simulations with time history input. The design secondary system response values   .   from 

both methods are compared in Figures 5.12 for model B-1 and Figure 5.13 for B-2. The 

SRMS values of design responses are close to the design responses obtained from Monte 

Carlo simulation with time history input. Also, the design response value specified at 84% 
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NEP over all responses from multiple response spectrum analyses yielded excessively 

conservative responses. 

 

Figure 5.12: Secondary system design responses for model B-1 (Example - B) 
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Figure 5.13: Secondary system design responses for model B-2 (Example - B) 
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CHAPTER – 6 

SUMMARY, CONCLUSIONS AND FUTURE WORK 

 

6.1 Summary 

This study investigates the effect of uncertainties in modal properties of uncoupled Multi-

Degree-of-Freedom (MDOF) primary - MDOF secondary systems in the seismic analysis of 

non-classically damped coupled systems. Gupta and Choi (2005) proposed the Square-root-

of-mean-of-squares (SRMS) approach to determine the design response corresponding to a 

non-exceedence probability of 0.84 using multiple response spectrum analyses and illustrated 

its application to SDOF primary – SDOF secondary systems. This thesis focuses on 

verification and application of the SRMS approach to MDOF primary – MDOF secondary 

systems. 

 As illustrated in Gupta and Choi (2005), it was found that the uncertainties in 

uncoupled frequencies have a significant effect on the secondary system response in tuned or 

nearly tuned MDOF coupled systems. On the other hand, uncertainties in modal properties 

have relatively negligible effect as compared to uncertainties in base excitations on the 

response of secondary systems in the case of detuned primary – secondary systems. Unlike 

Gupta and Choi (2005) which considers only SDOF primary – SDOF secondary systems, 
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emphasis is placed on studying the behavior of tuned MDOF primary – MDOF secondary 

systems.  

 Implementing the SRMS method comprises of conducting multiple analyses of 

coupled system with randomly sampled sets of uncoupled natural frequencies of primary and 

secondary systems. Random samples of frequencies require knowledge of their probability 

density functions. Closed-form solutions for probability density functions of natural 

frequencies of simply-supported flexural beams considering variations in flexural rigidity 

were derived. It was seen that the density functions of the frequencies for lower order modes 

are relatively narrow banded and do not overlap in any meaningful way. However, there is a 

significant degree of overlap among the density functions for the frequencies of higher 

modes. The observations were similar for the frequencies of shear beam considering 

variations in shear rigidity.  

A significant overlap in probability density functions of uncoupled frequencies can 

give incorrect set of frequencies in the sense that the frequencies do not remain as ordered 

pairs or ordered sets. The frequencies of any uncoupled primary or secondary system should 

all be in an ascending order. If the uncertainty in the structure is dominated by a single 

parameter, the natural frequencies can be independently simulated without any errors because 

the correlation between any two frequencies is unity. However, if uncertainties exist in 

multiple structural parameters, the correlations between the frequencies are not always unity. 
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There are numerous methods to estimate correlations and higher order statistics for 

natural frequencies of a structure given the probabilistic characteristics of material and 

geometrical properties of the structure. It is, however, impractical to consider the various 

uncertainties in all the structural parameters to estimate the correlations between the 

frequencies of a real-life structure. Even if the correlations among the frequencies of a 

structure are known, the problem of disordered sampled sets of random natural frequencies is 

unavoidable unless the frequencies are perfectly correlated. This is usually not the case. 

 USNRC (1978) recommends a ± 15% uncertainty in the frequencies of the primary 

system in order to account the effect of uncertainties on secondary system response. It is 

reasonable to consider a uniform distribution of these frequencies within the prescribed 

frequency region of interest. Independent sampling of frequencies can result in disordered 

samples if the modes of a structure are closely-spaced. Moreover, rejecting the incorrect 

samples result in individual density functions that are significantly different from the 

distributions initially assumed for sampling of each natural frequency.  

One way to overcome the above constraints is to consider them in an implicit manner 

within the sampling scheme. A formulation for a joint probability density function is derived 

using fundamental probability approaches. Using the joint density function, it was possible to 

sample sets of natural frequencies such that they were always ordered sets. Also, each 

frequency set passed the Kolmogorov-Smirnov test with confidence limits of 0.03 for 

uniform distribution between ± 15% of its mean value. 
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 The implementation of the SRMS approach to MDOF primary – MDOF secondary 

systems was illustrated for two kinds of configurations – singly- and multiply-connected 

coupled systems. Various degrees of tuning between the primary and secondary systems 

were considered. The possibility of a single secondary system mode to be tuned with either 

of the two closely-spaced primary system modes was also considered. 100 randomly sampled 

sets of uncoupled frequencies and modal damping ratios for primary and secondary systems 

were generated for each model. The uncertainty in base excitation was accounted by 

considering 75 real earthquake records normalized to the same value of peak ground 

acceleration (PGA). The input spectrum corresponding to a non-exceedence probability of 

0.84 for multiple response spectrum analyses was generated from the earthquake time 

histories. The SRMS value of the design response of the secondary systems was compared 

with the design response obtained directly as the response value corresponding to a non-

exceedence probability of 0.84 from multiple time history analyses performed by considering 

combinations of the 75 earthquakes and 100 modal property sets. The design response values 

calculated using SRMS method agreed well with the design responses calculated from 

multiple time history analyses. 

 

6.2 Conclusions 

The specific conclusions related to the various tasks outlined in the Section 1.4 of this thesis 

are: 
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• The closed-form expressions of the probability density functions of the natural 

frequencies of a simply supported beam derived by considering variations in flexural 

rigidity indicate that the probability density functions of the higher order modes have 

significant overlap. Similar observations can be found for a simply-supported beam 

with variations in shear rigidity. 

• If the uncertainty in a structure is dominated by a single parameter, the correlation 

coefficient between any two frequencies is unity indicating a linear relationship 

between any two frequencies in the structure. However, if the uncertainty exists in 

multiple parameters in a structure, the correlation coefficient between the frequencies 

is much less than unity. 

• If the probability density functions of frequencies with closely-spaced modes have 

significant overlap, the independently sampled sets of natural frequencies may not be 

in correct order. Rejection of incorrect sample sets result in probability distribution 

functions of the frequencies that are significantly different from their assumed 

distributions. 

• A formulation for joint probability density function for uncoupled natural frequencies 

is developed from fundamental probability approaches. Sampling the natural 

frequencies according to the formulation ensures that the random sample sets of 

natural frequencies are always in order. Also, the individual density functions of the 
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sampled frequencies satisfy the Kolmogorov-Smirnov test with confidence limits of 

0.03 for the assumed distributions. 

• The application of the SRMS method is illustrated through numerical examples. The 

random sample sets of uncoupled natural frequencies of MDOF primary and 

secondary systems were generated from the formulation developed. 

• The SRMS method is illustrated for the following numerical examples:  

§ Five different variations studying the effect of different tuning characteristics 

between the primary and secondary system modes of a singly-connected 2 

DOF primary – 2 DOF secondary systems are considered. 

§  2 different variations of an 8 DOF primary – 3 DOF secondary systems are 

considered. The 8 DOF primary systems have closely-spaced modes. One of 

the variations studies the effect of a single secondary system mode being 

tuned with multiple primary system modes. 

The design response determined from the SRMS method using response spectrum analyses is 

in good agreement with the design response determined from multiple time history analyses 

for all the systems.  

 

6.3 Limitations and Recommendations for Future Work 

The formulation developed for the joint density function for sampling random sets of natural 

frequencies of a structure satisfactorily ensures that the sampled frequencies are ordered sets 
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and maintain the individual density functions for each frequency. The formulation of the 

density function assumes the property of central symmetry for the distribution. Such an 

assumption leads to high correlations for modes with closely-spaced frequencies. If any two 

consecutive frequencies are more than 35.3% apart, the correlation is considered to be 

minimal, and the correlation coefficient between the frequencies increases along with 

increasing closeness between the means of the frequencies. In short, the joint density 

function implicitly assumes that if there is any change in the structural properties that caused 

a shift in a frequency, the same change is likely to cause a proportional shift in a frequency 

that is closely spaced to the former. While this assumption is reasonable and could hold well 

in most instances, it may not always be the case i.e. there could be high correlations between 

modes with frequencies far apart as well. However, generalization of such behavior is 

difficult. Future work can focus on better understanding of the correlations between 

uncoupled natural frequencies of a structure and their various statistics to be implemented 

into the sampling scheme.  

The thesis assumes that the uncoupled frequencies and modal damping ratios are 

random variables of uniform distribution within ± 15% of their respective mean values. The 

effect of modeling the modal properties using other probability distributions on the response 

of secondary system and applicability of SRMS method could be studied. 

Application of the proposed SRMS approach has not been illustrated for any real-life 

coupled systems. The applicability of this method may be studied for such systems. 
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APPENDIX – A 

PROBABILITY DENSITY FUNCTIONS OF NATURAL 

FREQUENCIES OF A SIMPLY SUPPORTED BEAM WITH SHEAR 

DEFORMATIONS 

Consider a simply-supported beam of length L and mass per unit length, m. The beam has a 

uniform cross-section of area A and the moment of inertia I. The Young’s modulus and the 

shear modulus of the material of the beam are E and G respectively. The flexural rigidity of 

the beam is EI and the shear rigidity is GA. The shape factor of the cross section is k’.  

The equation of motion for free transverse vibrations,  ( ,  ) of the beam including 

the effect of shear deformation is given by 

        −    .   .    .         +         = 0 (A.1) 

The solution for the above equation is of the form: 

  ( ,  ) =  ( ). ( ) (A.2) 

Substituting Equation (A.2) in (A.1), 

   ( ).    ( )   −    .   .    .    ( )      ( )   +   .  ( )    ( )   = 0 (A.3) 

   .  ( )    ( )   = − −    .   .    .    ( )   +  ( )    ( )    (A.4) 
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  .    ( )     −     .    .    ( )   +  ( ) = − 1 ( ) .     ( )   =   (   ) (A.5) 

 

 

From Equation (A.5), 

    ( )   +  .  ( ) = 0 (A.6) 

The solution for  ( ) is of the form:  

  ( ) =  sin(  +  ) (A.7) 

The solution for  ( ) from Equation (A.5) 

 
  .    ( )     −     .    .    ( )   +  ( ) =    (A.8) 

 
   ( )   =       −      .    .    ( )   +  ( )  (A.9) 

Let      =   . Then, the Equation (A.9) transforms to  

 
   ( )   =    −      .    .    ( )   +  ( )  (A.10) 

If  ( ) is of the form  ( ) =     . , Equation (A.10) gives 

   =    −      .    .   + 1  (A.11) 
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Equation (A.11) is a quadratic in    and can be solved in terms of  . The generalized 

solution for  ( ) is of the form:  

 
 ( ) =   cosh(  .  ) +   sinh(  .  ) +   cosh(  .  )+   sinh(  .  ) (A.12) 

where    and    are constants. 

Boundary conditions for a simply-supported beam are  

   ( ) = 0  .    ( )   = 0   = 0      =   (A.13) 

 

Applying the boundary conditions in Equation (A.13) to Equation (A.12), it can be found that 

the non-trivial solution (or eigen function) for  ( ) is of the form:  

  ( ) =  sin     .    (A.13) 

From Equations (A.10) and (A.13),  

       =    −      .    .       + 1  (A.14) 

   =        −      .    .       + 1 =       (A.15) 
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   =           −     .    .       + 1  (A.16) 

  =     √    √  √ ′       +          (A.17) 

For a beam with predominant shear deformations, the simply supported beam is rigid in 

flexure i.e.    → ∞. So, the Equation (A.17) simplifies to 

 lim  →   =     √      ′   (A.18) 

Equation (A.17) is similar to Equation (2.3) in Chapter – 2. Following steps identical to 

Equations (2.3) - (2.6), we can obtain the probability density function of the natural 

frequencies of the simply-supported shear beam given the distribution of shear rigidity, GA   ( ) . 
  Ω (  ) = 2         =         where   =     √     (A.19) 

 



APPENDIX – B 

DESIGN SPECTRA 

Monte Carlo simulation with multiple response spectrum analyses requires the earthquake 

input be characterized by a single input design spectrum. As discussed in chapter 4, these 

spectra are generated corresponding to a non-exceedence probability of 0.84 for various 

damping ratios using the response spectrum of each of the 75 real time histories normalized 

to a unit value of PGA. The details of the earthquake records used are given in Table B.1. 

The design spectra are shown in Figure B.1 

 

Figure B.1: Input spectrum corresponding to a non-exceedence probability of 0.84 for 75 real earthquake 

records  
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Table B.1: List of real earthquake records 

Earthquake, site, date Component 
Record 1 Record 2 

Imperial Valley, Elcentro, 18, May 1940 S00E S90W 
Kern County, Pasadena, Caltech-Athenaeum, 21, July 1952 S00E S90W 
Kern County, Taft, Lincoln School Tunnel, 21, July 1952 N21E S69E 
Kern County, Santa Barbara, Court House, 21, July 1952 N42E S48E 
Kern County, Hollywood Storage, Basement, 21, July 1952 S00W N90E 
San Francisco, Golden Gate Park, 22, March 1957 N10E S80E 
Long Beach, Vernon CMD Building, 10, March 1933 S08W N82W 
Lower California, ElCentro, Imperial Valley, 30, December 1934 S00W S90W 
Helena, Montana, Carrol Collage, 31, October 1935 S00W S90W 
Seattle, Distr. Engs. Office, 13, April 1949 S02W N88W 
Olympia, Hwy. Test Lab, 13, April 1949 S04W N86E 
Puget Sound, Olympia, Hwy. Test Lab, 29, April 1965 S04W N86E 
Parkfield, CA, Cholame, Shandon Array No. 2; 27, June 1966 N65E – 
Parkfield, Cholame, Shandon Array No. 5; 27, June 1966 N05W N85E 
Parkfield, Cholame, Shandon Array No. 8; 27, June 1966 N50E N40W 
Parkfield, Cholame, Shandon Array No. 12; 27, June 1966 N50E N40W 
Parkfield, Temblor, California No. 2; 27, June 1966 N65W S25W 
San Fernando, Pacoima Dam, 9, February 1971 S16E S74W 
San Fernando, 8244 Orion Blvd., 1st Floor, 9, February 1971 N00W S90W 
San Fernando250 E. First St., Basement, 9, February 1971 N36E N54W 
San Fernando, 445 Figueroa St., Sub Basement, 9, February 1971 N52W S38W 
San Fernando, Hollywood, Storage, Basement, 9, February 1971 S00W N90E 
San Fernando, Caltec, Seismological Lab, 9, February 1971 S00W S90W 
San Fernando, Caltech-Athenaeum, 9, February 1971 N00E N90W 
San Fernando, Caltech Millikan Lib., Basement, 9, February 1971 N00E N90E 
San Fernando, Jet Propulsion Lab, Basement, 9, February 1971 S82E S08W 
San Fernando, Fire Station, Storage Room, 9, February 1971 S60E S30W 
San Fernando, 15250 Ventura Blvd., Basement, 9, February 1971 N11E N79W 
Landers, Lucerne Valley, Station, 28, June 1992 N15W N80W 
Northridge, Pardee Station, 17, January 1994 S00E N90E 
Northridge, Rinaldi, Receiving, Station, 17, January 1994 N42W S48W 
Northridge, Sylmar, onverter, Station, 17, January 1994 N52E S38E 
Northridge, Sylmar, onverter, Station East, 17, January 1994 N18E N72W 
Northridge, Newhall-LA, County, Fire Station, 17, January 1994 N90E N00E 
Northridge, Arleta Fire, Station, 17, January 1994 N90E N00E 
Northridge, Tarzana-Cedar, Hill, Nuresery, 17, January 1994 N90E N00E 
Northridge, Sylmar-county, Hospital, 17, January 1994 N90E N00E 
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Table B.1 (Continued) 

Earthquake, site, date Component 
Record 1 Record 2 

Northridge, Santa Monica, City Hall, 17, January 1994 N90E N00E 
 

 




