
ABSTRACT

WANG, YINGHUI.. Dynamic Assignment of Peer Reviewers for Teams (Under the

direction of Dr. Edward F. Gehringer.)

Team peer review is a superset of individual review. We can consider individual

peer review as team peer review with only one student in each team. Although much

work has been done on peer review in an academic setting, little work has been done

on the strategies for mapping reviewers, especially in team peer review. In the usual

classroom setting, reviewers are mapped statically and randomly, e.g., instructors

collect submissions, shuffle them, and pass them back in the same class or next class,

The situation is more complicated when peer review is electronic and asynchronous.

If the mapping strategy is static, there is no guarantee that each reviewer assignment

is valid. A student might drop the course during the assignment period, and thus be

unable to complete the reviews (s)he is assigned. Or (s)he might not submit, leaving

his reviewers with nothing to review. Therefore, in this case some students would

review more, and some would review less than others.

In this work, two dynamic strategies are developed for team peer review. These

strategies are adapted to situations like students dropping the course or not doing their

assigned reviews when changed situations can be updated in time. In the first

strategy, each student is required to do the same number of reviews, and the number

of reviewers per team is balanced as nearly as possible. In the second strategy, each

team is required to have the same number of reviewers, and the number of reviews

per student is balanced as nearly as possible.

 DYNAMIC ASSIGNMENT OF PEER REVIEWERS FOR TEAMS

By

YINGHUI WANG

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Master of Science

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

Raleigh
2002

Approved by:

_____________________________ _____________________________

Chairman of Advisory committee

ii

DEDICATION

I would like to sincerely dedicate this thesis to my husband, Xiaobo, my mom and

brothers and sister. I’m so proud and lucky to have them as my family. They are always

there to love me and support me.

iii

BIOGRAPHY

Yinghui Wang was born in Shandong, China. Having achieved her undergraduate

degree in Chemistry from Shandong University, China, she began her graduate studies in

the University of Alabama in Huntsville. She majored in Chemistry, then in Computer

Science, in the meantime working as a teaching assistant. She transferred to North

Carolina State University in January of 2000, and began to pursue her master degree in

Computer Engineering. She has studied a number of outstanding courses and worked on

some interesting projects on Algorithm Design and Analysis, Java Programming, Object-

Oriented Techniques, Computer Networks, and Database. In the summer of 2000, she

joined in IBM as a Co-op software engineer. She worked on software development and

testing for Tivoli Internet Services Manager. The one year’s working experience in IBM

has rewarded her much in the capabilities of both software development and team

corporation. She would like to continue the computer-related research and development

work after graduation.

iv

ACKNOWLEDGMENTS

Words cannot express the gratitude and indebtedness I feel towards Dr. Edward

Gehringer. He has been my mentor throughout the past year, and has always given me so

much of advice, support and friendship. Without him, this thesis and research work

would have been impossible. Thank you so much Dr. Gehringer.

I am also grateful to Dr. Matthias F. Stallmann and Dr. George H. Wahl for their

kindness to be my committee members, their assistance and help.

I would like to sincerely thank my team in IBM: these include Toni Sweetland, David

Houck, Vindvashni P Tiwari, Steven M Krol, Karen Chaney, and Nathan Baker I am

grateful to them for their corporation, support and helps when we were working together

on such a great project.

Last but not the least, I wish to acknowledge the help of Gopal R Srinivasa and

Prabhas Ranjan Sinha, who provided information on the Peer Grading System.

v

TABLE OF CONTENTS

TABLE OF FIGURES ... vi

CHAPTER 1: INTRODUCTION .. 1

1.1. Introduction to Peer Review Mapping Strategies... 1

1.2. Thesis Outline .. 3

CHAPTER 2: A TEAM PEER REVIEW STRATEGY .. 4

2.1. Introduction to Team Peer Review Strategy .. 4

2.2. ERee Algorithm.. 6

2.2.1. Outline of ERee Algorithm.. 6

2.2.2. Example: How ERee Algorithm works ... 11

2.2.3. ERee Algorithm... 15

2.3. ERer Algorithm.. 22

2.3.1. Outline of ERer Algorithm .. 22

2.3.2. Outline of ERer Algorithm .. 24

CHAPTER 3: IMPLEMENTATION AND PERFORMANCE ANALYSIS OF DYNAMIC TEAM PEER-

REVIEW MAPPING ALGORITHMS ... 27

3.1. Implementation ... 27

3.2. Performance Analysis ... 28

3.2.1. Effect of Number of Students (O (n2)) .. 29

3.2.2. Effect of Number of Teams (O (t3)) .. 29

3.2.3. Effect of Number of Reviews ... 30

CHAPTER 4: SUMMARY AND CONCLUSION ... 31

Future work .. 34

References.. 36

vi

TABLE OF FIGURES

Figure 1: Execution time vs. number of students.. 29

Figure 2: Execution time vs. number of teams.. 29

Figure 3: Execution time vs. number of reviews .. 30

1

CHAPTER 1: INTRODUCTION

1.1. Introduction to Peer Review Mapping Strategies

Peer review in the classroom is becoming an increasingly important technique. In the

last ten years, much work has been performed on accessing usefulness of the technique

(students generally like it, and learn well from it) and its validity (students do in general

rate better work more highly, though some effort needs to be invested in the assessment

procedure to assure this). There have been over 100 papers published [GC 02]. However,

few published reports discuss appropriate strategies for matching reviewers with

reviewees [Gehr 01].

In his 1998 survey paper [Topp 98], Topping says, “How peer assessors and

assessees should best be matched ... is discussed surprisingly little in the literature.” In

most cases, he says, a single assessor was matched with an assessee [GC 02]. In other

cases, multiple assessors were used. The matching has been done along two dimensions:

blindly or non-blindly, electronically or non-electronically [Gehr 01].

Often, reviews are done blindly, e.g., by collecting student assignments in one class,

and passing them out to other students in the next class period, using an instructor-

assigned ID number to identify the students [KPD 95]. However, some projects use face-

to-face interaction, frequently called “peer revision” [Sty98, Sty 99]. In this case, of

course, review is not blind. In cases where electronic review is done, usually the review is

done blindly [Gehr 01], via an application such as the Daedalus Integrated Writing

Environment [Daed 97], but sometimes it is done non-blindly by e-mail [DB 97].

2

Most papers ignore any indication of how reviewers and the reviewees are matched;

others just say they are matched “randomly.” Random matching means that each time

the mapping is done, a different result (set of reviewee-reviewer pairings) will be

produced [Gehr 01]. Often, random matching is easy to do. In the last example I

mentioned, in one class, if papers are collected and passed out to other students, each

student will get a paper to review, and each student will be reviewed by another student.

However there is no such guarantee when collected papers are passed out in the next

class. Some students who are assigned to do review will not do them, either because they

just don’t do their homework, or because they drop the course [GC 02]. Some students

will not be reviewed by their classmates because their reviewer drops the course. This is a

major problem in a large class, and happens both to individual review and team review.

From the above statement, we can see the problems with “static” strategies of

mapping reviewers to reviewees, which map reviewers with their reviewees before the

review process begins. These problems can be solved if we use “dynamic” strategies,

which do not assign review work to a student until the student asks to do a review. Using

a dynamic strategy, no student will be assigned to review work that has not been

submitted. Conversely, a student who has submitted the work will be assigned a “live”

reviewer [GC 02].

Normally, when assignments are done by individuals, other individuals are assigned

to review them. When projects are done by teams, they may also be reviewed by

3

individuals; let us call this a team peer-review strategy. In this case, students are

assigned some number of other teams to review. Actually, individual peer review can be

considered to be a subset of team peer review, viz., review of one-member teams.

1.2. Thesis Outline

As described above, team peer review is a superset of individual peer review.

Effective strategies for dynamic team peer review are the topic of this thesis.

In Chapter 2, the team peer review mapping strategy is introduced, by giving two

algorithms: an algorithm where every student reviews the same number of teams (the

“ERee” algorithm), and an algorithm where each team has the same number of reviewers

(the “ERer” algorithm). Chapter 3 describes the implementation and analyzes the

performance of the ERee algorithm and ERer algorithm. Chapter 4 is the conclusion and

future work.

4

CHAPTER 2: A TEAM PEER REVIEW STRATEGY

Teamwork is popular in classes, as is peer review. Therefore, team review mapping

plays an important role. Strategies for team peer review are an extension of strategies for

individual peer review. In individual peer review, each student has his/her own

submission, and the number of reviewers is equal to the number of reviewees. In team

peer review, the numbers are different. Therefore compared with individual peer review,

there are more factors to be considered, and it’s more difficult to design a team peer-

review strategy.

2.1. Introduction to Team Peer Review Strategy

Team peer review is used in an environment where students work in teams.

“Mapping” a reviewer means assigning one student to review one “team.” A constraint

on this strategy is that no student will review his/her own team.

In the case of individual peer review, if each author is assigned r reviewers, then

each reviewer will have r authors to review. When multi-member teams are being

reviewed, the number of reviews a team gets is not equal to the number of reviews done

by each reviewer. In fact, depending on the size of the teams and the number of

reviewers, it may not be possible both to have each reviewer review the same number of

teams and have each team reviewed by the same number of reviewers. For example, in a

class with 30 students working in 7 teams, if we want each student to have 3 teams to

review, the number of reviewers each team has is (30×3/7), which is not an integer. That

means each team can’t have the same number of reviewers. Similarly, if each team is

5

required to be reviewed by 8 students, the number of reviews done by each student is

(7×8/30), which means each student needs to review one or two teams.

Thus, with team review, we have two algorithms for these situations. When each

reviewer is required to review the same number of teams, the ERee (equal number of

reviewees) algorithm is used. On the other hand, when each team needs to get the same

number of reviewers, it’s time for the ERer (equal number of reviewers) algorithm. These

two algorithms are explained in the next section of this chapter. The following two

definitions are suitable to both of the algorithms.

Definition 1. A mapping assignment of a reviewer to a team is valid if it does not cause a

reviewer to review his/her own team, and leaves sufficient valid mapping assignments for

all future reviewers.

Definition 2. A mapping assignment is invalid if it does not leave enough valid mapping

assignments for all future reviewers, or it causes the reviewer to review his/her own team.

If previous mapping assignments are all valid, we are guaranteed to be able assign a

valid mapping to the next reviewer, and so forth, until all reviewers have been mapped to

the appropriate number of teams to review.

6

2.2. ERee Algorithm

2.2.1. Outline of ERee Algorithm

As we said on the above, ERee stands for equal number of reviewees, which means

that each reviewer will review the same number of teams.

Let’s assume that in one class, the number of students is n, the number of teams is t,

and each student is required to review r teams. Therefore, t should be less or equal to n,

and we also assume r is less or equal to t (that’s because the reviewer can’t review his/her

own team).

A matrix is used in ERee Algorithm. In this matrix, each row is for a particular

reviewer, and each column is for a particular team (submission). Let’s call this matrix

team_review[1:n][1:t]. The status of one mapping assignment is shown by the

corresponding value in this matrix. A valid assignment is represented by “1”. An invalid

assignment is represented by “0”, and “–1” means a reviewer is not be mapped to this

assignment yet. For example,

• team_review[i][j] = 1 means that team j’s submission is assigned to student i.

• team_review[i][j] = 0 means that team j’s submission cannot be reviewed by student i,

and

• team_review[i][j] = –1 means that team j’s submission can be assigned to student i to

review, but we have not made this mapping assignment yet.

7

Definition 3.1. A mapping assignment of a reviewer to a team is valid in the ERee

algorithm if each team is reviewed by the same number of individuals, as nearly as

possible.

To meet the requirement of Definition 3.1, three numbers are needed, the maximum

number of reviewers that one team can have (max), the minimum number of reviewers

that one team can have (min), and the number of teams (num_max) which have max

reviewers. All of these three variables are calculated by the algorithm. To make each

team be reviewed by the same number of individuals, as nearly as possible, we assume

max is equal to min if num_max is equal to 0; otherwise, max is 1 larger than min.

The basic logic of this algorithm is to prevent—

• the number of “1”s from becoming larger than r in any row, and

• the number of “1”s in any column becoming greater than max;

that is, to prevent the mapping from producing an invalid assignment. Similarly, the number of

“0”s cannot be greater than (t – r) in any row, and the number of “0”s in any column can’t be

greater than (n – min).

Definition 3.2. In the ERee Algorithm, one row/column has enough “1”s if the number

of “1”s in this row/column has reached the limit. Each row’s limit is r, and each column’s

limit is max if the number of teams, which have max reviewers, is smaller than num_max;

otherwise, this number is min.

8

We know in ERee Algorithm, each student needs to review r teams, so the limit

of each row is r. In each column, if there are already enough teams (num_max teams) that

have max reviewers, this team can only have min reviewers; that is, there will be, min

“1”s in this column.

Definition 3.3. In the ERee Algorithm, one row has enough “0”s if number of zeros in

this row has reached (t – r), and one column has enough “0”s if number of “0”s in this

column has reached (n – max), or (n – min) when max reviewers is not acceptable for this

team (i.e., there are already num_max teams that have max reviewers).

In ERee algorithm, each student should review r teams (there should be r “1”s in

each row). Therefore, the number of “0”s in each row should be (t – r). From definition

3.3, we know there should be max or min “1”s in each column, and the number of “0”s in

this column should be (n – max) or (n – min).

If any row or column has enough “1”s, no more mapping assignments are assigned

to this reviewer or team, so the remaining elements in this row or column that are “–1”

should now be set to “0”. Similarly, if there are enough “0”s in any row or column, the

remaining elements in the same row or column that are “–1” should now be set to “1”.

If an element is changed in a matrix, both of its corresponding row and column are

affected. Therefore, after changing a value in a row, we need to check the corresponding

column and vice versa to make sure this change doesn’t create an invalid value in another

9

row or column. So, after this algorithm sets a value in a row/column, it checks the

corresponding column/row and makes a change if necessary. If the algorithm cannot

make the required change without violating some other constraint, it undoes changes

already made pursuant to this mapping assignment, and chooses another of the possible

mapping assignments.

Since students cannot review their own team, at the beginning, we set each element

representing a student and his/her own team “0”. For example, if in a class student i

works in team ti, we set team_review[i][ti] = 0. Other elements in this matrix are all

initialized to “-1”.

Let’s use ti to represent the team of the ith student.

Definition 4. A mapping is valid if no row or column has too many ones “1”s, and no

row or column has too many “0”s, and if team_review[i][ti] = 0 (for i = 1, 2, …, n).

We will prove that there is a legal mapping assignment for the ith student, assuming

that the (i–1)st student’s mapping assignment has been done successfully (i = 2,…, n–1,

n).

When student i asks to do a review, we search the ith row and select an element

whose value is “–1”. Then we check whether the submission corresponding to this

element has been made; if so, we set the value of this element to “1”; if not, we select

10

another element. Let’s say we select team_review[i][j]. There are two types of check we

will do after we set team_review[i][j] = 1.

• First, we count the number of “1”s in this row. If this row has enough “1”s, we

need to set all the remaining “–1” elements to “0”s (this student has enough

reviewees, so no more reviewees are needed). For each “–1” element (say, in column

j′) set to 0 in this row, we check the jth column. Since the number of “1”s has not

been changed, we only check the number of “0”s in the jth column. If it has enough

“0”s, the remaining elements with value “–1” in the jth column will be set to “1” (all

of the remaining students are set to review jth team, or this team won’t have sufficient

reviewers).

• The second type of check is to check the number of “1”s in the jth column, since

we have set review[i][j] = 1. If the number of “1”s in the jth column is not enough, it

is valid. If the jth column has enough “1”s already (this means the jth team has

enough reviewers), further action is needed. First, since no more reviewers are

needed for this team j, we need to change all the remaining “–1”s in the jth column to

“0”s. Let’s say the row number of such an element is i′. Then, we check ith row to

see whether it is still a valid mapping assignment. Here only the number of “0”s is

changed. So we check whether the number of “0”s has exceeded (t – r).

Before an element is changed, we need to back up its corresponding row and column

in case an invalid mapping assignment is attempted. If all of the above checks are valid, a

11

successful mapping assignment, review[i][j] = 1, is made. If any of the above checks

fails, then our current mapping assignment, team_review[i][j] = 1, is invalid. What we

need to do is to set review[i][j] = 0, and restore all the changed elements to “–1” and try

another element in the ith row.

The following section is an example, which shows how this process takes place.

2.2.2. Example: How ERee Algorithm works

Suppose there are six students in one class, S1, S2, S3, S4, S5,
and S6. Each student is assigned two reviews. These six
students are in four teams, T1, T2, T3, and T4, . T1 = {S1, S2};
T2 = {S3, S4}; T3 = {S5}; T3 = {S6}.

That is, n=6, r=2, t=4, and min=n×r/t=3=max. We assume
that all submissions are valid and we assign one review to
a student when that particular student requests to do a
review.

We assume that students request to do reviews in the
sequence 0, 1, 2, 3, 4, 5, that is, student 0 requests to do the
review first, student 1 requests second, student 2 requests
third and so on.

Initially, the matrix review is as shown at the right.

First request: When student 0 requests to do a review,
we randomly pick one of the –1s in row 0 of the review
matrix. Let’s say we pick team_review[0][1]. This
assigns student 0 to review team 1. Having done this,
we set team_review[0][1] = 1.

Values in row_zeros and col_zeros change
appropriately.

In the diagram to the left, values that have changed are
shown in boldface.

0
0

–1 –1

–1
–1
0

–1
teams being reviewed
team_review

2

0 0

col_zeros
col_ones

1
1
1
1

0
0

0

row_
zeros

row_
ones

St
ud

en
t d

oi
ng

 re
vi

ew
in

g

–1 –1 –1

–1

–1 –10
–1 –1

–1

–1
–1

–1
0

1 1

1
1

0
0

–1
0

0

2

0 0

0
0

–1 –1

–1
–1
0

–1
teams being reviewed
team_review

2

0 0

col_zeros
col_ones

1
1
1
1

0
0

0

row_
zeros

row_
ones

St
ud

en
t d

oi
ng

 re
vi

ew
in

g

–1 –1 –1

–1

–1 –10
–1 –1

–1

–1
–1

–1
0

1 1

1
1

0
0

–1
0

0

2

0 0

0
0

–1 –1

1
–1
0

–1
teams being reviewed
team_review

2

0 0

col_zeros
col_ones

1
1
1
1

0
0

0

row_
zeros

row_
ones

St
ud

en
t d

oi
ng

 re
vi

ew
in

g

–1 –1 –1

–1

–1 –10
–1 –1

–1

–1
–1

–1
0

1 1

1
1

0
0

–1
0

1

2

1 0

0
0

–1 –1

1
–1
0

–1
teams being reviewed
team_review

2

0 0

col_zeros
col_ones

1
1
1
1

0
0

0

row_
zeros

row_
ones

St
ud

en
t d

oi
ng

 re
vi

ew
in

g

–1 –1 –1

–1

–1 –10
–1 –1

–1

–1
–1

–1
0

1 1

1
1

0
0

–1
0

1

2

1 0

12

Second request: Now, let’s assume that student 0
asks to do another review. We pick team2, and set
team_review[0][2] = 1.

Values in row_zeros and col_zeros change
appropriately.

Now, the constraint vectors change to
row_ones[0] = 2 , col_ones[2] = 1.

Since row_ones[0] = t − r = 2, student 0 cannot
review anyone other than his current
reviewees, and thus team_review[0][3] = 0 is
set.

Third request: Now, it’s the turn of student 1. We
pick team 1 and set team_review[1][1] = 1.

Fourth request: Then, let’s assume that student
1 asks to do another review. We pick team2, and
set team_review[1][2] = 1.

Now, the constraint vectors change to
row_ones[1] = 2 , col_ones[2] = 2.

0
0

–1 –1

1
–1
0

1
teams being reviewed
team_review

2

0 1

col_zeros
col_ones

1
1
1
1

0
0

0

row_
zeros

row_
ones

St
ud

en
t d

oi
ng

 re
vi

ew
in

g

–1 –1 –1

–1

–1 –10
–1 –1

–1

–1
–1

–1
0

1 1

1
1

0
0

–1
0

2

2

1 0

0
0

–1 –1

1
–1
0

1
teams being reviewed
team_review

2

0 1

col_zeros
col_ones

1
1
1
1

0
0

0

row_
zeros

row_
ones

St
ud

en
t d

oi
ng

 re
vi

ew
in

g

–1 –1 –1

–1

–1 –10
–1 –1

–1

–1
–1

–1
0

1 1

1
1

0
0

–1
0

2

2

1 0

0
0

–1 –1

1
–1
0

1
teams being reviewed
team_review

2

0 1

col_zeros
col ones

2
1
1
1

0
0

0

row_
zeros

row_
ones

St
ud

en
t d

oi
ng

 re
vi

ew
in

g

–1 –1 –1

–1

–1 –10
–1 –1

–1

0
–1

–1
0

1 2

1
1

0
0

–1
0

2

2

1 0

0
0

–1 –1

1
–1
0

1
teams being reviewed
team_review

2

0 1

col_zeros
col ones

2
1
1
1

0
0

0

row_
zeros

row_
ones

St
ud

en
t d

oi
ng

 re
vi

ew
in

g

–1 –1 –1

–1

–1 –10
–1 –1

–1

0
–1

–1
0

1 2

1
1

0
0

–1
0

2

2

1 0

0
0

–1 –1

1
1
0

1
teams being reviewed
team_review

2

0 1

col_zeros
col_ones

2
1
1
1

0
1

0

row_
zeros

row_
ones

St
ud

en
t d

oi
ng

 re
vi

ew
in

g

–1 –1 –1

–1

–1 –10
–1 –1

–1

0
–1

–1
0

1 2

1
1

0
0

–1
0

2

2

2 0

0
0

–1 –1

1
1
0

1
teams being reviewed
team_review

2

0 1

col_zeros
col_ones

2
1
1
1

0
1

0

row_
zeros

row_
ones

St
ud

en
t d

oi
ng

 re
vi

ew
in

g

–1 –1 –1

–1

–1 –10
–1 –1

–1

0
–1

–1
0

1 2

1
1

0
0

–1
0

2

2

2 0

0
0

–1 –1

1
1
0

1
teams being reviewed
team_review

2

0 2
col_zeros
col_ones

2
1
1
1

0
2

0

row_
zeros

row_
ones

St
ud

en
t d

oi
ng

 re
vi

ew
in

g

–1 –1 –1

1

–1 –10
–1 –1

–1

0
–1

–1
0

1 2

1
1

0
0

–1
0

2

2

2 0

0
0

–1 –1

1
1
0

1
teams being reviewed
team_review

2

0 2
col_zeros
col_ones

2
1
1
1

0
2

0

row_
zeros

row_
ones

St
ud

en
t d

oi
ng

 re
vi

ew
in

g

–1 –1 –1

1

–1 –10
–1 –1

–1

0
–1

–1
0

1 2

1
1

0
0

–1
0

2

2

2 0

13

Since row_ones[1] = t − r = 2, student 1 cannot
review anyone other than his current reviewees,
and thus team_review[1][3] = 0 is set.

Now, another boundary condition is met, that is
col_zeros[3] = 3. Three of the six students are
now ineligible to review team 3, so the other three
students must review this student, according to
min=max=3. We set team_review[2][3] = 1,
team_review[3][3] = 1, and team_review[4][3] =
1.

Fifth request: Now, it’s the turn of student 2. We
pick team 0 and set team_review[2][0] = 1

Now, the constraint vectors change to
row_ones[2] = 2 , col_ones[0] = 1.

.

Therefore we can set the other elements with
value of “–1” to “0” in row 2, because
row_ones[2] = 2 = r.

That is, team_review[2][2] = 0

0
0

–1 –1

1
1
0

1
teams being reviewed
team_review

2

0 2

col_zeros
col_ones

2
2
1
1

0
2

0

row_
zeros

row_
ones

St
ud

en
t d

oi
ng

 re
vi

ew
in

g

–1 –1 –1

1

–1 –10
–1 –1

–1

0
0

–1
0

1 3

1
1

0
0

–1
0

2

2

2 0

0
0

–1 –1

1
1
0

1
teams being reviewed
team_review

2

0 2

col_zeros
col_ones

2
2
1
1

0
2

0

row_
zeros

row_
ones

St
ud

en
t d

oi
ng

 re
vi

ew
in

g

–1 –1 –1

1

–1 –10
–1 –1

–1

0
0

–1
0

1 3

1
1

0
0

–1
0

2

2

2 0

0
0

–1 –1

1
1
0

1
teams being reviewed
team_review

2

0 2

col_zeros
col_ones

2
2
1
1

1
2

1

row_
zeros

row_
ones

St
ud

en
t d

oi
ng

 re
vi

ew
in

g

–1 –1 –1

1

–1 –10
–1 –1

1

0
0

1
0

1 3

1
1

1
0

1
0

2

2

2 3

0
0

–1 –1

1
1
0

1
teams being reviewed
team_review

2

0 2

col_zeros
col_ones

2
2
1
1

1
2

1

row_
zeros

row_
ones

St
ud

en
t d

oi
ng

 re
vi

ew
in

g

–1 –1 –1

1

–1 –10
–1 –1

1

0
0

1
0

1 3

1
1

1
0

1
0

2

2

2 3

0
0
1 –1

1
1
0

1
teams being reviewed
team_review

2

1 2

col_zeros
col_ones

2
2
1
1

2
2

1

row_
zeros

row_
ones

St
ud

en
t d

oi
ng

 re
vi

ew
in

g

–1 –1 –1

1

–1 –10
–1 –1

1

0
0

1
0

1 3

1
1

1
0

1
0

2

2

2 3

0
0
1 –1

1
1
0

1
teams being reviewed
team_review

2

1 2

col_zeros
col_ones

2
2
1
1

2
2

1

row_
zeros

row_
ones

St
ud

en
t d

oi
ng

 re
vi

ew
in

g

–1 –1 –1

1

–1 –10
–1 –1

1

0
0

1
0

1 3

1
1

1
0

1
0

2

2

2 3

0
0
1 0

1
1
0

1
teams being reviewed
team_review

2

1 2

col_zeros
col_ones

2
2
2
1

2
2

1

row_
zeros

row_
ones

St
ud

en
t d

oi
ng

 re
vi

ew
in

g

–1 –1 –1

1

–1 –10
–1 –1

1

0
0

1
0

2 3

1
1

1
0

1
0

2

2

2 3

0
0
1 0

1
1
0

1
teams being reviewed
team_review

2

1 2

col_zeros
col_ones

2
2
2
1

2
2

1

row_
zeros

row_
ones

St
ud

en
t d

oi
ng

 re
vi

ew
in

g

–1 –1 –1

1

–1 –10
–1 –1

1

0
0

1
0

2 3

1
1

1
0

1
0

2

2

2 3

14

Sixth request: Now, student 3 asks to do one review.
We pick team0, and set team_review[3][0] = 1.

Now, the constraint vectors change to
row_ones[3] = 2 , col_ones[0] = 2.

Therefore we can set the other elements with
value of “–1” to “0” in row 3, because
row_ones[3] = 2 = r.

That is, team_review[3][2] = 0

Now, the constraint vectors change to
row_zeros[3] = 2 , col_zeros[2] = 3

We can see that col_zeros[2] = 3 = t – max, so we can
set the other elements with value of “–1” to “1” in
column 2.

That is, team_review[5][2] = 1

Now, the constraint vectors change to
row_ones[5] = 1 , col_ones[2] = 3

Seventh request: Now, student 4 asks to do one
review. We pick team1, and set
team_review[4][1] = 1.

Now, the constraint vectors change to
row_ones[4] = 2 , col_ones[1] = 3.

0
0
1 0

1
1
0

1
teams being reviewed
team_review

2

2 2

col_zeros
col_ones

2
2
2
1

2
2

2

row_
zeros

row_
ones

St
ud

en
t d

oi
ng

 re
vi

ew
in

g

–1 –1 –1

1

1 –10
–1 –1

1

0
0

1
0

2 3

1
1

1
0

1
0

2

2

2 3

0
0
1 0

1
1
0

1
teams being reviewed
team_review

2

2 2

col_zeros
col_ones

2
2
2
1

2
2

2

row_
zeros

row_
ones

St
ud

en
t d

oi
ng

 re
vi

ew
in

g

–1 –1 –1

1

1 –10
–1 –1

1

0
0

1
0

2 3

1
1

1
0

1
0

2

2

2 3

0
0
1 0

1
1
0

1
teams being reviewed
team_review

2

2 2

col_zeros
col_ones

2
2
2
2

2
2

2

row_
zeros

row_
ones

St
ud

en
t d

oi
ng

 re
vi

ew
in

g

–1 –1 –1

1

1 00
–1 –1

1

0
0

1
0

3 3

1
1

1
0

1
0

2

2

2 3

0
0
1 0

1
1
0

1
teams being reviewed
team_review

2

2 2

col_zeros
col_ones

2
2
2
2

2
2

2

row_
zeros

row_
ones

St
ud

en
t d

oi
ng

 re
vi

ew
in

g

–1 –1 –1

1

1 00
–1 –1

1

0
0

1
0

3 3

1
1

1
0

1
0

2

2

2 3

0
0
1 0

1
1
0

1
teams being reviewed
team_review

2

2 3
col_zeros
col_ones

2
2
2
2

2
2

2

row_
zeros

row_
ones

St
ud

en
t d

oi
ng

 re
vi

ew
in

g

–1 –1 1

1

1 00
–1 –1

1

0
0

1
0

3 3

1
1

1
1

1
0

2

2

2 3

0
0
1 0

1
1
0

1
teams being reviewed
team_review

2

2 3
col_zeros
col_ones

2
2
2
2

2
2

2

row_
zeros

row_
ones

St
ud

en
t d

oi
ng

 re
vi

ew
in

g

–1 –1 1

1

1 00
–1 –1

1

0
0

1
0

3 3

1
1

1
1

1
0

2

2

2 3

0
0
1 0

1
1
0

1
teams being reviewed
team_review

2

2 3

col_zeros
col_ones

2
2
2
2

2
2

2

row_
zeros

row_
ones

St
ud

en
t d

oi
ng

 re
vi

ew
in

g

–1 –1 1

1

1 00
–1 1

1

0
0

1
0

3 3

1
1

2
1

1
0

2

2

3 3

0
0
1 0

1
1
0

1
teams being reviewed
team_review

2

2 3

col_zeros
col_ones

2
2
2
2

2
2

2

row_
zeros

row_
ones

St
ud

en
t d

oi
ng

 re
vi

ew
in

g

–1 –1 1

1

1 00
–1 1

1

0
0

1
0

3 3

1
1

2
1

1
0

2

2

3 3

15

Then we can set the all elements with value of “–1” in
row 4 to “0”, because row_ones[4] = 2 = r, and set the
all elements with value of “–1” in column 1 to “0”,
because col_ones[1] = 3 = min.

Now, the constraint vectors change to
row_zeros[4] = 2, col_zeros[0] = 3, row_zeros[5] = 2,
col_zeros[1] = 3

Now, let’s see the only element whose value is
“–1”, team_review[5][0]. Because col_zeros[0] =
3, this algorithm sets team_review[5][0] = 1.

From this example, we can see in a class with six students, when each student is

required to have two reviews, only seven assignment steps are needed. Some reviews are

assigned to students because they are the only choices.

2.2.3. ERee Algorithm

In this section is the realization of ERee Algorithm outlined in section 3.2.1. First of

all, let’s see the list of important variables.

• team_review[][]: the basic matrix used to hold the mapping;

• row_zeros[]: keeps track of the number of “0”s in each row;

0
0
1 0

1
1
0

1
teams being reviewed
team_review

3

2 3

col_zeros
col_ones

2
2
2
2

2
2

2

row_
zeros

row_
ones

St
ud

en
t d

oi
ng

 re
vi

ew
in

g

–1 0 1

1

1 00
0 1

1

0
0

1
0

3 3

2
2

2
1

1
0

2

3

3 3

0
0
1 0

1
1
0

1
teams being reviewed
team_review

3

2 3

col_zeros
col_ones

2
2
2
2

2
2

2

row_
zeros

row_
ones

St
ud

en
t d

oi
ng

 re
vi

ew
in

g

–1 0 1

1

1 00
0 1

1

0
0

1
0

3 3

2
2

2
1

1
0

2

3

3 3

0
0
1 0

1
1
0

1
teams being reviewed
team_review

3

2 3

col_zeros
col_ones

2
2
2
2

2
2

2

row_
zeros

row_
ones

St
ud

en
t d

oi
ng

 re
vi

ew
in

g

1 0 1

1

1 00
0 1

1

0
0

1
0

3 3

2
2

2
2

1
0

2

3

3 3

0
0
1 0

1
1
0

1
teams being reviewed
team_review

3

2 3

col_zeros
col_ones

2
2
2
2

2
2

2

row_
zeros

row_
ones

St
ud

en
t d

oi
ng

 re
vi

ew
in

g

1 0 1

1

1 00
0 1

1

0
0

1
0

3 3

2
2

2
2

1
0

2

3

3 3

16

• row_ones[]: keeps track of the number of “1”s in each row;

• col_zeros[]: keeps track of the number of “0”s in each column;

• col_ones[]: keeps track of the number of “1”s in each column ;

• cells_changed[]:keeps track of elements changed during one iteration (each

element of cells_changed is a structure to keep track of the position of the original

element, which records the row_id and col_id of the element);

• num_changed: number of elements changed during one iteration;

• min: the minimum # of reviewers that one team can have;

• max: the maximum # of reviewers that one team can have;

• num_max: the number of teams witch can have the maximum number of

reviewers.

In this algorithm, let’s set num_max = r × n mod t, min = r × n/t, and max = min if

num_max is equal to zero, otherwise, max = r × n/t + 1.

Here is the ERee algorithm, which assign student i to do a review.

initialize matrix, team_review[n][t];
access the file storing the mapping information and put preexisting “1”s and “0”s

into the matrix team_review[][];
calculate values for row_zeros[], row_ones[], col_zeros[], col_ones[] based on

team_review[][];
if (row_enough_ones(i) = = 1)

return; //This student has enough reviews.
back up this row (team_review[i][*]);
for each j such that team_review[i][j] = = “–1” {

back up this column team_review[*][j];
back up row_zeros[], row_ones[], col_zeros[], col_ones[];
num_changed = 0;

17

team_review[i][j] = 1;
row_ones[i]++;
col_ones[j]++;
if (col_enough_ones(j) = = 1)

check_col(j); // Would it be possible for i to review team j?

if check_col(j) returned successful && row_enough_ones(i) = = 1 {
// Back up the cells which may need to be restored later if this

 choice is invalid
for each remaining “–1” in this row (say its column id is j’){

team_review[i][j′] = 0;
row_zeros[i]++;
col_zeros(j′)++;
//If we do this assignment, will it force some students to do
//1too many reviews?
if (col_enough_zeros(j′) = =1) {

if check_zeros_col(j′) is “unsuccessful”
 break; // and try another value for j

}
}

}

if any of the above checks (check_col(j) or check_zeros_col(j′)) was
“unsuccessful” {
restore the backed-up team and backed-up column;
according to the row_id and col_id in the cell_changed[], set these

elements to “–1”;
restore row_zeros[], row_ones[], col_zeros[], col_ones[];
team_review[i][j] = 0;
row_zeros[i]++;
col_zeros[j]++;

else break; // we’ve found a reviewee j.
}

}
return;

Here are 8 subroutines used by the above procedure:

1). check_row(int i): there is enough “1”s in ith row, so set remaining “-1”s in

this row to “0”s

2). check_zeros_row(int i): there are enough “0”s in ith row, so set remaining

“-1”s in this row to “1”s

18

3). check_col(int j)): there is enough “1”s in jth column, so set remaining “-1”s

in this column to “0”s

4). check_zeros_col(int j): there are enough “0”s in jth column, so set remaining

“-1”s in this column to “1”s

5). row_enough_ones(int i): check whether there is enough “1”s in ith row

6). row_enough_zeros(int i): check whether there are enough “0”s in ith row

7). col_enough_ones(int j): check whether there is enough “1”s in jth column

8). col_enough_zeros(int j): check whether there are enough “0”s in jth column

The last four subroutines are for the flexibility of this team review mapping

strategy. In the following part of this chapter, we can see that the only difference between

ERee Algorithm and the ERer algorithm is in the difference of those last four

subroutines. After these four functions are introduced, all of the other functions above,

including the main function, can be used in ERer algorithm. It makes the functions very

flexible to implement.

check_row(int i) {
// Precondition: This reviewer has enough teams to review. So, set
// remaining “–1”s to “0”s

for each remaining “–1” in this row (say its column ID is j) {
cells_changed[num_changed].row_id = i;
cells_changed[num_changed].col_id = j;
num_changed ++;
team_review[i][j] = 0;
row_zeros[i]++;
col_zeros[j]++;
if (col_enough_zeros(j) = = –1)

return “unsuccessful”;
else if (col_enough_zeros(j) = = 1)

// Will this cause a reviewer to do too many reviews?
check_zero_col(j);
if (check_zero_col(j) returns “unsuccessful”)

19

return “unsuccessful”;
}
return “successful”

}

check_zeros_row(int i) {
// Precondition: This reviewer has (n - r) invalid mapping assignments. So, set
// remaining “–1”s to “1”s

for each remaining “–1” in this row(say column ID is j) {
cells_changed[num_changed].row_id = i;
cells_changed[num_changed].col_id = j;
num_changed ++;
team_review[i][j] = 1;
row_ones[i]++;
col_ones[j]++;
if (col_enough_ones(j) = = –1)

return “unsuccessful”;
else if (col_enough_ones(j) = = 1)

// Will this cause a reviewer to do too few reviews?
check_col(j);
if check_ col(j) return “unsuccessful”

return “unsuccessful”;
}
return “successful”

}

check_col(int j) {
// Precondition: All reviewers for this submission have been mapped. So, set
// remaining “–1”s to “0”s

for each remaining “–1” in this column (say row ID is i) {
cells_changed[num_changed].row_id = i;
cells_changed[num_changed].col_id = j;
num_changed++;
team_review[i][j] = 0;
row_zeros[i]++;
col_zeros[j]++;
if (row_enough_zeros(i) = = –1)

return “unsuccessful”;
else if (row_enough_zeros(i) = = 1)

// Will this cause a team to have too many reviewers?
check_zeros_row(i);
if check_zeros_row(i) return “unsuccessful”

return “unsuccessful”;
}
return “successful”;

}

20

check_zeros_col(int j) {
// Precondition: This reviewee already has enough impossible choices. So, set
// remaining “–1”s to “1”s

for each remaining “–1” in this column (say row ID is i) {
cells_changed[num_changed].row_id = i;
cells_changed[num_changed].col_id = j;
num_changed++;
team_review[i][j] = 1;
row_ones[i]++;
col_ones[j]++;
if (row_enough_ones(i) = = –1)

return “unsuccessful”;
else if (row_enough_ones(i) = = 1)

// Will this cause a team to have too few reviewers?
check_row(i);
if (check_row(i) return “unsuccessful”)

return “unsuccessful”;
}
return “successful”;

}

row_enough_ones(int i) {
// This function is used to check whether student i has enough valid reviewees or
// not
// return “1” if # of “1”s in row i is enough
// return “–1” if # of “1”s in row i is more than enough
// return “0” otherwise

if(row_ones[i] = = r)
return 1;

else if(row_ones[i] > r)
return –1;

else
return 0;

}

row_enough_zeros(int i) {
// This function is used to check whether student i has enough invalid reviewees
// or not
// return “1” if # of “0”s in row i is enough
// return “–1” if # of “0”s in row i is more than enough
// return “0” otherwise

if(row_zeros[i] = = t - r)
return 1;

else if(row_zeros[i] > t - r)
return –1;

21

else
return 0;

}

col_enough_ones(int j) {
// This function is used to check whether team j has enough valid reviewers or not
// return “1” if # of “1”s in column j is enough
// return “–1” if # of “1”s in column j is more than enough
// return “0” otherwise

count # of column j’ with col_ones[j’] = = max; (Say the number is count)
if (count = = num_max) {
// there are enough teams have been reviewed max times

if (col_ones[j] = = min)
return 1;

else if (col_ones[j] > min)
return –1;

else return 0;
}
if (count < num_max) {
// there are not enough teams have been reviewed max times

if (col_ones[j] = = max)
return 1;

else if (col_ones[j] > max)
return –1;

else return 0;
return –1;
}

}

col_enough_zeros(int j) {
// This function is used to check whether team j has enough invalid reviewers or
// not
// return “1” if # of “0”s in column j is enough
// return “–1” if # of “0”s in column j is more than enough
// return “0” otherwise

count # of column j’ with col_zeros[j’] = = n - min; (Say the number is
count)

if (count = = t – num_max) {
// there are enough teams have (n – min) number of students that can’t
// review this submission

if (col_zeros[j] = = n-max)
return 1;

else if (col_zeros[j] > n- max)
return –1;

else return 0;
}

22

if (count < t – num_max) {
// there are not enough teams have (n – min) number of students that can’t
// review this submission

if (col_zeros[j] < n-min)
return 1;

else if (col_zeros[j] > n- min)
return –1;

else return 0;
}
return –1;

}

2.3. ERer Algorithm

2.3.1. Outline of ERer Algorithm

Now after we have described the ERee Algorithm, let’s take a look at the ERer

Algorithm. ERer stands for equal number of reviewers, which means that each team

needs to have the same number of reviewers.

The basic idea the of ERer Algorithm is similar to the ERee Algorithm. The matrix

we used in ERee Algorithm, team_review[1:n][1:t], is also used in the ERer Algorithm.

Let’s assume that in the class we mentioned above, the number of students is still n, and

the number of teams is still t. What has changed is that each team needs r reviewers.

Definition 1, Definition 2, and Definition 4 are valid for the ERer Algorithm.

Definition 5. A mapping assignment of a reviewer to a team is valid in the ERer

Algorithm if each student has the same number of reviewees, as nearly as possible.

23

To meet the requirement of Definition 5, three numbers are needed, the maximum

number (max) of reviewees that one student can have, the minimum number (min) of

reviewees, and the number of students (num_max) who can have max teams to review. To

make sure each team is reviewed by the same number of individuals, as nearly as

possible, we assume max is equal to min if num_max is equal to 0; otherwise, max is 1

larger than min.

The basic logic of this algorithm is to prevent the number of “1”s becoming larger

than r in any column, and the number of “1”s in any row becoming greater than max.

Otherwise, it would be an invalid mapping assignment. Similarly, the number of “0”s

cannot be greater than (n – r) in any column, and the number of “0”s in any column can’t

be greater than (t – min).

Definition 6. In the ERer Algorithm, one row/column has enough “1”s if the number of

“1”s in this row/column has reached the limit. Each row’s limit is max if the number of

students who have max reviewees is smaller than num_max; otherwise, this number is

min, and each column’s limit is r.

Definition 7. In the ERer Algorithm, we say that one row has enough “0”s if the number

of “0”s in this row reaches (t – max), or (t – min) when max reviewers is not acceptable

for this student (there are already num_max students that have max reviewees), and one

column has enough “0”s if the number of zeros in this column reaches (n – r).

24

2.3.2. Outline of ERer Algorithm

All of the variables and functions in the ERer Algorithm are the same as those in

ERer Algorithm, except four functions and the initial values of three important variables.

Here are those three important variables.

• min: the minimum # of teams that one student can review;

• max: the maximum # of teams that one student can review;

• num_max: the number of students who can review the maximum number of teams.

In this algorithm, let’s set num_max = r × t mod n, min = r × t/n, and max = min if

num_max is equal to zero; otherwise, max = r × t/n + 1.

As we said above, there are four functions that make the ERer algorithm different

from the ERee algorithm. These four functions are to check whether “1”s or “0”s in one

row/column are enough. We know, the difference between ERee Algorithm and ERer

Algorithm is that ERee Algorithm is for a situation where each student has the same

number of reviewees, but the ERer Algorithm is for the situation where each team has the

same number of reviewers. That means, in ERee Algorithm, each row should have the

same number of “1s”/“0”s with other rows (r), but each column might have a different

number of “1”s/“0”s with other column (min or max). In ERer Algorithm, each row might

have a different number of “1s”/“0”s than other rows (min or max “1”s in each row), but

25

each column should have the same number of “1”s/“0”s as other columns (r “1”s in each

column). Therefore, there are different standards to determine whether one row/column

has enough “0”s or “1”s in the ERee Algorithm and ERer Algorithm, and that’s why

those four functions are different in the ERee Algorithm and the ERer Algorithm.

row_enough_ones(int i) {
// This function is used to check whether student i has enough valid reviewees or
// not
// return “1” if # of “1”s in row i is enough
// return “–1” if # of “1”s in row i is more than enough
// return “0” otherwise

count # of row i′ with row_ones[i′] = = max; (Say the number is count)
if (count = = num_max) {
// there are enough students have reviewed max teams

if (row_ones[i] = = min)
return 1;

else if (row_ones[i] > min)
return –1;

else return 0;
}
if (count < num_max) {
// there are not enough students have reviewed max teams

if (row_ones[i] = = max)
return 1;

else if (row_ones[i] > max)
return –1;

else return 0;
}
return –1;

}

row_enough_zeros(int i){
// This function is used to check whether student i has enough invalid reviewees
// or not
// return “1” if # of “0”s in row i is enough
// return “–1” if # of “0”s in row i is more than enough
// return “0” otherwise

count # of row i’ with row_zeros[i’] = = t - min; (Say the number is count)
if (count = = n – num_max) {

26

// there are enough students have (n – min) invalid assignment
if (row_zeros[i] = = t-max)

return 1;
else if (row_zeros[i] > t- max)

return –1;
else return 0;

}
if (count < n – num_max) {
// there are not enough students have (n – min) invalid assignment

if (row_zeros[i] = = t-min)
return 1;

else if (row_zeros[i] > t- min)
return –1;

else return 0;
}
return –1;

}

col_enough_ones(int j) {
// This function is used to check whether team j has enough valid reviewers
// return “1” if # of “1”s in column j is enough
// return “–1” if # of “1”s in column j is more than enough
// return “0” otherwise

if (col_ones[j] = = r)
return 1;

else if (col_ones[j] > r)
return –1;

else return 0;
}

col_enough_zeros(int j) {
// This function is used to check whether team j has enough valid reviewers or not
// return “1” if # of “0”s in column j is enough
// return “–1” if # of “0”s in column j is more than enough
// return “0” otherwise

if (col_zeros[j] = = n – r)
return 1;

else if (col_zeros[j] > n – r)
return –1;

else return 0;
}

27

CHAPTER 3: IMPLEMENTATION AND PERFORMANCE ANALYSIS OF

DYNAMIC TEAM PEER-REVIEW MAPPING ALGORITHMS

3.1. Implementation

ERee Algorithm and ERer Algorithm have been implemented in Java, and tested

in the environment of jdk1.3. The interface of these two algorithms is listed below. The

interface is implemented by both of ERee algorithm and ERer algorithm. We can see the

important methods needed to implement those two algorithms, and have an impression

about how ERee algorithm and ERer Algorithm work. Most of the methods in this

interface have been introduced in Chapter 2.

public interface TeamReview{
// load information of students
void read_data();

// initialize the matrix team_review[][]
void initialize();

// get the team number of student "stu"
int team_num(int stu);

// get a reviewee for student "stu"
void map_one_stu(int stu);

// set all of the remaining "-1"s in the row "row" to "0"s
boolean check_row(int row);

// set all of the remaining "-1"s in the row "row" to "1"s
boolean check_zeros_row(int row);

// set all of the remaining "-1"s in the column "col" to "0"s
boolean check_col(int col);

// set all of the remaining "-1"s in the column "col" to "1"s
boolean check_zeros_col(int col);

// check whether there are enough “1”s in row “row”

28

int row_enough_ones(int row);

// check whether there are enough “0”s in row “row”
int row_enough_zeros(int row);

// check whether there are enough “1”s in column “col”
int col_enough_ones(int col);

// check whether there are enough “0”s in column “col”
int col_enough_zeros(int col);

}

3.2. Performance Analysis

In this part, let’s pick the ERee Algorithm, analyze its performance, and see how

parameters such as number of students, number of teams and number of reviews number,

affect the execution time. Here are the parameters used in the figures below:

n: number of students in the class;

t: number of teams in the class;

r: number of teams each student need to review;

time: execution time with n students, t teams, and r reviewees per student .

According to the analysis of the algorithm, we find the relationship between the

execution time and those three factors (n, t, r) is O (n2t3r) in the worst case. The figures

of the changes of execution time are showed below.

29

3.2.1. Effect of Number of Students (O (n2))

execution time changes caused by
changes of number of students

0

2000

4000

6000

8000

10000

12000

0 50 100 150

number of students

ex
ec

ut
io

n
tim

e

Figure 1: Execution time vs. number of students

Assume that the number of teams and the number of reviews per student keep

unchanged, the figure of the relationship of execution time and number of students in the

worst case is showed above.

3.2.2. Effect of Number of Teams (O (t3))

execution time changes caused by the
changes of number of teams

0
100000
200000
300000
400000
500000
600000

0 20 40 60 80 100

number of teams

ex
ec

ut
io

n
tim

e

Figure 2: Execution time vs. number of teams

30

Assume that the number of students and the number of reviews per student keep

unchanged, the figure of the relationship of execution time and number of teams in

the worst case is showed above.

3.2.3. Effect of Number of Reviews

execution time changes caused by
changes of number of reviews

0

5

10

15

20

0 5 10 15 20

number of reviews

ex
ec

ut
io

n
tim

e

Figure 3: Execution time vs. number of reviews

Assume that the number of students and the number of teams keep unchanged, the

figure of the relationship of execution time and the number of reviews per student in

the worst case is showed above.

31

CHAPTER 4: SUMMARY AND CONCLUSION

In this thesis, we have studied strategies for dynamic team peer review mapping.

Individual peer review can be considered as a kind of team peer review with one and

only one member in each team, so this strategy can be used both for team peer review

and individual peer review. A random mapping arranged statically in advance is

frustrated by students who drop the course during the assignment period, or who do not

submit their assignments; that’s why we developed this strategy. This dynamic strategy

makes a mapping assignment when a student asks to review, and ensures each team has the

same number of reviewers as nearly as possible when each student is asked to do the same

number of reviews, or each student can review the same number of teams as nearly as possible

when each team is required to be reviewed the same number of times. By using this dynamic

peer review mapping strategy, no students are assigned to review their own team.

When multi-member teams are being reviewed, the number of reviews a team

gets is not equal to the number of reviews done by each reviewer. In fact, depending on

the size of the teams and the number of reviewers, it may not be possible both to have

each reviewer review the same number of teams and have each team reviewed by the

same number of reviewers. Thus, with team review, two algorithms for two situations are

developed. When each reviewer is required to review the same number of teams, the

ERee (equal number of reviewees) algorithm is used. On the other hand, when each team

needs to get the same number of reviewers, it’s time for the ERer (equal number of

reviewers) algorithm.

32

The ERee algorithm is introduced first. As we said on the above, ERee stands for

equal number of reviewees, which means that each reviewer will review the same number

of teams (let’s say the number is r). In the ERee Algorithm each team is required to be

reviewed by the same number of individuals, as nearly as possible. A matrix,

team_review[1:n][1:t], is used in ERee Algorithm (assume there are n students and t

teams in this class). In this matrix, each row is for a particular reviewer, and each column

is for a particular team (submission). The status of one mapping assignment is shown by

the corresponding value in this matrix. A valid assignment is represented by “1”. An

invalid assignment is represented by “0”, and “–1” means this assignment is not be

mapped yet. The basic logic of this algorithm is to prevent—

• the number of “1”s from becoming larger than r in any row, and

• the number of “1”s in any column becoming greater than max (the maximum

number of reviewers one team can have).

When one student asks to do a review, we pick one element in his/her corresponding row

with the value of “-1”, and set it to “1” if the corresponding assignment is submitted.

Then we check whether this assignment is valid or not. If it’s valid, this student gets a

team to review, or we select another possible element. Following the outline of ERee

algorithm, an example of how this algorithm works is introduced. Then the functions of

ERee algorithms are listed.

The ERer algorithm is described after ERee algorithms. ERer stands for equal

number of reviewers, which means that each team needs to have the same number of reviewers.

In the ERer Algorithms, each student is required review the same number of teams, as

nearly as possible. The basic idea the of ERer Algorithms is similar to the ERee Algorithms.

33

The matrix we used in ERee Algorithms, team_review[1:n][1:t], is also used in the ERer

Algorithms (Let’s assume that in the class we mentioned above, the number of students is still n,

and the number of teams is still t. What has changed is that each team needs r reviewers). What

make the ERer algorithms different from the ERee algorithms are functions to check

whether “1”s or “0”s in one row/column are enough. We know the difference between

ERee algorithms and ERer is that the ERee algorithm is for situation where each student

has the same number of reviewees, but the ERer algorithm is for the situation where each

team has the same number of reviewers. That means, in ERee algorithm, each row should

have the same number of “1s”/“0”s with other rows (r), but each column might have

different number of “1”s/“0”s with other column (min or max). In the ERer algorithm,

each row might have different number of “1s”/”0”s with other rows (min or max), but

each column should have the same number of “1”s/””0s with other column (r). Therefore,

there are different standards to determine whether one row/column has enough “0”s or

“1”s in ERee algorithm and the ERer algorithm, and that’s why those four functions are

different in the two algorithms. The existence of those four functions makes it very easy

to implement these two algorithms. We list those four functions after describing ERer

Algorithm.

Finally, the interface of these two algorithms is listed. After analyzing the

performance and the effects of some important parameters, such as number of students

(n), number of teams (t), and number of reviews (r), we see that in the worst case, the

relationship of execution time and those three factors is O (n2t3r). The figures about the

execution time and those three factors are showed.

34

Future work

The strategy we presented in this thesis can produce a valid mapping assignment for

reviewers dynamically. However, in certain circumstances, this strategy would produce

invalid assignments.

If one student drops this course after one mapping is assigned, it may produce one

invalid assignment. Assume that there are four students and four teams with one student

in each team, and our algorithm would have produced the mapping (S1 reviews S2, S2

reviews S1, S3 reviews S4, and S4 reviews S3). If the first two mapping assignments (S1�

S2 and S2 � S1) have already been made, and S4 drops the course, we have no alternative

but to assign S3 to review himself.

There is another situation that might produce an invalid assignment. For example, in

one class there are seven students (S1, S2, S3, S4, S5, S6, S7) who work in three teams (T1,

T2, T3), and each student needs to review two teams. Let’s say S1, S2, S3, S4 work on T1,

S5, S6 work on T2, and S7 works on T3. In this case, n = 7, t = 3, and r = 2, so min = 7×2/3

= 4, and max = 5. According the requirement of the ERee algorithm, the number of

reviewers per team should be no less than max (5) and no larger than min (4). We can

easily see that to make each student review two teams, everyone should review two teams

beside their own team; that is each team should be reviewed by all of the students who

are not on the team. Thus, T1 has three reviewers (less than min), T2 has five reviewers,

and T3 has six reviewers (lager than max), which makes several assignments invalid.

These two cases happen in the situation where there are few students in one class

and the numbers of students in teams vary much, so the probability of them occurring in

35

practice is very small. Further work is necessary to see how to minimize the probability

that an invalid mapping will result.

36

References
[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[DB 97] Downing, T., and Brown, I., “Learning by cooperation publishing on the World Wide
Web,” Active Learning 7 (1997), pp. 14–16.

[GC 02] Gehringer, Edward F., Yun Cui, “An Effective Strategy for Dynamic Mapping of Peer
Reviewers,” 2002 ASEE Annual Conference and Exposition, American Society for Engineering
Education, Albuquerque.

[Gehr 01] Gehringer, Edward F., “Assignment and quality control of peer reviewers,” 2001 ASEE
Annual Conference and Exposition, American Society for Engineering Education, Albuquerque,
June 26, 2001

 [KPD 95] Kerr, Peter M., Park, Kang H., and Domazlicky, Bruce R., ” Peer grading of essays in a
principles of microeconomics course," Journal of Education for Business 70:6, July 1995, pp. 357
ff.

[SGG 01] Silbershatz, Abraham, Galvin, Peter, and Gagne, Greg, Operating System Concepts, 6th

ed., John Wiley and Sons, 2001.

[Sys 98] Styslinger, Mary E., “Some milk, a song, and a set of keys: Students respond to peer
revision,” Teaching and Change 5:2 (Winter 1998), pp. 116–138

[Sys 99] Styslinger, Mary E., “Mars and Venus in my classroom: Men go to their caves and women
talk during peer revision,” English Journal 88:3 (Jan. 1999), pp. 50-55

[Topp 98] Topping, Keith, “Peer assessment between students in colleges and universities,”
Review of Educational Research 68:3 (Fall 1998), pp. 249-276.

