
 

ABSTRACT 

SRIDHAR, RADHIKA. Scaling Complex Analytical Processing on Graph 
Structured Data Using Map Reduce. (Under the direction of                                 
Dr Kemafor Anyanwu.) 

 

Efficient analytical processing at the Web scale has become an important 

requirement as more decision support applications rely on the data on the Web. 

One approach for achieving the significant scalability is by the use of parallel 

processing techniques on a computational cluster of the commodity grade 

machines. Software platforms such as Map-Reduce, Hadoop and Pig are now 

available that allow the users to encode their tasks in terms of simple low-level 

primitives that are easily parallelizable. Further, a high-level dataflow language 

called the Pig Latin has been proposed for specifying analytical processing 

tasks using a mixture of the procedural and the declarative paradigms. This 

approach strikes a good balance between customizability and the potential for 

an automatic query optimization. However, the analytical processing capability 

currently offered by these frameworks is fairly basic and as such has narrow 

applicability to many real world scenarios. Furthermore, an increasing amount 

of data being made available on the Web is semi-structured.  For example, 

some search engines report that the recent W3C standard for representing the 

metadata on the Web called the Resource Description Framework (RDF) 

already accounts for about 8,502,794 Web data URL’s and 2,759,040 



documents. However, such data is typically organized as a set of binary 

relations (a graph) whereas these frameworks are primarily targeted at 

processing the data structured as n-ary relational tables.  

This thesis addresses the problem of enabling the scalable analytical data 

processing on the RDF datasets. Its approach is based on extending Yahoo’s 

Pig system (an open source parallel processing) with constructs that allow 

complex data processing problems on the graph structured data to be 

expressed in a manner that is more amenable to automatic parallelization. 

Specifically, it makes the following contributions: 

1. Extends Pig Latin, the dataflow language for Pig, with primitives that 

support the expression of queries in terms of a readily parallelizable 

multidimensional join operator, as well as support the expression of 

graph navigational filter expressions.   

2. Implements the introduced primitives in a Hadoop implementation  

running on VCL 

3. Develops a cost model for estimating the cost of queries expressed in 

terms of the multidimensional join operator. 
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Chapter 1 

Introduction  
 

Structured data now constitutes a growing segment of the data being made 

available on the Web. This trend is due to more organizations appreciating the 

advantage of making their data available on the Web and also because of the 

increasingly popular mechanisms for annotating Web content with metadata. 

These annotation mechanisms range from the informal methods used by 

applications such as Flickr [12], Delicious[14] Google Co-op[13] that allow users 

“tag” digital resources with tags of their choice, to the more formal 

representation schemes such as Microformats, XHTML, Resource Description 

Framework (RDF)[15], RDF in attributes (RDFa),` Rich/RDF Site Summary 

(RSS) etc which offer more systematic methods and languages for representing 

metadata. These more formal mechanisms, particularly RDF – the standard for 
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metadata exchange on the Web, are gaining broadening adoption because of 

the promise of potentially enabling reuse, exchange and automatic processing 

of data. This has created an affinity for RDF in different communities, 

particularly in scientific research domains where the exchange and sharing of 

data and the possibility of semi-automatic data integration support is highly 

desirable. One of the Semantic Web search engines, SWOOGLE[26], now 

reports that there are several millions of RDF documents currently available on 

the Web. The implication of this is that, while on the current Web, documents 

marked up with tags that improve the presentation of the document content to 

enable human understanding, the Semantic Web will have documents in which 

machines will be able to understand the content on the Web and perform tasks 

on behalf of users. Further, current generation data processing techniques for 

the Web will need to be advanced to deal with the structure and semantics in 

the new Web. In particular, techniques that support more analytical tasks as 

opposed to the traditional searching and fact-finding will need to be developed 

for supporting communities such as scientific research communities.  

1.1 Analytical Processing 
 

On-Line Analytical Processing (OLAP), in contrast to On-line transaction 

processing (OLTP), refers to the category of techniques that support efficient 
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processing of queries demanding aggregations over multidimensional 

groupings of data. In OLAP, numeric facts about the data called measures are 

represented collectively in a table called the fact table and every measure is the 

value of the attribute associated with the data.  Attribute are categorized by a 

dimension that is derived from the dimension tables. The dimension provides 

information about the measure or the attribute. In OLAP, queries aggregate 

subsets of values in the fact table along multiple dimensions. For example,  

Assume that we have a Customer relation (CustID, CustName) (typically called 

a dimension table), a Sales relation (CustID, ProdID, Price, Location) (typically 

referred to as a fact table) that relates customers to products that they bought 

and the price paid and location in which the sale occurred. We may want to 

compute total sales amounts when grouped by all combinations of product, 

month and state. This results is a query with aggregations (total sales) over 

eight different groupings for every combination of product, month and state (i.e. 

none, (product), (month), (state), (product & month), (month & state), (state & 

product) and (product & month & state). Such queries are fundamental to 

analytical tasks in business and financial applications. However, investigative 

applications such as in scientific research domains, often require more ad-hoc 

analytical queries  as well as scientific research domains but are challenging 

and cumbersome to express and evaluate efficiently. Some special operators 
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such as the CUBEBY, ROLLUP, etc were added to SQL which makes 

reporting-style queries. However, ad-hoc analytical queries tend to be more 

complex and are not easily expressible they require multiple aggregations over 

different groups. For example, suppose we want to gain some insight into the 

buying patterns in a particular region, we might want to compute for every 

customer, the total amount of their purchases in either of the states, say “NY” or 

“NJ”. This is called a “pivoting” query whose result is a relation (CustID, 

Total_NY, Total_NJ). Since this requires computation of sales in those states 

for every customer. Expressing such queries using traditional relational 

database approach would require two subqueries (one for each location) to 

compute the total amount of sales for the location, then two outer joins to 

Customer table to assemble the final result. Such a query expression is 

cumbersome and optimizers don‟t often select the best execution plan for them. 

Consider the Sales schema shown below [7]: 

 Sales(CustID, ProdID, Price, Location, Month, Year), to compute the 

average for each customer who purchased the products in “NY’, “NC” 

and “NJ”.  

Evaluating such a query using the regular relational database operator would 

primarily require executing the three subqueries, each query to compute the per 
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customer sales in NY, NC and NJ respectively. The result gives a list of all the 

customers, whether or not they made any purchases in these states. We need 

another subquery to select all the unique customers. Finally, we need four outer 

joins to attach the sales to the customers in NY, NC and NJ locations.  

A key observation made in [7] is that, there exists a tight coupling between the 

grouping operations and the aggregation function that needs multi-pass 

aggregation.  

1.2 Challenges of Analytical Processing on RDF  

Scalability - The issue of efficient processing of data at Web scale is still a 

primary concern for search engine companies as datasets range to terabytes of 

data. Parallel processing seems to be one promising approach for processing 

data at a Web scale. Traditional approaches that use high-end parallel 

database systems with highly specialized architectures such as Teradata, 

Tandem, NCR, Oracle-n CUBE, and RAC or OLAP servers such as Microsoft 

OLAP servers, SAS OLAP server are not cost effective and easily adoptable 

strategy. These high end systems, though quite capable of handling data stores 

at enterprise scale, are not designed for the Web scale processing and are too 

expensive to be a practical alternative for supporting the Web scale processing. 

Alternatively, there are leading efforts to develop platforms that enable parallel 

processing of Web data. The winning and popular approach, pioneered by 
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Google, is the Map-Reduce [18] framework that has its roots in functional 

programming languages.  Further, Apache‟s release of an open source version 

of Map-Reduce called Hadoop [1] derive from the Map-Reduce approach. 

These platforms are designed to run parallel programs on a computational 

cluster of commodity grade machines, a paradigm popularly known as cluster 

computing. Further, a language Pig Latin [6] is built on top of Hadoop which is 

an open source implementation of the Map-Reduce Framework. Pig Latin is an 

algebraic dataflow language that expands the scope of primitives to enable the 

reuse of common code fragments and provides the opportunity for applying 

query optimization techniques. However, these approaches currently focus on 

supporting the simple data processing tasks with the limited support for semi 

structured or graph structured data such as RDF.  

In order to execute ad-hoc queries on RDF datasets, before performing any 

aggregation operations, we need to reassemble all the tuples with the related 

predicates. A series of join operations are required to reassemble the tuples. 

After reassembling the tuples, multi-pass aggregations need to be computed 

which requires repeated processing on the same set of tuples with slightly 

different computations, thus making the execution of these queries inefficient. 

Our aim is to provide an efficient approach that can perform analytical querying 

efficiently on semi structured datasets like RDF.  
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Various operators like the MD-Join, GMD-Join are proposed in the relation 

database to perform efficient complex analytical query executions.   

There are various areas that require performing analytical queries on the 

Semantic Web. Fields like biomedical research, bioinformatics, etc., aim in 

turning Semantic Web into practical applications that involve performing 

complex analytical queries on the data to enhance the research ideas leading to 

new innovations and discoveries 

With such rapid growth rate of the semantic data, there is an increasing need 

for a scalable approach to process these data. There are various scalable 

parallel processing approaches like the Map-Reduce framework, Pig Latin 

language that executes over a Map-Reduce framework and so on. But these 

approaches currently process simple data efficiently. Executing complex 

analytical queries on structured semantic data using these frameworks are yet 

to be researched. 

1.3 Data processing on the Semantic Web 

A fundamental data model for the Semantic Web is called the Resource 

Description Framework (RDF) [15] . In RDF, a simple statement is a triple of the 

form <Subject, Predicate, Object>, where Subject can be any resource that 

needs to be described. Predicate indicates the property associated with that 
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subject and the Object holds the value for that property. The triple 

representation of RDF can be used to describe any concept, relationship or an 

object that exists in the universe. In RDF the resources are identified using 

simple Web identifiers called the Uniform Resource Identifiers (URI). This 

enables to represent resources and their properties as graphs of nodes and 

arcs representing their properties. For example, consider a general statement: 

 “Customer Joe purchased a Dell laptop”. The RDF representation of the 

statement is as shown below: 

< http://examples.com/Cusomer#Joe,     

http://examples.com/purchased, 

http://www.dell.com/produce#Dell_laptop > 

In the above example, “http://examples.com/Cusomer#Joe” represents the 

subject, “http://examples.com/purchased” represents the property and the 

object is represented by “http://www.dell.com/produce#Dell_laptop”. The RDF 

statements can also be represented as a labeled graph connecting resources 

where the labeled edges represent the properties between the resources. 

Figure 1 shows the graphical representation of the RDF statement.  
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Figure 1: Graphical view of the simple RDF statement 

 

Further, RDF is a conceptual model with different serialization formats. Some 

concrete formats of representation are: XML RDF, Notation 3, N-Triples, and so 

on. In this section we briefly describe the Notation 3 syntax that is one of the 

simplest and widely used formats of RDF representation [26]. In this notation, 

the subject, predicate and the object are URI‟s enclosed with in “<” and “>” 

symbols. The end of each line or a triple is denoted by “.”.  The syntactical form 

of Notation 3 is as shown below, where subject, predicate and object are atoms. 

An atom can either be an URI, an URI abbreviation, a blank node or a literal.  

<subject><predicate><object> . 

 

Subject 

Predicate 

Object 

http://examples.com/purchased 

http://examples.com/Cusomer#Joe 

http://www.dell.com/produce#Dell_laptop 
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 For example, 

1) <http://example.org/#Joe>     <http://example.org/#Type> 

<http://example.org/#Customer> . 

2) <http://example.org/#PO12>   <http://example.org/#loc> 

<http://example.org/#NC> . 

3) <http://example.org/#PO12> <http://example.org/#price> <35> . 

Representing the data using such RDF syntax provides some structure for the 

contents on the Web that makes the Web appear as a globally linked database 

of triples as opposed to just a network of unstructured documents. This 

provides an environment for the Web contents to be queried and analyzed to a 

degree similar to what has been achieved with structured data. For example, 

Search engine companies are actively investigating on techniques for analyzing 

the massive amount of search log, click stream and web graph data that they 

collect.  

The World Wide Web Consortium (W3C) recommends SPARQL Protocol and 

RDF Query Language (SPARQL) [16] for querying RDF data. The SPARQL 

language supports querying RDF graphs and is designed to execute queries 

using a combination of triple patterns, variables and constants. Variables in 
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SPARQL are represented using symbol “?” or “$” that prefix the variable name. 

For example, consider a RDF statement as shown below: 

 <http://example.org/#PO12> <http://example.org/#price> <35> . 

A query to find the price of Product PO12 can be written in SPARQL as: 

   SELECT ?price 
 
   WHERE { 
 
   <http://example.org/#PO12> 
 
   <http://example.org/#price>  ?price . }     
 

The result of the above query returns value 35. Simple queries can be executed 

using the SPARQL query language. More complex queries can be formed by 

combining multiple triple patterns to form graph patterns using combination 

operators. Currently, it is not possible to express queries that require grouping 

and aggregations operations using SPARQL because the language does not 

support these operations. . Some systems like OpenLink Virtuoso [30], ARQ [4] 

, etc., extend SPARQL with SQL like aggregate and grouping functions. 

However, even with such systems in these systems, executing complex queries 

does not result in efficient results. Since, queries with multiple groupings and 

aggregations require each aggregation function with the corresponding 



12 

  

grouping attribute to be executed as a separate subquery. Hence each 

subquery requires scanning the table at least once. Performing multiple scans 

result in expensive computations.   

Further, the structure of the RDF data creates some challenges in performing 

complex queries on the Web content. The challenges being an n-ary tuple in a 

relational scheme contains all related data values in a single unit. Thus each 

tuple is independent of the other within the input file. Grouping and aggregation 

operations are executed on these tuples which means that such operations are 

performed at the level of related data values. However, when we consider the 

RDF data model, each tuple is a combination of the subject, predicate and the 

object. Thus an n-ary relational tuple would be spread across a set of (n-1) RDF 

triples. For example, Figure 2 shows the graph representation for two tuples of 

the Sales relation 
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Figure 2: Graphical representation of the Sales data 

 

Representing this graph in a relational database will result in a table having 

attributes Customer, ProdBought, Price and Location. The data in Table 1 

corresponds to the data in the graph. 

Table 1 : Relational Representation of the Sales relation 

Customer ProdBought Price Location 

C1 P1 25 NC 

C1 P2 35 CA 
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The equivalent RDF representation for the same data is shown in Table 2. 

Comparing Table 1 and 2, we see, a single tuple with four attributes in the 

relational representations is shredded into three tuples of subject, predicate and 

object in the RDF representation. 

Table 2 : RDF representation for the Sales relation 

Subject Predicate Object 

C1 Bought P1 

P1 Price 25 

P1 Location NC 

C1 Bought P2 

P2 Price 35 

P2 Location CA 

 

 

Due to the shredding of the tuple in the RDF representation, operations like 

grouping or aggregation will require intensive self-joins over the same set of 

triples, resulting in additional cost during query executions. For example, 

consider a simple query – 

To find all customers who bought products from location “NC”.  
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Expressing the above example in relational algebra: 

Customer ( Location = “NC” (Sales)) 

In order to obtain the same result from the RDF dataset, we need to express 

the above example in relational algebra as: 

 subject (R R.subject = S.object S) 

 

Where, 

 R = predicate = “Location and object = “NC”(Sales) 

S = predicate = “bought” (Sales) 

Further, a popular approach for efficient management of the RDF data is 

commonly known as the vertically partitioned approach, in which the dataset 

containing the RDF data is partitioned into “n“unique datasets based on the 

distinct tuple properties. Every dataset contains all the tuples corresponding to 

one unique property. In this approach, the tuples are still shredded, but are 

stored in separate files based on their properties. Thus performing any 

operations on these datasets still requires reassembling of the data, but in this 

case reassembling of the data can be performed by executing join operations 
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on different datasets, rather than the self join operation performed as in the 

earlier approach. For example, 

Consider the above examples, suppose the Sales data shown in Table 2 is 

partitioned using the vertically partitioning approach, than the Sales data would 

be represented as follows: 

  Table 3: ProdBought 

Subject Object 

C1 P1 

C1 P2 

Table 4: Price 

Subject Object 

P1 25 

P2 35 

 

Table 5: Location 

Subject Object 

P1 NC 

P2 CA 

  Table 3 represents the data that has predicate value ProdBough. Similarly 

Table 4 contains all the data that has predicate value Price and Table 5 

contains data with predicate value Location. In order to obtain the same result 

on the vertically partitioned RDF dataset the query shown in the above 

example, we can represent the query in relational algebra as follows: 

subject (R R.object = S.subject S) 

 
Where, 

R = object = “NC”(Location) 
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S = predicate = “bought” (Sales) 

The above example shows the need to reassemble the related RDF tuples 

before executing any queries on them. Table 2 also shows how the RDF format, 

combines data and metadata within their representation. The attributes 

ProdBought, Price and Location in the Table 1 is the actual data in the RDF 

dataset. This adds additional complexity in querying RDF data, since it is 

necessary to check for the correct predicate before computing any aggregation 

or grouping operation. These challenges show the need for an approach to 

query the RDF data that is similar to the relational database queries considering 

the structure of the RDF datasets.  

1.4 Research Motivation 
 

Enable analytical querying on RDF datasets:  

Ad-hoc analytical queries tend to be more complex as they require multiple 

aggregations over different groups or viewing the results from different 

dimensions. For example [7],  

Consider the Sales schema shown below: 
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 Sales(CustID, ProdID, Price, Location, Month, Year), Suppose, to 

compute the average sales value of each customer who purchased the 

products in “NY’, “NC” and “NJ”.  

Evaluating such a query using the regular relational database operator would 

primarily require executing the three subqueries, each query to compute the per 

customer sales in NY, NC and NJ respectively. The result gives a list of all the 

customers, whether or not they made any purchases in these states. We need 

another subquery to select all the unique customers. Finally, we need four outer 

joins to attach the sales to the customers in NY, NC and NJ locations. This 

example shows the need for multi-pass aggregation. In order to execute ad-hoc 

queries on RDF datasets, before performing any aggregation operations, we 

need to reassemble all the tuples with the related predicates. A series of join 

operations are required to reassemble the tuples. After reassembling the tuples, 

multi-pass aggregations need to be computed which requires repeated 

processing on the same set of tuples with slightly different computations, thus 

making the execution of these queries inefficient. Our aim is to provide an 

efficient approach that can perform analytical querying efficiently on semi 

structured datasets like RDF.  
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A scalable approach for RDF data processing: The issue of efficient 

processing of data at Web scale is still a primary concern for search engine 

companies as datasets range to terabytes of data. Parallel processing seems to 

be one promising approach for processing data at a Web scale. Traditional 

approaches that use high-end parallel database systems with highly specialized 

architectures such as Teradata, Tandem, NCR, Oracle-n CUBE, and RAC or 

OLAP servers such as Microsoft OLAP servers, SAS OLAP server are not cost 

effective and easily adoptable strategy. These high end systems, though quite 

capable of handling data stores at enterprise scale, are not designed for the 

Web scale processing and are too expensive to be a practical alternative for 

supporting the Web scale processing. Alternatively, there are leading efforts to 

develop platforms that enable parallel processing of Web data. The winning and 

popular approach, pioneered by Google, is the Map-Reduce [18] framework 

that has its roots in functional programming languages.  Further, Apache‟s 

release of an open source version of Map-Reduce called Hadoop [1] derive 

from the Map-Reduce approach. These platforms are designed to run parallel 

programs on a computational cluster of commodity grade machines, a paradigm 

popularly known as cluster computing. Further, a language Pig Latin [6] is built 

on top of Hadoop which is an open source implementation of the Map-Reduce 

Framework. Pig Latin is an algebraic dataflow language that expands the scope 
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of primitives to enable the reuse of common code fragments and provides the 

opportunity for applying query optimization techniques. However, these 

approaches currently focus on supporting the simple data processing tasks with 

the limited support for semi structured or graph structured data such as RDF.  

1.5 Research Contributions 

In the earlier section, we have discussed the issues and the challenges 

involved in analytical querying on RDF datasets. Based on these challenges, 

we aim to contribute the following-  

 Clearly introduce the problem of analytical data processing on RDF 

datasets 

 Propose an approach for achieving the scalable processing of the 

non-trivial analytical tasks on RDF datasets that is based on an 

efficient multidimensional query operator called the MD-Join and 

parallel query processing on an extended Map-Reduce framework.  

 Propose an approach for implementing the multi-dimensional join in a 

Map-Reduce framework 

 Propose an extension to the Pig Latin dataflow language that 

includes the structural and semantic query expressions that are 

necessary for querying RDF data, provide query primitives for 
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reassembling related RDF data values and define the inputs 

necessary for MD-join operator. Further, we show how this extended 

Pig Latin language compiles into the Map-Reduce workflows with the 

enhanced MD-joins.  

1.6 Outline of the thesis 

- Chapter two discusses the challenges involved in expressing the 

complex analytical queries and introduces the existing multi-

dimensional join operator. Further in this chapter, various 

parallelism approaches for data processing are discussed. 

- Chapter three discusses in detail the implementation of the multi-

dimensional join operator on a Map-Reduce execution framework. 

- Chapter four explains how Pig Latin language can be extended to 

provide new operators that can perform analytical processing on 

RDF 

- Chapter five discusses the execution plan for these extended 

operators in terms of the Map-Reduce functions 

- Chapter six shows the results of a few query executions using the 

extended operators 
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- Chapter seven discusses the related work and chapter eight 

highlights the possible future work. 

- Chapter eight finally gives the conclusion. 
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Chapter 2 

Preliminaries 

 

2.1 Expressing Complex Analytical Queries using MD-Join 
 

In the examples seen in section 1.1, we have observed that the complex ad-hoc 

queries involve multiple aggregations over different sets of grouping values. In 

the relational database, to perform a set of aggregation operations on different 

grouped attributes, every aggregation operation has to be performed on one set 

of grouping attributes independently and then these results have to be 

combined. This tight coupling between the aggregation function and the 

grouping attributes results in a series of join and union operations. The multiple 

joins and unions restrict the optimization of these queries resulting in inefficient 

query executions. For example [6],  
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Example 2.1 - we would like to compute the total number of products 

having sales between the average sale of the previous month and the 

average sale of the next month, for all combinations of the product and 

the month for the year “2000”.  

 

Evaluating such a query using traditional database operators would mean to 

filter out all records for which the condition year = 2000 is not valid. For tuples 

where the filter condition is true, a GROUPBY operation is performed over all the 

product and month combinations. We would then need to compute aggregates 

from tuples that are outside of each group (the previous and next month‟s 

average sale). Using these results, the final aggregation value can be 

computed.  This example shows how cumbersome it is to express such 

complex queries using the ordinary SQL operators. New operators like CUBEBY, 

PIVOT, etc cannot be used in these queries as the computation is more 

complex than a simple aggregation over multi-dimensions. These observations 

were made in [8] and an operator, the MD-Join operator, that allows the queries 

to decouple the grouping and the aggregation functions, was proposed. In this 

operator, a Base table is constructed, that is a container table holding all the 

combinations of the key sets for which the aggregation has to be computed. 
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The actual data in the relational table represents the fact table. The following is 

a formal definition for the MD-Join operator: 

 Definition: Let B and R be relations, Θ is a set of conditions involving 

the attributes of B and R, l is a list of aggregation functions that needs 

to be computed, l = (f1, f2, f3,…..fn) over attributes c1, c2, c3…,cn of R. We 

define a new relational operator between B and R, called MD-Join, 

defined as:  

MD (B, R, l, Θ) is a relation with schema B, f1_R_c1, f2_R_c2, …., 

fn_R_cn, whose instance is determined as follows. Each tuple b  B 

contributes to an output tuple B, such that: 

 Table B is augmented with as many columns as the number of 

aggregate functions in l. Each column is named as fi_R_ci, i = 1,. . 

. ,n  

 For each row r of table B we find the set S of tuples in R that 

satisfy Ɵ with respect to r, i.e. when B’s attributes in Ɵ are 

replaced by the corresponding r’s values. Then, the value of 
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column fi_R_ci of row r is the fi(ci) computed over tuples of S, i = 

1,. . . ,n. 

 

B is the base table created and R is the fact or detail table that holds the 

collection of related tuple values e.g. the Sales relation.  The semantics of the 

MD-join operator is designed in such a way that the sequence of MD-joins can 

be combined together, thus making the execution of complex ad-hoc query cost 

efficient.  

 

Expressing the above example using the MD-join operator we get: 

 

MD(MD(MD(B, Sales, AVG(sale), Ɵ1), Sales, AVG (sale), Ɵ2),Sales, AVG (sale), Ɵ3) 

Where Ɵ1 : Sales.cust = cust and Sales.state = “NY”, 

           Ɵ2 : Sales.cust = cust and Sales.state = “NJ”, 

           Ɵ3 : Sales.cust = cust and Sales.state = “NC”, 

And B is the table generated using a simple query of the kind, “select distinct 

cust from sales”.  

The above example shows how the analytical query can be executing without 

performing additional joins to combine the results of the aggregation operations. 
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The MD-join operator separates the tight coupling that exists between grouping 

and aggregation attributes and hence makes the query execution efficient. Due 

to this separation, it is possible to compute the aggregation value for all 

combination of the attributes at once instead of performing the aggregations for 

each combination of attributes separately which will require additional scanning 

of the table. 

 

Algorithm: 

Scan R, and for all tuples t in R{ 

    For all rows r of B, check if condition 

    Ɵ is satisfied with respect to r and t. 

    If yes, update r‟s aggregate columns 

appropriately. 

} 

The above algorithm shows the computation of the MD-join operator. This 

operator captures the semantics of the user‟s need, more accurately as shown 

in the above example. To understand the execution of the MD-join algorithm 

consider the following tables. Table 6 is the fact table consisting of the Sales 

data. Table 7 is the base table generated from the data present in the fact table. 
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Table 8 shows the result generated after the execution of the MD-Join operator 

on the fact table. When a match is found between the fact and the base table 

the corresponding aggregation is computed and the value is updated in the 

base table as shown in Table 5. 

 

Table 6: Fact table representing the Sales data 

Cust Prod Month Year Price 

1290 PRD1937 Feb 2008 1982.89 

1291 PRD9436 Dec 2007 899.98 

 

 

Table 7: Base table created for the table in the fact table 

Prod Month 

PRD1937 Feb 

PRD1937 Dec 

PRD9436 Dec 
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Table 8: Base table being updated with the values obtained after performing the 
aggregation operation 

Prod Month Sum(Price) 

PRD1937 Feb 1982.89 

PRD1937 Dec 89.90 

PRD9436 Feb 32.2 

PRD9436 Dec NULL 

PRD9490 Jan NULL 

 

2.2 Analytical data processing using parallelism approaches 
 

2.2.1 Map Reduce Framework 

 

Map-Reduce is a programming model designed to perform distributed 

computation on clusters of computers. This framework is designed on the idea 

of the functional programming technique, where the computation of the tasks is 

performed by various functions. This framework defines two   basic primitives 

called the Map function which groups together the related data and the Reduce 

100.18 
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function which performs any kind of computation or aggregation operation on 

the groups. These Map and the Reduce functions are simple function 

prototypes which needs to be implemented by the users as per the user 

requirements. To use this paradigm for data processing, tasks need to be 

mapped into the Map and the Reduce functions. Data processing using this 

framework is particularly suited for tasks that can be casted as group-by-

aggregation. The execution of the tasks in the map and reduce functions are 

independent of each other as each of these functions perform one specific task. 

Hence these functions can be executed on different processors at different 

times. This allows the processing of the tasks in these functions to be 

parallelized. Figure 3 shows the architecture of the Map-Reduce framework. 

The framework consists of one master process and multiple task processors 

running in parallel to perform either a Map function or a Reduce function. The 

master process accepts the input data and splits the data into smaller chunks 

and assigns each chunk to one of the available processors. The map function 

reads each line in the data, generates a key and returns the result as a <key, 

value> pair. After all the map processors have completed their tasks, the master 

function assigns the tasks for the processors to perform the reduce function. 

This function sorts and merges all the intermediate keys generated by the map 

function and computes the results. Any sort of aggregation that needs to be 
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computed can be performed in the reduce function. The keys and the type of 

values generated for the map and the reduce functions are of the following 

types: 

  

     Map(k1,v1)                  list (k2, v2) 

Reduce(k2,list(v2)           list (v2) 

 

 

Figure 3 : The architecture of Map-Reduce framework 
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Consider a simple example from [18] that counts the number of occurrences of 

each word in a large document using the Map-Reduce framework. The master 

process reads the input file, breaks it into chunks of smaller size and assigns 

the chunks to the available processors to execute the Map function. Each 

processor performing the Map function receives the <key, value> pair where the 

file name is the key and the file data is the value in this case.  

In each map process, the data is read and the output is a list of <key, value> 

pairs, where the key is all the words present in the document and the value is 

assigned as “one”. The processors performing the reducer function, will receive 

<key, a list of value> pairs. We can now add up all the values corresponding to 

a key and return the number of times that key (i.e. the word) occurs. Hence the 

output of the reducer will be the list of all the keys and the number of 

occurrences of the word in the document. This example shows how we can 

parallelize the simple task of counting the number of occurrences of each word 

in a file. However, more complex processing can be achieved by customizing 

the map and the reduce functions.  

Further, the Map-Reduce framework is designed to work with a single dataset. 

However, in many situations it is required to perform join operations over two or 

more data sets. The method for bypassing this limitation of a single dataset 

includes the Map-Side Join or a Reduce-Side Join. In the Map-Side Join 
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approach, we first perform a map function, skip the reduce function but 

generate the keys such that in the next cycle of map all the related data have 

the same key. This approach requires one additional cycle of Map-Reduce data 

flow for each of the JOIN operations performed. The other alternative is to 

generate a flag representing each dataset. Based on this flag we can perform 

the JOIN in the reduce function. This is known as the Reduce-Side Join. These 

two approaches to perform JOIN operations are not very efficient because they 

require an additional map and reduce phase in order to perform the JOIN 

operation. Hence an extension of the Map-Reduce framework is the Map-

Reduce-Merge [12] framework. In this programming model, an additional merge 

phase is added, where the JOIN operation is performed between the two sets of 

the data that are obtained from the two different Map-Reduce cycles. 

2.2.2 Pig Latin language 

 

Map-reduce programming model has proven to be an efficient approach for the 

data processing task, but with a few limitations such as: 

 Rigid data flow between the Map and the Reduce functions. In the 

above section, we observed, when implement the Map-Side join we 

execute one cycle of the Map and Reduce function with no operation in 



34 

  

the Reduce function. We cannot eliminate this Reduce function due to 

the rigid data flow between the two functions. Hence we execute the 

Reduce function after the execution of the Map function but perform no 

operation in the Reduce function. 

 Framework‟s primary reliance on the customized functions that provide 

limited opportunity for an automatic optimization and reuse of the code. 

These limitations are the motivation for the development of the new dataflow 

language known as the Pig Latin. The main goal of the Pig Latin language was 

to achieve a sweet spot between the declarative style of the languages like SQL 

and the low level procedural style of the Map-Reduce programming. In order to 

achieve this, Pig Latin provides a set of predefined functions and query 

expressions that can be used to describe the data processing tasks. Along with 

these pre-defined functions, the language also allows the user to define their 

own functions called the User Defined Functions (UDF).  Figure 4 shows the 

architecture of the Pig Latin language. 
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Figure 4: Pig Latin architecture 

The data model for a Pig Latin consists of an atom that holds a single atomic 

value, a tuple that holds a series of related values, a bag that forms a collection 

of the tuples and a map that contains a collection of the key value pairs. A tuple 

can be nested into an arbitrary depth. The basic primitive functions of the Pig 

Latin language are: the LOAD function that can determine what the input file is 

and how the file has to be read. The FOREACH function is used as an iterator to 

loop through the collection. The FILTER primitive discards all the tuples for 

which the condition does not hold. The GROUP operator collects the similar data 
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records within a given data set. The COGROUP operator is similar to the GROUP 

operator but focuses on grouping together the similar data from different data 

sets. The JOIN function is used to merge the data from two different datasets. 

Other common commands similar to the SQL commands are the UNION, 

DISTINCT, ORDER, CROSS, AVG, SUM, MIN, MAX and so on. STORE is used to get 

the results stored in an output file. In addition to these primitive, Pig Latin 

provides a library of UDF‟s – User Defined Functions. The limitation of UDF is 

that the users will be responsible for the efficiency of their programs and they 

have to specify how the functions have to be parallelized.  

For example, consider the Sales schema discussed in chapter 1, 

Compute the average sales within each location, where the number of 

purchases in that location is greater than 3. A Pig Latin program for this 

scenario, using the above mentioned operators is as follows:  

groups = GROUP Sales BY Location; 

group_count = FILTER groups BY COUNT(*) > 3; 

output = FOREACH group_count GENERATE AVG(price); 
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The above example shows the sequence of steps in a Pig Latin program, which 

is much like any programming language. Each line in the program performs a 

single data transformation. These transformations in every step are fairly high 

level, resembling the SQL, e.g. FILTER, GROUP, etc. Along with these SQL like 

operators, Pig Latin provides a wide variety of data expressions and different 

kinds of nested tuples for the data storage. This language provides a flexible 

approach for accessing the data from these nested tuples. For example, 

consider a tuple t with fields‟ f1, f2 and f3, where t is defined as shown below:  

t =  ′𝐶𝑢𝑠𝑡1′ ,  
  ′𝑁𝐶′ , 25 

   
  ′𝐶𝐴′ , 35 

 , ′𝑃𝑟𝑜𝑑123′  

 

Table 9 : Data expressions in Pig Latin 

Expression Type Example Value for t 

Field by 

position 

$2 ‘Prod123’ 

Field by name f1 Cust1 

Projection f2.$1 
 
(25)
(35)

  

Function 

Evaluation  

SUM(f2.$1) 25 + 35 = 60 
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Table 9 shows some examples of the expression type in Pig Latin and also how 

these expressions operate. The flexibility provided in these expressions allows 

the user to perform various kinds of operations on the data. 
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Chapter 3 

Implementing MD-join in Map-reduce 
 

In section 2, we briefly defined the MD-JOIN operator and its advantages over 

the other OLAP operators like CUBEBY, GROUPBY and so on. In this section, we 

describe how the MD-JOIN algorithm can be implemented to execute as a Map-

Reduce function using the Hadoop system. The Hadoop system consists of a 

Job Tracker which acts as a master process, reads the input data, divides the 

input dataset into chunks of equal size and assigns them to each of the Task 

Trackers. Task Trackers are the processors that are designed to perform the 

Map or the Reduce functions. In this implementation one cycle of the Map-

Reduce is executed to generate the base dataset from the dataset given by the 

user. The master process divides the task of processing the fact dataset and 

the base dataset into subtasks and assigns each of the subtasks to one of the 
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available map process. Each subtask that is processed by one of the Map 

functions generates a list of intermediate results. After all the input data is 

processed and the intermediate results are generated, the master process 

assigns the results to the available processors to perform the reduce jobs. The 

results of the reduce jobs are written to an output file, which is the result of the 

MD-join operation. The following sub sections show the Map and the Reduce 

functions for MD-join implementation. 

3.1 Map Function Design 
 

The Job Tracker assigns each of the Map functions with a chunk of the dataset, 

where each tuple in the dataset is of the form <Subject, Property, Object>. The 

pseudo code below shows the implementation of the Map function. The Map 

function reads every tuple and generates the <key, value> pairs as an output, 

where the value is a map of the predicate and the object corresponding to the 

subject. Hence the Map function returns a list of <Subject, <Predicate, Object> 

> pairs.  

Figure 5 shows the pseudo code for the Map function. 
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Map ( String Map, String Value) 
    //Key : File Chunk Name 
    // Value : chunk of data 
    For  each line in the value 
           // line is of the form <Subject, Property, Object> 
           Output(<Subject, <Property, Object>> 

 

Figure 5: Pseudo code for Map Function 

The Combine function is a sub-routine that is implemented within the Map 

function and combines the related results of the Map. This function is executed 

by the framework after the executing of the Map functions. All the values having 

the same key are grouped together into a collection. If the user defined query 

has any filter conditions defined on the dataset, then the corresponding <key, 

Collection of values> are filtered out in this function. The pseudo code for the 

combine function is shown below. 
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Combiner (Collection Output) 
     //Output has the list of <subject, <Property, Object>>      
        records 
     FOREACH Subject in the Output 
       Get all the records  with the same Subject 
       IF Filter Condition  
         IF Aggregation is on a Multidimensional Key 
           Key = generate composite key based on the                                                               
                     attribute value 
          Value = <Property of the Attribute, Value of that  
                        Property> 
         Else 
           Key = Subject 
           Value = <Property, Value> 
         End IF 
     End IF 
         Output (<Key, [Value]>) 
 

Figure 6: Pseudo code for Combiner Function 

In [9] the authors show that the tuples for which the filter condition is not true 

will never be considered by the MD-Join and hence these tuples can be 

eliminated from the dataset. Thus MD (B,R,l,Θ), where Θ involves the attributes 

of R is equivalent to MD(B, Selection on Θ (R), l, Θ); By eliminating the data 

records for which the filter condition is not true, we are reducing the number of 

records to be processed in the reduce function, thus increasing the efficiency. 

3.2 Reduce Function Design 
 

Set of keys and the collection of values are the input to the reduce function. 

Each reducer will have a set of the fact tuples and the corresponding base 
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tuples. Base tuples are of the form <key, <BASE, NULL>>, where “BASE” is 

used as a flag to perform the join operation. The fact tuples are of the form < 

key, [<property, value>]. For examples, 

Example 3.2.1: To compute the number of each product purchased. 

The base tuples for this example will be of the type: 

 <PROD123, <BASE, NULL>> 

 <PROD342, <BASE, NULL>> 

 <PROD566, >BASE, NULL>> … 

Consider the following to be the set of fact tuples containing the 

product id and the product purchase information. 

 <PROD123, <LOC, NC>> 

 <PROD342, <LOC, NY>> 

 <PROD566, <LOC, NC>> 

 <PROD934, <LOC, NC>> .. 
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All the properties and the corresponding values for the keys are collected 

together. The algorithm for computing the aggregation is shown below. When a 

match is found between the base and the fact tuple, the aggregation operation 

is computed and the base tuple is updated with the value computed.  Figure 7 

shows the pseudo code for the reducer function. 

Reduce(String Key, Iterator Value) 

     // The MD-Join Algorithm is implemented in this function 

    FOREACH occurrence of the user defined condition in 
    the fact set 

       IF Fact.key == Base.key 
         compute the Aggregation Function 

          And update the Base dataset, by replacing the                                                                                   
          NULL value in it. 

Figure 7: Pseudo code for Reducer Function 

Executing the Reduce function on the data shown in Example 2.3.1, we obtain 

the following: 

<PROD123, <LOC, NC>>  <PROD123, <BASE, NULL>> 

<PROD342, <LOC, NY>>  <PROD342, <BASE, NULL>> 

<PROD566, <LOC, NC>>    <PROD566, >BASE, NULL>> 

<PROD934, <LOC, NC>> .. 

1 Count(prod) 
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The example above shows the execution of the reduce function on the 

dataset, and how the aggregation values are updated on the Base 

dataset. 

As discussed in section 2.1, MD-join is designed to separate the tight coupling 

between the grouping attributes and the aggregation functions. Due to this 

decoupling it is possible perform the grouping operation and the aggregation in 

different functions. Since the grouping and the aggregation operations are 

independent of each other, we can perform the grouping and the aggregation 

operations in the Map and the Reduce functions respectively.  Further, in 

section 3.3, we show how the MD-join operator can be executed in parallel. 

3.3 MD-Join - Intra-Operator Parallelism 
 

In section 2.1 we discussed MD-Join for the sequential execution of the data. In 

this section, we will see how the MD-Join operator is amenable to parallelism by 

leveraging the results given in [9] which state the following: 

Observation 3.3.1: If B and R are relations, B1, B2,....,Bm a partition of B, 

l is a list of aggregate functions over columns of R and Θ is a set of 

conditions involving attributes of B and R, then: 
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MD(B,R, l , Θ) = MD(B1,R, l , Θ)  MD(B2,R, l , Θ)  ......  MD(Bm,R, l , 

Θ) 

This observation states that the query using MD-JOIN can be parallelized by 

dividing the base dataset across the processors and executing the MD-Join 

algorithm on each of them in parallel. This reduces the execution time for 

processing the complex queries, but each processor still needs to have the 

entire fact data set and iterate through it completely to check if there is a 

matching key found for computing aggregation. 

Based on the above conclusion the following observations were made,  

Observation 3.3.2:  In MD(B,R,l,Θ), B can be partitioned into B1  

B2…  Bn where Bi = σi(B), where σi is a range selection based on the 

attributes on B. Similarly R can be partitioned into R1  R2…  Rn 

where Ri = σi(R), where σi is a range selection based on the 

attributes on R. The same selection function is used for both base 

and the fact table partitioning in such a way that the same range of 

selection is performed. Hence, 

MD(σi(B), R, l, Θ) = MD(σi(B), σi(R), l, Θ) 
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This observation states that the query using MD-JOIN can be parallelized by 

dividing both the base dataset and the fact dataset across the processors such 

that every processor gets the same range of base and fact data. Thus the MD-

Join algorithm can be executed on each of them in parallel for the subset of the 

fact and the base data. 

This section shows how the MD-join operator can be implemented as a map-

reduce function. Since this is a low level implementation of the operator, any 

customized computation that needs to be done, requires the user to change the 

Map and the Reduce functions. As discussed in section 2.2, the user 

customized code does not allow the efficient optimization. In the next section 

we provide a set of new operators for Pig Latin language to perform complex 

analytical querying. 
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Chapter 4 

Extending Pig Latin for analytical processing of RDF 

Pig Latin provides various operators like the JOIN, FILTER, GROUP and 

COGROUP which can be used to support the basic analytical queries.  

Example 4.1: Consider the data shown in Table 2 to get all the list of all 

the customers who bought products in location NC, we need to execute 

the following queries in Pig Latin 

Raw_data = LOAD “sales.rdf” as (Subject, Predicate ,Object); 

Join_res = Join Raw_data by Object, Raw_data by Subject 

Res = FILTER Join_res By $1 eq “Bought” AND $4 = “location” AND $5 = 

“NC”; 
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Output = FOREACH Res GENERATE ($0, $1, $5); 

In Example 4.1 we perform LOAD, JOIN, FILTER and FOREACH operations. 

Each of these operations requires reading the data file once completely. Thus 

the above query collectively reads the data file five times resulting in cost 

inefficient query execution. Further, the complex queries require executing 

multiple group operations with the different aggregation functions resulting in 

more expensive query executions. 

One alternative is to implement the complex data processing using the UDF 

that allows the users to implement the desired functionality as a user defined 

function. However, in our earlier discussions we have mentioned the 

disadvantages of this approach. This section presents an extension to the Pig 

Latin language that includes the specialized functions that allow the complex 

data processing tasks to be specified in terms of the MD-join operator. Also, the 

additional classes of expressions are introduced in the language to deal with 

the graph structured nature of the RDF data. 

In the following sub sections, we define the three functions that can be used in 

the complex ad-hoc data analysis. We first define the path expressions to 

access the related RDF tuples. The path expression can be of two types, the 
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Class expressions or the Property expressions. Class expressions are 

represented by type : class_name, and are used to specify the class of the 

subject in the qualifying triple. For example, the expression “type:Customer” 

specifies that the qualifying tuple‟s subject will be of the type Customer. The 

properties are represented similarly using the property expressions. The graph 

based nature of the RDF data makes it necessary to specify the navigational 

patterns of a set of the desired objects that can be represented using property 

expressions. For instance, the path expression to represent the navigation from 

the Customer C1 to the product P1’s price can be represented as 

“bought.price”. These kinds of expressions represent the relation between the 

tuples and are hence useful to in performing the JOIN operation between the 

related tuples. 

4.1  Generating Fact Dataset: GFD 

 

MD-join operation requires a fact dataset and a base dataset to execute the 

algorithm. In order to generate the fact dataset, we need to load the RDF file 

initially. As mentioned earlier, the format of an RDF file is of the form <Subject, 

Property, Object>, which differs from the format of the relational data (sequence 

of tuples). Furthermore, the RDF data is accompanied by its metadata in an 
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input file and must be handled during the load process.  Thus we call the LOAD 

operator of Pig Latin along with the GFD operator. To generate the fact dataset 

from an RDF file “input.rdf”, a specialized class for GFD needs to be added to 

the Pig Latin library. The following shows the syntax of the GFD function: 

 

fact_dataset = LOAD 'input.rdf' USING 

GFD(Class_Expression;  property_expressions; 

aggregation_pathexpression; filter_pathexpression’); 

  

In this syntax, input_dataset is the data loaded from the RDF file. 

Class_Expression indicates the value of the subject in the input_dataset. 

property_expressions indicates the properties for which the aggregation needs to 

be computed. The filter_pathexpression indicates the properties for which the 

filter conditions needs to be checked. Finally, the aggregation_pathexpression 

holds the property on which the aggregation operation is performed. The LOAD 

operator reads each line from the input.rdf file and calls the GFD operator. The 

GFD operator groups together the tuples based on the subject value and the 
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necessary JOIN operations are preformed to reassemble the tuples. Generating 

the Fact tuples for the example 4.1 is as shown below. Figure 8 shows the steps 

in executing GFD for the example given. 

fact_dataset = LOAD 'input.rdf' USING 

GFD(TYPE:CUSTOMER;  BOUGHT.LOC,BOUGHT.PRICE; 

BOUGHT.PRICE; BOUGHT.LOC’); 

 

 

 

 

 

 

 

 

<c1, type, 

Customer> 

<c1, bought, P1> 

<P1, loc , NC> 

<P1, price, 25> 

<c1,< type, 

Customer>> 

<c1, <bought, P1>>  

<P1, <loc , NC>> 

<P1, <price, 25>> 

<C1_P1 , Price 25 >        

<c1_P1, Loc, NC> 

LOAD 

GROUPBY 

JOIN 

Figure 8: Execution on GFD for Example 4.1 
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GFD performs the required join operations on the related tuples and generates 

result of the form <Subject, Property, Object>. The subset of the output for the 

above query is of the form:  

Table 10: Shows the result obtained after executing GFD 

Subject Property Object 

C1_P1 Price 25 

C1_P1 Loc NC 

C1_P2 Price 35 

C1_P2 Loc NC 

The result generated using this operator is called as the fact dataset.  Fact 

dataset is a subset of the tuples that are required to compute the result for the 

user given query. Within the GFD function, we call the STORE function to store 

this fact dataset in an intermediate file called the MDJ.rdf. The data from the file 

is later used by the MDJ operator while performing the MD-join operation, which 

is discussed in section 4.3.  

4.2 Generating Base Dataset: GBD 

 

Section 2.1 describes a simple algorithm for a MD-Join operator. The algorithm 

requires a set of container tuples of all the combinations of the properties for 
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which the aggregation needs to be computed. For every tuple in the fact 

dataset, the corresponding combination in the base dataset is obtained and the 

aggregation results are updated in the container tuples. Similar to the GFD, the 

GBD operator is executed along with the LOAD function.  

base_dataset = LOAD 'input.rdf' USING 

GBD(Class_Expression;  property_expressions; FLAG’); 

As in GFD, the class_expression and the property_expression are path 

expression to indicate the relationship that exists between the tuples having the 

same subjects. The Flag holds either the value “NULL” or “BOTH” that indicates 

that the key for the Aggregation is either the properties got from the 

property_expressions or a combination of the property value and the type class. 

The tuples generated by the GBD are of the type <Subject, Base, NULL> where 

“Base” is a flag that indicates that the tuple belongs to the base dataset. The 

NULL value will be replaced by the value computed by the aggregation function 

when executing MDJ operation. Generating the Fact tuples for the example 4.1 

is as shown below. Figure 9 shows the steps in executing GFD for the example 

given. 

         base_dataset =  LOAD'input.rdf' USING GBD 
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(TYPE:CUSTOMER; BOUGHT.LOC,BOUGHT.PRICE; NULL); 

 

 

 

 

 

 

 

 

 

 

 

The result generated after the execution of GBD is shown in the Table 4 

Table 11 : Subset of the result generated after the GBD operation 

Subject Property Object 

C1 BASE NULL 

C2 BASE NULL 

<c1, type, 

Customer> 

<c1, bought, P1> 

<P1, loc , NC> 

<P1, price, 25> 

<c1,< type, 

Customer>> 

<c1, <bought, P1>>  

<P1, <loc , NC>> 

<P1, <price, 25>> 

<C1 , BASE, NULL >         

LOAD 

GROUPBY 

JOIN 

Figure 9: Execution of the GBD for the Example 4.1 
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The tuples generated by the GBD operator are referred to as the base tuples. 

Base tuples are initialized with a NULL, for each object corresponding to the 

subject. The NULL values are updated during the aggregation operation.  

Within the GBD function, we call the STORE function to append the base dataset 

into the same MDJ.rdf file. This file is later loaded by the MDJ operator while 

performing the JOIN operation and is discussed in the next section.  

4.3 Multi-Dimensional Join: MDJ 
 

After the generation of the base tuple and the fact tuple sets, the next step is 

the execution of the MD-Join algorithm on these datasets. In order to perform 

the multi dimensional JOIN operations in the Pig Latin, the MDJ operator class is 

included as a part of the language library. The MDJ operator executes on the 

data present in the “MDJ.rdf” file created by the GFD and GBD operators as 

mentioned in section 4.1 and 4.2. This operator takes as input the filter 

condition on which the aggregation needs to be computed and the aggregation 

function such as the SUM, COUNT, MAX, MIN, AVG. The syntax for the MDJ 

operator is as follows: 

output_dataset = LOAD “MDJ.rdf” USING MDJ(KEY_NAME; 
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AGGREGATION_FUNCTION : AGGREGATION_PROPERTY; 

FILTER_PROPERTY:FILTER_CONDITION); 

 

 

 

 

 

 

 

Figure 10: Execution of MDJ for Example 4.1 

 

Executing MDJ operation for the example 4.1 is as shown below. Figure 10 

Figure 8shows the steps in executing GFD for the example given. 

output_dataset = LOAD “MDJ.rdf” USING MDJ(CUSTOMER; 

<C1_P1 , Price 25 >        

<c1_P1, Loc, NC> 

<C1, BASE, NULL> 

< C1_P1 , Price 25 >        

<c1_P1, Loc, NC>  

 

<C1, BASE, NULL> 

< C1 , Price 25 >        

<C1, Loc, NC>              

<C1, BASE, NULL> 

 

LOAD 

GROUPBY 

FILTER 

JOIN 
<C1, SUM, 25> 
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SUM : PRICE; STATE:NC); 

The result generated for the above query is as shown in Table 12. 

Table 12 : The results generated after the MDJOIN operation 

Customer SUM (PRICE) 

C1 25 

C2 35 

 

The output generated is stored in an output file using the Pig Latin primitive the 

STORE function.  

Using the above mentioned operators- GFD, GBD and MDJ; it is possible to 

perform various kinds of analytical queries. The following shows examples of 

executing simple queries, CUBEBY, pivoting, GROUPBY operations using the 

extended Pig Latin primitives. 

Example: 4.1 – simple query execution using extended operators 

For the Sales data shown in the Chapter 1, suppose we want to compute a simple 

query to find the total sale in the month of December for each state. 
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The query for the about scenario has to be of the type, for every possible state 

present in the fact dataset we need to get the sale for the month December.  

The above query when executed using primitive Pig Latin operators, it requires 

two JOIN operations and one GROUP BY operation along with two FOREACH 

iterations to perform the reassembling of the data and computing the 

aggregation. Each of these operations will require reading the dataset 

completely. Using the extended Pig Latin primitives we can represent the above 

examples as: 

Assuming the data is the “sales.rdf” file we can execute GFD to reassemble the 

RDF tuples in a way that it groups together all the related tuples. GFD can be 

executed as:  

fact_dataset = LOAD 'sales.rdf' USING 

GFD(TYPE:CUSTOMER;  BOUGHT.LOC;BOUGHT.PRICE; 

BOUGHT.MONTH); 

Bought.LOC is the property for which we need to compute the sales. The 

aggregation is computed on the BOUGHT.PRICE property and the filter 

condition is checked on BOUGHT.MONTH property. 
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After the creation of the fact table, we need to create the base data using the 

GBD: 

base_dataset =  GBD ‘sales.rdf’ USING 

 

(TYPE:CUSTOMER; BOUGHT.STATE; NULL); 

 

The above query generates the base dataset containing tuples for every state 

present in the „sales.rdf‟. Every record in the base dataset has its property set to 

“BASE” and the value of the Object set to “NULL” After the generation of the 

fact and the base dataset, MDJ operator can be executed on these datasets 

output_dataset = LOAD “MDJ.rdf” USING MDJ(STATE; 

SUM : SALE; MONTH:December); 

 

The above query reads every tuple from the fact dataset and iterates over the 

base dataset to find a tuple where the State of the fact data and the base data 

is the same and the month in the fact data is equal to December. When a 

corresponding match is found, the base dataset is updated with the sum of the 
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sale. The result is thus obtained by performing one join for each of the GFD, 

GBD and MDJ operations, thus reducing the number of scans over the dataset. 

 

Example 4.2:  Pivoting example 

Compute the average purchase for each customer in the month Jan, May and 

Dec.  

Executing the above example using Pig Latin language primitives requires 

reading the dataset multiple times to perform the GROUP, JOIN and FOREACH 

operations. These operations are required to compute the aggregation over 

multiple dimensions. To execute the same using extended Pig Latin operators, 

we execute GFD using CUSTOMER class as the base class and the 

aggregation is computed on the property PRICE. The filter condition is checked 

on the property MONTH. The query for the example is as shown below: 

fact_dataset = LOAD sales.rdf' USING 

                       GFD(TYPE:CUSTOMER;  NULL, 

             BOUGHT.PRICE; BOUGHT.MONTH); 
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Step 2: To execute the MDJ operation it is required to generate the base 

dataset. Base tuples are generated for each combination of the properties for 

which the aggregation is computed. The predicate for these tuples are set to 

BASE and the object has the value set to NULL initially, which will be updated 

during the MDJ operation. The GBD for generating the base dataset for the given 

query is as shown below: 

          base_dataset = LOAD sales.rdf' USING 

                         GBD(TYPE:CUSTOMER; NULL ; NULL’); 

Step 3: After the base and the fact dataset is generated, we need to compute 

the MDJ operation. For the given query, we need to compute average price for 

the month- Jan, May and Dec. Hence we execute three queries to compute MDJ 

one for each month specified.  

  initial_dataset = LOAD “MDJ.rdf” USING  

   MDJ(CUSTOMER;  AVG :PRICE;  MONTH:JAN); 

Step 4: MDJ with filter condition Month = May 

initial_dataset = LOAD “MDJ.rdf” USING  
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 MDJ(CUSTOMER;  AVG :PRICE;  MONTH:MAY); 

Step 5: MDJ with filter condition Month = Dec 

output_dataset = LOAD “MDJ.rdf” USING  

   MDJ(CUSTOMER;  AVG :PRICE;  MONTH:DEC); 

The output_dataset contains the sales of each customer who purchased 

products in the month of Jan, May and Dec respectively. 

Example 4.3: Data cube example 

To compute the number of sales above the average sale, when we are viewing 

the Sales from all possible combinations of Prod purchased, Month when the 

purchase was made and the state where the purchase was made. 

In order to execute these queries using primitive operators after the 

reassembling of the data, we need to perform, eight group by operations for all 

possible combinations of attributes .i.e., none, prod, month, state, prod & 

month, prod & state, month & state , prod & month & state. Each group by 

operation computes the average sale for the possible combination of attributes.  

We require eight more subqueries, where each subquery performs a join 
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operation with the original sales dataset to validate the filter condition i.e. 

Avg(sale) >sale. Finally to get the count of the number of sales above the 

average sale, we perform eight group by operations with the same combination 

of attributes as the first set of group by operations. This provides the results 

where the count of the sales is above the average sale for various combinations 

of attributes.  

The solution of this kind will not result in an efficient query execution due to the 

execution of 16 group by operations and 8 join operations, where each of these 

operations require one complete scan of the dataset, which is an expensive 

operation. 

A cost efficient alternative for the above query can be obtained by executing the 

above using Pig Latin extended primitive as shown below: 

Step 1: For the given query, fact dataset is generated using the GFD operator. 

The query is as shown below 

 fact_dataset = LOAD sales.rdf' USING 

GFD(TYPE:CUSTOMER;  

BOUGHT.STATE,BOUGHT.MONTH,BOUGHT.PROD;                              
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          BOUGHT.PRICE;   BOUGHT.PRICE); 

Step 2: Base dataset for the given query contains tuples with subject having all 

possible combinations of the properties – state, month and prod. The query to 

generate base dataset for the given examples is as shown below: 

base_dataset = LOAD salse.rdf' USING 

GBD(TYPE:CUSTOMER;  

BOUGHT.STATE,BOUGHT.MONTH,BOUGHT.PROD;   

     NULL’); 

Step 3: Query to perform MDJ that computes the average sale is as shown 

below: 

                     output_dataset = LOAD “MDJ.rdf” USING  

 MDJ(STATE,MONTH,PROD;  COUNT : PRICE; PRICE > AVG_PRICE); 

In step 1, reassembling of the related tuple is performed and the result of GFD 

will provide the required fact data set to perform the multi dimensional join 

operation. Step 2 creates the container tuples, where the aggregation values 
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can be updated when executing the MDJ operation. Finally step 3 and 4 

perform the actual MDJ operations. In step 3 we compute the average sale for 

all the combinations of attributes. Using this average, in step 4 we compute the 

number of sales above the average sales for the all the combinations of PROD, 

MONTH and STATE.  
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Chapter 5 

 Implementation  

 

The queries written in the Pig Latin are executed as the Map-Reduce jobs using 

the Hadoop system. The new architecture of the Pig Latin system after 

including the extended operators is as shown in Figure 7 

 

 

 

 

 

HADOOP SYSTEM: MAP-REDUCE FRAMEWORK 

USER DEFINED 
FUNCTIONS 

Data Model 

Atoms, Tuples, Bags 
and Maps 

Aggregation Operators 

SUM, MAX, MIN, AVG, 
COUNT 

Language 
Primitives 

LOAD, STORE, 
FOREACH, FILTER, 

GROUP, COGROUP, 
JOIN, UNION,CROSS 

Extended 
Primitives 

GFD, GBD and MDJ 

PIG LATIN 

Figure 11: Architecture of Pig Latin Language 
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5.1 Execution plan on Hadoop  
 

The operators GFD, GBD and MDJ execute on the Map-Reduce framework. The 

Map-Reduce framework is designed in such a way that it divides the huge tasks 

into the smaller tasks and assigns them to every processor for processing. The 

GFD and the GBD operators group all the tuples based on the Subject and then 

perform the multiple join operations on them to reassemble all the related 

tuples.  Each grouping operation is compiled into one Map-Reduce dataflow, 

where every tuple is assigned with one key in such a way that all the tuples with 

the same subject will have the same key. The Reduce function will group 

together all the tuples with a similar key which are required to perform the join 

operation. Furthermore, to reduce the relations between these tuples we will 

require a Map-Reduce dataflow for each of the join operations. Hence the 

number of Map-Reduce iterations depends on the number of join operations 

that will be performed to reassemble the records. Figure 8 shows the execution 

plan of GBD and GFD on Map-Reduce 
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The MDJ gets compiled into one Map-Reduce workflow, where the properties on 

which the aggregation needs to be computed are grouped together in the Map 

phase and the actual aggregation is performed in the Reduce phase. Figure 5 

shows the execution of MD-join on Map-Reduce. 

 

 

 

 

Figure 12 : Execution plan of GBD and GFD on Map-Reduce 

Figure 13 : Execution plan for MDJ on Map-Reduce 

Reduce 

i iterations 
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Join 

Map 

Map Reduce 
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Reduce 
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In the Pig Latin language, the execution plan and the execution platform are 

dependent on each other. The execution platform for the queries is the Hadoop 

system. In this section, we have seen the execution plan for the extended 

operators that we have implemented for the Pig Latin language. 
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Chapter 6 

Evaluation 
 

6.1 Environment 
 

For the evaluation purpose, queries of different complexities were executed on 

a Hadoop setup using an actual dataset and a synthetic dataset, primary 

created to evaluate the performance of SPARQL queries. Two Hadoop 

instances are created on the Virtual Computing Lab (VCL) machines one as the 

Job Tracker and the other as the Task Tracker. One instance of the Job Tracker 

is tagged with three instances of the Task Tracker, thus creation of one 

reservation for the Job Tracker creates one master and three slave processors. 

Hadoop is installed on Red Hat Enterprise Linux and Java 5 is used for the 

execution of the code. The following subsections show few examples of the 
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queries and their cost evaluation. In these examples, we have used shot hand 

representations of the URI‟s for the sake of readability. 

6.2 BSBM dataset 
 

We conducted a cost performance evaluation based on a dataset from Berlin 

SPARQL Benchmark (BSBM) [5]. BSBM is a synthetic dataset for evaluating 

the performance of the SPARQL queries.  In this dataset, the information about 

the Vendor, the Offers provided by the vendors on the various Product types 

and the relationships between the offers and the products are mentioned. We 

consider a subset of that graph and the relationship between the nodes for our 

evaluation. Figure 14 represents the subset of the BSBN schema.  

 

 

 

 

 

Figure 14: Example subgraph taken from the BSBM dataset 
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offer vendors 
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6.2.1 Query Execution on BSBM dataset  

Consider an analytical query, to compute the number of offers made by the 

vendors, who were above the average price, when the data is viewed from all 

the combinations of typeOf, validTo and country. In order to compute the result 

of the given query, we need to initially reassemble the RDF data in order to get 

the offer price related to each offer made by the vendor. We assume that the 

RDF data for the BSBM dataset is in the input.rdf file. The data can be 

reassembled by performing the GFD operation as shown below:  

           fact_dataset = LOAD 'input.rdf' USING 

                      GFD(TYPE:VENDOR;  VENDORS.VALIDTO, VENDORS.COUNTRY,  

                             VENDORS.OFFERS.TYPEOF; VENDORS.PRICE;  

                             VENDORS.OFFERS.TYPEOF’); 

                                                                                                                                                                                                                             

Next, in order to execute the MDJ operation we need to have the base tuples, 

which are generated using the GBD operator as shown below – 
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       base_dataset = LOAD 'input.rdf' USING 

        GBD(TYPE:VENDOR;  VENDORS.VALIDTO, VENDORS.COUNTRY,  

      VENDORS.OFFERS.TYPEOF; NULL’); 

The MDJ operator can now be executed using the base_dataset and the 

fact_dataset. MDJ operator has to be executed initially to compute the 

average price of the offers. After the computation of the average price, the 

MDJ operator has to be executed to compute the Count based on the 

average price calculated. The MDJ operator for the two Aggregations is as 

shown below –  

                    output_dataset = LOAD “MDJ.rdf” USING  

       MDJ(TYPEOF,VALIDTO, COUNTRY;  AVERAGE : PRICE; NULL); 

      final_dataset = LOAD “MDJ.rdf” USING  

                   MDJ(TYPEOF,VALIDTO, COUNTRY;  COUNT :  

  PRICE; PRICE > AVG_PRICE); 
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6.2.2 Results 
 

We compare the costs between the execution of the above query using the Pig 

Latin primitive operators and the new extended operators. Table 13 shows the 

cost analysis for the query execution at various steps. 

Table 13: Cost analysis for the query execution on BSBN dataset 

 

Pig Latin Primitive 

operators 

Pig Latin 

Extended 

operators 

Number of User 

queries 
27 4 

Number of Joins 

required to 

reassemble the data 

3 

3 – GFD 

3 - GBD 
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Table 14: continued 
 

Number of GroupBy 

operations required 

8  

( Before we perform 

the Join operation ) 

8  

( After the Join 

operation ) 

1 – GFD 

1 - GBD 

Number of Joins 

required after the 

reassembling of the 

data 

8 Joins 2 – MD-Joins 

Execution Time 

(File Size of 3.6MB) 

16.23 Minutes 6.37 Minutes 

 

Table 13 shows the cost analysis, for executing the user query in Pig Latin 

using the primitive operators and the proposed extended operators. It can be 
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clearly seen that the number of user written queries using the extended 

operators is very less when compared with the queries written using the 

primitive operators. The number of Join operations for reassembling the tuples 

using extended Pig Latin operator is slightly more than the number of Joins 

when executing the same operation using primitive language operators. The 

reason being, to perform the MDJ operation, we need the base dataset and the 

fact dataset, resulting in increased number of Join operations. Even though the 

cost incurred when reassembling the tuple is more in the case of the extended 

operators, the cost for performing the multi-dimensional join is one fourth of the 

cost for performing the same operation using the primitive operators of Pig Latin 

language. Thus this approach seems more cost efficient than using the primitive 

operators. Figure 8 shows how the cost on extended operators decreases after 

the reassembling the data. 
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Figure 15:  Graph shows the cost analysis using the two approaches 

 

 

6.3 DBLP dataset 

DataBase systems and Logic Programming (DBLP) dataset is the RDF 

representation of DBLP publication portal which is part of the SWETO dataset 

[25]. It contains the information that represents the relationship between the 

Authors of the Books, the book publications, Year of Publication and other 

related nodes. Figure 16 shows the subset of the DBLP schema. 
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6.3.1 Query Execution on DBLP dataset  

Consider a query, to compute the number of books written by each author in the 

years “1999”, “2003” and “2007”. To compute this result, let us assume the RDF 

data for that the DBLP dataset is in the input.rdf file. The first step is to 

reassemble the data using the GFD operator which is as shown below: 

fact_dataset = LOAD 'input.rdf' USING 

                  GFD(TYPE:PERSON;  AUTHORED.ISBN, 

PublishedBy 

isbn 

Type 
B1 Book 

1208918 

“Leaning A” 

Title 

age 

Type 
P1 Person 

47 

John 

Name 

Authored 

Pu1 

Publisher 

Type 
Year 

2001 

Figure 16: Example subgraph taken from the DBLP dataset 
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             AUTHORED.PUBLISHEDBY.YEAR;  

             AUTHORED.ISBN; AUTHORED.PUBLISHEDBY.YEAR);  

The base dataset for the above data is generated using the GBD operator. The 

query below shows the generation of the base dataset. 

         base_dataset = LOAD 'input.rdf' USING 

                      GBD(TYPE:PERSON; NULL ; NULL’); 

Since we need to compute the Aggregation for every year and for each author, 

we execute the MDJ once for every year. Hence we need three MDJ operations 

to get the expected result. 

       initial_dataset = LOAD “MDJ.rdf” USING   

        MDJ(PERSON,ISBN;  COUNT : ISBN; YEAR:1999); 

      output_dataset = LOAD “MDJ.rdf” USING  

      MDJ(PERSON,ISBN;  COUNT : ISBN; YEAR:2003); 

      final_dataset = LOAD “MDJ.rdf” USING  
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      MDJ(PERSON,ISBN;  COUNT : ISBN; YEAR:2007); 

The output of the final_dataset contains the count of the number of books 

written by each author in the years “1999”, “2003” and “2007”. 

6.3.2 Results 

Table 15 shows the cost analysis for the above query and compares the cost of 

executing this query in the Pig Latin language using the primitive operators with 

the cost of executing the same query using the extended Pig Latin operators. 

Table 15: Cost analysis for the query execution on DBLP dataset 

 

Pig Latin Primitive 

operators 

Pig Latin 

Extended 

operators 

Number of User 

queries 
11 5 

Number of Joins 

required to 

reassemble the data 

3 

3 – GFD 

3 - GBD 
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Table 16: Continued 

Number of GroupBy 

operations required 
6 

1 – GFD 

1 - GBD 

 

Number of Joins 

required after the 

reassembling of the 

data 

 

 

 

4 – Joins 

+ 

4   – Joins 

 

3 - MDJ 

Execution Time 

(File Size of 6.6MB) 

38.08 Minutes 18.19 Minutes 

Table 15 shows the cost evaluation for the user query using the two 

approaches. In this case we see results similar to the results seen in Table 13. 

Initially the cost of reassembling the data is more when executing the queries 

using the extended operators, due to the creation of the fact and the base 

dataset. After the reassembling of the data, the query execution cost reduces to 

close to one fourth of the cost for executing the same query using the primitive 
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operators of the Pig Latin language. Figure 10 shows, how the cost for the 

query execution decreases after reassembling the data in the case of the 

extended Pig Latin operators.  

 

Figure 17: Graph shows the cost analysis using the two approaches 

 

In Table 15 and Table 16, the first row indicates the number of user queries that 

are required to perform the required complex analytical analysis. As the result 

shows, the number of queries required to perform the task using the primitive 

operators is very large when compared with the number of queries written using 
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the extended operators to perform the same task. This result demonstrates 

another advantage using the extended operators.  
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Chapter 7 

Related Work 

 

We have provided a set of operators to perform MD-join operation in Pig Latin 

language. These operators can be used to perform complex analytic querying on RDF 

datasets. In this section, we compare this approach with other data processing 

languages and OLAP techniques 

Analytical queries are often very complex requiring multiple aggregations over 

multiple groupings. Such queries are cumbersome to express using traditional 

query operators such as the GROUPBY and often lead to inefficient query plans. 

OLAP operators such as CUBEBY, ROLLUP are relatively recent additions to the 

SQL allow for more succinct expression of a subset of analytical queries. 

However, many of the complex ad-hoc analytical queries still remain a 
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challenge to express using these operators. The MD-Join achieves succinct 

and efficient expression of a broader range of analytical queries by decoupling 

the grouping and the aggregation functions. 

Parallelization is an increasingly popular method of achieving scalable 

processing on large datasets. High end database systems with specialized 

parallel architectures are one alternative for supporting efficient complex OLAP 

query processing. Various parallel database products like Teradata, Tandem, 

NCR, Oracle-n CUBE, and RAC are designed to provide impressive scalability 

and efficient query processing speed. However, are very expensive and are not 

designed to scale to the size of data on the Web. Computational clusters of 

commodity grade machines provide a cost effective alternative to high end 

parallel database systems that can be used to achieve the kind of scalability 

needed for performing analytical querying on the Web data. Map-Reduce 

framework provides a simple yet efficient way to enable parallel processing on 

such clusters without requiring the user to understand the complexities of 

distributed systems. The map and reduce functions are mainly suitable for 

computations that are conceptually straightforward and as the problem grows in 

complexity, the optimization is limited by the custom code written by the user. 

Task-specification languages provide a way to overcome this opaque nature of 
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Map-Reduce framework. Languages like Yahoo‟s Pig Latin [6], Google‟s 

Sawzall [24] and Microsoft‟s DyradLINQ [10] are high-level languages that 

implement data processing tasks and have been built on top of Map-Reduce.  

DyrandLINQ is a high level language built over a distributed platform to provide 

large scale data processing, over a parallel and fault tolerant execution process. 

The distributed platform is called Dyrand that is developed by Microsoft [95]. 

Unlike the rigid two step chain of Map-Reduce, Dyrand provides more flexibility 

in performing arbitrary computations. But the limitations of this system is that 

the high level language, DyranLINQ is hard to program and the languages is 

not widely known to the public. 

Sawzall is another language used by Google that executes over the Map-

Reduce framework. It is a scripting language with rigid structure similar to the 

Map-Reduce framework with the filter operations performed in the Map phase 

and the aggregations performed in the Reduce phase. The language allows 

user defined functions to be implemented only in the filter phase and has a 

limited set of pre-defined aggregation operations. This provides limited flexibility 

in processing complex queries on RDF datasets. While in Pig Latin, the 

language provides a wide range of primitives for data computation and also 

allows user defined functions to be implemented. Operators like Group, 
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CoGroup are useful in perform various join operations that are required when 

processing analytical queries on RDF datasets.   

Pig Latin is a balance between a high-level declarative constructs of SQL and a 

low-level procedural way of Map-Reduce. This provides opportunities to 

implement complex operators that can be scalable and thus can process the 

data at the Web scale efficiently. Map-Reduce platform is designed to provide 

fault tolerance, store data locally to avoid network bandwidth issues and also 

maintain backup tasks for faster and reliable execution.  
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Chapter 8 

Future Work 
 

 

A data flow language like the Pig Latin provides the required flexibility to the 

users and is suitable for the simple data processing tasks. In this report we 

have shown how to implement the MD-join operator in the Pig Latin language 

for the analytical processing of the RDF datasets. There are many promising 

areas that are yet to be explored in the context of the analytical processing of 

the RDF datasets using a scalable approach like the Pig Latin Language. The 

following are a few possible research areas. 

 Optimizations:  

In this section we examine how we can optimize these extended operators.  

a) Generalizing MD-Joins: Currently, for a certain complex MD-join 

operations, we perform the nested MD-join executions. Various ways to 
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perform the generalized multi-dimensional joins can be researched, 

resulting in an efficient execution, as it reduces the number of Map-

Reduce cycles considerably. The focus of this research should be to 

identify, develop and implement a set of primitives that will be required to 

express the queries in terms of a generalized multidimensional join. 

Doing so will enable us to overcome the shortcomings of the traditional 

operators and enable highly efficient Map-Reduce workflows. 

 

b) Indexing the datasets: In order, to reassemble the data to perform the 

complex join operations, we iterate multiple times through the existing 

set of the user input data to find the related tuples. By finding an 

appropriate way to index these data, multiple iterations on the same 

dataset can be avoided. 

 

c) Query rewriting: Rewriting the rules for the optimization of the queries 

can be further researched.  Such rules could include the transformation 

of the queries that use the traditional operator to perform the multi-

dimensional querying to MD-join queries. Further, any of the nested MD-

join queries must be identified and transformed into generalized multi 

dimensional queries.  
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 User interfaces: The productivity of the framework can be enhanced through 

a right interactive interface. Currently the queries are executed on a 

command line interface, which has limited support for validating the user 

inputs. A well designed user interface that provides options to validate the 

user entered input will avoid unnecessary query executions. 

 

 Providing keyword notations instead of lengthy URIs: The current framework 

takes the entire URI to represent the path expressions. An efficient 

approach might be to take the keywords as the input from the user and to 

map them to the actual URI‟s of the RDF triples during the computation of 

the Aggregations. This approach makes the language user friendly and 

increases the productivity. 
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Chapter 9 

Conclusion  

 

In this work, we presented an approach for scalable analytical processing on 

the RDF datasets using the parallel processing techniques. This approach 

extends on the existing platforms such as Hadoop, Map-Reduce, Pig to provide 

the structure and the semantics of the RDF data. Further, we integrated the 

multi-dimensional join operator to perform the analytical processing on the 

graph structured data like the RDF. We provided a simple and intuitive syntactic 

extension of Pig Latin language in order to express the MD-join on the RDF 

dataset.  We also demonstrated the usability of this approach using the case 

studies on the synthetic and the real datasets and tabulated the obtained 

results.  
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1. Environment setup 

 

Step 1: To create an image for Hadoop on the VCL machine, select Manage 

Images tab on the VCL page. In the manage images page, select Create / 

Update of an Image and Submit the request. 

 

 

Figure 18: Screen shot of the Manage Images page 
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Step 2: Hadoop is installed on the Red Hat Linux environment. Hence, in the 

Create / Update an Image page select Red Hat Enterprise Linux option from 

the drop down list. Submit the Create Imaging Reservation request. 

 

Figure 19: Screen shot of the Create an Image page 

 

 

Step 3: When the reservation is successfully made, the system provides the 

remote machine‟s IP address and the login details to connect to that system, 

where the Hadoop image can be created. 
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Figure 20: Screen shot of the Connect page 

 

Step 4: Using a ssh client, connect to the remote computer. Hadoop is 

installed on this machine. Instance of the Hadoop can be obtained at 

http://hadoop.apache.org. Instructions to install Hadoop can be obtained at: 

http://hadoop.apache.org/core/docs/current/quickstart.html 

 

 

Step 5: For Hadoop execution, we need the Java environment setup. Java 5.x 

for Linux software can be downloaded from http://java.sun.com/ 
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Step 6: Save this image by naming it the Job Tracker. Create another image 

similar to the Job Tracker and save is as the Task Tracker. 

 

Step 7: One Job Tracker is tagged with n number of Task Trackers, where n is 

the number of the slave process required. The images can be tagged by 

selecting the Edit image option present in the Manage Images page.  
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2. Access to the Hadoop image 

 

Step 1: Make a new reservation, selecting the Hadoop Job Tracker 

environment from the drop down list. And submit the request by selecting 

Create Reservation 

 

 

 

Figure 21: Screen shot of the new Reservation page 
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Step 2: Based on the number of Task Trackers configured (), the reservation 

creates one Job Tracker (Master) and n Task Trackers (slaves) as configured. 

The successful creation of the reservation will provide us with a set of IP 

addresses to connect to the master and slave machines. 

 

 

Figure 22: Screen shot showing the Master and the Slave connection details 
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Step 3: The master and the slave machines can be accessed using any ssh 

client. 

  

Step 4: On the master machine, download the Pig Latin code base which can 

be obtained from http:/hadoop.apache.org/pig/ 

 

Step 5: Configuration changes: 

I. On the master system, find the location of the Conf folder, and modify 

the file named “masters” to include the IP address of the master system.  

II. Similarly, find the location of the Conf folder on every slave machine and 

modify the “slaves” file to include the IP address of the corresponding 

slave machine. 

III. In all the machines, replace the configuration from the localhost to the 

machine’s IP address in the file named “conf/Hadoop-site.xml” within 

the conf folder. 

<property> 

     

     <name>fs.default.name</name>     

                              <value>hdfs://localhost:9000</value>    

                          </property> 
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IV. The firewall configuration has to be disabled in order to be able to 

perform the communication between the master and the slave machines. 

Thus to bring down the firewall, make the following changes : 

 

In the master machine: 

chmod 755 bin/*.sh 

sudo bash 

/sbin/service iptables stop 

Exit 

 
 In every slave machine: 

chmod 755 bin/*.sh 

sudo bash 

/sbin/service iptables stop 

Exit 
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3. Query execution 

 

    When we execute: 

$ cd bin/hadoop namenode –format 

 $ bin/start-all.sh 

 

Simple Pig Latin command line interpreter called the GRUNT start its execution. 

Using this interface the users can interact to submit the jobs 

 

Figure 23: Screen shot of the GRUNT interpreter 
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In the GRUNT command line interface, the user command can be executed. 

Few examples are shown below:  

 Configure the input folder: 

grunt> bin/hadoop fs -put conf input 

 

 Execution of a word count example: 

grunt> bin/hadoop jar hadoop-0.17.2.1-examples.jar wordcount 

input output 

 

 Execution of a command to LOAD data from the input.rdf file: 

grunt> inputdata = LOAD ‘input.rdf’ as (sub,prop,obj); 

 

 Run GFD command: 

grunt> inputdata = LOAD ‘input.rdf’ using    

            GFD(‘TYPE:CUSTOMER;  

            BOUGHT.LOCATION,BOUGHT.PRICE;                

            BOUGHT.PRICE; BOUGHT.LOCATION) as  

            (sub,prop,obj);  

 

 Execute GBD command: 

grunt> basedata = LOAD ‘input.rdf’ using    
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         GBD(‘TYPE:CUSTOMER;  

      BOUGHT.LOCATION,BOUGHT.PRICE;                

               ;NULL)as  

            (sub,prop,obj); 

 

 Execute MDJ command: 

grunt> outputdata = LOAD ‘MDJ.rdf’ using    

             MDJ(‘TYPE; SUM:PRICE; LOCATION:NC);  

 

 

 Command to access the output generated: 

grunt> bin/hadoop fs -get output output 

grunt> cat output/* 

 

 Exit from the GRUNT command interface 

grunt> quit 
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4. Sample data 

 

Figure 24 shows the screen shot of the sample input data where the subject 

and the predicate are represented using URIs and the object either is an URI or 

a literal.  

 

 

 

Figure 24: Screen shot of the sample input data file 
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Figure 25 shows the screen shot of the sample base data that is generated 

after the execution of the GBD operator where the subject is represented using 

an URIs, the predicate has value “BASE” and the object is initialized to “NULL”.  

 

 

Figure 25: Screen shot of the sample base data file 

 

 

Figure 26 shows the screen shot of the sample output data that is generated 

after the execution of the MDJ operator where the subject and predicate are 

represented using an URIs and the Object has the aggregation result. 
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Figure 26: Screen shot of the output data file 

 


