

ABSTRACT

SRIDHAR, RADHIKA. Scaling Complex Analytical Processing on Graph
Structured Data Using Map Reduce. (Under the direction of
Dr Kemafor Anyanwu.)

Efficient analytical processing at the Web scale has become an important

requirement as more decision support applications rely on the data on the Web.

One approach for achieving the significant scalability is by the use of parallel

processing techniques on a computational cluster of the commodity grade

machines. Software platforms such as Map-Reduce, Hadoop and Pig are now

available that allow the users to encode their tasks in terms of simple low-level

primitives that are easily parallelizable. Further, a high-level dataflow language

called the Pig Latin has been proposed for specifying analytical processing

tasks using a mixture of the procedural and the declarative paradigms. This

approach strikes a good balance between customizability and the potential for

an automatic query optimization. However, the analytical processing capability

currently offered by these frameworks is fairly basic and as such has narrow

applicability to many real world scenarios. Furthermore, an increasing amount

of data being made available on the Web is semi-structured. For example,

some search engines report that the recent W3C standard for representing the

metadata on the Web called the Resource Description Framework (RDF)

already accounts for about 8,502,794 Web data URL’s and 2,759,040

documents. However, such data is typically organized as a set of binary

relations (a graph) whereas these frameworks are primarily targeted at

processing the data structured as n-ary relational tables.

This thesis addresses the problem of enabling the scalable analytical data

processing on the RDF datasets. Its approach is based on extending Yahoo’s

Pig system (an open source parallel processing) with constructs that allow

complex data processing problems on the graph structured data to be

expressed in a manner that is more amenable to automatic parallelization.

Specifically, it makes the following contributions:

1. Extends Pig Latin, the dataflow language for Pig, with primitives that

support the expression of queries in terms of a readily parallelizable

multidimensional join operator, as well as support the expression of

graph navigational filter expressions.

2. Implements the introduced primitives in a Hadoop implementation

running on VCL

3. Develops a cost model for estimating the cost of queries expressed in

terms of the multidimensional join operator.

Scaling Complex Analytical Processing on Graph Structured Data
Using Map Reduce

by
Radhika Sridhar

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Computer Science

Raleigh, North Carolina

2009

APPROVED BY:

_________________________ _________________________

 Dr. Tao Xie Dr. Xiaosong Ma

Dr. Kemafor Anyanwu

Chair of Advisory Committee

ii

DEDICATION

To my parents and sister…

iii

BIOGRAPHY

Sridhar, Radhika was born on February 15, 1983 in Bangalore, India. She

obtained her Bachelor‟s degree in Information Science and Engineering at

Dayananda Sagar College of Engineering an affiliate of Vishweshwaraiah

Technological University, in May 2005. At the time of writing this, she was

working towards her M.S. in Computer Science at the North Carolina State

University in Raleigh, North Carolina.

iv

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Kemafor Anyanwu for her guidance, helpful

suggestions and support in completing this thesis work. I also extend my

gratitude to my committee members, Dr. Tao Xie and Dr. Xiasong Ma for their

suggestions and valuable comments during the course of my thesis.

I am highly grateful to my family and friends for all their encouragement and

support. I would have never come this far without their moral support. I would

also like to thank the Semantic Computing Research Group at North Carolina

State University for their feedback and suggestions. Special thanks to my

friends Padmashree Ravindra and Suchetha M. Reddy for their suggestions

and encouragement in completing my thesis work successfully.

v

TABLE OF CONTENTS

LIST OF TABLES ... viii

LIST OF FIGURES .. ix

LIST OF ABBREVIATIONS ... xi

Chapter 1 .. 1

Introduction ... 1

1.1 Analytical Processing ... 2

1.2 Data processing on the Semantic Web .. 7

1.3 Research Motivation .. 17

1.4 Research Contributions ... 20

1.5 Outline of the thesis ... 21

Chapter 2 .. 23

Preliminaries ... 23

2.1 Expressing Complex Analytical Queries using MD-Join 23

2.2 Analytical data processing using parallelism approaches 29

2.2.1 Map Reduce Framework ... 29

2.2.2 Pig Latin language .. 33

Chapter 3 .. 39

Implementing MD-join in Map-reduce ... 39

3.1 Map Function Design ... 40

vi

3.2 Reduce Function Design ... 42

3.3 MD-Join - Intra-Operator Parallelism ... 45

Chapter 4 .. 48

Extending Pig Latin for analytical processing of RDF ... 48

4.1 Generating Fact Dataset: GFD .. 50

4.2 Generating Base Dataset: GBD ... 53

4.3 Multi-Dimensional Join: MDJ ... 56

Chapter 5 .. 67

Implementation ... 67

5.1 Execution plan on Hadoop ... 68

Chapter 6 .. 71

Evaluation ... 71

6.1 Environment... 71

6.2 BSBM dataset .. 72

6.2.1 Query Execution on BSBM dataset .. 73

6.2.2 Results ... 75

6.3 DBLP dataset... 78

6.3.1 Query Execution on DBLP dataset ... 79

6.3.2 Results ... 81

Chapter 7 .. 85

Related Work .. 85

Chapter 8 .. 89

Future Work .. 89

vii

Chapter 9 .. 92

Conclusion .. 92

REFERENCES ... 93

APPENDIX .. 97

1. Environment setup .. 98

2. Access to the Hadoop image .. 102

3. Query execution .. 106

4. Sample data .. 109

viii

LIST OF TABLES

Table 1 : Relational Representation of the Sales relation 13

Table 2 : RDF representation for the Sales relation .. 14

Table 3: ProdBought ... 16

Table 4: Price .. 16

Table 5: Location .. 16

Table 6: Fact table representing the Sales data ... 28

Table 7: Base table created for the table in the fact table 28

Table 8: Base table being updated with the values obtained after performing the

aggregation operation ... 29

Table 9 : Data expressions in Pig Latin... 37

Table 10: Shows the result obtained after executing GFD 53

Table 11 : Subset of the result generated after the GBD operation 55

Table 12 : The results generated after the MDJOIN operation 58

Table 13: Cost analysis for the query execution on BSBN dataset 75

Table 14: Cost analysis for the query execution on DBLP dataset 81

ix

LIST OF FIGURES

Figure 1: Graphical view of the simple RDF statement ... 9

Figure 2: Graphical representation of the Sales data .. 13

Figure 3 : The architecture of Map-Reduce framework 31

Figure 4: Pig Latin architecture ... 35

Figure 5: Pseudo code for Map Function .. 41

Figure 6: Pseudo code for Combiner Function ... 42

Figure 7: Pseudo code for Reducer Function ... 44

Figure 8: Execution on GFD for Example 4.1 ... 52

Figure 9: Execution of the GBD for the Example 4.1 .. 55

Figure 10: Execution of MDJ for Example 4.1 ... 57

Figure 11: Architecture of Pig Latin Language .. 67

Figure 12 : Execution plan of GBD and GFD on Map-Reduce 69

Figure 13 : Execution plan for MDJ on Map-Reduce .. 69

Figure 14: Example subgraph taken from the BSBM dataset 72

Figure 15: Graph shows the cost analysis using the two approaches 78

Figure 16: Example subgraph taken from the DBLP dataset 79

Figure 17: Graph shows the cost analysis using the two approaches 83

Figure 18: Screen shot of the Manage Images page .. 98

Figure 19: Screen shot of the Create an Image page ... 99

Figure 20: Screen shot of the Connect page .. 100

Figure 21: Screen shot of the new Reservation page 102

Figure 22: Screen shot showing the Master and the Slave connection details . 103

Figure 23: Screen shot of the GRUNT interpreter ... 106

x

Figure 24: Screen shot of the sample input data file ... 109

Figure 25: Screen shot of the sample base data file ... 110

Figure 26: Screen shot of the output data file ... 111

xi

LIST OF ABBREVIATIONS

BSBM : Berlin SPARQL Benchmark

DBLP : Data Base systems and Logic Programming

GFD : Generate Fact Dataset

GBD : Generate Base Dataset

MDJ : Multi-Dimensional Join

N3 : Notation 3

OLAP : On-Line Analytical Processing

RDF : Resource Description Framework

SPARQL : Simple Protocol And RDF Query Language

SQL : Structured Query Language

SWETO : Semantic WEb Technology evaluation Ontology

UDF : User Defined Function

URI : Uniform Resource Identifier

WWW : World Wide Web

W3C : World Wide Web Consortium

XML : eXtensible Markup Language

1

Chapter 1

Introduction

Structured data now constitutes a growing segment of the data being made

available on the Web. This trend is due to more organizations appreciating the

advantage of making their data available on the Web and also because of the

increasingly popular mechanisms for annotating Web content with metadata.

These annotation mechanisms range from the informal methods used by

applications such as Flickr [12], Delicious[14] Google Co-op[13] that allow users

“tag” digital resources with tags of their choice, to the more formal

representation schemes such as Microformats, XHTML, Resource Description

Framework (RDF)[15], RDF in attributes (RDFa),` Rich/RDF Site Summary

(RSS) etc which offer more systematic methods and languages for representing

metadata. These more formal mechanisms, particularly RDF – the standard for

2

metadata exchange on the Web, are gaining broadening adoption because of

the promise of potentially enabling reuse, exchange and automatic processing

of data. This has created an affinity for RDF in different communities,

particularly in scientific research domains where the exchange and sharing of

data and the possibility of semi-automatic data integration support is highly

desirable. One of the Semantic Web search engines, SWOOGLE[26], now

reports that there are several millions of RDF documents currently available on

the Web. The implication of this is that, while on the current Web, documents

marked up with tags that improve the presentation of the document content to

enable human understanding, the Semantic Web will have documents in which

machines will be able to understand the content on the Web and perform tasks

on behalf of users. Further, current generation data processing techniques for

the Web will need to be advanced to deal with the structure and semantics in

the new Web. In particular, techniques that support more analytical tasks as

opposed to the traditional searching and fact-finding will need to be developed

for supporting communities such as scientific research communities.

1.1 Analytical Processing

On-Line Analytical Processing (OLAP), in contrast to On-line transaction

processing (OLTP), refers to the category of techniques that support efficient

3

processing of queries demanding aggregations over multidimensional

groupings of data. In OLAP, numeric facts about the data called measures are

represented collectively in a table called the fact table and every measure is the

value of the attribute associated with the data. Attribute are categorized by a

dimension that is derived from the dimension tables. The dimension provides

information about the measure or the attribute. In OLAP, queries aggregate

subsets of values in the fact table along multiple dimensions. For example,

Assume that we have a Customer relation (CustID, CustName) (typically called

a dimension table), a Sales relation (CustID, ProdID, Price, Location) (typically

referred to as a fact table) that relates customers to products that they bought

and the price paid and location in which the sale occurred. We may want to

compute total sales amounts when grouped by all combinations of product,

month and state. This results is a query with aggregations (total sales) over

eight different groupings for every combination of product, month and state (i.e.

none, (product), (month), (state), (product & month), (month & state), (state &

product) and (product & month & state). Such queries are fundamental to

analytical tasks in business and financial applications. However, investigative

applications such as in scientific research domains, often require more ad-hoc

analytical queries as well as scientific research domains but are challenging

and cumbersome to express and evaluate efficiently. Some special operators

4

such as the CUBEBY, ROLLUP, etc were added to SQL which makes

reporting-style queries. However, ad-hoc analytical queries tend to be more

complex and are not easily expressible they require multiple aggregations over

different groups. For example, suppose we want to gain some insight into the

buying patterns in a particular region, we might want to compute for every

customer, the total amount of their purchases in either of the states, say “NY” or

“NJ”. This is called a “pivoting” query whose result is a relation (CustID,

Total_NY, Total_NJ). Since this requires computation of sales in those states

for every customer. Expressing such queries using traditional relational

database approach would require two subqueries (one for each location) to

compute the total amount of sales for the location, then two outer joins to

Customer table to assemble the final result. Such a query expression is

cumbersome and optimizers don‟t often select the best execution plan for them.

Consider the Sales schema shown below [7]:

 Sales(CustID, ProdID, Price, Location, Month, Year), to compute the

average for each customer who purchased the products in “NY’, “NC”

and “NJ”.

Evaluating such a query using the regular relational database operator would

primarily require executing the three subqueries, each query to compute the per

5

customer sales in NY, NC and NJ respectively. The result gives a list of all the

customers, whether or not they made any purchases in these states. We need

another subquery to select all the unique customers. Finally, we need four outer

joins to attach the sales to the customers in NY, NC and NJ locations.

A key observation made in [7] is that, there exists a tight coupling between the

grouping operations and the aggregation function that needs multi-pass

aggregation.

1.2 Challenges of Analytical Processing on RDF

Scalability - The issue of efficient processing of data at Web scale is still a

primary concern for search engine companies as datasets range to terabytes of

data. Parallel processing seems to be one promising approach for processing

data at a Web scale. Traditional approaches that use high-end parallel

database systems with highly specialized architectures such as Teradata,

Tandem, NCR, Oracle-n CUBE, and RAC or OLAP servers such as Microsoft

OLAP servers, SAS OLAP server are not cost effective and easily adoptable

strategy. These high end systems, though quite capable of handling data stores

at enterprise scale, are not designed for the Web scale processing and are too

expensive to be a practical alternative for supporting the Web scale processing.

Alternatively, there are leading efforts to develop platforms that enable parallel

processing of Web data. The winning and popular approach, pioneered by

6

Google, is the Map-Reduce [18] framework that has its roots in functional

programming languages. Further, Apache‟s release of an open source version

of Map-Reduce called Hadoop [1] derive from the Map-Reduce approach.

These platforms are designed to run parallel programs on a computational

cluster of commodity grade machines, a paradigm popularly known as cluster

computing. Further, a language Pig Latin [6] is built on top of Hadoop which is

an open source implementation of the Map-Reduce Framework. Pig Latin is an

algebraic dataflow language that expands the scope of primitives to enable the

reuse of common code fragments and provides the opportunity for applying

query optimization techniques. However, these approaches currently focus on

supporting the simple data processing tasks with the limited support for semi

structured or graph structured data such as RDF.

In order to execute ad-hoc queries on RDF datasets, before performing any

aggregation operations, we need to reassemble all the tuples with the related

predicates. A series of join operations are required to reassemble the tuples.

After reassembling the tuples, multi-pass aggregations need to be computed

which requires repeated processing on the same set of tuples with slightly

different computations, thus making the execution of these queries inefficient.

Our aim is to provide an efficient approach that can perform analytical querying

efficiently on semi structured datasets like RDF.

7

Various operators like the MD-Join, GMD-Join are proposed in the relation

database to perform efficient complex analytical query executions.

There are various areas that require performing analytical queries on the

Semantic Web. Fields like biomedical research, bioinformatics, etc., aim in

turning Semantic Web into practical applications that involve performing

complex analytical queries on the data to enhance the research ideas leading to

new innovations and discoveries

With such rapid growth rate of the semantic data, there is an increasing need

for a scalable approach to process these data. There are various scalable

parallel processing approaches like the Map-Reduce framework, Pig Latin

language that executes over a Map-Reduce framework and so on. But these

approaches currently process simple data efficiently. Executing complex

analytical queries on structured semantic data using these frameworks are yet

to be researched.

1.3 Data processing on the Semantic Web

A fundamental data model for the Semantic Web is called the Resource

Description Framework (RDF) [15] . In RDF, a simple statement is a triple of the

form <Subject, Predicate, Object>, where Subject can be any resource that

needs to be described. Predicate indicates the property associated with that

8

subject and the Object holds the value for that property. The triple

representation of RDF can be used to describe any concept, relationship or an

object that exists in the universe. In RDF the resources are identified using

simple Web identifiers called the Uniform Resource Identifiers (URI). This

enables to represent resources and their properties as graphs of nodes and

arcs representing their properties. For example, consider a general statement:

 “Customer Joe purchased a Dell laptop”. The RDF representation of the

statement is as shown below:

< http://examples.com/Cusomer#Joe,

http://examples.com/purchased,

http://www.dell.com/produce#Dell_laptop >

In the above example, “http://examples.com/Cusomer#Joe” represents the

subject, “http://examples.com/purchased” represents the property and the

object is represented by “http://www.dell.com/produce#Dell_laptop”. The RDF

statements can also be represented as a labeled graph connecting resources

where the labeled edges represent the properties between the resources.

Figure 1 shows the graphical representation of the RDF statement.

9

Figure 1: Graphical view of the simple RDF statement

Further, RDF is a conceptual model with different serialization formats. Some

concrete formats of representation are: XML RDF, Notation 3, N-Triples, and so

on. In this section we briefly describe the Notation 3 syntax that is one of the

simplest and widely used formats of RDF representation [26]. In this notation,

the subject, predicate and the object are URI‟s enclosed with in “<” and “>”

symbols. The end of each line or a triple is denoted by “.”. The syntactical form

of Notation 3 is as shown below, where subject, predicate and object are atoms.

An atom can either be an URI, an URI abbreviation, a blank node or a literal.

<subject><predicate><object> .

Subject

Predicate

Object

http://examples.com/purchased

http://examples.com/Cusomer#Joe

http://www.dell.com/produce#Dell_laptop

10

 For example,

1) <http://example.org/#Joe> <http://example.org/#Type>

<http://example.org/#Customer> .

2) <http://example.org/#PO12> <http://example.org/#loc>

<http://example.org/#NC> .

3) <http://example.org/#PO12> <http://example.org/#price> <35> .

Representing the data using such RDF syntax provides some structure for the

contents on the Web that makes the Web appear as a globally linked database

of triples as opposed to just a network of unstructured documents. This

provides an environment for the Web contents to be queried and analyzed to a

degree similar to what has been achieved with structured data. For example,

Search engine companies are actively investigating on techniques for analyzing

the massive amount of search log, click stream and web graph data that they

collect.

The World Wide Web Consortium (W3C) recommends SPARQL Protocol and

RDF Query Language (SPARQL) [16] for querying RDF data. The SPARQL

language supports querying RDF graphs and is designed to execute queries

using a combination of triple patterns, variables and constants. Variables in

11

SPARQL are represented using symbol “?” or “$” that prefix the variable name.

For example, consider a RDF statement as shown below:

 <http://example.org/#PO12> <http://example.org/#price> <35> .

A query to find the price of Product PO12 can be written in SPARQL as:

 SELECT ?price

 WHERE {

 <http://example.org/#PO12>

 <http://example.org/#price> ?price . }

The result of the above query returns value 35. Simple queries can be executed

using the SPARQL query language. More complex queries can be formed by

combining multiple triple patterns to form graph patterns using combination

operators. Currently, it is not possible to express queries that require grouping

and aggregations operations using SPARQL because the language does not

support these operations. . Some systems like OpenLink Virtuoso [30], ARQ [4]

, etc., extend SPARQL with SQL like aggregate and grouping functions.

However, even with such systems in these systems, executing complex queries

does not result in efficient results. Since, queries with multiple groupings and

aggregations require each aggregation function with the corresponding

12

grouping attribute to be executed as a separate subquery. Hence each

subquery requires scanning the table at least once. Performing multiple scans

result in expensive computations.

Further, the structure of the RDF data creates some challenges in performing

complex queries on the Web content. The challenges being an n-ary tuple in a

relational scheme contains all related data values in a single unit. Thus each

tuple is independent of the other within the input file. Grouping and aggregation

operations are executed on these tuples which means that such operations are

performed at the level of related data values. However, when we consider the

RDF data model, each tuple is a combination of the subject, predicate and the

object. Thus an n-ary relational tuple would be spread across a set of (n-1) RDF

triples. For example, Figure 2 shows the graph representation for two tuples of

the Sales relation

13

Figure 2: Graphical representation of the Sales data

Representing this graph in a relational database will result in a table having

attributes Customer, ProdBought, Price and Location. The data in Table 1

corresponds to the data in the graph.

Table 1 : Relational Representation of the Sales relation

Customer ProdBought Price Location

C1 P1 25 NC

C1 P2 35 CA

14

The equivalent RDF representation for the same data is shown in Table 2.

Comparing Table 1 and 2, we see, a single tuple with four attributes in the

relational representations is shredded into three tuples of subject, predicate and

object in the RDF representation.

Table 2 : RDF representation for the Sales relation

Subject Predicate Object

C1 Bought P1

P1 Price 25

P1 Location NC

C1 Bought P2

P2 Price 35

P2 Location CA

Due to the shredding of the tuple in the RDF representation, operations like

grouping or aggregation will require intensive self-joins over the same set of

triples, resulting in additional cost during query executions. For example,

consider a simple query –

To find all customers who bought products from location “NC”.

15

Expressing the above example in relational algebra:

Customer ( Location = “NC” (Sales))

In order to obtain the same result from the RDF dataset, we need to express

the above example in relational algebra as:

 subject (R R.subject = S.object S)

Where,

 R = predicate = “Location and object = “NC”(Sales)

S = predicate = “bought” (Sales)

Further, a popular approach for efficient management of the RDF data is

commonly known as the vertically partitioned approach, in which the dataset

containing the RDF data is partitioned into “n“unique datasets based on the

distinct tuple properties. Every dataset contains all the tuples corresponding to

one unique property. In this approach, the tuples are still shredded, but are

stored in separate files based on their properties. Thus performing any

operations on these datasets still requires reassembling of the data, but in this

case reassembling of the data can be performed by executing join operations

16

on different datasets, rather than the self join operation performed as in the

earlier approach. For example,

Consider the above examples, suppose the Sales data shown in Table 2 is

partitioned using the vertically partitioning approach, than the Sales data would

be represented as follows:

 Table 3: ProdBought

Subject Object

C1 P1

C1 P2

Table 4: Price

Subject Object

P1 25

P2 35

Table 5: Location

Subject Object

P1 NC

P2 CA

 Table 3 represents the data that has predicate value ProdBough. Similarly

Table 4 contains all the data that has predicate value Price and Table 5

contains data with predicate value Location. In order to obtain the same result

on the vertically partitioned RDF dataset the query shown in the above

example, we can represent the query in relational algebra as follows:

subject (R R.object = S.subject S)

Where,

R = object = “NC”(Location)

17

S = predicate = “bought” (Sales)

The above example shows the need to reassemble the related RDF tuples

before executing any queries on them. Table 2 also shows how the RDF format,

combines data and metadata within their representation. The attributes

ProdBought, Price and Location in the Table 1 is the actual data in the RDF

dataset. This adds additional complexity in querying RDF data, since it is

necessary to check for the correct predicate before computing any aggregation

or grouping operation. These challenges show the need for an approach to

query the RDF data that is similar to the relational database queries considering

the structure of the RDF datasets.

1.4 Research Motivation

Enable analytical querying on RDF datasets:

Ad-hoc analytical queries tend to be more complex as they require multiple

aggregations over different groups or viewing the results from different

dimensions. For example [7],

Consider the Sales schema shown below:

18

 Sales(CustID, ProdID, Price, Location, Month, Year), Suppose, to

compute the average sales value of each customer who purchased the

products in “NY’, “NC” and “NJ”.

Evaluating such a query using the regular relational database operator would

primarily require executing the three subqueries, each query to compute the per

customer sales in NY, NC and NJ respectively. The result gives a list of all the

customers, whether or not they made any purchases in these states. We need

another subquery to select all the unique customers. Finally, we need four outer

joins to attach the sales to the customers in NY, NC and NJ locations. This

example shows the need for multi-pass aggregation. In order to execute ad-hoc

queries on RDF datasets, before performing any aggregation operations, we

need to reassemble all the tuples with the related predicates. A series of join

operations are required to reassemble the tuples. After reassembling the tuples,

multi-pass aggregations need to be computed which requires repeated

processing on the same set of tuples with slightly different computations, thus

making the execution of these queries inefficient. Our aim is to provide an

efficient approach that can perform analytical querying efficiently on semi

structured datasets like RDF.

19

A scalable approach for RDF data processing: The issue of efficient

processing of data at Web scale is still a primary concern for search engine

companies as datasets range to terabytes of data. Parallel processing seems to

be one promising approach for processing data at a Web scale. Traditional

approaches that use high-end parallel database systems with highly specialized

architectures such as Teradata, Tandem, NCR, Oracle-n CUBE, and RAC or

OLAP servers such as Microsoft OLAP servers, SAS OLAP server are not cost

effective and easily adoptable strategy. These high end systems, though quite

capable of handling data stores at enterprise scale, are not designed for the

Web scale processing and are too expensive to be a practical alternative for

supporting the Web scale processing. Alternatively, there are leading efforts to

develop platforms that enable parallel processing of Web data. The winning and

popular approach, pioneered by Google, is the Map-Reduce [18] framework

that has its roots in functional programming languages. Further, Apache‟s

release of an open source version of Map-Reduce called Hadoop [1] derive

from the Map-Reduce approach. These platforms are designed to run parallel

programs on a computational cluster of commodity grade machines, a paradigm

popularly known as cluster computing. Further, a language Pig Latin [6] is built

on top of Hadoop which is an open source implementation of the Map-Reduce

Framework. Pig Latin is an algebraic dataflow language that expands the scope

20

of primitives to enable the reuse of common code fragments and provides the

opportunity for applying query optimization techniques. However, these

approaches currently focus on supporting the simple data processing tasks with

the limited support for semi structured or graph structured data such as RDF.

1.5 Research Contributions

In the earlier section, we have discussed the issues and the challenges

involved in analytical querying on RDF datasets. Based on these challenges,

we aim to contribute the following-

 Clearly introduce the problem of analytical data processing on RDF

datasets

 Propose an approach for achieving the scalable processing of the

non-trivial analytical tasks on RDF datasets that is based on an

efficient multidimensional query operator called the MD-Join and

parallel query processing on an extended Map-Reduce framework.

 Propose an approach for implementing the multi-dimensional join in a

Map-Reduce framework

 Propose an extension to the Pig Latin dataflow language that

includes the structural and semantic query expressions that are

necessary for querying RDF data, provide query primitives for

21

reassembling related RDF data values and define the inputs

necessary for MD-join operator. Further, we show how this extended

Pig Latin language compiles into the Map-Reduce workflows with the

enhanced MD-joins.

1.6 Outline of the thesis

- Chapter two discusses the challenges involved in expressing the

complex analytical queries and introduces the existing multi-

dimensional join operator. Further in this chapter, various

parallelism approaches for data processing are discussed.

- Chapter three discusses in detail the implementation of the multi-

dimensional join operator on a Map-Reduce execution framework.

- Chapter four explains how Pig Latin language can be extended to

provide new operators that can perform analytical processing on

RDF

- Chapter five discusses the execution plan for these extended

operators in terms of the Map-Reduce functions

- Chapter six shows the results of a few query executions using the

extended operators

22

- Chapter seven discusses the related work and chapter eight

highlights the possible future work.

- Chapter eight finally gives the conclusion.

23

Chapter 2

Preliminaries

2.1 Expressing Complex Analytical Queries using MD-Join

In the examples seen in section 1.1, we have observed that the complex ad-hoc

queries involve multiple aggregations over different sets of grouping values. In

the relational database, to perform a set of aggregation operations on different

grouped attributes, every aggregation operation has to be performed on one set

of grouping attributes independently and then these results have to be

combined. This tight coupling between the aggregation function and the

grouping attributes results in a series of join and union operations. The multiple

joins and unions restrict the optimization of these queries resulting in inefficient

query executions. For example [6],

24

Example 2.1 - we would like to compute the total number of products

having sales between the average sale of the previous month and the

average sale of the next month, for all combinations of the product and

the month for the year “2000”.

Evaluating such a query using traditional database operators would mean to

filter out all records for which the condition year = 2000 is not valid. For tuples

where the filter condition is true, a GROUPBY operation is performed over all the

product and month combinations. We would then need to compute aggregates

from tuples that are outside of each group (the previous and next month‟s

average sale). Using these results, the final aggregation value can be

computed. This example shows how cumbersome it is to express such

complex queries using the ordinary SQL operators. New operators like CUBEBY,

PIVOT, etc cannot be used in these queries as the computation is more

complex than a simple aggregation over multi-dimensions. These observations

were made in [8] and an operator, the MD-Join operator, that allows the queries

to decouple the grouping and the aggregation functions, was proposed. In this

operator, a Base table is constructed, that is a container table holding all the

combinations of the key sets for which the aggregation has to be computed.

25

The actual data in the relational table represents the fact table. The following is

a formal definition for the MD-Join operator:

 Definition: Let B and R be relations, Θ is a set of conditions involving

the attributes of B and R, l is a list of aggregation functions that needs

to be computed, l = (f1, f2, f3,…..fn) over attributes c1, c2, c3…,cn of R. We

define a new relational operator between B and R, called MD-Join,

defined as:

MD (B, R, l, Θ) is a relation with schema B, f1_R_c1, f2_R_c2, ….,

fn_R_cn, whose instance is determined as follows. Each tuple b  B

contributes to an output tuple B, such that:

 Table B is augmented with as many columns as the number of

aggregate functions in l. Each column is named as fi_R_ci, i = 1,. .

. ,n

 For each row r of table B we find the set S of tuples in R that

satisfy Ɵ with respect to r, i.e. when B’s attributes in Ɵ are

replaced by the corresponding r’s values. Then, the value of

26

column fi_R_ci of row r is the fi(ci) computed over tuples of S, i =

1,. . . ,n.

B is the base table created and R is the fact or detail table that holds the

collection of related tuple values e.g. the Sales relation. The semantics of the

MD-join operator is designed in such a way that the sequence of MD-joins can

be combined together, thus making the execution of complex ad-hoc query cost

efficient.

Expressing the above example using the MD-join operator we get:

MD(MD(MD(B, Sales, AVG(sale), Ɵ1), Sales, AVG (sale), Ɵ2),Sales, AVG (sale), Ɵ3)

Where Ɵ1 : Sales.cust = cust and Sales.state = “NY”,

 Ɵ2 : Sales.cust = cust and Sales.state = “NJ”,

 Ɵ3 : Sales.cust = cust and Sales.state = “NC”,

And B is the table generated using a simple query of the kind, “select distinct

cust from sales”.

The above example shows how the analytical query can be executing without

performing additional joins to combine the results of the aggregation operations.

27

The MD-join operator separates the tight coupling that exists between grouping

and aggregation attributes and hence makes the query execution efficient. Due

to this separation, it is possible to compute the aggregation value for all

combination of the attributes at once instead of performing the aggregations for

each combination of attributes separately which will require additional scanning

of the table.

Algorithm:

Scan R, and for all tuples t in R{

 For all rows r of B, check if condition

 Ɵ is satisfied with respect to r and t.

 If yes, update r‟s aggregate columns

appropriately.

}

The above algorithm shows the computation of the MD-join operator. This

operator captures the semantics of the user‟s need, more accurately as shown

in the above example. To understand the execution of the MD-join algorithm

consider the following tables. Table 6 is the fact table consisting of the Sales

data. Table 7 is the base table generated from the data present in the fact table.

28

Table 8 shows the result generated after the execution of the MD-Join operator

on the fact table. When a match is found between the fact and the base table

the corresponding aggregation is computed and the value is updated in the

base table as shown in Table 5.

Table 6: Fact table representing the Sales data

Cust Prod Month Year Price

1290 PRD1937 Feb 2008 1982.89

1291 PRD9436 Dec 2007 899.98

Table 7: Base table created for the table in the fact table

Prod Month

PRD1937 Feb

PRD1937 Dec

PRD9436 Dec

29

Table 8: Base table being updated with the values obtained after performing the
aggregation operation

Prod Month Sum(Price)

PRD1937 Feb 1982.89

PRD1937 Dec 89.90

PRD9436 Feb 32.2

PRD9436 Dec NULL

PRD9490 Jan NULL

2.2 Analytical data processing using parallelism approaches

2.2.1 Map Reduce Framework

Map-Reduce is a programming model designed to perform distributed

computation on clusters of computers. This framework is designed on the idea

of the functional programming technique, where the computation of the tasks is

performed by various functions. This framework defines two basic primitives

called the Map function which groups together the related data and the Reduce

100.18

30

function which performs any kind of computation or aggregation operation on

the groups. These Map and the Reduce functions are simple function

prototypes which needs to be implemented by the users as per the user

requirements. To use this paradigm for data processing, tasks need to be

mapped into the Map and the Reduce functions. Data processing using this

framework is particularly suited for tasks that can be casted as group-by-

aggregation. The execution of the tasks in the map and reduce functions are

independent of each other as each of these functions perform one specific task.

Hence these functions can be executed on different processors at different

times. This allows the processing of the tasks in these functions to be

parallelized. Figure 3 shows the architecture of the Map-Reduce framework.

The framework consists of one master process and multiple task processors

running in parallel to perform either a Map function or a Reduce function. The

master process accepts the input data and splits the data into smaller chunks

and assigns each chunk to one of the available processors. The map function

reads each line in the data, generates a key and returns the result as a <key,

value> pair. After all the map processors have completed their tasks, the master

function assigns the tasks for the processors to perform the reduce function.

This function sorts and merges all the intermediate keys generated by the map

function and computes the results. Any sort of aggregation that needs to be

31

computed can be performed in the reduce function. The keys and the type of

values generated for the map and the reduce functions are of the following

types:

 Map(k1,v1) list (k2, v2)

Reduce(k2,list(v2) list (v2)

Figure 3 : The architecture of Map-Reduce framework

32

Consider a simple example from [18] that counts the number of occurrences of

each word in a large document using the Map-Reduce framework. The master

process reads the input file, breaks it into chunks of smaller size and assigns

the chunks to the available processors to execute the Map function. Each

processor performing the Map function receives the <key, value> pair where the

file name is the key and the file data is the value in this case.

In each map process, the data is read and the output is a list of <key, value>

pairs, where the key is all the words present in the document and the value is

assigned as “one”. The processors performing the reducer function, will receive

<key, a list of value> pairs. We can now add up all the values corresponding to

a key and return the number of times that key (i.e. the word) occurs. Hence the

output of the reducer will be the list of all the keys and the number of

occurrences of the word in the document. This example shows how we can

parallelize the simple task of counting the number of occurrences of each word

in a file. However, more complex processing can be achieved by customizing

the map and the reduce functions.

Further, the Map-Reduce framework is designed to work with a single dataset.

However, in many situations it is required to perform join operations over two or

more data sets. The method for bypassing this limitation of a single dataset

includes the Map-Side Join or a Reduce-Side Join. In the Map-Side Join

33

approach, we first perform a map function, skip the reduce function but

generate the keys such that in the next cycle of map all the related data have

the same key. This approach requires one additional cycle of Map-Reduce data

flow for each of the JOIN operations performed. The other alternative is to

generate a flag representing each dataset. Based on this flag we can perform

the JOIN in the reduce function. This is known as the Reduce-Side Join. These

two approaches to perform JOIN operations are not very efficient because they

require an additional map and reduce phase in order to perform the JOIN

operation. Hence an extension of the Map-Reduce framework is the Map-

Reduce-Merge [12] framework. In this programming model, an additional merge

phase is added, where the JOIN operation is performed between the two sets of

the data that are obtained from the two different Map-Reduce cycles.

2.2.2 Pig Latin language

Map-reduce programming model has proven to be an efficient approach for the

data processing task, but with a few limitations such as:

 Rigid data flow between the Map and the Reduce functions. In the

above section, we observed, when implement the Map-Side join we

execute one cycle of the Map and Reduce function with no operation in

34

the Reduce function. We cannot eliminate this Reduce function due to

the rigid data flow between the two functions. Hence we execute the

Reduce function after the execution of the Map function but perform no

operation in the Reduce function.

 Framework‟s primary reliance on the customized functions that provide

limited opportunity for an automatic optimization and reuse of the code.

These limitations are the motivation for the development of the new dataflow

language known as the Pig Latin. The main goal of the Pig Latin language was

to achieve a sweet spot between the declarative style of the languages like SQL

and the low level procedural style of the Map-Reduce programming. In order to

achieve this, Pig Latin provides a set of predefined functions and query

expressions that can be used to describe the data processing tasks. Along with

these pre-defined functions, the language also allows the user to define their

own functions called the User Defined Functions (UDF). Figure 4 shows the

architecture of the Pig Latin language.

35

Figure 4: Pig Latin architecture

The data model for a Pig Latin consists of an atom that holds a single atomic

value, a tuple that holds a series of related values, a bag that forms a collection

of the tuples and a map that contains a collection of the key value pairs. A tuple

can be nested into an arbitrary depth. The basic primitive functions of the Pig

Latin language are: the LOAD function that can determine what the input file is

and how the file has to be read. The FOREACH function is used as an iterator to

loop through the collection. The FILTER primitive discards all the tuples for

which the condition does not hold. The GROUP operator collects the similar data

36

records within a given data set. The COGROUP operator is similar to the GROUP

operator but focuses on grouping together the similar data from different data

sets. The JOIN function is used to merge the data from two different datasets.

Other common commands similar to the SQL commands are the UNION,

DISTINCT, ORDER, CROSS, AVG, SUM, MIN, MAX and so on. STORE is used to get

the results stored in an output file. In addition to these primitive, Pig Latin

provides a library of UDF‟s – User Defined Functions. The limitation of UDF is

that the users will be responsible for the efficiency of their programs and they

have to specify how the functions have to be parallelized.

For example, consider the Sales schema discussed in chapter 1,

Compute the average sales within each location, where the number of

purchases in that location is greater than 3. A Pig Latin program for this

scenario, using the above mentioned operators is as follows:

groups = GROUP Sales BY Location;

group_count = FILTER groups BY COUNT(*) > 3;

output = FOREACH group_count GENERATE AVG(price);

37

The above example shows the sequence of steps in a Pig Latin program, which

is much like any programming language. Each line in the program performs a

single data transformation. These transformations in every step are fairly high

level, resembling the SQL, e.g. FILTER, GROUP, etc. Along with these SQL like

operators, Pig Latin provides a wide variety of data expressions and different

kinds of nested tuples for the data storage. This language provides a flexible

approach for accessing the data from these nested tuples. For example,

consider a tuple t with fields‟ f1, f2 and f3, where t is defined as shown below:

t = ′𝐶𝑢𝑠𝑡1′ ,
 ′𝑁𝐶′ , 25

 ′𝐶𝐴′ , 35

 , ′𝑃𝑟𝑜𝑑123′

Table 9 : Data expressions in Pig Latin

Expression Type Example Value for t

Field by

position

$2 ‘Prod123’

Field by name f1 Cust1

Projection f2.$1

(25)
(35)

Function

Evaluation

SUM(f2.$1) 25 + 35 = 60

38

Table 9 shows some examples of the expression type in Pig Latin and also how

these expressions operate. The flexibility provided in these expressions allows

the user to perform various kinds of operations on the data.

39

Chapter 3

Implementing MD-join in Map-reduce

In section 2, we briefly defined the MD-JOIN operator and its advantages over

the other OLAP operators like CUBEBY, GROUPBY and so on. In this section, we

describe how the MD-JOIN algorithm can be implemented to execute as a Map-

Reduce function using the Hadoop system. The Hadoop system consists of a

Job Tracker which acts as a master process, reads the input data, divides the

input dataset into chunks of equal size and assigns them to each of the Task

Trackers. Task Trackers are the processors that are designed to perform the

Map or the Reduce functions. In this implementation one cycle of the Map-

Reduce is executed to generate the base dataset from the dataset given by the

user. The master process divides the task of processing the fact dataset and

the base dataset into subtasks and assigns each of the subtasks to one of the

40

available map process. Each subtask that is processed by one of the Map

functions generates a list of intermediate results. After all the input data is

processed and the intermediate results are generated, the master process

assigns the results to the available processors to perform the reduce jobs. The

results of the reduce jobs are written to an output file, which is the result of the

MD-join operation. The following sub sections show the Map and the Reduce

functions for MD-join implementation.

3.1 Map Function Design

The Job Tracker assigns each of the Map functions with a chunk of the dataset,

where each tuple in the dataset is of the form <Subject, Property, Object>. The

pseudo code below shows the implementation of the Map function. The Map

function reads every tuple and generates the <key, value> pairs as an output,

where the value is a map of the predicate and the object corresponding to the

subject. Hence the Map function returns a list of <Subject, <Predicate, Object>

> pairs.

Figure 5 shows the pseudo code for the Map function.

41

Map (String Map, String Value)
 //Key : File Chunk Name
 // Value : chunk of data
 For each line in the value
 // line is of the form <Subject, Property, Object>
 Output(<Subject, <Property, Object>>

Figure 5: Pseudo code for Map Function

The Combine function is a sub-routine that is implemented within the Map

function and combines the related results of the Map. This function is executed

by the framework after the executing of the Map functions. All the values having

the same key are grouped together into a collection. If the user defined query

has any filter conditions defined on the dataset, then the corresponding <key,

Collection of values> are filtered out in this function. The pseudo code for the

combine function is shown below.

42

Combiner (Collection Output)
 //Output has the list of <subject, <Property, Object>>
 records
 FOREACH Subject in the Output
 Get all the records with the same Subject
 IF Filter Condition
 IF Aggregation is on a Multidimensional Key
 Key = generate composite key based on the
 attribute value
 Value = <Property of the Attribute, Value of that
 Property>
 Else
 Key = Subject
 Value = <Property, Value>
 End IF
 End IF
 Output (<Key, [Value]>)

Figure 6: Pseudo code for Combiner Function

In [9] the authors show that the tuples for which the filter condition is not true

will never be considered by the MD-Join and hence these tuples can be

eliminated from the dataset. Thus MD (B,R,l,Θ), where Θ involves the attributes

of R is equivalent to MD(B, Selection on Θ (R), l, Θ); By eliminating the data

records for which the filter condition is not true, we are reducing the number of

records to be processed in the reduce function, thus increasing the efficiency.

3.2 Reduce Function Design

Set of keys and the collection of values are the input to the reduce function.

Each reducer will have a set of the fact tuples and the corresponding base

43

tuples. Base tuples are of the form <key, <BASE, NULL>>, where “BASE” is

used as a flag to perform the join operation. The fact tuples are of the form <

key, [<property, value>]. For examples,

Example 3.2.1: To compute the number of each product purchased.

The base tuples for this example will be of the type:

 <PROD123, <BASE, NULL>>

 <PROD342, <BASE, NULL>>

 <PROD566, >BASE, NULL>> …

Consider the following to be the set of fact tuples containing the

product id and the product purchase information.

 <PROD123, <LOC, NC>>

 <PROD342, <LOC, NY>>

 <PROD566, <LOC, NC>>

 <PROD934, <LOC, NC>> ..

44

All the properties and the corresponding values for the keys are collected

together. The algorithm for computing the aggregation is shown below. When a

match is found between the base and the fact tuple, the aggregation operation

is computed and the base tuple is updated with the value computed. Figure 7

shows the pseudo code for the reducer function.

Reduce(String Key, Iterator Value)

 // The MD-Join Algorithm is implemented in this function

 FOREACH occurrence of the user defined condition in
 the fact set

 IF Fact.key == Base.key
 compute the Aggregation Function

 And update the Base dataset, by replacing the
 NULL value in it.

Figure 7: Pseudo code for Reducer Function

Executing the Reduce function on the data shown in Example 2.3.1, we obtain

the following:

<PROD123, <LOC, NC>> <PROD123, <BASE, NULL>>

<PROD342, <LOC, NY>> <PROD342, <BASE, NULL>>

<PROD566, <LOC, NC>> <PROD566, >BASE, NULL>>

<PROD934, <LOC, NC>> ..

1 Count(prod)

45

The example above shows the execution of the reduce function on the

dataset, and how the aggregation values are updated on the Base

dataset.

As discussed in section 2.1, MD-join is designed to separate the tight coupling

between the grouping attributes and the aggregation functions. Due to this

decoupling it is possible perform the grouping operation and the aggregation in

different functions. Since the grouping and the aggregation operations are

independent of each other, we can perform the grouping and the aggregation

operations in the Map and the Reduce functions respectively. Further, in

section 3.3, we show how the MD-join operator can be executed in parallel.

3.3 MD-Join - Intra-Operator Parallelism

In section 2.1 we discussed MD-Join for the sequential execution of the data. In

this section, we will see how the MD-Join operator is amenable to parallelism by

leveraging the results given in [9] which state the following:

Observation 3.3.1: If B and R are relations, B1, B2,....,Bm a partition of B,

l is a list of aggregate functions over columns of R and Θ is a set of

conditions involving attributes of B and R, then:

46

MD(B,R, l , Θ) = MD(B1,R, l , Θ)  MD(B2,R, l , Θ)   MD(Bm,R, l ,

Θ)

This observation states that the query using MD-JOIN can be parallelized by

dividing the base dataset across the processors and executing the MD-Join

algorithm on each of them in parallel. This reduces the execution time for

processing the complex queries, but each processor still needs to have the

entire fact data set and iterate through it completely to check if there is a

matching key found for computing aggregation.

Based on the above conclusion the following observations were made,

Observation 3.3.2: In MD(B,R,l,Θ), B can be partitioned into B1 

B2…  Bn where Bi = σi(B), where σi is a range selection based on the

attributes on B. Similarly R can be partitioned into R1  R2…  Rn

where Ri = σi(R), where σi is a range selection based on the

attributes on R. The same selection function is used for both base

and the fact table partitioning in such a way that the same range of

selection is performed. Hence,

MD(σi(B), R, l, Θ) = MD(σi(B), σi(R), l, Θ)

47

This observation states that the query using MD-JOIN can be parallelized by

dividing both the base dataset and the fact dataset across the processors such

that every processor gets the same range of base and fact data. Thus the MD-

Join algorithm can be executed on each of them in parallel for the subset of the

fact and the base data.

This section shows how the MD-join operator can be implemented as a map-

reduce function. Since this is a low level implementation of the operator, any

customized computation that needs to be done, requires the user to change the

Map and the Reduce functions. As discussed in section 2.2, the user

customized code does not allow the efficient optimization. In the next section

we provide a set of new operators for Pig Latin language to perform complex

analytical querying.

48

Chapter 4

Extending Pig Latin for analytical processing of RDF

Pig Latin provides various operators like the JOIN, FILTER, GROUP and

COGROUP which can be used to support the basic analytical queries.

Example 4.1: Consider the data shown in Table 2 to get all the list of all

the customers who bought products in location NC, we need to execute

the following queries in Pig Latin

Raw_data = LOAD “sales.rdf” as (Subject, Predicate ,Object);

Join_res = Join Raw_data by Object, Raw_data by Subject

Res = FILTER Join_res By $1 eq “Bought” AND $4 = “location” AND $5 =

“NC”;

49

Output = FOREACH Res GENERATE ($0, $1, $5);

In Example 4.1 we perform LOAD, JOIN, FILTER and FOREACH operations.

Each of these operations requires reading the data file once completely. Thus

the above query collectively reads the data file five times resulting in cost

inefficient query execution. Further, the complex queries require executing

multiple group operations with the different aggregation functions resulting in

more expensive query executions.

One alternative is to implement the complex data processing using the UDF

that allows the users to implement the desired functionality as a user defined

function. However, in our earlier discussions we have mentioned the

disadvantages of this approach. This section presents an extension to the Pig

Latin language that includes the specialized functions that allow the complex

data processing tasks to be specified in terms of the MD-join operator. Also, the

additional classes of expressions are introduced in the language to deal with

the graph structured nature of the RDF data.

In the following sub sections, we define the three functions that can be used in

the complex ad-hoc data analysis. We first define the path expressions to

access the related RDF tuples. The path expression can be of two types, the

50

Class expressions or the Property expressions. Class expressions are

represented by type : class_name, and are used to specify the class of the

subject in the qualifying triple. For example, the expression “type:Customer”

specifies that the qualifying tuple‟s subject will be of the type Customer. The

properties are represented similarly using the property expressions. The graph

based nature of the RDF data makes it necessary to specify the navigational

patterns of a set of the desired objects that can be represented using property

expressions. For instance, the path expression to represent the navigation from

the Customer C1 to the product P1’s price can be represented as

“bought.price”. These kinds of expressions represent the relation between the

tuples and are hence useful to in performing the JOIN operation between the

related tuples.

4.1 Generating Fact Dataset: GFD

MD-join operation requires a fact dataset and a base dataset to execute the

algorithm. In order to generate the fact dataset, we need to load the RDF file

initially. As mentioned earlier, the format of an RDF file is of the form <Subject,

Property, Object>, which differs from the format of the relational data (sequence

of tuples). Furthermore, the RDF data is accompanied by its metadata in an

51

input file and must be handled during the load process. Thus we call the LOAD

operator of Pig Latin along with the GFD operator. To generate the fact dataset

from an RDF file “input.rdf”, a specialized class for GFD needs to be added to

the Pig Latin library. The following shows the syntax of the GFD function:

fact_dataset = LOAD 'input.rdf' USING

GFD(Class_Expression; property_expressions;

aggregation_pathexpression; filter_pathexpression’);

In this syntax, input_dataset is the data loaded from the RDF file.

Class_Expression indicates the value of the subject in the input_dataset.

property_expressions indicates the properties for which the aggregation needs to

be computed. The filter_pathexpression indicates the properties for which the

filter conditions needs to be checked. Finally, the aggregation_pathexpression

holds the property on which the aggregation operation is performed. The LOAD

operator reads each line from the input.rdf file and calls the GFD operator. The

GFD operator groups together the tuples based on the subject value and the

52

necessary JOIN operations are preformed to reassemble the tuples. Generating

the Fact tuples for the example 4.1 is as shown below. Figure 8 shows the steps

in executing GFD for the example given.

fact_dataset = LOAD 'input.rdf' USING

GFD(TYPE:CUSTOMER; BOUGHT.LOC,BOUGHT.PRICE;

BOUGHT.PRICE; BOUGHT.LOC’);

<c1, type,

Customer>

<c1, bought, P1>

<P1, loc , NC>

<P1, price, 25>

<c1,< type,

Customer>>

<c1, <bought, P1>> 

<P1, <loc , NC>>

<P1, <price, 25>>

<C1_P1 , Price 25 >

<c1_P1, Loc, NC>

LOAD

GROUPBY

JOIN

Figure 8: Execution on GFD for Example 4.1

53

GFD performs the required join operations on the related tuples and generates

result of the form <Subject, Property, Object>. The subset of the output for the

above query is of the form:

Table 10: Shows the result obtained after executing GFD

Subject Property Object

C1_P1 Price 25

C1_P1 Loc NC

C1_P2 Price 35

C1_P2 Loc NC

The result generated using this operator is called as the fact dataset. Fact

dataset is a subset of the tuples that are required to compute the result for the

user given query. Within the GFD function, we call the STORE function to store

this fact dataset in an intermediate file called the MDJ.rdf. The data from the file

is later used by the MDJ operator while performing the MD-join operation, which

is discussed in section 4.3.

4.2 Generating Base Dataset: GBD

Section 2.1 describes a simple algorithm for a MD-Join operator. The algorithm

requires a set of container tuples of all the combinations of the properties for

54

which the aggregation needs to be computed. For every tuple in the fact

dataset, the corresponding combination in the base dataset is obtained and the

aggregation results are updated in the container tuples. Similar to the GFD, the

GBD operator is executed along with the LOAD function.

base_dataset = LOAD 'input.rdf' USING

GBD(Class_Expression; property_expressions; FLAG’);

As in GFD, the class_expression and the property_expression are path

expression to indicate the relationship that exists between the tuples having the

same subjects. The Flag holds either the value “NULL” or “BOTH” that indicates

that the key for the Aggregation is either the properties got from the

property_expressions or a combination of the property value and the type class.

The tuples generated by the GBD are of the type <Subject, Base, NULL> where

“Base” is a flag that indicates that the tuple belongs to the base dataset. The

NULL value will be replaced by the value computed by the aggregation function

when executing MDJ operation. Generating the Fact tuples for the example 4.1

is as shown below. Figure 9 shows the steps in executing GFD for the example

given.

 base_dataset = LOAD'input.rdf' USING GBD

55

(TYPE:CUSTOMER; BOUGHT.LOC,BOUGHT.PRICE; NULL);

The result generated after the execution of GBD is shown in the Table 4

Table 11 : Subset of the result generated after the GBD operation

Subject Property Object

C1 BASE NULL

C2 BASE NULL

<c1, type,

Customer>

<c1, bought, P1>

<P1, loc , NC>

<P1, price, 25>

<c1,< type,

Customer>>

<c1, <bought, P1>> 

<P1, <loc , NC>>

<P1, <price, 25>>

<C1 , BASE, NULL >

LOAD

GROUPBY

JOIN

Figure 9: Execution of the GBD for the Example 4.1

56

The tuples generated by the GBD operator are referred to as the base tuples.

Base tuples are initialized with a NULL, for each object corresponding to the

subject. The NULL values are updated during the aggregation operation.

Within the GBD function, we call the STORE function to append the base dataset

into the same MDJ.rdf file. This file is later loaded by the MDJ operator while

performing the JOIN operation and is discussed in the next section.

4.3 Multi-Dimensional Join: MDJ

After the generation of the base tuple and the fact tuple sets, the next step is

the execution of the MD-Join algorithm on these datasets. In order to perform

the multi dimensional JOIN operations in the Pig Latin, the MDJ operator class is

included as a part of the language library. The MDJ operator executes on the

data present in the “MDJ.rdf” file created by the GFD and GBD operators as

mentioned in section 4.1 and 4.2. This operator takes as input the filter

condition on which the aggregation needs to be computed and the aggregation

function such as the SUM, COUNT, MAX, MIN, AVG. The syntax for the MDJ

operator is as follows:

output_dataset = LOAD “MDJ.rdf” USING MDJ(KEY_NAME;

57

AGGREGATION_FUNCTION : AGGREGATION_PROPERTY;

FILTER_PROPERTY:FILTER_CONDITION);

Figure 10: Execution of MDJ for Example 4.1

Executing MDJ operation for the example 4.1 is as shown below. Figure 10

Figure 8shows the steps in executing GFD for the example given.

output_dataset = LOAD “MDJ.rdf” USING MDJ(CUSTOMER;

<C1_P1 , Price 25 >

<c1_P1, Loc, NC>

<C1, BASE, NULL>

< C1_P1 , Price 25 >

<c1_P1, Loc, NC> 

<C1, BASE, NULL>

< C1 , Price 25 >

<C1, Loc, NC>

<C1, BASE, NULL>

LOAD

GROUPBY

FILTER

JOIN
<C1, SUM, 25>

58

SUM : PRICE; STATE:NC);

The result generated for the above query is as shown in Table 12.

Table 12 : The results generated after the MDJOIN operation

Customer SUM (PRICE)

C1 25

C2 35

The output generated is stored in an output file using the Pig Latin primitive the

STORE function.

Using the above mentioned operators- GFD, GBD and MDJ; it is possible to

perform various kinds of analytical queries. The following shows examples of

executing simple queries, CUBEBY, pivoting, GROUPBY operations using the

extended Pig Latin primitives.

Example: 4.1 – simple query execution using extended operators

For the Sales data shown in the Chapter 1, suppose we want to compute a simple

query to find the total sale in the month of December for each state.

59

The query for the about scenario has to be of the type, for every possible state

present in the fact dataset we need to get the sale for the month December.

The above query when executed using primitive Pig Latin operators, it requires

two JOIN operations and one GROUP BY operation along with two FOREACH

iterations to perform the reassembling of the data and computing the

aggregation. Each of these operations will require reading the dataset

completely. Using the extended Pig Latin primitives we can represent the above

examples as:

Assuming the data is the “sales.rdf” file we can execute GFD to reassemble the

RDF tuples in a way that it groups together all the related tuples. GFD can be

executed as:

fact_dataset = LOAD 'sales.rdf' USING

GFD(TYPE:CUSTOMER; BOUGHT.LOC;BOUGHT.PRICE;

BOUGHT.MONTH);

Bought.LOC is the property for which we need to compute the sales. The

aggregation is computed on the BOUGHT.PRICE property and the filter

condition is checked on BOUGHT.MONTH property.

60

After the creation of the fact table, we need to create the base data using the

GBD:

base_dataset = GBD ‘sales.rdf’ USING

(TYPE:CUSTOMER; BOUGHT.STATE; NULL);

The above query generates the base dataset containing tuples for every state

present in the „sales.rdf‟. Every record in the base dataset has its property set to

“BASE” and the value of the Object set to “NULL” After the generation of the

fact and the base dataset, MDJ operator can be executed on these datasets

output_dataset = LOAD “MDJ.rdf” USING MDJ(STATE;

SUM : SALE; MONTH:December);

The above query reads every tuple from the fact dataset and iterates over the

base dataset to find a tuple where the State of the fact data and the base data

is the same and the month in the fact data is equal to December. When a

corresponding match is found, the base dataset is updated with the sum of the

61

sale. The result is thus obtained by performing one join for each of the GFD,

GBD and MDJ operations, thus reducing the number of scans over the dataset.

Example 4.2: Pivoting example

Compute the average purchase for each customer in the month Jan, May and

Dec.

Executing the above example using Pig Latin language primitives requires

reading the dataset multiple times to perform the GROUP, JOIN and FOREACH

operations. These operations are required to compute the aggregation over

multiple dimensions. To execute the same using extended Pig Latin operators,

we execute GFD using CUSTOMER class as the base class and the

aggregation is computed on the property PRICE. The filter condition is checked

on the property MONTH. The query for the example is as shown below:

fact_dataset = LOAD sales.rdf' USING

 GFD(TYPE:CUSTOMER; NULL,

 BOUGHT.PRICE; BOUGHT.MONTH);

62

Step 2: To execute the MDJ operation it is required to generate the base

dataset. Base tuples are generated for each combination of the properties for

which the aggregation is computed. The predicate for these tuples are set to

BASE and the object has the value set to NULL initially, which will be updated

during the MDJ operation. The GBD for generating the base dataset for the given

query is as shown below:

 base_dataset = LOAD sales.rdf' USING

 GBD(TYPE:CUSTOMER; NULL ; NULL’);

Step 3: After the base and the fact dataset is generated, we need to compute

the MDJ operation. For the given query, we need to compute average price for

the month- Jan, May and Dec. Hence we execute three queries to compute MDJ

one for each month specified.

 initial_dataset = LOAD “MDJ.rdf” USING

 MDJ(CUSTOMER; AVG :PRICE; MONTH:JAN);

Step 4: MDJ with filter condition Month = May

initial_dataset = LOAD “MDJ.rdf” USING

63

 MDJ(CUSTOMER; AVG :PRICE; MONTH:MAY);

Step 5: MDJ with filter condition Month = Dec

output_dataset = LOAD “MDJ.rdf” USING

 MDJ(CUSTOMER; AVG :PRICE; MONTH:DEC);

The output_dataset contains the sales of each customer who purchased

products in the month of Jan, May and Dec respectively.

Example 4.3: Data cube example

To compute the number of sales above the average sale, when we are viewing

the Sales from all possible combinations of Prod purchased, Month when the

purchase was made and the state where the purchase was made.

In order to execute these queries using primitive operators after the

reassembling of the data, we need to perform, eight group by operations for all

possible combinations of attributes .i.e., none, prod, month, state, prod &

month, prod & state, month & state , prod & month & state. Each group by

operation computes the average sale for the possible combination of attributes.

We require eight more subqueries, where each subquery performs a join

64

operation with the original sales dataset to validate the filter condition i.e.

Avg(sale) >sale. Finally to get the count of the number of sales above the

average sale, we perform eight group by operations with the same combination

of attributes as the first set of group by operations. This provides the results

where the count of the sales is above the average sale for various combinations

of attributes.

The solution of this kind will not result in an efficient query execution due to the

execution of 16 group by operations and 8 join operations, where each of these

operations require one complete scan of the dataset, which is an expensive

operation.

A cost efficient alternative for the above query can be obtained by executing the

above using Pig Latin extended primitive as shown below:

Step 1: For the given query, fact dataset is generated using the GFD operator.

The query is as shown below

 fact_dataset = LOAD sales.rdf' USING

GFD(TYPE:CUSTOMER;

BOUGHT.STATE,BOUGHT.MONTH,BOUGHT.PROD;

65

 BOUGHT.PRICE; BOUGHT.PRICE);

Step 2: Base dataset for the given query contains tuples with subject having all

possible combinations of the properties – state, month and prod. The query to

generate base dataset for the given examples is as shown below:

base_dataset = LOAD salse.rdf' USING

GBD(TYPE:CUSTOMER;

BOUGHT.STATE,BOUGHT.MONTH,BOUGHT.PROD;

 NULL’);

Step 3: Query to perform MDJ that computes the average sale is as shown

below:

 output_dataset = LOAD “MDJ.rdf” USING

 MDJ(STATE,MONTH,PROD; COUNT : PRICE; PRICE > AVG_PRICE);

In step 1, reassembling of the related tuple is performed and the result of GFD

will provide the required fact data set to perform the multi dimensional join

operation. Step 2 creates the container tuples, where the aggregation values

66

can be updated when executing the MDJ operation. Finally step 3 and 4

perform the actual MDJ operations. In step 3 we compute the average sale for

all the combinations of attributes. Using this average, in step 4 we compute the

number of sales above the average sales for the all the combinations of PROD,

MONTH and STATE.

67

Chapter 5

 Implementation

The queries written in the Pig Latin are executed as the Map-Reduce jobs using

the Hadoop system. The new architecture of the Pig Latin system after

including the extended operators is as shown in Figure 7

HADOOP SYSTEM: MAP-REDUCE FRAMEWORK

USER DEFINED
FUNCTIONS

Data Model

Atoms, Tuples, Bags
and Maps

Aggregation Operators

SUM, MAX, MIN, AVG,
COUNT

Language
Primitives

LOAD, STORE,
FOREACH, FILTER,

GROUP, COGROUP,
JOIN, UNION,CROSS

Extended
Primitives

GFD, GBD and MDJ

PIG LATIN

Figure 11: Architecture of Pig Latin Language

68

5.1 Execution plan on Hadoop

The operators GFD, GBD and MDJ execute on the Map-Reduce framework. The

Map-Reduce framework is designed in such a way that it divides the huge tasks

into the smaller tasks and assigns them to every processor for processing. The

GFD and the GBD operators group all the tuples based on the Subject and then

perform the multiple join operations on them to reassemble all the related

tuples. Each grouping operation is compiled into one Map-Reduce dataflow,

where every tuple is assigned with one key in such a way that all the tuples with

the same subject will have the same key. The Reduce function will group

together all the tuples with a similar key which are required to perform the join

operation. Furthermore, to reduce the relations between these tuples we will

require a Map-Reduce dataflow for each of the join operations. Hence the

number of Map-Reduce iterations depends on the number of join operations

that will be performed to reassemble the records. Figure 8 shows the execution

plan of GBD and GFD on Map-Reduce

69

The MDJ gets compiled into one Map-Reduce workflow, where the properties on

which the aggregation needs to be computed are grouped together in the Map

phase and the actual aggregation is performed in the Reduce phase. Figure 5

shows the execution of MD-join on Map-Reduce.

Figure 12 : Execution plan of GBD and GFD on Map-Reduce

Figure 13 : Execution plan for MDJ on Map-Reduce

Reduce

i iterations

Group

Join

Map

Map Reduce

Load

Map

Reduce

Filter Group Load

MD - Join

70

In the Pig Latin language, the execution plan and the execution platform are

dependent on each other. The execution platform for the queries is the Hadoop

system. In this section, we have seen the execution plan for the extended

operators that we have implemented for the Pig Latin language.

71

Chapter 6

Evaluation

6.1 Environment

For the evaluation purpose, queries of different complexities were executed on

a Hadoop setup using an actual dataset and a synthetic dataset, primary

created to evaluate the performance of SPARQL queries. Two Hadoop

instances are created on the Virtual Computing Lab (VCL) machines one as the

Job Tracker and the other as the Task Tracker. One instance of the Job Tracker

is tagged with three instances of the Task Tracker, thus creation of one

reservation for the Job Tracker creates one master and three slave processors.

Hadoop is installed on Red Hat Enterprise Linux and Java 5 is used for the

execution of the code. The following subsections show few examples of the

72

queries and their cost evaluation. In these examples, we have used shot hand

representations of the URI‟s for the sake of readability.

6.2 BSBM dataset

We conducted a cost performance evaluation based on a dataset from Berlin

SPARQL Benchmark (BSBM) [5]. BSBM is a synthetic dataset for evaluating

the performance of the SPARQL queries. In this dataset, the information about

the Vendor, the Offers provided by the vendors on the various Product types

and the relationships between the offers and the products are mentioned. We

consider a subset of that graph and the relationship between the nodes for our

evaluation. Figure 14 represents the subset of the BSBN schema.

Figure 14: Example subgraph taken from the BSBM dataset

Product

offer vendors

validTo

country C1

D1

P1
ProdType

Vendor

offers

price

typeOf

73

6.2.1 Query Execution on BSBM dataset

Consider an analytical query, to compute the number of offers made by the

vendors, who were above the average price, when the data is viewed from all

the combinations of typeOf, validTo and country. In order to compute the result

of the given query, we need to initially reassemble the RDF data in order to get

the offer price related to each offer made by the vendor. We assume that the

RDF data for the BSBM dataset is in the input.rdf file. The data can be

reassembled by performing the GFD operation as shown below:

 fact_dataset = LOAD 'input.rdf' USING

 GFD(TYPE:VENDOR; VENDORS.VALIDTO, VENDORS.COUNTRY,

 VENDORS.OFFERS.TYPEOF; VENDORS.PRICE;

 VENDORS.OFFERS.TYPEOF’);

Next, in order to execute the MDJ operation we need to have the base tuples,

which are generated using the GBD operator as shown below –

74

 base_dataset = LOAD 'input.rdf' USING

 GBD(TYPE:VENDOR; VENDORS.VALIDTO, VENDORS.COUNTRY,

 VENDORS.OFFERS.TYPEOF; NULL’);

The MDJ operator can now be executed using the base_dataset and the

fact_dataset. MDJ operator has to be executed initially to compute the

average price of the offers. After the computation of the average price, the

MDJ operator has to be executed to compute the Count based on the

average price calculated. The MDJ operator for the two Aggregations is as

shown below –

 output_dataset = LOAD “MDJ.rdf” USING

 MDJ(TYPEOF,VALIDTO, COUNTRY; AVERAGE : PRICE; NULL);

 final_dataset = LOAD “MDJ.rdf” USING

 MDJ(TYPEOF,VALIDTO, COUNTRY; COUNT :

 PRICE; PRICE > AVG_PRICE);

75

6.2.2 Results

We compare the costs between the execution of the above query using the Pig

Latin primitive operators and the new extended operators. Table 13 shows the

cost analysis for the query execution at various steps.

Table 13: Cost analysis for the query execution on BSBN dataset

Pig Latin Primitive

operators

Pig Latin

Extended

operators

Number of User

queries
27 4

Number of Joins

required to

reassemble the data

3

3 – GFD

3 - GBD

76

Table 14: continued

Number of GroupBy

operations required

8

(Before we perform

the Join operation)

8

(After the Join

operation)

1 – GFD

1 - GBD

Number of Joins

required after the

reassembling of the

data

8 Joins 2 – MD-Joins

Execution Time

(File Size of 3.6MB)

16.23 Minutes 6.37 Minutes

Table 13 shows the cost analysis, for executing the user query in Pig Latin

using the primitive operators and the proposed extended operators. It can be

77

clearly seen that the number of user written queries using the extended

operators is very less when compared with the queries written using the

primitive operators. The number of Join operations for reassembling the tuples

using extended Pig Latin operator is slightly more than the number of Joins

when executing the same operation using primitive language operators. The

reason being, to perform the MDJ operation, we need the base dataset and the

fact dataset, resulting in increased number of Join operations. Even though the

cost incurred when reassembling the tuple is more in the case of the extended

operators, the cost for performing the multi-dimensional join is one fourth of the

cost for performing the same operation using the primitive operators of Pig Latin

language. Thus this approach seems more cost efficient than using the primitive

operators. Figure 8 shows how the cost on extended operators decreases after

the reassembling the data.

78

Figure 15: Graph shows the cost analysis using the two approaches

6.3 DBLP dataset

DataBase systems and Logic Programming (DBLP) dataset is the RDF

representation of DBLP publication portal which is part of the SWETO dataset

[25]. It contains the information that represents the relationship between the

Authors of the Books, the book publications, Year of Publication and other

related nodes. Figure 16 shows the subset of the DBLP schema.

0

2

4

6

8

10

12

14

16

18

Reassembling
Data

No of Groupbys No of Joins

Primitive Operators

Extended Operators

79

6.3.1 Query Execution on DBLP dataset

Consider a query, to compute the number of books written by each author in the

years “1999”, “2003” and “2007”. To compute this result, let us assume the RDF

data for that the DBLP dataset is in the input.rdf file. The first step is to

reassemble the data using the GFD operator which is as shown below:

fact_dataset = LOAD 'input.rdf' USING

 GFD(TYPE:PERSON; AUTHORED.ISBN,

PublishedBy

isbn

Type
B1 Book

1208918

“Leaning A”

Title

age

Type
P1 Person

47

John

Name

Authored

Pu1

Publisher

Type
Year

2001

Figure 16: Example subgraph taken from the DBLP dataset

80

 AUTHORED.PUBLISHEDBY.YEAR;

 AUTHORED.ISBN; AUTHORED.PUBLISHEDBY.YEAR);

The base dataset for the above data is generated using the GBD operator. The

query below shows the generation of the base dataset.

 base_dataset = LOAD 'input.rdf' USING

 GBD(TYPE:PERSON; NULL ; NULL’);

Since we need to compute the Aggregation for every year and for each author,

we execute the MDJ once for every year. Hence we need three MDJ operations

to get the expected result.

 initial_dataset = LOAD “MDJ.rdf” USING

 MDJ(PERSON,ISBN; COUNT : ISBN; YEAR:1999);

 output_dataset = LOAD “MDJ.rdf” USING

 MDJ(PERSON,ISBN; COUNT : ISBN; YEAR:2003);

 final_dataset = LOAD “MDJ.rdf” USING

81

 MDJ(PERSON,ISBN; COUNT : ISBN; YEAR:2007);

The output of the final_dataset contains the count of the number of books

written by each author in the years “1999”, “2003” and “2007”.

6.3.2 Results

Table 15 shows the cost analysis for the above query and compares the cost of

executing this query in the Pig Latin language using the primitive operators with

the cost of executing the same query using the extended Pig Latin operators.

Table 15: Cost analysis for the query execution on DBLP dataset

Pig Latin Primitive

operators

Pig Latin

Extended

operators

Number of User

queries
11 5

Number of Joins

required to

reassemble the data

3

3 – GFD

3 - GBD

82

Table 16: Continued

Number of GroupBy

operations required
6

1 – GFD

1 - GBD

Number of Joins

required after the

reassembling of the

data

4 – Joins

+

4 – Joins

3 - MDJ

Execution Time

(File Size of 6.6MB)

38.08 Minutes 18.19 Minutes

Table 15 shows the cost evaluation for the user query using the two

approaches. In this case we see results similar to the results seen in Table 13.

Initially the cost of reassembling the data is more when executing the queries

using the extended operators, due to the creation of the fact and the base

dataset. After the reassembling of the data, the query execution cost reduces to

close to one fourth of the cost for executing the same query using the primitive

83

operators of the Pig Latin language. Figure 10 shows, how the cost for the

query execution decreases after reassembling the data in the case of the

extended Pig Latin operators.

Figure 17: Graph shows the cost analysis using the two approaches

In Table 15 and Table 16, the first row indicates the number of user queries that

are required to perform the required complex analytical analysis. As the result

shows, the number of queries required to perform the task using the primitive

operators is very large when compared with the number of queries written using

0

1

2

3

4

5

6

7

8

9

Reassembling Data No of Groupbys No of Joins

Primitive Operators

Extended Operators

84

the extended operators to perform the same task. This result demonstrates

another advantage using the extended operators.

85

Chapter 7

Related Work

We have provided a set of operators to perform MD-join operation in Pig Latin

language. These operators can be used to perform complex analytic querying on RDF

datasets. In this section, we compare this approach with other data processing

languages and OLAP techniques

Analytical queries are often very complex requiring multiple aggregations over

multiple groupings. Such queries are cumbersome to express using traditional

query operators such as the GROUPBY and often lead to inefficient query plans.

OLAP operators such as CUBEBY, ROLLUP are relatively recent additions to the

SQL allow for more succinct expression of a subset of analytical queries.

However, many of the complex ad-hoc analytical queries still remain a

86

challenge to express using these operators. The MD-Join achieves succinct

and efficient expression of a broader range of analytical queries by decoupling

the grouping and the aggregation functions.

Parallelization is an increasingly popular method of achieving scalable

processing on large datasets. High end database systems with specialized

parallel architectures are one alternative for supporting efficient complex OLAP

query processing. Various parallel database products like Teradata, Tandem,

NCR, Oracle-n CUBE, and RAC are designed to provide impressive scalability

and efficient query processing speed. However, are very expensive and are not

designed to scale to the size of data on the Web. Computational clusters of

commodity grade machines provide a cost effective alternative to high end

parallel database systems that can be used to achieve the kind of scalability

needed for performing analytical querying on the Web data. Map-Reduce

framework provides a simple yet efficient way to enable parallel processing on

such clusters without requiring the user to understand the complexities of

distributed systems. The map and reduce functions are mainly suitable for

computations that are conceptually straightforward and as the problem grows in

complexity, the optimization is limited by the custom code written by the user.

Task-specification languages provide a way to overcome this opaque nature of

87

Map-Reduce framework. Languages like Yahoo‟s Pig Latin [6], Google‟s

Sawzall [24] and Microsoft‟s DyradLINQ [10] are high-level languages that

implement data processing tasks and have been built on top of Map-Reduce.

DyrandLINQ is a high level language built over a distributed platform to provide

large scale data processing, over a parallel and fault tolerant execution process.

The distributed platform is called Dyrand that is developed by Microsoft [95].

Unlike the rigid two step chain of Map-Reduce, Dyrand provides more flexibility

in performing arbitrary computations. But the limitations of this system is that

the high level language, DyranLINQ is hard to program and the languages is

not widely known to the public.

Sawzall is another language used by Google that executes over the Map-

Reduce framework. It is a scripting language with rigid structure similar to the

Map-Reduce framework with the filter operations performed in the Map phase

and the aggregations performed in the Reduce phase. The language allows

user defined functions to be implemented only in the filter phase and has a

limited set of pre-defined aggregation operations. This provides limited flexibility

in processing complex queries on RDF datasets. While in Pig Latin, the

language provides a wide range of primitives for data computation and also

allows user defined functions to be implemented. Operators like Group,

88

CoGroup are useful in perform various join operations that are required when

processing analytical queries on RDF datasets.

Pig Latin is a balance between a high-level declarative constructs of SQL and a

low-level procedural way of Map-Reduce. This provides opportunities to

implement complex operators that can be scalable and thus can process the

data at the Web scale efficiently. Map-Reduce platform is designed to provide

fault tolerance, store data locally to avoid network bandwidth issues and also

maintain backup tasks for faster and reliable execution.

89

Chapter 8

Future Work

A data flow language like the Pig Latin provides the required flexibility to the

users and is suitable for the simple data processing tasks. In this report we

have shown how to implement the MD-join operator in the Pig Latin language

for the analytical processing of the RDF datasets. There are many promising

areas that are yet to be explored in the context of the analytical processing of

the RDF datasets using a scalable approach like the Pig Latin Language. The

following are a few possible research areas.

 Optimizations:

In this section we examine how we can optimize these extended operators.

a) Generalizing MD-Joins: Currently, for a certain complex MD-join

operations, we perform the nested MD-join executions. Various ways to

90

perform the generalized multi-dimensional joins can be researched,

resulting in an efficient execution, as it reduces the number of Map-

Reduce cycles considerably. The focus of this research should be to

identify, develop and implement a set of primitives that will be required to

express the queries in terms of a generalized multidimensional join.

Doing so will enable us to overcome the shortcomings of the traditional

operators and enable highly efficient Map-Reduce workflows.

b) Indexing the datasets: In order, to reassemble the data to perform the

complex join operations, we iterate multiple times through the existing

set of the user input data to find the related tuples. By finding an

appropriate way to index these data, multiple iterations on the same

dataset can be avoided.

c) Query rewriting: Rewriting the rules for the optimization of the queries

can be further researched. Such rules could include the transformation

of the queries that use the traditional operator to perform the multi-

dimensional querying to MD-join queries. Further, any of the nested MD-

join queries must be identified and transformed into generalized multi

dimensional queries.

91

 User interfaces: The productivity of the framework can be enhanced through

a right interactive interface. Currently the queries are executed on a

command line interface, which has limited support for validating the user

inputs. A well designed user interface that provides options to validate the

user entered input will avoid unnecessary query executions.

 Providing keyword notations instead of lengthy URIs: The current framework

takes the entire URI to represent the path expressions. An efficient

approach might be to take the keywords as the input from the user and to

map them to the actual URI‟s of the RDF triples during the computation of

the Aggregations. This approach makes the language user friendly and

increases the productivity.

92

Chapter 9

Conclusion

In this work, we presented an approach for scalable analytical processing on

the RDF datasets using the parallel processing techniques. This approach

extends on the existing platforms such as Hadoop, Map-Reduce, Pig to provide

the structure and the semantics of the RDF data. Further, we integrated the

multi-dimensional join operator to perform the analytical processing on the

graph structured data like the RDF. We provided a simple and intuitive syntactic

extension of Pig Latin language in order to express the MD-join on the RDF

dataset. We also demonstrated the usability of this approach using the case

studies on the synthetic and the real datasets and tabulated the obtained

results.

93

REFERENCES

[1] ACM SIG PROCEEDINGS template.
http://www.acm.org/sigs/pubs/proceed/template.html.

[2] Apache Incubator Projects Proceedings http://incubator.apache.org/pig/

[3] Apache Projects Proceedings http://hadoop.apache.org/core/

[4] ARQ Proceedings http://jena.sourceforge.net/ARQ/

[5] BSBM Proceedings

http://www4.wiwiss.fu-
berlin.de/bizer/BerlinSPARQLBenchmark/spec/index.html#dataschema

[6] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar and
Andrew Tomkins. “Pig latin: a not-so-foreign language for data processing”.
In Proceedings of the 2008 ACM SIGMOD international conference on
Management of data, p.1099 -1110, 2008

[7] Damianos Chatziantoniou. “Using grouping variables to express complex
decision support queries”. In Proceedings of the 2007 Data & Knowledge
Engineering conference, p.114–136, 2007

[8] Daniel J. Abadi, Adam Marcus, Samuel R. Madden and Kate Hollenbach.
“Scalable Semantic Web Data Management Using Vertical Partitioning”. In
proceedings of the 33rd international conference on Very large data bases,
p. 411 - 422, 2003

94

[9] D. Chatziantoniou M. Akinde, T. Johnson, and S. Kim “The MD-join: an
operator for Complex OLAP” ICDE 2001, 108–121 ”

[10] Dryad LINQ Proceedings
http://research.microsoft.com/research/sv/DryadLINQ/
2007.

[11] F. Manola and E. Miller. RDF Primer. W3C Recommendation,Feb. 2004.
http://www.w3.org/TR/rdfprimer/.

[12] http://www.flickr.com/

[13] http://www.google.com/coop/cse/

[14] https://secure.delicious.com

[15] http://www.w3.org/RDF/

[16] http://www.w3.org/TR/rdf-sparql-query/

[17] Hung-chih Yang, Ali Dasdan, Ruey-Lung Hsias, D.Stott Parket. “Map-
Reduce-Merge:Simplified Relational Data Processing on Large Clusters”. In
proceedings of the 2007 ACM SIGMOD international conference on
Management of data, p. 1029 - 1040, 2007

[18] Jeffrey Dean and Sanjay Ghemawat. “MapReduce : Simplified
Data Processing on Large Clusters”. In proceedings of the Sixth Symposium
on Operating System Design and Implementation (OSDI'04), 2004

95

[19] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don
Reichart and Murali Venkatrao “Data Cube: A Relational Aggregation
Operator Generalizing Group-By, Cross-Tab, and Sub-Totals”. In
proceedings of the 12th International Conference on Data Engineering
(ICDE'96), p.152, 1996

[20] Khare, Rohit (January/February 2006). "Microformats: The Next (Small)
Thing on the Semantic Web?". IEEE Internet Computing 10 (1): 68–75

[21] M. Isard et al. Dryad: Distributed data-parallel programs from sequential
building blocks. In European Conference on Computer Systems (EuroSys),
pages 59 - 72, Lisbon, Portugal, March 21-23 2007.

[22] M.O. Akinde and M.H. Bohlen. “Generalized MD-Joins: Evaluation and
Reduction to SQL”. In proceedings of the VLDB 2001 International
Workshop on Databases in Telecommunications II, 2209:52 - 67, 2001

[23] M.O. Akinde and M.H. Bohlen. "Efficient Computation of Subqueries in
Complex OLAP". In proceedings of the 19th International Conference on
Data Engineering (ICDE'03), p. 163 - 174, 2003

[24] Rob Pike, Sean Dorward, Robert Griesemer, Sean Quinlan. “Interpreting
the Data: Parallel Analysis with Sawzall”. In Proceedings of the special Issue
on Grids and Worldwide Computing Programming Models and Infrastructure
13:4, pp. 227-298

[25] Swetodblp Proceedings

http://lsdis.cs.uga.edu/projects/semdis/swetodblp/

[26] http://swoogle.umbc.edu/

96

[27] T. Berners-Lee. Notation 3 – Ideas about Web architecture.
http://www.w3.org/DesignIssues/Notation3.html.

[28] T Berners-Lee, J Hendler and O Lassila. “The Semantic Web”. In
Proceedings of the Scientific American, 2003.

[29] W3C Semantic Web Activity Proceedings http://www.w3.org/RDF/

[30] Virtuoso RDF Proceedings
http://virtuoso.openlinksw.com/wiki/main/Main/VOSRDF

[31] Ying Yan, Chen Wang, Aoying Zhou, Weining Qian, Li Ma and Yue Pan.
“Efficiently querying rdf data in triple stores”. In Proceeding of the 17th
international conference on World Wide Web, p.1053 -1054 , 2008

97

APPENDIX

98

1. Environment setup

Step 1: To create an image for Hadoop on the VCL machine, select Manage

Images tab on the VCL page. In the manage images page, select Create /

Update of an Image and Submit the request.

Figure 18: Screen shot of the Manage Images page

99

Step 2: Hadoop is installed on the Red Hat Linux environment. Hence, in the

Create / Update an Image page select Red Hat Enterprise Linux option from

the drop down list. Submit the Create Imaging Reservation request.

Figure 19: Screen shot of the Create an Image page

Step 3: When the reservation is successfully made, the system provides the

remote machine‟s IP address and the login details to connect to that system,

where the Hadoop image can be created.

100

Figure 20: Screen shot of the Connect page

Step 4: Using a ssh client, connect to the remote computer. Hadoop is

installed on this machine. Instance of the Hadoop can be obtained at

http://hadoop.apache.org. Instructions to install Hadoop can be obtained at:

http://hadoop.apache.org/core/docs/current/quickstart.html

Step 5: For Hadoop execution, we need the Java environment setup. Java 5.x

for Linux software can be downloaded from http://java.sun.com/

101

Step 6: Save this image by naming it the Job Tracker. Create another image

similar to the Job Tracker and save is as the Task Tracker.

Step 7: One Job Tracker is tagged with n number of Task Trackers, where n is

the number of the slave process required. The images can be tagged by

selecting the Edit image option present in the Manage Images page.

102

2. Access to the Hadoop image

Step 1: Make a new reservation, selecting the Hadoop Job Tracker

environment from the drop down list. And submit the request by selecting

Create Reservation

Figure 21: Screen shot of the new Reservation page

103

Step 2: Based on the number of Task Trackers configured (), the reservation

creates one Job Tracker (Master) and n Task Trackers (slaves) as configured.

The successful creation of the reservation will provide us with a set of IP

addresses to connect to the master and slave machines.

Figure 22: Screen shot showing the Master and the Slave connection details

104

Step 3: The master and the slave machines can be accessed using any ssh

client.

Step 4: On the master machine, download the Pig Latin code base which can

be obtained from http:/hadoop.apache.org/pig/

Step 5: Configuration changes:

I. On the master system, find the location of the Conf folder, and modify

the file named “masters” to include the IP address of the master system.

II. Similarly, find the location of the Conf folder on every slave machine and

modify the “slaves” file to include the IP address of the corresponding

slave machine.

III. In all the machines, replace the configuration from the localhost to the

machine’s IP address in the file named “conf/Hadoop-site.xml” within

the conf folder.

<property>

 <name>fs.default.name</name>

 <value>hdfs://localhost:9000</value>

 </property>

105

IV. The firewall configuration has to be disabled in order to be able to

perform the communication between the master and the slave machines.

Thus to bring down the firewall, make the following changes :

In the master machine:

chmod 755 bin/*.sh

sudo bash

/sbin/service iptables stop

Exit

 In every slave machine:

chmod 755 bin/*.sh

sudo bash

/sbin/service iptables stop

Exit

106

3. Query execution

 When we execute:

$ cd bin/hadoop namenode –format

 $ bin/start-all.sh

Simple Pig Latin command line interpreter called the GRUNT start its execution.

Using this interface the users can interact to submit the jobs

Figure 23: Screen shot of the GRUNT interpreter

107

In the GRUNT command line interface, the user command can be executed.

Few examples are shown below:

 Configure the input folder:

grunt> bin/hadoop fs -put conf input

 Execution of a word count example:

grunt> bin/hadoop jar hadoop-0.17.2.1-examples.jar wordcount

input output

 Execution of a command to LOAD data from the input.rdf file:

grunt> inputdata = LOAD ‘input.rdf’ as (sub,prop,obj);

 Run GFD command:

grunt> inputdata = LOAD ‘input.rdf’ using

 GFD(‘TYPE:CUSTOMER;

 BOUGHT.LOCATION,BOUGHT.PRICE;

 BOUGHT.PRICE; BOUGHT.LOCATION) as

 (sub,prop,obj);

 Execute GBD command:

grunt> basedata = LOAD ‘input.rdf’ using

108

 GBD(‘TYPE:CUSTOMER;

 BOUGHT.LOCATION,BOUGHT.PRICE;

 ;NULL)as

 (sub,prop,obj);

 Execute MDJ command:

grunt> outputdata = LOAD ‘MDJ.rdf’ using

 MDJ(‘TYPE; SUM:PRICE; LOCATION:NC);

 Command to access the output generated:

grunt> bin/hadoop fs -get output output

grunt> cat output/*

 Exit from the GRUNT command interface

grunt> quit

109

4. Sample data

Figure 24 shows the screen shot of the sample input data where the subject

and the predicate are represented using URIs and the object either is an URI or

a literal.

Figure 24: Screen shot of the sample input data file

110

Figure 25 shows the screen shot of the sample base data that is generated

after the execution of the GBD operator where the subject is represented using

an URIs, the predicate has value “BASE” and the object is initialized to “NULL”.

Figure 25: Screen shot of the sample base data file

Figure 26 shows the screen shot of the sample output data that is generated

after the execution of the MDJ operator where the subject and predicate are

represented using an URIs and the Object has the aggregation result.

111

Figure 26: Screen shot of the output data file

