
ABSTRACT

ZHOU, YUZHENG. Mitigating Voice over IP Spam Using Computational Puzzles. (Under
the direction of Associate Professor Peng Ning).

Voice over IP (VoIP) has gained increasing popularity in recent years. With the

growing of its deployment, VoIP will become the target of hackers and crackers. As organiza-

tions plan and deploy VoIP networks, VoIP spam should be considered as a very real threat

and proactively addressed as part of the overall security strategy. However, preventing VoIP

spam is a complex problem and requires many techniques working in combination to reduce

spam to acceptable levels while still allowing efficient communication. White/black list is a

popular and important technique of dealing with spam. A system would first check whether

an incoming request is from someone on the white/black list before establishing the com-

munication between the two parties. However, there still needs a way for callers who are

not on the white/black list to communicate with the callee. To address this problem, this

thesis develops a method combining white/black list with the computational puzzle mech-

anism, which permits anonymous call establishment while mitigating undesirable contacts.

Compared with other VoIP anti-spam methods, this method has three main properties.

Firstly, user disturbance by the spam is light because this method is applied before the

phone rings. Secondly, few user maintenance is required since the maintenance could be

located at the service provider only. Thirdly, it increases the costs for the spammer, making

spam less profitable. A prototype system is developed on the basis of Mjsip (an open source

VoIP software) for performance evaluation. Our experiments show that our method can

effectively slow down the spammers with only a light cost to innocent anonymous callers

and proxy servers.

Mitigating Voice over IP Spam Using Computational Puzzles

by

Yuzheng Zhou

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Computer Science

Raleigh, North Carolina

2007

Approved By:

Dr. S. Purushothaman Iyer Dr. Ting Yu

Dr. Peng Ning
Chair of Advisory Committee

ii

Dedication

I dedicate this thesis to my parents and my wife without whom none of this would have

been even possible.

iii

Biography

Yuzheng Zhou received his Bachelor’s degree in Computer Science from Tianjin University,

Tianjin, China in 2001. Since 2004, he has been a graduate student in the Department of

Computer Science at North Carolina State University.

iv

Acknowledgements

With a deep sense of gratitude, I wish to express my sincere thanks to my advisor, Dr. Peng

Ning, for the stimulating advice and patience that he had for me during my graduate study.

The training I received from him is priceless. I would also like to thank my committee

members Dr. S. Purushothaman Iyer, and Dr. Ting Yu for devoting time and providing

valuable inputs.

My former colleagues in the Cyber Defense Laboratory supported me in my re-

search work. I want to thank Dingbang Xu, Pai Peng, Kun Sun, Yai Zhai, Pan Wang, Fang

Feng, Qing Zhang, Yi Zhang, Qinghua Zhang, An Liu and Ting Wang for their help during

my study in the lab.

Finally, I am deeply grateful to my parents, my aunt as well as my lovely wife.

This thesis work would not be possible without their continued support and encouragement

during the past years in my life.

v

Contents

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Motivation . 2
1.3 Contributions . 3
1.4 Thesis Organization . 4

2 Background Study 5
2.1 Voice over IP Architectures . 5
2.2 Voice Over IP Spam . 9
2.3 Voice over IP Spam Prevention Methods . 10

2.3.1 No Interaction With Call Participants 11
2.3.2 Caller-side Interactions . 12
2.3.3 Callee-side Interactions . 13
2.3.4 Callee-side Interruption . 14

2.4 Computational Puzzle . 14

3 Computational Puzzle Based VoIP Anti-spam System 17
3.1 SIP Call Flow Diagram . 17

3.1.1 SIP Call Without Proxy Server . 18
3.1.2 SIP Call With Proxy Server . 20

3.2 System Overview . 22
3.3 Challenge-Response Module . 25
3.4 Adaptive Cost Assignment in Computational Puzzles 29

4 Implementation 31
4.1 SIP Stack Implementation in Mjsip . 31
4.2 Computational Puzzle Implementation in Mjsip 33

4.2.1 Puzzle Generation and Verification Procedure 34

vi

4.2.2 State Transition Diagram . 37

5 System Evaluation 41
5.1 Evaluation Metrics and Experiment Setup 41
5.2 Block Rate . 42
5.3 Spam Ratio . 46
5.4 Overhead for Proxy Server and Legitimate VoIP End Users 47
5.5 Spam Call Generating Ability . 48
5.6 Adaptive Cost Assignment . 50
5.7 Smart Spammers . 52

6 Conclusion and Future Work 54
6.1 Future Work . 54

Bibliography 56

vii

List of Figures

2.1 VoIP Protocols Stack . 6
2.2 H.323 Architecture . 7
2.3 SIP Architecture . 8
2.4 Voice over IP spam . 10
2.5 Classification of VoIP anti-spam methods 12

3.1 Simple SIP call flow . 19
3.2 SIP call flow with proxy server . 21
3.3 Computational puzzle based VoIP anti-spam system 23
3.4 SIP call flow with computational puzzle . 26
3.5 Computational puzzle generation . 27

4.1 Mjsip layered architecture . 32
4.2 Provider → Listener model . 33
4.3 Puzzle generation and verification procedure 35
4.4 Invite transaction client state diagram . 38
4.5 Invite transaction server state diagram . 39
4.6 Invite dialog state diagram . 40

5.1 Experiment setup . 43
5.2 Block rate for spam calls . 45
5.3 Comparison of total calls, spam calls and blocked spam calls 45
5.4 Spam ratio (percentage of successfully accomplished VoIP spam calls in all

the VoIP calls) . 46
5.5 Overhead for SIP proxy server . 48
5.6 Average puzzle solving time per call for a VoIP spammer (with network size) 49
5.7 Average puzzle solving time per call for a VoIP spammer (with cost difficulty

level) . 50
5.8 Comparison of assigned puzzle cost for spam calls and legitimate calls . . . 51
5.9 Comparison of puzzle solving time for spam calls and legitimate calls 52
5.10 Spammers’ strategies: smart strategy vs best-effort strategy 53

viii

List of Tables

3.1 Notation in the puzzle generation procedure 27
3.2 Notation in the puzzle cost computation procedure 30

4.1 Main mjsip classes used in the computational puzzle implementation 34

5.1 Overhead for proxy servers and legitimate VoIP end users 48

1

Chapter 1

Introduction

1.1 Problem Statement

IP telephony, commonly known as Voice over IP (VoIP), is emerging as a viable

alternative to traditional telephone systems. With the increasing popularity of its deploy-

ment, VoIP cannot avoid becoming the target of hackers and crackers. VoIP may suffer

threats from different protocol layers. From bottom to up, malicious attackers may exploit

the misconfiguration of devices, the vulnerability of the underlying operating systems, and

the protocol implementation flaws to break in. Well-known attacks of data networks such as

worms, viruses, Trojan horse, denial-of-service (DoS) attacks can also plague VoIP network

devices.

Among the various attacks, VoIP spam would be one of the most annoying ones.

Most email users are familiar with receiving spam on a daily basis. They have to use

filtering software to block the messages as well as check junk mail folders periodically for

false positive. But imagine your VoIP phone rings all day, only to have dozens of messages

offering you discounted prescription drugs or an opportunity to start a home-based business.

Unfortunately, it is now possible, with sophisticated spammers looking toward VoIP phones

as their latest targets.

VoIP spams incidents has already been reported in Japan, where VoIP is more

highly developed. In one case, a major VoIP provider, SoftbankBB, found three incidents

2

of VoIP spams within its network, which included unsolicited commercial messages for an

adult Web site and illegitimate requests for personal information [3].

Moreover, compared to email spam, VoIP spam is more obtrusive [20]. With

email, the user decides when he is going to read his messages. But with VoIP, the phone

will ring with every spam message, even in the middle of the night when you are asleep. In

addition, we should note that launching VoIP spam is naturally easier and cheaper. VoIP

uses Internet instead of traditional PSTN (Public Switched Telephone Network) networks

as its carrier, making it easier for spammers to utilize automated tools to deliver their spam

to the users [17]. VoIP is also a lot cheaper compared to traditional PSTN telephony, in

terms of both the monthly fee as well as the costs per call. The authors of [25] claim that

the costs per call for VoIP are roughly three orders of magnitude cheaper than traditional

PSTN calls, making it a lot cheaper for a spammer to get his message out into the world.

As VoIP deployment continues to accelerate and technology is now available to

block unwanted emails, it is reasonable to expect that VoIP spams will quickly follow. As

organizations plan and deploy VoIP networks, VoIP spam should be considered as a very

real threat and proactively addressed as part of the overall security strategy.

1.2 Motivation

In recent years, numerous techniques and technologies have been developed to

fight email-based spam including anti-spam appliances, client based filters, white/black list

technologies, and social networks, all of which provide a strong starting point for combating

VoIP spam. However, the significant differences between voice and other data indicate

existing email anti-spam solution could not be directly applied to combating VoIP spam.

A voice call consists of two phases, signaling phase and media session phase. In

the signaling phase, information is exchanged between the VoIP network and end-users that

establish a call. In the media session phase, voice conversation is carried over media stream,

in most cases, directly between the end-users.

In fact, preventing VoIP spam is usually performed in the signaling phase. This

can be accounted to two reasons. Firstly, obtaining caller identity is easier in the signalling

phase. Basic information about the identity of the end-users could be relatively easily

obtained by analyzing the content of the signalling protocols including source addresses,

3

country of origin and call patterns. White/black list is a representative anti-spam technology

based on caller identities. It allows calls to pass through when callers are on the white

list whereas reject calls when callers are on the black list. However, this kind of method

alone is not sufficient to combat VoIP spams because it cannot handle the callers not in

white/black list. Secondly, unlike email, it is hard to analyze voice content on the fly, and it

is infeasible to use content filtering method on voice. In the case of email spam, additional

information such as subject and content of the email are available for analysis, and spam can

be identified before it reaches end-users. In the world of VoIP spam, that information is not

easily obtainable. Theoretically, it may be possible to collect all the VoIP packets carrying

the conversation, reassemble them into speech and then analyze the content. However, this

is a very difficult technical problem that cannot be addressed by the existing technology.

Even if there is an effective method to analyze voice content, the call has to be established

first to get the voice content and the user has already paid attention before the content is

delivered. In a word, VoIP spam cannot be analyzed before a user answers the call.

To address this problem, this thesis develops a method combining white/black list

with computational puzzle, which permits anonymous call establishment while mitigating

undesirable contacts. Compared with other VoIP anti-spam methods, this method has

three main properties. Firstly, user disturbance by the spam is light because this method

is applied before the phone rings. Secondly, few user maintenance is required since the

maintenance could be located at the service provider only. Thirdly, it increases the costs

for the spammer, making spam less profitable. With the help of white/black list, our method

can efficiently mitigate VoIP spams. We believe this method can be easily integrated into

current VoIP products working as either a separate VoIP anti-spam solution or a component

in other VoIP anti-spam solutions.

1.3 Contributions

The scientific contributions of this thesis are threefold:

1. The thesis describes the design and implementation of a VoIP spam mitigating method

based on computational puzzles. Using computational puzzle is not novel, but to our

knowledge, we are the first to complete both the design and the implementation of a

computational puzzle based VoIP anti-spam method.

4

2. The thesis compares and classifies existing VoIP anti-spam methods, and analyzes

their advantages and disadvantages.

3. The thesis evaluates the effectiveness of the integration of white/black list and the

proposed VoIP anti-spam method via several metrics, including the added cost for

proxy server and normal caller, the call generating ability of VoIP spammers, spam call

block rate, spam ratio (percentage of successfully accomplished VoIP spam calls in all

the VoIP calls). We also compare the performance of our system using different puzzle

cost assignment methods and using different spammer strategies. The experiments

show that our method can effectively slow down the spammers with only a light cost

to innocent anonymous caller and proxy server.

1.4 Thesis Organization

In Chapter 2, we review Voice over IP architecture and the existing VoIP anti-

spam methods. In Chapter 3, we describe in details our computational puzzle based VoIP

anti-spam method. In Chapter 4, we explain the implementation of our method in details.

We present our experimental results in Chapter 5, followed by our conclusion and discussion

of future work in Chapter 6.

5

Chapter 2

Background Study

2.1 Voice over IP Architectures

In a simplistic view, the Voice over IP technology has the goal of establishing and

managing communication sessions for transmitting voice data over standard IP networks.

A stable and reliable transmission has to be maintained all throughout the conversation,

and the media session needs to be ended when either of the parties decides to terminate

the call.

Figure 2.1 illustrates the protocol stack for a VoIP system. In the application

layer, two types of protocols are used by VoIP technology, in a similar manner to standard

telephony: signaling protocols (such as H.323 [26] and SIP) and media transport protocols

(such as RTP [10]). Quality of Service (QoS) protocols can also be used by VoIP technology

to guarantee the service performance, but they are not required. In the transport layer,

both TCP (Transmission Control Protocol) and UDP (User Datagram Protocol) can be

used by signaling protocols. And the media transport protocols, such as RTP, are based on

UDP. As for the network and lower layers, VoIP uses the same protocol suites as current

IP networks.

Currently, two VoIP architectures have emerged as standards and are widely de-

ployed throughout the world. They are ITU-T Recommendation H.323 and the IETF SIP

(Session Initiation Protocol) [13] architecture. Their names reflect the signaling protocols

6H.323 UDPTCP SDP RTPMedia encaps.(H.261, MPEG)RTCPRSVPRTSPSIPMGCP/Megaco IPV4, IPV6PPP AAL3/4 AAL5 PPPEthernetATMSonet V.34
 Signaling Quality of Service Media transportTransportNetworkLinkPhysical

Application
Figure 2.1: VoIP Protocols Stack

they use.

H.323 is the International Telecommunication Unit (ITU) standard for audio and

video transmissions over packet based networks. It is actually a wrapper standard, encom-

passing several other protocols, including H.225, H.245, and etc. Each of these protocols

has a specific role in the call setup process. The components of an H.323 network are: sev-

eral endpoints, a gateway, and possibly a gatekeeper (for address resolution and bandwidth

control), Multipoint Control Unit (for multi point conferencing), and Back End Service (for

storing and maintaining configuration data about endpoints). H.323 uses RTP as standard

protocol for media transport.

SIP is the Internet Engineering Task Force (IETF) protocol dedicated to initiating

two-way communication sessions. SIP is not specific to VoIP and it could be used in

any session driven technology/application. SIP is text based, similar to HTTP. It can be

carried by TCP, UDP, or SCTP. TCP and UDP are the two most common transport layer

7

EndpointGatekeeper
MCU

BES
H.323 Network Gateway Manage multi-point calls

Manage networkStore data
External World

Figure 2.2: H.323 Architecture

protocols. TCP is connection oriented and provides reliable transmission, and it could be

used if SSL/TLS2 [7] is incorporated for security services. UDP is connectionless, but it

may be used to decrease overhead and increase speed and efficiency. SIP uses one network

port with the default value 5060.

Different from the architecture of the H.323 network, a SIP network is made up of

endpoints (also called User Agents), a proxy and/or redirect server (for endpoint message

transmission), a location server (for locating users), and a registrar (for registering location

information). The registrar and the location server may be integrated into the proxy server.

SIP architecture diagram is provided in Figure 2.3. In the SIP model, a user is

not bound to a specific host. The users initially report their location to a registrar, which

may be integrated into a proxy or redirect server. This information is in turn stored in the

external location server. Messages from endpoints must be routed through either a proxy

or a redirect server. The proxy server intercepts messages from endpoints or other services,

8

inspects their “To:” field, and then contacts the location server to resolve the username

into an address and forwards the message along to the appropriate endpoint or another

server. Redirect servers perform the same resolution functionality, but the bonus is placed

on the endpoints to perform the actual transmission. That is, redirect servers obtain the

actual address of the destination from the location server and return this information to

the original sender, which then must send its message directly to this resolved address.Location Service
SIP Proxy Server Next SIP Proxy Server

 Registrar Server
Internet/Exterior NetworkSIP Messages SIP Registration Messages Register Location

 SIP Messages
Figure 2.3: SIP Architecture

The two VoIP architectures are quite different, and both signaling protocols are

equally vulnerable for spam because of implementation errors and protocol features that

are exploited [9]. It is reasonable to choose only one of them as the target architecture.

In the rest of this thesis, the terms VoIP architecture or system represents the SIP VoIP

architecture, unless explicitly stated otherwise.

9

2.2 Voice Over IP Spam

Spam, defined as the transmission of bulk unsolicited email, has been a plague

on the Internet email system. Similar to email systems, VoIP systems are susceptible to

abuse by malicious parties who initiate unsolicited and unwanted communications. As the

popularity of VoIP and its deployment grows, VoIP spam, also known as SPIT (for “Spam

over Internet Telephony”), has been received a great deal of attention from marketers and

the trade press. Figure 2.4 shows a typical example of VoIP spam.

According to the different intensions of the attacks, VoIP spams can be classified

into three categories: Call spam, IM spam and Presence spam [25].

• Call spam is defined as a bulk unsolicited set of session initiation attempts (i.e.,

INVITE requests), attempting to establish a voice, video, instant messaging [2] or

other types of communication sessions. This is the classic telemarketer spam applied

to SIP.

• IM spam is defined as a bulk unsolicited set of instant messages, whose contents

contain the messages that the spammer is seeking to convey.

• Presence spam is similar to IM spam. It is defined as a bulk unsolicited set of presence

requests (i.e., SUBSCRIBE requests [22] for the presence event package [23]), in an

attempt to get on the “buddy list” or “white list” of a user in order to send them IM

or initiate other forms of communications.

IM spam is quite similar to email spam. And all the effective email anti-spam

methods could be possibly used for IM spam. Presence information is important for users,

and the presence requests are not as popular as calls and IM requests. Therefore, expensive

authentication methods, such as digital signature, are good solutions for presence spam.

Although the thread of call spam is similar to email spam, its impact, in terms of interference

with VoIP users’ daily life, is more severe than email spam. Without any prevention from

call spam, the normal VoIP user may receive hundreds of calls with publicity messages, and

the phone may ring all day. Also, the unwanted contact may be subjective. You may be

easily get irritated when you receive a spam call, maybe a business advertisement, at 3:00

am. Furthermore, the significant differences between voice and other data indicate that

currently effective email anti-spam solutions may not be useful for call spam. For example,

10

due to the inmature voice recognition technology, the content-based filtering method cannot

be easily used as an anti-call spam method. Therefore, in this thesis, we will focus on anti-

call spam solutions only. For the rest of this thesis, VoIP spam has the equivalent meaning

of call spam, unless explicitly stated otherwise.

Spammer SIP Proxy Server User BUser C
User A Good call

Call spams
VoIP network

Figure 2.4: Voice over IP spam

2.3 Voice over IP Spam Prevention Methods

Currently, email anti-spam solution is still an open research area. The difficulty

of voice analysis makes VoIP anti-spam even more difficult than email anti-spam. Since

the VoIP spam prevention problem is complex, it will require many techniques working in

combination to reduce spam to acceptable levels while still allowing efficient voice commu-

nication for normal users. In this section, we will first discuss the criteria for evaluating

VoIP anti-spam methods. Then we classify and review existing VoIP anti-spam methods,

and discuss their advantages and disadvantages.

To evaluate a VoIP spam prevention method, we need a number of criteria. Firstly,

11

user disturbance should be reduced as much as possible. Unlike email spam, VoIP spam

will not lie down there silently, instead, it causes interruptions to users’ current activities.

It would be a loss of productivity if spam has to be identified after interruptions. Secondly,

it is desirable to have the least user intervention, since users’ participation itself is a kind of

interruptions. Thirdly, the cost added by the VoIP anti-spam method for the users is also

an important aspect. It is preferable that a spam prevention method involves as less costs as

possible for users. In contrast, it is also preferable for a protection technique to introduce as

much as possible costs for spammers, then spamming will be less profitable and eventually

becomes less [11]. Fourthly, the number of false positives and false negatives should be as

less as possible, preferably even zero, for a spam protection technique. VoIP phone users

would not want to lose any potential customers of their home businesses just because of

spam. Fifthly, it is ideal that a spam protection technique would cause the least delay. And

last but not least, a spam prevention method should be resistant to circumventing. The

method would be totally ineffective if it can be easily circumvented by spammers. An good

spam protection technique should be both effective and very difficult to circumvent.

According to the different ways of interactions between the anti-spam methods

and callers/callees, VoIP anti-spam methods can be classified into four categories, which

are illustrated in Figure 2.5. We will discuss these methods in the following subsections.

2.3.1 No Interaction With Call Participants

Because there are no interaction with both the caller and callee, this kind of VoIP

spam prevention methods are very convenient and highly encouraged. White/black list is

a typical example. Calls from identities in the white list are allowed, whereas, calls with

callers from the black list are rejected. Based on the white/black list, the VoIP system

could easily accept/deny an incoming call.

Although the idea of white/black list is simple and efficient, it is not an ideal

method to solve the VoIP spam problem. Usually, white/black list is used as the first barrier

for VoIP spams. There are three disadvantages of the white/black list, which would degrade

the spam filtering effects. Firstly, a powerful identity mechanism is required to guarantee

that calls are really from the caller as declared in the incoming call. Currently, IETF is

working on the SIP identity standardization [21] and this will help identify callers. Secondly,

white/black list only works for known identities. VoIP system cannot use white/black list

12Burden on callee sideVoIP NetworkVoIP NetworkVoIP NetworkVoIP Network
No Interactions With Call ParticipantsCaller-side InteractionsCallee-side InteractionsCallee-side Interruption

Caller Callee Classification of anti-VoIP spam methods
Figure 2.5: Classification of VoIP anti-spam methods

to allow or deny a call from an anonymous caller, since the caller is neither on the white list

or on the black list. Moreover, this does not meet the criterion that the technique needs to

work before the phone rings, because before the user can add somebody to his blacklist he

first needs to answer the call to decide if it is spam. Thirdly, white/black list can be easily

circumvented. Whenever the spammer obtains a new phone number that is not on the

blacklist, it can continue to launch spams until the new number is added to the blacklist.

2.3.2 Caller-side Interactions

The methods in this category involve interactions with callers. For example, the

caller may be required to answer some simple questions before the call gets through. Al-

though these methods are not as perfect1 as those in the previous subsection, they are good

supplements and will make the whole VoIP anti-spam system stronger. Also, concerning
1For perfect, we mean neither caller or callee is bothered by the method.

13

that VoIP spam prevention is used to protect callee, certain amount of caller-side interaction

would be acceptable.

Reverse Turing test is a typical caller-side interaction method. In the world of

VoIP, reverse Turing tests are those solutions whereby the caller is given some kind of chal-

lenges, which only a human can answer. These tests are also known as captchas (Completely

Automated Public Turing test to tell Computers and Humans Apart). These challenges fre-

quently take the form of answering a question or repeating numbers while background music

or noise is playing, making it difficult for an automated speech recognition system to be

applied to the media. Only by entering the correct numbers with their keypad, the users

can make their call accepted.

Reverse Turing tests fulfill most of the criteria defined previously. They are taken

before the phone rings at the callee side. They cost spammers a huge amount of computer

resources to circumvent. Even in the situation that a spammer is able to circumvent the

reverse Turing test, in the way that he can provide the correct answer to the asked question,

reverse Turing tests can be easily upgraded with more difficult questions. However, reverse

Turing tests expect a certain level of knowledge for the users. For example, some reverse

Turing tests require the caller to do some arithmetics and return the result. If the question

is too difficult, a child would not make a call due to not being able answer the question.

However, if the question is too simple, spammers would be able to answer the question with

a voice recognition system, making the technique ineffective. Another problem with the

voice reverse Turing test is that: instead of having an automata process to take the test,

a spammer may afford paying cheap workers to take the tests. Thirdly, the language used

for the reverse Turing tests may become a problem for large international companies, since

not all customers speak the same language.

2.3.3 Callee-side Interactions

Some anti-spam methods require the participation of callees. Identifying a spam

has to be at the cost of callee interaction. However, once the callee reacts to a spam call, the

spammers might have partially achieved their goals. Therefore, methods in this category

are not recommended as separate solutions for VoIP spam prevention, but they can be good

supplement for other methods.

Consent-based communication [21] [24] is a representative for this category. It is

14

used in conjunction with white/black lists. Suppose caller A is not in callee B’s white/black

list, and caller A attempts to communicate with callee B. Then caller A’s attempt will be

initially rejected, and caller A is told that consent is being requested. Next time callee

B connects, callee B is informed that caller A had attempted communications. Callee B

can then authorize or reject caller A. It would seem this method can help the VoIP spam

prevention a lot. However, it might just change the nature of the spam. Instead of being

bothered by content, users are bothered by consent requests.

2.3.4 Callee-side Interruption

The methods falling into this category do not meet the criterion that the technique

works before the phone rings. In fact, when the callee accepts the spam calls, the spammers

have achieved their goals. However, even at this time, the callee can still protect himself

from VoIP spams in the future.

Reputation filtering [5] is a typical representative for this category. Reputation

systems can be implemented in highly centralized VoIP identification system. Each user

who receives a spam call could report the caller to the VoIP spam identification system.

Individual reputation will be calculated based on users’ feedback. Although the input of a

single user is insufficient to ruin one’s reputation, but consistent negative feedback would

give the abusive user a negative reputation score. Reputation filtering also does not fulfill

minimal user intervention criterion, since for every anonymous caller, the user has to decide

if he wants to allow the call based on the reputation of the caller. Once the caller is accepted,

he has to be added to the user’s white list. This might be plenty of work for users who

receive a lot of calls from anonymous callers.

2.4 Computational Puzzle

Computational puzzle, as an email anti-spam method, is a challenge response

method that requires a sender (or a sender’s computer) to assist authentication of a given

request by solving a simple puzzle. While this activity takes little effort for a regular sender,

it would overwhelm the computing cycles for someone sending large amounts of bulk emails.

Our VoIP anti-spam system is based on this technology. Here we only briefly

15

introduce the basic idea and related application of computational puzzles, and leave the

detailed explanation of our method in chapter 3.

The basic idea of computational puzzle is: “If I do not know you and you want to

send me a message, then you must prove that you spent, say, ten seconds of CPU time, just

for me and just for this message” [4]. This “proof of effort” is mainly cryptographic, which

is hard to compute but very easy to check. The idea of using computation to restrict abuse

dates back to Dwork and Naor [8], who suggested using it to fight spam. It works as follows:

to send a message to a destination, an email sender takes a hash of the message, the current

time, as well as the address of the destination, and then feed it as input to a moderately

hard pricing function: a function that is moderately difficult to compute but the result of

which is easy to verify. The output of the function would be included with the message,

along with the time used in the function. An email recipient has all the information for

verifying the result, and would only accept a message passing the verification. By requiring

a per message pricing function computation, this method imposes a little cost on legitimate

email users but a heavy one on spammers. Juels and Brainard [16] proposed a similar

scheme for preventing denial of service attack. They suggested issuing client puzzles to

anyone requesting service and requiring a solution before the service is provided. The puzzle

includes a random input to the pricing function, so the method is an interactive puzzle

protocol. Computational puzzle based method is an efficient email anti-spam solution. For

example, in [27], computational puzzle is used to throttle outgoing email spams at the email

server provider side.

However, one defect of computational puzzle would undermine its application in

email anti-spams. Computational puzzle system cannot tell whether the source address

is the real sender or a forged address. Sending puzzles to forged or unknown address is

equivalent to sending messages to an innocent third party. This is called Joe Job [1].

Forging the “From” address field is not rare. Spammers do not put their addresses into

either the From or other fields of their emails. So they never get puzzles at all. However,

the difference between VoIP and email communication mechanisms makes VoIP system

immune from this defect. Spammers in email systems may not care the responses from

receivers. Therefore, spammers can use the email addresses of innocent third parties as

the forged sender address. In contrast, three-way handshake (via SIP protocol) is used to

build connection between callers and callees in VoIP system. If spammers use an innocent

address which is out of their control as a forged caller, they would not receive the SIP

16

response from the callee. Then the media connection for this call would not be established.

This characteristic makes computational puzzles more suitable and more efficient for VoIP

systems.

17

Chapter 3

Computational Puzzle Based VoIP

Anti-spam System

VoIP spam prevention is a complex problem and requires many techniques working

together to reduce spam to acceptable levels while still allowing efficient communication.

To mitigate the VoIP spams, we propose a mechanism that reduces VoIP spams by adap-

tively assigning computational costs to the callers based on their previous behavior. This

mechanism can work either as a separated VoIP anti-spam solution, or as a supplement for

other VoIP anti-spam solution.

In this chapter, we describe this computational puzzle based VoIP mitigation mech-

anism. We first review the SIP message flow of the VoIP systems, followed by the description

of the system architecture of our VoIP anti-spam method. Next, we present the puzzle gen-

eration and verification procedure in details. Then we describe our adaptive cost assigning

method used to adjust costs for different callers.

3.1 SIP Call Flow Diagram

SIP (Session Initiation Protocol) is a signaling protocol used for establishing ses-

sions in an IP network. SIP protocol incorporates elements of two widely used Internet

18

protocols: Hyper Text Transport Protocol (HTTP) for Web browsing and Simple Mail

Transport Protocol (SMTP) for email. From HTTP, SIP borrowed a client-server design

and the use of URLs and URIs. From SMTP, SIP borrowed a text-encoding scheme and

header style. SIP reuses SMTP headers such as To, From, Date, and Subject.

In this section, we will briefly describe the call flows in SIP invitation dialog, which

is used for making and accepting call requests. It is useful for understanding section 3.2.

Usually the best way to learn a protocol is to look at examples of its use, because an example

message flow can give a snapshot of some of the key concepts of a protocol. We will use

two typical examples [15] to explain how SIP protocol works as a signaling mechanism in

VoIP system. The examples will be explained using call flow diagrams between a callee and

a caller, along with the explanations of each message. Each arrow in the figures represents

a SIP message, with the arrowhead indicating the direction of message transmission. The

thick lines in the figures indicate the media stream. In both examples, the media will be

assumed to be RTP packets containing audio, but it could be another protocol.

3.1.1 SIP Call Without Proxy Server

Figure 3.1 shows a simple SIP session establishment process. In this example, all

SIP messages are exchanged between two SIP-enabled devices. These two devices could be

SIP phones, laptops, or cell phones, and both devices are connected to an IP network such

as the Internet and they know each other’s IP addresses.

Firstly, Alice, as the caller, initiates the message exchange by sending a SIP IN-

VITE message to the callee, Bob. INVITE is an example of a SIP request message. The

INVITE message contains the detailed information about the type of call that is requested.

It could be a simple voice session, or a multimedia session such as a video conference. The

INVITE message header contains the following fields:

INVITE sip:bob@receiver.org SIP/2.0

Via:SIP/2.0/UDP sender.org:5060; branch=z9hG4bKfw19b

Max-Forwards: 70 To: Bob <sip:bob@receiver.org>

From: Alice <sip:alice@sender.org>;tag=76341

Call-ID: 123456789@receiver.org

CSeq: 1

Contact: <sip:alice@sender.org>

19Alice BobINVITEACK180 Ring200 OKMedia SessionBYE200 OK
Figure 3.1: Simple SIP call flow

Content-Type: application/sdp

Content-Length: 158

The fields listed in the INVITE message are called header fields. The first line of

the request message, called the start line, lists the method, which is INVITE, the Request-

URI, followed by the SIP version number (2.0), all separated by spaces. The Call-ID header

field is a globally unique identifier and used to keep track of a particular SIP session. The

originator of the request creates a locally unique string, then usually adds an “@” as well

as its host name to make it globally unique. In addition to the Call-ID, each party in the

session also contributes a random identifier, unique for each call. These identifiers, called

tags, are included in the To and From header fields as the session is established. The shown

initial INVITE message contains a From tag but no To tag.

After callee Bob received the INVITE message, he will send a 180 Ringing message

back to the caller Alice. When Bob decides to accept the call (i.e., the phone is answered),

20

a 200 OK response is also sent to Alice. This response also indicates that the type of media

session proposed by the caller Alice is acceptable. Both the 180 Ringing and 200 OK are

examples of SIP response messages. Responses are numerical and are classified by the first

digit of the number. A 180 Ringing response is an “informational class” response, identified

by the first digit being a 1. “informational class” response is used to convey noncritical

information about the progress of the call. A 200 OK is a “success class” response, identified

by the first digit being a 2.

The 200 OK message header fields are similar to INVITE message. It is created by

copying many of the header fields from the INVITE message, including the Via, To, From,

Call-ID, and CSeq, then adding a response start line containing the SIP version number,

the response code, and the reason phrase. Also, the To header field now contains a tag that

was generated by Bob. All future requests and responses in this session will contain both

the tag generated by caller Alice and the tag generated by callee Bob.

SIP/2.0 200 OK

Via: SIP/2.0/UDP sender.org:5060;branch=z9hG4bKfw19b ;received=100.101.102.103

To: Bob <sip:bob@receiver.org>;tag=a53e42

From: Alice <sip:alice@sender.org>;tag=76341

Call-ID: 123456789@sender.org

CSeq: 1 INVITE

Contact: <sip:bob@receiver.org>

Content-Type: application/sdp

Content-Length: 155

Then caller Alice can confirm the media session with an ACK request. The con-

firmation means that caller Alice has successfully received Bob’s response. After the media

session is established, either the caller or the callee can originate the BYE request to termi-

nate the session. And the originator acts as the SIP client, while any other call participant

acts as the SIP server when he responds.

3.1.2 SIP Call With Proxy Server

In the SIP message exchange of Figure 3.1, Alice knows the IP address of Bob and

is able to send the INVITE directly to that address. Generally, an IP address cannot be used

like a telephone number because IP addresses are often dynamically assigned using DHCP

21

(Dynamic Host Configuration Protocol) due to the shortage of IPv4 addresses. Another

reason is an IP address does not uniquely identify a user, but identifies a node on a particular

physical IP network. A user may share an IP address with other users at his office, by logging

in as different users, and a user may also have multiple IP addresses at different locations.

Ideally, there would be one address that would identify a user wherever he is. Therefore, SIP

uses email-like names for addresses. The addressing scheme is part of a family of Internet

addresses known as URIs. SIP URI is a name that is resolved to an IP address by using

SIP proxy server and DNS lookups at the time of the call.

Figure 3.2 shows an example of a more typical SIP call with a type of SIP server

called a “proxy server”. In this example, the caller Alice calls Bob through a SIP proxy

server. A SIP proxy server operates in a similar way to a proxy in HTTP and other Internet

protocols. A SIP proxy server does not set up or terminate sessions, but sits in the middle

of a SIP message exchange, receiving messages and forwarding them.Alice BobINVITE ACK180 Ringing200 OK Media SessionBYE200 OK
Proxy Server 180 Ringing200 OKINVITE

Figure 3.2: SIP call flow with proxy server

22

This example shows one proxy server, but there can be multiple proxy servers in

a signaling path. Because Alice does not know exactly where Bob is currently logged on

and which device they are currently using, a SIP proxy server is used to route the INVITE.

A DNS lookup of Bob’s SIP URI domain name (example2.org) is performed, which returns

the IP address of the proxy server proxy.example2.org. And the INVITE is then sent to

that IP address.

Usually, a user will tell its contact URI (current device and its IP address) to

a specific server in a domain. This procedure is called registration, and the server is

called registrar server. So the proxy server looks up the SIP URI in the Request-URI

(sip:bob@example2.org) in the registrar server’s database and locates Bob. The INVITE is

then forwarded to Bob’s IP address with the addition of a second Via header field stamped

with the address of the proxy server.

From the presence of two Via header fields, Bob knows that the INVITE has been

routed through a proxy server. Having received the INVITE, a 180 Ringing response is sent

by Bob to the proxy server. The proxy server receives the response, checks that the first Via

header field has its own address (proxy.example2.org), uses the transaction identifier in the

Via header, then removes that Via header field, forwards the response to Alice. Similarly,

when the call is accepted by Bob, he sends a 200 OK response to Alice via the proxy server.

In SIP, the path of the signaling messages is totally independent of the path of the media.

And the media session is ended when Bob sends a BYE message.

3.2 System Overview

The purpose of our computational puzzle based VoIP anti-spam method is to

consume spammers’ computation resources so that spammers cannot or do not deserve to

make so many spam calls as before. Therefore, this method cannot prevent all the call

spams by itself, but it is very helpful to mitigate the total number of call spams either as a

separate VoIP anti-spam mechanism, or as a module in other VoIP anti-spam mechanisms.

In this section, we will describe the system architecture of our computational puzzle based

VoIP anti-spam system, including modules and their functions.

Figure 3.3 shows the big picture of our system. When a new call comes, it is

first filtered by the white/black list module. If it is an anonymous call, it will enter the

23

challenge-response module. Then a puzzle (challenge) will be sent to the caller. The puzzle

is computed based on an appropriate puzzle cost which is obtained by checking the puzzle

cost computation module. When the caller’s response is received, the challenge-response

module will verify it. If the verification fails, the SIP INVITE request will be sent to a

user-configured decision module. Based on the rules in decision module, this SIP INVITE

request will be redirected to the callee’s “trashbox” (user-configured automatical answering

system), or be refused automatically, or even be accepted if the callee does not care.

Anonymous callCaller An incoming call White/Black list filteringPuzzle generation DecisionPuzzle verification Puzzle costcomputation
Callee Proxy Serveror

 Challenge-Response Puzzle CostPuzzleSolution Solution is wrong
Trash box May be redirected to trash boxUser-configurable modulesNon-configurable modules

Figure 3.3: Computational puzzle based VoIP anti-spam system

Our computational puzzle based VoIP anti-spam system fulfill almost all the crite-

ria that are defined in section 2.3. Our VoIP anti-spam method works before the phone rings,

so that the user is not disturbed in his current activity. Computational puzzle increases

24

the costs for the spammer, making spam less profitable. Our system could be located at

the service provider (proxy server) only, so little user maintenance is required. Combining

with white/black list module, the delay caused by the challenge-response module will be

partly canceled out, because only anonymous callers would be challenged. When the caller

has fulfilled his “proof of effort”, he can be automatically or manually added to the white

list of the callee, which will result in no challenge, no cost and no delay for the next calls

between the caller and callee.

Another main advantage of this system architecture is its configuration flexibility

and extendability. Firstly, this system is location-unaware. It can be placed at any user-

trusted location in the VoIP system. It can be either integrated into the callee (or caller)’s

domain proxy server as a VoIP spam firewall for the whole domain, or directly placed at

callee side as a client-based VoIP anti-spam solution. And it can also be applied on both

proxy server side and the callee side. To avoid duplicated computational puzzles from proxy

severs and the callee, after the caller solves the proxy server’s puzzle, the proxy server can

insert a “puzzle resolved” indicator before it continues forwarding the request to the callee.

The security mechanism between the proxy server and the callee can prevent faked “puzzle

resolved” indicator. It can be implemented either via realm authentication scheme [13] or

via a secure link, such as TLS [6]. Then the callee could choose to continue challenging

the caller or stop it based on his own specific configuration. Secondly, most of the modules

can be specifically configured by different users. Besides user-oriented black/white list

and decision modules, users can also change the parameters in puzzle cost generation and

challenge-response modules to meet their different requirements. Thirdly, when a more

advanced and accurate filter technique is proposed in the future, we can easily integrate

it into this system as a new module between black/whtie list module and the challenge-

response module. Fourthly, this system is a self-learning system. Initially, users have to

react to validated anonymous calls, either adding them to white list or black list. But soon,

as more elements are added to white/black list, the system would begin to filter messages.

The pace of this process could be left up to individual users, based upon how quickly their

own friends and colleagues adopted this system. If well implemented using a common, open

standard agreed upon by all vendors, it would be straightforward for users to adopt. Easy

for everyone, except for the spammers.

25

3.3 Challenge-Response Module

In this section, we present the core module - challenge-response module in our

VoIP anti-spam system. It covers the computational puzzle generation and verification

procedures. The idea behind this module can be summarized as follows. When a callee,

say Bob, receives call invitation from an anonymous caller (not in white/black list), say

Alice, Bob will send a computational puzzle back to Alice for solving. There is enough

randomization involved that Alice really do have to solve the puzzle on a case-by-case basis.

Only when Alice sends Bob the correct result, Bob will accept the call invitation from

Alice. If the computation is complex enough, it will take far longer to send large numbers

of unsolicited SIP invitation than it does now.

Many existing studies [8] [16] have proposed computational puzzle algorithms to

solve different practical problems. Our focus is how to integrate computational puzzle algo-

rithm into VoIP system to mitigate VoIP spams. Therefore, we picks a simple computational

puzzle algorithm for our system. The puzzle is the brute-force reversal of a one-way hash

function, such as MD5 or SHA-1. This is a practical choice because the hash functions are

computable with a wide variety of hardware and the brute-force testing of different inputs

is likely to be the most efficient way for computing the inverse of these functions. In this

section, we describe this algorithm and the related SIP protocol extension. Our algorithm

and message format are similar to those described in [14].

The algorithm works as follows: when a caller sends a SIP invitation message to

a callee via a proxy server, the proxy server (or callee) generates a random global unique

string for this call request, calculates and saves the hash (such as MD5, SHA-1, SHA-2)

output, and sends the hash output back to the caller. The caller is asked to search for a

string that has the same hash output and send back the string as the answer. The server

controls the puzzle complexity by controlling the hash algorithm and the search space size.

The call flow diagram of this algorithm is illustrated in Figure 3.4. It includes 5 primary

SIP request and response messages.

1. Caller ⇒ Proxy server(or Callee): INVITE

2. Caller ⇐ Proxy server(or Callee): 419 Puzzle required

3. Caller ⇒ Proxy server(or Callee): re-INVITE (with solution included)

4. Caller ⇐ Proxy server(or Callee): 200 OK (if the solution is correct)

26

5. Caller ⇐ Proxy server(or Callee): 403 Forbidden (if the solution is wrong)Proxy server may send its 419 response and Proxy server does not forward INVITE messageAlice BobProxy ServerINVITE
200 OK (or 403 Forbidden) INVITE 419 Puzzle RequiredRe-INVITE Re-INVITE419 Puzzle Required ACKMedia SessionBYE200 OK403 Forbidden) 419 response is generated by callee if has not been generated by proxy server 419 Puzzle RequiredRe-INVITERe-INVITE 200 OK (or 403 Forbidden)200 OK200 OK
Figure 3.4: SIP call flow with computational puzzle

Compared with standard call flow diagram in section 3.1.2, two extra messages

are added in this call flow diagram, which enabled the puzzle generation and verification

involved in the call flow. Firstly, if the caller is anonymous to the proxy server (or callee),

the proxy server (or callee) will send a “419 puzzle required” SIP response message to the

caller before he decides to accept the call. Secondly, after a brute-force computation, the

caller will send a new SIP INVITE (we call it re-INVITE) message which includes the

computational solution back to the proxy server (or callee).

Now let us explain puzzle generation procedure, solution generation procedure and

27

the related puzzle format in detail. As illustrated in Figure 3.5. it is a two-step process to

generate the puzzle. All the notations used in the explanation are displayed in table 3.1 as

below.

Table 3.1: Notation in the puzzle generation procedure

Symbol Meaning
Ns Callee nounce
Nc INVITE dialog identifier extracted from the caller’s request
Nt Callee’s system time when the puzzle is generated
k Difficulty level From-Tag(from From header)Call-ID(from Call-ID header) To-Tag(from To header)or Branch-Tag(from Via header)concatenateconcatenatehash puzzle-imagepuzzle-imageKimage difficulty levelraw-imageNs(proxy server or callee's secret) Nc(sip INVITE request ID)Nt(proxy server or callee's local time)hashpre-image set last K bits to 0

Figure 3.5: Computational puzzle generation

Firstly, the proxy sever (or callee) concatenates Ns, Nc and Nt to generate a new

string, called “raw-image”. Ns is a proxy server (or callee)’s own nounce string. To create

28

new puzzles, the callee periodically generates a nounce, which is a secret known only by

the proxy server (or callee) itself. To prevent the spammers from precomputing solutions,

the nounce needs to be random and not predictable and needs to be updated periodically.

Nt is a timestamp of the proxy server (or callee)’s local system. And Nc is an identifier

string which is used to distinguish different SIP INVITE requests. In SIP, a dialog is a

peer-to-peer relationship between two VoIP user agents. As explained in section 3.1, invite

dialog is used for making and accepting call requests. In each dialog, there is only one

original INVITE message. And there may have one or more re-INVITE messages which

are used to update the request information for the original INVITE message. Nc is used

to check if an INVITE is a re-INVITE message (belonging to previous INVITE dialog) or

an original INVITE message. In SIP, the combination of Caller-ID (in Caller-ID header),

From-Tag (in From header) and To-Tag (in To header) is a global unique identifier for a SIP

dialog, which can be used as Nc. Please note, the To-Tag is not included in the original SIP

INVITE message, and it is generated by the callee. In case that proxy server generates the

puzzle, the To-Tag is replaced by the Branch-Tag (in Via Header) to generate Nc, because

the To-Tag has not been generated when the original INVITE message arrives at the proxy

server.

Secondly, we compute a hash on the “raw-image” using a hash algorithm (such as

MD5). We call the result string as “pre-image”. Then, we calculate another hash on “pre-

image” using the same hash algorithm and call the hashed out string as “image”. Finally

we set the last k bit in “pre-image” as zero and call this string as “puzzle-image”. k is called

“difficulty level”, and it controls the search space size for caller’s brute-force computation.

To deliver the puzzle to the caller, the 419 response message includes a new “puzzle

header” besides the standard headers (From, TO, Caller-ID, Via, Cseq), with the following

format:

Puzzle: difficulty="k", puzzle="puzzle-image", image="image", method="MD5"

The “puzzle-image” and “image” fields are filled by the values discussed above. When the

caller receives the 419 response message, it will perform a “brute-force” search for the last

k bits of “puzzle-image” string, in a way that the caller computes the hashes of all the

possible candidates until the hash output match the “image” string. Therefore, the caller

has to try 2(k−1) times hash operations in average. After the caller finds out the solution,

he will send a re-INVITE message back to the proxy server (or callee). The re-INVITE

message is quite same as the original INVITE message except for two headers. First, the

29

Cseq number in the Cseq Header is increased by 1. It is used to distinguish the re-INVITE

message from the original INVITE message. Second, a “puzzle header” is added to the

re-INVITE message, in which “pre-image” means the solution to the puzzle used in puzzle

generation procedure.

Puzzle: difficulty="k", solution="pre-image", image="image", method="MD5"

3.4 Adaptive Cost Assignment in Computational Puzzles

With the knowledge of our computational puzzle algorithm, this section explains

how to assign puzzle “difficulty level” for each anonymous SIP INVITE message. This is

the puzzle cost computation module in our VoIP anti-spam system.

A simple idea is to set same cost for all the anonymous SIP INVITE messages.

However, in this way, all innocent anonymous calls will be treated same as suspicious calls.

This inspires us to assign different costs for different anonymous calls based on its probability

of being spams. There is a popular email anti-spam method which includes a scheme of

evaluating the possibility of being spams, called the Nalve Bayes method [18], often known

as Bayesian Spam Filtering. Its idea is based on the study that some words occur more

frequently in known spam, and other words occur more frequently in legitimate messages.

With statistical and mathematical techniques, it is possible to generate a “spam-indicative

probability” for each word and then determine the overall “spam probability” of a novel

message. But this kind of spam filtering is completely useless for call spam. This can be

accounted to two reasons. Firstly, the content of an anonymous call cannot be analyzed

before the user answers it. We want to mitigate VoIP spam before the callee answers the

call. Otherwise, the user would have already paid attention and been interrupted. Secondly,

if the content is stored before the user accesses it, the content will be in the form of recorded

audio or video. Currently, speech and video recognition technology is not mature enough

to make accurate decision on whether or not a message is spam. But we can borrow the

statistical idea from Bayesian Spam Filtering, and assign the puzzle cost for each anonymous

call based on the caller’s call history.

We choose four guidelines for the puzzle cost assignment. First, we would like to

assign zero or negligible computational costs to all the anonymous calls if currently call

spam are very rare overall. Second, when a new spammer is detected, we will increase

30

the puzzle cost for all the other anonymous callers coming from the same domain. Third,

when a new call is classified as suspicious call spam, we would like to increase the puzzle

cost for all the future calls from this specific caller. Fourth, when a new anonymous call

cannot solve the puzzle correctly, we will increase the puzzle cost for this specific caller

appropriately. However, if the caller solves the puzzle correctly, we will decrease its puzzle

cost appropriately.

From callee’s perspective, it is easy to determine if an anonymous call is a call

spam and if it needs to be added into the white/black list as soon as callee answers the call.

Therefore, we only apply the adaptive cost assignment to SIP proxy servers. The adaptive

puzzle cost computation is based on a summation C(m) = D + Q(m)× Tq + R(m)× Tr −
S(m) × Ts + F (m) × Tf . All the notations used in this section are displayed in table 3.2.

C(m) is the cost level for the anonymous call m. It means how many bits need to be set as

0 in “puzzle-image” string. D is the initial puzzle cost for all the anonymous calls. Q(m) is

the probability that an anonymous caller from this caller’s domain is a spammer over recent

period of time. R(m) represents the number of users who have reported this anonymous

caller as a spammer over recent period of time. S(m) means how many times this caller

cannot solve the puzzle. F (m) means how many times this caller has solved the puzzle. Tq

is a translation function used to map Q(m) to the number of bits. Similarly, Tr, Ts and Tf

are used to map R(m), S(m) and F (m) to number of bits respectively.

Table 3.2: Notation in the puzzle cost computation procedure

Symbol Meaning
C(m) puzzle cost for anonymous call m
D initial puzzle cost
Q(m) spam call probability of caller’s domain
Tq translation function used to map Q(m) to the number of bits
R(m) how many users have reported this caller as a spammer
Tr translation function is used to map R(m) to the number of bits
S(m) how many times this caller has solved the puzzle
Ts translation function is used to map S(m) to the number of bits
F (m) how many times this caller cannot solve the puzzle
Tf translation function is used to map F (m) to the number of bits

31

Chapter 4

Implementation

To evaluate the performance of our VoIP anti-spam system, we implement it as an

extension to Mjsip [19]. Mjsip is an open source VoIP software. It is a complete java-based

implementation of the SIP stack. It includes the complete SIP stack architecture as defined

in RFC 3261 [13], and is fully compliant with the standard. In this chapter, we will describe

our implementation in details. We will first review the layered SIP implementation in Mjsip,

and then explain the implementation of our computational puzzle system, with the help of

data flow and state transaction diagram.

4.1 SIP Stack Implementation in Mjsip

According to the SIP architecture defined in RFC 3261, the core of MjSip is

structured including three base layers: Transport, Transaction, and Dialog. On top of these

layers, MjSip also provides Call Control and application level layers, with the corresponding

APIs. Figure 4.1 shows the layered architecture in Mjsip.

From bottom to up, the lowest layer is the transport layer, which provides the

transport of SIP messages. The SipProvider is an MjSip object that provides the transport

service to all upper layers. It is responsible for sending and receiving SIP messages through

different lower layer transport protocols (such as UDP or TCP), and to demultiplex incoming

messages toward the appropriate upper layer entities.

32

 TransactionCall Dialog Transport
 Application/Sessions Mjsip APIs

send and receive SIP messages via lower layer transport protocolsmanage sequencing of messages and proper routing ofrequests between the user agentsimplement a complete SIP callmatch responses to requests
Figure 4.1: Mjsip layered architecture

The second layer is the transaction layer. A transaction is a fundamental compo-

nent of SIP, which is a request sent by a transaction client (caller) to a transaction server

(callee) along with all responses to that request sent from the transaction server back to the

client. The transaction layer handles upper-layer retransmissions, matching of responses to

requests, and timeouts.

The third layer is the dialog layer that binds different transactions within the same

“session”. As we have described in section 3.3, a SIP dialog is a peer-to-peer relationship

between two user agents that persists for some time. The dialog facilitates sequencing of

messages and proper routing of requests between the user agents. As defined in RFC 2631,

the INVITE method establishes an INVITE dialog.

Above the three base layers, there is a fourth layer called Call Control layer, which

implements a complete SIP call. It is implemented by the Call API, which is a simple-to-use

interface to handle incoming and outgoing SIP calls. Note that a call may consist of more

than one dialogs. SIP sessions, standing upon all the four layers, bind application entities

(participants) on different systems.

In the MjSip package, APIs are provided to access various layers, from SipProvider

to Call Control through the following classes: Call, InviteDialog, InviteTransactionClient,

33

InviteTransactionServer, and SipProvider. The interfaces between adjacent layers are based

on a Provider→ Listener model, as illustrated in Figure 4.2. When a class wants to interact

with an underlying layer, it has to extend the relative LayerListener class for that layer (i.e.

the layer provider) and add itself to the list of possible listeners of the events generated

by the lower layer/provider. The events are captured by the upper class through specific

listener methods inherited by the specific Listener class.UpperLayer
LowLayer ProviderProvider.addlistener()Provider specific methods Listener.onEventX(parameters)Listener.onEventY(parameters)LowLayer Listener

Figure 4.2: Provider → Listener model

4.2 Computational Puzzle Implementation in Mjsip

We implemented computational puzzle based VoIP anti-spam system both on the

proxy server and on normal user agents (callers and callees). Because proxy servers are

only in charge of forwarding callers’ INVITE requests to callees, the challenge-response

implementation on proxy servers is simpler than that at the callee side. We will take the

callee side implementation to explain our extension to Mjsip. The scenario is the same as

that in section 3.1.1. None of servers are involved, and both callers and callees are connected

to an IP network and know each other’s IP addresses.

SipProvider is an Mjsip object that represents Mjsip’s transport layer. The main

classes we discuss in this chapter are displayed in table 4.1. SipProvider sends and receives

34

SIP messages, receives SIP messages from the network (through the UDP/TCP layers),

and delivers them to the appropriate upper layer entity, which could be a transaction, a

dialog, or an application entity. By inserting SipProvider listeners, the upper layer objects

in transaction and dialog layers could communicate with SipProvider objects. Specifically,

when the SipProvider receives a new message from the lower layers (UDP/TCP layers),

it would choose the appropriate upper layer entity based on the matching of transaction-

id, dialog-id, or message type with the list of the current registered SipProvider listeners.

InviteTransactionServer, InviteTransactionClient are the objects of transaction layer. Ex-

tendedDialog is the object of dialog layer. All of these three are the main targets of our

implementation, since the computational puzzle method mainly focuses on the extension

for standard SIP invite dialog.

Table 4.1: Main mjsip classes used in the computational puzzle implementation

Mjsip layer Class
Transport layer SipProvider
Transaction layer InviteTransactionClient, InviteTransactionServer
Dialog layer ExtendedInviteDialog, Dialog
Call Control layer Call

We will first describe the puzzle generation and verification procedure, which fo-

cuses on the communication between SipProvider and the upper layer objects. Then we

explain the corresponding state transition diagrams corresponding for the transaction and

dialog layers.

4.2.1 Puzzle Generation and Verification Procedure

Figure 4.3 shows the whole picture for computational puzzle generating, solving

and verifying procedures.

35Call Insert a SipProviderListenerusing dialog ID Insert a SipProviderListener using transaction IDSipprovider receives messages from lower layer
CallerInitializationCall.listen()Dialog.listen()Transaction_server.listen()

Mjsip LayersDialogTransactionTransport
Upper layers: userAgent, GUI etc.
Lower layers: TCP/UDP, IP, etc.Find a SipProviderListener using transaction IDFind a SipProviderListener using Dialog ID Find a SipProviderListener using “INVITE”Insert a SipProviderListenerusing “INVITE” send messagesreceive messages Challenge

1. White/Black list filtering2. Generate puzzles for anonymous INVITEs Challenge Response(parameters)
Calleemake a callCall(parameters) Dialog(parameters) Request(parameters) Sipprovider sends messages to lower layer1.Process 419 response, generate solution2.Send re-INVITE requestResponse1. Verify solution 2. generate appropriate response based on decision moduleVerification Verification ResponseVerification

Figure 4.3: Puzzle generation and verification procedure

36

At the caller side, an instance of the Call class is triggered when a caller makes

a call. This is in fact a SIP INVITE request, and an ExtendedInviteDialog instance will

be generated by the Call instance. Then the ExtendedInviteDialog will generate a corre-

sponding SIP INVITE request message and pass it to the InviteTransactionClient generated

in this Dialog. Also, the ExtendedInviteDialog instance will insert a SipProvider listener

with its Dialog ID. As described previously, a Dialog ID is composed by Call-ID (in Call-ID

header), From-Tag (in From header) and To-tag (in To header). If one or more components

do not exist, “null” will be used to occupy the corresponding positions. At this time, the

To-Tag does not exist and will be updated when the caller receives the response message

from the callee. Next, InviteTransactionClient will insert a SipProvider listener with its

transaction ID, and send the INVITE message to the callee via the included SipProvider

objects. The transaction ID is composed of Call-ID (in Call header), Cseq (in Cseq header),

Method (in the first line of the message), Sent By (in Via header) and Branch (in From

header if used in transaction client, To header if used in transaction server).

At the callee side, Mjsip is initialized with an empty Call instance. By calling

the corresponding listen method, the Call instance creates an empty Dialog instance, which

in turn, creates an InviteTransactionServer instance. Finally, this InviteTransactionServer

instance inserts a SipProviderListener with a specific transaction ID - “INVITE”, and this

listener is used to wait for the SIP INVITE request.

Whenever a new message is received and passed from lower layers (UDP/TCP)

to the transport layer (SipProvider), the OnReceivedMessage method will be called. Its

responsibility is to find a matched SipProvider listener through which it passes the message

to the upper layer. The listener matching procedure involves many steps. Among those,

37

there are three important steps: matching SipProvider listener using transaction ID, using

dialog ID, and using specific transaction ID (“INVITE”).

When a new INVITE message arrives at the callee side, the SipProviderListener

with ID “INVITE” will be trigged. This listener first removes itself from the listener list

and then inserts a new listener with the actual transaction ID. Next, it will call onTransRe-

quest procedure included in InviteTransactionServer to process the INVITE message. The

black/white list filtering module and the puzzle generating part in challenge-response mod-

ule are implemented here. And the onTransRequest procedure also inserts a SipProviderLis-

tener with the actual dialog ID.

When a 419 “puzzle require” message reaching caller side, the onTransFailureRe-

sponse procedure included in transaction client will be trigged to process it. The puzzle

solving part in challenge-response module is implemented here.

Finally, when the re-INVITE message with puzzle solution reaches the callee side,

the SipProviderListener with the actual dialog ID will be trigged. The OnReceivedMessage

procedure included in the dialog will process the re-INVITE message. And the puzzle

verification part in challenge-response module and decision module take their responsibilities

here.

4.2.2 State Transition Diagram

The state transition diagram of our VoIP anti-spam system has two INVITE trans-

actions in the INVITE dialog of an anonymous caller. One is for the original VoIP INVITE

request, the other is for the added re-INVITE request. Figure 4.4 and Figure 4.5 illus-

trate the transaction client side and transaction server side state transition diagrams for

these two INVITE transactions. Figure 4.6 shows the dialog-level state transition diagram

for INVITE dialogs. The added “verifying” state is used to represent challenge-response

procedure.

38TryingProceeding
Hop-by-hopTerminatedCompleted

 INVITE sentTimeout AINVITE resent Informational Response (1xx) receivedTimeout C
Timeout BTerminateTerminateTerminate

Informational Response (1xx) receivedOther Response (3xx-6xx) receivedACK sentOther Response (3xx-6xx) receivedACK sent Other Response (3xx-6xx) receivedACK sent Success Response (2xx) receivedSuccess Response (2xx) received
Figure 4.4: Invite transaction client state diagram

39

Figure 4.5: Invite transaction server state diagram

40

Call
Inviting Waiting

Close ByedByeing
ListenCall INVITE receivedInformational Response (1xx) receivedSuccess Response (2xx) receivedTimeout ACK receivedBYE sent BYE receivedBYE receivedACK receivedor Timetout Final cleanup

InvitedAccepted RefusedInformational Response (1xx) sentSuccess Response (2xx) sent Other Response (3xx-6xx) sentACK received ACK received
VerifyingIn White List or Puzzle is solved In Black List or Puzzle is not solved Anonymous callerResponse 419 sent Timeout

Figure 4.6: Invite dialog state diagram

41

Chapter 5

System Evaluation

This chapter discusses the evaluation of our VoIP anti-spam system which in-

cludes white/black list and computational puzzle based system. Section 5.1 describes the

four performance metrics used for evaluation and the experiment setup. From section 5.2

to section 5.5, we present the experimental results corresponding to each of the metrics re-

spectively. Section 5.6 discusses one of the key functions in the puzzle challenging process.

And section 5.7 discusses a possible strategy that spammers may adopt to respond to our

system, and the success of the anti-spam system in combating it.

5.1 Evaluation Metrics and Experiment Setup

The following metrics are adopted to evaluate the effectiveness of the computa-

tional puzzle based VoIP anti-spam system:

• Block rate: It is the percentage of blocked VoIP spam calls (or spammers) out of

all VoIP spam calls (or spammers). It reflects the system’s blocking ability on spam

calls.

• Spam ratio: It is the percentage of successfully accomplished VoIP spam calls out

of all VoIP calls. It indicates the spam severity of the system.

42

• Overhead for proxy servers and legitimate end users: The overhead introduced

by the anti-spam method. It should be limited to a tolerable degree.

• Spam call generating ability: It depicts VoIP spammers’ attacking ability, in terms

of call generation rate.

We will show the success of our VoIP anti-spam system in achieving high block rate, low

spam ratio, low overhead, as well as the good capability in restraining spammers’ spam

generating ability. Moreover, we will discuss the benefits of the adaptive puzzle cost assign-

ment method. We will also go further to discuss the possible spammer strategies and show

the effectiveness of our system in the case of smarter spammers.

We use emulation to evaluate the VoIP anti-spam system. Figure 5.1 illustrates the

topology used in our experiments. The experiment setup consists of three VoIP domains:

one receiving domain and two call generating domains. In each domain, there is one SIP

proxy server and at most 70 VoIP end users. The end users in the receiving domain act

as callees, who receive VoIP calls from the end users in the other two domains. All the

proxy servers and end users are implemented using Mjsip VoIP software with our VoIP

anti-spam extension. They are strictly in compliant with SIP RFC [13]. Moreover, they

are compatible with the real SIP phones and can establish call sessions with existing SIP

phones. In our experiments, different VoIP domains are implemented on different machines.

All the machines in the systems are 1.6-2.0GHz Dell or Lenovo laptops, running windows

XP, and they are connected through a 54Mbps wireless router.

Before the start of the experiments, we randomly choose a subset of users as

spammers from the two call generating domains. We also assume that the end users in

the call generating domains know the URIs (or phone number) of all the end users in the

receiving domains, so that they can make calls to any of the callees. In the experiments,

both the spammers and the legitimate callers randomly generate calls to the end users in

the receiving domain.

5.2 Block Rate

Block rate directly reflects the system’s anti-spam ability. We assume a fixed

number of spammers, and observe how effective the system is in blocking spams. In fact,

43

 Receiving domainSIP Proxy Server equipped with VoIP anti-spam system
 Call generating domain
 Call generating domainSIP Proxy Server

SIP Proxy Server networkVoIP callsVoIP calls
Figure 5.1: Experiment setup

block rate could be viewed either as the percentage of blocked spam calls or as the percentage

of blocked spammers.

The experimental scenario is set as follows. We choose 5 spammers and 30 le-

gitimate callers in each call generating domain, and let them randomly make calls to the

end users in the receiving domain. At the beginning of the experiments, all the callers are

anonymous. The puzzle challenge function is only setup at the proxy servers. When the

calls arrive at the proxy server of the receiving domain, puzzles are generated and sent to

the callers. If the puzzles are solved correctly, the proxy server would forward the calls to

the appropriate callees. All the callees would accept the call automatically in 1 second and

hang it up in another 1 second. The inter-arrival time of call generation for each caller

follows exponential distribution with parameter λ = 0.00625. That is, each caller generates

calls with an average time interval of 160 seconds. We assume spam calls are generated at

each spammer with a rate of 0.0125 calls/second. If a callee received a spam call, it would

44

report it to the proxy server with 70% probability. And when the proxy server receives

spam reports for the same caller from 5% different callees, it would put this caller into its

black list.

Figure 5.2 shows the block rate increased with the experiment time. The changes

of block rate are not triggered by computational puzzle based system but by black list.

However, as an evaluation of the integration of white/black list and computational puzzle

based system, we still need to evaluate this part. Initially, the block rate is low, because it

is the learning period for the proxy server to identify spam calls. Although the anonymous

callers are challenged and delay is introduced, the calls are still permitted. With the time

passing by, more and more spam reports are received and spammers are gradually put into

the proxy server’s black list. The percentage of blocked spam calls gradually increase. The

percentage of blocked spammers is very high at the end of the experiment.

Figure 5.3 compares total calls, spam calls and blocked spam calls during the

experiment. Note that all the spam calls would be blocked at the end of the experiment. In

this scenario, we assume VoIP users would report spams with a high probability. Nowadays,

a significant number of email users have been contributing to email spam reports, so it would

reasonable to believe the same user behavior for VoIP users. The trend of increase in block

rate would remain the same.

45

0

20

40

60

80

100

120

0 400 800 1200 1600 2000 2400

Time (seconds)

Bl
oc

k
ra

te
 (p

er
ce

nt
ag

e)

Percentage of blocked
spam calls
Percentage of blocked
spammers

Figure 5.2: Block rate for spam calls

0

100

200

300

400

500

600

700

800

900

0 400 800 1200 1600 2000 2400

Time (seconds)

Nu
m

be
r o

f c
al

ls

Total calls
Spam calls
Blocked calls

Figure 5.3: Comparison of total calls, spam calls and blocked spam calls

46

5.3 Spam Ratio

Figure 5.4 reflects the changes in spam ratio as time goes. Our VoIP anti-spam

method shows its resistance to spams even at the early stage of the experiment. This is due

to the puzzle challenging procedure. In the learning period, black list does not contribute

to the anti-spam system, since spammers are not identified yet and are still out of the

blacklist. It is the puzzle solving process that consumes spammers’ resources and slows

down the attack. At later stage, spammers are gradually identified and reported. Black list

takes effects and blocks all the spammers. From this, we can see the computational puzzle

based VoIP system would be especially effective when the learning period is long.

0

5

10

15

20

25

30

1 2 3 4 5

Time (in units of 100 seconds)

Sp
am

 ra
tio

 (p
er

ce
nt

ag
e)

Without anti-spam system
With anti-spam system

Figure 5.4: Spam ratio (percentage of successfully accomplished VoIP spam calls in all the
VoIP calls)

47

5.4 Overhead for Proxy Server and Legitimate VoIP End

Users

There is a tradeoff between anti-spam and overhead. On one hand, with our VoIP

anti-spam system, legitimate VoIP end users can be protected from VoIP spams. On the

other hand, proxy servers and legitimate VoIP end users have to sacrifice some computing

resources in terms of delay for this anti-spam benefit.

Note that legitimate users usually make one call at a time. So the overhead

for legitimate users, could be evaluated in terms of the delay in puzzle generation and

verification, puzzle solving as well as the added communication delay. For VoIP calls,

communication delay could be neglectable. We focus on the delay spent on the puzzle

generation and verification procedure for callees or proxy servers, and the delay spent on

the puzzle solving procedure for legitimate callers.

Firstly, we do a simple experiment, which includes two scenarios. One scenario is

that calls are between VoIP end users in the same domain and no proxy server is involved.

Puzzle generation and verification is performed on the callee side. The other scenario is that

callers and callees are in different domains. Puzzle generation and verification is performed

on the proxy server only. In both scenarios, there is only one call at a time.

We obtain the delays by logging the receiving and sending time of SIP requests/responses,

and the results are listed in table 5.1. The results show that the added cost for proxy servers

and callees are both very low and could be neglectable. And compared with the puzzle solv-

ing delay, the delay introduced by puzzle generation and verification could be neglectable.

Note that proxy servers are different from callees in that a callee can only deal with

one call at any time while a proxy server may process a great amount of calls simultane-

ously. So it is necessary to consider the accumulated overhead when a SIP proxy server are

processing multiple puzzle generation and verification simultaneously. Figure 5.5 illustrates

this case. With the increasing of simultaneously anonymous calls, the cost per call, in terms

of the processing time (including both puzzle generation and verification) is only slightly

increased. In view of the small overhead for puzzle generation and verification, as we can

see from table 5.1, we believe that both proxy servers and legitimate VoIP end users can

tolerate such light overhead.

48

Table 5.1: Overhead for proxy servers and legitimate VoIP end users

Procedure Time
(seconds)

Without proxy server
Puzzle generation
Callee: receive INVITE request → send 419 “puzzle required” response 0.05
Puzzle solving (cost difficulty level is 18)
Caller: receive 419 “puzzle required” response → send re-INVITE request 5.65
Puzzle verification
Callee: receive re-INVITE request → send 180 Ringing response 0.01
With proxy server
Puzzle generation
Proxy: receive INVITE request → send 419 “puzzle required” response 0.01
Puzzle solving (cost difficulty level is 18)
Caller: receive 419 “puzzle required” response → send re-INVITE request 5.65
Puzzle verification
Proxy: receive re-INVITE request → forward re-INVITE to callee 0.03

0

0.01

0.02

0.03

0.04

0.05

0.06

1 10 25 50 100

Number of calls received
simultaneously by SIP proxy server

A
ve

re
ag

e
pr

oc
es

si
ng

 ti
m

e
pe

r c
al

l (
se

co
nd

s)

SIP proxy server without
VoIP anti-spam system
SIP proxy server with VoIP
anti-spam system

Figure 5.5: Overhead for SIP proxy server

5.5 Spam Call Generating Ability

One main difference between legitimate VoIP users and VoIP spammers is that

spammers usually make a large amount of calls simultaneously. Our computational puzzle

49

based method has great advantage in this situation. By consuming computational resources

with each call, our method can punish VoIP spammers much severely than legitimate anony-

mous VoIP users. Figure 5.6 illustrates that the spam call generating ability of a VoIP

spammer is effectively limited by the computational puzzles. The More calls made simul-

taneously, the more severely this spammer is punished.

Figure 5.7 illustrated the impact of different puzzle cost levels on a VoIP spammer.

The processing time spent on solving puzzles was increased with the puzzle difficulty lev-

els. When the required computational resources (CPU, memory, etc) outreach spammers’

capability, the processing time per call would be increased dramatically. At this time, VoIP

spammers either have to decrease the spam call generating rate, or add more computational

resources which will make their spam calls less profitable.

0

10

20

30

40

50

60

70

80

1 10 25 50 100

Number of call made simultaneously by a single VoIP spammer

A
ve

ra
ge

 p
uz

zl
e

so
lv

in
g

tim
e

pe
r c

al
l (

se
co

nd
)

Figure 5.6: Average puzzle solving time per call for a VoIP spammer (with network size)

50

0

10

20

30

40

50

60

70

80

90

15 16 17 18 19

Cost difficulty level

Av
er

ag
e

pu
zz

le
 s

ol
vi

ng
 ti

m
e

(s
ec

on
ds

)

Spammer makes 100
calls simultaneously
Spammer makes 10
calls simultaneously

Figure 5.7: Average puzzle solving time per call for a VoIP spammer (with cost difficulty
level)

5.6 Adaptive Cost Assignment

In our VoIP anti-spam system, we use an adaptive cost assignment method, as dis-

cussed in section 3.4. The benefit of this method is punishing spammers more severely than

legitimate end users. With the same experimental scenario in section 5.2, figure 5.8 shows

the changes in difficulty levels for legitimate anonymous calls and spam calls respectively.

Note that difficulty level 30 is not a real difficulty level, instead, it is used to indicate the

call is blocked. We can see from the figure that the difficulty level of legitimate anonymous

calls have a slight increase at the beginning. This is because the spammer ratio in the call

generating domain increases. When the spammer ratio in a specific domain increases, the

overall puzzle cost applied to the calls from this domain increases. However, this would

not have significant impact on innocent legitimate callers. With the increasing of puzzles

solved by a legitimate caller, the puzzle difficulty level for this specific caller would drop

gradually. It is noticeable in the figure that the difficulty level for legitimate users has

a trend to decrease. We can also clearly see from the figure that the difficulty level for

spammers increases after the early stage of the experiment and kept higher than that of

innocent legitimate callers. This is because the adaptive puzzle cost for spammers increases

51

with the increasing of spam reports received at the proxy server. The adaptive puzzle cost

method enables the dynamic adjustment of puzzle difficulty levels based on users’ behav-

ior. Through the comparison with static cost assignment, we can see with the time going

innocent callers would be encouraged while spammers would be punished or blocked.

From figure 5.9, we can see the advantage of adaptive cost assignment in another

view. It shows the changes in puzzle solving time for legitimate anonymous calls and spam

calls respectively. Note 120 is not a real puzzle solving time, instead, it is used to indicate

the call was blocked.

0

5

10

15

20

25

30

35

0 500 1000 1500 2000 2500

Time (seconds)

Co
st

 d
iff

ic
ul

ty
 le

ve
l

Adaptive cost assignment (legitimate calls) Adaptive cost assignment (spam calls)
Static cost assigment

Figure 5.8: Comparison of assigned puzzle cost for spam calls and legitimate calls

52

0

20

40

60

80

100

120

140

0 500 1000 1500 2000 2500

Time (seconds)

Pu
zz

le
 s

ol
vi

ng
 ti

m
e

pe
r c

al
l (

se
co

nd
s)

Adaptive cost assignment (legitimate calls) Adaptive cost assignment (spam calls)
Static cost assignment

Figure 5.9: Comparison of puzzle solving time for spam calls and legitimate calls

5.7 Smart Spammers

In the previous experiments, we assume the spammers adopt the best effort strat-

egy, in which spammers keep making spam calls as long as they have resources, regardless

of the cost of the computational puzzles. However, in the perspective of spammers, it is

essential to protect their own computing resources for launching large scale spam attacks.

Another possible strategy, is a smarter one. The spammers could adapt their behaviors

based on their cost and only make spam calls when the cost is low. If an attempt to make a

spam call leads to a high cost, the spammer abandons it immediately without devoting any

resources. Figure 5.10 shows the changes in difficulty levels for legitimate anonymous calls

and spam calls under the two different spammers’ strategies. Same as figure 5.8, the diffi-

culty level 30 is not a real difficulty level, instead, it is used to indicate the call is blocked.

We can see from the figure that the only benefit that smart spammers can get is that they

can send more SIP INVITE requests to SIP proxy server. But these SIP requests cannot be

handled by SIP proxy server until puzzles are solved. So a spammer with smart strategy will

solve the same number of puzzles as he does not use smart strategy. To save the computing

resource of SIP proxy servers, we can log the number of times that an anonymous caller

53

does not send back puzzle solution. When this number reaches a limit, we can block this

caller directly.

0

5

10

15

20

25

30

35

0 50 100 150

Time (seconds)

C
o

st
 d

if
fi

cu
lt

y
le

ve
l

Legitimate calls (best
effort strategy)
Spam calls (best effort
strategy)
Legitimate calls (smart
strategy)
Spam calls (smart
strategy)

Figure 5.10: Spammers’ strategies: smart strategy vs best-effort strategy

54

Chapter 6

Conclusion and Future Work

VoIP spam is a very real threat for current and future VoIP users. The differences

between VoIP spam and email spam indicate that current email anti-spam methods cannot

be directly applied to VoIP anti-spam problem. In this thesis, we classify and analyze

current VoIP anti-spam methods, and develop and implement a computational puzzle based

VoIP anti-spam system. This system allows VoIP users to accept anonymous calls while

mitigating VoIP spams. The system challenges anonymous VoIP callers with computational

puzzles and only permits calls with correct solution to the given puzzle. The puzzle is easy

to be generated and verified, but hard to be solved. Our experimental results show, by

consuming spammers’ computational resources, the puzzle solving procedure can greatly

limit spammers’ capability. With the help of white/black list and adaptive cost assignment

method, our VoIP anti-spam method slows down spam generation while only adding little

cost for legitimate VoIP callers and proxy servers. Moreover, our VoIP anti-spam system

can be either used as a separated VoIP anti-spam method, or be integrated as a part of

other VoIP anti-spam system.

6.1 Future Work

Similar to most existing VoIP anti-spam techniques, our method imposes require-

ments on VoIP devices. The computational capability of VoIP devices varies. VoIP soft-

55

phones, which runs on computers, differs greatly with VoIP hardphones in computational

resources. To choose an appropriate puzzle difficulty level for the devices, we need to work

out a mechanism to identify the device type. In [12], the author proposed a passive fin-

gerprint method to check the information of remote VoIP devices. In the future, we could

integrate such VoIP device identification method to our VoIP anti-spam system and make

our system more stronger.

In our VoIP anti-spam system, both proxy servers and callees can use compu-

tational puzzles to challenge anonymous callers. Configuring puzzle challenge function at

both would introduce cooperation problem. One solution is that we could let proxy servers

insert a tag after it verifies the solution. When a callee receives a call with the tag, it

would not challenge the caller any more. This method requires a mutual authentication

scheme between the proxy server and callees. Since they are in the same domain, we can

use a secure link, such as TLS, to complete the mutual authentication. This would be an

interesting topic for further research.

56

Bibliography

[1] Clueless virus filters spam innocent third parties. Available from URL

http://www.joewein.de/sw/spam-joejob-info.htm.

[2] B. Campbell. The message session relay protocol, draft-ietf-simple-message-sessions-18

(work in progress), 2006.

[3] Eric Y. Chen. Confirmed cases of spit. Available from URL

http://www.voipsa.org/pipermail/voipsec_voipsa.org/2006-March/001326.html.

[4] Cynthia Dwork, Andrew Goldberg and Moni Naor. On memory-bound functions for

fighting spam. In Advances in Cryptology - CRYPTO 2003, 23rd Annual International

Cryptology Conference, Santa Barbara, California, USA.

[5] Ram Dantu and Prakash Kolan. Detecting spam in voip networks. In Proceedings of

the Steps to Reducing Unwanted Traffic on the Internet Workshop, Cambridge, MA.

[6] T. Dierks and E. Rescorla. The transport layer security (tls) protocol version 1.1,

rfc4346, 2006.

[7] T. Dierks and E. Rescorla. The tls protocol version 1.2, draft-ietf-tls-rfc4346-bis-04

(work in progress), 2007.

[8] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In

CRYPTO ’92: Proceedings of the 12th Annual International Cryptology Conference on

Advances in Cryptology, pages 139–147, 1993.

[9] E. Edelson. Voice over ip: security pitfalls. In Network Security, vol. 2005, pages 4–7,

1998.

57

[10] H. Schulzrinne, S. Casner, R. Frederick and V. Jacobson. Rtp: A transport protocol

for real-time applications, rfc3550, 2003.

[11] Evan Harris. The next step in the spam control war: Greylisting, 2003. Available from

URL http://projects.puremagic.com/greylisting/whitepaper.html.

[12] Hong Yan, Kunwadee Sripanidkulchai, Hui Zhang and Zon yin Shae. Incorporating

active fingerprinting into spit prevention systems. In The Third Annual VoIP Security

Workshop, Berlin, Germany, 2006.

[13] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,

M. Handley and E. Schooler. Sip: Session initiation protocol, rfc 3261, 2002.

[14] C. Jennings. Computational puzzles for spam reduction in sip, draft-

jennings-sip-hashcash-04 (work in progress). Available from URL

http://tools.ietf.org/id/draft-jennings-sip-hashcash-04.txt.

[15] A.B. Johnston. Sip: Understanding the Session Initiation Protocol. Artech House,

2001.

[16] Ari Juels and John G. Brainard. Client puzzles: A cryptographic countermeasure

against connection depletion attacks. In Proceedings of the Network and Distributed

System Security Symposium, NDSS 1999, San Diego, California, USA.

[17] R. MacIntosh and D. Vinokurov. Detection and mitigation of spam in ip telephony

networks using signaling protocol analysis. In Proceedings of the IEEE Symposium

on Advances in Wired and Wireless Communication, IEEE Computer Society Press,

pages 49–52, Los ALamitos, CA, 2005.

[18] Mehran Sahami, Susan Dumais, David Heckerman and Eric Horvitz. A bayesian ap-

proach to filtering junk E-mail. In Learning for Text Categorization: Papers from the

1998 Workshop, Madison, Wisconsin, 1998. AAAI Technical Report WS-98-05.

[19] Dpt. of Information Engineering at University of Parma and by Dpt. of Information

Engineering at University of Roma ˙Mjsip.

[20] J. Pessage and J. Seedorf. Voice over ip: Unsafe at any bandwidth ? In Eurescom

Summit, Heidelberg, 2005.

58

[21] J. Peterson and C. Jennings. Enhancements for authenticated identity management in

the session initiation protocol (sip), rfc 4474, 2006.

[22] A. Roach. Session initiation protocol (sip)-specific notification, rfc 3265, 2002.

[23] J. Rosenberg. A presence event package for the session initiation protocol (sip), rfc

3856, 2004.

[24] J. Rosenberg. A watcher information event template-package for the session initiation

protocol (sip), rfc 3857, 2004.

[25] Jonathan Rosenberg and Cullen Jennings. The session initiation protocol (sip) and

spam, draft-ietf-sippingspam-04 (work in progress), 2007.

[26] International Telecommunication Union. Packet based multimedia communication sys-

tems. recommendation h.323, telecommunication standardization sector of itu, 2000.

[27] Zhenyu Zhong, Kun Huang and Kang Li. Throttling outgoing spam for webmail ser-

vices. In CEAS 2005 - Second Conference on Email and Anti-Spam.

