
ABSTRACT 

LAI, JUMING. Parameter Estimation of Excitation Systems. (Under the direction of Mesut E. 
Baran). 
 

 The purpose of the research has been to develop a methodology to simplify the 

process of parameter estimation of excitation systems. There are two parts in the estimation 

process, which are the simulation and the optimization. 

For the simulation part, the AC1A excitation system model and AC8B excitation 

system model have been implemented in MALTAB/Simulink, based on the IEEE standard 

421.5, which is updated in 2005. On the other hand, for the optimization part, the goal is to 

look for suitable parameters such that, with the same input, the simulation output will match 

the field data from the real machine. We formulated the problem as a least square problem 

and applied Damped Gauss-Newton method (DGN) and Levenberg-Marquardt (LM) method 

to solve it. We used both the MATLAB Parameter Estimation Toolbox and the MATLAB 

programs developed by us to implement the algorithms and get the parameters. For both of 

the AC1A models and AC8B, we did the case studies and validation. And this is also a 

project sponsored by Progress Energy, who provided two suites of “bump-test” field data of 

AC1A excitation system and AC8B excitation system as well. Besides the results, we 

determined that the process of parameter estimation of excitation systems would be try DGN 

first, and if the simulation response cannot match the measured response well, try LM to get 

better initial parameters, then try DGN again. 
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Chapter 1   

Introduction 

1.1 Background 

Today, many of the power system planning and design problems are addressed by 

performing system simulations in time domain.  The most common studies are small signal, 

transient and dynamic stability analyses. Fairly standard models have been developed to 

represent the system component for these studies – generators, transmission lines and loads.  

One of the main challenges using these simulation tools is the data needed to represent the 

system components, as the results are only as accurate as the underlying models and data 

used in the computer analysis.  

The generators are the most important components in these analyses, and unfortunately, 

determining a proper model and the corresponding parameters is the challenge, as it requires 

extensive testing of these systems. There are three main components of a generator, which 

are the synchronous machine, prime mover (turbine/governor) and the excitation system. 

Among these components, the excitation system plays a critical role of providing field 

current to the generator, and hence, controlling the terminal voltage of the generator, and also 

helping to stabilize the system oscillations after a system disturbance.  

To accurately represent the excitation system, it is necessary to have adequate model 

structures and suitable parameter values.  Models are usually provided by manufacturers or 

industry standards, such as IEEE standard [1] [2], which are in frequency-domain 
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representations (Laplace Transform transfer functions). These standards provide suitable 

models for different “types” of excitation systems. The standards also provide “typical” 

values for each model. Moreover, the manufacturers of the excitation systems provide data 

for their excitation systems. Currently it is quite common that in system studies, without any 

actual data, the engineers have to choose one of these sources to get the model parameter data 

they need for system studies. Another common problem is that the models available on the 

commercial software used for the study, such as PSS/E®, may not have the same model 

provided by the manufacturer. Hence, the engineer has to translate the data from one model 

to another “similar” model. 

The need for more accurate equipment models and model parameter identification has 

been recognized by organizations responsible for system reliability, such as the North 

American Electric Reliability Council (NERC) [4]. NERC requires unit-specific dynamics 

data for the dynamic simulations performed by Transmission Planning organizations.  

The resulting models provide a much more accurate representation of 

generator/excitation system dynamic performance in computer simulations. Some of the 

benefits of improved models are as follows.  

 Better assessment of a generator’s transient stability margin 

 Better assessment of a generator’s dynamic stability margin 

 More confidence in simulation results 

 Compliance with existing and future NERC reliability data requirements 

Model parameters, either manufacturer specified or “typical” values, may be grossly 

inaccurate, for they are often derived from off-line tests by measuring the response of each 
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individual component separately, without considering the effects of loading conditions, and 

the effects of nonlinear interaction between excitation system and the rest of the system [3]. 

Moreover, parameters change due to retuning, aging, and equipment changes. Therefore, 

tools and methods are needed for deriving model parameters from staged tests on the units.  

Staged field tests, which provide sufficient information to identifying the parameters, are 

divided into two groups [4]. One is collecting steady-state measurements, which includes the 

open circuit saturation curve measurement and online measurements. The former one is the 

measurement of terminal voltage, field voltage and field current when the generator field 

excitation is varied. But for brushless excitation system, only terminal voltage can be 

measured. And the later ones are taken at different load level, the typical points of which are 

recorded at certain level when the reactive power output changes due to variation of 

generator field data. The other step is obtaining the dynamic response. The purpose of the 

dynamic tests is to provide a simple and safe disturbance to excite the system. [4] By 

comparing the model responses and those obtained from field test, it is obvious to judge the 

accuracy of parameters, i.e. the less different the response from each other, the more accurate 

the parameter values. 

The traditional way to “tune” the parameter is to have skilled engineers select initial 

parameters, calculate the difference between measured output and simulation output, and 

adjust the parameter to reduce the difference. However, the method requires familiarities 

with the equipment functions and the effects of the change of parameters toward the dynamic 

response. Unfortunately, such familiarities are quite rare. [4] As a result, the parameter 

derivation program is needed to simplify the process. 
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1.2 Problem Description 

The focus of this thesis is to develop a process or methodology for determining appropriate 

parameters of an excitation model selected to represent the specific generator excitation 

system under consideration.  

For this study, two excitation systems and the models to represent them have been 

provided by Progress Energy. Fig. 1. 1 shows one of the models, AC1A, which represents an 

Alternating Current (AC) type excitation system. The excitation models are used by the 

dynamic simulation package PSS/E, and hence PSS/E will be used to compare and validate 

the models to be replicated on Simulink/Matlab. Progress energy has also provided the staged 

test results for the two excitation systems. Fig. 1. 2 shows the excitation response curve 

obtained from the stage tests. As the figure shows, the stage test involves applying a step 

change in the set point of the excitation system, which determines the terminal voltage of the 

generator, and the response obtained is the output, the terminal voltage of the generator. This 

test is referred in practice as the “bump test”. The problem hence is to estimate the 

parameters of the selected model such that the response of the model will match the stage test 

results as closely as possible. 
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Fig. 1. 1 Type AC1A excitation system (Alternator-rectifier excitation system with non-control rectifiers and 

feedback from exciter field current) 
 

    
Fig. 1. 2 The excitation response from the stage test 

 

1.3 Related Work 

The AC excitation system models represented in IEEE standard 421.5 are nonlinear system 

models. Most previous work of parameter estimation of the models was either using linear 

Time(sec) 

Voltage (in per unit) 
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model to approximate the given models, such as the Autoregressive (AR) model, or applying 

frequency response techniques to identify the parameters of specific exciters [3 5 6 7]. 

However, most of these approaches require the output of exciter, which cannot be obtained in 

a brushless excitation system. And errors can come  from the process of transferring the 

parameters in approximated model to the ones of given model. Besides, most of previous 

work addressed on their own system models rather than the IEEE standard models.  

In [3], a time domain approach has been developed to identify the parameters of AC1A in 

IEEE standard 421.5[1]. They used ARX model, a linear discrete time model, to approximate 

the transfer function of the system, which is a nonlinear model. ARMAX (Autoregressive 

moving average with exogenous input model) model is one of the ARX models. The model 

ARMAX(p,q,d) can be represented as ∑ ∑∑
= =

−−−
=

+++=
q

i

b

i
itiitiit

p

i
itt dXX

1 11

ηεθϕε , where 

iii ηθϕ ,, are parameters, itX −  is the past value of the signal,  it−ε  is the error which is 

generally assumed to be independent identifically-distributed random variables (i.i.d) 

sampled from a normal distribution with zero mean, and itd −  is known as the exogenous 

input. So a model ARMAX(p, q, d) contains the AR(p) and MA(q) models and a known 

external time series td . Besides ARMAX model, basic ARX model also includes BJ (Box-

Jenkins) and OE (Output-Error) model, which will be used in different cases.  

There are two methods to estimate the coefficients in ARX model structure: Lease square 

and Instrumental variables. The author used the least-square method to obtain the parameters 

of approximated model. For the optimization algorithm, a Gauss-Newton method was 

applied to estimate the parameters of the approximated model. And with the parameters of 
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the ARX model, the parameter values of AC1A model were estimated.  

The advantage of the method is that after getting the linear expression of the system, 

many approaches can be used for estimating the parameters of it. They are to increase the 

speed of calculation and reduce the cost of it. But the disadvantage is that the approach may 

bring more errors when both approximating the system model with the linear one and 

transferring the parameters back from the approximated model to the system model.   

In [4], a program was developed by using Simulink and Optimization Toolbox in 

MATLAB. Simulink allows an easy implementation of the model, in which the system 

models are represented in Laplace frequency domain. And the Optimization Toolbox is a 

collection of optimization algorithms with graphic user interface. For the least-square curving 

fitting problem, the algorithm can be Gauss-Newton and Levenberg Marquardt. Optimization 

algorithm determines new parameters and passes it to the Simulink, Simlink then gives the 

corresponding response. “A comparison of the simulation output and the desired one is 

displayed for each successive pass of the optimization process.” Hence, the users can see 

how the response changed to fit the given response during the solution process. The author 

gave an example of implementation of IEEE type 1 excitation system. 

Simulink is a convenient graphical tool to implement different excitation models. The 

user can change a part of the model or the desired curve freely. However, the algorithms are 

limited to the ones provided in Optimization Toolbox. Besides, MATLAB is interpretive 

language which takes much more time when running the programs in MATLAB, rather than 

the compiler languages like C.  We tried to use the approach at the beginning of the research, 

but then we tried to make our codes of the algorithms, such as Gauss-Newton and Levenberg 
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Marquardt. In the thesis, we programmed in MATLAB for it have a good communication 

with the system model which we have built in MATLAB/Simulink. But for the following 

step, we will transplant the program into C or JAVA and have it communicate with the 

developed model in PSS/E, which is commercial simulation software. 

In [5], a time domain method has been developed to identify IEEE- DC1 and IEEE- 

AC1A model parameters. Similar to the approach in [3], the author used a discrete time 

model to approximate the system model. Then the least-square method was used to construct 

the objective function of the problem. But the difference is that in this paper, they use 

stochastic approximation (SA) to find the point at which the objective function can be 

minimized to get the parameters. The optimization theory includes two branches known as 

deterministic optimization and stochastic optimization. And the stochastic approximation 

(SA) is a cornerstone of stochastic optimization. SA methods are used whenever the noise in 

the data cannot be ignored. So the SA method creates stochastic equivalents to the classical 

conjugate gradient methods. An implementation of SA method is shown in the paper to 

estimate the parameters of AC1 type excitation system. In our case, the noises of signals are 

in tolerance, so that we did not get into SA methods. 

      In [6], the discrete-time ARMA (Autoregressive moving average) model was used to 

approximate each block of the model by matching the frequency response of them. ARMA 

model is also known as Box-Jenkins models, which is one of the ARX models. The model 

consists of two parts, autoregressive (AR) part and a moving average (MA) part. [14] The 

former part is to represent the signal by itself and the later part is to represent the signal by 

the error terms, which is generally independent identically-distributed random variables 
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(i.i.d.), sampled from a normal distribution with zero mean ( ),0(~ 2σε Nt  ). In the paper, 

the author obtained parameters of approximated ARMA model of each system block and 

then transferred them back the ones of excitation system model. The approach is similar with 

the one in reference [3], but the ARMA model would be simpler in this paper, for the author 

approximated the block of the excitation system separately. We did not choose it because 

both the approximated model may bring more error and we cannot have so much real data 

from industry, especially for the brushless machines. 

In [7], parameter estimation was performed in frequency-domain. The author utilized 

FFT and complex curve fitting technique to estimate the parameters of a excitation system 

model, which is a model developed by Taiwan Power Company. About the curve fitting, the 

main topics include scatter plot, least square regressions (linear and nonlinear), correlation, 

normal probability plots and residual plot. Among them, the nonlinear least square regression 

is widely used, which nicely integrates algebra and statistics. A modified weighted least 

square (WLS) is described in the paper to obtain the objective function of the curve fitting 

problem.  Then the author performed Fourier Transformation on the time domain responses 

to an injected wide-bandwidth signal of the system to obtain the frequency response data, in 

order to estimate the parameters of the model. We did not choose the method for we did not 

consider the noise of the signal in the problem. 

To sum up, the main considerations of choosing algorithms are the speed of convergence, 

the cost of calculations and the accuracy of the results. And for adopting the algorithm, we 

have to consider the limitation of tool and data available. Therefore, we plan to develop an 

parameter estimation tool in C or JAVA that can interface with any simulation tool, with 
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which, when we got data from stage test, we can get the appropriate parameters of the model 

correspondingly. 

1.3.1 Scope of the Thesis:   

The study involved first getting a general understanding of each component of the model. 

Then, models have been implemented in Simulink and verified by using PSS/E. Then a 

literature review has been conducted. After the review of related work on this problem, we 

adopted the least square approach to estimate the model parameters. Two optimization 

methods have been adopted and implemented to solve the least square problem.  Two 

excitation systems have been used to test and assess the performance of the proposed method.      
 

1.4 Abbreviation 

IEEE          Institute of Electrical and Electronics Engineering 

NERC        North American Electric Reliability Council  

AC             Alternating Current 

ARMAX   Autoregressive Moving Average with Exogenous input model 

BJ              Box-Jenkins 

OE             Output-Error 

SA             Stochastic Approximation 

ARMA      Autoregressive Moving Average 

GLS           Generalized Least Square  

P.U.            Per Unit 
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Chapter 2   

AC Excitation System Model 

2.1 Overview 

To capture the behavior of synchronous machine accurately in power system stability studies, 

it is essential that their excitation systems are modeled in sufficient detail. The models must 

be suitable for representing the actual excitation equipment performance for large, severe 

disturbances as well as for small perturbations. [8] Based on excitation power source, 

excitation systems are categorized into three groups showing as follows, in which the AC 

excitation systems are what we are concerning in the thesis. 

 Type DC Excitation Systems which utilized a direct current generator with a 

commutator as the source of excitation system power. [9] 

 Type AC Excitation Systems which use an alternator (ac machine) and either 

stationary or rotating rectifiers to produce the direct current needed for the generator field. 

 Type ST Excitation Systems in which excitation power is supplied through 

transformers and rectifier. 

A physical layout is shown in figure 2.1 to 2.4. 
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Fig. 2. 1 The real generator and excitation system 

 
 

 
Fig. 2. 2 Inside of the excitation system part 
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Fig. 2. 3 The structure of Mark III Brushless exciter 
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Fig. 2. 4 The circuit of Generator excitation system 

In figure 2.5 there is a general functional block diagram, which shows various 

synchronous machine excitation subsystems with a common nomenclature performed in 

IEEE std 421.5. Showing in the diagram, the terminal output voltage is sent to the excitation 

control elements as a feedback signal ( CV  and SV ). So when TV is unstable, the control 

elements provide RV  to control the output of exciter, i.e. adjust the field voltage and field 

current to have TV  back to steady state. REFV  is an important input of the control part of 

excitation systems. Dynamic responses will be recorded, when a step signal is input to the 

REFV  port. And comparing dynamic responses of simulation output and the ones from real 

machine is the method which is used to ensure the accuracy of models. OELV  and UELV  

describe the output signals from overexcitation limiters and underexcitation limiters, 

respectively, the modeling of which have become a very popular topic recently. [1] RV , 

which is the output of voltage regulator, controls the field voltage FDE , in order to control the 

field current FDI  that will be feed into generator. 
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Fig. 2. 5 Functional block diagram of a detailed excitation system model [1] 

 
      To simplify the problem, the “terminal voltage transducer and load compensator” and 

“power system stabilizer and supplementary discontinuous excitation controls” are not 

considered in the thesis. We can simply represent the block as shown in figure 2.6, in which 

the excitation system includes both excitation control elements and exciter.  

Fig. 2. 6 Simplified functional block 
 

 

2.2 Per Unit System 

The per-unit system is the expression of system quantities as fractions of a defined base unit 

quantity. [10] i.e. the signals in per-unit systems are normalized to some defined bases.  

 
Generator 

 
Excitation System 

VREF 
EFD VT 
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Firstly, we can define one per unit generator voltage as rated voltage. One per unit exciter 

output voltage is that voltage required to produce rated generator voltage on the generator air 

gap line. 

Also, excitation system models must interface with the synchronous machine model at 

both the field terminals and armature terminals. The input control signals to the excitation 

system are the synchronous machine stator quantities and rotor speed. The per-unit systems 

used for expressing these input variables are the same as those used for modeling the 

synchronous machine. Thus, a change of per unit system is required only for those related to 

the field circuit. 

2.3 AC Excitation System Model Examples 

The AC1A excitation model and AC8B excitation model are shown in Figure 2.7 and Figure 

2.8, respectively. 

AC1A Excitation System 

 
 

Fig. 2. 7 A partial AC1A Excitation System Block Diagram Showing Major Functional Blocks 

 
 
 
 
 
 
 
 
 
 

Excitation Control Elements

Exciter 

Rectifier 
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AC8B Excitation System 

 
Fig. 2. 8 A partial AC8B Excitation System Block Diagram Showing Major Functional Blocks 

 

2.4 Model Details for the Excitation Systems 

2.4.1 Terminal Voltage Transducer and Load Compensator Models 

These are the components that transmit the terminal voltage back to the input of the 

excitation systems. 

 
Fig. 2. 9 Terminal Voltage Transducer and Optional Load Compensation Elements 

 
     TV : Terminal voltage 

TI : Terminal current 

CC jXR + : Load compensator impedance 

RT : Regular input filter time constant 

Exciter 

Rectifier 

 
 
 
 
 
 
 
 
 
 
 

Excitation Control Elements 
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2.4.2 Amplifier 

Amplifier, represented as the main regulator transfer function, may be the magnetic, 

electronic or rotating type. The first two types can be represented by the block diagram of 

figure 2.10. 

 
Fig. 2. 10 Amplifier model [10] 

 

AK : Voltage Regular Gain 

AT : Voltage amplifier time constant 

maxRV : Maximum value of  V R  

minRV : Minimum value of  V R  

 

Non-windup limiter 

            The block of amplifier is a lag-lead block with non-windup limits; a general representation 



 

 
19 

 

and implementation of which is shown in Figure 2.11 and Figure 2.12, respectively. Then in 

principle, we have:   

f = V i− V 0 /T A  

if V 0 =  V Rmax , and f > 0, then dy / dt is set to 0 

if V 0 = V Rmin  , and f < 0, then dy / dt is set to 0 

otherwise, V Rmin < V 0 < V Rmax , then dy / dt  = f. 

 
Fig. 2. 11 Non-windup limiter with sample time constant [1] 

 

 
Fig. 2. 12 Implementation of non-windup limiter 

 

2.4.3 Exciter 

The exciter is the part in excitation system which connects to generator. It is the component 

who provides the field current to excite the generator. Among the blocks, the )( EEEx VSVv =  

is modeling the exciter saturation characteristics (section 2.4.3.1). For convenience, it is 
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always approximated by XEX EB
EXXEXX eAESEV == )(* . 

 
Fig. 2. 13 Block diagram of an AC exciter 

 

ET : Exciter time constant 

EV : Exciter internal voltage 

ES : Saturation function 

EK : Exciter constant related to self-excited field 

FDD IK * : Armature reaction demagnetizing effect.  

DK : Demagnetizing factor. 
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2.4.3.1 Saturation Function 

 Saturation function (per unit): 
B

BAES XE
−

=)(  

 
Fig. 2. 14 AC exciter saturation characteristic 

 

2.4.4 Rectifier 

Rectifier is to transfer the Alternative current to direct current, which is required for the field 

current. 
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Fig. 2. 15 Rectifier regulation model [10] 

EFD: exciter output voltage(applied to generator field) 

EFD = FEX * VE: a function of commutation voltage drop 

IFD: generator field current 

IN: exciter internal current 

FEX = f( IN): the three modes of rectifier circuit operation 

Mode 1: ,577.00.1)( NN IIf −=  if 433.0≤NI  

Mode 2: ,75.0)( 2
NN IIf −= if 75.0433.0 << NI  

Mode 3: ),0.1(732.1)( NN IIf −= if 0.175.0 ≤≤ NI    

NI  should not be greater than 1.0, but if it is, EXF should be set to zero. 

2.5 Summary 

There are three basic elements of an excitation system: excitation control components, 

exciter and rectifier. Besides, terminal voltage transducer and compensator components, and 

power system stabilizer are additional ones to keep terminal output voltages stable. To know 

the typical structure of each functional block and understand the function of each suite of 

blocks in typical models is important in modeling an accurate excitation system and 

estimating the parameters.  
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Chapter 3  

Parameter Estimation using Least Square Method 

Since we want the simulation output of excitation model to follow the measured response at 

each time point, we can model the problem as a least square problem. To solve this least 

square problem, we tried the Damped Gauss Newton method and Levenberg Marquardt 

method, which are two basic method for non-linear optimization problems, to get the local 

solution of the least square problem. 

3.1 Objective function  

Let’s restate the problem. It is a nonlinear least squares problem with an objective function 

of the form 

)()(
2
1)(

2
1)(

1

2 tRtRxrxf T
M

i
i == ∑

=

                                            (3.1) 

in which ,...2,1,1),(~):()( =≤≤−= tMitvxtvxr iii , the vectors iv and iv~  are the simulation 

output of an nonlinear model and the measured output of the terminal voltage of the 

generator, respectively, the vector ),...,,( 21 MrrrR = is called the residual, 

and T
Npppx ),...,,( 21= is the vector of unknown parameters. M is the number of 

observations and N is the number of parameters. For these problems, M>N, so we say the 

problem is an overdetermined problem.  

 

Solving of nonlinear least squares problem is searching for the best approximation to the 
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measure data with model function )(xvi , which has nonlinear dependence on variables x . 

The best approximation means that the sum of squares of residuals )(xri  is the lowest 

possible.   

The NM ×  Jacobian 'R of R   is defined by 

NjMi
x
r

xR
j

i
ij ≤≤≤≤

∂
∂

= 1     ,1       ))('(                                       (3.2) 

With this notation, it is easy to show that 

NT RxRxRxf ∈=∇ )()(')(                                             (3.3) 

The necessary conditions for optimality imply that at the minimizer *x , 

0)()(' ** =xRxR T                                                    (3.4) 

   There are two main algorithms for solving least square problems, Gauss-Newton method 

and Levenberg-Marquardt method, which will be introduced as follows. 

3.2 Gauss Newton method [12] 

Steps of Gauss-Newton method 

• set 0xxc = . 

• While arcxf τττ +>∇ 0)(  & iteration < iteration_max. ( ),( ar τττ = is the termination 

criteria) 

             (a)     Compute the step s 

             (b)     sxx ct +=  

             (c)      Compute )(xf∇  
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The Gauss-Newton(GN) algorithm computes the step s as 

)()('))(')('()())(')('( 11
c

T
cc

T
ccc

T
c xRxRxRxRxfxRxRs −− −=∇−=               (3.5) 

where 'R  is the Jacobian of R .   

3.3 Calculating the Jacobian numerically 

Since the GN method requires computing the gradient )(xf∇ , we need to get Jacobian, since 

)(*)(')( ccc xRxRxf =∇                                             (3.6) 

Since we have the model simulated in MATLAB simulink, rather than a formula expression 

of the system, we used the Finite Difference Method to obtain an approximated Jacobian. 

There are three forms of the method, which include forward difference method (formula 3.7), 

backward difference method (formula 3.8),  and central difference method (formula 3.9). The 

central difference method is chosen, for in principle it will bring less errors than either of the 

other two does. 

Forward difference method :  
h

xfhxf
xf

)()(
)(' 00

0
−+

=                         (3.7) 

Backward difference method :
h

hxfxf
xf

)()(
)(' 00

0
−−

=                         (3.8) 

   Central difference method:     
h

hxfhxf
xf

2
)()(

)(' 00
0

−−+
=                   (3.9) 

 

Verification of getting Jacobian using central difference method 

A simple example of a nonlinear least squares problem is constructed. The problem is to 
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identify the two unknown parameters (k and a) of a system 
as

k
+

(Figure 3.1) by minimizing 

the difference of a numerical prediction and measured data.  

                
Fig. 3. 1 a simple system for Jacobian approximation test (k=xtest(1), a=xtest(2)) 

 
Let Takx ),(=  be the vector of unknown parameters. When the dependence on the 

parameters needs to be explicit, we will write ):( xtv  instead of )(tv . If the outputs are 

sampled at M
jjt 1}{ = , where )1/()1( −−= MTjt j , then the observation for output will be M

jjv 1}{ = , 

then the object function is  

)()(
2
1):(

2
1)(

1

2
xRxRuxtuxf T

M

j
j =−= ∑

=

                          (3.10) 

on the interval ],0[ T , where [ ]TMuxMuuxuuxuxR −−−= ):(,):2(,):1()( 21 L  

The Jacobian of f  is 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

a
xMu

k
xMu

a
xu

k
xu

a
xu

k
xu

xR

):():(

):2():2(

):1():1(

)('
MM

                                          (3.11) 

Where 
h

hktuhktu
k

xtu
2

):():():( −−+
=

∂
∂ , Mt ,...,2,1=  

Therefore, the gradient of f is 
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Jac_true = 
         0         0 
    0.0906   -0.0175 
    0.1648   -0.0616 
    0.2256   -0.1219 
    0.2753   -0.1912 
    0.3161   -0.2642 
    0.3494   -0.3374 
    0.3767   -0.4082 
    0.3991   -0.4751 
    0.4174   -0.5372 
    0.4323   -0.5940 
    0.4446   -0.6454 
    0.4546   -0.6916 
    0.4629   -0.7326 
    0.4696   -0.7689 
    0.4751   -0.8009 
 

Absolute error: 
Jac_true – Jac_approx  
= 
           0         0 
   -0.0000   -0.0002 
   -0.0001   -0.0003 
   -0.0001   -0.0003 
   -0.0001   -0.0002 
   -0.0001   -0.0001 
   -0.0001    0.0001 
   -0.0001    0.0003 
   -0.0001    0.0006 
   -0.0001    0.0009 
   -0.0001    0.0013 
   -0.0000    0.0017 
   -0.0000    0.0022 
   -0.0000    0.0026 
   -0.0000    0.0031 
   -0.0000    0.0035 

Relative error: 

trueJac
approxJactrueJac

_
__ −

=           
        NaN       NaN 
   -0.0004    0.0108 
   -0.0003    0.0046 
   -0.0003    0.0024 
   -0.0003    0.0013 
   -0.0002    0.0005 
   -0.0002   -0.0002 
   -0.0002   -0.0007 
   -0.0002   -0.0012 
   -0.0001   -0.0017 
   -0.0001   -0.0022 
   -0.0001   -0.0027 
   -0.0001   -0.0031 
   -0.0001   -0.0036 
   -0.0001   -0.0040 
  -0.0001   -0.0044 

)()(')
)):(():(

)):(():(

()(
1

1
xRxR

uxtu
a

xtu

uxtu
k

xtu

xf
j

M

j

j
M

j
=

−
∂

∂

−
∂

∂

=∇
∑

∑

=

=
                     (3.12) 

By using the time domain solution of the system 
as

k
+

, we have the function analytically: 

f(t) = )1( ate
a
k −−      (3.13)  

As a result, the exact Jacobian can be calculated.  

 

Selecte k=4 a=2 as the optimum parameters and use k=5 a=2.5 as the initial points in 

simulation. The results are as follows: 

Jac_approx= 
         0         0 
    0.0907   -0.0173 
    0.1649   -0.0613 
    0.2257   -0.1216 
    0.2754   -0.1910 
    0.3161   -0.2641 
    0.3495   -0.3374 
    0.3768   -0.4085 
    0.3991   -0.4757 
    0.4174   -0.5381 
    0.4324   -0.5953 
    0.4446   -0.6471 
    0.4547   -0.6937 
    0.4629   -0.7352 
    0.4696   -0.7720 
    0.4751   -0.8044 
 

 

As listed above, the errors are very small, so that we can use approximated Jacobian instead 

of the exact one during the operations. 
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3.4 Damped Gauss-Newton method 

The Gauss-Newton (GN) direction is a descent direction, but the GN method do not have a 

good global convergence performance. When the initial iteration is near the solution, it dose 

not suffer from poor scaling of f and converges rapidly. However, when far away from the 

solution, the Hessian of GN may not be positive definite and the method will fail. To apply 

the Gauss-Newton method to a global convergence problem, the combination of Gauss-

Newton direction with Armijo rule is made, which is called damped Gauss-Newton. 

 

Armijo rule 

The Armijo rule is based on a general convergence theorem showing that modified steepest 

descent algorithms converge under some conditions. 

Principal: If λ  is an arbitrarily assigned positive number, ,...,2,1,2/ 1 == − mm
m λλ and 

)(1 kmkk xfxx
k
∇−=+ λ , where km  is the smallest positive integer for which 

,...2,1,0,)()())(( 2 =∇<−∇− kxfxfxfxf kmkkmk kk
αλλ               (3.14) 

Then the sequence ∞
=0}{ kkx  converges to the point *x  which minimizes f. 

 

Steps of Damped Gauss-Newton method 

1     0xxc = . 

2     While arcxf τττ +>∇ 0)(  & iteration < iteration_max. ( ),( ar τττ = is the termination 

criteria) 
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             (a)     Compute the direction of a new step dc. 

             (b)    Set the step size 1=λ  

             (c)     cct dxx λ+= . 

             (d)      Compute )( txf∇  

                                      (i) Apply Armijo rule to find an appropriate mλ  

                                   (ii) Update tx  and )( txf∇  

3.5 Levenberg-Marquardt Method 

The damped Gauss Newton algorithm is effective when used for solving zero residual and 

small residual problems. But it may fail when the condition number of the matrix 

)}(')('{ c
T

c xRxR is too small. Therefore, for the medial residual problems, Levenberg-

Marquardt method is chosen. 

The Levenberg-Marquardt methods add a regularization parameter 0>v to 

)}(')('{ c
T

c xRxR  in determining the step s 

            )()('))(')('( 1
c

T
cc

T
cc xRxRxRxRIvs −+−=                             (3.15) 

where I is the NN ×  identity matrix. The matrix )(')(' c
T

cc xRxRIv +  is positive definite. 

And again, if combining the Levenberg-Marquardt with Armijo rule,  it  become a globally 

convergent method for the overdetermined least squares problems. 

3.6 Approach I: MATLAB/Simulink Parameter Estimation Toolbox  

Matlab recently has offered a toolbox for the Parameter Estimation (PE). The toolbox uses 
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Gauss-Newton (GN) and Levenberg-Marquardt (LM) methods to solve the least square 

problem. The Gauss-Newton method is given as the “fast” option that  provides more precise 

results, but it may fail when the initial guess for the parameters are far from the solution. It 

quits when the condition number of matrices in the algorithm is too low or the step length is 

too small. The condition number is a ratio of the largest singular value to the smallest. The 

toolbox offers also the “robust” option which uses the Levenberg-Marquardt when Gauss-

Newton quits [14]  

 To facilitate modeling of the system, the toolbox has interface with the simulink. 

Hence, the model can be developed in simulink. During iterations, the PE toolbox sends the 

adjusted parameters to the simulink and gets the simulation results from it. The iterations will 

be terminated generally when either the difference between two curves is smaller than the 

tolerance that we set before, or the algorithm quits as mentioned before.  

3.6.1 Simulink in MATLAB 

Simulink is a graphical tool for modeling, simulation and analysis of dynamic systems, in 

which the systems can be represented by blocks in frequency domain as the ones shown in 

IEEE std 421.5[1]. Most of the blocks with certain functions can be found in Simulink library, 

a database in MATLAB, and users can write their own ones by using the “s-function” blocks. 

With the initial parameters, when the structure of a system is decided, the simulation can be 

implemented by simply drawing the blocks from the library to Simulink window, connecting 

them and clicking the “run” button.  
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3.6.2 Parameter Estimation (PE) toolbox in MATLAB 

Optimization Tool box is a collection of routines that extend the capability of MATLAB for 

problems as nonlinear minimization, equation solving and curve fitting. [3] And the PE 

toolbox is actually an interface which has the optimization toolbox and the system model in 

Simulink communicate to each other. (Figure 3.2) Moreover, both of PE toolbox and 

Simulink have a good communication with workspace in MATLAB. For nonlinear least 

squares and curve-fitting problems,  the desired curve data and initial parameter values can 

be saved in workspace and input to the toolbox by selecting the names of the vectors 

correspondingly. The algorithms are mentioned in the previous section. And the output 

results, which will be shown in the interface of PE toolbox, include the solutions that 

minimize the difference of between simulation output and desired curve data, and a record of 

cost function and step size of each iteration.  

 
Fig. 3. 2 A sketch map showing how PE toolbox works 

 

3.7 Approach II : Parameter estimation using LM & DGN 

Instead of of Simulink and the existed methods in Optimization toolbox in MATLAB, we 

would like to use other simulation tools. At this rate, we may be able to simulate the system 

faster using software developed for power system simulation such as PSS/E, and implement 

more algorithms to efficiently and accurately estimate the parameters.  

      The interaction between the simulation tool and optimization tool is shown in Figure 3.3. 

 
PE Toolbox 

 
Simulink 
system model 

 
Optimization 
Toolbox 
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With initial parameters, simulation output will be obtained from simulation box, which will 

be entered into some optimization programs, in which the difference of simulation output and 

desired output will be calculated. If the difference does not satisfy the requirement, the 

program will adjust the parameter values and get a set of new parameters. With the new 

parameters, the system simulates again and produces another suite of outputs. 

 
Fig. 3. 3 Optimization environment 

 
      As the first step of the implementation, we will use the simulink for simulation, and 

implement the optimization algorithms in Matlab. Later on, after making sure the program do 

perform well, we will transplant the program into other computer languages, such as Java or 

C and use other simulation tool like PSS/E or ETAP to provide the simulation output.  

      In this thesis, we tried to program the codes of damped Gauss Newton method, which is a 

typical global optimization method for the nonlinear parameter identification. The results of 

the implementation of the program on AC1A and AC8B excitation system will be given in 

the next chapter. 

3.8 Summary 

We have got two algorithms and two approaches for solving the least squares problem in 

order to estimate the parameter of excitation system. The algorithms used for least square 

SIMULATION 
(Simulink) 

(PSS/E)

OPTIMIZATION 
(Optimization Toolbox)

Parameters 
Simulation 
Output 
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problems are Gauss-Newton (GN) method and Levenberg-Marquardt (LM) method. GN is 

effective when there is a good initial guess, but may quit when the initial guess is bad, while 

LM will always gives a result when the initial guess is far from the solution, but not as 

effective as GN does. By combining either of the algorithm with Armijo rule, it can be 

applied to a global convergence problem, for the Armijo rule is for making sure that the step 

sizes sufficiently decrease.  

      For solving the parameter estimation problem, we developed two approaches. One is to 

estimate the parameter of excitation system with MATLAB/Simulink and Parameter 

Estimation (PE) Toolbox in MATALB, which already has a collection of functions for 

solving the least square problem. The other one is to do parameter estimation with 

MATLAB/Simulink and the program developed by ourselves. We are using the same 

algorithms with the ones used in PE Toolbox, so that we can compare the results of them. 

And then, in the following work, we can transplant the algorithm to C or Java to increase the 

speed of operation. Moreover, we may try to implement other algorithms other than the two 

mentioned before.  
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Chapter 4  

Case Studies and Validations 

Progress Energy gave us the data from “bump test”, we are using the data to test the method 

for parameter estimation. As mentioned in Chapter 1, the system consists of a generator and 

its excitation system, shown in Figure 4.1.  The generator is set to rotate as the speed of 1 p.u. 

(per unit).  The excitation system gets the terminal voltage as the feedback from generator and 

provides the excitation voltage to the generator. 

 

 
Fig. 4. 1 Test system for estimating parameters of AC1A excitation system 

 
Our project sponsor, Progress Energy, has provided two sets of data for the two excitation 

systems they had performed the bumped test recently.  Both of these excitation systems are 

of AC type and hence, we choose AC1A and AC8B models to represent them, as suggested 

by the manufacturer and the Progress Energy. 

Generator 

Excitation system 
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4.1 Case 1: AC1A with typical parameters 

Before doing the parameter estimation, the excitation system has been simulated in 

MATLAB/Simulink, which is shown in Fig. 4.2. 

 
Fig. 4. 2 Implementation of AC1A excitation system in MATLAB/Simulink 

 
There are 6 parameters of this system: ac1Ka, ac1Ta, ac1Te, ac1Kf, ac1Tf, ac1Kc, ac1Kd 

Progress Energy has provided the initial values for them, which are basically the typical 

values given for this type of exciter: 

Regulator gain:                         ac1Ka = 766 
Regulator time constant:           ac1Ta = 0.0200     
Exciter time constant:               ac1Te = 1.3000     
Damping filter gain:                  ac1Kf = 0.0240     
Damping filter time constant:   ac1Tf = 1.0000     
Rectifier loading factor:            ac1Kc = 0.4860     
Demagnetizing factor:              ac1Kd = 0.3556 

 
Fig. 4.3 compares the simulation response with these initial values with the actual 

measured response obtained from the bump test for this system. 



 

 
36 

 

 
Fig. 4. 3 Model response with typical parameters of AC1A excitation system 

 

4.1.1 Parameter Estimation Using Matlab PE Toolbox 

Firstly, the Matlab PE Toolbox has been used to estimate the parameters based on the bump 

test results given in Fig. 4.3. (Blue line)  The robust option has been used for the solution. 

Figure 4.4, shows the iterations that were taken and, cost function and step size of each 

iteration.  Cost function shows the difference between the simulation output and measured 

output. And the step size shows convergence speed. As shown in the figure, the optimization 

terminated for the step size is too small, which means the program cannot find a good enough 

solution before it converged. 
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Fig. 4. 4 Cost function and step size of each iteration with typical parameters of AC1A excitation system 

 
The Parameters obtained are as follows: 

 

Fig. 4. 5 Estimated parameters of AC1A excitation system starting from typical parameters 
 
                                                 We get:                                       Initial value: 
Regulator gain:                         ac1Ka = 615.65                         ac1Ka = 766 
Regulator time constant:           ac1Ta = 0.021296                      ac1Ta = 0.0200     
Exciter time constant:               ac1Te = 1.816                            ac1Te = 1.3000     
Damping filter gain:                  ac1Kf = 0.032162                      ac1Kf = 0.0240     
Damping filter time constant:   ac1Tf = 0.95218                         ac1Tf = 1.0000     
Rectifier loading factor:            ac1Kc = 0.54693                        ac1Kc = 0.4860     
Demagnetizing factor:              ac1Kd = 0.36541                        ac1Kd = 0.3556 
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Figure 4.6 compares the simulation response using the estimated parameters with the 

measured response. 

 
Fig. 4. 6 Final terminal output of generator with typical parameters of AC1A excitation system 

 (Grey - Desired curve, Blue – Simulation output) 
 

Parameter Trajectory 
Sensitivity of parameters is another important issue. With knowing the sensitivity of each 

parameter, when manually adjusting the parameters, the engineer can adjust the one who has 

the most sensitivity. It will increase the efficiency of the work. From figure 4.5, we can see 

the regulator gain, regulator time constant and damping filter time constant change a lot. 
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They can be considered as the main factors for the curve fitting, which means that they have 

the most sensitivity. There is another plot provided by the PE toolbox, which can also be 

used to estimate the sensitivity.  That is the parameter trajectory plot (figure 4.7), from which 

we can see the changes of parameters by iteration. 

 

 
Fig. 4. 7 Parameter trajectory when estimating parameters of AC1A excitation system 
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4.1.2 Parameter Estimation using Damped Gauss Newton 

As the second option, the damped Gauss Newton Method which has been implemented 

in MATLAB codes has been used to estimate the parameters, using the same initial 

parameter values. In table 1 listed the iteration history of the operation. 

Table 1 Iteration history of parameter estimation of AC1A starting from typical parameters using DGN  
Norm(gc) f(xc) Armijo iter. Iteration 

0.0034 0.0023 0 0 
0.0033 0.0018 9 1 
0.0086 0.0018 0 2 
0.0036 0.0006 0 3 
0.0016 0.0003 0 4 
0.0005 0.0002 0 5 
0.0002 0.0001 0 6 
0.0004 0.0001 0 7 
0.0003 0.0001 0 8 
0.0004 0.0001 0 9 
0.0004 0.0001 0 10 

 
This method yielded the following values: 

Xmodel_GN=  
 
ac1Ka      ac1Kf     ac1Te      ac1Tf     ac1Ta      ac1Kc    ac1Kd 

  669.3898    0.0502    3.0419    1.7159    0.0339    0.5123   -0.3254 

Fig. 4.8 compares the simulation response with the test data. As it indicates, it is a good 

fit. The method did converge, but did not converge to the best solution. Since we did not 

enforce limits, there is a negative parameter which do not match its physical meaning well. 
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Fig. 4. 8 Final terminal output of generator starting from typical parameters using DGN 

 

4.1.3 Parameter Estimation using LM and DGN 
For improving the result, we choose the combination of Levenberg Marquardt method and 

Damped Gauss Newton method. The LM method has been used to get the better start point 

LP first and then DGN method has been used to get the solution. The initial parameters are 

the same as the previous case, which is 

X0 = 

ac1Ka      ac1Kf          ac1Te        ac1Tf         ac1Ta        ac1Kc       ac1Kd 
             766         0.0200        1.3000       0.0240       1.0000       0.4860       0.3556 

 

4.1.3.1 Levernberg Marquardt 
In Table 2 shows the historty of the iteration when using Levenberg Marquardt. 
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Table 2 Iteration history of parameter estimation of AC1A starting from typical parameters using LM 

Norm(gc) fc Trust region test itr. Iterations 
0.0034 0.0023 0 0 
0.0034 0.0023 1.0000 1 
0.0034 0.0023 1.0000 2 
0.0061 0.0019 4.0000 3 
0.0061 0.0019 1.0000 4 
0.0061 0.0019 1.0000 5 
0.0061 0.0019 1.0000 6 
0.0033 0.0016 2.0000 7 
0.0033 0.0016 1.0000 8 
0.0096 0.0014 3.0000 9 
0.0096 0.0014 1.0000 10 
0.0096 0.0014 1.0000 11 
0.0096 0.0014 1.0000 12 
0.0035 0.0013 5.0000 13 
0.0035 0.0013 1.0000 14 
0.0035 0.0013 1.0000 15 
0.0035 0.0013 1.0000 16 
0.0035 0.0013 1.0000 17 
0.0071 0.0012 5.0000 18 
0.0071 0.0012 1.0000 19 
0.0071 0.0012 1.0000 20 

 

This method yielded the following values: 

Xmodel_LM = 

ac1Ka      ac1Kf      ac1Te      ac1Tf      ac1Ta      ac1Kc     ac1Kd 
500.8150     0.0271    2.0854     1.0073    0.0186     0.4747     0.3537 

According to the values of cost functions, the iterations converged. It terminated due to 

the maximum iteration limit, which means that the program stopped before finding the best 

solution. As indicated in the Fig. 4.9, the curves did not match to each other well, for the 

simulation response and the measured response settled down to different points. 
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Fig. 4.9 compares the result with data. 

 
Fig. 4. 9 Final terminal output of generator starting from typical parameters using LM 

  

4.1.3.2 Damped Gauss Newton 
In Table 3 shows the history of the iteration when using Gauss Newton starting from the 

parameters getting from Levenberg Marquardt method PL, which is 

   xstart =    
ac1Ka       ac1Kf      ac1Te      ac1Tf      ac1Ta      ac1Kc     ac1Kd 

                 500.8150     0.0271    2.0854    1.0073    0.0186    0.4747     0.3537 
 

Table 3 Iteration history of parameter estimation of AC1A starting from PL using DGN 
Norm(gc) fc Armijo Iter. Iterations 

0.0006 0.0004 0 0 
0.0008 0.0002 0 1 
0.0011 0.0001 0 2 
0.0011 0.0001 0 3 
0.0010 0.0001 0 4 
0.0008 0.0001 0 5 
0.0007 0.0000 0 6 
0.0006 0.0000 0 7 
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Table 3 Continued 
Norm(gc) fc Armijo Iter. Iterations 

0.0005 0.0000 0 8 
0.0004 0.0000 0 9 
0.0003 0.0000 0 10 
0.0003 0.0000 0 11 
0.0002 0.0000 0 12 
0.0001 0.0000 0 13 
0.0001 0.0000 6.0000 14 
0.0000 0.0000 0 15 
0.0000 0.0000 0 16 
0.0000 0.0000 0 17 
0.0000 0.0000 0 18 
0.0000 0.0000 0 19 
0.0000 0.0000 0 20 

 
This method yielded the following values: 

xcurrent = 

ac1Ka       ac1Kf      ac1Te      ac1Tf      ac1Ta      ac1Kc     ac1Kd 

 1.0e+003 * 

1.0427       0.0001    0.0050     0.0018    0.0001     0.0003    -0.0002 

The method did converge. Fig. 4.10 shows that the model response matches the 

measured response quite well. 
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Fig. 4. 10 Final terminal output of generator when estimating AC1A excitation starting from LP  using DGN 

 

4.2 Case 2: AC1A with good initial paramters 

When started with typical parameter values, the two methods did not reach the same solution. 

To find a better solution, John O’connor who is the expert on using these models in Progress 

Energy, adjusted the parameter values manually to find a better initial point. This new initial 

parameters have been given as: 

Regulator gain:                       ac1Ka = 400        
Regulator time constant:         ac1Ta = 0.0200     
Exciter time constant:             ac1Te = 1.3000     
Damping filter gain:                ac1Kf = 0.0240     
Damping filter time constant: ac1Tf = 1.0000   
Rectifier loading factor:         ac1Kc = 0.4860     
Demagnetizing factor:           ac1Kd = 0.3556 
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As Fig.4.11 shows these values indeed yield a simulation response that is much closer to the 

actual response than that of the original parameter values. 

 
Fig. 4. 11 Model response with good parameters of AC1A excitation system 

(Grey - Desired curve, Blue – Simulation output) 
 

4.2.1 Parameter Estimation Using Matlab PE Toolbox 

For the case, again we tried Matlab PE Toolbox first to estimate the parameters. The fast 

option has been used for the solution, for it has good initial points. Figure 4.12 shows the 

iterations that were taken and, cost function and step size of each iteration. The program may 

not find a good enough solution before it converge, for the optimization terminated for the 

step size is too small. 
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Fig. 4. 12 Cost function and step size of each iteration when estimating AC1A excitation system with good 

initial paramteres 
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Parameters obtained are: 

 
Fig. 4. 13 Estimated parameters of AC1A excitation system starting from good initial parameters 

 
                                                 We get:                                       Initial value: 
Regulator gain:                         ac1Ka = 402.95                          ac1Ka = 400 
Regulator time constant:           ac1Ta = 0.020028                       ac1Ta = 0.0200     
Exciter time constant:               ac1Te = 1.3159                           ac1Te = 1.3000     
Damping filter gain:                  ac1Kf = 0.024735                       ac1Kf = 0.0240     
Damping filter time constant:   ac1Tf = 1.0016                            ac1Tf = 1.0000     
Rectifier loading factor:            ac1Kc = 0.54693                        ac1Kc = 0.4860     
Demagnetizing factor:              ac1Kd = 0.35962                        ac1Kd = 0.3556 
 

Figure 4.14 compares the model response using the estimated parameters with the 

measured response. 
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Fig. 4. 14 Final terminal output of generator when estimating AC1A excitation system starting from good 

parameters (Grey - Desired curve, Blue – Simulation output) 

4.2.2 Damped Gauss Newton 

The damped Gauss Newton Method implemented in Matlab has also been used to estimate 

the parameters using the same initial parameter values. Here we also only use DGN method, 

rather than use the combination of GN method and LM method. In Table 4 listed the iteration 

history of the operation. 

Table 4 Iteration history of parameter estimation of AC1A starting from PL using DGN 
Norm(gc) f(xc) Armijo iter. Iteration 

0.0237 0.0066 0 0 
0.0035 0.0001 0 1 
0.0025 0.0001 0 2 
0.0012 0.0000 0 3 
0.0005 0.0000 0 4 
0.0007 0.0000 0 5 
0.0003 0.0000 0 6 
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This method yielded the following values: 

Xmodel= 

ac1Ka           ac1Kf          ac1Te           ac1Tf            ac1Ta           ac1Kc            ac1Kd 
 364.1523         0.0413        1.6724          1.4580          0.0542           0.4860           0.4039                           

cost: fc =  1.0498e-005 

The method converged fast(only 6 iterations) and sufficiently reduced the residuals to 1e-5, 

which can tell us DGN method works well. When starting from a good initial points, using 

DGN, the iteration converges well and provides good results The terminal output curve is 

shown in Fig. 4.15. 

 
Fig. 4. 15 Final terminal output of generator when estimating AC1A excitation starting from a good initial point 
 

4.3 Case 3: AC1A with Low Parameters 

To test the method, we tried two more cases using the combination of LM and DGN. One of 

them starts from 0.5*P0, where P0 is typical parameters. So the initial parameters are: 
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X0 =       ac1Ka       ac1Kf      ac1Te      ac1Tf      ac1Ta      ac1Kc     ac1Kd 

             383.0000       0.0100    0.6500    0.0120      0.5000     0.2430    0.1778 

Fig 4.16 shows the simulation with the initial parameters. 

 
Fig. 4. 16 Model response with low parameters of AC1A excitation system 

4.3.1 Levernberg Marquardt 

Table 5 shows the history of the iteration when using Levenberg Marquardt. 

Table 5 Iteration history of parameter estimation of AC1A starting from low parameters using LM 
Norm(gc) fc Trust region test itr. Iterations 

0.0378 0.0244 0 0 
0.0378 0.0244 1.0000 1 
0.0378 0.0244 1.0000 2 
0.0378 0.0244 1.0000 3 
0.0286 0.0096 2.0000 4 
0.0286 0.0096 1.0000 5 
0.0286 0.0096 1.0000 6 
0.0102 0.0046 2.0000 7 
0.0102 0.0046 1.0000 8 
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Table 5 Continued 
Norm(gc) fc Trust region test itr. Iterations 

0.0102 0.0046 1.0000 9 
0.0102 0.0046 1.0000 10 
0.0102 0.0046 1.0000 11 
0.0102 0.0046 1.0000 12 
0.0019 0.0042 5.0000 13 
0.0019 0.0042 1.0000 14 
0.0019 0.0042 1.0000 15 
0.0019 0.0042 1.0000 16 
0.0019 0.0042 1.0000 17 
0.0019 0.0042 1.0000 18 
0.0019 0.0042 1.0000 19 
0.0025 0.0034 2.0000 20 

 

This method yielded the following results: 

Xmodel_LM = 

ac1Ka         ac1Kf      ac1Te      ac1Tf      ac1Ta      ac1Kc     ac1Kd 
 
745.5704    0.0248     3.7373     1.2997    0.0048     0.4008   -0.2545 
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Fig. 4.17 Final terminal output of generator starting from low parameters using LM 

From the history, we can see the method did not converge. And from Fig 4.17, we know that 
the settled point is closed for both of the response, although the dynamic transient part is not 
matched to each other.  

4.3.2 Damped Gauss Newton 

     In Table 6 shows the history of the iteration when using Damped Gauss Newton starting 

from PLM, which is 

   xstart = 

ac1Ka       ac1Kf      ac1Te      ac1Tf      ac1Ta      ac1Kc     ac1Kd 
  745.5704    0.0248    3.7373     1.2997     0.0048     0.4008   -0.2545 

 
Table 6 Iteration history of parameter estimation of AC1A starting from PL using DGN 

Norm(gc) fc Armijo Iter. Iterations 
0.0051 0.0034 0 0 
0.0016 0.0004 0 1 
0.0011 0.0002 0 2 
0.0005 0.0002 0 3 
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Table 6 Continued 
Norm(gc) fc Armijo Iter. Iterations 

0.0002 0.0001 0 4 
0.0002 0.0001 0 5 
0.0002 0.0001 0 6 
0.0003 0.0001 0 7 
0.0003 0.0001 0 8 
0.0002 0.0001 0 9 
0.0003 0.0001 0 10 
0.0003 0.0001 0 11 
0.0003 0.0001 0 12 
0.0003 0.0001 0 13 
0.0003 0.0001 0 14 
0.0003 0.0001 0 15 
0.0003 0.0001 0 16 
0.0003 0.0001 0 17 
0.0003 0.0001 0 18 
0.0003 0.0001 0 19 
0.0003 0.0001 0 20 

 
This method provided the following results: 

xcurrent = 

 

ac1Ka       ac1Kf      ac1Te      ac1Tf      ac1Ta      ac1Kc     ac1Kd 

 1.0e+003 * 

1.5465        0.0000     0.0062     0.0014    0.0000     0.0010   -0.0003 
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Fig. 4. 18 Final terminal output of generator when estimating AC1A excitation using DGN starting from LP  

 

The history in Table 6 tells us the method converged very slowly and terminated due to 

maximum iteration. And from the plot we can tell it converged to a local minimizer such that 

the responses matched to each other well. In this case, we get a good enough solution from 

LM so that DGN can provide a good solution. Although it went to another direction, which 

we can tell from the negative number, it is still a good local solution, for we just considered it 

as an unconstrained optimization problem. 

4.4 Case 4: AC1A with high parameters 

Then we tried the initial parameter starting from 1.5*P0, which means the initial 

parameters are: 
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X0 = 

ac1Ka       ac1Kf      ac1Te      ac1Tf      ac1Ta      ac1Kc     ac1Kd 
1.0e+003* 

1.1490      0.0000    0.0020     0.0015     0.0000     0.0007     0.0005 

In Fig 4.20 shows the simulation with the initial parameters. 

 
Fig. 4. 19 Model response with high parameters of AC1A excitation system  

4.4.1 Levernberg Marquardt 

In Table 7 shows the history of the iteration when using Levenberg Marquardt. 

Table 7 Iteration history of parameter estimation of AC1A starting from high parameters using LM 
Norm(gc) fc Trust region test itr. Iterations 

0.0142 0.0244 0 0 
0.0142 0.0244 1.0000 1 
0.0195 0.0244 1.0000 2 
0.0195 0.0244 1.0000 3 
0.0195 0.0096 2.0000 4 
0.0114 0.0096 1.0000 5 
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Table 7 Continued 
Norm(gc) fc Trust region test itr. Iterations 

0.0114 0.0096 1.0000 6 
0.0114 0.0046 2.0000 7 
0.0114 0.0046 1.0000 8 
0.0312 0.0046 1.0000 9 
0.0312 0.0046 1.0000 10 
0.0312 0.0046 1.0000 11 
0.0312 0.0046 1.0000 12 
0.0312 0.0042 5.0000 13 
0.0312 0.0042 1.0000 14 
0.0312 0.0042 1.0000 15 
0.0065 0.0042 1.0000 16 
0.0065 0.0042 1.0000 17 
0.0065 0.0042 1.0000 18 
0.0065 0.0042 1.0000 19 
0.0065 0.0034 2.0000 20 

 

The results obtained are: 

Xmodel_LM = 

ac1Ka           ac1Kf      ac1Te      ac1Tf      ac1Ta      ac1Kc     ac1Kd 
751.1027     0.0266    2.7584     1.3613     0.0262    0.6049     0.4179 
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Fig. 4.20 Final terminal output of generator starting from high parameters using LM 

 
From the history, we can see the method did not totally settle down before it converge, so the 
solution will not be the best point. Fig. 4.21 tells us the settle points are different in both of 
the curve, which prove that the solution from LM is not good enough. Also, observed from 
the plot of  each iteration, we found that, the simulation output become closer and closer to 
the measured one as it started, but after getting to some point, it will suddenly change back to 
a bad shape and try get closer again. We may improve our program by choosing the best 
solution in the iterations as the solution. 
 

4.4.2 Damped Gauss Newton 

     In Table 8 shows the historty of the iteration when using Damped Gauss Newton starting 

from PL, which is 

   xstart = 

ac1Ka           ac1Kf      ac1Te      ac1Tf      ac1Ta      ac1Kc     ac1Kd 
751.1027    0.0266    2.7584    1.3613    0.0262    0.6049    0.4179 
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Table 8 Iteration history of parameter estimation of AC1A starting from PL using DGN 
Norm(gc) fc Armijo Iter. Iterations 

0.0055 0.0026 0 0 
0.0018 0.0004 1 1 
0.0014 0.0003 2 2 
0.0016 0.0003 8 3 
0.0011 0.0001 0 4 
0.0010 0.0001 0 5 
0.0007 0.00008 0 6 
0.0006 0.00006 0 7 
0.0004 0.00005 0 8 
0.0003 0.00005 0 9 
0.0004 0.00004 0 10 
0.0005 0.00004 0 11 
0.0005 0.00004 3 12 
0.0006 0.00004 1 13 

 
This method yielded the following values: 

xcurrent = 

  1.0e+003 * 

1.5465    0.0000    0.0062    0.0014    0.0000    0.0010   -0.0003 
 

The method did converge and it converged to the same point as with low parameters.  
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Fig. 4. 21 Final terminal output of generator when estimating AC1A excitation using DGN starting from LP  

 

4.5  Case 5: AC8B with good initial guess 

The excitation system has been simulated in Simulink,which is shown in Fig. 4.23. 



 

 
61 

 

 
Fig. 4. 22 Implementation of AC8B excitation system in MATLAB/Simulink 

There are 9 parameters of this system:  

ac8bKpr, ac8bKir, ac8bKdr, ac8bTdr, ac8bTa, ac8bKa, ac8bTe, ac8bKc, ac8bKd 

Progress Energy has provided the initial values for them, which are considered as a good 

initial point: 

Voltage regulator proportional gain:           ac8bKpr = 84 
Voltage regulator integral gain:                   ac8bKir = 5     
Voltage regulator derivative gain:               ac8bKdr = 10     
Lag time constant:                                        ac8bTdr = 0.1     
Voltage regulator time constant:                  ac8bTa = 0     
Voltage regulator gain:                                 ac8bKa = 1     
Exciter time constant:                                   ac8bTe = 1.3 
Rectifier loading factor:                               ac8bKc = 0.55     
Demagnetizing factor:                                  ac8bKd= 1.1 
 
          Besides, Progress Energy provided two suites of bump test data. Figure 4.23 and figure 

4.24 are showing us the measured response and the simulation response with these initial 

values for each suite of data, respectively. 
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Fig. 4. 23 Model response with good parameters of AC8B excitation system 

 (Data Unit 1) 
 



 

 
63 

 

 
Fig. 4. 24 Model response with good parameters of AC8B excitation system (Data Unit 2) 

 

4.5.1 Parameter Estimation Using Matlab PE Toolbox 

4.5.1.1 Data Unit 1 
In Fig. 4.25, it shows the iterations, cost function and step size of each iteration.  
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Fig. 4. 25 Cost function and step size when estimating AC8B excitation system  with good initial 

parameters(Unit 1) 
 

Parameters obtained are: 

 
Fig. 4. 26 Estimated parameters of AC8B excitation system(Unit 1) 
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                                                                         We get:                           Initial value: 
Voltage regulator proportional gain:        ac8bKpr = 79.775                ac8bKpr = 84 
Voltage regulator integral gain:                ac8bKir = 4.8165                 ac8bKir = 5     
Voltage regulator derivative gain:            ac8bKdr = 10.1                    ac8bKdr = 10     
Lag time constant:                                     ac8bTdr = 0.1038                ac8bTdr = 0.1     
Voltage regulator time constant:                 ac8bTa = 0                          ac8bTa = 0     
Voltage regulator gain:                               ac8bKa = 0.84681               ac8bKa = 1     
Exciter time constant:                                 ac8bTe = 1.3358                  ac8bTe = 1.3 
Rectifier loading factor:                              ac8bKc = 0.56259               ac8bKc = 0.55     
Demagnetizing factor:                                ac8bKd = 1.0673                  ac8bKd= 1.1 
 
Figure 4.27 compares the simulation response using the estimated parameters with the 

measured response. 

 
Fig. 4. 27 Final terminal output of generator when estimating AC8B excitation system (Grey - Desired curve, 

Blue – Simulation output) (Unit 1) 
 

4.5.1.2 Data Unit 2 
In Figure 4.28, it shows the iterations that were taken and, cost function and step size of 
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each iteration.  As shown in the figure, the optimization terminated for the step size is too 

small, but the cost function is small enough. 

 
Fig. 4. 28 Cost function and step size of each iteration when estimating AC8B excitation system (Unit 2) 
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Parameters are 

 
Fig. 4. 29 Estimated parameters of AC8B excitation system(Unit 2) 

 
                                                                         We get:                           Initial value: 
Voltage regulator proportional gain:        ac8bKpr = 62.949                ac8bKpr = 84 
Voltage regulator integral gain:                ac8bKir = 5.4821                 ac8bKir = 5     
Voltage regulator derivative gain:            ac8bKdr = 9.8866                ac8bKdr = 10     
Lag time constant:                                     ac8bTdr = 0.099983            ac8bTdr = 0.1     
Voltage regulator time constant:                 ac8bTa = 0                          ac8bTa = 0     
Voltage regulator gain:                               ac8bKa = 0.81166               ac8bKa = 1     
Exciter time constant:                                 ac8bTe = 1.6154                  ac8bTe = 1.3 
Rectifier loading factor:                              ac8bKc = 0.57018               ac8bKc = 0.55     
Demagnetizing factor:                                ac8bKd = 1.0466                 ac8bKd= 1.1 
 
Figure 4.30 compares the simulation response using the estimated parameters with the 

measured response. 
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Fig. 4. 30 Final terminal output of generator when estimating AC8B excitation system (Grey - Desired curve, 

Blue – Simulation output) (Unit 2) 

4.5.2 Damped Gauss Newton 

4.5.2.1 Data Unit 1 
The damped Gauss Newton Method which has been implemented in MATLAB has been 

used to estimate the parameters, using the same initial parameter values. In Table 9 listed the 

iteration history of the operation. 

Table 9 Iteration history of parameter estimation of AC8B starting from good initial parameters using DGN 
(Unit 1) 

Norm(gc) fc Armijo Iter. Iterations 
74.8970 0.0040 0 0 
64.3266 0.0022 0 1 
58.5847 0.0015 1.0000 2 

254.7465 0.0008 0 3 
212.7478 0.0008 0 4 

4.2138 0.0001 0 5 
9.9908 0.0001 0 6 

17.6911 0.0001 3.0000 7 
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This method yielded the following values: 

Xmodel_GN= 

ac8bKpr     ac8bKir ac8bKdr    ac8bTdr  ac8bTa   ac8bKa   ac8bTe ac8bKc ac8bKd 

78.8399     2.4636    37.0485     0.1638    0.0000    0.5564   1.4044   0.0301       0.0511 

The method did converge to the solution and it converged rapidly. In Fig. 4.31, it shows the 

final plot, in which the response of simulation got much closer to the measured output. We can 

tell when from case2 and this case that, with good initial parameters, DGN works well. 

 
Fig. 4. 31 Final terminal output of generator when estimating AC8B excitation system (Data Unit 1) 

 

4.5.2.2 Data Unit 2 
The damped Gauss Newton Method which has been implemented in Matlab has been 

used to estimate the parameters, using the same initial parameter values. In Table 10 listed 

the iteration history of the operation. 

 



 

 
70 

 

Table 10 Iteration history of parameter estimation of AC8B starting from good initial parameters using DGN 
(Unit 2) 
Norm(gc) fc Armijo Iter. Iteration 
98.6792 0.0047 0 0 
41.7514 0.0008 1.0000 1 
5.6289 0.0003 1.0000 2 
8.2688 0.0002 0 3 
11.3389 0.0001 2.0000 4 
12.0737 0.0001 0 5 
35.5202 0.0001 0 6 
5.5072 0.0001 0 7 
1.9256 0.0001 5.0000 8 
2.1438 0.0000 4.0000 9 

 
This method provided the following values: 

Xmodel_GN= 

ac8bKpr  ac8bKir   ac8bKdr    ac8bTdr  ac8bTa    ac8bKa    ac8bTe  ac8bKc   ac8bKd 

 85.6266    2.5912     25.3810     0.2044    0.0000     0.6209    1.8426    0.3233    0.0265 

 
Fig. 4. 32 Final terminal output of generator when estimating AC8B excitation system (Data Unit 2) 

 



 

 
71 

 

4.6 Verification of AC1A excitation system model 

4.6.1 About PSS/E 

The PTI Power System Simulator (PSS/E) is a package of programs for studies of power 

system transmission network and generation performance in both steady-state and dynamic 

conditions. It is a comprehensive power system analysis tool for the modeling, design, 

planning and analysis for real networks and is the choice of most energy industries globally. 

[13]  Detailed dynamic models of network elements are provided in PSS/E for dynamic 

analysis. 

4.6.2 Comparison of simulation output of AC1A excitation system in 

both MATLAB and PSSE 

For Progress Energy has provided us system network and PSS/E has integrated AC1A 

excitation system (showing as AC1 exciter in PSS/E), with certain parameter values, it is 

convenient to obtain the bump test response by simply entering the data. As the following 

steps, the comparison between the simulation outputs in MATLAB and PSS/E with the same 

parameters and the desired response is presented case by case. 
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Case1: Using the parameters provided by MATLAB / Simulink and Optimization Toolbox 

 
Fig. 4. 33 Simulation outputs of AC1A excitation system in MATLAB and PSS/E with the parameters provided 

by Optimization Toolbox 
 

Cost function of the simulation output in PSS/E is 6.9144e-004, and the one in MATLAB 

is 9.6267e-004. 

Case2: Using the parameters obtained in Case 1 in section 4.4. 

 
Fig. 4. 34 Simulation outputs of AC1A excitation system in MATLAB and PSS/E with the parameters provided 

by Case 1 in section 4.4 
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Cost function of the simulation output in PSS/E is 0.0010, and the one in MATLAB is 

7.1094e-005. 

Case 3: Using the parameters obtained in Case 2 in section 4.4. 

 
Fig. 4. 35 Simulation outputs of AC1A excitation system in MATLAB and PSS/E with the parameters provided 

by Case 2 in section 4.4 
 

Cost function of the simulation output in PSS/E is 0.0029, and the one in MATLAB is 

3.3027e-005. 

 

Case 4: Using the parameters obtained in Case 2 in section 4.4. 
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Fig. 4. 36 Simulation outputs of AC1A excitation system in MATLAB and PSS/E with the parameters provided 

by Case 3 in section 4.4 
 

Cost function of the simulation output in PSS/E is 9.0640e-004, and the one in MATLAB 

is 9.2019e-005. 

4.7 Validation of AC8B excitation system 

Showing in Figure 4.40, Progress Energy provided us not only the response of bump test 

when the reference voltage of excitation system jumped from 1 to 1.05, but also the one of 

bump test when the reference voltage of excitation system jumped back from 1.05 to 1. Both 

of the plots and data values are provided. We tried to use the first part which is the response 

when the reference voltage jumped from 1 to 1.05 to estimate the parameters and use the 

second part that is the response when the reference voltage jumped back from 1.05 to 1 to 

validate the models. 
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Data Unit 1 

      Figure 4.38 is the final plot when estimating the parameters of AC8B excitation system 

with the first part of the data unit 1. As we can see, the curves are one on the top of the other. 

The cost function it is 0.0018. Then with the parameters, a down-edge step signal is input to 

the AC8B excitation system. The corresponding result is shown in Figure 4.39. We found 

that the response do to match to each other very well. The cost function of it is 0.0448. 

 
Fig. 4. 37 Data plot of responses of bump test from Progress Energy 
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Fig. 4. 38 The final plot when estimating the parameters of AC8B excitation system 

 
 

 
Fig. 4. 39 Validation of AC8B excitation system with the down-edge bump test 
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4.9 Summary 

Two models have been tested, AC1A and AC8B. For the optimization part, we use both the 

Parameter Estimation Toolbox in MATLAB and the proto type of Damped Gauss-Newton 

method and Levenberg Marquardt method. 

The first three cases are on AC1A excitation system.The first case uses the typical parameters 

which turned out to be far from the solution. In case 1, we can see the Damped Gauss-Newton 

method did not converge to the best solution. In case 2, we used Levenberg-Marquardt method to 

get a closer point to the solution and then used Damped Gauss Newton, but it went to a wrong 

direction again. Then the expert in Progress Energy played with the parameters and gave us a 

closer initial guess of the parameters and the Damped Gauss Newton method worked. It 

converged rapidly and provided a good solution, shown in Case 3. And, in case 4, for the AC8B 

excitation system, the initial parameters are considered to be a good initial guess, so that we used 

Damped Gauss-Newton directly and got a good result. 

     The codes are written in MATLAB language, while the simulation is run in Simulnk, 

MATLAB. Therefore, one of the following task will be transplanting the program into other 

software, such as C or JAVA and making sure that they can communicate with the simulation 

tool well. 

In term of the validation of the model, for the AC1A excitation model, we tried to 

validate it by comparing the bump test response of the simulation output of MATLAB and 

PSS/E. However, we found that they do not match to each other very well. And by 

comparing both of the curves with the measured curve, we found that generally the 

difference between the response in MATLAB and desired curve is smaller. We need to do 
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more work to find the reason. On the other hand, for the AC8B excitation model, there is 

some delay, but the two curve converge to the same value. Hence, more further work needs 

to be done for validating the model. 
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Chapter 5  

Conclusion and Future Work 

5.1 Conclusion 

This thesis has laid out a new approach to estimate the parameters of AC excitation systems. 

The parameter estimations of AC1A and AC8B excitation system are presented as the 

application of the developed program. MATLAB/Simulink is used for providing the 

simulation output with certain parameters and the program of Damped Gauss-Newton and 

Levernberg-Marquardt is used to do the optimization and provide a new guess of parameter 

values to the simulation tool. The iteration of the program will stop when either the 

difference between simulation output curve and desired curve is less than the tolerance that 

has been set before or the number of iteration time has reached the decided maximum 

iteration time.  

There are two methods using in five different cases, MATLAB Parameter Toolbox and 

MATLAB proto type codes. The previous method is convenient and user-friendly. And by 

using the later one, we can choose different algorithms and make more advanced 

developments. 

5.2 Future work 

The work showing in this thesis is just a piece of the blueprint. Many interesting and 

meaningful extension issues are waiting for us. 
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 Transplant the optimization program to other languages such as C or JAVA 

 Transplant the simulation to other commercial software like PSS/E or ETAP 

 Have the transplanted optimization program communicate with the new simulation 

software well 

 Validate the model with estimated parameters with other methods 
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