ABSTRACT

LAI, JUMING. Parameter Estimation of Excitation Systems. (Under the direction of Mesut E.
Baran).

The purpose of the research has been to develop a methodology to simplify the
process of parameter estimation of excitation systems. There are two parts in the estimation
process, which are the simulation and the optimization.

For the simulation part, the AC1A excitation system model and AC8B excitation
system model have been implemented in MALTAB/Simulink, based on the IEEE standard
421.5, which is updated in 2005. On the other hand, for the optimization part, the goal is to
look for suitable parameters such that, with the same input, the simulation output will match
the field data from the real machine. We formulated the problem as a least square problem
and applied Damped Gauss-Newton method (DGN) and Levenberg-Marquardt (LM) method
to solve it. We used both the MATLAB Parameter Estimation Toolbox and the MATLAB
programs developed by us to implement the algorithms and get the parameters. For both of
the AC1A models and AC8B, we did the case studies and validation. And this is also a
project sponsored by Progress Energy, who provided two suites of “bump-test” field data of
AC1A excitation system and AC8B excitation system as well. Besides the results, we
determined that the process of parameter estimation of excitation systems would be try DGN
first, and if the simulation response cannot match the measured response well, try LM to get

better initial parameters, then try DGN again.
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Chapter 1

Introduction

1.1 Background

Today, many of the power system planning and design problems are addressed by
performing system simulations in time domain. The most common studies are small signal,
transient and dynamic stability analyses. Fairly standard models have been developed to
represent the system component for these studies — generators, transmission lines and loads.
One of the main challenges using these simulation tools is the data needed to represent the
system components, as the results are only as accurate as the underlying models and data
used in the computer analysis.

The generators are the most important components in these analyses, and unfortunately,
determining a proper model and the corresponding parameters is the challenge, as it requires
extensive testing of these systems. There are three main components of a generator, which
are the synchronous machine, prime mover (turbine/governor) and the excitation system.
Among these components, the excitation system plays a critical role of providing field
current to the generator, and hence, controlling the terminal voltage of the generator, and also
helping to stabilize the system oscillations after a system disturbance.

To accurately represent the excitation system, it is necessary to have adequate model
structures and suitable parameter values. Models are usually provided by manufacturers or

industry standards, such as IEEE standard [1] [2], which are in frequency-domain



representations (Laplace Transform transfer functions). These standards provide suitable
models for different “types” of excitation systems. The standards also provide “typical”
values for each model. Moreover, the manufacturers of the excitation systems provide data
for their excitation systems. Currently it is quite common that in system studies, without any
actual data, the engineers have to choose one of these sources to get the model parameter data
they need for system studies. Another common problem is that the models available on the

commercial software used for the study, such as PSS/E’, may not have the same model

provided by the manufacturer. Hence, the engineer has to translate the data from one model
to another “similar” model.

The need for more accurate equipment models and model parameter identification has
been recognized by organizations responsible for system reliability, such as the North
American Electric Reliability Council (NERC) [4]. NERC requires unit-specific dynamics
data for the dynamic simulations performed by Transmission Planning organizations.

The resulting models provide a much more accurate representation of
generator/excitation system dynamic performance in computer simulations. Some of the
benefits of improved models are as follows.

Better assessment of a generator’s transient stability margin
Better assessment of a generator’s dynamic stability margin
More confidence in simulation results
Compliance with existing and future NERC reliability data requirements
Model parameters, either manufacturer specified or “typical” values, may be grossly

inaccurate, for they are often derived from off-line tests by measuring the response of each



individual component separately, without considering the effects of loading conditions, and
the effects of nonlinear interaction between excitation system and the rest of the system [3].
Moreover, parameters change due to retuning, aging, and equipment changes. Therefore,
tools and methods are needed for deriving model parameters from staged tests on the units.

Staged field tests, which provide sufficient information to identifying the parameters, are
divided into two groups [4]. One is collecting steady-state measurements, which includes the
open circuit saturation curve measurement and online measurements. The former one is the
measurement of terminal voltage, field voltage and field current when the generator field
excitation is varied. But for brushless excitation system, only terminal voltage can be
measured. And the later ones are taken at different load level, the typical points of which are
recorded at certain level when the reactive power output changes due to variation of
generator field data. The other step is obtaining the dynamic response. The purpose of the
dynamic tests is to provide a simple and safe disturbance to excite the system. [4] By
comparing the model responses and those obtained from field test, it is obvious to judge the
accuracy of parameters, i.e. the less different the response from each other, the more accurate
the parameter values.

The traditional way to “tune” the parameter is to have skilled engineers select initial
parameters, calculate the difference between measured output and simulation output, and
adjust the parameter to reduce the difference. However, the method requires familiarities
with the equipment functions and the effects of the change of parameters toward the dynamic
response. Unfortunately, such familiarities are quite rare. [4] As a result, the parameter

derivation program is needed to simplify the process.



1.2 Problem Description

The focus of this thesis is to develop a process or methodology for determining appropriate
parameters of an excitation model selected to represent the specific generator excitation
system under consideration.

For this study, two excitation systems and the models to represent them have been
provided by Progress Energy. Fig. 1. 1 shows one of the models, AC1A, which represents an
Alternating Current (AC) type excitation system. The excitation models are used by the
dynamic simulation package PSS/E, and hence PSS/E will be used to compare and validate
the models to be replicated on Simulink/Matlab. Progress energy has also provided the staged
test results for the two excitation systems. Fig. 1. 2 shows the excitation response curve
obtained from the stage tests. As the figure shows, the stage test involves applying a step
change in the set point of the excitation system, which determines the terminal voltage of the
generator, and the response obtained is the output, the terminal voltage of the generator. This
test is referred in practice as the “bump test”. The problem hence is to estimate the
parameters of the selected model such that the response of the model will match the stage test

results as closely as possible.
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Fig. 1. 1 Type AC1A excitation system (Alternator-rectifier excitation system with non-control rectifiers and
feedback from exciter field current)
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1.3 Related Work

Fig. 1. 2 The excitation response from the stage test

The AC excitation system models represented in IEEE standard 421.5 are nonlinear system

models. Most previous work of parameter estimation of the models was either using linear
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model to approximate the given models, such as the Autoregressive (AR) model, or applying
frequency response techniques to identify the parameters of specific exciters [35 6 7].
However, most of these approaches require the output of exciter, which cannot be obtained in
a brushless excitation system. And errors can come from the process of transferring the
parameters in approximated model to the ones of given model. Besides, most of previous
work addressed on their own system models rather than the IEEE standard models.

In [3], a time domain approach has been developed to identify the parameters of AC1A in
IEEE standard 421.5[1]. They used ARX model, a linear discrete time model, to approximate
the transfer function of the system, which is a nonlinear model. ARMAX (Autoregressive

moving average with exogenous input model) model is one of the ARX models. The model

p q b
ARMAX(p,q,d) can be represented as X, =&, + Y @, X + Y 6. + Y md,; , where

i=1 i=1 i=1
@,,0.,n; are parameters, X, , is the past value of the signal, &, ; is the error which is
generally assumed to be independent identifically-distributed random variables (i.i.d)

sampled from a normal distribution with zero mean, and d, ; is known as the exogenous

input. So a model ARMAX(p, g, d) contains the AR(p) and MA(qg) models and a known

external time series d, . Besides ARMAX model, basic ARX model also includes BJ (Box-

Jenkins) and OE (Output-Error) model, which will be used in different cases.

There are two methods to estimate the coefficients in ARX model structure: Lease square
and Instrumental variables. The author used the least-square method to obtain the parameters
of approximated model. For the optimization algorithm, a Gauss-Newton method was

applied to estimate the parameters of the approximated model. And with the parameters of



the ARX model, the parameter values of AC1A model were estimated.

The advantage of the method is that after getting the linear expression of the system,
many approaches can be used for estimating the parameters of it. They are to increase the
speed of calculation and reduce the cost of it. But the disadvantage is that the approach may
bring more errors when both approximating the system model with the linear one and
transferring the parameters back from the approximated model to the system model.

In [4], a program was developed by using Simulink and Optimization Toolbox in
MATLAB. Simulink allows an easy implementation of the model, in which the system
models are represented in Laplace frequency domain. And the Optimization Toolbox is a
collection of optimization algorithms with graphic user interface. For the least-square curving
fitting problem, the algorithm can be Gauss-Newton and Levenberg Marquardt. Optimization
algorithm determines new parameters and passes it to the Simulink, Simlink then gives the
corresponding response. “A comparison of the simulation output and the desired one is
displayed for each successive pass of the optimization process.” Hence, the users can see
how the response changed to fit the given response during the solution process. The author
gave an example of implementation of IEEE type 1 excitation system.

Simulink is a convenient graphical tool to implement different excitation models. The
user can change a part of the model or the desired curve freely. However, the algorithms are
limited to the ones provided in Optimization Toolbox. Besides, MATLAB is interpretive
language which takes much more time when running the programs in MATLAB, rather than
the compiler languages like C. We tried to use the approach at the beginning of the research,

but then we tried to make our codes of the algorithms, such as Gauss-Newton and Levenberg



Marquardt. In the thesis, we programmed in MATLAB for it have a good communication
with the system model which we have built in MATLAB/Simulink. But for the following
step, we will transplant the program into C or JAVA and have it communicate with the
developed model in PSS/E, which is commercial simulation software.

In [5], a time domain method has been developed to identify IEEE- DC1 and IEEE-
AC1A model parameters. Similar to the approach in [3], the author used a discrete time
model to approximate the system model. Then the least-square method was used to construct
the objective function of the problem. But the difference is that in this paper, they use
stochastic approximation (SA) to find the point at which the objective function can be
minimized to get the parameters. The optimization theory includes two branches known as
deterministic optimization and stochastic optimization. And the stochastic approximation
(SA) is a cornerstone of stochastic optimization. SA methods are used whenever the noise in
the data cannot be ignored. So the SA method creates stochastic equivalents to the classical
conjugate gradient methods. An implementation of SA method is shown in the paper to
estimate the parameters of AC1 type excitation system. In our case, the noises of signals are
in tolerance, so that we did not get into SA methods.

In [6], the discrete-time ARMA (Autoregressive moving average) model was used to
approximate each block of the model by matching the frequency response of them. ARMA
model is also known as Box-Jenkins models, which is one of the ARX models. The model
consists of two parts, autoregressive (AR) part and a moving average (MA) part. [14] The
former part is to represent the signal by itself and the later part is to represent the signal by

the error terms, which is generally independent identically-distributed random variables



(i.i.d.), sampled from a normal distribution with zero mean (&, ~ N(0,5?) ). In the paper,

the author obtained parameters of approximated ARMA model of each system block and
then transferred them back the ones of excitation system model. The approach is similar with
the one in reference [3], but the ARMA model would be simpler in this paper, for the author
approximated the block of the excitation system separately. We did not choose it because
both the approximated model may bring more error and we cannot have so much real data
from industry, especially for the brushless machines.

In [7], parameter estimation was performed in frequency-domain. The author utilized
FFT and complex curve fitting technique to estimate the parameters of a excitation system
model, which is a model developed by Taiwan Power Company. About the curve fitting, the
main topics include scatter plot, least square regressions (linear and nonlinear), correlation,
normal probability plots and residual plot. Among them, the nonlinear least square regression
is widely used, which nicely integrates algebra and statistics. A modified weighted least
square (WLS) is described in the paper to obtain the objective function of the curve fitting
problem. Then the author performed Fourier Transformation on the time domain responses
to an injected wide-bandwidth signal of the system to obtain the frequency response data, in
order to estimate the parameters of the model. We did not choose the method for we did not
consider the noise of the signal in the problem.

To sum up, the main considerations of choosing algorithms are the speed of convergence,
the cost of calculations and the accuracy of the results. And for adopting the algorithm, we
have to consider the limitation of tool and data available. Therefore, we plan to develop an

parameter estimation tool in C or JAVA that can interface with any simulation tool, with



which, when we got data from stage test, we can get the appropriate parameters of the model

correspondingly.

1.3.1 Scope of the Thesis:

The study involved first getting a general understanding of each component of the model.
Then, models have been implemented in Simulink and verified by using PSS/E. Then a
literature review has been conducted. After the review of related work on this problem, we
adopted the least square approach to estimate the model parameters. Two optimization
methods have been adopted and implemented to solve the least square problem. Two

excitation systems have been used to test and assess the performance of the proposed method.

1.4 Abbreviation

IEEE Institute of Electrical and Electronics Engineering
NERC North American Electric Reliability Council
AC Alternating Current

ARMAX Autoregressive Moving Average with Exogenous input model

BJ Box-Jenkins
OE Output-Error
SA Stochastic Approximation

ARMA  Autoregressive Moving Average
GLS Generalized Least Square

P.U. Per Unit
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Chapter 2

AC Excitation System Model

2.1 Overview

To capture the behavior of synchronous machine accurately in power system stability studies,
it is essential that their excitation systems are modeled in sufficient detail. The models must
be suitable for representing the actual excitation equipment performance for large, severe
disturbances as well as for small perturbations. [8] Based on excitation power source,
excitation systems are categorized into three groups showing as follows, in which the AC
excitation systems are what we are concerning in the thesis.

Type DC Excitation Systems which utilized a direct current generator with a

commutator as the source of excitation system power. [9]

Type AC Excitation Systems which use an alternator (ac machine) and either

stationary or rotating rectifiers to produce the direct current needed for the generator field.

Type ST Excitation Systems in which excitation power is supplied through

transformers and rectifier.

A physical layout is shown in figure 2.1 to 2.4.
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; Generator
- system

Fig. 2. 1 The real generator and excitation system

e

Fig. 2. 2 Inside of the excitation system part
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Fig. 2. 4 The circuit of Generator excitation system

In figure 2.5 there is a general functional block diagram, which shows various
synchronous machine excitation subsystems with a common nomenclature performed in

IEEE std 421.5. Showing in the diagram, the terminal output voltage is sent to the excitation
control elements as a feedback signal (V. and V). So when V; is unstable, the control
elements provide V, to control the output of exciter, i.e. adjust the field voltage and field

current to have V, back to steady state. V. is an important input of the control part of

excitation systems. Dynamic responses will be recorded, when a step signal is input to the

Veee port. And comparing dynamic responses of simulation output and the ones from real
machine is the method which is used to ensure the accuracy of models. V., and Vg

describe the output signals from overexcitation limiters and underexcitation limiters,

respectively, the modeling of which have become a very popular topic recently. [1] V,,
which is the output of voltage regulator, controls the field voltage E, , in order to control the

field current 1., that will be feed into generator.
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TERMINAL VOLTAGE
TRANSDUCER AND

LOAD COMPENSATOR

Fy

L-—p EXCITATION >
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FEFT¥ ELEMENTS |¢

Vs

Ern| MACHINE AND

POWER SYSTEM

EXCITATION CONTROLS

POWER SYSTEM
STABILIZER AND
SUPPLEMENTARY
DISCONTINUOUS

VSl

Fig. 2. 5 Functional block diagram of a detailed excitation system model [1]

To simplify the problem, the “terminal voltage transducer and load compensator” and

“power system stabilizer and supplementary discontinuous excitation controls” are not

considered in the thesis. We can simply represent the block as shown in figure 2.6, in which

the excitation system includes both excitation control elements and exciter.

\Y
REF__,

Excitation System

Erp

A 4

Generator

Fig. 2. 6 Simplified functional block

2.2 Per Unit System

The per-unit system is the expression of system quantities as fractions of a defined base unit

quantity. [10] i.e. the signals in per-unit systems are normalized to some defined bases.

15



Firstly, we can define one per unit generator voltage as rated voltage. One per unit exciter

output voltage is that voltage required to produce rated generator voltage on the generator air
gap line.

Also, excitation system models must interface with the synchronous machine model at
both the field terminals and armature terminals. The input control signals to the excitation

system are the synchronous machine stator quantities and rotor speed. The per-unit systems

used for expressing these input variables are the same as those used for modeling the
synchronous machine. Thus, a change of per unit system is required only for those related to

the field circuit.

2.3 AC Excitation System Model Examples

The AC1A excitation model and AC8B excitation model are shown in Figure 2.7 and Figure

2.8, respectively.

AC1A Excitation System

” ]
Vi L Veu Exciter
14sT; Ka HY LV vep/ s 1 Ve TTEr
twsTs | 7] TwTa [ |oATE) leATE/ 7 o sTe E '@
- &
V.’-\.ﬁ{: VoELVHmIN D_f Fex
Vi ‘ Vy=V=SelVe] }-— ‘ Fex=fl |
+ s
+ Ke e I
n _Kal
sKr - lE = '\(;EFD
148TF ‘“E}F/ ,?‘ T [[3=]
. L% |
Excitation Control Elements Rectifier

Fig. 2. 7 A partial AC1A Excitation System Block Diagram Showing Major Functional Blocks
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ACB8B Excitation System

Exciter
Virer
Keg VHMA}( Veemax = Ko leg
v . . r-_r K T_SE [ Vel E
c - 3 K o Ky Vh 765 M 1 Ve . "
+ s . |+19‘-|ﬂ i l,STE | 5
e Ve Ve Fex
sKpp Ve
v 1+8T VY =Ve Se [ Vel | [Foy=1 [
5 I
O K] In
. L]} Kok
H= Y
Excitation Control Elements (- !
Rectifier lro

Fig. 2. 8 A partial AC8B Excitation System Block Diagram Showing Major Functional Blocks

2.4 Model Details for the Excitation Systems

2.4.1 Terminal Voltage Transducer and Load Compensator Models

These are the components that transmit the terminal voltage back to the input of the

excitation systems.

T, Vg, = | Vi + (Rg + jXc) Tt | Ver
- C1 T c/'r e
I
T

]
I+sTR

Fig. 2. 9 Terminal Voltage Transducer and Optional Load Compensation Elements

V; : Terminal voltage
I; : Terminal current
R. + jX. : Load compensator impedance

T, : Regular input filter time constant

17
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2.4.2 Amplifier

Amplifier, represented as the main regulator transfer function, may be the magnetic,

electronic or rotating type. The first two types can be represented by the block diagram of

figure 2.10.

/_ VRMAX
KA

; S " oV
1+STA

—y

RMIN

Fig. 2. 10 Amplifier model [10]

K ,: Voltage Regular Gain

T,: Voltage amplifier time constant

: Maximum value of Vg

Rmax *

\%

: Minimum value of Ve

Rmin *

\Y

Non-windup limiter

The block of amplifier is a lag-lead block with non-windup limits; a general representation

18



and implementation of which is shown in Figure 2.11 and Figure 2.12, respectively. Then in
principle, we have:
f=V,-V,/T,
if Yo= Vemax andf>0,then 9/t s set to0
if Vo= Vamn  andf<0,then 9/t issetto 0

otherwise, Y rmin< Vo < Vrmax | then dy/dt =¢

1
U —
1+sT

B_/

Fig. 2. 11 Non-windup limiter with sample time constant [1]

+ 1 1
u ¥ oo p Y

Fig. 2. 12 Implementation of non-windup limiter

2.4.3 Exciter
The exciter is the part in excitation system which connects to generator. It is the component

who provides the field current to excite the generator. Among the blocks, the v, =V_.S. (V)

is modeling the exciter saturation characteristics (section 2.4.3.1). For convenience, it is
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always approximated byV, =E, *S_(E,) =A., e’ ,

Ve=VeSe(V)
v,
©)X E L
Kp Iep,

Fig. 2. 13 Block diagram of an AC exciter

T, : Exciter time constant

V. : Exciter internal voltage

S¢ : Saturation function

K : Exciter constant related to self-excited field
Ky * I : Armature reaction demagnetizing effect.

K : Demagnetizing factor.
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2.4.3.1 Saturation Function

Saturation function (per unit): S.(E, ) = %

yOrd
& _p Bt
T
EFp 7 NS TANCE
» E
2 ' j A
g | SE=f[EFD}E BB = -*g-l
= |
|
5 | |
—
= |
=3 | I
- |
[
! 1
I i
| ]
B - EXCITER FIELD
A CURRENT

Fig. 2. 14 AC exciter saturation characteristic

2.4.4 Rectifier

Rectifier is to transfer the Alternative current to direct current, which is required for the field

current.
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FD

(=) E
F

EX

- § I
Iy ——— I, = CVFD>N Fey zf(IN)

Fig. 2. 15 Rectifier regulation model [10]
Erp: exciter output voltage(applied to generator field)
Erp = Fex * Ve: a function of commutation voltage drop
Iep: generator field current
In: exciter internal current
Fex = f(In): the three modes of rectifier circuit operation

Mode 1: f(l,)=1.0-05771,, if I, <0.433

Mode 2: f(l,)=+0.75—1,7,if0.433< I, <0.75

Mode 3: f(I,)=1.732(1.0—1,,),if0.75< 1, <1.0
I, should not be greater than 1.0, but if it is, Fg, should be set to zero.
2.5 Summary

There are three basic elements of an excitation system: excitation control components,
exciter and rectifier. Besides, terminal voltage transducer and compensator components, and
power system stabilizer are additional ones to keep terminal output voltages stable. To know
the typical structure of each functional block and understand the function of each suite of
blocks in typical models is important in modeling an accurate excitation system and

estimating the parameters.
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Chapter 3

Parameter Estimation using Least Square Method

Since we want the simulation output of excitation model to follow the measured response at
each time point, we can model the problem as a least square problem. To solve this least
square problem, we tried the Damped Gauss Newton method and Levenberg Marquardt
method, which are two basic method for non-linear optimization problems, to get the local

solution of the least square problem.

3.1 Objective function

Let’s restate the problem. It is a nonlinear least squares problem with an objective function

of the form
1 M 2 1 T
09 =2 2R =5 ROTRE) (31)

in which r,(x) =v,(t: x) -V, (t)1<i<M,t=12,..., the vectors v, and Vv, are the simulation
output of an nonlinear model and the measured output of the terminal voltage of the

generator, respectively, the vector R =(r,r,,...,1,, ) is called the residual,
and x = (p,, P,,-.., Py )" is the vector of unknown parameters. M is the number of

observations and N is the number of parameters. For these problems, M>N, so we say the

problem is an overdetermined problem.

Solving of nonlinear least squares problem is searching for the best approximation to the
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measure data with model function v, (x) , which has nonlinear dependence on variables x.
The best approximation means that the sum of squares of residuals r, (x) is the lowest

possible.

The M x N Jacobian R'of R is defined by

(R'(x))ij=% 1<i<M, 1<j<N 3.2)

i
With this notation, it is easy to show that
Vi(x) =R'(x)" R(x) e R" (3.3)
The necessary conditions for optimality imply that at the minimizer x”,
R'(x)"R(x")=0 (3.4)
There are two main algorithms for solving least square problems, Gauss-Newton method

and Levenberg-Marquardt method, which will be introduced as follows.

3.2 Gauss Newton method [12]

Steps of Gauss-Newton method

e set X, =X,.
e While Vf(x.) >z, 7, + 7, &iteration < iteration_max. (7 = (z,,7,) is the termination

criteria)
(@) Compute the step s
() x, =x.+s

(c) Compute VT (x)
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The Gauss-Newton(GN) algorithm computes the step s as
S= _(RI(XC)T Rl(xc))_1Vf (Xc) = _(R'(XC)T RI(XC))_l R'(XC)T R(Xc) (35)

where R' is the Jacobian of R.

3.3 Calculating the Jacobian numerically

Since the GN method requires computing the gradient Vf (x) , we need to get Jacobian, since

VE(x.)=R'(x.)*R(x,) (3.6)
Since we have the model simulated in MATLAB simulink, rather than a formula expression
of the system, we used the Finite Difference Method to obtain an approximated Jacobian.
There are three forms of the method, which include forward difference method (formula 3.7),
backward difference method (formula 3.8), and central difference method (formula 3.9). The
central difference method is chosen, for in principle it will bring less errors than either of the
other two does.

f(xo +h)_ f(xo)

Forward difference method : f'(x,) = . (3.7)
Backward difference method : f'(x,) = %) - ; (%, —h) (3.8)
Central difference method: ~ f'(x,) = T +h) = (% —h) (3.9)

2h

Verification of getting Jacobian using central difference method

A simple example of a nonlinear least squares problem is constructed. The problem is to
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identify the two unknown parameters (k and a) of a system % (Figure 3.1) by minimizing
+

the difference of a numerical prediction and measured data.

I " stesti1] " ]
sttest(2)

Step Transfer Fen Seope

Fig. 3. 1 a simple system for Jacobian approximation test (k=xtest(1), a=xtest(2))

Let x = (k,a)" be the vector of unknown parameters. When the dependence on the
parameters needs to be explicit, we will write v(t : X) instead ofv(t). If the outputs are
sampled at{tj}ﬁ"zl, wheret; = (j-1)T /(M —1), then the observation for output will be{vj}ﬁ”zl,

then the object function is

f(x):%i‘u(t:x)—uj‘z =%RT (X)R(X) (3.10)

on the interval [0,T], where R(x) =[u(l:x)-u,, u(2:x)-u,, --- u(M:x)—u, [

The Jacobian of f is

[ ou(l:x)  ou(d:x) |
ok oa
ou(2:x)  ou(2:x)
R'(X) = ak a.a (3.11)
au(M 1 X) au(M 2 X)
L ok oa |

6u(t:x)=u(t:k+h)—u(t:k—h)

t=12,.,.M
ok 2h

Where

Therefore, the gradient of f is
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Vi) =(

ZM ou(t: x)

j=1

=1

ZM ou(t:x)

ok

oa

(ut:x)-u;)

) =R ()R(x)

(ut:x)-u;)

(3.12)

. . . . k . .
By using the time domain solution of the system —— , we have the function analytically:

S+a

(0= Xa-e
a

As a result, the exact Jacobian can be calculated.

Selecte k=4 a=2 as the optimum parameters and use k=5 a=2.5 as the initial points in

simulation. The results are as follows:

Jac_approx=

0
0.0907
0.1649
0.2257
0.2754
0.3161
0.3495
0.3768
0.3991
0.4174
0.4324
0.4446
0.4547
0.4629
0.4696
0.4751

0
-0.0173
-0.0613
-0.1216
-0.1910
-0.2641
-0.3374
-0.4085
-0.4757
-0.5381
-0.5953
-0.6471
-0.6937
-0.7352
-0.7720
-0.8044

Jac_true =
0
0.0906
0.1648
0.2256
0.2753
0.3161
0.3494
0.3767
0.3991
0.4174
0.4323
0.4446
0.4546
0.4629
0.4696
0.4751

0
-0.0175
-0.0616
-0.1219
-0.1912
-0.2642
-0.3374
-0.4082
-0.4751
-0.5372
-0.5940
-0.6454
-0.6916
-0.7326
-0.7689
-0.8009

Absolute error:
Jac_true — Jac_approx Jac _true — Jac _approx

Jac _true

0
-0.0000
-0.0001

—» -0.0001

-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0000
-0.0000
-0.0000
-0.0000
-0.0000

0
-0.0002
-0.0003
-0.0003
-0.0002
-0.0001

0.0001
0.0003
0.0006
0.0009
0.0013
0.0017
0.0022
0.0026
0.0031
0.0035

Relative error:

(3.13)

NaN
-0.0004
-0.0003
-0.0003
-0.0003
-0.0002
-0.0002
-0.0002
-0.0002
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001

NaN
0.0108
0.0046
0.0024
0.0013
0.0005

-0.0002
-0.0007
-0.0012
-0.0017
-0.0022
-0.0027
-0.0031
-0.0036
-0.0040
-0.0044

As listed above, the errors are very small, so that we can use approximated Jacobian instead

of the exact one during the operations.
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3.4 Damped Gauss-Newton method

The Gauss-Newton (GN) direction is a descent direction, but the GN method do not have a
good global convergence performance. When the initial iteration is near the solution, it dose

not suffer from poor scaling of f and converges rapidly. However, when far away from the

solution, the Hessian of GN may not be positive definite and the method will fail. To apply
the Gauss-Newton method to a global convergence problem, the combination of Gauss-

Newton direction with Armijo rule is made, which is called damped Gauss-Newton.

Armijo rule

The Armijo rule is based on a general convergence theorem showing that modified steepest

descent algorithms converge under some conditions.
Principal: If A is an arbitrarily assigned positive number, 4, = A/2"",m=12,...,and
X1 = X — Ag, VE(X,), where m, is the smallest positive integer for which
f (%, = A VE(X,)) - F(X) < ad, [VE(X, )|2 k=012,.. (3.14)

Then the sequence {x, };_, converges to the point X" which minimizes f.

Steps of Damped Gauss-Newton method

1 X, =X,.
2 While Vf(x,) > 7,7, +7, & iteration < iteration_max. (z = (z,,7,) is the termination

criteria)
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(@) Compute the direction of a new step d..
(b) Setthestepsize A =1
() x =x+4d,.
(d) Compute Vf(x,)
(i) Apply Armijo rule to find an appropriate A,

(if) Update x, and Vf(x,)

3.5 Levenberg-Marquardt Method

The damped Gauss Newton algorithm is effective when used for solving zero residual and

small residual problems. But it may fail when the condition number of the matrix
{R'(x.)" R'(x,)}is too small. Therefore, for the medial residual problems, Levenberg-

Marquardt method is chosen.

The Levenberg-Marquardt methods add a regularization parameter v > 0to
{R'(x,)" R'(x,)} in determining the step s
s=—(v, I +R'(x.)"R'(x.))"R'(x.)" R(X,) (3.15)
where | isthe N x N identity matrix. The matrix v_1 + R'(x.)" R'(x.) is positive definite.

And again, if combining the Levenberg-Marquardt with Armijo rule, it become a globally

convergent method for the overdetermined least squares problems.

3.6 Approach I: MATLAB/Simulink Parameter Estimation Toolbox

Matlab recently has offered a toolbox for the Parameter Estimation (PE). The toolbox uses
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Gauss-Newton (GN) and Levenberg-Marquardt (LM) methods to solve the least square
problem. The Gauss-Newton method is given as the “fast” option that provides more precise
results, but it may fail when the initial guess for the parameters are far from the solution. It
quits when the condition number of matrices in the algorithm is too low or the step length is
too small. The condition number is a ratio of the largest singular value to the smallest. The
toolbox offers also the “robust” option which uses the Levenberg-Marquardt when Gauss-
Newton quits [14]

To facilitate modeling of the system, the toolbox has interface with the simulink.
Hence, the model can be developed in simulink. During iterations, the PE toolbox sends the
adjusted parameters to the simulink and gets the simulation results from it. The iterations will
be terminated generally when either the difference between two curves is smaller than the

tolerance that we set before, or the algorithm quits as mentioned before.

3.6.1 Simulink in MATLAB

Simulink is a graphical tool for modeling, simulation and analysis of dynamic systems, in
which the systems can be represented by blocks in frequency domain as the ones shown in
IEEE std 421.5[1]. Most of the blocks with certain functions can be found in Simulink library,
a database in MATLAB, and users can write their own ones by using the “s-function” blocks.
With the initial parameters, when the structure of a system is decided, the simulation can be
implemented by simply drawing the blocks from the library to Simulink window, connecting

them and clicking the “run” button.
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3.6.2 Parameter Estimation (PE) toolbox in MATLAB

Optimization Tool box is a collection of routines that extend the capability of MATLAB for
problems as nonlinear minimization, equation solving and curve fitting. [3] And the PE
toolbox is actually an interface which has the optimization toolbox and the system model in
Simulink communicate to each other. (Figure 3.2) Moreover, both of PE toolbox and
Simulink have a good communication with workspace in MATLAB. For nonlinear least
squares and curve-fitting problems, the desired curve data and initial parameter values can
be saved in workspace and input to the toolbox by selecting the names of the vectors
correspondingly. The algorithms are mentioned in the previous section. And the output
results, which will be shown in the interface of PE toolbox, include the solutions that
minimize the difference of between simulation output and desired curve data, and a record of

cost function and step size of each iteration.

A

Simulink PE Toolbox Optimization
system model Toolbox

A 4

Fig. 3. 2 A sketch map showing how PE toolbox works

3.7 Approach Il : Parameter estimation using LM & DGN

Instead of of Simulink and the existed methods in Optimization toolbox in MATLAB, we
would like to use other simulation tools. At this rate, we may be able to simulate the system
faster using software developed for power system simulation such as PSS/E, and implement
more algorithms to efficiently and accurately estimate the parameters.

The interaction between the simulation tool and optimization tool is shown in Figure 3.3.
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With initial parameters, simulation output will be obtained from simulation box, which will
be entered into some optimization programs, in which the difference of simulation output and
desired output will be calculated. If the difference does not satisfy the requirement, the
program will adjust the parameter values and get a set of new parameters. With the new

parameters, the system simulates again and produces another suite of outputs.

SIMULATION
> (Simulink)
(PSS/E)
Simulation
Parameters Output
OPTIMIZATION <

(Optimization Toolbox) X

Fig. 3. 3 Optimization environment

As the first step of the implementation, we will use the simulink for simulation, and
implement the optimization algorithms in Matlab. Later on, after making sure the program do
perform well, we will transplant the program into other computer languages, such as Java or
C and use other simulation tool like PSS/E or ETAP to provide the simulation output.

In this thesis, we tried to program the codes of damped Gauss Newton method, which is a
typical global optimization method for the nonlinear parameter identification. The results of
the implementation of the program on AC1A and AC8B excitation system will be given in

the next chapter.

3.8 Summary

We have got two algorithms and two approaches for solving the least squares problem in

order to estimate the parameter of excitation system. The algorithms used for least square
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problems are Gauss-Newton (GN) method and Levenberg-Marquardt (LM) method. GN is
effective when there is a good initial guess, but may quit when the initial guess is bad, while
LM will always gives a result when the initial guess is far from the solution, but not as
effective as GN does. By combining either of the algorithm with Armijo rule, it can be
applied to a global convergence problem, for the Armijo rule is for making sure that the step
sizes sufficiently decrease.

For solving the parameter estimation problem, we developed two approaches. One is to
estimate the parameter of excitation system with MATLAB/Simulink and Parameter
Estimation (PE) Toolbox in MATALB, which already has a collection of functions for
solving the least square problem. The other one is to do parameter estimation with
MATLAB/Simulink and the program developed by ourselves. We are using the same
algorithms with the ones used in PE Toolbox, so that we can compare the results of them.
And then, in the following work, we can transplant the algorithm to C or Java to increase the
speed of operation. Moreover, we may try to implement other algorithms other than the two

mentioned before.
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Chapter 4

Case Studies and Validations

Progress Energy gave us the data from “bump test”, we are using the data to test the method
for parameter estimation. As mentioned in Chapter 1, the system consists of a generator and
its excitation system, shown in Figure 4.1. The generator is set to rotate as the speed of 1 p.u.
(per unit). The excitation system gets the terminal voltage as the feedback from generator and

provides the excitation voltage to the generator.

<$tator woltage wq (pu)> m

<Stator voltage wd (pud® I

<Rotor spead wm_ (pul>
<0utput active power  Peo (pu): !:

<0utput reactive power Qeo (pu):
<Figld currdnt_ifd (pu)>

| |
h 4 h 4 L

B us . ———————=|+ .
Speed (pu) Fe, Qe (pu) , signains 4’.
J a

R Valts = pu RMS1 Wa (put
m
Positive Sequence
\?oltage 1 A
I
B
c

1 shine
Lo ffilter
ottt Generator
it
<L m O
A I

| Ecpf? w_acﬁ. -
! 154

Excitio’ n8yster”™”

Hpuiz
Fig. 4. 1 Test system for estimating parameters of AC1A excitation system

Our project sponsor, Progress Energy, has provided two sets of data for the two excitation
systems they had performed the bumped test recently. Both of these excitation systems are
of AC type and hence, we choose AC1A and AC8B models to represent them, as suggested

by the manufacturer and the Progress Energy.
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4.1 Case 1: AC1A with typical parameters

Before doing the parameter estimation, the excitation system has been simulated in

MATLAB/Simulink, which is shown in Fig. 4.2.
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Fig. 4. 2 Implementation of AC1A excitation system in MATLAB/Simulink
There are 6 parameters of this system: ac1Ka, ac1Ta, ac1Te, ac1Kf, aclTf, ac1Kc, ac1Kd

Progress Energy has provided the initial values for them, which are basically the typical

values given for this type of exciter:

Regulator gain: aclKa =766

Regulator time constant: aclTa =0.0200
Exciter time constant: aclTe =1.3000
Damping filter gain: aclKf =0.0240
Damping filter time constant: acl1Tf = 1.0000
Rectifier loading factor: aclKc = 0.4860
Demagnetizing factor: aclKd = 0.3556

Fig. 4.3 compares the simulation response with these initial values with the actual

measured response obtained from the bump test for this system.
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Fig. 4. 3 Model response with typical parameters of AC1A excitation system

4.1.1 Parameter Estimation Using Matlab PE Toolbox

Firstly, the Matlab PE Toolbox has been used to estimate the parameters based on the bump
test results given in Fig. 4.3. (Blue line) The robust option has been used for the solution.
Figure 4.4, shows the iterations that were taken and, cost function and step size of each
iteration. Cost function shows the difference between the simulation output and measured

output. And the step size shows convergence speed. As shown in the figure, the optimization

terminated for

the step size is too small, which means the program cannot find a good enough

solution before it converged.
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Fig. 4. 4 Cost function and step size of each iteration with typical parameters of AC1A excitation system

The Parameters obtained are as follows:
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Fig. 4. 5 Estimated parameters of AC1A excitation system starting from typical parameters

We get:
Regulator gain: aclKa = 615.65
Regulator time constant: aclTa =0.021296
Exciter time constant: aclTe =1.816
Damping filter gain: aclKf =0.032162
Damping filter time constant: acl1Tf =0.95218
Rectifier loading factor: aclKc = 0.54693
Demagnetizing factor: aclKd = 0.36541
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Initial value:
aclKa =766
aclTa =0.0200
aclTe = 1.3000
aclKf =0.0240
aclTf=1.0000
aclKc = 0.4860
aclKd = 0.3556



Figure 4.6 compares the simulation response using the estimated parameters with the

measured response.
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Fig. 4. 6 Final terminal output of generator with typical parameters of AC1A excitation system
(Grey - Desired curve, Blue — Simulation output)

Parameter Trajectory
Sensitivity of parameters is another important issue. With knowing the sensitivity of each

parameter, when manually adjusting the parameters, the engineer can adjust the one who has
the most sensitivity. It will increase the efficiency of the work. From figure 4.5, we can see
the regulator gain, regulator time constant and damping filter time constant change a lot.

38



They can be considered as the main factors for the curve fitting, which means that they have
the most sensitivity. There is another plot provided by the PE toolbox, which can also be
used to estimate the sensitivity. That is the parameter trajectory plot (figure 4.7), from which

we can see the changes of parameters by iteration.
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Fig. 4. 7 Parameter trajectory when estimating parameters of ACL1A excitation system
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4.1.2 Parameter Estimation using Damped Gauss Newton

As the second option, the damped Gauss Newton Method which has been implemented
in MATLAB codes has been used to estimate the parameters, using the same initial

parameter values. In table 1 listed the iteration history of the operation.

Table 1 Iteration history of parameter estimation of AC1A starting from typical parameters using DGN

Norm(gc) f(xc) Armijo iter. Iteration
0.0034 0.0023 0 0
0.0033 0.0018 9 1
0.0086 0.0018 0 2
0.0036 0.0006 0 3
0.0016 0.0003 0 4
0.0005 0.0002 0 5
0.0002 0.0001 0 6
0.0004 0.0001 0 7
0.0003 0.0001 0 8
0.0004 0.0001 0 9
0.0004 0.0001 0 10

This method yielded the following values:
Xmodel GN=

aclKa aclKf aclTe aclTf aclTa aclKc aclKd
669.3898 0.0502 3.0419 1.7159 0.0339 0.5123 -0.3254

Fig. 4.8 compares the simulation response with the test data. As it indicates, it is a good
fit. The method did converge, but did not converge to the best solution. Since we did not

enforce limits, there is a negative parameter which do not match its physical meaning well.
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Fig. 4. 8 Final terminal output of generator starting from typical parameters using DGN

4.1.3 Parameter Estimation using LM and DGN
For improving the result, we choose the combination of Levenberg Marquardt method and

Damped Gauss Newton method. The LM method has been used to get the better start point
P" first and then DGN method has been used to get the solution. The initial parameters are
the same as the previous case, which is

X0 =

aclKa aclKf aclTe aclTf aclTa aclKc aclKd
766 0.0200 1.3000 0.0240 1.0000 0.4860 0.3556

4.1.3.1 Levernberg Marquardt
In Table 2 shows the historty of the iteration when using Levenberg Marquardt.
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Table 2 Iteration history of parameter estimation of AC1A starting from typical parameters using LM

Norm(gc) fc Trust region test itr. Iterations
0.0034 0.0023 0 0
0.0034 0.0023 1.0000 1
0.0034 0.0023 1.0000 2
0.0061 0.0019 4.0000 3
0.0061 0.0019 1.0000 4
0.0061 0.0019 1.0000 5
0.0061 0.0019 1.0000 6
0.0033 0.0016 2.0000 7
0.0033 0.0016 1.0000 8
0.0096 0.0014 3.0000 9
0.0096 0.0014 1.0000 10
0.0096 0.0014 1.0000 11
0.0096 0.0014 1.0000 12
0.0035 0.0013 5.0000 13
0.0035 0.0013 1.0000 14
0.0035 0.0013 1.0000 15
0.0035 0.0013 1.0000 16
0.0035 0.0013 1.0000 17
0.0071 0.0012 5.0000 18
0.0071 0.0012 1.0000 19
0.0071 0.0012 1.0000 20

This method yielded the following values:
Xmodel LM =

aclKa aclKf aclTe aclTf aclTa aclKc aclKd
500.8150 0.0271 2.0854 1.0073 0.0186 0.4747 0.3537

According to the values of cost functions, the iterations converged. It terminated due to
the maximum iteration limit, which means that the program stopped before finding the best
solution. As indicated in the Fig. 4.9, the curves did not match to each other well, for the

simulation response and the measured response settled down to different points.
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Fig. 4.9 compares the result with data.
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Fig. 4. 9 Final terminal output of generator starting from typical parameters using LM

4.1.3.2 Damped Gauss Newton
In Table 3 shows the history of the iteration when using Gauss Newton starting from the

parameters getting from Levenberg Marquardt method P", which is
xstart =

aclKa aclKf aclTe aclTf aclTa aclKc aclKd
500.8150 0.0271 2.0854 1.0073 0.0186 0.4747 0.3537

Table 3 Iteration history of parameter estimation of AC1A starting from P" using DGN

Norm(gc) fc Armijo lter. Iterations
0.0006 0.0004 0 0
0.0008 0.0002 0 1
0.0011 0.0001 0 2
0.0011 0.0001 0 3
0.0010 0.0001 0 4
0.0008 0.0001 0 5
0.0007 0.0000 0 6
0.0006 0.0000 0 7
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Table 3 Continued

Norm(gc) fc Armijo lter. Iterations
0.0005 0.0000 0 8
0.0004 0.0000 0 9
0.0003 0.0000 0 10
0.0003 0.0000 0 11
0.0002 0.0000 0 12
0.0001 0.0000 0 13
0.0001 0.0000 6.0000 14
0.0000 0.0000 0 15
0.0000 0.0000 0 16
0.0000 0.0000 0 17
0.0000 0.0000 0 18
0.0000 0.0000 0 19
0.0000 0.0000 0 20

This method yielded the following values:

xcurrent =

aclKa aclKf aclTe

1.0e+003 *

1.0427  0.0001 0.0050 0.0018 0.0001

aclTf

aclTa

aclKc aclKd

0.0003 -0.0002

The method did converge. Fig. 4.10 shows that the model response matches the

measured response quite well.
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Fig. 4. 10 Final terminal output of generator when estimating AC1A excitation starting from P t using DGN

4.2 Case 2: AC1A with good initial paramters

When started with typical parameter values, the two methods did not reach the same solution.
To find a better solution, John O’connor who is the expert on using these models in Progress
Energy, adjusted the parameter values manually to find a better initial point. This new initial

parameters have been given as:

Regulator gain: aclKa =400

Regulator time constant: aclTa = 0.0200
Exciter time constant: aclTe = 1.3000
Damping filter gain: aclKf =0.0240

Damping filter time constant: ac1Tf = 1.0000
Rectifier loading factor: aclKc =0.4860
Demagnetizing factor: aclKd = 0.3556
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As Fig.4.11 shows these values indeed yield a simulation response that is much closer to the

actual response than that of the original parameter values.
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Fig. 4. 11 Model response with good parameters of AC1A excitation system
(Grey - Desired curve, Blue — Simulation output)

4.2.1 Parameter Estimation Using Matlab PE Toolbox

For the case, again we tried Matlab PE Toolbox first to estimate the parameters. The fast
option has been used for the solution, for it has good initial points. Figure 4.12 shows the
iterations that were taken and, cost function and step size of each iteration. The program may
not find a good enough solution before it converge, for the optimization terminated for the

step size is too small.
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Parameters obtained are:
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Fig. 4. 13 Estimated parameters of AC1A excitation system starting from good initial parameters

We get: Initial value:
Regulator gain: aclKa =402.95 aclKa =400
Regulator time constant: aclTa =0.020028 aclTa=0.0200
Exciter time constant: aclTe =1.3159 aclTe =1.3000
Damping filter gain: aclKf =0.024735 aclKf =0.0240
Damping filter time constant: aclTf=1.0016 aclTf =1.0000
Rectifier loading factor: aclKc = 0.54693 aclKc =0.4860
Demagnetizing factor: aclKd = 0.35962 aclKd = 0.3556

Figure 4.14 compares the model response using the estimated parameters with the

measured response.
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Fig. 4. 14 Final terminal output of generator when estimating ACL1A excitation system starting from good
parameters (Grey - Desired curve, Blue — Simulation output)

4.2.2 Damped Gauss Newton

The damped Gauss Newton Method implemented in Matlab has also been used to estimate
the parameters using the same initial parameter values. Here we also only use DGN method,
rather than use the combination of GN method and LM method. In Table 4 listed the iteration

history of the operation.

15 2
Time [zec)

25

Table 4 Iteration history of parameter estimation of AC1A starting from P- using DGN

Norm(gc) f(xc) Armijo iter. Iteration
0.0237 0.0066 0 0
0.0035 0.0001 0 1
0.0025 0.0001 0 2
0.0012 0.0000 0 3
0.0005 0.0000 0 4
0.0007 0.0000 0 5
0.0003 0.0000 0 6
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This method yielded the following values:
Xmodel=

aclKa aclKf aclTe aclTf aclTa aclKc aclkd
364.1523 0.0413 1.6724 1.4580 0.0542 0.4860 0.4039

cost: fc = 1.0498e-005

The method converged fast(only 6 iterations) and sufficiently reduced the residuals to 1e-5,
which can tell us DGN method works well. When starting from a good initial points, using
DGN, the iteration converges well and provides good results The terminal output curve is

shown in Fig. 4.15.
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Fig. 4. 15 Final terminal output of generator when estimating AC1A excitation starting from a good initial point

0.92 . ;

4.3 Case 3: AC1A with Low Parameters

To test the method, we tried two more cases using the combination of LM and DGN. One of

them starts from 0.5*P°, where PP is typical parameters. So the initial parameters are:
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X0= aclKa aclKf aclTe aclTf aclTa aclKc aclKd
383.0000  0.0100 0.6500 0.0120 0.5000 0.2430 0.1778
Fig 4.16 shows the simulation with the initial parameters.
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Fig. 4. 16 Model response with low parameters of AC1A excitation system

4.3.1 Levernberg Marquardt

Table 5 shows the history of the iteration when using Levenberg Marquardt.

Table 5 Iteration history of parameter estimation of AC1A starting from low parameters using LM

Norm(gc) fc Trust region test itr. Iterations
0.0378 0.0244 0 0
0.0378 0.0244 1.0000 1
0.0378 0.0244 1.0000 2
0.0378 0.0244 1.0000 3
0.0286 0.0096 2.0000 4
0.0286 0.0096 1.0000 5
0.0286 0.0096 1.0000 6
0.0102 0.0046 2.0000 7
0.0102 0.0046 1.0000 8
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Table 5 Continued

Norm(gc) fc Trust region test itr. Iterations
0.0102 0.0046 1.0000 9
0.0102 0.0046 1.0000 10
0.0102 0.0046 1.0000 11
0.0102 0.0046 1.0000 12
0.0019 0.0042 5.0000 13
0.0019 0.0042 1.0000 14
0.0019 0.0042 1.0000 15
0.0019 0.0042 1.0000 16
0.0019 0.0042 1.0000 17
0.0019 0.0042 1.0000 18
0.0019 0.0042 1.0000 19
0.0025 0.0034 2.0000 20

This method yielded the following results:

Xmodel LM =
aclKa aclKf aclTe

7455704 0.0248 3.7373

aclTf

aclTa aclKc aclKd

1.2997 0.0048 0.4008 -0.2545
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Fig. 4.17 Final terminal output of generator starting from low parameters using LM
From the history, we can see the method did not converge. And from Fig 4.17, we know that
the settled point is closed for both of the response, although the dynamic transient part is not
matched to each other.

4.3.2 Damped Gauss Newton

In Table 6 shows the history of the iteration when using Damped Gauss Newton starting

from P-M which is
xstart =

aclKa aclKf aclTe aclTf aclTa aclKc aclKd
7455704 0.0248 3.7373 1.2997 0.0048 0.4008 -0.2545

Table 6 Iteration history of parameter estimation of AC1A starting from P" using DGN

Norm(gc) fc Armijo Iter. Iterations
0.0051 0.0034 0 0
0.0016 0.0004 0 1
0.0011 0.0002 0 2
0.0005 0.0002 0 3
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Table 6 Continued

Norm(gc) fc Armijo lter. Iterations
0.0002 0.0001 0 4
0.0002 0.0001 0 5
0.0002 0.0001 0 6
0.0003 0.0001 0 7
0.0003 0.0001 0 8
0.0002 0.0001 0 9
0.0003 0.0001 0 10
0.0003 0.0001 0 11
0.0003 0.0001 0 12
0.0003 0.0001 0 13
0.0003 0.0001 0 14
0.0003 0.0001 0 15
0.0003 0.0001 0 16
0.0003 0.0001 0 17
0.0003 0.0001 0 18
0.0003 0.0001 0 19
0.0003 0.0001 0 20

This method provided the following results:

xcurrent =

aclKa aclKf

1.0e+003 *

1.5465 0.0000

aclTe

0.0062

aclTf

0.0014

aclTa

aclKc aclKd

0.0000 0.0010 -0.0003
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Fig. 4. 18 Final terminal output of generator when estimating AC1A excitation using DGN starting from P L

The history in Table 6 tells us the method converged very slowly and terminated due to
maximum iteration. And from the plot we can tell it converged to a local minimizer such that
the responses matched to each other well. In this case, we get a good enough solution from
LM so that DGN can provide a good solution. Although it went to another direction, which
we can tell from the negative number, it is still a good local solution, for we just considered it

as an unconstrained optimization problem.

4.4 Case 4: AC1A with high parameters

Then we tried the initial parameter starting from 1.5*P°, which means the initial

parameters are:
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X0 =

aclKa aclKf aclTe aclTf aclTa aclKc aclKd
1.0e+003*

1.1490 0.0000 0.0020 0.0015 0.0000 0.0007 0.0005
In Fig 4.20 shows the simulation with the initial parameters.
ACTA excitation system

1.08 . . T . )

measured response
MATLAE simulation output

4 S A

1.06

1.05

1.04

1.03

voltage(in per unit)

1.02

1.01

1

099 | | | | |
0 0.5 1 1.5 2 25 3
timelsec)
Fig. 4. 19 Model response with high parameters of AC1A excitation system

4.4.1 Levernberg Marquardt

In Table 7 shows the history of the iteration when using Levenberg Marquardt.

Table 7 Iteration history of parameter estimation of AC1A starting from high parameters using LM

Norm(gc) fc Trust region test itr. Iterations
0.0142 0.0244 0 0
0.0142 0.0244 1.0000 1
0.0195 0.0244 1.0000 2
0.0195 0.0244 1.0000 3
0.0195 0.0096 2.0000 4
0.0114 0.0096 1.0000 5
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Table 7 Continued

Norm(gc) fc Trust region test itr. Iterations
0.0114 0.0096 1.0000 6
0.0114 0.0046 2.0000 7
0.0114 0.0046 1.0000 8
0.0312 0.0046 1.0000 9
0.0312 0.0046 1.0000 10
0.0312 0.0046 1.0000 11
0.0312 0.0046 1.0000 12
0.0312 0.0042 5.0000 13
0.0312 0.0042 1.0000 14
0.0312 0.0042 1.0000 15
0.0065 0.0042 1.0000 16
0.0065 0.0042 1.0000 17
0.0065 0.0042 1.0000 18
0.0065 0.0042 1.0000 19
0.0065 0.0034 2.0000 20

The results obtained are:
Xmodel LM =
aclKa aclKf aclTe aclTf aclTa aclKc aclKd

751.1027 0.0266 2.7584
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1.08 T T I

. | measured response
L e e kb — MATLAB simulation output

1.06

1.05

1.04

1.03

valtagelin per unit)

1.02

1.01

099 | | | | |
0 045 1 1.5 2 24 3
time(sec)
Fig. 4.20 Final terminal output of generator starting from high parameters using LM

From the history, we can see the method did not totally settle down before it converge, so the
solution will not be the best point. Fig. 4.21 tells us the settle points are different in both of
the curve, which prove that the solution from LM is not good enough. Also, observed from
the plot of each iteration, we found that, the simulation output become closer and closer to
the measured one as it started, but after getting to some point, it will suddenly change back to
a bad shape and try get closer again. We may improve our program by choosing the best
solution in the iterations as the solution.

4.4.2 Damped Gauss Newton

In Table 8 shows the historty of the iteration when using Damped Gauss Newton starting
from P, which is

xstart =

aclKa aclKf aclTe aclTf aclTa aclKc aclKd
751.1027 0.0266 2.7584 1.3613 0.0262 0.6049 0.4179
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Table 8 Iteration history of parameter estimation of AC1A starting from P- using DGN

Norm(gc) fc Armijo lter. Iterations
0.0055 0.0026 0 0
0.0018 0.0004 1 1
0.0014 0.0003 2 2
0.0016 0.0003 8 3
0.0011 0.0001 0 4
0.0010 0.0001 0 5
0.0007 0.00008 0 6
0.0006 0.00006 0 7
0.0004 0.00005 0 8
0.0003 0.00005 0 9
0.0004 0.00004 0 10
0.0005 0.00004 0 11
0.0005 0.00004 3 12
0.0006 0.00004 1 13

This method yielded the following values:
xcurrent =
1.0e+003 *
1.5465 0.0000 0.0062 0.0014 0.0000 0.0010 -0.0003

The method did converge and it converged to the same point as with low parameters.
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Fig. 4. 21 Final terminal output of generator when estimating AC1A excitation using DGN starting from P L

4.5 Case 5: AC8B with good initial guess

The excitation system has been simulated in Simulink,which is shown in Fig. 4.23.
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Fig. 4. 22 Implementation of AC8B excitation system in MATLAB/Simulink
There are 9 parameters of this system:

ac8bKpr, ac8bKir, ac8bKdr, ac8bTdr, ac8bTa, ac8bKa, ac8bTe, ac8bKc, ac8bKd

Progress Energy has provided the initial values for them, which are considered as a good

initial point:

Voltage regulator proportional gain: ac8bKpr = 84
Voltage regulator integral gain: ac8bKir=5
Voltage regulator derivative gain: ac8bKdr =10
Lag time constant: ac8bTdr=0.1
Voltage regulator time constant: ac8bTa=0
Voltage regulator gain: ac8bKa=1
Exciter time constant: ac8bTe=1.3
Rectifier loading factor: ac8bKc = 0.55
Demagnetizing factor: ac8bKd=1.1

Besides, Progress Energy provided two suites of bump test data. Figure 4.23 and figure
4.24 are showing us the measured response and the simulation response with these initial

values for each suite of data, respectively.
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Fig. 4. 23 Model response with good parameters of AC8B excitation system
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Fig. 4. 24 Model response with good parameters of AC8B excitation system (Data Unit 2)

4.5.1 Parameter Estimation Using Matlab PE Toolbox

45.1.1 Data Unit 1
In Fig. 4.25, it shows the iterations, cost function and step size of each iteration.
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Fig. 4. 25 Cost function and step size when estimating AC8B excitation system with good initial
parameters(Unit 1)

Parameters obtained are:
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Fig. 4. 26 Estimated parameters of AC8B excitation system(Unit 1)
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We get: Initial value:

Voltage regulator proportional gain: ac8bKpr =79.775 ac8bKpr = 84
Voltage regulator integral gain: ac8bKir = 4.8165 ac8bKir =5
Voltage regulator derivative gain: ac8bKdr = 10.1 ac8bKdr =10
Lag time constant: ac8bTdr = 0.1038 ac8bTdr=0.1
Voltage regulator time constant: ac8bTa=0 ac8bTa=0
Voltage regulator gain: ac8bKa = 0.84681 ac8bKa=1
Exciter time constant: ac8bTe = 1.3358 ac8bTe=1.3
Rectifier loading factor: ac8bKc = 0.56259 ac8bKc =0.55
Demagnetizing factor: ac8bKd =1.0673 ac8bKd=1.1

Figure 4.27 compares the simulation response using the estimated parameters with the
measured response.

Measured vs. Simulated Responses
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Fig. 4. 27 Final terminal output of generator when estimating AC8B excitation system (Grey - Desired curve,
Blue — Simulation output) (Unit 1)

4.5.1.2 Data Unit 2
In Figure 4.28, it shows the iterations that were taken and, cost function and step size of
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each iteration. As shown in the figure, the optimization terminated for the step size is too

small, but the cost function is small enough.
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Fig. 4. 28 Cost function and step size of each iteration when estimating AC8B excitation system (Unit 2)
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Parameters are
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Fig. 4. 29 Estimated parameters of AC8B excitation system(Unit 2)

We get: Initial value:

Voltage regulator proportional gain: ac8bKpr = 62.949 ac8bKpr = 84
Voltage regulator integral gain: ac8bKir = 5.4821 ac8bKir =5
Voltage regulator derivative gain: ac8bKdr = 9.8866 ac8bKdr =10
Lag time constant: ac8bTdr = 0.099983 ac8bTdr=0.1
Voltage regulator time constant: ac8bTa=0 ac8bTa=0
Voltage regulator gain: ac8bKa = 0.81166 ac8bKa=1
Exciter time constant: ac8bTe = 1.6154 ac8bTe=1.3
Rectifier loading factor: ac8bKc =0.57018 ac8bKc =0.55
Demagnetizing factor: ac8bKd = 1.0466 ac8bKd=1.1

Figure 4.30 compares the simulation response using the estimated parameters with the

measured response.
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4.5.2 Damped Gauss Newton

4.5.2.1 Data Unit 1
The damped Gauss Newton Method which has been implemented in MATLAB has been

used to estimate the parameters, using the same initial parameter values. In Table 9 listed the

iteration history of the operation.

Table 9 Iteration history of parameter estimation of AC8B starting from good initial parameters using DGN

7 a 4l

(Unit 1)

Norm(gc) fc Armijo Iter. Iterations
74.8970 0.0040 0 0
64.3266 0.0022 0 1
58.5847 0.0015 1.0000 2

254.7465 0.0008 0 3

212.7478 0.0008 0 4

4.2138 0.0001 0 5
9.9908 0.0001 0 6
17.6911 0.0001 3.0000 7
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This method yielded the following values:
Xmodel_GN=
ac8bKpr ac8bKir ac8bKdr ac8bTdr ac8bTa ac8bKa ac8bTe ac8bKc ac8bKd
78.8399 2.4636 37.0485 0.1638 0.0000 0.5564 1.4044 0.0301 0.0511
The method did converge to the solution and it converged rapidly. In Fig. 4.31, it shows the
final plot, in which the response of simulation got much closer to the measured output. We can
tell when from case2 and this case that, with good initial parameters, DGN works well.

cost = 8.1859e-005
107 ! ! ! ! ! ! ! : !
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Fig. 4. 31 Final terminal output of generator when estimating AC8B excitation system (Data Unit 1)

4.5.2.2 Data Unit 2
The damped Gauss Newton Method which has been implemented in Matlab has been

used to estimate the parameters, using the same initial parameter values. In Table 10 listed

the iteration history of the operation.
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Table 10 Iteration history of parameter estimation of AC8B starting from good initial parameters using DGN
(Unit 2)

Norm(gc) fc Armijo lter. Iteration
98.6792 0.0047 0 0
41.7514 0.0008 1.0000 1
5.6289 0.0003 1.0000 2
8.2688 0.0002 0 3
11.3389 0.0001 2.0000 4
12.0737 0.0001 0 5
35.5202 0.0001 0 6
5.5072 0.0001 0 7
1.9256 0.0001 5.0000 8
2.1438 0.0000 4.0000 9

This method provided the following values:
Xmodel GN=
ac8bKpr ac8bKir ac8bKdr ac8bTdr ac8bTa ac8bKa ac8bTe ac8bKc ac8bKd
85.6266 2.5912 25.3810 0.2044 0.0000 0.6209 1.8426 0.3233 0.0265
cost = 4 7020e-005
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Fig. 4. 32 Final terminal output of generator when estimating AC8B excitation system (Data Unit 2)
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4.6 Verification of AC1A excitation system model

4.6.1 About PSS/E

The PTI Power System Simulator (PSS/E) is a package of programs for studies of power
system transmission network and generation performance in both steady-state and dynamic
conditions. It is a comprehensive power system analysis tool for the modeling, design,
planning and analysis for real networks and is the choice of most energy industries globally.
[13] Detailed dynamic models of network elements are provided in PSS/E for dynamic

analysis.

4.6.2 Comparison of simulation output of AC1A excitation system in

both MATLAB and PSSE

For Progress Energy has provided us system network and PSS/E has integrated AC1A
excitation system (showing as AC1 exciter in PSS/E), with certain parameter values, it is
convenient to obtain the bump test response by simply entering the data. As the following
steps, the comparison between the simulation outputs in MATLAB and PSS/E with the same

parameters and the desired response is presented case by case.
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Casel: Using the parameters provided by MATLAB / Simulink and Optimization Toolbox

ACTA excitation system

1.05 T ! ! I I I
i i measured response
I e e i b MATLAB simulation output H
PSS/E simulation output
1.06 ; :

voltage(in per unit)

timelsec)
Fig. 4. 33 Simulation outputs of AC1A excitation system in MATLAB and PSS/E with the parameters provided
by Optimization Toolbox
Cost function of the simulation output in PSS/E is 6.9144e-004, and the one in MATLAB

is 9.6267e-004.

Case2: Using the parameters obtained in Case 1 in section 4.4.
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Fig. 4. 34 Simulation outputs of AC1A excitation system in MATLAB and PSS/E with the parameters provided
by Case 1 in section 4.4
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Cost function of the simulation output in PSS/E is 0.0010, and the one in MATLAB is

7.1094¢e-005.

Case 3: Using the parameters obtained in Case 2 in section 4.4.

T T I I I
d d measured response
MATLAEB simulation output

valtage(in per unit)

———————————————————————————————————————————————————————————————

——————————————————————————————————————————————————————————————————

2.5 3 3.5

timeisec)
Fig. 4. 35 Simulation outputs of AC1A excitation system in MATLAB and PSS/E with the parameters provided
by Case 2 in section 4.4

Cost function of the simulation output in PSS/E is 0.0029, and the one in MATLAB is
3.3027e-005.

Case 4: Using the parameters obtained in Case 2 in section 4.4.
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Fig. 4. 36 Simulation outputs of AC1A excitation system in MATLAB and PSS/E with the parameters provided
by Case 3 in section 4.4

Cost function of the simulation output in PSS/E is 9.0640e-004, and the one in MATLAB

is 9.2019e-005.

4.7 Validation of AC8B excitation system

Showing in Figure 4.40, Progress Energy provided us not only the response of bump test
when the reference voltage of excitation system jumped from 1 to 1.05, but also the one of
bump test when the reference voltage of excitation system jumped back from 1.05 to 1. Both
of the plots and data values are provided. We tried to use the first part which is the response
when the reference voltage jumped from 1 to 1.05 to estimate the parameters and use the
second part that is the response when the reference voltage jumped back from 1.05 to 1 to

validate the models.
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Data Unit 1

Figure 4.38 is the final plot when estimating the parameters of AC8B excitation system
with the first part of the data unit 1. As we can see, the curves are one on the top of the other.
The cost function it is 0.0018. Then with the parameters, a down-edge step signal is input to
the AC8B excitation system. The corresponding result is shown in Figure 4.39. We found

that the response do to match to each other very well. The cost function of it is 0.0448.

Fig. 4. 37 Data plot of responses of bump test from Progress Energy
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Fig. 4. 38 The final plot when estimating the parameters of AC8B excitation system
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Fig. 4. 39 Validation of AC8B excitation system with the down-edge bump test
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4.9 Summary

Two models have been tested, AC1A and AC8B. For the optimization part, we use both the
Parameter Estimation Toolbox in MATLAB and the proto type of Damped Gauss-Newton
method and Levenberg Marquardt method.

The first three cases are on AC1A excitation system.The first case uses the typical parameters
which turned out to be far from the solution. In case 1, we can see the Damped Gauss-Newton
method did not converge to the best solution. In case 2, we used Levenberg-Marquardt method to
get a closer point to the solution and then used Damped Gauss Newton, but it went to a wrong
direction again. Then the expert in Progress Energy played with the parameters and gave us a
closer initial guess of the parameters and the Damped Gauss Newton method worked. It
converged rapidly and provided a good solution, shown in Case 3. And, in case 4, for the AC8B
excitation system, the initial parameters are considered to be a good initial guess, so that we used
Damped Gauss-Newton directly and got a good result.

The codes are written in MATLAB language, while the simulation is run in Simulnk,
MATLAB. Therefore, one of the following task will be transplanting the program into other
software, such as C or JAVA and making sure that they can communicate with the simulation
tool well.

In term of the validation of the model, for the AC1A excitation model, we tried to
validate it by comparing the bump test response of the simulation output of MATLAB and
PSS/E. However, we found that they do not match to each other very well. And by
comparing both of the curves with the measured curve, we found that generally the

difference between the response in MATLAB and desired curve is smaller. We need to do
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more work to find the reason. On the other hand, for the AC8B excitation model, there is
some delay, but the two curve converge to the same value. Hence, more further work needs

to be done for validating the model.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

This thesis has laid out a new approach to estimate the parameters of AC excitation systems.
The parameter estimations of AC1A and ACS8B excitation system are presented as the
application of the developed program. MATLAB/Simulink is used for providing the
simulation output with certain parameters and the program of Damped Gauss-Newton and
Levernberg-Marquardt is used to do the optimization and provide a new guess of parameter
values to the simulation tool. The iteration of the program will stop when either the
difference between simulation output curve and desired curve is less than the tolerance that
has been set before or the number of iteration time has reached the decided maximum
iteration time.

There are two methods using in five different cases, MATLAB Parameter Toolbox and
MATLAB proto type codes. The previous method is convenient and user-friendly. And by
using the later one, we can choose different algorithms and make more advanced

developments.

5.2 Future work

The work showing in this thesis is just a piece of the blueprint. Many interesting and

meaningful extension issues are waiting for us.
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Transplant the optimization program to other languages such as C or JAVA

Transplant the simulation to other commercial software like PSS/E or ETAP

Have the transplanted optimization program communicate with the new simulation
software well

Validate the model with estimated parameters with other methods
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