
ABSTRACT 

DEVINENI, NARESH. Multimodel Ensembles of Streamflow Forecasts: Role of 
Predictor State in Developing Optimal Combination. (Under the direction of Sankar 
Arumugam.) 

 
Information on season-ahead streamflow forecasts is beneficial for the operation 

and management of water supply systems. Developing such long-lead (3-12 months) 

stream flow forecasts typically depend on exogenous climatic conditions particularly sea 

surface temperature (SSTs) conditions in tropical oceans. Identification of such 

conditions that influence the moisture transport into water resources regions is important 

to develop low-dimensional statistical models and to analyze climatic forecasts from 

General Circulation Models (GCMs). The main purpose of this study is to develop 

probabilistic streamflow forecasts for the Falls Lake Reservoir, NC, for the summer 

season that is critical for developing water management strategies so that the City of 

Raleigh’s water demands could be met through water conservation measures. The study 

develops two low-dimensional statistical models based on SSTs in the tropical Pacific, 

tropical Atlantic and over the NC Coast. Given that prediction from any model is bound 

to have unavoidable error/model uncertainty, the study intends to combine the forecasts 

from individual models to develop an improved multi-model forecast. For this purpose, 

the study develops an algorithm for combining forecasts from individual forecasts by 

evaluating the performance of individual forecasts contingent on climatic (predictor) 

conditions. The methodology is demonstrated through the development of multi-model 

ensembles of streamflow forecasts for the Falls Lake reservoir by combining probabilistic 

streamflow forecasts from two low dimensional statistical models. Using Rank 

Probability Score (RPS) for evaluating each year’s streamflow forecasts for the summer 



months (July-August-September) from the two low dimensional models, the 

methodology proportionately gives higher representation by drawing increased ensembles 

for a model that has better predictability under similar predictor conditions. The 

performance of the multi-model forecasts is compared with the individual model’s 

performance using various performance evaluation measures. By developing multi-model 

ensembles based on leave-one-out cross validation and split sampling, the study shows 

that evaluating the model’s performance based on the predictor state provides a better 

alternative in developing multi-model ensembles instead of combining the models purely 

based on their long-term predictability. The method is also extended to combine various 

GCMs to get improved winter (December-January-February) precipitation forecast for 

the entire US. Finally the study shows the utility of the multi model precipitation 

ensembles to develop improved streamflow forecasts for the Falls Lake through statistical 

downscaling.  
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CHAPTER 1 

INTRODUCTION 

Information on season-ahead streamflow forecasts is beneficial for operation and 

management of water supply systems and in addressing the issues of droughts and floods.  

Unless closely monitored using various sector-specific indicators, the impacts of droughts 

and floods are progressive, persistent and pervasive over a larger area. Prediction of these 

hydroclimatic extremes well in advance would help local/state water managers and 

emergency management agencies to develop appropriate contingency measures and 

alternative water management strategies. For instance, long-lead (3 months to 6 months 

ahead) prediction of drought will provide vital information in hedging the associated risk as 

well as in imposing voluntary restrictions for water supply systems. 

 

1.1 Multi Year Drought and Falls Lake Management 

Multi-year drought during 1998-2002 caused severe hardship and economic losses 

across most of North Carolina [Weaver 2005]. Several local and state-wide water supply 

systems experienced record shortages. Many communities operated under mandatory water 

conservation plan during 2001-2003 [Yonts W, 2004]. Economic losses in NC for year 2002 

were estimated to be $398 million for agriculture and $15-$20 million for municipalities 

[Hayes MJ et.al, 2004]. Figure 1.1 shows the number of communities that faced voluntary, 

mandatory and emergency restrictions during 1998-2002 multi-year drought conditions in 

NC. Though the figure shows the situation only for North Carolina, the pattern was typical 

for Raleigh and downstream of Neuse River basin during this period. As one can infer from 



 2 

figure 1.1, the severity of droughts is more pronounced during summer months (July – 

August – September). 

 

 

Figure 1.1: Recent multi-year drought conditions in NC. Figure shows the number of 

communities in North Carolina that were under voluntary, mandatory and emergency 

restrictions from 2001-2003 [Yonts W, 2004]. 

 

Falls Lake (location shown in Figure 1.2) is a multipurpose reservoir authorized for 

flood control, water supply, water quality, recreation and for fish/wildlife protection. The 

state capital Raleigh gets its supply directly from the dam. Falls Reservoir is an earthen 

structure having a top elevation of 291.5 msl and extends 28 miles upstream up to the 

confluence of Eno and Flat Rivers. The top of the conservation pool is 251.5’ msl having a 

storage capacity of 131,395 acre-feet. The flood control pool has a controlled capacity of 

221,182 acre-feet and an uncontrolled capacity of 749,010 acre-feet. Given that Falls Lake is 

the upper most reservoir in the Neuse, releases from the reservoir are crucial for meeting 

downstream water quality as well as for in stream flow maintenance. 
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Figure 1.2: Location of the Falls Lake Reservoir in Raleigh NC. 

 

1.2  Climate Forecasting and Water Supply Management 

Weather forecasts are useful in predicting significant weather patterns at near- term (1 

or 2 days). As the number of days increases, the skill of the forecast decreases. While 

weather forecasts are essential in terms of meeting the needs for peak hydro power 

generation and flood management, information on season-ahead streamflow forecasts is 

beneficial for the operation and management of water supply systems. Developing such long-

lead stream flow forecasts depends on exogenous climatic conditions, such as sea surface 

temperature conditions (SST) which could provide information on the probability of inflows 

over the upcoming season. Such reservoir inflow forecasts contingent on climatic conditions 

could be effectively utilized for operating reservoirs, and for invoking restrictions to improve 

water supply planning and management.  
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1.3  Streamflow Forecasts- Development Methodologies 

Interest in development and application of seasonal to interannual (long-lead) 

streamflow forecasts has grown tremendously over the last decade primarily due to the 

improved monitoring of Sea Surface Temperature (SST) in the tropical Pacific as well as due 

to the issuance of  operational climate forecasts from GCMs by various centers and research 

institutions on a monthly basis. The goal of this study is to develop a seasonal and long-lead 

streamflow forecasting model that predicts the flow quantile conditioned on exogenous 

climatic indices. One way to approach this problem is to take the precipitation and 

temperature from the GCM which is at a resolution of 2.5 by 2.5 degree. Utilizing GCM 

predicted fields of precipitation and temperature for developing streamflow forecasts require 

downscaling, since GCM outputs  usually are given at large (2.5° X 2.5°) spatial scales. 

Dynamical downscaling nests a regional climate model (RCM) with GCM outputs as 

boundary conditions to obtain precipitation and temperature at watershed scale (60 Km X 60 

Km). The downscaled precipitation and temperature at watershed scale could be used further 

as inputs into a watershed model to obtain seasonal streamflow forecasts [Leung et al., 1999; 

Roads et al., 2003; Seo et al. 2003, Carpenter and Georgakakos, 2001]. An alternative would 

be to use statistical downscaling, which maps the GCM precipitation and temperature 

forecasts to observed streamflow forecasts at a given point through a statistical relationship 

[Robertson et al. 2004, Landman and Goddard, 2002; Gangopathyaya et al., 2005]. A low 

dimensional statistical model without using GCM outputs by relating the observed 

streamflow to identified climatic precursors (e.g., El Nino Southern Oscillation (ENSO) 

indices) that influence the streamflow potential at the given site can also be developed 

[Hamlet and Lettenmaier, 1999; Souza and Lall, 2003; Sankarasubramanian and Lall, 2003]. 
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1.4  Importance of Multi Model Streamflow Forecasts 

 

Seasonal streamflow forecasts obtained using the above mentioned  approaches are 

better represented probabilistically in the form of ensembles to represent the uncertainty, 

particularly in quantifying the effects of both changing boundary conditions (SST) and initial 

conditions (atmospheric and land surface conditions). Apart from these uncertainties 

resulting from initial and boundary conditions, the model that is employed for developing 

streamflow forecasts could also introduce uncertainty in prediction. In other words, even if 

streamflow forecasts obtained by dynamical downscaling are forced with observed boundary 

and initial conditions (perfect forcings), it is inevitable that the simulated streamflows will 

have uncertainty in prediction, which is otherwise known as model error/uncertainty. A 

common approach to reduce model uncertainty is through refinement of parameterizations 

and process representations in the considered model, which could be either GCMs or RCMs 

or hydrologic models. Given that developing and running GCMs is time consuming, recent 

efforts have focused on reducing the model error by combining multiple GCMs to issue 

operational climate forecasts [Rajagopalan et al., 2002; Robertson et al., 2004; Barnston et 

al., 2003; Doblas-Reyes et al., 2000; Krishnamurthi et al., 1999]. Similarly, studies have also 

shown that developing multimodel forecasts by combining different low dimensional 

streamflow forecasting models show considerable improvement over the performance of 

individual models [Regonda et al., 2006]. Thus, combining streamflow forecasts from 

multiple models seems to be a good alternative in improving the overall predictability of 

seasonal streamflow forecasts and reducing the overall error in prediction. One of the main 

objectives of this study is to develop and apply a new scheme for combining forecasts from 

multiple models, which could be either streamflow forecasts from low dimensional models or 
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GCM forecasts available at large spatial scales, by assessing the model’s predictability 

conditioned on the predictor state. The basic reason leading to better performance of multi-

model ensembles is due to the incorporation of realizations from various models, thereby 

increasing the number of ensembles to represent the conditional distribution of climatic 

attributes. Recent studies on improving seasonal climate forecasts using optimal multi-model 

combination techniques assign weights for a particular model based on its ability to predict 

the climatic variable over the entire period for which the GCM simulations are available 

[Rajagopalan et al., 2002; Robertson et al., 2004; Barnston et al., 2003]. Given that each 

model’s predictability could also vary depending on the state of the predictor (SSTs for 

GCMs), a new methodology for multi-model ensembling that assigns weights to each model 

by assessing, contingent on the predictor state, the skill of the models is developed. The 

proposed methodology is employed upon two low dimensional seasonal probabilistic 

streamflow forecasting models that primarily use tropical Pacific and Atlantic SST 

conditions to develop multi-model ensembles of streamflow forecasts. The methodology is 

also extended to combine three precipitation forecasts from different GCMs for DJF 

(ECHAM 4.5 developed by Max Plank Institute, CCMv6 developed by NCAR, National 

Center for Atmospheric Research and COLA, Center for Ocean-Land-Atmosphere Studies) 

to develop a new multi model precipitation forecasts  that improve the predictability over the 

entire USA. This is further employed to develop streamflow forecasts for the Falls Lake 

reservoir by statistical downscaling. 
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1.5 Outline of the Thesis 

Chapter 2 provides a brief background on multi-model ensembling techniques that is 

currently pursued in the literature for developing operational climate and seasonal 

streamflow forecasts. Chapter 3 discusses  two low dimensional streamflow forecasting 

models that were employed for developing probabilistic streamflow forecasts for predicting 

the summer flows (July – August – September, JAS) into Falls Lake, Neuse river basin NC. 

Chapter 4 presents the proposed multi-model ensembling scheme that assesses the skill of the 

model contingent on the predictor state. In chapter 5 the proposed multi-model ensembling is 

employed to develop improved probabilistic streamflow forecasts for predicting JAS inflows 

into the Falls Lake, NC. Chapter 6 discusses the application of the proposed methodology for 

combining precipitation from multiple GCMs and applies it for downscaling to streamflow 

forecasts into Falls Lake during December – January – February, DJF. Finally, chapter 7 

summarizes the findings of the study along with potential applications for combining other 

environmental simulation models.     
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CHAPTER 2 

LITERATURE REVIEW 

Hydroclimatic extremes like droughts and floods are generally associated with low 

frequency climate fluctuations like El Niño Southern Oscillations (ENSO) and decadal and 

interdecadal climatic modes such as Pacific Decadal Oscillation (PDO) and North Atlantic 

Oscillation (NAO). ENSO is a quasi oscillatory mode of coupled ocean atmosphere 

interactions in the tropical Pacific with a characteristic narrow band width of 2 to 7 years. 

These climate modes govern the interannual variability of climate over most of North 

America. The following section details the work done in understanding these climatic modes 

and its teleconnection to the climate variables like precipitation and streamflows.  

 

2.1  Sea Surface Temperature (SST) – Streamflow Teleconnection 

Recent progress in understanding ocean-atmosphere interactions show that there are 

well organized modes of interannual and interdecadal variability in climate that modulate the 

dominant moisture delivery pathways and has significant projections on the continental and 

regional scale rainfalls and streamflow patterns. [Trenberth and Guillemot 1996; Cayan et al., 

1999; Dettinger et al., 2000b; Guetter and Georgakakos 1996; Piechota and Drucap, 1996]. 

Efforts in understanding the linkages between exogenous climatic conditions such as tropical 

sea surface temperature (SST) anomalies to local/regional hydroclimatology over the U.S. 

have offered the scope of predicting the rainfall/streamflow potential on a season ahead and 

long-lead (12 to 18 months) basis [Hamlet and Lettenmaier, 1999; Georgakakos, 2003; Wood 

et al., 2002; Wood et al., 2005]. Interannual modes such as El Nino-Southern Oscillation 

(ENSO) resulting from anomalous Sea Surface temperature conditions in the tropical Pacific 
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Ocean primarily determine the interannual variability in precipitation over North and South 

America [Rasmusson and Carpenter 1982, Ropeleweski and Halpert, 1987]. Studies have 

shown that ENSO conditions also influence anomalous SST conditions in the tropical 

Atlantic and Indian Ocean, hence affecting global climate [Enfield 1989]. There are also 

other dominant decadal and interdecadal climatic modes such as Pacific Decadal Oscillations 

(PDO) and North Atlantic Oscillations (NOA) that putatively govern the interannual 

variability in climate over North America [Sankarasubramanian and Lall, 2003]. 

  

During the two phases of ENSO, El Nino and La Nina, anomalous SST conditions in 

the tropical Pacific are communicated to the extra-tropics through ocean atmospheric 

circulation in the form of upper tropospheric divergence anomalies. These translate into a 

modulation of storm tracks over the extra tropics and exhibit teleconnections influencing the 

distribution of temperature and precipitation across the globe [Ropeleweski and Halpert, 

1987]. Cayan et al. [1999] showed that the frequency distribution of daily winter 

precipitation and winter spring daily streamflow in the western United States exhibit strong 

and systematic responses to the two phases of ENSO. Pizzaro and Lall [2002] showed that 

the annual maximum peak over the western United States is significantly correlated to the 

modes of ENSO and PDO. Jain and Lall [2001] identified space time frequency patterns that 

connect floods at multiple locations in the western United States with concurrent hemispheric 

SST and sea level pressure patterns. Most of the studies focusing on climatic variability over 

South Eastern US have shown that warm tropical Pacific conditions lead to below normal 

precipitation during summer and above-normal precipitation during winter [Schmidt et al., 

2001; Lecce, 2000; Hansen et al., 1998; Zorn and Waylen, 1997]. Studies have also reported 
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ENSO-related teleconnection between precipitation and temperature during both winter and 

summer seasons over NC [Roswintiarti et al., 1998; Rhome et al., 2000]. 

 

 Thus, associating seasonal to interannual variations in streamflow variability 

with low frequency climatic variability will provide useful information in developing season 

ahead streamflow forecasts contingent on climatic conditions. In this study, we develop 

season ahead streamflow forecasts for the Falls Lake using two low dimensional models and 

then combine them to develop multi model ensembling streamflow forecasts for  Falls Lake. 

The next section provides a brief background on multi model ensembling techniques that are 

currently pursued in the literature for developing operational climate and streamflow 

forecasts. 

 

2.2 Model uncertainty and Multi-Model combination methods 

Efforts to address model uncertainty through combining outputs from multiple 

models have been investigated in climate and weather forecasting [Doblas-Reyes et al., 2000; 

Rajagopalan et al., 2002; Krishnamurthi et al., 1999] and in streamflow simulation through 

calibration [Boyle et al., 2000; Georgakakos et al., 2003; Marshall et al., 2006]. Perhaps the 

simplest approach to develop multi-model forecasts is to pool the predicted values or the 

ensembles from all the models, thus giving equal weights for all the models [Palmer et al., 

2000].  Recent research from PROVOST (PRediction Of climate Variations On Seasonal to 

interannual Time-scales) shows that multi-model ensembles of climate forecasts provided 

improved reliability and resolution than the individual model forecasts [Palmer et al., 2000; 

Doblas-Reyes et al., 2000]. Though the improved predictability of multi-model ensembles 
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partly arise from increase in the sample size, studies have compared the performance of 

single models having the same number of ensembles as the pooled multi-model ensembles 

and have shown that multi-model approach naturally offers better predictability because of 

the ability to incorporate outcomes from multiple models, thereby encompassing underlying 

different process parameterizations and schemes [Hagedorn et al., 2005]. Since the advantage 

gained through multi-model ensembling is a better representation of conditional distribution 

of climatic attributes, it is important to evaluate probabilistic forecasts developed from multi-

model ensembles through various performance evaluation measures and by analyzing the 

predictability for various geographic regions [Doblas-Reyes et al., 2005]. Recent studies have 

also considered climatology as one of the forecasts in developing multi-model ensembles 

[Rajagopalan et al., 2002; Robertson et al., 2004]. 

  

 Another approach that is currently gaining attention is to develop a strategy for 

combining multi-model ensembles using either optimization methods [Rajagopalan et al., 

2002; Robertson et al., 2004] or by statistical techniques [Krishnamurthi et al., 1999]. 

Incorporation of multi-model ensembling techniques to develop operational climate forecasts 

has also been shown to improve the forecast reliability resulting in better correspondence 

between observed relative frequency and their forecast probability [Barnston et al., 2003]. 

Under optimal combination approach, weights are obtained for each model as a fraction, such 

that the chosen skill/performance measure of the multi model ensembles constituted using 

these fractions is maximized [Rajagopalan et al., 2002; Robertson et al., 2004; Regonda et 

al., 2006]. The easiest approach to obtain weights for multi-model ensembles is to give a 

higher weight for a model that has lower forecast error (such as RMSE). Methods that 
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employ statistical methods such as linear regression has also been employed so that the 

developed multi-model forecasts has better skill than single models [Krishnamurthi et al., 

1999]. However, application of optimal combination approach using either statistical or 

optimization techniques require observed climatic or streamflow attributes at a particular grid 

point or station. Studies have also used advanced statistical techniques such as canonical 

variate method [Mason and Mimmack, 2002] and Bayesian hierarchical method [Stephenson 

et al., 2005] for developing multi-model combinations. Hoeting et al., [1999] show that the 

mean of the posterior distribution of the predictand obtained by averaging over all the models 

with its probability of occurrence provides better predictive ability (measured by logarithmic 

scoring rule) than the mean of the posterior distribution of the predictand obtained from a 

single model. 

 

 The multi-model ensembling method proposed here is motivated by the fact that the 

skill of the GCM forecasts or downscaled streamflow forecasts depends on the predictor 

conditions that determines the conditional distribution of the hydroclimatic attributes. Studies 

focusing on the skill of GCMs show that the overall predictability of GCMs is enhanced 

during ENSO years over North America [Brankovic and Palmer, 2000; Shukla et al., 2000; 

Quan et al., 2006]. Similarly, studies have also shown the importance of various oscillations 

or climatic conditions in influencing the predictability of GCMs over various parts of the 

globe. For instance, Giannini et al., [2004] show that tropical Atlantic variability (TAV) 

plays as a preconditioning state in the development of ENSO related teleconnection in 

determining GCM’s ability to predict rainfall over North East Brazil, which is a region 

shown to have significant skill in seasonal climate prediction. [Moura and Shukla, 1981; 
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Ropelewski and Halpert, 1987] and references therein. Giannini et al., [2004] show that the 

predictability of Nordeste rainfall using CCM3 GCM [Kiehl et al., 1998] is poor particularly 

if the North Atlantic SSTs exhibit opposite anomalous conditions to the tropical Pacific 

SSTs.  More precisely, with positive SST anomalies in tropical Pacific (warm) and negative 

SST anomalies (cold) in North Atlantic as well as under cold tropical Pacific (negative SST 

anomalies) and warm North Atlantic conditions (positive SST anomalies), the predictability 

of Nordeste rainfall by CCM3 is negative. Naturally, under these predictor conditions, one 

would prefer to use climatology instead of climate forecasts, since they are negatively 

correlated with the observed rainfall. Several studies show that the predictive ability of 

GCMs is dependent highly on ENSO conditions [Quan et al., 2006 and Brankovic and 

Palmer, 2000; Shukla et al., 2000]. Thus, for post-processing of individual model’s climate 

forecasts to develop multi-model ensembles, one needs to assess the skill of the individual 

model ensembles based on the predictor state. By considering climatology as one of the 

candidate forecasts, we develop a multi-model ensembling scheme that formally assesses and 

compares the skill of the competing models under a given predictor conditions so that lower 

weights are assigned for a model that has poor predictability under such conditions. The next 

chapter describes the two forecast models that were developed for summer months of July-

August-September using both leave-one-out cross validation and adaptive forecasting 

methods.  
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CHAPTER 3 

SEASONAL STREAMFLOW FORECASTS DEVELOPMENT FOR THE 

FALLS LAKE 

Development of probabilistic seasonal streamflow forecasts from two different 

models based on climate information for the Falls Lake, Neuse river basin in North Carolina 

(NC) is the first objective of this study. Streamflow forecasts based on two low dimensional 

statistical models, one based on parametric regression approach and another using a 

nonparametric approach based on resampling [Souza and Lall, 2003] were developed. A brief 

baseline information about the Neuse basin and its importance to the water management of 

the research triangle area of NC is provided in the next section.  

 

3.1 Hydroclimatology of Neuse Basin 

Falls Lake is a multipurpose reservoir authorized for flood control, water supply, 

water quality, recreation and for fish/wildlife protection. Given that the water demand in the 

Triangle area has been growing rapidly in the last decade, multi-year droughts (1998-2002) 

and ensued restrictions has increased the importance of long-lead forecasts towards better 

management of water supply systems. Observed streamflow information at Falls Lake is 

available from 1928 to 2002 from United States Army Corps of Engineers (USACE) 

(http://epec.saw.usace.army.mil/fall05.htm). Figure 3.1 provides the seasonality of inflow 

into Falls Lake. Typically, 46% of the annual inflow occurs during January – February – 

March (JFM), and the low flows during July – August – September (JAS) contribute 14% of 

the annual inflows. From a water management perspective, developing streamflow 
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forecasting models for the low flow season is important since maintaining the operational 

rule curve of 251.5’ is challenging during those months.  
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Figure 3.1: Seasonality of Neuse River Basin 

 

3.2 Seasonal Streamflow Forecasts Development – Individual Models 

The key objective is to estimate the conditional distribution of streamflows, f(Qt|Xt),  

that would occur in the upcoming season based on the climatic conditions Xt using the 

chosen statistical model.  The estimate of the conditional distribution of streamflow forecasts 

is m

tiQ ,  with‘t’ denoting the time, ‘i’ representing the ensemble and ‘m’ denoting the model. 

Based on the observed streamflow, Qt and the predictors [ ]ptttt xxx L21=X , (Xt could 

be SST conditions or principal components of SST over a particular domain such as tropical 

Pacific) where p is the number of predictors, the conditional distribution of streamflows 
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could be estimated through a parametric approach which explicitly specifies a functional 

form (e.g., log normal) for the conditional distribution. The other method is to use a data 

driven approach which estimates the conditional distribution by using nonparametric 

techniques such as resampling. For the parametric approach, a regression model by assuming 

the flows follow a lognormal distribution is employed. The estimate of the conditional mean 

and standard deviation of the lognormal parameters are obtained from the regression estimate 

and from the point forecast error respectively, which is computed based on the variance of 

the residuals. Using the lognormal parameters of conditional mean and conditional standard 

deviation, ensembles from lognormal distribution are generated and are transformed back 

into the original space to represent the conditional distribution of flows, m

tiQ , .  The other 

approach is the semi-parametric resampling algorithm reported by Souza and Lall [2003].  

The main advantage of this approach is that it does not specify any functional form for 

estimating the conditional distribution, thus allowing the data to describe the conditional 

distribution by considering climatic conditions that are similar to current conditions.  

 

3.3 Predictor Identification 

Developing season-ahead reservoir inflows requires identification of predictors which 

could be either SSTs or atmospheric conditions, such as mean sea level pressure. Since long 

records of streamflow, SSTs and atmospheric conditions are available, statistical approaches 

that relate “at-site” hydrology to large scale ocean and atmospheric state variables could be 

developed for forecasting reservoir inflows [Sharma 2000]. Hence, the first step is to identify 

the location of predictors that influence the streamflow potential into Falls Lake. To identify 
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predictors that influence the streamflow into Falls Lake during JAS, SST conditions during 

April-June (AMJ) which could be obtained from IRI data library were considered.  

(http://iridl.ldeo.columbia.edu/expert/ SOURCES/.KAPLAN/.EXTENDED/.ssta).  

Predictors are identified using Spearman rank correlation measures which are more 

powerful in detecting non-linear dependencies between the predictor and the predictand. 

Figure 3.2 shows the spearman rank correlation between the observed streamflow during JAS 

at the Falls Lake and the SST conditions during AMJ. From the figure 3.2, we see clearly that 

SST over ENSO region (170E - 90W and 5S - 5N), the North Atlantic region (80W- 40W 

and 10N - 20N), and the NC Coast region (75W- 65W and 22.5N- 32.5N) influence the 

summer flows into Falls Lake. An important note is that SST regions whose correlations are 

significant and greater than the threshold value of  3/96.1 −± n   where ‘n’ is to the total 

number years (n=75 years for Falls Lake) of observed records used for computing the 

correlation were considered. Figure 3.2 also shows the 3 month lag correlation between the 

identified predictors and the streamflow at the Falls Lake reservoir. The negative correlation 

indicated in figure 3.2 suggests that above normal conditions in the Sea Surface Temperature 

in the tropical Pacific will influence  below normal conditions in the Falls Lake  and vice 

versa.  

3.4 Dimension Reduction – Principal Component Analyses on SSTs 

 

Given that SSTs at various grid points exhibit correlation, it is important to identify 

dominant components so that it explains the maximum variance exhibited by SSTs. The 

dimension reduction or identifying dominant components is done by performing Principal 

Component Analysis on the predictor data to get principal components that are a linear 

combination of the initial values. 



 18 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Predictor Identification. Figure shows the SST regions that influence the 

streamflow into the Falls Lake. SST regions that has significant correlation at 95% 

confidence interval (> 0.22 or < -0.22) are only considered for model development. Also 

shown in the figure is the 3 month lag correlation of the identified predictors and the 

streamflows at the Falls Lake. 

 

Principal Components Analysis (PCA) is a multivariate procedure which rotates the 

data such that maximum variability is projected onto the axes. Essentially, a set of correlated 

variables are transformed into a set of uncorrelated variables which are ordered by reducing 

the variability. The uncorrelated variables are linear combinations of the original variables, 

and the last of these variables can be removed with minimum loss of real data. The first 
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principal component is the combination of variables that explains the greatest amount of 

variation in the original predictor. The second principal component defines the next largest 

amount of variation that is remaining and is independent to the first principal component. 

There can be as many possible principal components as there are variables. In general the mth 

principal component is the weighted linear combination of the X’s or the predictor data set. 

 

Principal component analysis generally gives three outputs, principal components 

(scores), Eigen vectors (loadings), Eigen values (% variance explained). The first few 

components explain most of the variance of the original data. The first few eigenvectors will 

point in the directions where the data jointly exhibits large variations. The remaining 

eigenvectors will point to directions where the data jointly exhibits less variation. For this 

reason, it is often possible to capture most of the variation by considering only the first few 

eigenvectors. The Eigen vectors are useful to locate the source of variability. The variance of 

the mth principal component is the mth eigenvalue. Therefore, the total variation exhibited by 

the data is equal to the sum of all eigenvalues. The Eigen values are useful to choose the 

dominant principal components. A Scree Plot is a simple line segment plot that shows the 

fraction of total variance in the data as explained by each component. Mathematics of PCA 

and the issues in selecting the number of principal components using scree plot could be 

found in Dillon and Goldestein [1984], Wilks [1995] and Von storch and Zweiers [1998].  

 

Given that the SST fields are correlated to each other, Principal Components Analysis 

(PCA) to identify the dominant modes in the SST field is applied. PCA, also known as 

empirical orthogonal function (EOF) analysis, on the predictors (SST fields) could also be 
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performed by singular value decomposition (SVD) on the correlation matrix or covariance 

matrix of the predictors. Since PCA is scale dependent, loadings (Eigen vectors or EOF 

patterns) obtained from covariance matrix and correlation matrix are different. Importance of 

each principal component is quantified by the fraction of the variance the principal 

component represents with reference to the original predictor variance, which is usually 

summarized by the scree plot. Figure 3.3 shows the percentage of variance explained by each 

principal component, and the first two components account for 72% of the total variance 

shown in the predictor field in Figure 3.2. Based on the eigenvectors obtained from PCA, the 

first component representing the ENSO region has correlation of 0.36 with observed 

streamflow and the second component representing the Atlantic has a correlation of -0.23 

(significance level +/- 0.22 for 75 years of record) with the inflows at Falls Lake. We employ 

these two principal components to develop seasonal streamflow forecasts for JAS for the 

Falls Lake. 

 

3.5 Performance of Individual Models 

Parametric approach assumes one single model for the entire data, whereas non 

parametric model is a data driven approach which assumes a particular form locally.  For 

parametric approach, we employ simple regression approach. For non parametric approach, 

we used a resampling approach. Both models are tested and validated using the leave-one-out 

cross validation and split sampling validation. Forecasts from both the models are verified 

using various statistics, such as root mean square error, correlation, average RPS and average 

RPSS. 
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Figure 3.3: Scree plot of the principal components of the SSTs in the three regions (in Figure 

3.2) indicating the % variance explained by each component. The dominant zone of each PC 

obtained based on eigen vectors of the PC is also indicated. 

 

By utilizing the two principal components from PCA, both leave-one-out cross 

validated retrospective streamflow forecasts and adaptive streamflow forecasts for the season 

JAS are developed using the two mentioned statistical models. Leave-one-out cross 

validation is a rigorous model validation procedure that is carried out by leaving out the 

predictand and predictors from the observed data set (Qt, Xt, t =1, 2, n) for the validating year 

and the model is developed using the rest of the (n-1) observations. For instance, to develop 

retrospective leave-one-out forecasts from parametric regression, a total of ‘n’ regression 

models are developed by leaving out the observation in each validating year. By employing 
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the developed forecasting model with (n-1) observations, the left out observation (Q-t, with -t 

denoting the left out year or the validating year) is predicted by using the state of the 

predictor/principal components (X-t,) in the validating year. To obtain adaptive streamflow 

forecasts, we develop the forecasting models based on the observed streamflow and the two 

dominant principal components from 1928-1987 and employ the developed model to predict 

the streamflow for a 15 years period from 1988-2002.  

 

Table 3.1 gives various performance measures of the probabilistic forecasts from both 

models. Figure 3.4 shows the adaptive streamflow forecasts for both parametric regression 

and the semi-parametric models. The correlation between the observed streamflows and the 

ensemble mean of the cross validated forecasts for resampling and regression approach is 

0.40 and 0.35 respectively, which is significant for the 75 years of observed record. From 

Table 3.1, we infer that the correlation between the observed streamflows and the ensemble 

mean of the adaptive forecasts is 0.55 and 0.65 for resampling (Figure 3.4a) and regression 

(Figure 3.4b) approach, respectively. Correlations are significant at 95% confidence level 

( 51.0± ).  Table 3.1 also shows other performance evaluation measures such as RPS, RPSS 

and Root Mean Square Error (RMSE) for adaptive and leave-one-out cross validated 

forecasts for both models. Since the correlations between observed and ensemble mean is 

significant for both models under leave-one-out cross validated forecasts and adaptive 

forecasts, we employ both parametric and nonparametric approaches for developing multi-

model ensembles for the Falls Lake system.  
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Table 3.1: Performance of individual models forecasts under leave-one-out cross validated 

forecasts and adaptive forecasts. The performance evaluation measures are calculated based 

on 75 years of data for leave-one-out cross validated forecasts and 15 years for adaptive 

forecasts from 1987-2002. 

 

Correlation RMSE RPS RPSS Correlation RMSE RPS RPSS

Resampling 0.40 423.03 0.43 -0.03 0.55 482.98 0.43 0.00

Regression 0.35 430.93 0.56 -0.30 0.66 477.82 0.61 -0.07

Leave1-out Cross validated (1928-2002) Adaptive Forecasts (1988-2002)
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Figure 3.4: Performance of individual models in predicting observed streamflows during 

1988-2002 for the Falls Lake. 3.4(a) Semi-parametric resampling model of De Souza and 

Lall [2003] 4(b) parametric regression. Forecasts from both the models were obtained by 

using the observed streamflows during JAS and predictors (PC1 and PC2 in figure 3.3) for 

the period 1928-1987.  

a 
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CHAPTER 4 

MULTI-MODEL ENSEMBLING BASED ON PREDICTOR STATE: 

METHODOLOGY DEVELOPMENT 

 Error resulting from climate forecasts is primarily of two types: (a) Uncertainty in 

initial and boundary conditions and (b) Model error [Hagedorn et al., 2005]. The first source 

of error is typically resolved by representing the uncertainties in initial and boundary 

conditions in the form of ensembles. The second source of error arises from process 

representation, which could be reduced by combining forecasts from multiple models which 

incorporate various process representation and model physics to develop an array of possible 

scenarios of outcomes. Developing multi-model ensembles combines these two strategies 

resulting in reducing both sources of error. However, even after developing multi-model 

ensembles could result with observations occurring outside the realm of these models (see 

Figure 8 in Hagedorn et al., 2005).  Similarly, the performance of individual models and 

multi-model ensembles may be poor during certain boundary/SST conditions owing to 

limited relationship between SST conditions and precipitation/temperature over a particular 

location/grid [Goddard et al., 2003]. Under these climatic conditions with all models having 

poor predictability, it may be useful to consider climatology as a forecast.  

 

4.1 Motivation 

Figure 4.1 demonstrates the motivation behind the proposed methodology by 

employing a mixture of regression models that depends on two predictors with the dominant 

predictor (X1) influencing the predictand only if it crosses a certain threshold (|X1| > 1.0). 

Realizations shown in Figure 4.1a are generated with the predictand y depending on two 
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predictors, ),( 21 ttt
xxX = with x1 influencing the predictand only if the absolute value of the 

predictor x1 is greater than the threshold value of 1. The underlying model is yt = 2x1t+0.5x2t 

+εt if |x1t| > 1 and y1t = 0.25x2t +εt if |x1t| ≤ 1.  The noise term εt follows i.i.d with a normal 

distribution having zero mean and a standard deviation of 2. The predictors follow uniform 

distribution between -2 to 2.  A total of n = 1000 realization is generated from this mixture 

model setup which could be analogously compared to two predictors as anomalous SST 

conditions influencing the local hydroclimatology. The correlation between y and x1 is 0.671 

and y and x2 is 0.134, which would suggest one to give higher importance to predictor x1. 

Figure 4.1b shows the skill (correlation) of the fitted regression model between y and x1 

against x1. To evaluate the correlation between y and the fitted values (y on x1) against x1, we 

consider a bandwidth of 1 on x1 such that the fitted values of y obtained using the predictor 

x1 within that bandwidth are only considered. Note the poor skill between predictand y and 

the fitted values of y during x1t= -0.5 to 0.5.   

 

Developing a model based on the dominant predictor alone would result in poor 

prediction particularly when |X1| is below the threshold value (Figure 4.1b). Thus, our 

approach of multi-model ensembling gives emphasis for assessing the model performance 

based on the boundary conditions, the predictor state. For instance, if the predictability of all 

models is really bad during a particular condition, then one would replace model forecasts 

with climatology by assigning higher weights for climatological ensembles. The following 

section formally describes the multi-model ensembling procedure that could be employed 

upon a given set of forecasts from multiple models and the predictors that influence those 

forecasts. 
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Figure 4.1: Importance of assessing the skill of the model from the predictor space. 
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4.2 Multi-Model Ensembling based on Predictor State Space – Algorithm 

Development 

 Let us suppose that we have streamflow forecasts, m

tiQ , , where m=1,2..,M denoting the 

forecasts from ‘M’ different models,  i = 1,2, ..N representing ensembles of the conditional 

distribution of streamflows with ‘N’ denoting the total number of ensembles under each 

model, and ‘t’ denoting the time (season/month) for which the forecast is issued. Assuming 

that we have a total of  t= 1,2,...n  years for which the forecasts, m

tiQ , , are available and the 

models also have a common predictor vector, Xt, which influences the conditional 

distribution of hydroclimatic attributes represented using the ensembles. Figure 4.2 provides 

a flow chart indicating the steps in implementing the proposed multi-model ensembling 

conditioned on the predictor state. It is important that the proposed approach requires at least 

one common predictor among the ‘M’ competing models. Even if the models do not have a 

common predictor particularly in the context of GCM forecasts, one could use the leading 

principal component of the underlying boundary conditions (for instance, SSTs) as the 

common predictor across all the models. As mentioned before, developing multi-model 

ensembles based on optimal combination method requires the observed climatic/streamflow 

variables Ot, using which one could assess the skill of the probabilistic forecasts using Rank 

Probability Score (RPS) [Murphy 1970, Candille and Talagrand 2005, Anderson, 1996] to 

obtain the weights wt
m.  It is important to note that RPS is evaluated each year using the 

ensembles (N = 1000) representing the conditional distribution, which is quite different from 

correlation for which one needs a minimum of two years of forecasts. The Rank Probability 

Skill Score (RPSS) represents the level of improvement of the RPS in comparison to the 



 29 

reference forecast strategy which is usually assumed to be climatology. Appendix A provides 

details on obtaining RPS and RPSS for a given probabilistic forecasts.   

 Let us denote the RPS and RPSS of the probabilistic forecasts, m

tiQ , , for each time step 

as m

tRPS  and m

tRPSS ,respectively. Our approach to assess the skill of the model is its ability 

to predict under similar climatic conditions or the predictor state, which could be identified 

by choosing a distance metric that computes the distance between the current predictor state, 

Xt ,and the historical predictor vector, X.  One could use simple Euclidean distance or a more 

generalized distance measure such as Mahalonobis distance metric, which is more useful if 

the predictors’ exhibit correlation among them. Compute the distances dtl between the current 

conditioning state Xt, and the historical predictor vector Xl as 

 )(ˆ)(d 1

lt

T

lttl
XXXX −∑−= −      ... (1) 

where ∑̂ denotes the variance-covariance matrix of the historical predictor vector X. One can 

note that if l=t, the distance metric, dtl, reduces to zero.  Using the distance vector d, the 

ordered set of nearest neighbor indices J can be identified.  Thus, the jth element in the 

distance vector metric provides the jth closest Xl to the current state Xt. Using this 

information, we assess the performance of each model in the predictor state space as 

  ∑
=

=λ
K

j

m

jRPS
K 1

)(

m

K t,

1
      ... (2) 

where RPS(j) denotes the skill of the forecasting model for the year that represents the jth 

closest condition (obtained from J) to the current condition Xt. In other words, 
m

K t,λ  

summarizes the average skill of the forecasting model, m, by choosing ‘K’ years that 

resemble very similar to the current condition, Xt. Using 
m

K t,λ  obtained for each model at 
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each time step, we obtain the weights for multi-model ensembling so that the models with 

better performance during a particular climatic conditions needs to be represented with more 

number of ensembles in comparison to a model with lower predictability under those 

conditions.   It is important to note that RPS is a measure of error in predicting the 

probabilities and it is evaluated based on the entire ensembles that represent the conditional 

distribution of streamflows. 

 

∑
=

λ

λ
=

M

m

m

Kt

m

Ktm

Ktw

1

,

,

,

/1

/1
       ... (3) 

 

 If m

K t,λ  is zero for a  subset of models M1≤ M, then the weights m

Ktw ,  are distributed 

equally between the models for which m

K t,λ  is zero with the rest of models’ weights being 

equal to zero. The multi-model forecasts for each time step could be developed by drawing 

Nwm

Kt *, ensembles from each model to constitute the multi-model ensembles. Thus, one has 

to specify the number of neighbors ‘K’ to implement this approach. It is also important to 

note that choosing fewer ‘K’ relates to evaluating the model performance over few years of 

similar conditions, which does not imply that the forecasts are developed from the 

predictands and predictors based on the identified similar conditions. In fact, m

tiQ ,  are 

forecasts developed based on the observed values of the predictor and predictand over a 

particular training period (for leave-one-out cross validated forecasts, we use ‘n-1’ years of 

record as training period; for adaptive forecasts, we use 60 years of observed record from 

1928-1987 as the training period).  
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Thus, we use the weights, m

Ktw , , only to draw the ensembles from m

tiQ , , which is in fact 

developed based on the chosen training period in developing the forecasts.  The simplest 

approach for selecting the number of neighbors is to find a fixed ‘K’ that provides improved 

predictability using multi-model ensembles over ‘n’ years of forecasts. We evaluate two 

different methods in choosing the number of neighbors ‘K’ to develop multi-model 

ensembles. The performance of multi-model ensembles is also compared with individual 

model’s predictability using various verification measures such as average RPS, average 

RPSS, anomaly correlation and root mean square error (RMSE). To apply the same 

algorithm for kt that gives the minimum RPS from the multi-model ensembles, compute  

MM

ktRPS ,
 for k=1, 2, n-1 and choose k that corresponds to minimum MM

ktRPS ,
. Thus, by computing 

MM

ktRPS ,
 for all the data points, we choose the number of neighbors, kt that has the 

minimum MM

ktRPS ,
. 
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Figure 4.2: Flowchart of the multi-model ensembling algorithm described in section 4.2 for 

fixed number of neighbors ‘K’ in evaluating the model skill from the predictor state space.  

 

 

Select forecasts, m
tiQ ,
 available from m=1, 2…, M models, with t=1, 2…n number of years  

of forecasts available and i=1,2…,N representing the ensembles for each year. 

Obtain Rank Probability Score, m
tRPS for each year for each model (See, Appendix A) 

Based on the common vector of predictors for all models, X, compute the distance between the 
current point, Xt, and the rest of the points Xl, where l=1, 2…, n 

 
Choose the number of neighbors, K, in the predictor state space and find the average RPS score 

for K neighbors using (2): ∑
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To represent the conditional distribution (Qt/Xt) using N ensembles from ‘M’ models, draw 

randomly, NwN m

Ktmt *,, =  where N = ∑
=

M

m

m

Kt Nw
1

, *  

Get the skill of the multi-model forecasts MM

KtRPS ,
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CHAPTER 5 

MULTIMODEL ENSEMBLES OF STREAMFLOW FORECASTS FOR 

THE FALLS LAKE 

In this chapter, we apply the multi-model ensembling algorithm discussed in section 

4.2 to combine the forecasts from individual models along with climatological ensembles. 

The motivation in considering climatology as one of the candidates is upon the presumption 

that if the observation falls outside the scope of all the models under certain predictor 

conditions, then climatology should be preferred over individual model forecasts. Recent 

studies have also shown that a two step procedure of combining first each individual model 

forecasts separately with climatology and then combining the resulting ‘M’ combinations at 

the second step to develop the final, single multi-model ensembles [Robertson et al., 2003; 

Goddard et al., 2003].  Combining individual models with climatology at one step results 

with one model getting all the weight (equal to one) leaving the rest of the models’ weights 

to zero [Rajagopalan et al., 2002; Robertson et al., 2004]. We also perform a two step 

procedure in developing multi-model ensembles by first combining the probabilistic forecasts 

from resampling model (MM1 in Table 5.1) and regression model (MM2 in Table 5.1) 

separately with climatology and then the resulting forecasts from two combinations  are 

combined to develop the final multi-model forecasts (MM3 in Table 5.1).  Further, we also 

choose the number of neighbors K in equation (2) by two different methods to identify the 

relevant predictor conditions: (a) by selecting a fixed ‘K’ that corresponds to improved 

multimodel forecasts over the validating period, and (b) varying Kt each year such that the 

selected ‘Kt’ corresponds to the minimum RPS that could be obtained from multi-model 

forecasts.  The first method of choosing fixed ‘K’ is one of the most commonly followed 
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procedure in developing semiparametric and nonparametric models [Sankarasubramanian 

and Lall, 2003]. By varying Kt, we plan to investigate the role of choosing different Kt in 

developing multi-model ensembles and their relation to predictor conditions. 

 

Table 5.1: Performance of individual model forecasts and various multi-model schemes 

under leave-one-out cross validated forecasts and adaptive forecasts for two different 

strategies of choosing the number of neighbors K (fixed K and varying Kt). All the 

performance evaluation measures are calculated based on 75 years of data for leave-one-out 

cross validated forecasts and 15 years for the adaptive forecasts from 1987-2002. 

 

Correlation RMSE RPS RPSS Correlation RMSE RPS RPSS

Resampling 0.40 423.03 0.43 -0.03 0.55 482.98 0.43 0.00

Regression 0.35 430.93 0.56 -0.30 0.66 477.82 0.61 -0.07

MM1(k=10) 0.43 422.07 0.42 0.03 0.55 512.83 0.45 0.01

MM1(varying k) 0.42 420.71 0.37 0.15 0.54 506.45 0.40 0.03

MM2 (k=10) 0.31 439.63 0.43 0.03 0.65 523.89 0.48 0.00

MM2 (varying k) 0.36 432.60 0.36 0.21 0.66 516.13 0.43 0.02

MM3 (k=10) 0.44 425.44 0.41 0.06 0.63 511.26 0.45 0.01

MM3 (varying k) 0.43 422.78 0.34 0.23 0.61 510.52 0.40 0.03

Leave1-out Cross validated (1928-2002) Adaptive Forecasts (1988-2002)

MM1 - Resampling+Climatology  MM2 - Regression+Climatology  MM3 - MM1+MM2  

 

5.1 Skill of Individual Models from Predictor state space  

 The primary motivation in the proposed approach for multi-model ensembling is to 

evaluate competing models’ predictability in the neighborhood of the predictor state and give 

appropriate weights based on equation (3) for all the models to develop multi-model 

ensembles. By analyzing the predictability of two candidate streamflow forecasts shown in 

figure 5.1, we show the predictability of both models every year using two performance 

measures, correlation and average RPS (using equation 2), which are computed by choosing 
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a fixed K = 10 based on the dominant predictor PC1. From figure 5.1a, one may prefer to 

choose forecasts from resampling model instead of forecasts from parametric regression 

particularly when the dominant principal component, PC1, is less than -2, since the predictive 

ability of regression model is negative during those conditions. This is seen in Figure 5.1b 

with the RPS of resampling being lesser than that of RPS of regression. Figures 5.1c and 5.1d 

show the relative performance of both models against each other.  From figure 5.1c, we can 

see that one would prefer climatological ensembles particularly when correlations estimated 

from the neighborhood on both models are negative. From 5.1d, we can also identify 

conditions during which the RPS of regression model being higher than that of RPS of 

resampling. RPS is computed from the leave-one-out cross validated forecasts given in Table 

5.1 for both candidate models and by assuming K=10 in equation (2). Correlation is 

computed between the observed streamflows and ensemble mean of the leave-one-out cross 

validated forecasts by considering 10 neighbors from the current state. Note the consistent 

poor performance of both the models in Figure 5c as well as for high negative values of PC1. 

Thus, the multi-model ensembling algorithm in section 4.2 identifies these conditions based 

on RPS using equation (2) and develops a general procedure for multi-model ensembling.  

 

The next two sections show that the performance of multi-model forecasts based on 

two different strategies of choosing the number of neighbors. 
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Figure 5.1: Performance of individual models from the predictor state space by considering 

K=10 neighbors: (5a) Correlation Vs PC1; (5b) RPS Vs PC1; (5c) Correlation of regression 

Vs Correlation of resampling; (5d) RPS of regression Vs RPS of resampling. 

 

5.2 Performance of Multi-Model Forecasts   

 As mentioned earlier, the multi-model combination is carried out in two steps: first 

combining individual model ensembles with climatological ensembles and then the resulting 

probabilistic forecasts from two combinations will be combined to develop final multi-model 

ensembles. To generate ensembles that represent climatology, we simply bootstrap the 

observed streamflows into Falls Lake assuming each year has equal probability of 

occurrence, which is a reasonable assumption given that there is no year to year correlation 
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between the time series of summer flows. Figure 5.2a gives the multi-model adaptive 

forecasts by choosing a fixed K=10 in equation (2) for identifying similar conditions in the 

predictor state space. The fixed number of neighbors K=10 is chosen since it provided the 

lowest average RPS from multi-model ensembles for the period over which the forecast is 

developed. For leave-one-out cross validated forecasts, the average RPS is computed from 74 

years of forecasts; For adaptive forecasts, average RPS is computed from 15 years of 

forecasts from 1988-2002. Thus, we chose the fixed ‘K’ by plotting the average RPS 

obtained for each neighbor from K = 1 to the maximum of the data length used for model 

fitting (for leave-one-out cross validated forecasts, it is 74 years; for adaptive forecasts, the 

maximum K = 60 years of record from 1928-1987) and choosing the value of ‘K’ that 

produced the lowest average RPS.  Figure 5.2b provides adaptive forecasts developed from 

multi-model ensembles by choosing a varying Kt each year such that the chosen Kt for that 

year corresponds to the minimum RPS that could be obtained from multi-model ensembles. 

By choosing K using any of the above strategy (fixed K or varying Kt), we assess the skill of 

individual models over ‘K’ neighbors using equation (2) and obtain weights for each model 

using equation (3). Based on the weights, we draw proportionately equivalent number of 

ensembles from each model to constitute multi-model ensembles. The constituted multi-

model ensembles in Figures 5.2a and 5.2b have N=1000 ensembles which has been 

developed through a two step procedure of first combining individual models with 

climatology and then obtaining the final multi-model from the resulting combination of 

individual models with climatology. Table 5.1 provides the comparison between individual 

models and multi-model ensembles using various performance evaluation measures for both 

leave-one-out cross validated forecasts and adaptive forecasts for fixed K=10 and varying Kt 
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each year. Under varying Kt, the algorithm in section (4.2) is applied for 1≤ Κ≤ 60 t  K (60 

years of training data from 1928-1987) and Kt that corresponds to minimum RPS of the 

multi-model ensembles is chosen for each year. Both figure 5.2 and Table 5.1 show very 

clearly that both strategies of choosing the number of neighbors result in significant 

improvements in predictability from multi-model ensembles compared to the probabilistic 

forecasts from individual models. It is important to note that the improved performance of 

multi-model ensembles is seen in almost all evaluation measures. 

 

 Even with fixed number of neighbors, the multi-model ensembling algorithm based 

on predictor state space provides improved predictability than the individual model forecasts. 

Ideally, one would like to have the number of neighbors varying each year so that the chosen 

Kt relates to the conditioning predictor state. For instance, under very high values of |PC1|, 

very few years could be chosen as similar to the conditioning state. To understand whether 

we see any relationship between the chosen Kt for every year that corresponds to the 

minimum RPS of the multi-model ensembles for that year, we plot the varying Kt with PC1 

in figure 5.3. From figure 5.3, we see in general that smaller number of neighbors is chosen 

particularly if the PC1 corresponds to above normal or below normal values. Figure 5.3 also 

shows the distance between the conditioning state, PC1t and the chosen Kt in the predictor 

PC1 space. It is important to note that PC1 primarily denotes ENSO conditions (correlation 

between PC1 and Nino3.4 = 0.36), thus positive (negative) PC1 denotes the El Nino (La 

Nino) conditions. Further, under varying Kt strategy, we may consider Kt =1 in evaluating 

the skill of the model in predictor state space using equation (2), which does not imply that 

the multi-model forecasts  is developed from that identified similar conditions’ observed  
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Figure 5.2: Performance of multi-model forecasts developed using the algorithm in (4.2). 

(5.2a) Fixed K=10 (5.2b) Varying Kt.  

   

a 

b 
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predictand and predictors alone. Instead, we identify similar conditions only to evaluate the 

performance of the individual models so that smaller weights to the model that has higher 

RPS under those conditions. Thus, the weights obtained by assessing the model skill in the 

predictors’ state space are only used to proportionately draw ensembles from candidate 

model’s probabilistic forecasts which have been actually developed based on the training 

data used for model fitting.  

 

0

10

20

30

40

50

60

-8 -6 -4 -2 0 2 4 6

PC 1

N
e
ig

h
b
o
rs

,K

0

0.5

1

1.5

2

2.5

3

D
is

ta
n
c
e
 o

f 
th

e
 n

e
ig

h
b
o
r

Neighbors

Distance

 

Figure 5.3: Relationship in choosing different neighbors (varying K) according to the 
predictor conditions. 

 

 

5.3 Role of Multi-Model Forecasts in improving the forecast reliability 

 Figures 5.4a and 5.4b compare the reliability of multi-model forecasts with the 

reliability of individual model forecasts for below normal and above normal categories of 
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forecasts, respectively. Reliability diagrams provide information on the correspondence 

between the forecasted probabilities for a particular category (above-normal, normal and 

below-normal) and how often (frequency) that category is being observed under that 

forecasted probability. For instance, if we forecast the occurrence of below-normal category 

as 0.9 over n1 years (n1 ≤  n), then over the long-term (n years) we expect the actual outcome 

to fall under below-normal category for 0.9*n1 times. To construct figure 5.4, we utilized 

leave-one-out cross validated forecasts and divided the forecasted probability for each 

category into percentiles. Figures 5.4a and 5.4b also show the diagonal perfect reliability line 

with one to one correspondence between forecasted probability and its observed relative 

frequency. Figures 5.4a and 5.4b also provide the sum of absolute deviation from the perfect 

reliability line for regression, resampling and multi-model ensembles. From both figures, we 

can clearly see that there is a better correspondence between perfect reliability line and the 

multi-model forecasts with the sum of absolute deviation from the perfect line is small for 

multimodel forecasts. Of the three forecasts, regression seems to have poor reliability 

because it employs a parametric log-normal model for estimating the conditional distribution 

using conditional mean and variance. 

  

Resampling, being a data driven approach without prescribing any functional form, 

estimates the conditional distribution fairly well and it corresponds better to the perfect 

reliability line. However, multi-model ensembles have lesser error with the sum of absolute 

deviation from the perfect reliability line being smaller, more noticeably for above-normal 

category.  Previous studies have also shown that the main advantage of using multi-model 

ensemble forecasts is in improving the reliability of forecasts [Goddard et al., 2003; Barnston 
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et al., 2003].  Thus, our approach of multi-model ensembling not only improves the 

aggregate performance measures shown in Table 5.1, but also provides better correspondence 

between forecasted probabilities and its relative frequency of occurrence under a particular 

forecast category. 
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Figure 5.4 Comparison of reliability of leave-one-out retrospective cross validated forecasts 

from regression, resampling and multimodel forecasts for below-normal (Figures 5.4a) and 

above-normal (5.4b). Figure also shows the perfect reliability line along with the sum of 

absolute deviation from the perfect reliability line for each model. Note the sum of absolute 

deviation from perfect reliability line is smallest for multi-model ensembles under both 

above-normal and below-normal categories. 
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CHAPTER 6 

 

MULTI-MODEL CLIMATE FORECASTS FOR THE UNITED STATES 

 
 

Improved monitoring of SSTs, particularly in the tropical oceans, has led to 

significant interest using forecasted SSTs to force GCMs to develop operational climate 

forecasts. The GCMs predict various states and fluxes of  the atmosphere over the globe, 

such as precipitation, temperature geopotential height, surface pressure, winds, moisture 

based on the given initial atmospheric states and boundary  SST conditions. Thus developing 

climate forecasts is a two tiered process: (a) forecast the SSTs, and (b) force it with GCMs to 

develop ensembles of climate forecasts over the globe. Model uncertainty along with errors 

in representing initial and boundary conditions result in errors in model predictions. Efforts 

to reduce model uncertainty have been addressed primarily by multi-model combination of 

GCM outputs.  

 

 In this section, we apply the proposed algorithm in section 4.2 to improve winter 

(December-January-February) precipitation forecasts in the US by combining precipitation 

from different GCMs. The developed multi-model precipitation forecasts were also 

statistically downscaled to develop forecasts of streamflow into the Falls Lake.  

 

6.1 General Circulation Models and their role in climate prediction  

GCMs are commonly employed by various national/international research institutions 

for developing long lead seasonal climate forecasts. As mentioned earlier, climate forecasts 

are developed from a two tiered process in which the forecasted SSTs are forced with GCM 

initial conditions to develop climate forecasts. 
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The GCM outputs are typically available at large spatial scale (2.5° X 2.5°). The 

outputs of the GCMs can be used as boundary conditions for regional models whose outputs 

are obtained at watershed scale (60Km by 60 Km). To obtain streamflow forecasts, one could 

use the dynamically downscaled precipitation and temperature forecasts with a hydrological 

model to develop streamflow forecasts. 

 

Since SST anomalies, particularly tropical SSTs are known to be a fundamental 

driver of atmospheric climate anomalies, forecasting the SST anomalies for the target season 

is the first step in the climate forecasting task. At International Research Institute for Climate 

and Society (IRI), climate forecasts are developed by forcing multiple GCMs with three 

different SST forecasts, i.e. the NCEP coupled model, the Lamont-Doherty Earth 

Observatory (LDEO) simple coupled model and the NCEP/Climate Prediction Center’s 

constructed analogue statistical model [Goddard et al., 2003]. Prediction of SSTs for Indian 

Ocean and Atlantic Ocean are carried out using statistical techniques. The GCMs are then 

forced with the forecasted SSTs for the target period under different atmospheric initial 

conditions to develop ensembles of forecast. The ensembles provide an idea of the 

probability distribution of outcomes, as well as the mean outcome which is regarded as a best 

guess for the forecast. Beginning October 1997, IRI has been issuing global climate forecasts 

and this process is getting refined due to the continuous development of innovative 

approaches such as multi-model combination of GCM forecasts [Goddard et al., 2003; 

Barnston et al., 2003]. 
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6.2 Source of uncertainty in model prediction 

Error resulting from climate forecasts is primarily of two types, uncertainty in initial 

and boundary conditions and model error [Hagedorn et al., 2005]. The first source of error is 

typically resolved by representing the uncertainties in initial (atmospheric states) and 

boundary (SST forecasts) conditions in the form of ensembles. The second source of error is 

inevitable with a particular model, since the model error occurs even if the forecasts are 

obtained from observed initial and boundary conditions (perfect forcings). A common 

approach to reduce model uncertainty is through refinement of parameterizations and process 

representations in the considered model which could be either GCMs or Regional Climate 

Models (RCMs) or hydrologic models. Given that developing and running GCMs is time 

consuming, recent efforts have focused in reducing the model error by combining multiple 

GCMs to issue operational climate forecasts [Rajagopalan et al., 2002; Robertson et al., 

2004; Barnston et al., 2003; Doblas-Reyes et al., 2000; Krishnamurthi et al., 1999]. 

 

The objectives of this study are to apply the developed algorithm in section 4.2 for 

combining forecasts from multiple GCMs, available at large spatial scales, by assessing the 

model’s predictability conditioned on the predictor state. Recent studies on improving 

seasonal climate forecasts using optimal multi-model combination techniques basically 

assign weights for a particular model based on its ability to predict the climatic variable over 

the entire period for which the GCM simulations are available [Rajagopalan et al., 2002; 

Robertson et al., 2004; Barnston et al., 2003]. Given that each model’s predictability could 

also vary depending on the state of the predictor (SSTs for GCMs), it would be appropriate to 
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apply the proposed multi-model ensembling methodology in section 4.2 that assigns weights 

to each model by assessing the skill of the models based on the predictor state space. 

 

6.3 Multi-Model Ensembles of GCMs : Motivation 

 The multi-model ensembling method proposed here is motivated by the fact that the 

skill of the GCM forecasts depends on predictor conditions.  Studies focusing on the skill of 

GCMs show that the overall predictability of GCMs is enhanced during ENSO years over 

North America [Brankovic and Palmer 2000; Shukla et al., 2000; Quan et al., 2006]. Recent 

research shows that performance of seasonal forecasts predicted by GCMs depends 

predominantly on the state of ENSO and local SST conditions [Quan et al., 2006; Giannini et 

al., 2004]. Similarly, studies have also shown the importance of various oscillations or 

climatic conditions in influencing the predictability of GCMs over various part of the globe. 

For instance, Giannini et al., [2004] show that tropical Atlantic variability (TAV) plays as a 

preconditioning state in the development of ENSO related teleconnection in determining 

GCM’s ability to predict rainfall over North East Brazil, which is a region shown to have 

significant skill in seasonal climate prediction. Several studies show that the predictive 

ability of GCMs is dependent highly on ENSO conditions [Brankovic and Palmer 2000; 

Shukla et al., 2000; Quan et al., 2006]. 

 

  To understand the performance of GCMs under various predictor states, the study 

considered the performance of two GCMs under various ENSO states. Figure 6.1 shows the 

skill of two GCMs for El Nino, La Nina and over the long-term over the US. It gives the 

correlation between observed precipitation and model forecasted precipitation from two 
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different models. The models taken are ECHAM4.5 by Max Planck Institute and CCM3V6 

by NCAR. We can clearly see from the figure that skill of the model depends on SST 

conditions (ENSO conditions), i.e., there is some signal during ENSO years for the models 

predictability.   Correlations that are significant are only shown (>0.46 for ENSO years and 

0.26 for the entire years category).  It can also be seen that there is a significant difference in 

predictability between both the models across space.  Hence combining the models based on 

predictor conditions is a better strategy than combining them based on long term 

predictability.  

 

Figure 6.1 emphasizes that for post-processing of individual model’s climate 

forecasts to develop multi-model ensembles, one needs to assess the skill of the individual 

model ensembles based on the predictor state. By considering climatology as one of the 

candidate forecasts, we develop a multi-model ensembling scheme that formally assesses and 

compares the skill of the competing models under a given predictor conditions so that lower 

weights are assigned for a model that has poor predictability under such conditions. The next 

section describes the GCM precipitation forecasts that are considered in developing the 

multi-model precipitation forecasts for the entire US. 
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Figure 6.1: Predictability of two GCMs over the US for different climatic states. Panel on the 

left (right) is for ECHAM4.5 by Max Planck Institute (CCM3V6 by NCAR). Top (Middle) 

row is the correlation between the observed precipitation and model predicted precipitation 

during El Nino (La Nina) years. Bottom row is the correlation between observed 

precipitation and model predicted precipitation for all the years. Correlations that are 

significant are only shown (>0.46 for ENSO years and 0.26 for the entire years category). 

Note the significant difference in predictability between both models across space and time. 
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6.4 Multimodel winter precipitation forecasts for the US 

Since operational climate forecasts are available only from October 1997, this study 

combines models based on the historical simulations with each GCM forced with observed 

SSTs. Historical simulations of three GCMs are combined to develop multimodel ensembles. 

The models considered are (a) CCM3 version 6 (developed by NCAR); (b) ECHAM4.5 

(developed by Max Plank Institute); and (c) COLA (Center for Ocean-Land-Atmosphere 

Studies) with all having monthly historical simulations for the period 1950-1996. Historical 

simulations could be accessed from http://iridl.ldeo.columbia.edu/. Since the chosen 

individual models differ in the number of ensembles (85 for ECHAM 4.5, 24 for CCM 

version 6 and 10 for COLA), the ensembles of COLA and CCM version 6 models are 

increased to 85. Using the proposed multi-modeling algorithm in section 4.2, multimodel 

ensembles of precipitation forecasts from the above mentioned three combined with 

climatology to obtain improved climate forecasts. By considering climatology as one of the 

forecasts, the method ensure that if the skill of all models is poor under certain predictor 

conditions, climatological ensembles will obviously constitute the most of the multimodel 

ensembles. Since the method requires observed precipitation to assess the skill of each 

model, the monthly observed precipitation at 0.5×0.5 grid from University of East Anglia is 

employed (http://iridl.ldeo.columbia.edu/SOURCES/.UEA/.CRU/.Global/.prcp/). The 

predictors Xt are obtained by considering the principal components of global SSTs 

(http://iridl.ldeo.columbia.edu/SOURCES/.KAPLAN/.EXTENDED/.v2/).  

 

 The multi-model ensembling algorithm described in section 4.2 is applied to combine 

precipitation forecasts from three GCMs along with the climatological ensembles. To 
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develop multimodel ensembles, we follow the two step procedure of combining individual 

model ensembles with climatological ensembles and then the resulting ensembles from this 

step (model+climatology) are combined further to develop one single multimodel ensembles. 

Previous studies have shown that such a two-step procedure improves the skill of multimodel 

ensembles [Goddard et al., 2003; Robertson et al., 2004]. Climatological ensembles are 

developed by just bootstrapping the observed precipitation at the grid point. By identifying 

similar conditions in relation to the current predictor condition, PCt, we choose the number of 

neighbors, Kt, that correspond to the minimum RPS from the multimodel ensembles. 

Weights, Wt
m ,for each model was obtained using equation (3) corresponding to the identified 

Kt. These weights, Wt
m, are used to draw N. Wt (N=85) ensembles from each model. Thus if 

the skill of these models were poor then climatological ensembles will constitute most of the 

multimodel ensembles. Since climate forecasts are represented in the form of ensembles, the 

skill of the models are evaluated using RPS and RPSS. A detailed description on computing 

RPS and RPSS from tercile forecasts is given in Appendix A.  

 

6.5 Results and Analysis 

 Average RPSS of multimodel forecasts and the individual model forecasts were 

calculated each year. Performance of multimodel forecasts was compared with individual 

model forecasting by computing average RPSS over the entire period of verification (1950-

1996). Thus, Winter seasonal (DJF) averaged precipitation forecast data is obtained from the 

mentioned three models for the period 1950-1996. The observed precipitation data from 

UEA site is used to compare and develop multimodel forecasts. The algorithm described in 

section 4.2 is employed at each 2.5 degree by 2.5 degree grid point over the US to develop 
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multi-model ensembles of precipitation forecasts. To compare the skill of multi-model 

forecasts with individual model forecasts over the US, we show the average RPSS maps for 

each model and multimodel forecasts. Figure 6.2 provides the average RPSS for individual 

models and the developed multi-model over the US. The figure clearly shows that the multi 

model forecasts have a higher average RPSS in comparison to the individual model forecasts. 

In most parts of the region, the multi model forecasts have improved predictability of the 

individual model forecasts substantially. Average RPSS of the individual models is negative 

in many regions indicating that the skill of GCMs is poorer than climatology. By combining 

these poor models with climatology, we improve the resulting multimodel forecasts by 

analyzing the individual model’s predictability conditioned on the predictor state, PCt.   

 

In some pockets over North Eastern US, we see higher predictability by CCM3v6 

GCM in comparison to multimodel forecasts. This could be primarily because of poor 

relations between the predictor state, (1st EOF of global SSTs) and the precipitation in that 

region. To understand this, we plot RPSS of CCM3v6 with the correlation between PC1 and 

observed precipitation. From figure 6.3, we see a slight increase in RPSS from CCMv6 on 

the regions, for the North Eastern US. This needs to be further investigated by identifying 

relavent predictors that influence the hydroclimatic potential of the region. 
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Figure 6.2 Skill of individual models and the combined multi-model 
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Figure 6.3 Performance of CCMv6 and multi-model forecasts under the causal relation of 

predictor SST with predictand observed precipitation.  
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 

A new methodology for developing multi-model ensembles is presented and 

demonstrated that combines probabilistic streamflow forecasts from two low dimensional 

statistical seasonal streamflow forecasting models. The developed approach obtains multi-

model ensembles by assessing the skill of the candidate forecasting models conditioned on 

the state of the predictor. To evaluate the model performance based on the state of the 

predictor, the multi-model ensembling algorithm employs Mahalonobis distance measure that 

computes the distance between the current state and the historical predictor vector by 

considering the covariance between the predictors. By choosing ‘K’ neighbors based on the 

distance metric, we assess the performance of the model by computing average RPS, in the 

neighborhood of the predictor state. The average RPS for each model  are then converted into 

weights, using which appropriate number of ensembles are drawn from each candidate 

models to develop multi-model ensembles.  

 

7.1 Streamflow forecasts for the Falls Lake 

The proposed algorithm described in section 4.2 was employed to combine two low 

dimensional statistical models to develop multi-model ensembles of JAS streamflow 

forecasts for the Falls Lake of the Neuse river basin, NC. By comparing the performance of 

multi-model ensembles with individual model performance using various performance 

evaluation measures as well as using reliability diagrams, we show that the proposed multi-

model ensembling approach develops probabilistic streamflow forecasts with much better 

predictability than what could be obtained from single model ensembles. We adopt a two 
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step procedure by combining individual models first with climatology and then the resulting 

combinations are finally combined using the algorithm in section 4.2 to develop the final 

multimodel ensembles. This has been shown to improve the performance of multi-model 

ensembles as well as to ensure better stability of weights obtained for multi-model 

combination [Robertson et al., 2004]. Our approach also support these findings further by 

first eliminating the poorly performing model under a particular predictor conditions with 

climatological ensembles and then goes to the next step of combining the resulting forecasts 

into a final product of multimodel ensembles.   

 

As shown in figure 5.1, if the predictability of all the models is poor under a 

particular condition, then our approach will eventually replace the multi-model ensembles 

with only climatological ensembles. This will help to reduce false alarms and missed targets 

in the issued forecasts and improves the reliability by ensuring better correspondence 

between the forecasted probability and its observed relative frequency. Further, the approach 

may use very small number of neighbors in assessing the predictability of model in the 

predictor state space, but the average skill of the model in those conditions are only used to 

arrive at the weights so that appropriate number of ensembles could be drawn from candidate 

model’s streamflow forecasts which are in fact obtained based on the observed predictors and 

predictand employed for model fitting. By employing RPS to assess the skill of the 

probabilistic forecasts each year, the approach naturally considers predictability of entire 

conditional distribution of streamflows/precipitation. 
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7.2 Precipitation forecasts for the US 

The methodology is also demonstrated for developing multimodel ensembles from 

three different precipitation forecasting GCMs. The study employs the proposed algorithm 

described in section 4.2 for combining multiple GCMs to develop multimodel climate 

forecasts for the US. As described above we employed a two step procedure by combining 

individual models first with climatology and then the resulting combinations are finally 

combined using the algorithm in section 4.2 to develop the final multimodel ensembles. The 

approach systematically eliminates the poorly performing models under a particular predictor 

conditions in the first step and then goes to the next step of combining the resulting forecasts 

into a final product of multimodel ensembles. To compare the skill of multi-model forecasts 

with individual model forecasts over the US we show the average RPSS maps for each model 

and multimodel forecasts. Preliminary results show that the skill of GCMs is poorer than 

climatology in many regions. By combining these poor models with climatology, we 

improved the resulting multimodel forecasts by analyzing the individual model’s 

predictability conditioned on the predictor state.  

  

7.3  Future work 

The proposed multimodel ensembling scheme is general and applicable to most of the 

environmental and geosciences models. For example this work could be extended to combine 

multiple hydrologic models to improve streamflow prediction. Multiple hydrologic models 

can be combined based on their ability to predict the observed streamflow at various 

conditioning states of the two common predictors, precipitation and temperature. One could 

also extend this work with a Bayesian hierarchical model. Given that Bayesian hierarchical 
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modeling facilitates multi-level modeling, we could extend the proposed multi-modeling 

scheme to take into account variability in forecasting skill that occur primarily due to 

variability in location, time and state of the predictor. By bringing the state of the art 

statistical methodologies on Bayesian model averaging for improving seasonal climate 

forecasts, we can improve seasonal to interannual climate forecasts, which is an important 

problem in geosciences community.  

 

Our future work will focus on looking at the spatial and temporal organized modes 

exhibited by climate forecasts and to employ a Bayesian hierarchical framework to develop 

multi-model ensembles of climate forecasts. 

 

7.4 Publications  

 
Multi-model Ensembling of Probabilistic Streamflow Forecasts: Role of Predictor State 
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Multi-model Ensembling of Probabilistic Streamflow Forecasts: Role of Predictor State 
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Appendix A: Rank Probability Score and Rank Probability Skill Score 

 Given that seasonal forecasts are better represented probabilistically using ensembles, 

expressing the skill of the forecasts using correlation requires summarizing the forecasts 

using some measures of central tendency such as mean or median of the conditional 

distribution, which does not give any credit to the probabilistic information in the forecast. 

Rank Probabilistic Skill Score (RPSS) computes the cumulative squared error between the 

categorical forecast probabilities and the observed category in relevance to a reference 

forecast (Wilks, 1995). Here category represents dividing the climatological/observed 

streamflow, Q, into d=1, 2... D divisions and expressing the marginal probabilities as Pd(Q). 

Typically, the divisions are made equal probabilistically with O=3 categories known as 

terciles with each category having 1/3 probability of occurrence. These three categories are 

known as below normal, normal and above-normal whose end points provide streamflow 

values corresponding to the particular category. Thus, for a total of D categories, the end 

points based on climatological observations for dth category could be written as Qd, Qd+1 (For 

d=1, Q1= 0; d=D; QD+1 = Qmax). Given streamflow forecasts at time‘t’ from mth model with 

i=1, 2... N ensembles, m

tiQ , , then the forecast probabilities for the d
th category could be 

expressed as NnQFP m

td

m

td /)( ,, =  by computing the number of ensembles between Qd ≤
m

tiQ , ≤ 

Qd+1.To compute RPSS, the first step is to compute Rank Probability Score (RPS). Given D 

categories and )(, QFPm

td for a forecast, we can express the RPS for a particular year‘t’ from 

mth model as 

[ ]∑
=

−=
D

d

d

m

td

m

t COCFRPS
1

2

,        ... (A-1) 
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where ∑
=

=
d

q

m

td

m

td FPCF
1

,,  is the cumulative probabilities of forecasts up to category d and COd 

is the cumulative probability of the observed event up to category d. Thus if Qt, the observed 

streamflow falls in the dth category, COq = 0 for 1 ≤ q ≤ d-1 and COq = 1 for d ≤ q ≤ D.  

Given RPS, we can compute RPSS in relation to a reference forecast, which is usually 

climatological forecasts having equal probability of occurrence under each category 

DQFP c

td /1)(lim

, = . 

lim
1

c

t

m

tm

t
RPS

RPS
RPSS −=        ...(A-2) 

Low RPS indicates high skill and vice versa. Similarly the range of RPSS varies from minus 

infinity to 1. RPSS of 0 indicates that there is no skill in the model when compared to the 

reference forecast. If RPSS is positive, then the forecast skill exceeds that of the 

climatological probabilities. RPSS of 1 indicates perfect forecast.  RPSS could give an overly 

pessimistic view of the performance of the forecasts and it is a tough metric for evaluating 

probabilistic forecasts [Goddard et al., 2001].  In this study, we have computed RPS and 

RPSS for each year and both regression and resampling ensembles by assuming D=3. One 

can use RPSS to produce maps showing the special characteristics of the forecast skill 

[Goddard et al., 2001]. Using these maps of RPSS we can examine the spatial distribution of 

the skill of the forecast. One can also compare RPSS analogously to correlation. RPSS of 0.1 

approximately corresponds to a correlation of 0.5 [Goddard et al., 2003; Barnston et al., 

2003]. A detailed example on how to compute RPS and RPSS for given forecast, is given 

below [Goddard et al., 2003]. 
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Illustration of RPS and RPSS for evaluation of probability forecasts 

    

Let us consider a forecast precipitation for the upcoming season ‘t’ have probabilities 

of 50%, 30% and 20% under below normal, normal and above normal categories respectively 

from the resampling model. For this forecast, we evaluate how RPS and RPSS will change if 

the observation falls in each of the categories. Probabilities of climatological ensembles 

naturally take 33%, 33% and 33%. From the given forecasts, cumulative forecasts, m

tdCF ,   

under each category could be calculated as follows. ∑
=

=
d

q

m

td

m

td FPCF
1

,,  

Thus, 5.01

,1 =tCF , 8.01

,2 =tCF , 0.11

,3 =tCF  for the given model m = 1 representing 

resampling model. Similarly, we can also compute the cumulative probabilities under 

climatology with 33.01

,1 =tCF  66.01

,2 =tCF  0.11

,3 =tCF . 
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Figure A-1: Observed Category falling in Below Normal 

Suppose if the observation falls under below-normal category as shown in figure A-1, then 

CO1 = 1, CO2 = 1 and CO3 = 1 indicating the cumulative probabilities of observed event for 

each category‘d’.  
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Hence   RPSforecast = (0.5-1)
2 + (0.8-1)2 + (1-1)2 = 0.25 + 0.04 + 0 = 0.29 

Similarly  RPSclimatology = (0.33-1)
2 + (0.67-1)2 + (1-1)2 = 0.4489 + 0.1089 + 0 = 0.5578 

  RPSSforecast = 1- RPSforecast/RPSclimatology 

    1-(0.29/0.5578) = 0.48 

Thus RPS of the forecast is smaller than the RPS of climatology with smaller error in 

probabilities of forecasts. This leads to a positive RPSS which compares the performance of 

candidate forecasts with climatology. 
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Figure A-2: Observed Category falling in Normal  

Now, we consider the observation to be falling under normal category. This changes the 

cumulative probabilities of observed event, CO1 = 0, CO2 = 1 and CO3 = 1 under the three 

categories. 

Computing  

 RPSforecast = (0.5-0)
2 + (0.8-1)2 + (1-1)2 = 0.25 + 0.04 + 0 = 0.29 

Similarly  RPSclimatology = (0.33-0)
2 + (0.67-1)2 + (1-1)2 = 0.1089 + 0.1089 + 0 = 0.22 

Hence   RPSSforecast = 1- RPSforecast/RPSclimatology 

    1-(0.29/0.22) = -0.32 
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This shows clearly that if the observation falls in a category which is different from the 

category in which forecast has higher probabilities, then RPS of the forecast increases 

leading to reduced RPSS. 
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Figure A-3: Observed Category falling in the Above Normal 

Now, we consider the observation to be falling under above normal category. The cumulative 

probabilities of observed events are, CO1 = 0, CO2 = 0 and CO3 = 1 under the three 

categories. 

Hence   RPSforecast = (0.5-0)
2 + (0.8-0)2 + (1-1)2 = 0.25 + 0.64 + 0 = 0.89 

  RPSclimatology = (0.33-0)
2 + (0.67-0)2 + (1-1)2 = 0.1089 + 0.4489 + 0 = 0.56 

  RPSSforecast = 1- RPSforecast/RPSclimatology 

    1-(0.89/0.56) = -0.59 

Thus in this case, the forecast is completely wrong with the prediction exactly 

opposite of the forecasts. This leads to RPS of the forecast being higher than that of RPS of 

climatology. Thus RPS is nothing but denoting the error in cumulative probabilities. If both 

observations falls under a category in which forecast has higher density, then RPS is less.  

Hence, if one can predict when such situation can occur, it may be advisable to use 

climatology than using forecasts.  


