
Abstract

JIANG, LIQIU. The Simulation and Approximation of the First Passage

Time of the Ornstein–Uhlenbeck Process of Neuron. (Under the direction of

Charles Eugene Smith.)

Neurons communicate with each other via sequences of action potentials.

The purpose of this study is to approximate the interval between action

potentials which is also called the First Passage Time (FPT), the first time

the membrane voltage passes a threshold. The subthreshold depolarization

of a neuron receiving a multitude of random synaptic inputs has often been

modelled as the Ornstein–Uhlenbeck (OU) process. This model provides an

analytically tractable formalism of neuronal membrane voltage mean and

variance in terms of a neuron’s membrane time constant and the mean of

input voltage. Some authors obtained an approximate mean and variance of

the FPT for Stein’s model with a constant threshold for firing by using Stein’s

method. They approximated the mean and variance of FPT by using the first

term of the Taylor’s series expansion. We expect this procedure works for the

OU process, a diffusion process. This study finds that Stein’s method works



well for the OU process with the small Wiener process parameter. After

adding a few other terms of the Taylor’s series, the parameter range in which

the approximation works well are almost the same as the range in which

the first term does. The relationship between the approximation results and

the confidence band of the mean and variance of the simulated FPT gives

evidence that their parameter range is the same; but, the approximation by

two terms of the Taylor’s series gives less approximation error. The goodness–

of–fit–test shows that the lognormal distribution is close to the distribution

of FPT for all the Wiener parameters we used. We compared a lognormal

distribution of the FPT, estimated from simulation of the OU process, with

the probability density function (pdf) of the FPT, approximated from a

transformation of the marginal distribution of membrane voltage at the time

at which the mean of membrane voltage passes the threshold. We found that

the approximation pdf and the lognormal pdf are almost equally close to the

true and unknown pdf when the parameter of the Wiener process is small.
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Chapter 1

Introduction

The first passage time is the theoretical counterpart of the interspike inter-

vals. This follows the generally accepted hypothesis that the information

transferred within the nervous system is usually encoded by the timing of

spikes (action potential). Therefore, the reciprocal relationship between the

frequency on one hand and the interspike interval on the other leads to the

study of the distribution of the first passage time. When the distribution

is too difficult to obtain, the analysis is usually restricted to its moments,

primarily the mean and variance.

The Ornstein–Uhlenbeck process and Stein’s model of neuron spike are

both examples of the leaky integrate–and–fire (LIF) model. In the LIF model,
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the membrane depolarizaion is described as a deterministic leaky integrator.

Interspike intervals are identified as periods between a reset of the depolariza-

tion after firing (an action potential or a spike) and the consecutive crossing

of a fixed firing threshold. This leaky integrate–and–fire model is one of the

most common on both application of artificial neural network and descrip-

tion of biological systems and has been studied in [37], [24], [36], [23],[9] and

[30].

The OU process has the following properties: the voltage difference be-

tween the membrane potential and resting potential at the trigger zone of

the neuron is described by a one–dimensional stochastic process X = {X(t) :

t ≥ 0} given by the stochastic differential equation

dX(t) = µ(X(t), t)dt + σ(X(t), t)dW (t), X(0) = x0 (1.1)

where W = {W (t) : t ≥ 0} is a standard Wiener process and µ and σ

are real-valued functions, so their arguments satisfy certain regularity con-

ditions [19]. In particular for the OU process, σ(x(t), t) = σ > 0 and

µ(x(t), t) = −x(t)/τ + µ where τ > 0 is the membrane constant. Here,

the process X represents changes in the membrane potential between two
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consecutive neuronal firings (spikes). The reference level for the membrane

potential is usually taken to be the resting potential. Some studies examined

the effect of random initial values in a leaky integrator with deterministic

trajectory. They found that different distributions for the initial value lead

to commonly observed interspike interval distributions [18], [21], and [20].

This is why initial voltage (the reset value following a spike) is often as-

sumed to be equal to the resting potential, x0 = 0, i. e., there is no initial

afterhyperpolarization. The OU process is appropriate for neurons with a

high number of synaptic inputs where each of them has only a slight effect

on the cell excitability [27].

Mathematical analysis of the model (see 17) presented by Stein, including

its modifications and generalizations, is one of the most common approaches

to the theoretical study of neuronal activity. The generally adopted proce-

dure considers the OU process, as a result of diffusion approximation, with

the first two infinitesimal moments equal to limiting values of those corre-

sponding to a sequence of Stein’s model. The aim of this article is to use

the original and modified Stein’s approximation method to approximate the

FPT of neurons whose activity follows the OU process. In this way the arti-

cle represents a continuation of the previous work on this topic.

3



The OU process has been simulated in this article in Section 3.1 in page

25. This study used the approximation method for Stein’s model in the OU

process, which uses the first term of the Taylor’s series. It works well for

the OU process with a small Wiener process parameter. After adding more

terms of the the Taylor’s series, the parameter range for a good approxima-

tion is very close to that of the first term. But, the approximation by two

terms gives less approximation error. The goodness–of–fit–tests show that

the lognormal probability density function fit the FPT very well for all the

Wiener process parameters we used. We compared the approximated pdf of

FPT derived by Stein’s method with lognormal pdf fitted for simulated FPT

and found that they are almost equally close to the true and unknown pdf

for the small Wiener process parameter.
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Chapter 2

Literature Review

2.1 The Biological Background

The generic neuron expresses three anatomical features: dendrites—the por-

tions of the neuron that receive inputs, the soma—the central portion that

contains the cell’s nucleus and may also receive inputs, and the axon—a ten-

dril that branches and serves as the input to other neurons. Inputs bring

signals to the neuron, resulting in a complex symphony of ionic and trans-

membrane potential changes that can make the soma’s excitable membrane

produce the crescendo of an action potential [13]. Ignoring much detail, the

action potential, a pulse–like depolarization of the neuron’s transmembrane
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potential, occurs when the potential exceeds a critical threshold and ionic

concentrations achieve supercritical values.

The biophysical properties of the membrane have important effects on

the action potential generation and conduction. For example, the passive

resistive electrical properties of the post synaptic cell affect the time course

of the postsynaptic cell potentials generated in it by other cells. The passive

electrical properties of the postsynaptic cell also determine how efficiently

synaptic potentials are propagated within a cell from their sites of origin to

the trigger zone. These features of neuronal functioning contribute to synap-

tic integration, the process by which a nerve cell adds up all incoming signals

and determines whether or not it will generate an action potential. Once

an action potential is generated, the speed with which it is conducted from

the trigger zone to the axon terminal also depends on the passive electrical

properties of axon.

A better way to understand the passive membrane properties is to con-

sider the equivalent circuit of the neuron membrane. The membrane can be

thought as a resistor and a a conductor connected in parallel. The nerve cell

actually does have conductive, capacitive, and electromotive force compo-

nents that can be specifically attributed to ion channel proteins, embedded

6



the lipid bilayer, and the ionic concentration gradient (Na+, Cl−, K+). Al-

though they are biological, the three electrical properties of the membrane are

functionally indistinguishable from those of a man-made electronic circuit.

2.2 The Physical Basis for the LIF Model

Figure 2.1 is a complete equivalent circuit of the passive electrical properties

of the membrane, with membrane capacitance included. Figure 2.2 is the

simplified electrical equivalent circuit that can be used to examine the effects

of membrane capacitance on the response of a neuron to injected current.

The cell membrane is represented by a capacitor (C) in parallel with a re-

sistor (R), which represents the RNa, RCl, and RK element in Figure 2.1.

The membrane batteries representing the electromotive forces generated by

ion diffusion determine the resting or equilibrium voltage when there are no

applied currents. It can be ignored because batteries affect only the absolute

value of membrane voltage, not voltage rate of change.

From the circuit in Figure 2.2, we can see that the total membrane cur-

rent (Im) is the sum of the ionic current (Ii) and the capacitive current (Ic):

7



Im = Ii + Ic (2.1)

Figure 2.1. The equivalent circuit of cell membrane with three ions.

Ii:Ionic (or resistive) membrane current represents the actual movement of

ions through the ion (conductance) channels of the membrane. Ic : Capac-

itive membrane current represents a change in the net charge stored on the

membrane capacitance. Recall that the voltage (V ) across a capacitor is

8



proportional to the charge (Q) stored on the capacitor:

V =
Q

C
(2.2)

Figure 2.2. The equivalent circuit of cell membrane.

So, for a change in voltage

∆Vm = ∆
Q

C
(2.3)

9



This ∆Q is brought about by the flow of capacitive current (Ic). Also, cur-

rent is defined as the net movement of positive charge per unit time. The

value of capacitive current is equal to the rate at which charge stored on the

capacitor changes:

Ic =
dQ

dt
(2.4)

Obviously, we can obtain ∆Q by integrating Ic over time.

∆Q =
∫ t2

t1
Icdt (2.5)

By substituting to Equation (2.3), we obtain ∆Vm ≈ ∫ t2
t1

Icdt
C

.

The time course of Vm is slowed by the membrane capacitance. When

the Vm is changed by the current injected into the cell, ∆Vm lags behind the

current pulse. The reason is that the membrane capacitor and resistor are in

parallel; therefore, the potential across these two elements must be equal at

all times. The potential across a capacitor can not change until the charge

stored on its plates has changed. Initially, all of the membrane current flows

10



into the capacitor to change the charge on its plates. However, as the pulse

continues and ∆Q increases, more and more current must flow through the

resistance, because at any instant the voltage drops across the membrane

resistor

∆Vm = ImR (2.6)

must be equal to the voltage across the capacitor

∆Vm =
∆Q

C
. (2.7)

As a larger fraction of the membrane current flows through the resistor, less

is available for charging the capacitor; thus the rate of change of Vm decreases

with time. When ∆Vm reaches its plateau value, all of the membrane current

is flowing through the resistor and

Vm = ImR (2.8)

At the end of the current pulse, current flows around the RC loop, as the

11



capacitor discharges and drives current through resistor. So, we can describe

the potential change by the following equation (a usual exponential charging

relationship [39]):

∆Vm(t) = ImR(1 − e−
t
τ ), (2.9)

Where τ equals RC, the product of the resistance and capacitance of mem-

brane. The parameter τ is called the membrane time constant.

2.3 The Models

2.3.1 The Ornstein–Uhlenbeck Model

The most common diffusion model is the OU process, which is one substan-

tial step closer to reality than other models, since the spontaneous changes

of the membrane potential are included in the model [25].

In Equation 2.9, the steady current source, I, uniformly depolarizes the

membrane, causing an exponential increase in its voltage, V . When the mem-

brane voltage reaches a threshold, S, a spike occurs. At this point we shall

assume the spike to take an infinitesimal amount of time. We did this because

12



an action potential is considered to have infinitesimally small duration, the

period of each action potential is just the time between interspike intervals.

At the spike onset, the membrane capacitor discharges instantaneously, and

the membrane potential is reset to the resting potential. This firing process

repeats itself as long as the input current is on. The output of a neuron is the

sequence of firing. This model is a classic leaky integrate–and–fire model. If

we let µ be the input current, then µ = I
C

, when the input is on. So, we can

rewrite Equation 2.9 as:

dx

dt
= −x

τ
+ µ (2.10)

where x = v. Then,

x(t) = µτ(1 − e−
t
τ ) (2.11)

13



Figure 2.3. The trajectory of the membrane voltage with uniform input

current. The rest curve approaches asymptote which is the product of µ and

τ , 15. The straight horizontal line is the threshold, S = 10. As we defined,

t∗ is the time at which mean of membrane voltage passes the threshold.

We define t∗ as the time at which mean of membrane voltage passes the
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threshold. So,

t∗ = −τ log(1 − S

µτ
) (2.12)

Figure 2.3 plotted by Matlab shows that the mean trajectory of voltage,

where x0 is 0, µ, uniform input current, is 3 mvolt/msec, τ , membrane

constant, is 5 msec, S, threshold, is 10 mvolt. We obtain t∗ is 5.4931 msec.

Those values are reasonable parameters for neuron cell, in the spinal cord for

example.

Equation 2.10 is easy to interpret. The more abstract OU process can

be meaningfully derived. Equation 2.10 can arrive at the stochastic leaky

integrator just by adding white noise

dx = (−x

τ
+ µ)dt + σdW, x(0) = 0, (2.13)

where W is a standard Wiener process, µ is a constant measured in milli-

volt per unit time which represents the mean synaptic input signal resulting

from the dendritic currents generated by sensory stimulation or the action

potentials of other neurons. We assumed that the mean of input is constant

corresponding to an average steady–state stimulation and σ is also a con-

stant which scales the Wiener process. The time origin in Equation 2.13
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is the moment of the previous firing of an action potential. In the case of

suprathreshold stimulation, the model assumes that at each moment of firing,

which is mimicked by reaching a firing threshold S, the membrane potential

is reset to its initial value, X0 = 0 [43]. Solving the stochastic differential

equation, we can obtain

E[x(t)] = µτ(1 − e−
t
τ ) (2.14)

V ar[x(t)] =
σ2τ

2
(1 − e−

2t
τ ) (2.15)

The OU process has been studied in [2], [31], [32], [33], and [8]. Some

sophisticated numerical methods for the first passage time problem have been

developed. But, no analytical solution for the OU process is known.

2.3.2 Stein’s model

Stein proposed a stochastic model for nerve–cell activity in the presence of

random synaptic inputs in 1965 [38]. It is for single neuron firing which incor-

porates relatively many physiological characteristics of real neurons. Study
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of the model and its modifications and generalizations have been one of the

most common approaches to the theoretical study of neuronal activity, such

as in [20], [35], [27], [16], [18], [42], and [46]. The inputs of Stein’s model

are divided into excitatory and inhibitory ones and follow Poisson processes.

The heuristical stochastic differential equation is

dx

dt
= −x

τ
+ aE

dNE

dt
− aI

dNI

dt
, (2.16)

where τ is membrane constant, NE and NI are independent simple Pois-

son processes with mean rates λE and λI . The trajectories of NE and NI

have discontinuities of +1 each time an excitatory or inhibitory input arrives.

Hence the derivatives dNE/dt and dNI/dt, which appear in Equation (2.16),

consist of a collection of delta functions concentrated at the random arrival

times of the synaptic inputs. When an excitatory input arrives, x will jump

by +aE mvolt, whereas when an inhibitory input arrives x will jump by −aI

mvolt. The mean and variance of the depolarization in Stein’s model are [43]

E[x(t)] = τ(aEλE − aIλI)(1 − e−
t
τ ), (2.17)

and
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V ar[x(t)] =
1

2
τ(a2

EλE + a2
IλI)(1 − e−

2t
τ ). (2.18)

2.4 Approximation of the First Passage Time

To study the properties of the models themselves, approximation methods

for model are very useful sometimes. Charles E. Smith summarized the

approximation methods for the first passage time in [37] and [36]. We are

interested in the case with deterministic crossing. The term ”deterministic

crossing” will be used when the mean voltage crosses a threshold, S. Our

description is a simple generalization of the method for Stein’s model. In this

article, we also call it Stein’s method. Let r(t) = S −E[x(t)] be the recovery

process following a spike, where S is the threshold. Besides requiring that

the mean voltage crosses S, i. e. deterministic crossings, we require that

1. The membrane voltage distribution does not change its shape drasti-

cally near t∗.

2. The standard deviation of the FPT is considerably less than the corre-
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lation time of x(t) around t∗.

3. r(t) is invertible and sufficiently smooth.

Let h be the inverse function of r(t), that is , h[r(t)] = t. Then, a pdf of

first passage time, g(S, t|x0), is approximately f(x)|dh(x)/dx| evaluated at

t∗, where f(x) is the marginal distribution of S − x(t∗). This is the usual

Jacobian transformation of random variables, i. e., we are treating the mem-

brane voltage process like a singular random process. For example, if f(x) is

Gaussian or normal and r(t) is a decaying exponential, g(S, t|x0) is approxi-

mately lognormal.

In many cases, we may only be interested in the first few moments of the

FPT. The function h is now expanded in a Taylor’s series about r(t∗). The

approximations for the mean and variance are given next with y = r(t), and

µn is the nth central moment of the random variable S − x(t∗) [29]:

E(t) ≈ t∗ + h′′(y)
µ2

2!
+ h′′′(y)

µ3

3!
+, · · · (2.19)

V ar(t) ≈ (h′)2µ2 + h′h′′µ3 − (h′′µ2

2!
+ h′′′µ3

3!
)2+, · · · (2.20)
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where prime denotes differentiation with respect to membrane voltage. The

expressions of the first four derivatives of h[r(t)] are in the section 3.2.1 on

page 35. Stein’s original approximation method was the first term of Equa-

tions (2.19) and (2.20). Then,

E(t) = t∗, (2.21)

and

V ar(t) =

[
dx

dt

]2

V ar[x(t)]. (2.22)

We expect Stein’s method to work in the OU process. There are a few

reasons for us to consider it. In Stein’s model in the previous section the

membrane voltage is a discontinuous function of time. Just as the OU pro-

cess in which the Wiener process is with drift can be viewed as a smoothed

versions of Stein’s model [43]. Or, the OU process can be constructed with

the same first and second infinitesimal moments as the membrane voltage in

Stein’s model. This is also called usual diffusion approximation which has
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been studied in [2], [32], [33], [17], [8], and [22].

Stein’s method is expected to work for the OU process under some condi-

tions. For example, we expect it to perform best when the excitatory post–

synaptic potential (EPSP) and inhibitory post–synaptic potential (IPSP)

amplitudes are small and input frequencies are large. The diffusion approxi-

mation therefore has infinitesimal mean

aEλE − aIλI − x ≈ µ − x, aE, aI > 0, (2.23)

and infinitesimal variance

a2
EλE + a2

IλI ≈ σ2. (2.24)

Because Stein’s method only uses one term of the Taylor’s series, there is some

limit for its application. It is reasonable to try more terms of the Taylor’s

series to see if it can improve this method. We hope that the parameter

range will increase or get better approximation if we use more terms of the

Taylor’s series.
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2.5 Distribution Comparison Method

The analysis of neural spike trains has a long history [43]. There are two

main approaches for such analysis. The first is to formulate a stochastic

model for the neuron’s activity and inputs, derive the distribution of the

FPT, and use it to fit the model to data. The stochastic process is often

modelled as a random walk such as Stein’s model or an diffusion model such

as the OU process. Another important approach in such a study is to fit

standard families of densities to the FPT, such as the lognormal or gamma,

using maximum likelihood or some ad hoc technique. So, another trial is

that we want to compare the approximated FPT distribution derived by us-

ing Stein’s method with the lognormal distribution fitted for the simulated

FPT of the OU process.

In many cases, there is not enough information to assume that the candi-

date families contain the true distribution that is generating the data. This

is certainly the case for the problem at hand. So, we leave the true distribu-

tion for the FPT histograms unspecified; using the simulation data, we then

seek to identify the distribution which is closer to the true and unknown

distribution.

The approach here is based on the results of Foutz and Srivastava(1977)
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[6], Nishii(1988) [28] and White(1982) [45]. We now describe the approach

in general , and then specialize it to the case of the lognormal versus the

approximated distribution. To assess the closeness of two densities f and p

on the real line, we use Kullback–Leibler information criterion (or divergence)

I[p : f ] =
∫ ∞

0
p(x)log

[
p(x)

f(x)

]
dx. (2.25)

It is known that I[p : f ] ≥ 0, with equality only when p = f [45]. For

example, if p(x) = µe−µx and f(x) = λe−λx for x > 0 and zero otherwise,

then I[p : f ] = λ/µ−1− log(λ/µ), which is 0.09 when the ratio of the means

of these exponential densities is λ/µ = 1.5. Next, if p and f are normal den-

sities with means µ and ν, respectively, and both variances equal to 1, then

I[p : f ] = (µ − ν)2/2, which is 0.125 when |µ − ν| = 0.5.

Kullback–Leibler information criterion is not a metric. But, it does have

an advantage over metrics for the problem of comparing two approximations

f1 and f2 to an unknown density p. Specifically,

I[p : f1] − I[p : f2] =
∫ ∞

0
p(x)log

[
f2(x)

f1(x)

]
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= Ep

[
log

f2(Y )

f1(Y )

]
(2.26)

where Ep refers to expectation with respect to the density p, which gener-

ates the random variable Y . In practice, given independent and identically

distributed data (Y1, . . . , Yn) from p, an estimate of Ep is

1

n

n∑
1

log

[
f2(Yi)

f1(Yi)

]
. (2.27)

If this estimate is positive, we conclude that f2 is closer to p than f1.
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Chapter 3

Methods

3.1 Simulation

In many physical problems involving random phenomena we are unable to

find exact expressions (or sometimes even expressions) for quantities of in-

terest. We may then turn to simulation in which the situation of interest

is reproduced theoretically and the results are analyzed. Simulation, when

performed accurately, can be a powerful method for approximating solutions

for very complex problems. In order to evaluate if Stein’s method and its

modification will work in the OU process, I simulated Equation (2.13) using

the input from a normal distribution with mean µ, and variance σ2 with a
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constant threshold S.

3.1.1 Testing for the Independence of Random Num-

bers

In the case of two random variables (X,Y ), a random sample of size n consists

of the n pairs (Xi, Yi), i = 1, 2, . . . , n. The sample correlation coefficient is

often defined as

R =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√

(
∑n

i=1(Xi − X̄)2)(
∑n

i=1(Yi − Ȳ )2)
, (3.1)

where

X̄ =
1

n

n∑
i=1

Xi

and

Ȳ =
1

n

n∑
i=1

Yi

are the sample means for X and Y [44]. Value of R close to zero indicates that

X and Y are uncorrelated, which sometimes implies they are independent,

for example, they are from a normal distribution. In the present situation

we are concerned with a sequence of random variables X1, X2, . . . , Xn. Con-

sidering pairs of consecutive variables (X1, X2), (X2, X3), . . . , (Xn−1, Xn), we
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can regard the first member of each pair as one variable and the second mem-

ber as another variable. The correlation coefficient of the first and second

variables is called the serial correlation coefficient at lag 1:

R1 =

∑n−1
i=1 (Xi − X̄∗)(Xi+1 − X̄∗∗)√

(
∑n−1

i=1 (Xi − X̄∗)2)(
∑n−1

i=1 (Xi+1 − X̄∗∗)2)
(3.2)

where

X̄∗ =
1

n − 1

n−1∑
i=1

Xi

is the mean of the first n − 1 variables and

X̄∗∗ =
1

n − 1

n−1∑
i=1

Xi+1

is the mean of the last n − 1 variables.

It is possible, however, that consecutive variables are independent. But,

for example, the pairs (X1, X3), (X2, X4), · · · , (Xn−2, Xn), are not indepen-

dent. Thus, we also compute a correlation coefficient for Xi and Xi+2. In

general, the serial correlation coefficient at lag k when n is large is defined as
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Rk =

∑n−k
i=1 (Xi − X̄)(Xi+k − X̄)∑n

i=1(Xi − X̄)2
. (3.3)

Furthermore, under the assumption of independence, Rk is, when n is large,

providing k � n, approximately normal with mean zero and variance 1/n. It

is useful to plot Rk versus k to obtain a serial correlogram. Figure 3.1 shows

that all values of Rk of the random numbers which our program generated

by using Matlab lie in the interval of [−1.96/
√

n, 1.96/
√

n], where n is 1000

and k is in the interval [1, 100]. Another way is to use the joint histogram.

Figure 3.2 is the joint histogram of Xi and Xi+1. The joint histogram of two

independent normal random variable has a symmetry ”mountain” shape, just

as shown in Figure 3.2. Figure 3.3 is the scatter plot of random number Xi

against Xi+1. Those figures give the evidence for that Xi and Xi+1 are inde-

pendent.

3.1.2 Euler Method

As Equation (2.13) describes the time evolution of the trajectories of the

membrane potential x = {xt : t0 ≤ t ≤ T}, a discretized version of it can
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be obtained by a mesh of points ti such that t0 < t1 < · · · < tn = T , and

ti+1 − ti = ∆t. Equation (1.1) on t0 ≤ t ≤ T with the initial value xt0 = x0

can then be rewritten as

x(ti+1) = x(ti)+(−x(ti)

τ
+µ)(ti+1−ti)+σ(x(ti), ti)(W (ti+1)−W (ti)). (3.4)

This is an Euler approximation which is a discrete time stochastic process

x(t) satisfying the iterative Equation (3.4). The procedure for solving Equa-

tion (1.1) is to compute x(ti+1) from the knowledge of x(ti) realizing that

the increments of the standard Wiener process

∆Wi = Wi+1 − Wi (3.5)

appearing in Equation (3.4) are mutually independent, normally distributed

r.v.’s with mean zero and variance (ti+1 − ti) independent of X(ti) [15]. We

use Matlab to generate random numbers of the increments of the Wiener

process with mean µ = 0 and variance σ2 = ∆t.

There are several sources of error in Euler’s method that may make the

approximation yn to y(xn) in Equation (3.6) unreliable for large values of
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n, those for which xn is not sufficiently close to x0. The error in the linear

approximation formula

Y (xn+1) ≈ yn + h · f(xn, yn) = yn+1 (3.6)

is the amount by which the tangent line at (xn, yn) departs from the solution

curve through (xn, yn). This error, introduced at each step in the process,

is called the local error in Euler’s method. Besides local error, yn itself

suffers from the accumulated effects of all the local errors introduced at the

previous steps. This is called cumulative error in Euler’s method; it is the

amount by which the polygonal stepwise path from (x0, y0) departs from the

actual solution curve through (x0, y0). The usual way of attempting to reduce

the cumulative error in Euler’s method is to decrease the step h. But, we

can not simply choose an exceedingly small step size and expect the very

great accuracy of result. One obvious reason is the time required for the

computation. The second reason is more subtle. In addition to the local and

cumulative errors discussed previously, the computer itself will contribute

roundoff error at each step because only finite number of significant digits can

be used in each calculation. An Euler’s method computation with h = 0.0001
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will introduce roundoff errors 1000 times as often as one with h = 0.1 [5]. In

our study, we choose h = 0.1 to do the simulation.

The average time for the sample path of x(t) to approach to its asymptote

is about 20 msec (see Figure 2.3). Because the ∆T we will use is 0.1 msec,

to make sure that all the sample path of x(t) to approach to its asymptote in

our program, we let tn be 100 msec which is much greater than the average

time for the sample path of x(t) to approach to its asymptote. So, n in our

program is 1000.

3.1.3 Parameter

For any quantitative discussion about the models and their mutual com-

parison, at least the approximation about their parameters is necessary.

The most appropriate would be to estimate these parameters from the data

recorded intracellularly according to the model construction. So, we use rea-

sonable parameters of a neuron in the spinal cord for µ, τ and S. For the

Wiener process parameter σ2 we can only speculate. From the diffusion ap-

proximation in Equations (2.23) and (2.24), we can approximate σ by the

amplitudes of excitatory and inhibitory postsynaptic potentials and their in-

put rates λE and λI which have a wide range. More information about the
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Wiener parameters in the OU process comes immediately from the experi-

mental data in [11], where direct estimation from FPT has been performed.

In their paper the estimated values of the parameter σ goes up to 15. We also

referred to parameter values in [3], [41], [42], and [24] to pick the σ values

which are shown in Table 3.1.

Table 3.1. Parameter values used in this study.

Parameter Value Units

τ 5 msec

µ 3 mvolt/msec

σ varies (0.5, 2, 4) mvolt/msec

S varies (6–14) mvolt

3.1.4 Goodness–of–fit–test

When we decide on basis of data which of probability distribution to use

for membrane voltage at the specific time or the FPT of the OU process,

common way to approach this problem is to construct a histogram or stem–

and–leaf display. Histograms and stem–and–leaf displays will give a visual

impression of the shape of the data set, but they are not adequate tools for

discrimination. There are several statistical tests, such as goodness–of–fit
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tests, which test the null hypothesis that the distribution is in some specified

form. We use the D test developed by D’Agostino in 1971. It is one of most

powerful tests available for detecting departures from a hypothesized normal

or lognormal density function when n is between 50 and 1000. D’Agostino

shows that his test compares favorably with other tests in its ability to reject

H0, when H0 is actually false.

Suppose we wish to test the null hypothesis that the underlying distribu-

tion is normal. Then the D test is conducted as follows:

1. Draw a random sample x1, x2, . . . , xn of size n ≥ 50 from the population

of interest. n is 400 in this study.

2. Order the n data from smallest to largest to obtain the sample order

statistics x[1] ≤ x[2] ≤ . . . ≤ x[n].

3. Compute the statistic

D =

∑n
i=1[i − 1

2
(n + 1)]x[i]

n2s
, (3.7)

where
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s =

[
1

n

n∑
i=1

(xi − x̄)2

]1/2

. (3.8)

4. Transform D to the statistic Y by computing

Y =
D − 0.28209479

0.02998598/
√

n
(3.9)

If n is large and the data are drawn from a normal distribution, then the

expected value of Y is zero. For nonnormal distributions Y will tend

to be either less than or greater than zero, depending on the particular

distribution.

5. Reject at the α significance level the null hypothesis that the n data

were drawn from a normal distribution if Y is less than the α/2 quantile

or greater than the 1 − α/2 quantile of the distribution of Y . For

n = 400, and α = 0.05, the upper and lower limit are 1.633 and -2.270,

respectively [7].

The Y statistic can also be used to test the null hypothesis of a lognormal

population by using yi = log(xi) in place of xi in the calculation.
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3.2 Approximation

First, we go to the details of approximating the first two moments of the

FPT (mean and variance).

3.2.1 Approximation of Moments of the FPT

• The First Four Derivatives of h[r(t)]

h[r(t)] = t, i. e., h(x) is the inverse function of r(t). Recall that the first

derivative of an inverse function can be expressed as the reciprocal of the

derivative of the original function [40]. Then, we take derivative of the first

order derivative to get second order derivative, and so on.

h′[r(t)] = [r′(t)]−1 (3.10)

h′′[r(t)] = − [r′(t)]−3r′′(t) (3.11)

h′′′[r(t)] = 3[r′(t)]−5[r′′(t)]2 − r′′′(t)[r′(t)]−4 (3.12)

h′′′′[r(t)] = − 15[r′(t)]−7[r′′(t)]3 + 10[r′(t)]−6r′′(t)r′′′(t)

− r′′′′(t)[r′(t)]−5 (3.13)

•The First four derivatives of r(t*)
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The First Four Derivatives of h[r(t)] evaluated at t∗ at which the mean of

x(t) passes the threshold S. We can get the following by taking derivatives

to r(t) and plugging in t∗ = −τ log(1 − s
µτ

) to r(t).

r′(t) = −µe
−t
τ , r′(t∗) = −(µ − s

τ
) (3.14)

r′′(t) =
µ

τ
e

−t
τ , r′′(t∗) =

1

τ
(µ − s

τ
) (3.15)

r′′′(t) = − µ

τ 2
e

−t
τ , r′′′(t∗) = − 1

τ 2
(µ − s

τ
) (3.16)

r′′′′(t) =
µ

τ 3
e

−t
τ , r′′′′(t∗) =

1

τ 3
(µ − s

τ
) (3.17)

After substituting to the derivatives of h[r(t)], we can obtain

h′(t∗) = − (µ − s

τ
)−1 (3.18)

h′′(t∗) =
1

τ
(µ − s

τ
)−2 (3.19)

h′′′(t∗) = − 2

τ 2
(µ − s

τ
)−3 (3.20)

h′′′′(t∗) =
6

τ 3
(µ − s

τ
)−4 (3.21)

• The nth central moment (µn) of the normal distribution N(µ, σ2)

If n is odd, the moment is 0 due to the symmetry of the distribution. If
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n is even, n = 2k, the following is the formula for it.

E[(x − µ)2k] =
(2k)!σ2k

k!2k
(3.22)

So, µ3 = µ5 = 0 and µ4 = 3σ4, µ6 = 15σ6.

• The Taylor’s series of h[r(t)]

E(t) = t∗ + h′′µ2

2!
+ h′′′µ3

3!
+ h′′′′µ4

4!
+ . . . + hn µn

n!
(3.23)

where un is nth central moment of S − x(t∗).

• The Taylor’s series of the variance of h[r(t)]

As we know

V ar(t) = V ar[h(r(t))] = E(h(r(t))2) − [E(h(r(t)))]2. (3.24)

letting g(t) = [h(r(t))]2, we can write E([h(r(t∗))]2) as

E([h(r(t∗))]2) = g(t∗) + g′′(t∗)
µ2

2!
+ g′′′(t∗)

µ3

3!
+ g′′′′(t∗)

µ4

4!
+ . . . + gn(t∗)

µn

n!

(3.25)
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The first four derivatives of g(t) are

g′(t) = 2h(t)h′(t) = 2hh′ (3.26)

g′′(t) = 2[h′(t)]2 + 2h(t)h′′(t) = 2h′2 + 2hh′′ (3.27)

g′′′(t) = 6h′(t)h′′(t) + 2h′′′(t)h(t) = 6h′h′′ + 2h′′′h (3.28)

g′′′′(t) = 6[h′′(t)]2 + 8h′(t)h′′′(t) + 2h′′′′(t)h(t)

= 6h′′2 + 8h′h′′′ + 2h′′′′h (3.29)

If we use the original Stein’s method to do the approximation, the mean

and variance of FPT are

E(t) = −τ log(1 − s

µτ
) (3.30)

and

V ar(t) =
1

2

τS(2µτ − S)

(µτ − S)2µ2
σ2. (3.31)

If we use the first two terms to do the approximation, the mean of FPT is
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E(t) = t∗ + h′′µ2

2!
= −τ log(1 − s

µτ
) +

1

4

S(2µτ − S)

(µτ − S)2µ2
σ2 (3.32)

For the variance of FPT we need to calculate the E[h2(r(t∗))] and [E(h(r(t∗)))]2,

E[h2(r(t∗))] = h2 + (2h′2 + 2h′′h)
µ2

2!
(3.33)

[E(h(r(t∗)))]2 = (h + h′′µ2

2!
)2, (3.34)

where h is h[r(t∗)]. So, the variance of FPT is

V ar(t) = E([h(r(t∗))]2) − [E(h(t∗))]2

= h′2µ2 − h′′2µ2
2

4
. (3.35)

Then we plug in h(r(t∗)) and obtain

V ar(t) =
τ 2

(µτ − S)2
σ2

x −
τ 2

4(µτ − s)4
σ4

x. (3.36)
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where σ2
x is V ar[x(t∗)],

σ2(x) =
σ2s

µ
− σ2s2

2µ2τ
=

s(2µτ − s)

2µ2τ
σ2. (3.37)

So, the variance of FPT can be written as

V ar(t) =
S(2µτ − S)2

2µ2(µτ − S)
σ2 − S2(2µτ − S)4

4µ4(µτ − S)4
σ4 (3.38)

If we use first four terms to do the approximation, then the mean of FPT is

E(t) = t∗ + h′′µ2

2!
+ h′′′µ3

3!
+ h′′′′µ4

4!

= −τ log(1 − s

µτ
) +

1

4

S(2µτ − S)

(µτ − S)2µ2
σ2 +

3

16

S2(2µτ − S)2

τ(µτ − S)4µ4
σ4(3.39)

For the variance of FPT, the calculation steps are as following,

E[h2(r(t∗))] = h2+(2h′2+2h′′h)
µ2

2!
+(6h′h′′+2h′′′h)

µ3

3!
+(6h′′2+8h′h′′′+2h′′′′h)

µ4

4!

(3.40)
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[E(h(r(t∗)))]2 = (h + h′′µ2

2!
+ h′′′µ3

3!
+ h′′′′µ4

4!
)2 (3.41)

So,

V ar(t) = E([h(r(t∗))]2) − [E(h(t∗))]2

= h′2µ2 + h′h′′µ3 + (6h′′2 + 8h′h′′′)
µ4

24
−
(

h′′2µ2
2

22
+

h′′′2µ2
3

62
+

h′′′′2µ2
4

242

+2h′′′h′′′′ µ3µ4

6 × 24
+ 2h′′h′′′ µ2µ3

2 × 6
+ 2h′′h′′′′ µ2µ4

2 × 24

)
(3.42)

V ar(t) =
τ 2

(µτ − s)2
σ2

x +
5τ 2

2(µτ − s)4
σ4

x −
3τ 2

4(µτ − s)6
σ6

x −
9τ 2

16(µτ − s)8
σ8

x

(3.43)

V ar(t) =
s(2µτ − s)τ

2(µτ − s)2µ2
σ2+

5s2(2µτ − s)2

8(µτ − s)4µ4
σ4− 3s3(2µτ − s)3

32(µτ − s)6τ 2µ6
σ6− 9s4(2µτ − s)4

256(µτ − s)8τ 2µ8
σ8

(3.44)
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3.2.2 Confidence Limits for the mean and variance of

Lognormal Distribution

There are several methods for calculating confidence limits. They are given

in [7]. We use a simple method to estimate the mean µ and variance σ2 of

the two–parameter lognormal distribution. Suppose X is random variable of

lognormal distribution, let Y = log(X), so,

ȳ =
1

n

n∑
i=1

yi (3.45)

s2
y =

1

n − 1

n∑
i=1

(yi − ȳ)2. (3.46)

Then, we replace µy and σ2
y by ȳ and s2

y in the formulas for the true and

unknown µ and σ2. We get

µ̂ = e

(
ȳ+

s2y
2

)
(3.47)
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and

σ̂2 = µ̂2[es2
y − 1] (3.48)

There are also several methods for calculating confidence limits for mean

of lognormal distribution. Land’s method is considered as the best one. Land

showed that the upper one-sided 100(1−α)% and the lower one-sided 100α%

confidence limits for µ are obtained by calculating

UL1−α = e

(
ȳ+0.5s2

y+
syH1−α√

n−1

)
(3.49)

and

LLα = e

(
ȳ+0.5s2

y+
syHα√

n−1

)
, (3.50)

respectively, where ȳ and s2
y are calculated using Equations (3.45) and (3.46),

respectively. The quantities H1−α and Hα are obtained from the tables pro-

vided by Land in [7]. In our study, we use α = 0.05.

As to the confidence interval of variance of FPT, we just run the program
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in a 100 time loop and get a sample of the variance. Then, we take the 97.5

percentile of the sample data as the upper confidence limit and 2.5 percentile

of the sample data as the lower confidence limit. We repeat the procedure 10

times and obtain 10 confidence limits. We take the mean of the 10 percentiles

as confidence limits of the variance.

We use the relationship between the approximation values of the mean

and variance of FPT and the confidence interval of the simulatied mean and

variance to tell if the approximation values are close enough to the simulation

results. We conclude the approximation can work for those parameters if the

approximation values fall in the confidence interval of the simulation data.

3.2.3 Approximation Error

If all the approximation values fall in the confidence interval no matter how

many terms we used to approximate the mean and variance of FPT, we use

the error of the approximation to tell which approximation is closer to the

simulation data. It is defined as [42]:

E =
Approximation − Simulation

Simulation
(100%)
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=
(

Approximation

Simulation
− 1

)
100%. (3.51)

We use the mean and standard deviation of 100 E values for all the approx-

imation value to estimate which approximation method is better.

3.2.4 Approximation of Probability Density Function

of the FPT

The marginal distribution of x(t) is normal distribution with mean E(x(t)),

which is µτ(1− e−
t
τ ), and variance σ2τ(1− e−

2t
τ )/2. Then, the marginal dis-

tribution for x(t∗) is N(−τ log(1− s
µτ

), s(2µτ−s)
2µ2τ

σ2). Obviously, E(x(t∗)) = S.

So, the marginal distribution for y = S − x(t∗) is N(0, s(2µτ−s)
2µ2τ

σ2).

fY (y(t∗)) =
1√

2πs(2µτ−s)
2µ2τ

σ2

e
− (y)2

s(2µτ−s)

sµ2τ
σ2

(3.52)

The pdf of FPT g(s, t|x0) is

g(s, t|x0) = fYt∗(y)/

∣∣∣∣∣dh(y)

dy

∣∣∣∣∣ , (3.53)
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where

y = r(t) = S − E(x(t)) = µτ(1 − e−
t
τ ). (3.54)

and h′(y) = h′(r(t)) = −µe−
t
τ . So, the pdf of FPT approximated by using

Stein’s method (Jacobian transform) is

g(s, t|x0) =
µe−

t
τ e

− (µτ(1−e
− t

τ )−S)2

σ2τ(1−(1− S
µτ )2)√

πσ2τ(1 − (1 − S
µτ

)2)
, (3.55)

where t ∈ (0,∞).

The lognormal pdf estimated from simulation data is

fT (t) =
1

tσlog(t)

√
2π

e
− (log(t)−µlog(t))

2

2σ2
log(t) (3.56)

where t ∈ (0,∞), µlog(t) is the mean of log(t) and σ2
log(t) is the variance of

log(t).
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3.3 Comparison of Two Probability Density

Functions

We use Stein’s method to approximate the probability density function of

the FPT. We estimate the lognormal density function by using the maxi-

mum likelihood estimator [4]. Then, we can see which one is better for the

simulation data by Kullback–Leibler information criteria.

First, we describe the general comparison of two probability density func-

tions. We define

F = {f(y|α) : α ∈ A} (3.57)

and

G = {f(y|β) : β ∈ B} (3.58)

be two families of densities under consideration, and let p(y) denote the true

and unknown density that is generating the data. We let α∗ be the quasi–

true parameter in A associated with the true density p(y). Then f(y|α∗) is
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the member of F that minimizes I[p : f(·|α)], over α ∈ A, and define β∗ ∈ B

similarly. Thus,

IF = IF [p:a∗] =
∫ ∞

0
p(y)log

[
p(y)

f(y|a∗)

]
dy (3.59)

characterizes the proximity of F to p, and IG = IG[p : β∗] (defined similarly)

characterized the proximity of G to p. Thus, the difference

IG − IF =
∫ ∞

0
p(y)log

[
f(y|α∗)
g(y|β∗)

]
dy (3.60)

allows for a comparison of F and G, using estimates of α∗ and β∗, which we

describe next.

Given a random sample Y = (y1, . . . , yn) generated from p(y), let the

quasi–log–likelihood function of α under F be

Ln(α|Y ) =
n∑

i=1

log[f(yi|α)] (3.61)

and a quasi–maximum likelihood estimator (QMLE) α̂n be a value which

maximizes Ln(α|Y ) over α ∈ A; for G, define Ln(β|Y ) and β̂n similarly.
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A natural estimate of IG − IF is

Tn =
1

n

n∑
i=1

log

[
f(yi|α̂n)

g(yi|β̂n)

]
, (3.62)

which is asymptotically normal:

√
n[Tn − (IG − IF )] → N(0, σ2), (3.63)

where the variance σ2 = Ep [log[f(Y |α∗)/g(Y |β∗)]]
2 is estimated by

σ̂2 =
1

n

n∑
i=1

[
log

f(yi|α̂n)

g(yi|β̂n)

]2

. (3.64)

The regularity conditions that guarantee the existence of the quasi–true pa-

rameters α∗ and β∗, the consistency of σ̂2
n are described in the papers by [6],

[45], and [28]. These conditions are satisfied for the comparison below. We

omit the details of that verification.

The decision about which of the families, F or G, is closer to the true

and unknown distribution p(y), now proceeds in the following way. We first

pose the null hypothesis H0 : IG = IF against the alternative hypothesis

49



H1 : IG 	= IF . We then compute the statistic
√

nTn and its estimated

standard deviation σ̂n. Given a confidence coefficient α, we construct the

approximate confidence interval for (IG − IF ),

In,α =

(
Tn + cα

σ̂n√
n

, Tn − cα
σ̂n√
n

)
(3.65)

where cα is the upper 100(1−α/2) percent point of the standard normal dis-

tribution (if α = 0.05, cα = 1.96). If 0 ∈ In,α, then we cannot reject the null

hypothesis that the two distributions are equally close to the true distribu-

tion; otherwise we reject the null hypothesis. Furthermore, if In,α ⊆ (0,∞),

we conclude that F is closer to the true model; if In,α ⊆ (0,−∞), we con-

clude that G is closer to the true distribution. We now turn to the specifics

for lognormal distribution. The QMLEs α̂n = (α̂1n, α̂2n) for lognormal are

obtained from Equations (3.66) and (3.67).

α̂1n =
1

n

n∑
1

log(yi) (3.66)

α̂2n =
1

n

n∑
1

[log(yi) − α̂1n]2 (3.67)
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respectively. We already have the approximated density function derived

from Stein’s method. So, we can use the above method to compare them.
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Figure 3.1. Serial correlation coefficient at lag k with n is 1000. k is be-

tween [1,100]. The central irregular line is Rk. The two straight lines are

upper confidence limit and lower confidence limit, respectively, as labelled.

The random numbers are generated from a standard normal distribution with

mean 0, and variance 1.
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Figure 3.2. The joint histogram of random numbers Xi and Xi+1, where

i represents the ith number generated by Matlab with n 1000.
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Figure 3.3. Scatter plot of the random numbers: Xi+1 against Xi with n

1000. The sigma is the standard deviation of the random numbers.
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Chapter 4

Results

4.1 Simulation

1. The correlation time of the OU process .

Figures 4.1, 4.2, and 4.3 show that the correlation of the membrane

voltage at different times. Clearly, variables x6 and x5 are highly cor-

related (the subscript represents time, msec), while variables x10 and

x5 are only slightly correlated, and variables x15 and x5 are rarely cor-

related. The autocorrelation function in Figure 4.4 gives more detailed

information on the correlation of the membrane voltages at different

times. It also shows that the correlation time constant for the OU
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process (at least 5 msec) is greater than the standard deviations of

the corresponding FPT. The largest standard deviation of the FPT is

2.5 mesc, when the threshold is 14 mvolt. Most are less than 1 msec.

This could also be obtained from the Stein’s approximation method,

in section 2.4 on page 18. Thus, the OU process has a long correlation

time compared to the resultant standard deviation of FPT.

From the sample paths in Figures 4.5, 4.6, and 4.7, we can see the

sample paths are always on one side of the expected mean membrane

voltage for a while before they cross their expected mean. The corre-

lation of the membrane voltage is apparent over short time ranges.

2. The marginal distribution of membrane voltage is the normal

distributed.

Figures 4.8, 4.9, and 4.10 show that the marginal distribution of x(t) is

close to normal. The smooth curves are the pdfs of a normal distribu-

tion, which are estimated by using the method of moments, see [4] for

details. The curve fitted from simulation data is very close to the ex-

pected curve. This suggests that the simulation results are quite close

to the theoretical values. The goodness–of–fit tests give this evidence

too. The Y values for the different times are in Table 4.1. Table 4.1.
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D’Agostino’s test results for the marginal distribution of x(t).

time 5 10 15 20 25 30 35

Y 0.5172 0.3746 0.8196 0.6536 1.5296 1.8049 0.9387

The sample size of the x(t) is 400. All the Y values are in the interval

(-2.270,1.633). So, we do not reject the null hypothesis and conclude

that all the variables x(t) follow normal distribution.

3. The lognormal distribution is very close to the distribution of

FPT.

Figure 4.11 shows that both the normal distribution and the lognormal

distribution provide a good fit to the histogram of the simulated FPT,

when σ is 0.5. However, for the large values of the Wiener parameter,

4 and 16, Figures 4.12 and 4.13 show that only the lognormal family fit

well. This suggests that for large Wiener parameter in the OU process,

lognormal distribution is very close to the true distribution the FPT

follows. The Y values of D’Agostino’s test results are in Table 4.2 and

give more evidence on this. We select threshold 7 mvolt, 10 mvolt, and

13 mvolt as examples.

57



Table 4.2. D’Agostino’s test results for distribution of the FPT.

Threshold, S σ

mvolt 0.5 2 4

7 -1.6975 -0.2848 0.8183

10 -1.4606 0.0411 1.5692

13 -1.0100 0.3651 0.8468

The sample size of the FPT is 400. All the Y values are in the interval

(-2.270, 1.633). So, we do not reject the null hypothesis and conclude

that the variables FPT follow lognormal distribution.
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Figure 4.1. The scatter plot of membrane voltage at 6 msec versus that

at 5 msec and the regression line. The sample size of the membrane voltage

at different time is 200.
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Figure 4.2. The scatter plot of membrane voltage at 10 msec versus that

at 5 msec and the regression line.
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Figure 4.3 The scatter plot of membrane voltage at 15 msec versus that

at 5 msec and the regression line.
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Figure 4.4. The autocorrelation function of the membrane voltage from 5

msec to 15 msec. x-axis represents the time difference.
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Figure 4.5. A sample path of the membrane voltage with the Wiener pro-

cess parameter 0.25 (the irregular curve). The central smooth curve is the

expected mean of membrane voltage and the two smooth curves beside it are

the upper and lower 95% confidence limit, respectively. The horizontal line

represents the threshold 10 mvolt.
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Figure 4.6. A Sample path of the membrane voltage with the Wiener process

parameter 4 (the irregular curve). The central smooth curve is the expected

mean of membrane voltage and the two smooth curves beside it are the upper

and lower 95% confidence limit, respectively. The horizontal line represents

the threshold 10 mvolt.
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Figure 4.7. A Sample path of the membrane voltage with the Wiener pro-

cess parameter 16 (the irregular curve). The central smooth curve is the

expected mean of membrane voltage and the two smooth curves beside it are

the upper and the lower 95% confidence limit, respectively. The horizontal

line represents the threshold 10 mvolt.
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Figure 4.8. The histogram and pdfs of membrane voltage of the OU pro-

cess at 5 mesc. The total area of histogram bars is 1. The blue curve is

pdf of the simulated membrane voltage, and the green curve is the pdf of ex-

pected membrane voltage at 5 mesc. The sample size of the random variable

membrane is 400.
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Figure 4.9. The histogram and pdfs of membrane voltage of the OU pro-

cess at 15 mesc. The total area of histogram bars is 1. The blue curve is pdf

of the simulated membrane voltage, and the green curve is the pdf of expected

membrane voltage at 5 mesc. The sample size of the membrane voltage is

400.
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Figure 4.10. The histogram and pdfs of the membrane voltage of the OU

process at 25 mesc. The total area of histogram bars is 1. The blue curve is

pdf of the simulated membrane voltage, and the green curve is the pdf of ex-

pected membrane voltage at 5 mesc. The sample size of the random variable

membrane voltage is 400.
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Figure 4.11. The histogram and the pdfs of FPT of the OU process with

the Wiener process parameter 0.25 and the threshold 10 mvolt. The green

curve is fitted by lognormal density function and the red curve is fitted by

normal density function.
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Figure 4.12. The histogram and the pdfs of FPT of the OU process with

the Wiener process parameter 4 and the threshold 10 mvolt. The green

curve is fitted by lognormal density function and the red curve is fitted by

normal density function.
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Figure 4.13: The histogram and the pdfs of FPT of the OU process with

the Wiener process parameter 16 and the threshold 10 mvolt. The green

curve is fitted by lognormal density function and the red curve is fitted by

normal density function.
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4.2 Approximation

1. For the small Wiener process parameter, Stein’s approxima-

tion values of the mean and variance of FPT are close to the

simulated results.

When σ is 0.5, Figures 4.14 and 4.15 show that the mean and variance

approximated using the Stein’s method are very close to the simulated

results. This is true except when the threshold is 14 mvolt. This

tells us the approximation using Stein’s method works well for a small

Wiener parameter. For σ = 2, Figures 4.15 and 4.16 show that the ap-

proximated results deviate from the simulated results a lot, when the

thresholds are greater than 9 mvolt. When σ is 4, Figures 4.18 and 4.19

show that the approximation results deviate from the simulated results

very much, even if the threshold is very small. All the approximation

results are out of the confidence interval (CI) of the simulated results.

This result suggests that the Stein’s method should not be used near

the large Wiener parameter range in OU process.

2. Using more terms of the Taylor’s series, the approximation
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results are like Stein’s method for the small Wiener parame-

ter. But, this does not work well for a large Wiener process

parameter.

When σ is 0.5, after adding the second term of the Taylor’s series to

Stein’s method, approximation results are all very close to the simula-

tion results. Figures 4.20 and 4.21 show this, except when threshold is

greater than 12 mvolt.

When σ is 2, Figures 4.22 and 4.23 show that the approximation re-

sults still deviate from the simulation results a lot, for large thresholds.

They also show that by using more terms, the deviations even occur

for the small thresholds. Figures 4.24 and 4.25 tell us that for a large

Wiener process parameter, σ is 2 or 4, the approximation does not

work. All approximation results deviate from the simulation results a

lot, particularly for large thresholds, such as 14 mvolt.

Because the third central moment of normal distribution is 0, the ap-

proximation results by using three terms are the same as those by two

terms. Adding the higher order terms sometimes causes the variance

to become negative. Hence, the third and higher order terms are not

used.
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3. The approximation errors of two terms of the Taylor’s series

are less than those of one term, when σ is 0.5.

The approximation errors are in Table 4.3 and Table 4.4. They show

that the approximation errors for the mean and standard deviation of

FPT by two terms of the Taylor’s series are less than those by one

term, when σ is 0.5. This is true except for the relatively small or

relatively large threshold, such as the approximation error of the mean

for threshold 12 mvolt and the approximation error of the standard

deviation for threshold 6 mvolt. The approximation errors for the mean

by four terms of the Taylor’s series are very close to the approximation

errors for the mean by two terms. But, the approximation errors for

the standard deviation by four terms of the Taylor’s series are greater

than both those by one term and by two terms.
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Figure 4.14. Stein’s approximation for the mean of FPT by using the first

term of the Taylor’s series , where the Wiener process parameter is 0.25.

The central curve is the mean of membrane voltage from simulation and the

other two curves beside it are the upper and lower 95% confidence limit for

the mean FPT, respectively. ”*” represents the approximation values by the

first term of the Taylor’s series.
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Figure 4.15. Stein’s Approximation for the standard deviation of FPT by

using the first term of the Taylor’s series, where The Wiener process pa-

rameter is 0.25. The central curve is the mean of membrane voltage from

simulation and the other two curves beside it are the upper and lower 95%

confidence limit respectively. ”*” represents the approximated values by the

first term of the Taylor’s series.
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Figure 4.16. Stein’s approximation for the mean of FPT by using the first

term of the Taylor’s series, where the Wiener process parameter is 4. The

central curve is the mean of membrane voltage from simulation and the other

two curves beside it are the upper and lower 95% confidence limit for the

mean FPT, respectively. ”*” represents the approximated values by the first

term of the Taylor’s series.
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Figure 4.17. Stein’s Approximation for the standard deviation of FPT by

using the first term of the Taylor’s series, where the Wiener process parame-

ter is 4. The central curve is the mean of membrane voltage from simulation

and the other two curves beside it are the upper and lower 95% confidence

limit respectively. ”*” represents the approximated values by the first term of

the Taylor’s series.
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Figure 4.18. Stein’s approximation for the mean of FPT by using first term

of the Taylor’s series, where the Wiener process parameter is 16. The central

curve is the mean of membrane voltage from simulation and the other two

curves beside it are the upper and lower 95% confidence limit for the mean

FPT, respectively. ”*” represents the approximated values by the first term

of the Taylor’s series.
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Figure 4.19. Stein’s Approximation for the standard deviation of FPT by

using the first term of the Taylor’s series, where the Wiener process parame-

ter is 16. The central curve is the mean of membrane voltage from simulation

and the other two curves beside it are the upper and lower 95% confidence

limit respectively. ”*” represents the approximated value by the first term of

the Taylor’s series.
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Figure 4.20. The Approximation for the mean of FPT by using two terms

of the Taylor’s series and four terms, where the Wiener process parameter

is 0.25. The central curve is the mean of membrane voltage from simulation

and the other two curves beside it are the upper and lower 95% confidence

limit, respectively. ”*” represents the approximated values by the first term

of the Taylor’s series; ”+” represents the approximated values by two terms;

”◦” represents the approximated values by four terms.
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Figure 4.21. The Approximation for the standard deviation of FPT by using

two terms of the Taylor’s series and four terms, where the Wiener process

parameter is 0.25. The central curve is the standard deviation of membrane

voltage from simulation and the other two curves beside it are the upper and

lower 95% confidence limit, respectively. ”*” represents the approximated

values by the first term of the Taylor’s series; ”+” represents the approxi-

mated values by two terms; ”◦” represents the approximated values by four

terms.
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Figure 4.22. The Approximation for the mean of FPT by using two terms

of the Taylor’s series and four terms, where the Wiener process parameter is

4. The central curve is the mean of membrane voltage from simulation and

the other two curves beside it are the upper and lower 95% confidence limit,

respectively. ”*” represents the approximated values by the first term of the

Taylor’s series; ”+” represents the approximated values by two terms; ”◦”

represents the approximated values by four terms.
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Figure 4.23. The Approximation for the standard deviation of FPT by using

two terms of the Taylor’s series and four terms, where the Wiener process pa-

rameter is 4. The central curve is the standard deviation of membrane voltage

from simulation and the other two curves beside it are the upper and lower

95% confidence limit, respectively. ”*” represents the approximated values by

the first term of the Taylor’s series; ”+” represents the approximated values

by two terms; ”◦” represents the approximated values by four terms.
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Figure 4.24. The Approximation for the mean of FPT by using two terms

of the Taylor’s series and four terms, where the Wiener process parameter is

16. The central curve is the mean of membrane voltage from simulation and

the other two curves beside it are the upper and lower 95% confidence limit,

respectively. ”*” represents the approximated values by the first term of the

Taylor’s series; ”+” represents the approximated values by two terms; ”◦”

represents the approximated values by four terms.
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Figure 4.25. The Approximation for the standard deviation of FPT by using

two terms of the Taylor’s series and four terms, where the Wiener process

parameter is 16. The central curve is the standard deviation of membrane

voltage from simulation and the other two curves beside it are the upper and

lower 95% confidence limit, respectively. * represents the approximation value

by first term of the Taylor’s series; + represents the approximation value by

two terms; o represents the approximation value by four terms.
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Table 4.3. The approximation errors of the mean of FPT by the different

terms of the Taylor’s series.

S(threshold) one term two terms four terms

mvolt errormean stderror errormean stderror errormean stderror

6 -0.0528 0.0063 -0.0482 0.0063 -0.0482 0.0063

7 -0.0418 0.0063 -0.0364 0.0063 -0.0364 0.0063

8 -0.0335 0.0054 -0.0271 0.0055 -0.0270 0.0055

9 -0.0265 0.0055 -0.0187 0.0055 -0.0185 0.0055

10 -0.0202 0.0063 -0.0103 0.0063 -0.0100 0.0063

11 -0.0129 0.0080 0.0006 0.0081 -0.0014 0.0081

12 -0.0048 0.0074 0.0158 0.0076 0.0179 0.0076

errormean represents the approximation errors of the mean of FPT. stderror

represents the standard deviation of the approximation errors. The sample

size of approximation errors is 100. σ is 0.5.
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Table 4.4. The approximation errors of the standard deviation of FPT by

the different terms of the Taylor’s series.

S(threshold) one term two terms four terms

mvolt errorstd stderror errorstd stderror errorstd stderror

6 -0.0003 0.0338 -0.0010 0.0338 0.0058 0.0340

7 0.0057 0.0370 0.0048 0.0370 0.0144 0.0373

8 0.0009 0.0386 -0.0003 0.0386 0.0133 0.0391

9 0.0137 0.0338 0.0118 0.0388 0.0319 0.0395

10 0.0129 0.0390 0.0101 0.0389 0.0405 0.0401

11 0.0287 0.0403 0.0240 0.0401 0.0738 0.0420

12 0.0582 0.0457 0.0493 0.0453 0.1412 0.0493

errorstd represents the approximation errors of the standard deviation of

FPT. stderror represents the standard deviation of the approximation errors.

The sample size of approximation errors is 100. σ is 0.5.
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4.3 Comparison of Two Probability Density

Functions

We only compare density functions when the Wiener process parameter is

small (σ = 0.5). This is done because the integral of the approximated pdf by

Stein’s method is less than 1, for the large Wiener process parameters. Figure

4.29 shows that the upper confidence limits of difference of Kullback–Leilber

criteria are less than zero when the thresholds are from 6 mvolt to 9 mvolt,

and at 13 mvolt. So, we reject null hypothesis and conclude Lognormal pdf

is closer to the true pdf for thresholds from 6 mvolt to 9 mvolt, and at 13

mvolt (see Figures 4.26 and 4.28). In the median range of thresholds, from

10 mvolt to 12 mvolt, Figure 4.29 shows that the confidence intervals of

difference of Kullback–Leilber criteria include zero (see Figure 4.27). Then,

we do not reject null hypothesis and conclude that both pdfs are equally

close to the true and unknown pdf of the FPT. But, we notice that when the

null hypothesis is rejected, the upper limit of difference of Kullback–Leilber

criteria is around 0.02, very close to zero. So, we can say that these two pdfs

are almost equally close to the true and unknown pdf of the FPT when the

Wiener parameter is 0.25 and thresholds are from 6 mvolt to 13 mvolt.
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Figure 4.26. The histogram and pdfs of FPT with the threshold 7 mvolt

and the Wiener process parameter 0.25. The red curve is fitted by lognormal

distribution and the green curve is approximated by Stein’s method.
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Figure 4.27. The histogram and pdfs of FPT with the threshold 10 mvolt

and the Wiener process parameter 0.25. The red curve is fitted by lognormal

distribution and the green curve is approximated by Stein’s method.
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Figure 4.28. The histogram and pdfs of FPT with the threshold 13 mvolt

and the Wiener process parameter 0.25. The red curve is fitted by lognormal

distribution and the green curve is approximated by Stein’s method.
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Figure 4.29. 95% confidence interval of the difference of Kullback–Leibler

information criteria. The two irregular curves are the 95% upper and lower

limit for the difference of Kullback–Leibler information criteria of the approx-

imated density functions of FPT and the fitted lognormal density functions.
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Chapter 5

Discussion

The use of the diffusion processes to model a neuron’s membrane voltage has

a long history. Interest in such models is still quite strong, as evidenced by

recent work [22]. The most thorough studies about diffusions in this context

are the Wiener and the OU processes. The latter arises as the continuous

limit of Stein’s model and plays a central role because it naturally arises

when starting from an equivalent electric circuit of the membrane potential

of real neurons at subthreshold level. The Wiener Process yields the inverse

Gaussian distribution for the FPT, which is analytically tractable, so that

standard inferential procedures (parameter estimation, confidence intervals,

goodness of fit tests) have been well developed. That is not the case for the
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OU process or other models. This paucity of statistical methods for biolog-

ically more realistic models has led to the use of rather ad hoc procedures,

such as the use of moments or curve fitting using generic distributions for

positive random variables, such as lognormal. Recent work [11] has allevi-

ated some of these difficulties, but much still remains to be done.

Using Stein’s method to approximate the FPT of the OU process, The

approximation values of the FPT we obtain are the time at which E(x(t))

reaches S, shown as t∗ in Equation (2.12) and in Figure 2.3. The smaller the

variance of x(t), the better we expect this approximation will to be, since

it is exact in the limiting case of zero variability. The variance of x(t) is

V ar[x(t)] = σ2τ(1 − e−
2t
τ )/2, in which τ is a constant and t is around t∗.

So, the variance of x(t) is only dependent on the Wiener process parameter.

When σ is small, the variance of x(t) will be smaller. So, we expect that

when σ is small, this approximation will be better. This is consistent with

our result that when σ is 0.5, the approximation works very well. Another

reason that the approximation by Stein’s method can work in the OU pro-

cess may be related to the fact that the OU process has a relatively long

correlation time which is one condition for Stein’s method to work.

When σ is large, such as 2 or 4, the approximated results deviate from

95



the simulated FPT very much, depending on the thresholds. This result is

not surprising because when σ is large, its higher order power in the Taylor’s

series will dominate the approximation results.

Since the original Stein’s method can approximate the FPT of the OU

process, this approach results in the possibility to consider not only the

Stein’s approximation method, but also some of its generalizations and mod-

ifications. When the Wiener parameter, σ2, is 0.25, the approximation errors

of the mean and standard deviation for two terms of the Taylor’s series are

less than those for one term. It appears that the terms with higher order

power of the Wiener parameter, such as second power and fourth power,

are large enough to keep to obtain more precise results, when σ is 0.5. So,

depending on the Wiener parameter, using more terms of the Taylor’s series

sometimes can help to obtain better approximation.

Our results give in depth evidence that lognormal density function is close

to the true distribution of the FPT. For the other FPT histogram, exponen-

tial and gamma densities provide good fits in the numerous reports and for

certain limiting parameter values. This suggests that these simple densities

can approximate the OU process. S. Iyengar and Q. Liao (1997) reported

that inverse Guassian distribution is closer to the true pdf than lognormal
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distribution when they approximated the OU process. But, the inverse Guas-

sian has three parameters to estimate. It is reasonable that three parameter

distribution fits better to the data than two parameter distribution does.

The approximation of the FPT of the OU process is the only purpose of

this article and we do not intend to present here a mathematical analysis

of the OU process. Namely, the formal description of neuronal firing in the

terms of the first passage time problem remains untouched. One disadvan-

tage of this article is that there is no real data to check the approximation

results. We hope to investigate both of them in our later work.
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Chapter 6

Conclusions

1. When σ is 0.5, the approximation results of Stein’s method are in the

confidence interval of the mean and variance of FPT. So, we can say

that Stein’s method works well for the OU process with a small Wiener

process parameter.

2. When σ is 2 or 4, using more terms of the Taylor’s series is not seen

to improve the approximation of the mean and variance of the first

passage time for the OU process.

3. When σ is 0.5, the approximation errors for the approximation with

first two terms of the Taylor’s series are smaller than the approximation

with first term dose. This suggests that in the range within which the
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approximation of Stein’s method works well, we can get more precise

approximation by using the first two terms of the Taylor’s series.

4. Lognormal pdf fitted for simulation data is close to the true distribution

of the FPT of the OU process for all the Wiener process parameter we

use.
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Appendix A

Matlab Program

clear;

% The first passage time.

X0 = 0; % initial value of x(t).

DELTA T = 0.1; % msec, interval of time, i. e. variance.

SIGMA = 0.5; % Wiener parameter, SIGMA2̂

TAU = 5; % msec, membrane constant

SIZE = 1000;

MU = 3; %mv/msec, mean of input

MEAN = 0;

t = 0: DELTA T:(SIZE*DELTA T) ; % generate SIZE of t
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Ex(1,1) = X0; % initial value of x

Run times = 400; % the sample size of FPT

for THRESHOLD = 6:14; % mvolt

for J = 1:Run times

% standard normally distributed random numbers

N = randn([1,SIZE]);

n = MEAN + SIGMA*N*sqrt(DELTA T);

x(J,1) = X0;

for I = 1: SIZE

x(J,I+1) = x(J,I) + (MU - x(J,I)/TAU)*DELTA T + n(1,I);

if x(J,I)< THRESHOLD & x(J,I+1)>= THRESHOLD

% the first passage condition

y(THRESHOLD-5,J) = (I+1)*DELTA T;

%first passage time

break; %guarantee the first passage

end

end

end

end
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