

Abstract

SHUKLA, ANUJA. Pair programming and the factors affecting Brooks’ Law.

(Under the direction of Dr. Laurie Ann Williams).

Frederick Brooks states in his book The Mythical Man-Month, “Adding manpower

to a late software project makes it later.” Brooks explains that often software

development managers react to schedule problems by adding more manpower to

the project. However, the new team members take some time initially to be

trained and assimilated into the project. Assimilation time is the time the new

team member takes to understand project specific details. Also, if the subprojects

assigned to each engineer are interrelated, intercommunication requirements rise

since each part of the task must be separately coordinated with each other part.

Thus, Brooks contends that when manpower is added to a late project the overall

productivity goes down, delaying the project even further.

This research investigates the effects of pair programming on the training,

assimilation and intercommunication, as mentioned in Brooks’ Law. Pair

programming is a practice in which two programmers work together at one

computer, continuously collaborating on the same design, algorithm, code, or

test. Most software development teams that practice pair programming also

practice pair rotation. With pair rotation, engineers periodically change their

pairing partner. Pair programming and pair rotation have previously been shown

to aid teams in improving code and design quality and to improve teamwork. In

this research, we investigated additional benefits of the pair programming and

pair rotation practices. Through surveys and mathematically modeling, we found

the following:

1. Pair programming reduces intercommunication time within a team.

2. Pair programming reduces mentoring time when new members are added

to a team.

3. Pair programming reduces assimilation time when new members are

added to a team.

4. Manpower can be added to a late software project provided the additional

useful effort delivered to the project is adequate to achieve the desired

schedule. Pair programming can make this more achievable.

PAIR PROGRAMMING AND THE FACTORS AFFECTING
BROOKS’ LAW

 by

 Anuja Shukla

A thesis submitted to the Graduate Faculty of

North Carolina State University

in partial fulfillment of the requirements for the Degree of

Master of Computer Science

Department of Computer Science

 Raleigh

May 2002

Approved By:

Dr. Laurie Williams

Chair of Advisory Committee

____________________________ ___________________________
Dr. Annie I. Antón Dr. Thomas Honeycutt
Advisory Committee Member Advisory Committee Member

 ii
Biography

Anuja Shukla received a Bachelor of Engineering degree in Computer

Science in 1995 and a Business Management degree in 1998 from Mumbai

University (Mumbai, India). She worked in the information technology field for two

years and her last assignment was with IBM Global Services (India) in the e-

business group. She joined the Masters program at North Carolina State

University in the year 2000.

 iii
Acknowledgements

This work was possible only with the continuous guidance, support,

coaching, and mentoring of my advisor Dr. Laurie Williams. She not only guided

me through this process but also encouraged me to participate in various

conferences and helped me broaden my perspective. I would like to extend my

appreciation to the committee members, Dr. Annie Antón and Dr. Thomas

Honeycutt.

I would like to thank my parents for their continuous moral and emotional

support. Special thanks to my husband who has always reached out to help me,

no matter how far away I felt myself to be.

 iv

Table of Contents

LIST OF TABLES ...VI
LIST OF FIGURES...VII
1. INTRODUCTION .. 1

1.1 RESEARCH MOTIVATION... 1
1.2 THE RESEARCH APPROACH.. 6
1.3 SUMMARY OF REMAINING CHAPTERS .. 6

2. PAIR PROGRAMMING.. 9
2.1 PAIR PROGRAMMING.. 9

2.1.1 Benefits of Pair Programming... 10
2.2 PAIR ROTATION ... 13

3. BROOKS’ LAW.. 14
3.1 AN INTRODUCTION TO BROOKS' LAW... 14
3.2 STRATEGIES FOR SOFTWARE MANAGEMENT .. 19

3.2.1 Reduction of Software Size .. 20
3.2.2 Increasing Project Schedule/Team Size... 20

3.3 THE DYNAMICS OF BROOKS’ LAW ... 22
STUTZKE’S MATHEMATICAL MODEL.. 25

4.1 MATHEMATICAL MODELS.. 25
4.2 STUTZKE’S MATHEMATICAL MODEL ... 26

4.2.1 Problem to be Solved ... 27
4.3 STUTZKE’S BASIC BROOKS’ LAW MODEL ... 27

4.3.1 Assumptions... 28
4.3.2 Mathematical Notations .. 29
4.3.3 Units of Measure .. 30
4.3.4 Fundamental Equations.. 31
4.3.5 Conditions for Net Gain (Breakeven).. 32

4.4 DETERMINING VALUES OF THE MODEL PARAMETERS...................................... 33
4.4.1 Stutzke’s Approach... 33
4.4.2 Individual Assimilation Time ... 34
4.4.3 Mentoring Time .. 35
4.4.4 Effective Assimilation Time... 35
4.4.5 Accounting for Overtime ... 36

4.5 ANALYSIS OF BROOKS’ LAW MODEL .. 36
5. SURVEY RESULTS ... 40

5.1 SURVEY METHOD .. 40
5.2 SAMPLE POPULATION AND DISTRIBUTION... 41

 v
5.3 DATA COLLECTION... 41
5.4 APPROACH FOR OUR SURVEY .. 42
5.5 RESPONSES FOR SURVEY ONE... 42

5.5.1 Assimilation Time ... 44
5.5.2 Mentoring Time .. 46

5.6 RESPONSES OF SURVEY TWO .. 47
5.6.1 Pairing Combinations ... 48
5.6.2 Pairing and Communication Overhead... 49
5.6.3 Pair Rotation... 51

5.7 SUBJECTIVE RESPONSES ... 52
6. PAIRING AND INTERCOMMUNICATION... 55

6.1 COMMUNICATION OVERHEAD.. 55
6.2 OUR HYPOTHESIS.. 58

7. STUTZKE'S MODEL REVISITED.. 59
7.1 OUR SURVEY RESULTS.. 60

8. CONCLUSIONS ... 64
8.1 Further Research... 65
LIST OF REFERENCES .. 68
APPENDICES .. 71
APPENDICES .. 71

APPENDIX A: PAIR PROGRAMMING AND TRAINING QUESTIONNAIRE....... 71
APPENDIX B: COMMUNICATION OVERHEAD AND PAIR ROTATION
QUESTIONNAIRE .. 74

 vi

LIST OF TABLES

TABLE 4.4.2. INDIVIDUAL ASSIMILATION TIME (SOURCE: [19]) .. 34

TABLE 4.4.3. MENTORING TIME (SOURCE: [19]) ... 35

 vii
LIST OF FIGURES

 FIGURE 3.1. MEASURABLE MILEPOSTS FOR A 12 MAN-MONTH EFFORT (SOURCE: [3]) . 16

FIGURE 3.2. MISESTIMATING IN FIRST PART OF THE TASK (SOURCE [3]) 17

FIGURE 3.3. MISESTIMATING OF ENTIRE TASK (SOURCE: [3]) ... 18

FIGURE 3.4. TRAINING TIME (SOURCE: [3]) ... 19

FIGURE 4.1. EFFORT DELIVERY RATE VERSUS TIME (SOURCE: [19]) 30

FIGURE 5.1. COMPARING MEANS FOR ASSIMILATION TIME .. 45

FIGURE 5.2. BOX PLOT FOR ASSIMILATION TIME ... 45

FIGURE 5.3. COMPARING THE MEANS FOR MENTORING TIME... 46

FIGURE 5.4. BOX PLOT FOR MENTORING TIME.. 47

FIGURE 5.5. PAIRING COMBINATIONS FOLLOWED BY DEVELOPMENT TEAMS 48

FIGURE 5.6. REDUCED COMMUNICATION OVERHEAD .. 50

FIGURE 5.7. ADOPTION OF PAIR ROTATION.. 52

FIGURE 6.1. INDIVIDUALS WORKING ON A TASK AND THE INTERCOMMUNICATION EFFORT

(N=6) ... 56

FIGURE 6.2. PAIRS WORKING ON A TASK AND THE INTERCOMMUNICATION EFFORT 57

 1

1. Introduction

1.1 Research Motivation

Software projects often run behind schedule and over budget. A Standish

Group [1] study shows a staggering 31.1% of projects are canceled before they

are ever completed. Further results indicate 52.7% of projects cost 189% of their

original estimates. Only 16.2% of software projects are completed on time and on

budget. And, even when these projects are completed, many reflect no more

than a mere shadow of their original specification requirements. Projects

completed by the largest American companies have only approximately 42% of

the originally proposed features and functions [1].

Furthermore, late delivery of software prevents the use of the software

and opportunity to make profits from the product. These lost opportunity costs

are not measurable, but could easily be in the trillions of dollars. The Standish

Group also estimated that in 1995 American companies and government

agencies spent $81 billion for canceled software projects. These same

organizations paid an additional $59 billion for software projects that were

completed, but exceeded their original time estimates [1].

While software technologies, processes, and methods have advanced

rapidly, software engineering remains a people-intensive process. As a result,

there is much emphasis on techniques for managing people, technology,

resources, and risks. Often, organizations emphasize having an informal work

 2
environment to facilitate interactions amongst colleagues and peers; these

organizations promote teamwork, training, collaboration etc.

Teams often encourage knowledge sharing between members who have

diverse intellectual and occupational backgrounds. Research studies [2] indicate

that team collaboration is known to have a positive effect on the team morale and

productivity, which improves the workplace environment. By applying knowledge

management techniques, such as knowledge discovery, knowledge capture, and

information retrieval and extraction, companies and organizations can improve

their ability to create, acquire, disseminate, and retain knowledge; thereby

enabling them to make effective decisions, control complexity, and improve

productivity.[2] By disseminating individual’s knowledge throughout an

organization, knowledge loss due to employee turnover can be minimized. With

the realization of the value of knowledge assets, companies and organizations

increasingly seek to implement knowledge management techniques to increase

their effectiveness [2]. Knowledge management techniques can be useful in

software project management to facilitate on time product delivery.

In the book, The Mythical Man Month, Frederick Brooks [3] discusses the

reasons why software projects fall behind schedule. Brooks states that projects

are late for two main reasons: incorrect estimating or poor change control

management. In addition, he asserts Brooks’ Law, “Adding manpower to a late

software project makes it later.” Under the assumption that adding workers to a

team will allow more work to be done, typically more developers are added to a

late project. However, Brooks explains that this reasoning is flawed. There are

 3
three important factors that explain why more man-power does not necessarily

mean more work is effectively accomplished:

1. Increased training costs. This cost varies linearly with the number of

people.

2. Increased assimilation time. This cost varies linearly with the number of

people.

3. Increased communication overhead. This increases non-linearly as

more people are added to a team.

When new people are given tasks to be performed, they need training on

the technology, the goals of the effort, and the overall strategy. They cannot

immediately undertake tasks and contribute to the project. They require some

time in order to be assimilated. As a result, new team members start off with a

lower productivity, which gradually increases with training. Also, more members

on a team imply increased intercommunication overhead when tasks are

interrelated; team members must speak with all other team members. When

more people are added to a team, it is observed that amount of code generated

per programmer decreases [4].

When a project is in its final implementation stage, the tasks are fairly

complex and require experienced developers [5]. There is a tendency for

managers to assign late tasks to new people, thereby attempting to bring in the

end-date of a project [5]. A new recruit added at this point is not able to complete

tasks assigned to him due to lack of familiarity with the project. This further

reduces productivity. This negative impact leads to a cycle: net negative

 4
productivity creates delays, which motivates additional hiring, which leads to

severe losses in productivity, further delays, more hiring and so on [5] .

This research study investigates the effects of pair programming on the

factors affecting Brooks’ Law: training, assimilation, and intercommunication

time. With pair programming, two programmers working side-by-side at one

computer, collaborating on the same design, algorithm, code, or test. One

programmer is the driver, controlling the input device (keyboard and mouse) to

produce the design or code. The other programmer is the navigator,

continuously and actively examining the driver’s work. This research investigates

the potential of pair programming to alleviate the effects of training, assimilation,

and intercommunication costs:

• Training. A person new to a project cannot start contributing immediately

towards the overall productivity. Thus, the time spent on training is

significant and has to be considered in project schedule estimation. New

team members are generally trained by a mentor, an experienced peer,

who is familiar with all the project details. The mentor introduces the new

member to project details as well as non-technical matters of how to be

effective and successful in the organization. While mentoring, the

experienced peer spends time with the new recruit, which has a negative

impact on his or her own productivity. For non-pair programming, the

mentoring time is the fraction of the day spent with a mentor during the

assimilation period. Pair programming allows the mentor to continue to

work on his tasks while at the same time he or she introduces the task

 5
details to the new team member. With pair programming, the mentoring

time is the fraction of the day spent when the experienced person pairs

with a new person vs. when the mentor pairs with another experienced

person.

• Assimilation time. This is the time required for a new project staff

member (who already possesses the necessary knowledge and skills) to

become an effective, contributing team member. This includes helping a

new recruit understand project-specific facts, such as facility layout,

policies, procedures, development domain, and development and the test

environment.

• Intercommunication time. Intercommunication time includes verbal

communication, documentation, and any additional work required to

communicate, formally or informally, among the team members.

Introducing informal means of communication within a team is a good way

to reduce communication overhead. Rather than involving all team

members in formal meetings, having on-the-spot discussions with only the

concerned team members saves time. Human communication is a very

essential in software development; it can be viewed as essential part of

the job or as an overhead [5]. We view it as essential. Even though

communication does play a huge part in project development process,

there are methods to reduce communication overhead, as explained in

this thesis.

 6

1.2 The Research Approach

The objective of this research is to analyze the effects of pair programming on

the factors affecting Brooks’ Law, to see if pair programming has a positive effect

on, mentoring, assimilation and communication overhead. Specifically, we

investigate the following hypotheses:

• Pair programming reduces intercommunication time within a team.

• Pair programming reduces mentoring time when new members are added

to a team.

• Pair programming reduces assimilation time when new members are

added to a team.

• Manpower can be added to a late software project provided the additional

useful effort delivered to the project is adequate to achieve the desired

schedule. Pair programming can make this more achievable.

The impact of pair programming on intercommunication is examined by charting

the number of communication paths on a team and via mathematical modeling.

Mentoring and assimilation factors were examined based on survey results and a

mathematical model developed by Stutzke [19].

1.3 Summary of Remaining Chapters

Chapter 2. PAIR PROGRAMMING introduces pair programming, explaining the

practice of pair rotation, in which pairs regularly change partners. Pair rotation

helps new team members to learn project-related aspects more effectively

through face-to-face communication.

 7

Chapter 3. BROOKS’ LAW contains an explanation of the law and the effect of

factors such as assimilation, communication overhead and training of newly hired

work force.

In the past two decades, there have been several analyses of Brooks’ Law

[3]. Chapter 4. STUTZKE’S MATHEMATICAL MODEL presents one such

analysis. The model analyzes the process and costs of assimilating new team

members, including the costs associated with the diversion of their mentors from

the project task itself.

Chapter 5.SURVEY RESULTS contains an analysis of the data obtained by the

surveys with respect to assimilation and mentoring times.

Chapter 6. PAIRING AND INTERCOMMUNICATION. The chapter discusses the

effects of pair programming on communication overhead and explains how

communication overhead is reduced, as it cuts the necessary communication

paths nonlinearly.

Chapter 7. STUTZKE'S MODEL REVISITED. In this chapter, we use the model

to study the effects of pair programming on the assimilation and mentoring times

and compare these results with those in a non-pairing environment.

 8
Chapter 8.CONCLUSIONS summarizes the conclusions and contributions of the

thesis.

Chapter 9. FUTURE RESEARCH suggests future research in areas of pair

programming.

APPENDIX. Two appendices provide the detailed survey questions from both

surveys administered to perform this research.

 9
2. Pair Programming

"There is no "I" in the word team." Anonymous

2.1 Pair Programming

Pair programming is a style of programming in which two programmers

work side-by-side at one computer, continuously collaborating on the same

design, algorithm, code, or test. One person, called the driver, is responsible for

typing at the computer or documenting a design. The other partner, called the

navigator, has many jobs: he or she observes the work of the driver, looking for

tactical and strategic defects in the work of the driver. Tactical defects are syntax

errors, typos, calling the wrong method, etc. Strategic defects are identified

when the driver is perceived to be headed down the wrong path (e.g., what they

are implementing will not achieve the desired result). The navigator is the

strategic, long-range thinker. The navigator must adopt an objective point of

view so as to think strategically about the work’s direction. Additionally, the

driver and the navigator can brainstorm on-demand at any time [6]. Even when

one programmer is significantly more experienced than the other, it is important

to take turns driving, lest the observer feels out of the loop or unimportant. The

navigator is not a passive observer, instead he/she is always active and engaged

[7].

Pair programming has been practiced sporadically for many years [6].

However, pair programming has recently been popularised by Extreme

Programming (XP) a lightweight, agile software development methodology [8].

Pair programming is one of the twelve practices of Extreme Programming.

 10

XP advocates pair programming with such fervour that even prototyping

done solo is scrapped and re-written with a partner. One key element is

that while working in pairs a continuous code review is performed, noting

that it is amazing how many obvious but unnoticed defects become

noticed by another person watching over their shoulder. Results

demonstrate that two programmers work together more than twice as fast

and think of more than twice as many solutions to a problem as two

working alone, while attaining higher defect prevention and defect

removal, leading to a higher quality product [9].

2.1.1 Benefits of Pair Programming

Investigative studies [10] have shown that pair programming has inherent

benefits, including:

• Continuous Reviews. Pair programming’s shoulder-to-shoulder

technique serves as a continual design and code review, leading to

more efficient defect removal rates as compared to two solo

programmers.

• Problem solving. Experienced pairs refer to the team's ability to

solve "impossible" problems faster.

• Learning. Pair programmers repeatedly cite how much they learn

from each other [9].

 11
• Team Building and Communication. Pair programmers become

more familiar with each other, which serves to improve team

communication and effectiveness.

• Knowledge Management. Research shows that pair programming

is an effective Knowledge Management technique [2]. In the course

of pair programming, multiple programmers are exposed to each

piece of code, reducing the impact of losing staff. When a pair is

split, they both take domain and coding knowledge to other

programmers that they pair with in the future. The continual

interaction between pair programmers provides an environment

that promotes knowledge sharing, and collaborative knowledge

discovery [2].

• Quality and Productivity. Studies have demonstrated through

anecdotal, qualitative and quantitative evidence that incorporating

pair programming into a software development process will help

yield software products of better quality in less time with happier,

more confident programmers [13]. Developers are less likely to

produce defective code, because a teammate is watching them.

Developers are less likely to spend time on things other than work;

therefore productivity increases [10].

Experimental results on pair programming were obtained from a structured

experiment with advanced undergraduate students conducted at the University of

Utah in 1999. This study showed that pairs developed better quality code faster

 12
with only a minimal increase in prerelease programmer hours. [10] Initially, the

students took, on average, 60% more programmer hours to complete the

assignment when compared to individual programmers. After an initial

adjustment period, the additional time decreased dramatically to a statistically

insignificant minimum of 15%. Because the pairs worked in tandem, they were

able to complete their assignments 40-50% more quickly [11].

“Two heads are better then one” is an age-old adage. When people need

information or are attempting something new, they often intuitively contact peers

or colleagues who have the information or who have had a similar experience. In

this way, information can be acquired in a short time and valuable insights can be

gained. Pairing contributes to knowledge sharing amongst the team members.

Research in the area of knowledge management and pair programming by

Palmieri [2] demonstrated a statistically significant positive correlation between

the amount of pair programming performed and the effectiveness of the

knowledge dissemination in the respondent’s company or organization.

Consider a software development team working on a project that has a

new software framework to be implemented. One person on the team has the

required expertise. The team members will intuitively approach him or her for

the details. Once one team member acquires this knowledge, he or she can

further explain it to the next person and so on. Pairing with an expert can be

beneficial for the whole team; the expert can pass knowledge to the partner in

the normal course of doing project development.

 13
2.2 Pair Rotation

Pairing with one partner for the entire project duration is beneficial, but

may not be optimal. The term pair rotation is used to denote when team

members pair with different team members for varying times throughout a

project. The amount of explicit, deliberate communication to coordinate tasks can

also be further reduced with pair rotation. Each team member works with other

developers and, in the process, explains his work and learns from his or her

partner.

The advantages of rotating the programmers are that they learn more

about the whole product by pairing with many team members, they team with the

person who can help them the most on a particular task, and communication and

teamwork increases significantly [6]. Discussions about interfaces are much

shorter since programmers are more familiar with each other’s code or they pair

with the programmer who code interfaces with their own. Rotating pairs offers

knowledge management benefits because there are always at least two

developers that know about a particular piece of code. Also, the more people that

have paired on a particular piece of code, the better the quality will be and the

easier it will be to discuss the code or to extend or change it [7].

 14

3. Brooks’ Law

3.1 An Introduction to Brooks' Law

 Fredrick Brooks headed the IBM team that created the first large-scale

computer operating system in the early 1960s. Brooks’ Law, articulated in his

classic The Mythical Man-Month, has been widely cited for more than 25 years:

“Adding manpower to a late software program makes it later.” [3]

 He bases his conclusions on the additional linear overhead needed for training

and assimilating as well as the nonlinear communication overhead (a function of

the square of the number of people) of adding new people to a team [12]. He

further explains the various causes for software schedule delays and budget

overruns.

• Optimism of programmers. A common reason for overruns is that

programmers are often overly optimistic. They will look at a task

and determine the minimum amount of time required to achieve

that task. The medium is tractable; the programmers expect few

difficulties in implementation. But their ideas themselves are faulty,

so they have bugs [13]. Too often, programmers do not anticipate

the inevitable unforeseen circumstances and obstacles that cause

project slippage. Among the most common are: hardware

difficulties, resource unavailability, management of others,

meetings, and management of personal chores.

 15
• Confusing effort with progress. The estimating techniques

adopted by project managers are built around cost accounting, and

they confuse effort and progress. These techniques imply that more

effort leads to increase in progress [13].

• Poor monitoring of schedule progress. Techniques proven and

routine in other engineering disciplines are considered radical

innovations in software engineering [3].

• Regenerative schedule cycle. As previously discussed, the first

recourse of managers, when they suspect the schedule is tight, is

often to add more staff. Adding people to a software project

increases the total effort necessary in three ways: the work and

disruption of repartitioning tasks among team members, training the

new people, and added intercommunication. They fail to call to

mind Brooks’ long-standing advice: “When schedule slippage is

recognized, the natural (and traditional) response is to add

manpower. Like dousing a fire with gasoline, this makes matters

worse, much worse. More fire requires more gasoline, and thus

begins a regenerative cycle which ends in disaster [3].” The

number of months of a project depends upon its sequential

constraints. Sequential constraints indicate that certain tasks must

be completed before others can begin. The maximum number of

programmers depends upon the number of independent subtasks.

The following example explains the above point.

 16
Consider a task estimated to be a 12 person-months effort. Three

individuals are assigned to the task, thus the task will be completed in four

months. There are four measurable milestones (A, B, C, D) which are scheduled

to fall at the end of each month [Figure 3.1], taken from [3]

FIGURE 3.1. MEASURABLE MILEPOSTS FOR A 12 MAN-MONTH EFFORT (SOURCE: [3])

Let us suppose the first set of deliverables is not ready until the end of the

second milestone. Six person-months of work should have been completed in

the first two calendar months, but only three person-month of work was

completed. The project manager considers the following alternatives:

1. Assume the task must be completed on time and that only the first part of

the task was misestimated. As can be seen from Figure 3.2, taken from

 17
[3], nine person-months of effort remain and only two months are left to

complete the task. The project manager chooses to add two individuals to

the existing team of three persons.

FIGURE 3.2. MISESTIMATING IN FIRST PART OF THE TASK (SOURCE [3])

2. Assume the task must be completed on time and the entire task was

misestimated. Figure 3.3, taken from [3], below describes the situation.

Eighteen person-months of effort remain, with only two months left to

complete. The manager chooses to add six individuals to the existing

team of three.

 18

FIGURE 3.3. MISESTIMATING OF ENTIRE TASK (SOURCE: [3])

Let us consider the regenerative effect for the alternative 1. The two new

individuals added to the team, however competent, will require training in the

task by one of the three experienced individuals. If this training takes one month,

three person-months will have been devoted to work not in the original estimate

which did not include this training time. Also, the tasks, originally partitioned

among three persons, will now have to be repartitioned amongst five persons.

As a result, some work already done will be lost, and the system testing must be

lengthened.

Thus, at the end of the third month, we have only two (out of the three)

experienced persons contributing two person-months of effort. Now seven

person-months of effort remain. There are now five trained people with one-

month left to complete the task. Figure 3.4 taken from [3] shows that the

 19
development effort has not progressed. Thus there is no positive effect of adding

the two additional resources.

FIGURE 3.4. TRAINING TIME (SOURCE: [3])

We observe from Figure 3.4, at the end of the third month the situation

has still not improved. The first milestone has not been reached in spite of the

managerial effort i.e. additional hiring and repartitioning of work. Thus, there will

be a strong temptation to repeat the cycle of adding yet more manpower.

In alternative 2, the training, repartitioning, and system testing effect will have an

even more disastrous effect, leading to a poor quality product.

 3.2 Strategies for Software Management

When software projects fall behind schedule, management often adopts certain

strategies, such as reducing the software size, increasing the schedule, and/or

 20
increasing the size of the team [14]. Each of these strategies will now be

examined.

3.2.1 Reduction of Software Size

 There is a distinct correlation between software size, as measured in lines

of code (LOC) or function points, and development time, effort (e.g., man-

months, man-years, cost), manpower, productivity, and the number of defects

[15]. Software size can be reduced by paring the less essential functions from

the software or by deferring the development of functions not needed

immediately [14]. Either of these reduces the scope of the project. In order to

salvage a troubled project, reducing the size of the software can lead to a

reduction in development time, effort, the number of defects, and improvement in

programmer productivity.

3.2.2 Increasing Project Schedule/Team Size

According to Brooks, more software programs have gone awry for lack of

calendar time than for all other causes combined [3]. Why is this cause of

disaster so common? When you set your schedule to the minimum development

time, effort is at its maximum to meet deadlines, but the number of defects is also

correspondingly high [15].

For the troubled (but salvageable) program, the temptation is to throw

additional manpower at the problem and hold the schedule [14]. Instead of

adding manpower in a desperate attempt to meet unrealistic schedules, it is

advisable to extend the development time. This can substantially reduce the

effort (and associated cost) compared to what it would have taken to accomplish

 21
the task on the compressed schedule [14] . In addition, the number of defects will

drop. It has been found for the average project of 100,000 source lines of code,

the large teams (more than 20 people) created over five times as many defects

when compared with small teams (fewer than five people) [16] . However,

extending the schedule timelines is often not possible once the program is well

underway. If your program is in the 12th month of a 12-month schedule, it is just

too late to decide you should have planned in terms of a 17-month schedule

[14].

Brooks’ well-known observation rings true. The expected advantage from

splitting development work among N programmers is O (N) (that is, proportional

to N), but the complexity and communications cost associated with coordinating

and then merging their work is O(N2) (that is, proportional to the square of N)

[17].

Let us further analyze the above statement. A study demonstrated the

amount of code generated by a single programmer decreases as more

programmers are added to a team [4]. Compared to when each programmer

worked alone, their productivity decreased 20% when they worked on a team of

five and 40% when the programmers work on a team of ten [15] . This was

because the time to develop software is generally measured in man months, i.e.

the sum of the number of months of each person working on the project. Having

two people work on a project for ten months is not the same as having ten people

working on a project for two months because of this loss of productivity. The loss

of productivity resulting from multiple programmers is due primarily to the

 22
increased costs of communication when multiple programmers work on a single

project. [4]

Quoting Brooks,

“Intercommunication is worse. If each part of the task must be separately

coordinated with each other part, the effort increases as

(where N= number of people in a team).

Three workers require three times as much pair-wise intercommunication

as two; four requires six times as much as two...Since software

construction is inherently a systems effort…an exercise in complex

interrelationships…communication effort is great. Adding more men then

lengthens, not shortens, the schedule. [3]

3.3 The Dynamics of Brooks’ Law

Hsia, Hsu & Kung [18] support Brooks' Law. They contend that the

dynamics of Brooks’ Law starts when the management brings new staff into a

project. As a result, there are three effects, as explained below:

• an increase of communication and training overhead;

• an increase of the amount of work repartitioning; and

• an increase of the total manpower available for project

development.

When new staff members are brought in, they require a certain level of

training, which will take away part of existing staff member’s productive time.

N * (N– 1) / 2

 23
Also, an increase in the number of people leads to an increase in

communication. As a result, the total effective project manpower resource also

decreases. This results in project progress being delayed even further and leads

to another round of people-hiring feedback loop. The increase in the cost of the

project is caused by the increased training and communication overhead, which,

in effect, decreases the productivity of the average team member and thus

increases the project’s person-day requirements.

The second effect of bringing in new people midway in the project occurs

when work needs to be repartitioned. The repartitioning is required since the

work currently being performed by old staff needs to be reallocated to the new

staff. Both the new and old team members have to adapt to and learn the new

tasks. This leads to an increase in the coordination overhead, especially when

the work is not well partitioned.

Hsia, Hsu & Kung further contend that as schedule pressure rises, part of

the planned Quality Assurance (QA) work might be skipped. As a result, the

defects contained within the work product remain undetected, which results in

defect amplification. Also, under extreme schedule pressure, project staff is

prone to inject more defects than normal. The impact of an increased amount of

defects is that part of the planned manpower for development now has to be

devoted to defect correction. With less manpower available for development, the

project is delayed even further, which causes the schedule pressure to rise and

triggers another round of defect amplification “vicious cycle” [18].

 24
In the following chapters we explain how pair programming can alleviate

the effects of training, assimilation, and intercommunication costs.

 25

Stutzke’s Mathematical Model

4.1 Mathematical Models

As previously mentioned, Brooks’ Law has been around for 25 years.

Since its inception, there have been considerable changes in the software

development environment. In recent times, many software-engineering practices

have emerged to help overcome the hurdles of software project management,

such as delayed projects, budget overruns. Software engineers have to decide

which of these practices are better suited for their project and work environment

[19].

Mathematical models have been developed which help estimate the

effects of adding new workforce to a project that is already behind schedule.

These models take into consideration factors like the training of new workforce,

mentoring time spent by an experienced person with the new recruit, and the

assimilation time for the new recruit in order to make a positive contribution to the

overall productivity. These models offer several alternatives to adding new staff

in order to meet the project deadline. Brooks discusses two such models in his

anniversary edition of The Mythical Man Month. The first is a system dynamics

model developed by Abdel, Hamid, and Madnick [5]. We found that this model

was very complex and not usable by managers and planners. Stutzke developed

the other model [19]. Brooks’ found that Stutzke's findings were valid. We found

that this model was particularly appropriate and practical for demonstrating the

 26
impact pair programming can have on the training and assimilation factors

influencing Brooks’ Law.

4.2 Stutzke’s Mathematical Model

 Stutzke [19] presented a paper at the Ninth International Forum on

COCOMO and Cost Modelling explaining that Brooks Law does not always hold

true. He contends that under certain conditions, manpower can be added to a

late project to meet a specified product delivery date (or even accelerate the

delivery date). He developed a simple mathematical model to determine the

conditions under which adding staff will benefit the project and to predict the

amount of amount of additional useful effort delivered to the project

The model considers the time required for a new project staff (who

possess the necessary knowledge and skills) to be assimilated into the

workforce, the time remaining to complete the project, and the amount of

mentoring the existing staff must provide to the new staff. In cases where the

maximum effort provided by adding the new staff members is still not adequate to

achieve the desired schedule, other alternatives are identified, Some of these

alternatives are adding more staff, paid overtime, multi-shift operations, reducing

product functionality, reducing scope and formality of deliverable document,

replacing custom code with Commercial Off The Shelf (COTS) components,

negotiating a later completion date, scheduling multiple delivery dates with the

customer, and/or automating repetitive activities. These alternatives can be used

in many combinations.

 27
Stutke’s model does not consider the effects of communication overhead.

He contends that assessing the effect of communication overhead on project

schedule may be difficult. He believes that communication is a second-order

effect because it is not possible to directly quantify its effects on the project

schedule.

4.2.1 Problem to be Solved

Stutzke’s model considered a software development project that has a

specified completion date and has fallen behind schedule. He assumes that the

remaining work has been defined and so the net effort needed to finish is known.

He further assumes that the manager has decided to add staff to apply more

effort to accomplish the required tasks by the specified completion date. The

manager needs a quantitative model to determine:

• the useful effort delivered by the total staff as a function of the

number of people added;

• the maximum number of new staff that can be added; and

• how late staff can be added to produce a net gain.

This information will allow the manager to decide on the best staffing policy.

4.3 Stutzke’s Basic Brooks’ Law Model

The project manager must predict the total effort and duration needed to

complete a project, assuming that he has decided to add more people to the

project. Adding staff to a project consumes resources. The new staff must be

hired and trained, as discussed above. Training will consume effort from the

existing staff members.

 28
4.3.1 Assumptions

The following assumptions are made in Stutzke’s model:

• Additional people can be new hires or transfers.

• Augmented staff works together on a single shift.

• All new people are assumed to be competent (i.e. have the skills

and knowledge needed to do the work, but they need to be trained

in project specific policies, standards, procedures tools etc.).

• New employees must be hired and trained.

• Transferred employees must just be trained.

• All new people are added at one time.

• Each new person is assigned a single mentor. Mentoring work is

uniformly distributed over some subset of the experienced staff,

allowing the rest of the present staff to continue to work on the

project’s tasks.

• The assimilation effort is uniformly distributed over some time

interval, implying that new members learn at a uniform rate.

• All the staff is dedicated to a project, so that the effort delivery rate

is directly proportional to the staff size (initially no one works

overtime, although the model can handle this factor).

• The original and augmented teams are ultimately equally

productive. (The manager provides the resources needed to

support the additional workers and could be in terms of a place to

work and a computer).

 29
Most software tasks consist of planning, coding, component testing and system

testing. In addition, effort is expended to assimilate new team members. The

total effort is as given below:

Total effort = effort to build, test the product + effort to assimilate new

staff…………………..(Equation I)

Equation I incorporates the additional training effort and assimilation effort, as

mentioned by Brooks.

4.3.2 Mathematical Notations

The following notations were used in the equations in the model:

Ni = initial number of staff

Nf = final number of staff

f = fractional increase in staff = (Nf - Ni) / Ni

r = remaining time (work days) to complete the project

 = (Due date for project completion - date additional people arrive)

a = individual assimilation time

 = (number of workdays the new recruit spends learning the project)

 m = mentoring cost

 = (fraction of staff member’s time spent mentoring one new person)

Ea = Assimilation effort (person-days)

 = the sum of the effort of the new staff being mentored plus the effort of

the existing staff who must mentor them.

Eu = useful effort delivered to project (person days)

Ee = Expended effort (person days)

 30
4.3.3 Units of Measure

All the times are measured in workdays, not calendar-days. For planning

purpose managers need to compute the effort delivered by the staff in terms of

calendar time. The number of staff is proportional to the number of person days

of effort delivered per workday. The schedule is measured in calendar days. To

convert work–days to calendar-days we use 365.25/(50*5), which accounts for

days off and overtime, i.e. the conversion depends on the work schedule. There

is a tacit assumption here which allows the combining of the trainee and mentor’s

effort to obtain a, the assimilation time. The labour costs are assumed to be the

same for the trainee and the mentor. Figure 4.1, below, taken from [19] shows

the useful effort delivered to the project’s tasks before, during and after

assimilation takes place.

FIGURE 4.1. EFFORT DELIVERY RATE VERSUS TIME (SOURCE: [19])

• Before assimilation, Eu = Ni.

• During assimilation, Eu = total number of original staff – number (full time)

of staff who are mentoring the new employees. Thus, the project will see

 31
an initial drop in the rate at which the useful effort is delivered to the

project’s tasks as indicated by Brooks’ Law.

Eu = (1 – f *m) *Ni…………………..(Equation II)

• After assimilation, Eu = initial staff + new staff.

Once all the staff has been assimilated, useful effort will be delivered at a higher

rate. As we observe from Figure 4.1 there is an increase in the effort level.

4.3.4 Fundamental Equations

The total effort expended by the augmented staff is given by:

 Ee = Ni*r + f *Ni*r………………………………(Equation III)

The above equation implies that there are two terms we need to consider: the

effort expended with the initial number of staff (NI) and the effort by the fractional

increase in staff.

 The effort spent in assimilating the new recruit is the sum of the effort of

the students being mentored plus the effort of the existing staff that must mentor

them:

Ea = f*Ni*a + m*f*Ni*a = f*Ni*a*(1+m) …………………(Equation IV)

Thus this model incorporates the training and assimilation time as mentioned by

Brooks.

The useful effort delivered to the project is the effort, which can be applied

to perform the tasks needed to complete the work. This can be represented as

the sum of work delivered during the mentoring period (duration “a”) and the work

delivered after all the new staff members have been assimilated (duration of this

period is “r-a”). At the time we decide to add staff, the number of workdays

 32
remaining is the sum of the assimilation delay and the useful work time of the

increased staff following the completion of the assimilation period.

The useful effort delivered over time interval “r” is:

Eu = Ni*(1-f*m)*a+(1+f)*Ni*(r-a)

 = f*Ni*(r-a*(1+m))+Ni*r

Eu = f * N i* (r-a’)+Ni * r………………………………(Equation V)

where a’ is defined as the effective assimilation time, which is equal to

 a’ = a * (1+m)……………………….(Equation VI)

4.3.5 Conditions for Net Gain (Breakeven)

Stutzke’s model examines the trade between the number of people added

and the amount of useful output delivered to the project. Managers should not

add staff unless there is a net gain in the team’s output after the cost of adding

the staffs is included. The net gain in effort provided to the project is the

difference between the useful effort provided by the augmented staff, Eu, and the

effort, which could have been provided by the original staff:

Egain= Eu-Ni * r

 = f*Ni*(r-a’)+Ni*r- Ni*r (substituting Eu from Equation V)

 Egain= f * Ni *(r-a’) > =0. ………………………(Equation VII)

The above equation implies that Egain is greater than zero if f>0 and r>a’. This is a

valid argument.

i) f >0 means that we must add some additional staff.

ii) r>a’ implies that we must have enough time to assimilate the new

staff.

 33
Breakeven occurs when r=a’. No net gain is achieved unless r exceeds a’.

Breakeven can be interpreted graphically from Figure 4.1. The area under the

curve is the work delivered (rate times duration). To produce a net gain in effort,

the effort provided by the additional staff (after assimilation) must be more than

the effort lost during assimilation. These areas are computed relative to the line

representing the original staff, i.e. a rate of Ni.

The maximum total useful effort, which can be delivered by adding more

staff, is

Maximum total effort = Ni * (r-a’) / m……………………(Equation VIII)

From the above equation we observe that the maximum total effort

depends on the value of m. Stutzke mentions that it is reasonable for an

experienced person to simultaneously mentor 4-5 new staff. This implies that m

ranges from 0.2 to 0.25. This means that if every original team member spent

their entire time mentoring, the team size could increase by a factor of 4 or 5.

Typically, f = 1.0 or less (if f = 1, a team is doubling staff size).

4.4 Determining Values of the Model Parameters

In order to use the model, the values of the parameters a (individual assimilation

time) and m (mentoring fraction) have to be determined.

4.4.1 Stutzke’s Approach

In his original analysis to determine values of a and m, Stutzke performed

a narrow band Delphi survey. He provided questionnaires to experienced

software engineers and asked them to estimate values of a and m. Two iterations

were performed, where the estimators were provided with a statistical summary

 34
of the estimates from the first round prior to the second round. The estimators

never met face to face. Five experienced software engineers and managers

participated in both rounds (N=5). They were first asked for the average time it

takes for an employee to become fully assimilated (i.e. productive) on a new

project. This time was reported in workdays. Second, they were asked for the

fraction of the mentor’s time spent helping the new hire during assimilation

period. This fraction was reported as the percent of the mentor’s regular

workweek (40 person hours). Each respondent was asked to provide three

estimated values (lowest, most likely and highest) for a and for m. He then

averaged the LOW values from all the estimators to obtain a mean and standard

deviation for the LOW value of a.

4.4.2 Individual Assimilation Time

The mean values for assimilation time (a) provided by survey respondents

are shown below in Table 4.4.2.

Value Mean Standard Deviation

Lowest 13.4 6.2

Most Likely 32.0 18.2

Highest 59.0 25.6

Table 4.4.2. Individual assimilation time (Source: [19])

The lowest single value submitted was 7 workdays and the highest was 90

workdays. The author then used the three values as shown in the

 35
Table 4.4.2, taken from [19], (LOW, MOST LIKELY, and HIGH) in the PERT

formula to compute the best value of a,

 a = (lowest + 4*most likely +highest) / 6

 = (13.4+4*32.0+59.0) / 6

 = 33.4 work -days.

4.4.3 Mentoring Time

The mean values for mentoring time (m) provided by survey respondents

are shown below in Table 4.4.3.

Value Mean Standard Deviation

Lowest 10.5 6.2

Most Likely 20.0 9.4

Highest 30.5 12.0

Table 4.4.3. Mentoring Time (Source: [19])

The lowest single value submitted was 5% and the highest was 40%. The

best value of m was estimated using the values from Table 4.4.3, taken from

[19], and then substituted these in the PERT formula .m was found to be 20.2%.

4.4.4 Effective Assimilation Time

Using Equation VI, the two values a and m can be used to obtain the best

value of effective assimilation time a’:

a’= a* (1+m)

 = 33.4*(1+. 202)

 36
 = 40.1 work-days

 = 40.1* (365.25/50*5)

 = 58.6 calendar-days.

As shown, almost two calendar months are needed to assimilate a new

person on the average.

4.4.5 Accounting for Overtime

The author [19] addresses alternatives to adding more programmers,

especially overtime. Stutzke’s model handles the effect of overtime as explained

below. If the staff works overtime, the staff is delivering more hours of effort per

work day (and per calendar day, since these are proportional). The overtime

compresses the schedule. The number of staff, N, is proportional to the rate that

effort is delivered, which is denoted by R. The amount of overtime is expressed

in terms of the fractional increase above the normal person day to allow rapid

recalculations for different amounts of overtime. OT denotes this fractional

increase. The rate of effort delivery including overtime is

 Ri = N i * (1+ OT)

To convert this equation to from person-days to person-hours

 Ri = Ni *(1+OT) *8…………………….(Equation IX)

To account for overtime in the model Ni is replaced by the rate of effort delivery

for the original staff, Ri.

4.5 Analysis of Brooks’ Law Model

An actual project example will now be used to illustrate the model. Stutzke

prepared an estimate to complete a project using his model. This project was

 37
considered to be approximately half complete. Major modifications to the basic

architecture had to be made, necessitating a substantial amount of rework. The

effort needed to complete the project could be estimated, since the following

were well known: the software architecture; all component modules; their sizes;

and the needed modifications. There was an initial staff of 10 software engineers

and testers.

• The time remaining to complete the project on schedule was 5.5 man

months (about 121 workdays).

• All staff would work on average of 15% paid overtime.

• The effort remaining (once the preparatory work had been completed and

the new staff started to work) was about 20,000 person hours.

We will now use the model to estimate how much staff needs to be added in

order to complete the project as per schedule. The original staff would be able to

deliver the following effort during the 5.5 months (121 work days)

Ei = Ni * (1+ Overtime) * r * 8

 = 10 * 1.15 * 121 *8

 =11,132 person-hours

The new staff must thus deliver an additional 8,863 person hours (=20,000 –

11,132).

The fractional increase in staff is given by f. The additional effort (Eadd) is

divided by the overtime effort that will be expended in the remaining days. We

use the value of a’ that was obtained from the narrow band Delphi survey, i.e.

a’=40.1 workdays.

 38
 f = Eadd / (Ni * (1+ Overtime)* (r-a’)*8))

 = 8868 / (10 * 1.15* (121-40.1) * 8)

 = 1.12

According to the model, in order to complete the project on time the

project manager needs to more than double the staff (10 * 1.12 = 11 new

people). Consider the case, if the effects of assimilation had not been included, in

which case the project would not have met its goals. A calculation ignoring the

effects of assimilation would have predicted the necessary staff increase to be

eight people, since f = Eadd / r * 8 *(1+ OT)

 f = 8868 / (10 * 1.15 * 121 * 8)

 = 0.8

We know from Brooks’ Law model, that the total effort required to finish this job is

the sum of the required effort (20,000 person-hours) and the assimilation effort of

the additional eight people, which equals 2,951 person hours (8 * 40.1 * 8 *1.15).

 Thus total effort = 20,000 + 2,951=22,951.This means that the actual completion

date would be: =Total effort / (Nf * 8 * 1.15)

= 22,951/ ((10+ 8)*8*1.15) = 138 workdays

We know the remaining days left for project completion are 121. Thus, according

to new calculations, the project will now be 138 -121= 17 workdays late. Thus,

we observe that in order to estimate accurately the time required to complete a

project, the assimilation time should be considered. This lends credence to

Brooks’ Law model.

 39
Stutzke’s model gives a detailed analysis of the process and costs of

assimilating the new staff, including explicitly the diversion of their mentors from

the project task itself. The model proves that manpower can be added to project

even after a mid project slip contrary to what Brooks’ Law states. The model also

assumes that the new staff added late in a development project must be willing to

work within the process and not attempt to alter or improve the process.

 40
5. Survey Results

In the earlier chapters, we discussed the mechanics of pair programming,

and the theory behind Brooks’ law and Stutzke’s mathematical model. These

topics formed the basis of our research. In the following chapters, we shall

explain how these concepts relate to our research results and findings.

5.1 Survey Method

In order to test the hypotheses concerning the impact of pair programming on

assimilation and mentoring times, two surveys were designed and emailed to a

sample set of over 3,500 people. Both the surveys were sent to a specific target

audience comprised of project managers, senior software developers and

middle-level developers in information technology research and industry.

The survey was found to be an ideal method for our research because it allowed

a geographically diverse population to be sampled relatively quickly and at a low

cost. Personal interviews were ruled out by cost and time, and considered less

convenient for participants. Emailing the surveys allowed us to reach our target

audience. Both the surveys were sent as Word and text attachments because it

allowed for fast distribution, required no supporting server infrastructure, and was

convenient for participants.

Survey One was related to pair programming and training, and Survey

Two was a follow-up survey based on communication overhead and pair rotation.

Each survey had its own set of questions. The survey questions can be found in

Appendix A and Appendix B.

 41

5.2 Sample Population and Distribution

We were interested in obtaining responses from project managers, senior

software developers and middle-level developers. The target audience could

have experience in any language or platform. The only required criterion was that

they have significant experience in both pair and non-pair programming

environments. From the total responses obtained ninety five percent (95%) of the

respondents mentioned the number of years they had spent practicing pair

programming. We selected respondents who had more than 5 years of

experience in pair programming. Based on this we could infer that they qualified

for our survey. Potential participants were identified from the following sources:

• Programmers who had previously participated in a pair

programming survey conducted by Dr. Williams and Kessler to

gather data for a book on pair programming [8]. It was thought that

this would be a good source of pair programmers

• Programmers who had recently visited pair programming.com,

another likely source of pair programmers

• Members of the extreme programming mailing list (yahoo group)

• Members listed on the extremeprogramming.org website

• Contacts from the industry

5.3 Data Collection

 42
The survey responses were received via email. All the respondents were

encouraged to use their past experiences to answer the questions. Initial returns

of the survey indicated a lack of participation from the respondents. To increase

the number of responses, the survey was distributed a second time to the same

respondents as before, encouraging them to participate.

Data analysis was performed using Microsoft Excel and Statistical

Analysis Software (SAS) version 8.0 for Windows. Microsoft Excel was used to

produce mean values for responses, and bar graphs. This data was then used to

perform statistical analysis using SAS to perform one-sided t-tests.

5.4 Approach for Our Survey

The survey was administered in two steps. First, Survey One was

distributed as described in Section 5.1. After their responses were collated and

analyzed in SAS, Survey Two, a follow-up survey was distributed to the

respondents of Survey One and to new respondents.

5.5 Responses for Survey One

In all, 30 responses were received for Survey One. This survey consisted

of four open-ended questions, requiring responses to 17 items, as shown in

Appendix A. The first two questions of Survey One were designed to test the

following two hypotheses:

• Pair programming reduces the training time when new members are

added to a team; and

• Pair programming reduces the assimilation time when new members are

added to a team.

 43
The meaning of the terms assimilation and mentoring in both pairing and non-

pairing environments were explained to the survey participants. The respondents

were explained that new members become assimilated once they can be

“independently" productive and own their own tasks without relying heavily on

other team members. A non-pairing programmer, means he can work without

finding someone for help *often*. With a pairing programmer, the new member

can be a contributing partner for more than just simple syntax/tactical defects.

Assimilation begins when the person reports to the project to start work.

Mentoring time for non-pair programming, was explained as the fraction of the

day spent with an mentor /experienced team member on average during the

assimilation period. For pair programming, this was the fraction of the day spent

when an experienced person pairs with a new person vs. when they pair with

another experienced person.

The unit of measurement for assimilation time was expressed in terms of

“workdays” and for mentoring it was expressed in terms of “percentage of a

mentor’s time spent with the new team member”. The questions indicated that a

typical workweek consisted of 40 work hours.

The respondents were asked to provide three estimated values for both

assimilation time (a) and mentoring time (m). The three estimated values were

“lowest”, “most likely”, and “highest”. We then determined the average value for a

and m using the PERT formula [19], a = (lowest + 4 * most likely + highest) / 6, in

accordance with the method used by Stutzke as explained in Chapter 4. The

data obtained was then analyzed using SAS’ (SAS Base 8.0) one-sided t-tests.

 44
One of the analysis requirements for our research was to compare means

between two samples. We could perform two types of tests i.e. t-test or Wilcoxins

test. However, Wilcoxins test is a non-parametric test and we need to perform a

parametric test. As a result, we used a one sided t-test for our analysis.

 5.5.1 Assimilation Time

A one-sided t-test was used to determine whether or not the difference in

the mean assimilation time for pairing versus non-pairing was statistically

significant (with statistical significance defined as p < .05). The mean

assimilation times are shown in Figure 5.1. We observe that the estimated value

of assimilation time with pairing is 12 workdays and assimilation time without

pairing is 27 workdays. The observed value of p was 0.0019, thus analysis

revealed that the difference in mean between pairing and solo for assimilation

time was statistically significant (p < .02).

 45
FIGURE 5.1. COMPARING MEANS FOR ASSIMILATION TIME

The box plot in Figure 5.2, displays the assimilation time for the two groups. The

X-axis indicates the two groups i.e. pairing and solo. This display is useful for

visually demonstrating the distribution in assimilation time between the two

groups. The length of the box represents the interquartile range (the distance

between the 25th and the 75th percentiles). The plus in the box interior

represents the mean. The horizontal line in the box interior represents the

median. The vertical lines issuing from the box extend to the minimum and

maximum values of the analysis variable.

FIGURE 5.2. BOX PLOT FOR ASSIMILATION TIME

We hypothesized that pair programming reduces assimilation time when a new

team member is added to a team. These survey results validate this claim.

 46
5.5.2 Mentoring Time

A one-sided t-test was used to determine whether or not the difference in

the mean mentoring time for pairing versus non-pairing was statistically

significant. The mean mentoring times are shown in Figure 5.3. We observe

that the percent of total time spent mentoring with pairing is 26% and the percent

of total time spent mentoring without pairing is 37%. The observed value of p

was 0.021, thus the analysis revealed that the difference in mean between

pairing and solo for mentoring time was statistically significant (p < .03).

FIGURE 5.3. COMPARING THE MEANS FOR MENTORING TIME

The box plot in Figure 5.4, displays the mentoring time for the two groups. The X-

axis indicates the two groups i.e. pairing and solo. This display is useful for

visually demonstrating the distribution in mentoring time between the two groups.

 47

FIGURE 5.4. BOX PLOT FOR MENTORING TIME

We hypothesized that pair programming reduces mentoring time when a

new team member is added to a team. These survey results validate this claim.

5.6 Responses of Survey Two

Survey Two was sent to the same audience as Survey One, though we

had different respondents. The same methodology was followed in case of

Survey Two. Survey Two consisted of four questions, as outlined in Appendix B.

This survey concentrated on pairing combinations, pair rotation, and

communication overhead. For Survey Two, we received in all 35 responses.

Fifteen percent (15%) of the responses were obtained from those who had also

 48
participated in Survey One. The rest of the responses were received from new

people. However, we could use only 30 responses since the remaining five did

not answer the questions as per the directions.

5.6.1 Pairing Combinations

First, the respondents were asked about the pairing combinations followed

by development teams. Survey participants were asked to indicate which one of

the following four pairings was the most utilized when a new person joined their

organization.

• experienced programmer (10 + years) and the new recruit

• experienced programmer (5 + years) and the new recruit

• junior programmer (2-3 years) and the new recruit

• the new recruit and another new recruit

The response obtained was as shown in the graph of Figure 5.5

46.6

40

10

3

0
5

10
15
20
25
30
35
40
45
50

Pairing Combinations

Pe
rc

en
ta

ge
s

10 + years and new
recruit
 5 + years and new
recruit
 2-3 years and new
recruit
New recruit and new
recruit

FIGURE 5.5. PAIRING COMBINATIONS FOLLOWED BY DEVELOPMENT TEAMS

 49
 Figure 5.5, shows the percentage of pairing combinations of experienced

programmer (10 + years) and the new recruit was the highest followed by

experienced programmer (5 + years) and the new recruit. A one-sample t-test

was used to determine whether or not the difference in mean across the different

pairing combinations was statistically significant.

The analysis revealed that the difference in mean was not statistically

significant between the combination of experienced programmer (10 + years) and

new recruit and the experienced programmer (5 + years) and new recruit

(p<0.14). Therefore, these two pairing combinations can be considered jointly as

experienced programmer with 5+ years of experience. The difference in means

between the pairing combinations of experienced programmer (10+ years and of

5+ years) and new recruit and inexperienced programmer (2-3 years or another

new recruit) and new recruit were both statistically significant (p<0.01). This

implied that the respondents agreed that pairing with an experienced team

member was more useful as compared to pairing a new member with a less

experienced team member. This is useful information in setting up a pairing

pattern, such as those in [8]. New recruits need to be paired with an experienced

mentor in order to accelerate their learning curve. However, pairing a new

person with another new person is much better than leaving the new person

alone [8].

 5.6.2 Pairing and Communication Overhead

The intent of the second question in Survey Two was to determine

whether pair programming reduced the effect of communication overhead. The

 50
respondents were required to answer “yes” or a “no” and to support their answers

(see Appendix B).

Figure 5.6 shows the results of the follow up survey. It is observed that

75% of the respondents agreed that communication overhead is reduced by

making essential, low-level communication informal.

Reduced Communication Overhead

75

12.5

12.5

0 20 40 60 80

Yes

No

NA

R
es

po
ns

es

Percentages

FIGURE 5.6. REDUCED COMMUNICATION OVERHEAD

To statistically analyze the survey results, we test the hypothesis that

HO: µ  reduction in communication overhead = µ no reduction in communication overhead

= µ no difference,

i.e. the null hypothesis (Ho) states that, the proportion of people who believe that

there is a reduction in communication overhead and the proportion of people who

believe that there is no reduction in communication overhead are equal. In other

words, the null hypothesis states that pairing makes no difference to

communication overhead.

H1: µ reduction in communication overhead > µ no difference

 51
i.e. the alternative hypothesis states that the proportion of people who say that

there is a reduction in communication overhead is greater than the proportion of

people who say that pairing makes no difference to the communication overhead.

Using normal approximation, we can reject the null hypothesis, HO, since there

was a significant difference (p < .01).

The third question (see Appendix B) asked them to quantify the reduction

in overhead due to pairing. We did not receive any definitive figures for the third

question because 18 respondents refrained from answering this question.

However, qualitatively, 12 respondents stated that the real benefit of pair

communication comes from the improvement in the quality, not the quantity, of

the communication.

5.6.3 Pair Rotation

The next survey question was aimed at understanding the teams’ use of

pair rotation. The results indicated that pair rotation is widely practiced by the

project teams. These results are displayed in Figure 5.7.There was a wide

consensus regarding the benefits of pair rotation with 94% of developers citing its

use. For our statistical analysis purpose, we tested whether more than 50% of

the people practiced pair rotation.

Pair Rotation

94

6

0 20 40 60 80 100

Yes

No

A
do

pt
ed

 P
ai

r
R

ot
at

io
n

Percentages

 52
FIGURE 5.7. ADOPTION OF PAIR ROTATION

Thus we tested the hypothesis,

HO: µ = 0.5

i.e. the null hypothesis states that the proportion of people who practice

pair rotation is equal to 50%.

H1: µ > 0.5

i.e. the alternative hypothesis states that the proportion of people who

practice pair rotation is greater than 50%

Using normal approximation, the p value of the test comes out to be a very

small number (p < .01), thus we can reject the null hypothesis, HO. We can thus

conclude that most teams practiced pair rotation.

In summary, the respondents consider pairing with an experienced mentor

a very beneficial practice. Our analysis also indicates that there is also a

reduction in the communication overhead when pair programming is used.

Lastly, we see that most teams that practice pair programming also practice pair

rotation.

5.7 Subjective Responses

The participants also qualitatively indicated that pair rotation gives

developers a chance to understand new perspectives to solve problems and to

pick up skills like keyboard shortcuts and naming conventions from multiple team

 53
members. A few comments culled from the responses regarding pair

programming and pair rotation indicate the views of the respondents

“…We start each iteration with assigned partners. Pairs are free to

dynamically partner with whoever they need as they need. But, they always

return to their assigned partner. We try very hard not to build “Towers of

Knowledge” in a single individual. So, it typically occurs that an assigned pair will

seek out the person(s) that can help them, get the info, and get back to the

original pairing. Then they become more knowledgeable and will be sought after

by other pairs. And so it goes.”

 “… Pair programming (as other pair work) really allows newcomers to get

concrete hands-on experience . . . and gives them rapid feedback and a quick

learning by experience. Even when not proficient with the technology and task at

hand, they can gain the feeling of contribution to working together with someone

else.”

 “…. We typically place responsibility for features on pairs of people and

switch these pairs when the feature is completed. On the micro level, smaller

tasks are performed on an ad hoc pairing basis (even though the responsibility

for the feature still lies on the macro level).”

There are also “not-so-supportive” views on pair rotation. Quoting a response

from the survey,

“…On teams that I've worked with, pairs work together throughout a

project iteration. I haven't found swapping partners frequently to be a very

productive practice.”

 54
The above response suggests that one main reason could be that pairing

also depends on the personality of the individual and the team. Our studies have

demonstrated that, with most people, pair programming can produce

revolutionary results to counteract these long-held beliefs and observations.

 55

6. Pairing and Intercommunication

In this chapter we shall discuss with the help of illustrations the effect of

pair programming on the intercommunication paths.

6.1 Communication Overhead

Communication overhead is defined as the average team member’s drop

in productivity below his nominal productivity as a result of team communication

[5]. Communication includes verbal communication, documentation, and any

additional work required to build software. This additional work could involve,

design reviews, coding, code reviews, or writing test cases. In any software

development project, human communication is an essential component. It can

also be viewed as part of the job, instead of overhead.

Brooks states, “If each part of the task must be separately coordinated

with each other part, the effort increases as

where N= number of people in a team.

 This mathematical equation models the nonlinear communication overhead of a

team. Notice that the effort increases with the square of the number of people.

[14].

Consider a case in which there are six solo developers working on

different but interrelated modules of a single application (n=6). Each programmer

will interact with the other five programmers as shown in Figure 6.1. There are

n*(n-1) / 2 or 15 communications paths between these six developers (n=6) and

N * (N – 1) / 2

 56
these intricate and somewhat complex maze of intercommunication paths are

definite contributors to communication overhead.

Communication paths = 6 * (6-1) / 2 = 15

FIGURE 6.1. INDIVIDUALS WORKING ON A TASK AND THE INTERCOMMUNICATION EFFORT
(N=6)

Consider the alternate case shown in Figure 6.2 in which these six

developers form three pairs; each pair working on double the number of modules

than if they each worked alone. Because the each pair works intimately together

to complete their shared modules, the communication overhead is significantly

reduced. In this case there are (n)*(n-1)/2 or 3 communication paths between

these three pairs (n=3). Pair rotations leads to an “on-the-spot” transfer of

Developer 1

Developer 2

Developer 3 Developer 5

Developer 6

Developer 4

 57
information between the developers. The intercommunication overhead is

significantly reduced.

Communication paths = 3 * (3-1) / 2 = 3

FIGURE 6.2. PAIRS WORKING ON A TASK AND THE INTERCOMMUNICATION EFFORT

Comparing Figure 6.1 and Figure 6.2, we observe how the complexity of

the inter-group communication is significantly reduced. Pair programming

enables fast and simple communication; it also reduces the number of

communication paths nonlinearly. Consider first if a team does not rotate pairs

but assigns larger pieces of functionality to static pairs. Then, instead of

breaking the project into n parts, the project is broken into (n/2) parts and the

communication effort increase is reduced from n*(n-1)/2 to n*(n-2)/8. When pairs

work together, they make decisions on dependencies, technical aspects, and

interfaces as they design and implement code. No separate coordination

Pair 3

Pair 1

Pair 2

 58
activities need occur; no dependencies and interfaces need special

documentation, improving the efficiency of team communication. If pairs do

rotate, and programmers partner with the programmer with whom their task is

interdependent, we believe this intercommunication cost can be even further

reduced. Needed communication about interfaces and other issues will happen

during the natural course of pairing. [8]

6.2 Our Hypothesis

We hypothesized that pair programming reduces the intercommunication

required within a team. With pairing, n is reduced to n/2. This has the effect of

reducing the number of communication paths from n*(n-1)/2 to n*(n-2)/ 8. Our

survey results from the previous chapter further supported these mathematical

results. We found statistically significant (p < .01) results indicating that pair

programming reduces communication overhead.

 59
7. Stutzke's Model Revisited

Chapter 4 discussed Brooks’ Law, which states that adding manpower to

a late software project makes it later. Stutzke’s model explains in detail the

process and costs of assimilating the additional manpower, including the

diversion of their mentors from the project task itself. We considered a case

where after a mid-project slip, the manpower was doubled and the original

schedule was achieved. Stutzke offers valuable insights as to how workers

should be added, trained, supported with tools, etc. so as to minimize the

disruptive effects of adding them. His model predicts the additional manpower

needed in order to complete the project on schedule.

Stutzke, however, also states that one important factor which has not

been included in the Brooks’ model is that the new people must be team players

in order for the predicted productivity gains to be realized. They must be willing

to take directions and execute the process, which has been defined. They must

not attempt to alter the process. Individuals must be disciplined and have a

willingness to learn from others.

Our research hypotheses examine the effects of pair programming on

communication, training and assimilation times. The impact of pair programming

on intercommunication was examined by charting the number of communication

paths on a team and revising Brooks’ equation (n)(n-1)/2 to (n)(n-2)/8. Our

theoretical results were fortified by survey results of pair programmers. Training

and assimilation factors will now be examined based on a mathematical model

developed by Stutzke.

 60

7.1 Our Survey Results

We will now revisit Stutzke’s model utilitizing new values obtained from

our statistically significant survey results, as discussed in Chapter 6. Through

this survey, we obtained the assimilation (a) and mentoring (m) values as follows:

a (with pairing) = 12 work-days

 = 12 * (365.25/ 250)

 = 17.5 calendar days

 a (without pairing) = 27 work-days

 = 27 * (365.25/ 250)

 = 39.4 calendar days

The value for mentoring time

 m (with pairing) = 26%

m (without pairing) = 36%

Effective assimilation time with paring

 a’= a (1+m)

 = 12 * (1+ .26)

 = 15.1 workdays or 22 calendar days.

Effective assimilation time without paring

 a’= a (1+m)

 = 27 * (1+ .36)

 = 36.7 workdays or 54 calendar days

 61
We know from Brooks’ Law Model, that the total effort expended

assimilating the new staff is the sum of the students being mentored plus the

effort of the existing staff that must mentor them as denoted by equation IV:

Ea = f*Ni*a + m*f*Ni*a = f*Ni*a*(1+m)

From our survey results, we observe that effective assimilation time a’ without

pairing is 54 calendar days. Note: our non-pairing value for a’ is similar to

Stutzke’s non-pairing value (58 calendar days. We found a’ with pairing is 22

calendar days. As explained in Chapter Four, Stutzke’s model was used to

estimate the additional people required to complete the project on schedule. The

model estimated that in order to complete the project within 121 work days

(remaining time), the additional effort required was 8,863 person hours. Thus f =

8863 / (Ni * (1+ Overtime)* (r-a’)*8)), f=1.12. According to the model, in order to

complete the project on time the project manager needs to more than double the

staff (add 11 people). We shall calculate f using the reduced assimilation time

due to pairing, thus,

 f = Eadd / (Ni * (1+ Overtime)* (r-a’)*8))

 = 8868 / (10 * 1.15* (121-15) * 8)

 = 0.90, thus the model predicts that we need to add 9 people to the staff.

By factoring these assimilation and mentoring times (under the effect of pair

programming), new team members can be added to a project, which is behind

schedule. Thus we conclude that without pairing 11 people are needed to

complete the project on schedule and with pairing only 9 people are needed.

 62
In Stutzke’s model, there is a limit on the number of new staff members

that a mentor can train. We know from equation II, the useful effort delivered

during assimilation = (1- f * m)* Ni. Thus, the useful effort delivered by the

mentor during assimilation goes to zero as f 1/m. (Recall f = the fractional

increase in staff) The maximum possible value of f is 1/m, since one existing staff

person cannot train more than 1/m new staff members. Thus, m constrains f.

Our studies indicate that pairing rotation removes this limit. It prevents

overloading of one mentor. The rotation allows the new team member to interact

with different mentors.

The useful effort delivered to a project Eu, is given as,

Eu= sum of work delivered during the mentoring period (duration a) + work

delivered after all the new staff members have been assimilated (duration of this

period is r-a’, where r is the remaining time until project completion).

Eu= f * Ni * (r-a’) + Ni * r…Equation V

Our results show that the effective assimilation time and mentoring time is

reduced due to pairing. Since assimilation is faster, more work can be achieved

in the remaining days because (r-a’) is a larger number. Let us consider the

effect of pairing on the net gain in the team’s output. The net gain in effort, Egain,

is the difference between the useful effort (Eu) provided by adding the new staff

and the effort which could have been provided by the original staff, is,

 Egain = Eu - Ni * r

 = Eu – Ni * r

 = f * Ni * (r-a’)

 63
 = f * Ni * (r – a’) >= 0

Thus, the first condition states that Egain is greater than zero if f > 0 i.e. some

additional staff is added and r > a’ i.e. we must have enough time assimilate the

new staff. From the above equation we observe that breakeven occurs when

 r = a’. No net gain is achieved unless r exceeds a’. The maximum total useful

effort which can be delivered by adding more staff is Ni * (r-a’) / m. From our

observed results, the effective assimilation time (a’) is reduced due to pairing.

This implies that breakeven occurs much earlier. Hence net gain is also achieved

earlier than in a non-pairing environment.

The above discussion supports our hypothesis that, manpower can be

added to a late software project to meet a specified delivery date provided some

additional useful effort is delivered to the project. Utilizing the practice of pair

programming helps in this regard.

 64

8. Conclusions

Two surveys were sent to a wide cross section of professionals in the field of

information technology to examine the effects of pair programming on the three

factors affecting Brooks’ Law i.e. communication overhead, assimilation time and

training time. In all, 30 survey responses were analyzed. Using these results, we

examined the effects of pairing on the assimilation, mentoring times, and

intercommunication times. A mathematical model developed by Stutzke was

also studied. This model analyzed the process and costs of assimilating new

team members, including the costs associated with the diversion of their mentors

from the project task itself.

We hypothesized that pair programming reduces the intercommunication

time within a team. Based on halving n in Brooks' equation n * (n-1)/2, we

demonstrated that pair programming reduces intercommunication. These results

are fortified by statistically significant survey results indicating that pair

programming reduces communication overhead.

We hypothesized that pair programming reduces the mentoring time when

new members are added to a team. The survey results yielded statistically

significant evidence that pair programming is effective in reducing the training

time.

We hypothesized that pair programming reduces the assimilation time

when new members are added to a team. Analysis of the survey results also

 65
showed support for the hypothesis that pair programming helps in reducing the

assimilation at a statistically significant level.

Lastly, we hypothesized that manpower can be added to a late software project

provided the additional useful effort delivered to the project is adequate to

achieve the desired schedule. Pair programming can make this more

achievable. We examined the equations in Stutzke’s model to understand the

effect of pairing on the total useful effort delivered to the project. We found that

due to the reduction in effective assimilation time, the maximum total useful effort

increased. Thus, when a project suffers from mid-schedule slippage, adding

manpower might prove more beneficial if the team practices pair programming.

8.1 Further Research

This thesis has pointed out several areas for intensive research.

1. Distributed Pair Programming. Recent trends in software development

have led to a new model of offshore development; that is development

work coordinated between programmers located at different sites. So it is

very likely that a project manager in the United States interacts with his

development team located in India. In this scenario it would be interesting

to understand how pair programming works. Interesting questions to

investigate are how this complex web of communication and coordination

amongst the developers contribute towards the project completion. The

social hurdles of enabling virtual teams may very well outnumber the

technical challenges. Also the cultural changes the programmers face

while pairing with partner located on the other side of the continent.

 66
2. Internal Code Quality. Another interesting research area is the quality of

the produced software using pair programming. Many of the software

observations and findings on code quality using pair programming vs.

programmers working alone can be supported by experimental results.

The code quality can be measured using software metrics like Coupling

Factor, Lack of Cohesion of Methods, Attribute Hiding Factor, Method

Hiding Factor, Depth of Inheritance Tree, Number of Children, Weighted

Methods Per Class, Number of Classes, Lines of Code, etc.

3. Project risks and pair learning. Project managers today are required to

avert risks facing a project during development. Risks can be of different

types like schedule and cost overruns, employee turnover. It is becoming

difficult retaining skilled developers for longer duration. When a member of

a team leaves, he or she takes along with him the required expertise and

also a good deal of tacit knowledge that is almost never documented.

However this tacit knowledge can be retained even after the person has

left the team through pairing. It is quite interesting to understand how

technology in the form of workflow, collaborative tools and pairing can be

used together to eliminate certain project risks.

4. Agile software development methodologies. Various agile, lightweight

software development methodologies are in practice today. Understanding

how pairing can be incorporated in these methodologies can be very

useful for software engineering studies.

 67
5. Extension of Stutzke’s model. Stutzke’s model does not incorporate the

intercommunication factor. Interesting research would involve adding this

factor to the model and analyzing the effect of pairing.

 68
List of References

1. International, The Standish Group The CHAOS Report (1994), 1994, The

Standish Group International, Inc.

2. Palmieri, David 2002 Knowledge Management Through Pair

Programming. p 88

3. Brooks, Frederick. P.Jr The Mythical Man-Month- Essays on Software

Engineering. 20th Anniversary edition 1974: Addison Wesley. p 322.

4. Reiss, Steven P. A Practical Introduction to Software Design with C++.

1999: John Wiley & Sons, Inc.

5. Abdel-Hamid, Tarek and Madnick, Stuart E . Software Projects Dynamics-

An Integrated Approach 1991: Prentice Hall Software Series. p 264.

6. Williams, Laurie and Kessler, Bob. Pair Programming Illuminated To be

published in 2002: Addison Wesley.

7. Williams, Laurie and Kessler, Robert R. All I Really Need to Know about

Pair Programming I Learned In Kindergarten. in Communications of the

ACM. 2000.

8. Cockburn, Alistair Agile Software Development 2002: Addison Wesley.

9. Beck, Kent Extreme Programming Explained: Embrace Change 2000:

Addison-Wesley.

10. Cockburn, Alistair and Williams, Laurie The Cost and benefits of Pair

Programming. in eXtreme Programming and Flexible Processes in

Software Engineering

 69
-- XP2000. 2000. Cagliari, Sardinia, Italy,: Addison Wesley.

11. Laurie Williams, Robert R. Kessler, Ward Cunningham, Ron Jeffries

Strengthening the Case for Pair Programming. IEEE, 2000. Vol. 17, No. 4(

July/August 2000). p. pp. 19-25.

12. Madachy, Ray and Tarbet, Denton Initial Experiences in Software Process

Modeling. American Society for Quality, 2000. Volume 2 ,Issue 3(June

2000).

13. Salmosa Kist, Korean Advanced Institute of Science and technology

Project Management and Mythical Manmonths, 2001.

14. FORCE, DEPARTMENT OF THE AIR Guidelines for Successful

Acquisition and Management

of Software Intensive Systems June 1996.

15. Putnam, Lawrence H., and Ware Myers, , Yourdon Press Measures for

Excellence: Reliable Software on Time, Within Budget 1992, Englewood

Cliffs, New Jersey.

16. Putnam, Doug Haste Makes Waste When You Over-Staff

to Achieve Schedule Compression, 2000, Quantitative Software Management.

17. Encyclopedia, The Probert and Technology, Science & 2002.

18. Pei Hsia, Chih-tung Hsu and David C. Kung Brooks' Law Revisited: A

System Dynamics Approach. in Twenty-Third Annual International

Computer Software and Applications Conference. October, 1999.

Phoenix, Arizona: Institute of Electrical and Electronics Engineers.

 70
19. Stutzke, Richard .D. A Mathematical Expression of Brooks Law. in Ninth

International Forum on COCOMO and Cost Modelling. 1994. Los

Angeles,CA.

 71
Appendices

Appendix A: PAIR PROGRAMMING AND TRAINING QUESTIONNAIRE
30 Respondents

1. For this question, assume the new person already has the necessary skills

and experience for the job. So, this person must only learn project-specific facts

such as facility layout, administrative details (staff names, procedures), the

development process (e.g. policies, procedures, etc.) and the development

domain, as well as the development and test environment. Ignore the time to

recruit and "enroll" the new person (administrative stuff).

How much time (in person days) does it take for a new team member to become

assimilated to the project work? They become assimilated once they can be

“independently" productive and own their own tasks (albeit not such a complex

task) without relying HEAVILY on other team members. In a Non-pairing

programmer, this means they can work without finding someone for help *often*.

with a pairing programmer, they can be a contributing partner for more than just

simple syntax/tactical defects. Assimilation begins when the person reports to

the project to start work.

Number of workdays to assimilate . . .

• Without pair programming: Please state three estimated values

Low =

Most likely =

 72
 High =

• With pair programming: Please state three estimated values

Low =

Most likely =

 High =

2. A new person generally becomes assimilated through mentoring/

apprenticeship by a team member (as opposed to any formal/class training).

During the assimilation time in question #1, what fraction of their mentor's work

time is spent helping the new team member? For non-pair programming, this is

the fraction of the day spent with an mentor /experienced team member ON

AVERAGE during the assimilation period.

For pair programming, this is the fraction of the day "lost" when an

experienced person pairs with a new person vs. when they pair with

another experienced person (ON AVERAGE).

Percent of the experienced person's regular workweek (40 hours) . . .

• Without pair programming: Please state three estimated values

Low =

Most likely =

 High =

 73
• With pair programming: Please state three estimated values

Low =

Most likely =

 High =

3. Consider some metrics of the 'typical project' you thought of to

answer questions 1 & 2. To assimilate to this project . . .

a) How many different application domains/subject areas must the new

 person understand?

Please comment.

b) How many subsystems must be understood? Please comment.

 c) How many people are on the team?

 d) Do team members follow a development methodology?

4. Please comment on anything that came to your mind as you answered these

questions.

Thank you for participating in the survey.

 74
Appendix B: COMMUNICATION OVERHEAD AND PAIR ROTATION

QUESTIONNAIRE
30 Respondents

1. When a team member joins your team, which one of the following is your

first choice for pairing with the new team member?

 (Please answer circle your choice)

• experienced programmer (10 + years)

• experienced programmer (5 + years)

• junior programmer (6 months - 3 years)

• another new recruit (< 6 months)

2. In the landmark book, The Mythical Man Month, Frederick Brooks states his

law “Adding manpower to a late project makes it later.” Part of the logic behind

this law is that there is a great deal of communication needed between team

members when they each are working individually on interrelated components.

The team members must meet to discuss interfaces, dependencies, design and

other technical questions and concerns.

Do you feel that pair programming reduces the communication overhead

(between pairs, across pairs and across the whole team)?

(Please comment)

3. If so, by what percent do you feel the communication overhead is reduced

due to pairing?

 75
(Please quantify)

4. The term pair rotation is used to denote when team members’ pair with

different team members for varying times throughout the project. Does your

team practice pair rotation?

 (Please comment)

Thank you for participating in the survey.

