
ABSTRACT

KAMPANAKIS, PANAGIOTIS T. Identity-Based Cryptography: Feasibility & Applica-
tions in Next Generation Sensor Networks. (Under the direction of Associate Professor
Peng Ning).

Elliptic Curve Cryptography (ECC) has been a very interesting research field for

many applications especially in sensor networks. The main reason for this is the restrictions

on resources posed by sensor motes. ECC alleviates these restrictions by using small prime

fields. At the same time, the evolution of hardware technology has built new, sophisticated

motes with more capabilities which open new ways for sensor network applications.

In our work, we are extending the TinyECC package, initially written by An Liu,

which provides elliptic curve cryptography functionality on sensor motes running TinyOS.

We extend this package by porting it to new powerful motes, called Imote2 by Intel. We

also further implement Bilinear Pairing which is the most important part of Identity-Based

Cryptography. Furthermore, we evaluate and prove the feasibility of using pairing on next

generation sensor motes. There are various ways that Bilinear Pairing could be used in

Identity-Based cryptosystems, so in this way we insert Identity-Based Cryptography in the

area of security for sensor networks. Additionally, we propose a scheme that can establish

keys on sensor networks using Identity-Based Cryptography. We believe that our study will

open the way and motivate further research in the field and contribute in providing more

robust and secure sensor networks.
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Chapter 1

Introduction

Elliptic Curve Cryptography (ECC) has gained great attention from the cryptog-

raphy research community in recent years. The main reason is the small key sizes it uses

that can lead to efficient cryptographic calculations. In our case, Cyber Defense Lab of

NC State University and especially An Liu have worked in this field on sensor networks by

producing the TinyECC package.

In the work that follows we are trying to extend his implementation and try to eval-

uate the feasibility of using some new computationally expensive cryptographic techniques

on next generation sensor networks. The new implementation of TinyECC can now be used

on Imote2, the new high-end mote by Intel. What is more, Identity-Based Cryptography

functionality is also added in. More specifically, TinyECC now supports Tate Pairing which

can be used for Identity-Based encryption or signatures, key establishment and more, which

will be addressed below. On the other hand, we try to evaluate and study the feasibility of

using such techniques on sensor motes. Thus, we study the performance; code size, timing

and energy consumption for the cryptographic techniques implemented and we are proving

that they can efficiently be used on new technology motes. What is more we are proving

that the above techniques are very hard to be efficiently used on low-end, traditional motes

because of their computational restrictions.

As far as some applications of the above tools are concerned, we also describe a

scheme that could be used to establish keys on a sensor networks. Except that, we are also

addressing the problem of using expensive computational techniques on networks consisting

of both high and low-end motes. Such networks would suffer from the low-end motes being

the computational bottleneck. To overcome this obstacle, we are trying to achieve workload
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delegation to the more powerful motes.

Chapter 2 describes the motivation and states the research problem, Chapter 3

goes through some important research work in the field of Bilinear pairing and describes

some significant security schemes. Then, Chapter 4 presents the background theory behind

bilinear pairing and Chapter 5 describes our scheme for key establishment on sensor net-

works. After that, Chapter 6 shows the curve parameters we use for our evaluations and we

proceed with Chapter 7 which evaluates our implementation work on real motes running

TinyOS. Finally Chapter 8 concludes this thesis, it summarizes the accomplishments and

mentions future research work that could be derived from it.

Overall, we believe that our work is opening the way to the new direction of

Identity and Pairing-Based Cryptography by proving that it can be used on sensors. It

also opens the way for next generation motes and proves that their robustness can greatly

contribute to the security of our Wireless Sensor Networks (WSNs).
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Chapter 2

Problem - Motivation

Before proceeding with the details of our work, it is worth presenting our motiva-

tions and the problem statement. After going through the definition and basics of Discrete

Logarithm problem in Section 2.1 we proceed with the Elliptic Curves in Section 2.2 and

the Discrete Logarithm on Elliptic Curves in section 2.2.1. Finally, Section 2.3 explains

our intension of studying Bilinear Discrete Logarithm problem on next generation sensor

networks.

2.1 Discrete Logarithm problem

Many cryptosystems in the past relied on the security provided by the hardness

of the Discrete Logarithm (DL) problem. First, we have to define when a problem is

considered to be hard. In an intuitive manner, a problem is considered to be hard when

there is no algorithm that solves it in polynomial, in size of the input, time. Furthermore,

hard problems can in turn be divided in subexponential and exponential time problems

according to the time it takes an algorithm to solve them at best. We say that exponential

time problems are harder than subexponential ones.

Thus, we can proceed with defining the DL problems as follows:

We regard these problems on the finite multiplicative group (G,*) of order m. Without loss

of generality we can assume m of G to be prime, meaning G is cyclic and has base, say g.

Let h ∈ G, such that h = gx mod q for some x ∈ Z∗
q . Given g and h, the DL problem is to

find x. Notationwise it is DLg(h) = x.

Also, a closely related problem is Computational Diffie-Hellman (CDH) problem:



4

Let a, b ∈ Z
∗
q. Given g, ga, gb, the CDH problem is to find h ∈ G such that gab = h mod q.

Notationwise CDHg(g
a, gb) = h.

Except from the problems presented above there are many relevant to DL problems

which have been used in security protocols. Some of them include Decisional Diffie-Hellman

(DDH), Weak Deffie-Hellman (WDH), Reversion of CDH (RCDH) k-strong Diffie-Hellman

(k-SDH) and more. As far as the security of DL problems is concerned, there have been

several attacks on the DL. They can be divided in generic and Index Calculus algorithms.

Generic ones are also called square root methods and take exponential time to solve the DL

problem. Index Calculus algorithms and its extensions (Number Field Sieve) take advantage

of the properties of the multiplicative group and take subexponential time. These are

the best tools at present to solve the DL problem. Thus, choosing the group parameters

appropriately make the DL problem to be generally believed subexponential.

2.2 Elliptic Curve Cryptography

Elliptic curve cryptography [21] has a history of almost a hundred years. It has its

origins in mathematics and number theory. Though, by considering the discrete logarithm

problem and mapping it to discrete logarithms on groups of points of an elliptic curve we

can realize the alternative use of elliptic curves in elliptic curve cryptography.

In the mid-nineties, researchers like Neal Koblitz and Victor Miller proposed using

elliptic curves for public-key cryptosystems. Since then, elliptic curve cryptography has been

widely studied and there are a significant number of systems and protocols where it is being

used. Many of these systems are of commercial acceptance and this is only the beginning

as the research community is constantly accepting and extending the capabilities and uses

of elliptic curves.

2.2.1 Discrete Logarithm on Elliptic Curves

Although the DL problem is defined on a multiplicative group G of a finite field

Z
∗
q, it can actually be defined on any group. And fortunately there exist groups in which

solving the discrete logarithm problem is harder than in Z
∗
q. These, for example can be

groups of points on an elliptic curve.

The main reason elliptic curves were chosen as an alternative for the discrete

logarithm problem is that the Index Calculus method doesn’t have a natural analogue in
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this particular group of points. There have been a number of attempts to extend the Index

Calculus method to elliptic curves but without success. So, it seems that there isn’t a

subexponential time algorithm to solve the discrete logarithm problem. As a result, elliptic

curves are very appealing and can be used to achieve the same level of security with shorter

keys, which is one of their main advantages.

We next give the definition of symmetric pairing. Note that it is not the formal def-

inition of pairing which will be presented in Section 4.4. Let G1 be an additive cyclic group

of prime order m. Also, group G2 is a cyclic multiplicative group of order m. Then the pair-

ing is defined as follows: A map : e : G1×G1 → G2, called a symmetric pairing (i.e. pairing

of points P, Q is e 〈P,Q〉). As we will also see later, one of the properties of pairing is bilin-

earity which means that if a, b ∈ Z
∗
m then e 〈aP, bQ〉 = e 〈aP,Q〉b = e 〈P, bQ〉a = e 〈P,Q〉ab.

Let (G1,+) be an additive cyclic group and (G2, ∗) a multiplicative one, both of

prime order m, and e : G1 × G1 → G2 be a symmetric pairing. Then h = e 〈P,P 〉 is the

generator of G2 and the Bilinear Diffie-Hellman (BDH) problem is defined as follows:

Let a, b, c ∈ Z
∗
m. Given P, aP, bP, cP the BDH is to compute e 〈P,P 〉abc. Notationwise

BDHP (aP, bP, cP ) = e 〈P,P 〉abc

As for the hardness of BDH, so far there is no known method of solving BDH

without first solving CDH. Thus, even though it isn’t proved, the hardness of BDH is

equivalent to hardness of CDH. Finally, many relevant problems have been studied and

used in some protocols which include Decisional Bilinear Diffie-Hellman (DBDH), Decisional

Hash Bilinear Diffie-Hellman (DHBDH) and others. These problems are beyond the scope

of this work.

2.3 Sensor networks

It is well-known that sensor networks have been very popular in the research

community for the passed years. A number of different reasons and its multiple uses have

triggered great research activity to this promising field. Some of their applications involve

military, forest monitoring, wildlife monitoring, surveillance, assembly line monitoring and

many more. Now that this is gradually becoming more mature, the problems become even

more interesting.

Sensor motes have had many restrictions which pose great barriers and challenges

for the sensor network capabilities. Power consumption, energy and storage space restric-
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tions, computational weakness, transmission inaccuracies are some examples of the restric-

tions in sensor networks. On the other hand, given the open environment where such

networks are deployed, in the clear transmission and the challenging applications (i.e. mil-

itary, monitoring), it is becoming obvious that there are also great security issues against

the viability of such networks. These problems have been studied for the passed years and

a number of different solutions have been proposed for many of them.

The Cyber Defense Lab of NC State Univ. has focused on cryptography and its

efficient implementation on sensor motes. In more detail, given the security advantages of

elliptic curves and the short keys being used, ECC seemed as a very interesting topic to

study on sensor networks. In this way, short keys would save a lot of storage space and the

arithmetic operations on smaller numbers would make public key cryptography on devices

like motes more efficient than in traditional cryptography. An Liu has been working on

ECC for almost 2 years and his work has given some very important results [27].

Figure 2.1: MicaZ and Wireless Sensor Network

Thus, specifically for this work, Bilinear Pairing’s popularity has intrigued our

interest for studying the feasibility of using it on sensor networks. If this was possible, then

a lot of different protocols could be used (i.e. identity-based cryptography) to solve many

problems (i.e. key exchange). Though, pairing is very expensive computationwise, even

for traditional computers, as it is also proved in Shamus Software project. Thus, it would

be a very challenging task to implement pairing on traditional motes. For example, the

traditional MicaZ (see Figure 2.1) motes have a 6MHz 8-bit processor with 4KB of RAM

and TelosB ones have a 16-bit processor with 10KB of RAM. Such devices would make

efficient pairing very challenging.

Fortunately, as technology is getting more mature and Moore’s law continues to

hold companies like Intel and Sun have come up with new, modern, much more powerful

http://www.shamus.ie/index.php?page=home
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motes. For example, Imote2(see Figure 2.2) from Intel has a 32-bit XScale processor which

can support 13-416MHz frequencies. It has 32MB flash memory, 256KB SRAM and 32MB

of SDRAM. In addition, Sun has created Sun Spot which is a 190MHz processor with

512KB of RAM and a JVM built in. As we can easily understand, such devices seem more

capable of performing expensive pairing operations and this is the task we concentrated on

first. After working on the efficient implementation of pairing on Imote2, the results are

presented in Chapter 7.

Figure 2.2: Imote2

What is more, it is easy to realize that the modern motes are much more expensive

than the weak traditional ones. Thus having a network with only modern motes is an

expensive ambition to follow. On the other hand, having a hybrid network which will

include weak and cheap motes and some powerful ones seems like the direction that will

widely be followed for cost efficiency reasons. In this way, powerful motes will have the

more important (and expensive) roles and cheap motes will be the nodes performing simple

operations. So, our next goal was to try to see how pairing could work in such networks

and solve a key establishment problem. As we mentioned above, traditional motes cannot

efficiently perform pairing operations, so we developed a scheme which would successfully

delegate the hard part of the computational work to the powerful motes and would then

require a reasonable amount of computation from the weak node for the scheme to complete.

Thus, sensors would be able to perform key establishment securely without revealing any

information to intruders that might be overhearing their communication. The scheme is

described in detail in Chapter 5.
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Chapter 3

Related Work

Lately, as already mentioned, the research community has been widely investigat-

ing Elliptic Curve Cryptography (ECC) and especially Bilinear Pairing. They have been

focusing mostly on potential uses of these mechanisms because of their advantages against

more traditional cryptographic techniques. Many schemes (some of them very successful)

have been developed that can provide encryption, digital signatures, threshold decryption

or signatures, key exchange, identity-based encryption and many more. Below, we will

present some of the basic and most popular uses of the discrete logarithm problem and

bilinear pairing. These can be used as proof of concept of the different tools bilinear pairing

can provide for the security field. Also, there is much work done on the computation and

optimizations of the bilinear pairing procedure but in this chapter we will focus mostly on

its uses.

3.1 Diffie - Hellman

For many years, the discrete logarithm problem has been providing useful tools for

key exchange, signatures and encryption. Diffie-Hellman key agreement [34] is describing

a scheme that is widely used for key exchange between two parties. It has also been used

in many cases and extensions of some security standards. The idea behind it is based on

the DL problem. Each of the two parties A, B picks a secret number a, b ∈ Z
∗
q. By having

a public key g, they can exchange their ga mod q, gb mod q without revealing their secrets

and thus establish a shared key gab mod q unknown to the public.

Another traditionally famous scheme based on DL is the ElGamal digital signa-
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ture [17]. According to ElGamal, a party having a long-term public/private key pair can

use a temporary key to sign his messages which will enable others to verify them by just

using the temporary public key. Again, the underlying property that is exploited is the DL

relation between the public/private, long-term/short-term keys.

In addition, a variety of publications have been based on DL problem and some

of them try to come up with complete solutions to certain problems. An example would

be [3] which attempts to provide signatures by using symmetric encryption, hash functions

and the DL problem. What is more, one can find numerous publications (among which the

famous RSA standard) on this area that contribute to the realization of how important the

DL problem has been for cryptography for the passed years.

3.2 Bilinear Pairing

As mentioned above, Bilinear Pairing has been of great attention within the cryp-

tography and security research community lately. The advantages of ECC along with the

unique characteristics of pairing itself make it very appealing to achieve traditional cryptog-

raphy goals with less overhead. Only in the last 5-7 years, more than 250 papers have been

published in the area and some of them can be found in The Pairing-Based Crypto Lounge

webpage maintained by P. Barreto. In these papers, many schemes have been proposed

that claim to achieve better security with more useful attributes. Some of them are pre-

sented below and show the significant role of bilinear pairing in cryptography. Section 3.2.1

presents some pairing based encryption schemes whereas section 3.2.2 presents signature

ones and section 3.2.3 some key-sharing techniques. Finally, section 3.2.4 describes some

other proposed tools that are based on pairing.

3.2.1 Encryption schemes

In 2001 Boneh and Franklin [13] proposed a scheme that uses bilinear pairing to

provide signatures for a message M using the identity of the signing party. Their technique

uses functions that map identity names to curve points that belong to a certain group. Then,

by having a global public/secret key pair and picking a secret, private one, a signature can

be generated by using the global public key, the private picked key and by XOR-ing M with

the result of pairing between the mapped point and the public key. Signature generation

http://paginas.terra.com.br/informatica/paulobarreto/pblounge.html
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is more computationally expensive than verification but both require an expensive pairing

computation.

Gentry and Silverberg in 2002 [20] suggested a method that can achieve hierar-

chical identity based encryption (HIDE) and dual hierarchical identity based encryption

(Dual-HIDE). In other words, it enables a single PKG to distribute keys to a large number

of network nodes. This is a heavy job, but with HIDE a root can delegate private key

generation to lower level PKGs. Authentication and private key generation can be done

locally. So, for example if A wants to speak to B, he only has to obtain his parent PKG

and identity. On the other hand, in Dual-HIDE even if A and B are in different hierarchy

levels, if they have a common ancestor they can send encrypted information between each

other. HIDE and Dual-HIDE have the advantage of damage control. Though, they also

require multiple pairing computations by the encrypter/decrypter, which is expensive.

Similar schemes have been investigated in [11] by Boneh and Boyen. There, they

describe methods for Identity based encryption (IDE) and Hierarchical ID-Based encryption

(HIBE). One of their scheme advantages is that it provides identity based encryption without

the use of a Random Oracle and is resilient against selective-ID chosen ciphertext attack.

3.2.2 Signature schemes

Boneh, Lynn and Shacham in 2001 [15] proposed the Blind Short Signature

Scheme. According to it, a private key distributed to different parties along with func-

tions that map identities to points and hash functions that also map messages into points

are used to perform a signature generation and verification. This technique provides an

elegant way for digital signatures and requires a pairing computation for both the signer

and verifier.

Also Boldyreva in [10] describes how bilinear pairing can be used to ask a signer to

sign a message without revealing information about the message. It also mentions how to

allow a group of users to jointly sign a message which will be used to convince the verifier

that each group member participated in the signature. What is more, Zhang and Kim

in [40] worked in the same context. Actually, they performed similar operations to ask a

signer to blindly sign a message with the differentiation of using the signer’s identity to

perform this operation. Though, these schemes require more computational effort from the

verifier than from the signer which would degrade their performance.
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In [14] the authors propose how multiple signatures of different messages from

different signers can be aggregated in one single signature from which it can be inferred

that indeed a signer has signed a specific message. But again the cost of verification is

very high for this scheme. Another very useful signature technique is presented in [41]. In

this paper, a so called ZSS signature is generated by using only a secret key and a hash

function on a message. In 2002, Hess [22] presents an alternative of identity based signatures

with the advantages of allowing some pre-computation to alleviate the computational effort

and the efficiency in terms of communication requirements. Finally, [12] describes how

short signatures can be generated without the use of a random oracle and allow for some

pre-computation to alleviate the computational burden.

3.2.3 Key sharing-agreement schemes

Bilinear pairing has also been useful for performing key exchange and establish-

ment. This is what we attempt to achieve for sensor networks in our work in Chapter 5. In

the previous years Sakai, Ohgishi and Kasahara in 2000 [35] came up with a simple protocol

that achieves key exchange between two parties. Both parties must have a common secret

embedded in their public key which corresponds to their identity. Thus, by using functions

that map identities to points and without exchanging any messages the two parties can

share a secret key for their communication. The protocol requires both parties to perform

a pairing computation which is expensive especially for low power nodes. This problem for

hybrid sensor networks with both low and high power motes is addressed in Chapter 5.

Joux, on the other hand, extends the above protocol in [24] to develop a protocol

for a three party agreement in only one round of interaction. According to this protocol

the parties exchange public keys in one round and they can compute their shared commu-

nication key using bilinear pairing. Even though Joux’s technique offers a very simple and

communication-wise cheap way of establishing keys between three parties it is vulnerable

against man-in the-middle attacks. Al-Riyami and Paterson tried to overcome this draw-

back by proposing their authenticated key agreement in [4]. Moreover, Joux’s protocol has

been extended to perform key exchange between multiple parties in [9].
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3.2.4 Other schemes

Except from the basic uses that have been mentioned above, bilinear pairing has

been used in many other schemes and techniques. Some of them are mentioned here.

In [10] Boldyreva describes how a private key shared among multiple servers using Shamir’s

secret sharing scheme can be used by each server to sign a message M (partial signature).

Then from the partial signature a verifier can verify if a server honestly participated in

the signature and with (t + 1)-honest servers he can reconstruct the signature (where t is

a threshold value). Such schemes involve many computations as the verifier has to verify

shares from multiple servers and reconstruct the signature. Another similar scheme that

does decryption was proposed by Libert and Quisquater in [26]. There, given an encrypted

message, they extend [13] in such a way that a fixed PKG plays the role of a trusted dealer

that distributes shares to users which they, in turn, can decrypt and send to a recombiner

that in the end will recover the decrypted message. Finally, Kim and Kim in [25] present

a way for a prover to prove its identity to a verifier. This is a multi-round protocol and

requires more computations from the verifier.

3.3 ECC on sensor networks

In order to study the performance of Bilinear pairing on sensor networks we had

to base on the previous work done in the field. More specifically, An Liu’s TinyECC pack-

age [27] was extended to support Bilinear pairing and it’s operations. TinyECC previously

implemented ECC and ECDSA [1] signatures on all the Certicom SECG curves [33] for

MicaZ and TelosB motes running TinyOS. Also to generate the appropriate parameters

for Tate pairing we used the MIRACL library. Moreover, to study our hybrid networks

workload conserving scheme we used the exponentiation using Lucas functions described

in [36].

http://www.shamus.ie/index.php?page=home
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Chapter 4

Theory - Preliminaries

ECC and bilinear pairing, as we already mentioned, are widely studied in various

ways and there have been many publications in the area during the passed years. [18, 28,

16, 32] summarize this work and present the basic considerations and research activity. In

this chapter we will present the background for the implementation on sensor networks

and the research work that will follow. Sections 4.1, 4.2, 4.3 and 4.4 describe the theory

preliminaries, Section 4.5 goes through the implementation details and optimizations and

Section 4.6 depicts some of the security considerations lying into pairing.

4.1 Elliptic Curves

We start by going through some background knowledge on Elliptic Curve Cryp-

tography [2]. First of all, an elliptic curve by the (affine) Weistrass equation is

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 (4.1)

The elliptic curve is the set of points (x,y) that satisfy Equation 4.1 along with point O

which doesn’t exist in reality and is called point of infinity. E is said to be defined over

K, denoted E/K, where K is a field and a1, a2, a3, a4, a6 ∈ K. We denote E(K) the set of

K-rational points (i.e. points with both coordinates in K and the point of infinity). Observe

that by definition, we can write E = E(K) where K is the algebraic closure of K.

In our case, we will be working with elliptic curves over a finite field, thus K = Fq

and K = ∪i≥1Fqi . Also, the curves we will use have to have certain properties in order for

us to be able to perform the optimizations described in section 4.5.2. So, the curves we will
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use are supersingular of the form

E : y2 = x3 + x (4.2)

For the points of an elliptic curve, there exists an operation called tangent-and-

chord method. It is written additively and has point of infinity O as the zero element. Let

points U(x1, y1), V (x2, y2) ∈ E\{O}. The point −P is given by (x1,−y1). If P 6= −Q, then

for the point P + Q with coordinates (xU+V , yU+V ) it is







xU+V = ( y2−y1

x2−x1
)2 − x1 − x2

yU+V = ( y2−y1

x2−x1
)(x1 − xU+V )− y1

Figure 4.1 (reprinted from [23]) presents the point addition operation graphically.

Figure 4.1: Point addition

Since addition operation exists on elliptic curves, we can also define scalar doubling

and multiplication. Given a point U(x1, y1), the double of it (x2U , y2U ) is defined to be







x2U = (
3x2

1
+a

2y1
)2 − 2x1

y2U =
3x2

1+a
2y1

(x1 − x2U )− y1

The graphical representation of point doubling is shown in Figure 4.2 (reprinted

from [23]).
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Figure 4.2: Point doubling

Thus, for m ∈ Z and P ∈ E, the multiplication is given by:

[m] P=P+P+...+P (m times)

[0] P=O, [−m] P= [m] (-P)

We say that the order of a point P is m, when m is the minimum number that

satisfies [m]P = O (in this thesis mP will also be referred as [m]P ). Further, we write that

E(K) [n] = {P ∈ E(K) : [n]P = O}

is the subgroup of n-torsion points, where an n-torsion point is point whose order divides

n.

Finally, order #E(Fq) of an elliptic curve E in Fq is the number of points in E(Fq).

For the supersingular curves we will be using for our work, the curve order is #E(Fq) = q+1.

4.2 Function Field of an Ellitpic Curve

If we have a curve E of the form in Equation 4.1 then we can define function F

such that

F (x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6 (4.3)
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• The coordinate ring Fq[E] is the integral domain Fq = Fq[x, y]/(Fq). Additionally, we

can define the coordinate ring Fq = Fq[x, y]/(Fq) and its elements are called regular

functions.

• A field of fractions of Fq[E] is called a function field Fq(E) of E over Fq. And the

elements of Fq(E) are called rational functions.

It is worth noticing that each rational function can be represented as u(x)+yw(x)

where u(x), w(x) ∈ Fq[x]. Now, if we have a regular function v(x, y) = u(x) + yw(x) we

define its degree as deg(v) = max{2degx(u), 3 + 2degx(w)}.

If there is a rational function f and a point of the elliptic curve P (x0, y0) then f

can be called regular or defined if there is a representation of it as g/h where g, h belong

to the coordinate ring Fq[E] such that h(x0, y0) ≡ h(P ) 6= 0. Then, we can say that if

f is regular and f(P ) = 0, it has a zero at P. If it isn’t regular then it has a pole at P

(f(P ) =∞). Also, we can define

f(O) =















0, if deg(g) < deg(h)

(highest degree of g)/(highest degree of h), if deg(g) = deg(h)

∞, if deg(g) > deg(h)

For each point of the elliptic curve there exists a rational function u ∈ Fq(E):

u(P ) = 0, such that ∀f ∈ Fq(E), it can be f = uds where s ∈ Fq(E), d ∈ Z, s(P ) = 0 or ∞.

This u is named uniformizing parameter for P. Next the order of f at P is defined to be d,

ordP (f) = d. Point P is a zero of f if and only if ordP (f) > 0 and the multiplicity of that

zero is ordP (f). On the other hand, P is a pole of f if and only if ordP (f) < 0 and the

multiplicity of that pole is −ordP (f). ordP (f) = 0 if and only if f is defined at P.

Finally, let f ∈ Fq(E). Then f has finite number of zeros and poles on points of

E. Furthermore,
∑

P∈E

ordP (f) = 0 (4.4)

4.3 Divisor Theory

The group of divisors Div(E) is the free abelian group generated by a formal sum

of points in E.

Div(E) =

{

∑

P∈E

mP 〈P 〉 : mP = 0 ∀ but finitely many P ∈ E

}
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We can define

• The degree of a divisor D to be deg(D) =
∑

P∈E mP .

• The support of a divisor D to be Supp(D) = {P ∈ E|mP 6= 0}.

• The subgroup of Div(E) of divisors of degree zero is Div0(E).

• If r is a rational function then div(r) =
∑

P∈E ordP (r) 〈P 〉. div(r) is a divisor because

a rational function has finite number of poles and zeros. And a divisor D is called

principal if D = div(r) for some r ∈ F
∗

q .

• The subgroup of Div(E) of principal divisors is Prin(E).

• Equivalent are two divisors D1 and D2 if D1 − D2 ∈ Prin(E) and equivalence is

denoted as D1 D2.

It can be shown that for every D ∈ Din0(E), there is a unique point Q ∈ E:

D 〈Q〉 − O.

Now let D be a divisor and f be a rational function: Supp(D)∩Supp(div(f)) = 0.

Then, we can define a value of f at D to be

f(D) =
∏

P∈Supp(D)

f(P )mP (4.5)

.

4.4 Bilinear Pairing

There are two techniques which have been proposed for computing bilinear pairing

and are based on the Bilinear Diffie-Hellman problem. These are Weil and Tate Pairing.

For our work, we will focus on the second technique but for the completeness of the theory

presentation we will go through the formal definition of both.

4.4.1 Weil pairing

Let E be an elliptic curve defined over Fq. Let m be a positive integer coprime to

q and µm ⊂ Fq be the mth root of unity (µmm ⊂ Fqk |(qk − 1)).
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Let P,Q ∈ E[m]. Let D1,D2 ∈ Div0(E): D1 〈P 〉 − 〈O〉, D2 〈Q〉 − 〈O〉 and

Supp(D1)∩Supp(D1) 6= ⊘. Then mD1,mD2 are principal divisors. So, if fD1
, fD2

∈ Fq(E):

div(fD1
) = mD1, div(fD2

) = mD2 the Weil pairing function is

em : E[m]× E[m]→ µm defined by em 〈P,Q〉 =
fD1

(D2)

fD2
(D1)

(4.6)

The Weil pairing has to satisfy certain properties:

1. Well-defined: em 〈P,Q〉 has to be independent of the choice of D1,D2, fD1
, fD2

.

2. Identity: ∀P ∈ E[m]em 〈P,Q〉 = 1.

3. Non-Degeneracy: For a certain P ∈ E[m], em 〈P,Q〉 = 1, ∀Q ∈ E[m] if and only if

P = O.

4. Bilinearity: ∀P,Q,R ∈ E[m]em 〈P + Q,R〉 = em 〈P,R〉·em 〈Q,R〉 and em 〈P,Q + R〉 =

em 〈P,Q〉 · em 〈P,R〉.

5. Alternation: ∀P,Q ∈ E[m]em 〈P,Q〉 = em 〈Q,P 〉−1

6. If E[m] ⊂ E(Fqn), then em 〈P,Q〉 ∈ Fqn , ∀P,Q ∈ E[m].

4.4.2 Tate pairing

Tate Pairing has similarities with Weil Pairing. Though, it requires half the ratio-

nal function computations which makes it more attractive for implementation on sensors.

Let E be an elliptic curve defined over Fq. Let m be a positive integer coprime

to q and k be a positive integer such that m|(qk − 1). From now on k will be called the

embedding degree of the curve with respect to m. As we will see in Section 4.6, k is a very

important factor for the security of the Bilinear Diffie-Hellman problem.

Let P ∈ E[m] and Q ∈ E. Let D1,D2 ∈ Div0(E): D1 〈P 〉 − 〈O〉, D2 〈Q〉 − 〈O〉

and Supp(D1) ∩ Supp(D1) 6= ⊘. Then mD1 is a principal divisor. So, if fD1
∈ Fq(E):

div(fD1
) = mD1, the Tate Pairing function is

tm : E(Fqk)[m]× E(Fqk)/mE(Fqk)→ F
∗
qk/(F∗

qk)m defined by tm 〈P,Q〉 = fD1
(D2) (4.7)

Tate pairing has to satisfy certain properties:

1. Well-defined: tm 〈O, Q〉 ∈ (F∗
qk)m ∀Q ∈ E(Fqk) and for P ∈ E(Fqk)[m] tm 〈P,Q〉 ∈

(F∗
qk)m. Also the value of tm 〈P,Q〉 is independent of the choice of D1,D2, fD1

.
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2. Non-Degeneracy: For P ∈ E[m], tm 〈P,Q〉 = 1 ∀Q ∈ E if and only if P = O.

3. Bilinearity: ∀P,Q,R ∈ E[m], tm 〈P + Q,R〉 = tm 〈P,R〉·tm 〈Q,R〉 and tm 〈P,Q + R〉 =

tm 〈P,Q〉 · tm 〈P,R〉.

It is also worth mentioning that tm 〈P,Q〉 is not a unique value because it is an

equivalence class in F
∗
qk/(F∗qk)m. For a unique outcome we need to eliminate the m− th

powers. This is done by raising to the power of (qk − 1)/m. Consequently, the pairing value

is an m− th root of unity.

4.5 Tate Pairing computation

We chose Tate Pairing as the technique to insert Identity-Based Cryptography in

sensor networks. The reason was that we wanted to do it as computationally cheap as

possible. Tate Pairing is the more suitable solution in contrast to Weil Pairing. In this

section we will present how it is computed and the optimizations we used to improve the

timing results of the algorithm.

4.5.1 Miller’s algorithm

In 1986, Miller [29] proposed an algorithm for short functions on curves. About

two decades later, this algorithm became the prevalent algorithm to compute the Weil and

Tate Pairing (rational functions). Additionally, Baretto et al. [7] in 2002 suggested and

formalized the computation and some of the optimizations. Miller’s algorithm is shown in

Algorithm A.1.

As we can see, the algorithm works iteratively. Each iteration involves a point

doubling and/or not a point addition. Also, in each iteration we have evaluations of the

rational functions at certain points and their division. The number of iterations depends

on the size of the order m of point P . To make it more concise, the g functions used in the

algorithm are defined as follows:

If we have two points U(x1, y1), V (x2, y2) then the line defined by these points is

y − y1

x− x1
=

y2 − y1

x2 − x1
≡ λ⇒ y − y1 + λ(x1 − x) = 0
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Then, the function gU,V (Q) at point Q is the evaluation of this point coordinates

on this line

gU,V (Q) =











1 , Q ∈ {O, P}

yQ − y1 + λ1(x1 − xQ) , otherwise
(4.8)

On the other hand, if we have one point U(x1, y1) then the line between points

U(x1, y1),−[2]U(x1, y1) where −[2]U(x1, y1) = U ′(x2U ,−y2U ), is











x2U = (
3x2

1+a
2y1

)2 − 2x1

y2U =
3x2

1
+a

2y1
(x1 − x2U )− y1

⇒ λ2 = −
y1 + y2U

x2U − x1
=

3x2
1 + a

2y1

So, in the same way function gU,U (Q) at point Q is

gU,U (Q) = yQ − y1 + λ2(x1 − xQ). (4.9)

Finally, let point U(x1, y1). Then the vertical line that crosses U is x− x1 = 0.

And gU (Q) is

gU (Q) =











1 , U == O

xQ − x1 , otherwise
(4.10)

Please note that above we presented the formal definition of Miller’s algorithm but

in section 4.5.2 we will see the actual format of the algorithm used. There, a number of

different techniques are used in order to make the computation efficiently.

4.5.2 Optimizations

Below, we present the actual implementation techniques we used for our own

implementation. They were chosen in order to make the computation quicker and more

efficient which is imperative for sensor motes.

In [8] and [7] M. Scott, P. Barreto et al. propose a method of optimizing Tate

pairing. In more detail, they propose a twist of the original curve E(Fq): y2 = x3 + ax + b

over E(Fqd) to be E′(Fqd): y2 = x3 + u2ax + u3b where u ∈ Fqd is a quadratic non-residue.

Then, modified Miller’s algorithm can be simplified and point operations are performed
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only in E(Fqd) which improves the performance of algorithm. In our case d = 1 and thus

point operations remain in E(Fq). Alternatively, the above technique is described in the

literature [18] as a distortion map or an efficient endomorphism. It is proven that if there

is a distortion map φ(Q) for the point Q of curve E(Fq) then the denominators for the

computation of tm 〈P,Q〉 in Miller’s algorithm can be discarded without affecting the result

value.

Though, there is not always an endomorphism for all different elliptic curves.

Actually, endomorphisms exist for supersingular curves. More importantly, for the curve

E(Fq): y2 = x3 + ax + b which we are using for our work with a = 1, b = 0, q mod 4 = 3

the distortion map of a point Q(Qx,Qy) ∈ E(Fq) is defined to be

φ(Q) ≡ φ(Qx,Qy) = (−Qx, iQy)

where i ∈ Fq2, i2 = −1.

Actually, such methodology used in accordance with the Lucas functions men-

tioned later decrease the size of operations that do not involve pairing, like key generation

and point transmission in half, whereas points in E(Fq2) are only used for the pairing com-

putation and are then mapped again in points in E(Fq). More details about distortion maps

and how they can be used can be found in the survey by Joux [5]. After using distortion

maps, the modified algorithm for Tate pairing becomes Algorithm A.2.

Another important factor in the choice of m. In the binary expansion of m :

(mt−1mt−2...m0)2, if the number of bits mi == 1 is small then the second step (if-statement)

of Miller’s algorithm can be avoided in many iterations. So, choosing a prime m for which

the Hamming weight is as low as possible would make our algorithm more efficient. Such

primes are Solinas primes [39] of the form m = 2b ± 2a ± 1. For our implementation, the

m of the 512-bit curves is such that we have only one point addition evaluation. What is

more, int the last iteration of Miller’s algorithm if i = 0 then the evaluation gV,P (φ(Q) is

avoided because V + P = O.

Now, we can proceed with exponentiation that is performed in the end of the

Algorithm A.2 and is used to make sure we have a unique pairing values (section 4.4.2). If

f is number u + i · v then we have to perform f
qk

−1

m . In our case k = 2, thus

qk − 1

m
= (q − 1)

q + 1

m
= (q − 1)c
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But also

(u + i · v)q−1 =
(u + iv)q

u + i · v
=

u− iv

u + i · v
=

u2 − v2

u2 + v2
− i

2uv

u2 + v2

So,

f
qk

−1

m = (
u2 − v2

u2 + v2
− i

2uv

u2 + v2
)c

In this way, we are saving a lot of additions and multiplications that would be needed for

the complete exponentiation of f .

In modified Miller’s algorithm, the point operations can also be used to perform

the slope calculations used in the evaluation of the g functions. That is because these values

are also used in for the point operations. This trick saves calculation time and decreases

the code used.

It is also worth noting that for the final exponentiation the Lucas function is used

in order to get into Fq2 extension field as proposed in [39]. The Lucas function algorithm

used is presented in Algorithm A.3. More information on how the exponention using Lucas

functions works and the use of twists on curves can be found in [38, 8, 36].

To summarize, it can be proven that Algorithm A.2 can be changed in the final

exponentiation step to be

f
qk

−1

m = 2(−1) · Lucas[2 ∗ (u2 − v2)/(u2 + v2), (q + 1)/m]

and also that in the evaluation of the g-function, it is

g = [V y − λj(Qx + V x)] + i · (−Qy)

where f = u + i · v and all the operations are modular q.

The overall computational advantage is considerable as we will see later in Chap-

ter 7. Not to mention that there were many cases were we used pre-computation to avoid

inversions in Fq and shifting to perform simple doublings, triplings and halvings in Fq. Also,

since the pairing computation point P is usually a constant key the line computation used

in the g functions is the same and thus we can importantly save a lot of time by storing

the lines and reusing them. What is more, using projective coordinates can save us from

a lot of divisions in the evaluation of the slope in each iteration. This optimization along

with Baretto reduction can be proven to be very useful and were inserted by An Liu as an

extension to this work.
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However, the literature proposes some more optimizations which weren’t applicable

in our case for a number of different reasons. In [19] it is argued that divisions are more

expensive than multiplications. So, it is suggested to compute function f as the quotient of

functions f1 and f2 using only multiplications. In other words, f = f1/f2 and only a single

division is required for the final computation of f. Though, in our case, the denominator

elimination optimization makes such an attempt unnecessary. Additionally, [18] argues

that if P ∈ E(Fq) and Q ∈ E(Fpk) then the computation of Tate pairing e 〈P,Q〉 is much

faster than e 〈Q,P 〉, but in our case the distortion map makes it redundant. Another

suggestion made in [19] is to do a pre-calculation of [n]P for all possible values of n inside

a ’window’ of a certain number of bits. Though, such scheme would cause much memory

burden which we wanted to avoid given the restrictions of sensor nodes. Finally, some other

further memory-wise challenging optimizations are described in [37].

4.6 Security Considerations

Recall that Elliptic Curves were proposed in the first place because they could

provide the same security levels with DL-based systems using shorter keys. However, it

turned out that there exist certain reductions to less secure groups on certain curves (i.e.

supersingular). Thus, to avoid such cases, elliptic curves have to be chosen with great care.

The ideal case would be to choose curves at random and perform some specific security

checks. Though, this technique is not always capable to provide curves suitable for pairing.

In our case, the security of the Bilinear Diffie-Hellman problem depends on the

embedding degree of the curve. That is because the Weil and Tate Pairing are bilinear maps

that map a pair of points of an elliptic curve over a finite field Fq to a multiplicative group

F
∗
qk of an extension field of degree k. Hence, in order to be able to efficiently evaluate the

pairing, we need k to be sufficiently small, but at the same time we need it to be large to

provide sufficient security. On the whole, we are interested in curves with k < (log q)2. [6]

shows that there are very sparse curves satisfying this condition. Thus, choosing a curve

at random will with overwhelming probability give a non-suitable for pairing curve. The

curves that have been proposed as more suitable for pairing so far are supersingular with

embedding degree 2 and MNT-curves with higher embedding degrees (i.e. k = 6). For

a comparison between supersingular and MNT-curves in the Bilinear Pairing context, the

reader can go through [31].
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For our work, we chose supersingular curves because they can provide sufficient

security with the current tools of our current TinyECC implementation. If we chose curves

with higher embedding degrees then we should be able to provide operations in the exten-

sion field F
q

k
2

which isn’t supported in TinyECC. As far as the security of such curves is

concerned, to ensure the hardness of the Bilinear Diffie-Hellman problem we have to make

the CDH hard in both the E(Fq) and E(Fqk). Thus, the desired value of k is a trade-off

between efficiency and security. Curves that satisfy these criteria are with k ≤ 6. On the

other hand, [30] argues that an embedding degree of 6 doesn’t add any further security in

contrast to embedding degree equal to 2. It also argues that supersingular curves with em-

bedding degree 2 can provide sufficient security for current cryptosystems when the prime

field number q is 512-bits long. So, even if in some way we break the advantage of ECC

which provides same security with smaller keys, the advantages provided by Bilinear Pairing

are still important (Identity-Based Cryptography) and we still have a reduction on the key

sizes.

In conclusion, we have to remind the reader that even though the BDH is believed

to be equivalent to CDH there is no proof of this assumption. And there also might be cases

where the BDH is less secure than in general. Additionally, the pairing curve structure might

provide cryptanalysts with tools to attack systems. Only the passage of time and maturing

of these techniques will provide with enough information about the security, vulnerabilities

and possible extra measures for these systems.
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Chapter 5

Key establishment in WSNs

Now, that we have gone through the details of the implementation of Bilinear

Pairing, it is important to see its uses in sensor networks. As someone might imagine there

could be many applications some of which have been discussed in Chapter 3. Though, most

of these applications require multiple calculations of Tate Pairing which might make them

expensive if they are performed on a per message basis. For example, digital signatures

using pairing on a per message basis might prove to be very expensive for both the signer

and the verifier. This overhead might also cause an extra DoS vulnerability on the scheme.

Not to mention the signature size, which is 64-bytes (for a 512-bit curve) and decreases the

maximum possible payload size to 38-bytes (ZigBee standard).

In this chapter, we will present how Identity-Based Cryptography and Bilinear

Pairing can be successfully applied in next generation sensor networks. More specifically,

we will present a very useful application of Tate Pairing for sensor networks whose relatively

seldom use can alleviate the high expense of Pairing. In Section 5.1 we will show how

keys can be established in a network consisting of modern nodes only (i.e. Imote2). In

Section 5.2 we will show how this scheme would work in a hybrid network consisting of

traditional (MicaZ) and modern (Imote2) nodes.

5.1 Next generation networks

In the case where there are no financial restrictions, a sensor network can be

composed by new, modern motes, like Imote2s. These nodes, as we will show in Chapter 7

can efficiently compute the Tate Pairing of two points.
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If we have a certain authority that chooses a secret number s ∈ Z
∗
q then it can

pre-distribute a secret sPi to every node before the network deployment. Pi is the point

that corresponds to the identity i of the mote. Thus, there also has to be a well-defined

function that maps identity i to a unique point Pi of the elliptic curve shared by the sensor

network. Consequently, each powerful node has the ability to establish a shared session key

with any of its neighbors using Tate Pairing without requiring any communication between

the parties.

In a more formal manner, if node i wants to establish a key with node j then he

will compute

tm 〈sPi, Pj〉

Note that only i knows sPi and Pj can be derived easily by i using the map-to-point function

on the id j of node j. On the other hand, j will compute

tm 〈Pi, sPj〉

Because of the bilinear property of pairing, the two keys computed by each of the motes

will be equal and thus they can establish pair-wise session keys without exchanging any

messages. Figure 5.1 demonstrates the formulation of this scheme.

Figure 5.1: Next generation network

From a security point of view, the master key s isn’t stored in any of the nodes,

thus not giving an intruder the opportunity to compromise any of them and steal it. In

addition, the scheme requires one pairing computation per session key. Thus the maximum

number of pairings a node would have to compute would be the number of its neighbors.

For the current timing results of pairing on Imote2, such a situation makes this scheme
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unsusceptible to DoS attacks. Finally, providing Identity-Based Encryption between two

nodes would work in a very similar way, which is beyond the scope of this work to present.

5.2 Hybrid networks

We believe that because of the high cost of Imote2s and high-end motes in general,

the future sensor networks will not purely consist of them. Rather, they will consist of

many low-end, cheap motes (MicaZ, TelosB) and a few more expensive ones (Imote2). In

this way, the cost will be kept low. The most demanding functionality will be distributed

on the powerful motes whereas the traditional ones will perform inexpensive operations.

For example, the data aggregation in a network will be performed on the Imotes which will

be chosen as parents in the upper levels of the aggregation tree and the low-end ones will

perform sampling and forward the samples to their parents in the tree.

Such a situation would complicate things in a sensor network using Tate Pairing to

perform key establishment. That is because a low-end sensor having to establish a key with

another low-end sensor or with an Imote2 would be a very challenging operation. MicaZs

or TelosBs cannot efficiently compute Tate Pairing, so key establishment has to be done in

a different manner.

In this case, we can assume that each node will delegate an important part of the

computational work to a nearby Imote2 without revealing his secret. Then he will perform

the final part of the key establishment on its own. In more detail, lets assume that every

low-end node has locally stored a secret si ∈ Z
∗
q and its corresponding point siPi. Once

again Pi is the point that is derived from the identity of i (using map-to pount function) of

each node. High-end nodes have stored their own siPi only. When a low-end node i wants

to exchange keys with another low-end node j, it will ask an Imote2 to compute

tm 〈Pi, sjPj〉

by first having node j to provide his sjPj . Then the Imote2 will forward this value to node

i. Besides, the Imote2 will be provided with siPi from i and it will also compute

tm 〈siPi, Pj〉

and forward it to node j. Then node i will compute

(tm 〈Pi, sjPj〉)
si
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and node j

(tm 〈siPi, Pj〉)
sj

Because of the bilinearity

(tm 〈Pi, sjPj〉)
si == (tm 〈siPi, Pj〉)

sj

and thus the two parties have established a shared key.

Please note that although computing Tate Pairing on low-end motes cannot be

achieved efficiently, the exponentiation used for this scheme can be computed (using Lucas

funtions) as we will show in Section 7.3.

In a different scenario where an Imote2 i wants to establish a key with a MicaZ j

or inversely, the Imote2 would provide

tm 〈siPi, Pj〉

to node j and after being provided with sjPj it would use

tm 〈siPi, sjPj〉

as the session key. Node j on the other hand would expenentiate

(tm 〈siPi, Pj〉)
sj

and the two parties will have an established shared key. Figure 5.2 shows how such a

schemes would be formulated.

Figure 5.2: Hybrid network

The above schemes require two pairing computations from the high-end motes and

one exponentiation from the low-end mote for each key establishment. According to the
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results in Chapter 7 such computations can be performed on these motes without having

significant impact on their power. Though, if the key establishments are performed often

such computations would burden the motes performing them. It is also worth mentioning

that an alternative that would alleviate some communication overhead would be to store

siPi on the Imote2 beforehand. This is achievable because of the high memory capacity of

such sensors but would pose a restriction to the network in case sensors changed positions.

In such a case, the Imote2 would then have to be updated about the new siPi’s of its

neighbors.

For the security perspective of the schemes described above, we have to say that

there are certain vulnerabilities that can be exploited. One would be compromising a

MicaZ mote to steal si. This would give an intruder the opportunity to compute the session

key that node i establishes with any other node. Thus, for now we have to assume that

all the low-end motes are tamper resistant, which can be thought to be quite realistic as

technology in this field has had good results so far. On the other hand, in this context we

are assuming that the values provided by the Imote2 can be authenticated and thus the

MicaZ can verify that a legitimate Imote2 is sending the correct value. But these threats

have to be addressed more systematically in the future in order to have a complete key

establishment scheme in hybrid sensor networks.
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Chapter 6

Implementation Parameters

For our implementation we chose to use supersingular curves with embedding

degree k = 2 over 512-bits prime field. These curves can provide security equivalent to

1024-bit DL [30]. The reason we chose them is that they have been widely studied for

pairing purposes, they provide an efficient distortion map, they have small k which makes

pairing more efficient and also can be supported with the existing tools in TinyECC.

The format of our curves is

y2 = x3 + x

More specifically we experimented with two supersingular curves. One is SSc k2 192

which is over a 192-bit prime field and the other is SSc k2 512 over 512-bit prime field. For

both curves we made sure to have low Hamming-weight of the group order m and also

generated points for the verification of the properties of Tate Pairing.

Note that the 192-bit curve doesn’t provide sufficient security levels and thus

cannot be used in real cryptosystems. It was just used for verification and evaluation

purposes. For our implementation, we used the generated points on the curves to verify

that

tm 〈P, sQ〉 == tm 〈sP,Q〉 == tm 〈P,Q〉s

.

The actual parameters are shown in Appendix B. After the implementation we

proceeded with the evaluation of our work and the feasibility study in real sensor network

environments. These will be presented in Chapter 7.
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Chapter 7

Results and Evaluation

In this chapter we will present the evaluation results of our work and describe our

conclusions about the feasibility of using Identity-Based Cryptography on next generation

sensor networks.

First, it is essential to go through some background benchmarks on ECC and Bilin-

ear Pairing produced by other projects. Such information can be found in MIRACL benchmarks

and MIRACL EC point multiplication benchmark and is summarized in the table below.

Table 7.1: 1GHz Pentium III MIRACL timing results (ms)

ECDSA Tate Pairing
signature verification

160-bit curve 1.52 2.07 -
192-bit curve 2.19 3.06 -
512-bit curve - - 20

ECDSA is an ECC based, digital signature technique. ECDSA was already im-

plemented in TinyECC by An Liu and it is beyond the scope of our work to go through

the details of it. But it is worth noting that it is also computationally expensive. Table 7.1

shows that according to the Shamus (MIRACL) Software, Tate Pairing is much more ex-

pensive than ECDSA. We can notice that with an 160-bit curve, that in ECDSA gives us

1024-bit security, the signature verification time is 2.07 ms whereas with a 512-bit curve,

that in Tate Pairing gives us the same security level, the time is 10-fold. In addition, in the

Shamus Software’s webpage we can read that the Tate Pairing is by far the most expen-

http://www.shamus.ie/index.php?page=Benchmarks
http://www.shamus.ie/index.php?page=Elliptic-Curve-point-multiplication
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sive application of Identity-Based Encryption (IDE). Thus, one can easily distinguish how

expensive pairing is and the significance of implementing it as efficiently as possible.

Please note that we aimed at producing open source software that can be used

on many platforms using TinyOS. Thus, our work can be used on sensor motes (MicaZ,

TelosB, Imote2) running TinyOS.

7.1 ECDSA on Imote2

First, it is worth looking at the performance of the new technology sensor motes

from Intel and comparing it with the traditional motes (MicaZ, TelosB). In order to do so,

we extended An Liu’s work on ECDSA and ported ECDSA to Imote2. Before we proceed

with the results we have to mention that for ECDSA we use the SecG curves with 128, 160,

and 192-bit prime fields.

Table 7.2: ECDSA MicaZ - TelosB

Curve init sign verify

secp128r1 2.522 1.923 2.418
secp128r2 2.518 2.069 2.674
secp160k1 3.553 2.059 2.441
secp160r1 3.548 1.925 2.433
secp160r2 3.543 2.066 2.615
secp192k1 4.992 3.070 3.612
secp192r1 4.992 2.991 3.776

(a) MicaZ ECDSA timing results (secs) for

W=4

Curve init sign verify

secp128r1 3.861 4.059 5.056
secp128r2 3.847 4.325 5.618
secp160k1 5.208 4.433 5.209
secp160r1 5.225 4.361 5.448
secp160r2 5.197 4.457 5.609
secp192k1 7.190 6.695 7.840
secp192r1 7.204 6.651 8.331

(b) TelosB ECDSA timing results (secs) for

W=4
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For the MicaZ, the timing results when using hybrid window method for modular

multiplication with window w = 4 are in Table 7.3a. For TelosB, the ECDSA timing results

are in Table 7.3b. The results for the Imote2 are in Table 7.4a. The reader should be

reminded that the Imote2 processor frequencies range from 13MHz to 416MHz. Thus, the

processor frequencies are much higher than these of the previous motes which urges us

to expect much better performance. Not to mention the 32-bit technology that certainly

speeds up operations on large numbers.

As we can observe from the tables Imote2 performance is by far better than the

other motes. The fact that the technology is increasing the capabilities of sensors, which

were very restricted in the past, increases the uses and possible security measures on sensor

networks in the future. And this is the underlying motivation of our work too.

Table 7.3: ECDSA Imote2 - energy consumption

104 MHz 416 MHz

Curve init sign verify init sign verify

secp128r1 0.136 0.255 0.317 0.035 0.065 0.083
secp128r2 0.136 0.275 0.360 0.035 0.069 0.095
secp160k1 0.151 0.186 0.219 0.038 0.049 0.060
secp160r1 0.148 0.167 0.208 0.037 0.042 0.054
secp160r2 0.151 0.187 0.233 0.038 0.047 0.060
secp192k1 0.199 0.265 0.308 0.050 0.067 0.079
secp192r1 0.200 0.265 0.325 0.050 0.068 0.084

(a) Imote2 ECDSA timing results (secs) for W=4

MICAZ TELOSB IMOTE2

13 MHz 104 MHz 416 MHz

W sig ver sig ver sig ver sig ver sig ver

2 52.9 58.4 27.5 29.4 2.56 2.72 0.32 0.34 0.08 0.10
4 46.2 58.4 23.5 29.4 2.19 2.72 0.28 0.34 0.07 0.09
8 - - - - - - 0.24 0.34 0.06 0.09

(b) ECDSA energy consumption (mJ) fow secp160r1

One of the extra advantages of Imote2 is the low power consumption. Currently

it supports only deep sleep mode where the current draw is 390 µA. Also the voltage is

captured on TinyOS to be 4.2V. So then we can compute the energy consumption for

performing ECDSA on Imote2. Table 7.4b summarizes the power consumption for all the
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Figure 7.2: ECDSA energy consumption

motes. As we can see, the power that Imote2 uses is much less than the power used from

the other motes. Especially at higher frequencies the magnitude difference is incredible.

Figures 7.1, 7.2 graphically show the above results. We can easily distinguish the magnitude

difference and the performance improvement of Imote2 for ECDSA.

The conclusion we can draw from the above is that the Imote2 adds a whole new

direction to sensor networks’ cryptography. As far as ECDSA is concerned the DoS possi-

bility is significantly decreased as the time and energy consumption are greatly decreased

too. Not only that, but at the same time it becomes clear that the Imote2 capabilities give

us the opportunity to try to see how other security tools, which were thought forbidden

because of the mote restrictions, could be applied in next generation sensor networks. This
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doesn’t just hold for Imote2 but possibly for Sun Spots, which are produced by Sun and

have similar capabilities. Though, Sun Spots use Java which might make their operation

slower. We have no evaluation for Sun Spots and we cannot securely be able to tell if they

would perform that good for our experiments.

7.2 Tate Pairing on Imote2

Now, we can proceed with evaluating the feasibility of using Tate Pairing for

Identity-Based Cryptography purposes on next generation sensor motes. As mentioned

above, bilinear pairing is a very expensive operation and very challenging for the capabilities

of sensor motes. For this reason, it is worth noting that MicaZ and TelosB nodes are unable

to compute pairing efficiently. While experimenting on these motes we found out that they

hung, probably because their task queue was overloaded.

The next step would be to evaluate Tate Pairing computation on next gener-

ation sensor motes, meaning Imote2s. We implemented the optimizations described in

section 4.5.2 and then we proceeded with measuring the code size, time and energy con-

sumption. As we have already said, we used two supersingular curves for our evaluation,

one over 192-bit prime field and another over 512-bit prime field. Again, the 192-bit curve

cannot be considered secure enough but was used for evaluation and verification purposes.

At this point, we also have to mention the Barret Reduction which was implemented by An

Liu in order to speed up the Mod operations and further improved the results of pairing.

Table 7.4 shows the code size for Tate Pairing.

Table 7.4: Imote2 Tate Pairing code size

Curve ROM RAM
ss192k2 13,512 434
ss512k2 13,844 1,034

As we can observe the RAM size isn’t very high for the capabilities of the Imote2

(32MB) for both the 192-bit and 512-bit curves. The same holds for the ROM requirements.

Thus, the code size for pairing can be considered low for the Imote2.

On the other hand, we should pay careful attention to the timing results of pairing

on the Imote2 which are presented in Table 7.5.
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Table 7.5: Imote2 Tate Pairing timing results (secs)

104 MHz 416 MHz

Curve Miller Final exp total Miller Final exp total

ss192k2 0.459 0.032 0.491 0.115 0.008 0.123
ss512k2 4.405 0.154 4.559 1.575 0.055 1.629

We can easily see that Miller’s algorithm is the most expensive part of pairing.

Though, once again the timing results are acceptable for the 512-bit curve that provides

sufficient security level. Both in 104MHz and 416MHz the time it takes to compute Tate

Pairing is relatively low and can be used in real sensor networks. Especially if the operations

used aren’t performed so often (i.e. Identity Based Key exchange). One disadvantage would

be the possibility of overloading an Imote2 with many computations in order to achieve DoS

attacks. In the future, we believe that the use of projective coordinates will overcome this

obstacle and will make Tate Pairing more DoS-resilient on Imote2s (10 times less). And

also, the reader should bear in mind that these timing results are for the worst case scenario.

In case the neighbors of the motes are static, then we are able to store and reuse the lines

used for the g-functions evaluation the time will improve further.

Finally, Table 7.6 shows the energy consumption of Tate Pairing on Imote2. The

mode, current draw and voltage remain the same as described in the previous section.

Table 7.6: Tate Pairing Imote2 energy consumption (mJ)

Curve 104 MHz 416 MHz
ss192k2 0.80 0.20
ss512k2 7.47 2.67

The energy consumed by Imote2 is much less than the energy consumed from a

MicaZ or TelosB in order to perform ECDSA verification. Thus, the energy consumption

is acceptably low for Tate Pairing on Imote2. Figure 7.3 shows the above results.

Concluding, we can say that Tate Pairing can efficiently be used for Identity-Based

Cryptographic techniques on next generation motes. Networks consisting of these nodes can

use such techniques in order to be more secure in an efficient way. Though, there might

be challenging problems when networks consist of both Imote2s and traditional MicaZs or
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Figure 7.3: Tate Pairing results

TelosBs. Such hybrid networks would have to integrate some intelligence to be able to

take advantage of the extra power of Imote2s to overcome the restrictions of the traditional

nodes (Section 5.2).

7.3 Work conserving scheme

In Section 5.2 we described a scheme that aims at establishing keys in a hybrid

network with low and high-end nodes. In order for this scheme to be effient the high-end

nodes have to compute the Tate Pairing of two points whereas the low-end nodes have to

perform an exponentiation. This exponentiation is performed using the Lucas function that

we presented in section 4.5.2.

Before going into the evaluation details of the exponentiation on a low-end MicaZ

node it is worth evaluating the feasibility of computing Tate Pairing on a MicaZ. When

trying to compute it we found out that the mote hung. This was probably owed to the

overflow of the TinyOS task queue as it took a long time to complete the posted tasks.

In order to calculate the number of operations required to provide a time estimation for

pairing on MicaZ we wrote a Java tool that computes Tate Pairing using the distortion

map-Lucas function or without using the Lucas function. Table 7.7 shows the results for

the necessary computations required.

Then, by using the above table and taking into consideration the operations in

a Lucas function, a point addition, a point doubling and a multiplication in Fq2 we can
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Table 7.7: Number and kind of operations for Tate Pairing

add: 125, sub: 2, mult: 125, div: 2 mod 192 bits
add: 61, mult: 121 F1922bits

point additions: 1, point doubleings: 60 in in F192bits

(a) SSc k2 192, regular

add: 62, sub: 63, mult: 63, div: 1 mod 192 bits
add: 0, mult: 121 in F1922bits

point additions: 1, point doubleings: 60 in F192bits

(b) SSc k2 192, Lucas sequences

add: 323, sub: 2, mult: 323, div: 2 mod 512 bits
add: 160, mult: 319 in in F5122bits

point additions: 1, point doubleings: 159 in F512bits

(c) SSc k2 512, regular

add: 161, sub: 162, mult: 162, div: 1 mod 512 bits
add: 0, mult: 319 in F5122bits

point additions: 1, point doubleings: 159 in F512bits

(d) SSc k2 512, Lucas sequences

construct Table 7.8. This table includes the total number of operations used for the imple-

mentation of Tate Pairing using our 512-bit curve.

Table 7.8: Total number of operations for Tate Pairing

Miller’s algor, mod Point Expon, mod

Curve add sub mult div add doub sub mult

ss512k2 480 481 1438 1 1 159 702 703

So, now we can compare the operations for the calculation of pairing and expo-

nentiation on a MicaZ in order to see how much the scheme in Section 5.2 improves the

performance. Table 7.9 and Figure 7.4 shows these results. x in the table is the number of

bits of the exponent.

As we can see, the Lucas exponentiation scheme highly decreases the number
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Table 7.9: Operations comparison

Modular Tate Pairing Exponentiation
add 528 -
sub 1666 2x
mult 2620 2x+1
div 162 1
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Figure 7.4: Operations comparison

of operations. More importantly, the cost depends on the bit size of the exponent (the

maximum bit size is the bit size of the order m). Then, by measuring the average time of

addition, subtraction, multiplication and division on a 512-bit prime field on a MicaZ we

can compare the Tate Pairing time estimation and the exponentiation time on a MicaZ or

Imote2 (Table 7.101, Figure 7.5). It is easy to notice that the exponentiation time varies

according to the exponent bit size and is much lower (1/10-1/100-fold) than in the Tate

Pairing. In fact pairing time makes such a pairing scenarion on a MicaZ unrealistic and

impossible. Thus, the scheme proposed in Section 5.2 makes Tate Pairing in hybrid networks

more realistic and achievable by delegating part of the computationally expensive work to

the powerful motes and a more practical computation to the low-end mote.

Eventually, it is worth noticing Table 7.11 which shows the code size for the expo-

nentiation on a MicaZ. Note that the ROM code size is approximately 2KB for one simple

exponentiation whereas the EEPROM memory of the MicaZ is only 4KB.

1Division time cannot be calculated accurately as it depends on the numbers that is performed on each
time, so the division time might vary a little. The magnitude difference in the timing results would remain
the same regardless of the specific numbers, though.
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Table 7.10: Timing results, TP vs Exp (secs)

MicaZ Imote2 - 104MHz
Secret number Expon T. Pair. (approx) Expon T. Pair.

32-bit 0.94 226 0.13 4.56
64-bit 1.90 226 0.26 4.56
80-bit 2.38 226 0.33 4.56
160-bit 4.78 226 0.53 4.56
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Figure 7.5: Tate Pairing vs Exponentiation

Table 7.11: MicaZ exponentiation code size

Curve ROM (Bytes) RAM (Bytes)
ss512k2 1,996 133
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Chapter 8

Conclusion

In conclusion of our work, we can make some interesting remarks. First of all, we

have proven that as Moore’s law continues to hold and we get more elaborate embedded

devices with better capabilities we can use more cryptographic techniques that can solve

important security considerations in sensor networks. We extended the already famous

TinyECC package by porting it to Imote2, adding significant functionality and leading the

way to the Identity-Based Cryptography field.

One of our main contributions is porting ECDSA and efficiently implementing

Tate Pairing and its optimizations on Imote2. With this work, except ECDSA which is

performed very efficiently, we can also relatively efficiently compute Tate Pairing. What is

more, the evaluation results establish that pairing is feasible on next generation motes from

a code size, time and energy point of view. Thus, we can now use pairing in any security

scheme on sensor networks. Not to mention, that it has become so efficient that it is almost

resilient against DoS attacks. For example, if someone tried to wear out the battery of an

Imote2 by getting it to compute the Tate Pairing value many times, he probably wouldn’t

be able to achieve much as Tate Pairing is computed without severe effort for the mote

(especially after An Liu’s contribution).

Our evaluation shows that Imote2 is a very promising platform as it performs very

well; it is robust and has low power consumption. This will probably be the case with other

embedded devices in the future to come which permits us to envision more powerful and

secure sensor networks.

As far as the application of Identity-Based Cryptography on sensor networks are

concerned, we believe that they can be numerous. For this thesis, we proposed a scheme
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that can solve the problem of key establishment on a sensor network. This scheme can

be successfully applied on networks consisting of just Imote2’s. But it can also be used in

hybrid networks consisting of low and high-end motes. Even though the latter has some

disadvantages and needs further improvements in order to be considered a viable solution,

we believe that our contribution is important because it opens the way for the study of

schemes that exploit the bilinearity of Tate Pairing. Especially as current trends show that

we are heading toward cost efficient hybrid networks, schemes facing similar challenges like

the one we are proposing will be widely studied in the future.

Finally, we hope that our work will inspire others for continuing research on the

field of cryptography and security on sensor networks. All this work is part of the attempt

of many researchers to provide and mature the technology for secure sensor networks that

can serve us in many different ways. I am sure that the group in which this thesis was

produced will continue wholeheartedly in this direction.

8.1 Future Work

TinyECC was started about 2.5 years ago and it seems that this work will continue

being extended in the future too. An Liu started by implementing ECC and ECDSA on

MicaZ and TelosB sensor motes. For the past year he kept improving the performance and

optimizing these techniques. The research community and industry showed great interest

on TinyECC. Now, it has been ported to Imote2 and been extended even more. In the time

to come, there are more things that can be added to it.

First of all, for the performance improvement of Tate Pairing there are a couple

more methods that, we believe, can significantly bring down the timing results. One of

them is to perform the point operations and line calculations in projective coordinates; this

would eliminate the divisions of the slope calculations and would improve the performance.

Another optimization is to pre-compute and store the line coefficients when the point P is

constant which would save some calculations in optimized Miller’s algorithm. After these

optimizations we believe that the DoS resilience of pairing will be achieved.

Now, after having an efficient pairing implementation, we can apply it on sensor

networks in many ways. We have already described the disadvantages of the scheme in Sec-

tion 5.2. Thus, it is worth studying ways of authenticating the pairing values provided from

Imote2’s to MicaZ motes. To our knowledge, there are ways to weakly or self-authenticate
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the Identity-Based values provided by other parties [4]. But their mapping to the above

case would need careful attention. This way, the scheme will become resilient against DoS

attacks on the MicaZ motes. What would also be very interesting is to try to see how we

could remove the tamper-resilient assumption on the MicaZ’s. If the above are achieved

then we would have successful ways to establish keys between motes in any kind of hybrid

network which is of great importance.

Overall, we consider the field of Identity-Based Cryptography is a very interest-

ing for sensor networks because it provides cryptographic ways of overcoming traditional

problems of them. Some applications that we want to focus on and could solve important

problems are identity-based signatures and threshold cryptography. The reason is that

many times sensor motes form groups (clusters) that might need to be authenticated all

together for load balancing reasons. In the same context, aggregate signatures could also

be used. Other schemes that could be applied on sensor networks are blind signatures es-

pecially for hybrid nets where Imote2’s can blindly sign data the MicaZ cannot sing due

to power restrictions. And of course, multiparty key agreement protocols [9] and signature

schemes can serve for different reasons on sensors too. Though, our future research will al-

ways have to cope with computation expenses and power consumption on motes, especially

since most of the above schemes require more than one Tate Pairing computation. What is

more, a great challenge would again be the hybrid network case where the low-end motes

are the bottleneck of the network. In such cases, the research community would always

have to address problems like load balancing in a secure way and without revealing private

information between the low and the high end sensors (zero knowledge).

On the other hand, TinyECC will continue to be further optimized and extended

in the future. Potentially, other IBE protocols or cryptographic techniques like ECDH will

be added to it. Overall, we anticipate that this package will continue to provide good

background and resources for ECC on sensor networks.
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Appendix A

Algorithms

Here we present the algorithms used for the Tate Pairing computation along with

exponentiation using Lucas functions, all mentioned in Chapter 4. First we will present

the Modified Tate Pairing (note that it is Miller’s algorithm slightly altered with an extra

exponentiation in the end) and then the algorithm that is actually used for our implementa-

tion (with the eliminated denominators optimization). Finally, we give the Lucas functions

as we use them to exponentiate numbers in Fq2) by using only half the bandwidth and

reducing the number of operations. The aforementioned algorithms are following below.
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Algorithm A.1 Modified Tate-pairing

Input: P ∈ E(Fq)[m], Q ∈ E(Fpk)[m], m = (mt−1mt−2...m0)2

where mt−1 is the MSB of m

Output: e 〈P,Q〉 = fP (DQ)(q
k−1)/m

begin

f ← 1, V ← P

for i = t− 2 down to 0 do

f ← f2 ·
gV,V (DQ)
g2V (DQ)

V ← 2V

if mi == 1 then

f ← f ·
gV,P (DQ)
gV +P (DQ)

V ← V + P

end if

end for

f ← f (qk−1)/m

return f

end
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Algorithm A.2 Optimized Modified Tate-pairing

Input: P ∈ E(Fq)[m], Q ∈ E(Fpk)[m], m = (mt−1mt−2...m0)2

where mt−1 is the MSB of m

Output: e 〈P,Q〉 = fP (DQ)(q
k−1)/m

begin

f ← 1, V ← P

for i = t− 2 down to 0 do

f ← f2 · gV,V (φ(Q))

V ← 2V

if (mi == 1 and t! = 0) then

f ← f · gV,P (φ(Q))

V ← V + P

end if

end for

f ← f (qk−1)/m

return f

end
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Algorithm A.3 Lucas exponentiation

Input: x, k, q

Output: vk(x) mod q

begin

k ← k − 1, a← 2, b← x

k = (kt−1kt−2...k0)2

for i = t− 1 down to 0 do

if xi == 1 then

a← a · b− x mod q

b← b · b− 2 mod q

else

b← a · b− x mod q

a← a · a− 2 mod q

end if

end for

return b

end
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Appendix B

Curves

Below follow the actual curve paramenters we used for our work.

Table B.1: SSc k2 192

q= F769064B09938DE6AE1939DECBC9775F904227C7A95E9D63
o= F769064B09938DE6AE1939DECBC9775F904227C7A95E9D64
m= 1000000000000021

c= qk−1
m = 0F769064B09938BE8657C3F1B0B78E80E4

points P(Px,Py), Q(Qx,Qy)
Px= F6A71262C31820555C5686DF49CF25BEDEC3E31F118AA0D6
Py= B004EA468AF34BABCA2F4C0103D2B57EED02C81F14D20CB1
Qx= B2421FDA744BB179202D4D5BB09B5A1F8B184EB7E76167C6
Qy= DDA6A93031C53341ECF6EE196A6FDDA981A1DBD3CCA86596

multiples s, sP(sPx,sPy), sQ(sQx,sQy) where s=47348E68
sPx= 12AA8BA24F8335B6706DC282C7206BF22BFA68BE23336496
sPy= AB409D39FFC254C13EB9A426051BF3C43928BCD9B82B1D36
sQx= 020CC3967AF2BE10AE5129391CB88F7397641FA15F728FF3
sQy= 82B017D22C85A8C9BC9B8EAD2997D3D2AA8A9FFB5A0E9521
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Table B.2: SSc k2 512

q= 8000000000000000000000000000000000020001400000000
000000000000000000000000001000080000002000000000000
000000000000000000000008000
o= 800000000000000000000000000000000002000140000000000
000000000000000000000000100008000000200000000000000000
00000000000000000080004
m= 8000000000000000000000000000000000020001

c= qk−1
m = 0100000000000000000000000000000000000000008000

00000000000000000000000000000000000000000004

points P(Px,Py), Q(Qx,Qy)
Px= 36094B252EF2FE159881435E65E843E222396347DB6
C5D9B36D4ADE8BA7919F46233BA3E39331EF8404BE68
38ABF12D74B90462298D38C1750398B01AE7C68DF
Py= 64673F0F2E8F6DD2E3206558FBBA8C1E803111FEA00
EAEB7552C7C8AEC37E7971E267EC54555E8E3FEA750B
4B8F1561F36366EAEF5A614285C9022537574AEEF
Qx= 0B534839957AD90C6CD3A71A364A031358A13D0B4F2
6DD26F5BAB6A852F4CE8C92D8C84EEFE0A9F0DDBEE2E
ABE70EF0E21E902FE27595F56B7FA10B8FB97769D
Qy= 7032E262B06812935CFE573FC85A98E2BCA9C17F857
7973DAACEA5F2E7CAADB2A3CC4294A4109A41250E2E7
2251890AB2ECC9D35D4FF887D440141FDD08F1B61

multiples s, sP(sPx,sPy), sQ(sQx,sQy) where s=47348E68
sPx= 187BDC8133BBE39C88DC3E91E7D474EB2A63422C24C
C1A0DCD79D659AE154C0788F135E6E57ED851C30767C
7C332A8E2715A7293D5DC13E1629D73C1D65CE363
sPy= 63A46B41F6B86DB1FFF56CC5EA70FD0504BD2873BEA
3DDC132FCA2FD628FB33C8BC61DC983E6DA28DAAC4C3
CBDFD8F20E75A34075092AE3FA544E2DD9B3FF064
sQx= 150587C91B11F9DF0B86C7F77F1F2C3DFAD6EB0AAC0
53708F17BD9DF99C8EB032E10E58DFCC01BBE9E5C7CA
5CF6273523A076D8862E0F4E35C8C2FBCB779BFD2
sQy= 0D28657C79196094AE9511D35715620FB90CF44C926
D3FA1AB0E909AFC1AC878CFA1CAA6E3400F3FD214017
9F29A6200B7F9AC8011B0C5DCFC2958A2ECB3CDFC
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