
ABSTRACT

PATHAK, CHETNA. Shape Recovery from Brightness Images of 2-Dimen-
sional Specular Reflectors. (Under the direction of Dr. Wesley Snyder.)

This thesis proposes two methods to reconstruct the shape of 2-dimen-

sional specular reflectors from multiple brightness images of the reflectors. 

Several images of a reflector are taken as the camera and a mounted light source 

move along the x-axis. From the specularities present in the images, reflectance 

information and camera locations are extracted. This information is used for re-

construction. The first method is an optimization algorithm that determines the 

surface shape by minimizing an objective function. The second method em-

ploys relaxation labeling. Reflector points are declared labels while the camera 

positions are considered objects. Object-label associations are investigated and 

the most consistent among these are retained to give the reflector shape.
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Chapter 1 Introduction

1.1 Motivation

Shading greatly assists our perception of the world. A clear indication of this is 

that a photograph of a sphere would be indistinguishable from that of a circle if 

the shading information were not considered. Shading provides us an estimate 

of object shape in the absence of other cues and augments this estimate when 

other cues are present. Several techniques have been developed to recover the 

shape of a surface from its brightness images, each technique making certain as-

sumptions about illumination conditions and surface properties. Depending on 

their reflectance characteristics, surfaces can be classified as Lambertian, Spec-

ular and Hybrid. Lambertian surfaces have a diffused reflectance, i.e., they re-

flect light in all directions. Specular surfaces reflect virtually all of the incident 

light along one direction. This specularity occurs when the angle of incidence 

is equal to the angle of reflectance. The reflectance properties of hybrid surfaces 
1



are a combination of specular and Lambertian and will be discussed in more de-

tail in section 2.1.3. Most shape-from-shading algorithms use the reflectance 

property of diffuse surfaces to assume that pixel brightness depends only on the 

position of the light-source relative to the surface. This does not hold true for 

specular reflectors, where the position of the observer is of equal importance. In 

this thesis, two algorithms are proposed for shape recovery of a specular object 

from multiple images taken when both the light source and the observer are 

moving. This thesis deals with the 2-D case. The algorithm results for nearly-2-

dimensional specular objects (objects with very narrow width along the third di-

mension) are presented.

1.1.1 Potential Applications

Many practical applications in industrial computer vision require interpretation 

of specular surfaces. Often, the inspection and handling of shiny industrial parts 

such as turbine blades [5] involve the automated shape recovery of the part. As-

sembly lines for the automobile industry and junk-yards requiring separation of 

metallic objects are two ready examples which can benefit from algorithms 

such as the one presented in this thesis, when applied to the 3-D case. Modifi-
2



cations might make it possible for the algorithm applications to be extended to 

solder joints and electronic components mounted on PC boards.

1.2 Problem Description

1.2.1 Problem Statement

To develop and evaluate an algorithm for determining the shape of (approxi-

mately)2-D specular reflectors using images taken when both light source and 

observer are moving.

1.2.2 Simulation Set-up

In this section, the problem set up is described for 2-D reflectors:

A camera with a mounted point-light source is utilised to capture images of the 

specular reflector. The camera and light source are allowed to move along a lin-

ear path, henceforth referred to as the ‘camera axis’. As convention, the camera 

axis is considered to be parallel to the x-axis.  The 2-dimensional specular re-

flector is aligned so that the it lies in the same plane as the camera axis, with its 

longest side more or less parallel to the axis. The camera and mounted light 
3



source move along the camera axis capturing images of the specular reflector at 

regular intervals along the axis. The set up is as shown in Figure 1.1.

In Figure 1.1, 

zl = distance of the camera axis from the reflector

si = ith position of camera on camera axis

θi =orientation of the camera line-of-sight at ith position

(xj,zj)= jth point of the specular reflector

si

θi camera axis

zl

(xj,zj) specular reflector

Figure 1.1 Simulation set-up
4



At each position, si, the camera scans over the two quadrants containing the re-

flector, i.e. it scans over . 

For a given , where S is the set of all camera positions, S={s1,s2, ... sN}, the 

angle of camera line-of-sight lies between:   , measured w.r.t. the 

positive x-direction.

By the nature of reflectance of specular surfaces, from a particular combination 

of camera position, si, and viewing angle, θi, a maximum of one specular point 

is observed. Then, each such combination, represented by the ordered pair 

(si,θi), completely defines the ray containing the specular point. This combina-

tion (si,θi), not si alone, will be referred to as the ”ith camera position”.

θi 0 π[ , ]∈

s S∈

0° θ 180°< <
5



1.2.3 Creation of Simulated Reflectance Images

The following algorithm was used for the creation of the simulated reflectance 

images:

This algorithm simulates the reflectance pattern of a perfect specular reflector. 

Reconstructing the shape of the reflector, given the reflectance pattern in the 

form of images (like the one shown in Figure 1.2), is the problem addressed by 

this thesis.

1)Enter shape information of the reflector

2)Precompute normals at each point in reflector

3)For each camera position  ,

For each orientation of camera line of sight 

3.1 Use ray tracing to locate reflector point, if it exists, lying on 
line of sight

3.2 Look up angle of precomputed normal, αn for the located re-
flector point

3.3 if ((  ) or (the reflector point is a corner))

Mark the point as specular or visible to the camera: Assign 
value 255 to pixel at row=s and column=θ (scaled)

s S∈

0° θ 180°< <

θ αn– a threshold≤
6



1.2.4 Simulation Results

On carrying out the simulation of reflectance images, a set of SN images is ob-

tained, each of which contains the specularities visible from the corresponding 

camera positions, s. This information is organised into a matrix structure:

where  denotes element corresponding to angle θn at position sm 

 =1, if a specularity is observed along ray defined by sm and θn

            = 0, if no specularity is observed along ray defined by sm and θn 

This information is stored as an image, with the rows and columns correspond-

ing to s-values and θ-values respectively, both in ascending order. As an illus-

tration, the image representation of the reflectance information for the reflector 

of Figure 1.1 is shown in Figure 1.2.

e s1 θ1( , ) e s1 θ2( , ) … e s1 θn( , )

e s2 θ1( , ) … … …

… … … …
e sm θ1( , ) … … e sm θn( , )

e sm θn( , )

e sm θn( , )
7



1.2.5 Mapping of Special Surface Features into Reflectance Image 
Domain

A relationship was found between certain surface features and their manifesta-

tion in the reflectance image.

Corners 

In reality, perfect corners do not exist - corners on physical objects are rounded 

at the microscopic level. Since a corner can be approximated as a microscopic 

cylinder(radius, . R is less than one pixel), regardless of the position it is 

s

(camera
position)

θ (camera
     angle)

Figure 1.2 Image representation of reflectance information

R 0→
8



viewed from, the line of sight coincides with the normal. Due to this reason, in 

the case of a specular reflector, a corner appears bright independent of the angle 

from which it is viewed. This is illustrated in Figure 1.3. 

θ1 θ2 θ3
s1 s2 s3

camera
axis

line-of-sight

specular
reflector

Figure 1.3 Corners in specular reflectors

θ1 θ2 θ3
s1 s2 s3

R

Enlarge view of corner C3:

C3C1 C2 C4 C5

Radius R is less 
than 1 pixel
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A particular corner appears as a specular point, for all values of s, with the value 

of θ changing gradually with changes in s. In the reflectance image, the reflec-

tance information corresponding to a corner is represented by a bright curve 

stretching from the zeroth row (s=0) to the last row (s=S). This reflectance pat-

tern of the corners for the reflector in Figure 1.3 is presented in Figure 1.4. The 

reflector has 5 corners and so the reflectance image contains 5 distinct curves 

corresponding to each of these corners. Corners C4 and C5 are very close to-

gether; this manifests itself in the overlap between their corresponding curves. 

Figure 1.4 Reflectance pattern of corners

corresponds to C4

corresponds to C2

corresponds to C1

corresponds to C3

corresponds to C5
10



For a particular s (row), the column containing the bright pixel corresponding 

to a particular corner, (xj,zj), is derived from the line-of-sight orientation, θ, giv-

en by:

(1.1)

The position of the bright pixel varies as the inverse tangent. Since s is the only 

variable in this equation, the mapping of a corner in the physical domain to the 

reflectance image domain is that of an inverse tangent function of some trans-

formation of s. 

Linear segments

The linear segments of the reflector are labeled as L1, L2 and L3 in Figure 1.5. 

Let the inclination of a linear segment w.r.t the positive x-axis be α. Then, for 

a particular point on the segment to be bright, the line-of-sight orientation 

should be:

(1.2)

θ
zl z j+( )
x j s–( )

-------------------atan=

θ π 2⁄ α+=
11



Thus a linear segment in the physical domain maps to a vertical line segement 

in the reflectance image, located in the column corresponding to θ=α, with 

length lr equal to

(1.3)

where lp is the actual length of the linear segment. This mapping is demonstrat-

ed in Figure 1.6. There are three line segments in the reflectance image, each 

corresponding to one of the three linear segments of the reflector. 

α

θ=π/2+α
s

Figure 1.5 Linear segments in specular reflectors

L1
L2

L3

lr 2lp αcos=
12



The special geometry that features such as corners and linear segments produce 

in the reflectance domain can possibly be employed to constrain the solution of 

the reflector shape. This will be discussed further in section 3.1.

Figure 1.6 Reflectance pattern of linear segments

corresponds to L1

corresponds to L2

corresponds to L3
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Chapter 2 Literature Review

Shape recovery is one of the basic problems in computer vision. Techniques for 

recovering shape from brightness images are referred to as “Shape-from-X”, 

where X could be shading[9], texture[7], perspective[12] etc. Shape-from-shad-

ing is concerned with recovering surface orientation from local variations in 

measured brightness.The shape-from-shading problem was first formulated in 

computer vision by B.P.K.Horn [9].

The recovered shape can be represented by the surface normals, the depth of the 

surface, surface gradient surface slant and surface tilt. The surface normal 

(nx,ny,nz) at a point is the orientation of the vector normal to the plane tangent 

to the surface at that point. The surface depth can be interpreted as the distance 

from the camera to the surface points or the distance of the surface points from 

the x-y plane. The surface gradient   is the rate of change of depth p q( , )
x∂

∂z
y∂

∂z( , )=
14



in the x and y directions. Surface slant,φ, and surface tilt,θ, are related to the sur-

face normal as follows:

(2.1)

where l = the magnitude of the surface normal

2.1 Reflectance Models

Several techniques have been developed to recover the shape of a surface from 

images. Each of these techniques makes certain assumptions about the optical 

properties of the surface. Nayar et al. [15] showed the importance of under-

standing the reflectance properties of a surface before selecting a shape recovery 

technique. Various reflectance models have been developed for different kinds 

of surfaces. The most common of these are for Lambertian and specular surfac-

es.

nx ny nz, ,( ) l θ( ) φ( )cossin l φ( ) θ( )sinsin l φ( )cos,( , )=
15



2.1.1 Lambertian Surfaces

A Lambertian surface is a surface of perfectly matte properties, which means 

that it adheres to Lambert’s cosine law[13]. Lambert’s Cosine Law holds that 

the radiation per unit solid angle (the radiant intensity) from a flat surface, in a 

particular direction, varies with the cosine of the angle between that direction 

and the surface normal. 

So, a Lambertian surface can be modeled as

(2.2)

where A = strength of the light source

ρ = albedo of the surface

θs = the source direction

θn = the surface orientation 

 represents the foreshortened area

IL Aρ θs θn–( )cos=

θs θn–( )cos
16



As shown in Figure 2.1, for Lambertian surfaces, the reflected intensity is inde-

pendent of the viewing direction (in the figure, intensity is indicated by the 

length of the rays denoting reflected light). This is a direct consequence of Lam-

bert’s law: Let θo be the angle between the surface normal and direction of ob-

servation. Although the emitted radiation per unit area falls off with cos θo 

according to Lambert’s Law, the observed surface area is growing at the same 

rate. Figure 2.2 displays these two phenomena which act in tandem to produce 

the result that the radiance of a Lambertian surface is constant with respect to 

θo. 

(θs-θn)

Normal

Light source

Lambertian
surface

reflected
light

Figure 2.1 Lambertian surface geometry
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The intensity does however depend on the orientation of the light source relative 

to the surface normal, as expressed in the equation (2.2). 

dA

normal

Figure 2.2 Effect of Lambert’s Law and Cosine Law 

θs−θn

θo

Ν

dAcosθodA

θο

Lambert’s Law

Cosine Law
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2.1.2 Specular Surfaces

A specular surface is one which reflects light in a directional manner, where the 

angle of the reflected ray with respect to the surface normal at the point is equal 

to the angle between the normal and the incident ray. Thus, the normal, the in-

cident ray and the reflected ray lie in the same plane. There are two character-

istics associated with specular reflectors: the specular spike and the specular 

lobe. The specular spike is zero everywhere except in a very narrow range 

around the direction of specular reflection. The specular lobe spreads around 

the specular direction.

θi

specular
lobe

light source
Normal

 
specular
spike

specular surface

θo=θi 

Figure 2.3 Specular surface geometry
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Phong [19] presented a model for specular reflection, in which the specular 

component of reflection is represented as powers of the cosine of the angle be-

tween the specular direction and the viewing direction. Phong observed that for 

very shiny surfaces the specular highlight was small and the intensity fell off 

rapidly, while for duller surfaces it was larger and fell off more slowly. 

(2.3)

where, W(i)= function giving ratio of specular reflected light and incident light 

as a function of the incident angle i.

s = angle between direction of reflected light and the line of sight

n = power which models the specular reflected light for each material.

The function W(i) and the power n express the specular reflection characteristics 

of a material. For a highly reflective material, the values of both W(i) and n are 

large. 

However, although Phong’s model describes observed brightness, it does not 

have a physical interpretation.

IS W i( ) s( )cos[ ] n
=
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Nayar et al. [16] explored the following two models based on physical optics 

and geometrical optics respectively. By studying the reflectance curves predict-

ed by the two models, they proposed the reflectance framework described in 

2.1.3.

Beckmann and Spizzichino[1] proposed a model based on physical optics the-

ory. The surface height is modeled as a continuous stationary random process 

with mean value zero and standard deviation σk that represents the physical 

roughness of the surface. Maxwell’s equations are used to determine how inci-

dent light waves are scattered by the surface in various directions. Beckmann 

and Spizzichino found that the spike component is mathematically represented 

by the square of a very sharp sinc function that tends to be symmetric with re-

spect to the specular angle . For simplicity, the spike component can 

be denoted by the delta function:

(2.4)

where, θs= source direction

θn= surface orientation direction

θs 2θn=

IS Bδ θs θn–( )=
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Torrance and Sparrow [23], in their geometrical optics model assumed that a 

surface is composed of small, randomly oriented, mirror-like facets. Their mod-

el describes specular brightness as the product of four components: energy of 

incident light, Fresnel coefficient, facet orientation distribution function and 

geometrical attenuation factor adjusted for foreshortening. Based on the Tor-

rance-Sparrow model, Healey and Binford [8] derived the following simplified 

model, which can be used to model the distribution of specular intensities for 

regions of high  surface curvature:

(2.5)

where α = slope of individual micro-facets

σα= roughness parameter

K= constant

2.1.3 Hybrid Sufaces

Most real-world surfaces are neither purely specular nor purely Lambertian, but 

possess properties which are a combination of both. Nayar et al. [16] proposed 

a reflectance model consisting of three components: the diffuse lobe, the spec-

IS K
α2

σα
2

-------–
 
 
 
 

exp=
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ular lobe and the specular spike. They used the Lambertian model for the diffuse 

lobe, the Torrance-Sparrow model for the specular lobe and the Beckmann 

Spizzichino model for the specular spike, and came up with the following model 

for hybrid surfaces:

(2.6)

where Kdl, Ksl, Kss= strengths of diffuse lobe, specular lobe & specular spike 

components respectively.

θi = direction of incident light

(θi,φi)= direction of reflected light in terms of slant and tilt in 3D

I Kdl θi( ) Ksl
α2

2σα
2

----------–
 
 
 

Kssδ θi θr–( )δ φr( )+exp+cos=
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2.2 Shape Recovery for Specular Reflectors

Two major issues are associated with specular reflection. The first is detection 

of specularity - determining whether an image feature corresponds to an acual 

scene point or whether it is the specular reflection of another scene point. The 

second problem is shape recovery of specular surfaces. It is possible that spec-

ular highlights may be misidentified as curved surface features such as ridges 

and domes. In other words, even with a known light source, the shape cannot be 

uniquely recovered in general. 

Since specular highlights strictly constrain imaging parameters such light 

source direction, surface normal and viewing direction, if accurately located, 

they can provide important cues for the recovery of surface shape. However, 

highlights also introduce problems for algorithms requiring correspondence be-

tween images such as stereo or motion. Highlights present in one image may be 

missing from other images due to their great dependence on imaging geome-

try[6]. Specular highlights also pose problems for edge detection algorithms, 

since edge detectors respond not only to real edges, but also to highlights.
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In a comprehensive treatment of specular shape-from-shading Brelstaff and 

Blake [2],[3] have analysed the geometric constraints provided by specularities, 

and have shown how to detect specularities using Lambertian irradiance con-

straints. Ikeuchi [11] has employed photometric stereo by locating three light 

sources in different positions and taking three images of specular objects and 

then determining surface orientations from image triples at each point using 

photometric stereo. Nayar, Ikeuchi and Kanade[16] extended this method by us-

ing a sphere illuminated with many point light sources located around it. Their 

method determines surface orientation and reflection parameters. 

Park and Tou presented a normal vector equalization method for separating 

probable highlights and obtaining surface orientation of 3-dimensional specular 

objects[18]. Based on the Torrance-Sparrow model, their method uses a set of 

monochromatic images taken from different illumination directions. They then 

separate probable hightlights and generate separate sets of Lambertian and 

specular images. Surface orientations are then obtained using the Lambertian 

images by solving an image equation for a Lambertian Surface. The information 

from highlights is then used to augment the knowledge of surface vector nor-

mals.
25



Franke and Snyder [5] proved a theorem stating that the position and orientation 

of a specular reflecting object may be determined using a single camera and an 

unconstrained light source. The strategy is a variation on radiometric stereopsis. 

However, instead of three pictures, they take a large (theoretically infinite) 

number of pictures as the camera and light source are moved along the x-axis. 

Each picture has several specular peaks. The part pose is determined from the 

changes in the location of the peaks and knowledge of the surface function. 

They find the position and orientation of a known point on the surface. Given 

this and the equation of the surface, the part pose is determined.

In this thesis, a similar experiment is carried out: as a camera and mounted light 

source are moved along the x-axis, several images are taken of the specular re-

flector. Through only the behaviour of the specularities in the image plane, the 

shape of the reflector is recovered. 

In conclusion, while specularities provide important geometric constraints for 

shape from shading, their reliable modelling and detection is a difficult and elu-

sive problem.
26



Chapter 3 Approach

As described in section 1.2.4, a matrix structure (an image for the 2-D case) is 

used to store the reflectance information captured by the camera. The task of 

reconstructing the surface from this reflectance information is accomplished by 

finding the set of points (x,z) that would give rise to specularities visible from 

the set of camera positions and orientations, (s,θ).

3.1 Extracting information from Special 
Surface Features: Corners

As discussed in section 1.2.5, a corner is a special kind of surface feature that 

appears specular regardless of observer position. This property of corners can 

be used to solve for their coordinates. Once the corners of a reflector are known 

(assuming they exist), they can be used as seed elevation points to be fed into 

the shape recovery algorithm.
27



For a sharp corner located at (x,z), both x and z are unknown. If this point is ob-

served from position s, at angle θ, we know that the parameters s,θ and variables 

x,z are related by:

(3.1)

Since the same corner is visible from all s along the camera line, a Hough Trans-

form approach can be used to solve for the x and z coordinates of a corner point. 

z j x j si–( ) θitan=

θ1 θ2 θ3
s1 s2 s3

camera
axis

line-of-sight

specular
reflector

Figure 3.1  Corners in specular reflectors
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3.1.1 About the Hough Transform:

The Hough Transform, a special kind of parametric transform, was introduced 

as a point-to-line transformation by P.Hough in 1962 [10]. It was further devel-

oped into a point-to-curve transformation by Duda and Hart [4]. The Hough 

transform is a technique that can be used to isolate features of a particular shape 

within an image. This approach requires that the object being searched in the 

image be described by a mathematical expression, which in turn is represented 

by a set of parameters. Due to this, the Classical Hough Transform is most com-

monly used for the detection of regular curves such as lines, circles, ellipses etc. 

A generalized Hough Transform can be employed in applications where a sim-

ple analytical description of a feature is not possible. 

Hough Transform for finding Straight Lines:

Consider an isolated edge point (x,y). There could be an infinite number of lines 

that pass through this point, each of which can be defined as the solution to the 

equation:

(3.2)

where m= the slope of the line

y mx b+=
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b = the y-intercept of the line

So, each of the possible lines passing through point (x,y) of the image space, can 

be characterized as having coordinates (m,b) in some slope-intercept space (pa-

rameter space). In fact, for all the lines passing through a given point, (x,y), there 

is a unique value of b for m such that:

(3.3)

From Equation (3.3) we see that the set of (m,b) values corresponding to all pos-

sible lines passing through the point (x,y), forms a line in (m,b) space. So, every 

point in image space (x,y) corresponds to a line in parameter space, (m,b), and 

each point in (m,b) space corresponds to a line in image space, (x,y), as shown 

in Figure 3.2.

The Hough Transform works by letting each feature point (x,y) ‘vote’ in (m,b) 

space for each possible line passing through it. These votes are totaled in an ‘ac-

cumulator’. Suppose that a particular (m,b) has one vote - this means that there 

is one feature point through which the line characterized by that particular (m,b) 

passes. An (m,b) with n votes would mean that n feature points lie on that line. 

b y mx–=
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(x2,y2)

(x1,y1)

x-axis

y-axis

Image Space
m-axis

b-axis

Parameter Space

(m,b)

line corresp.
to (x2,y2)

line corresp.
to (x1,y1)

Figure 3.2 Hough Transform for detection of straight lines
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3.1.2 Applying Hough Transforms to find corners:

Since a particular corner, (xj, zj) can be seen from all s on the camera axis, there 

are a number of lines-of-sight, completely defined by (si,θi), that pass through 

the corner point. The relationship between (xj, zj) and (si,θi) is given by: 

(3.4)

Henceforth, the line-of-sight defined by (si,θi) will be referred to as L(si,θi).

Since the lines-of-sight corresponding to a corner will intersect at the corner 

alone, just as the Hough Transform is used to find an (m,b) pair, in the parameter 

space, corresponding to a line in the image space, a similar approach can be 

used to locate, in the physical domain, the corner (x,z) corresponding a set of 

(s,θ)’s in the reflectance domain. This application differs from the original 

Hough Transform in that no transformation of parameters is carried out. How-

ever, the principle of ‘voting’ for points in an accumulator is the same. 

z j x j si–( ) θitan=
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The following algorithm based on the Hough Transform was used to locate cor-

ners of the specular reflector:

The performance of this algorithm will be discussed through simulations and 

experimentally in section 6.1.

1) Create an all black accumulator image of same size as reflec-
tance image.

2) Count the bright pixels in the reflectance image. Each bright 
pixel represents an (s,θ) from which a specularity is visible.

3) For every bright pixel (s,θ) in the reflectance image

For every accumulator pixel i.e. (x,z) coordinate

If 

Increment brightness of neighborhood of accumula-
tor pixel corresponding to (x,z)

4) Threshold the accumulator image. Pixels with brightness 
above the threshold represent the corner points.

5) Obtain coordinates of the each of corners (xj,zj), by setting xj
equal to the column and zj equal to row of bright accumulator 
pixel.

x z( , ) L s θ( , )∈
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3.2 Specular Shape Recovery Approaches

This section details the preliminary work done in exploring specular shape re-

covery approaches. While the approaches detailed here have some inherent 

drawbacks which render them unsuitable except in special cases, they provided 

the groundwork for the two shape-recovery algorithms presented in Chapter 4 

and Chapter 5.

3.2.1 Optimization Approach

In performing shape recovery through optimization, an attempt was made to 

solve for the reflector shape by finding the set of ordered pairs (x,z)i which sat-

isfy equation (3.5), provided 

(3.5)

Here, . Also,  and .

This is accomplished by setting up an optimization problem. The above equa-

tion represents the reflectivity constraint for the surface. The minimal curve 

which satisfies this reflectivity constraint can be obtained by minimizing the ob-

jective function of equation (3.6) subject to the constraints shown in (3.7).

zi

xi si–
------------- θitan– 0=

x z,( )i s θ,( )i↔ zi x z,( )i∈ xi x z,( )i∈
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 (3.6)

where n = total number of points on the reflector

(3.7)

where λi= lagrange multiplier 

The problem with performing a constrained minimization is that each point in 

the solution is constrained to precisely satisfy the measurements. This is not a 

viable technique in the presence of noise and measurement errors. So, instead 

of a constrained minimization, the objective function of equation (3.8) is intro-

duced in addition to EL.

(3.8)

This objective function, En or noise energy, takes into account the reflectivity 

of the surface.

Minimizing the sum of the noise energy En and the energy EL will lead to a so-

lution that is constrained by the reflectivity of the surface and also takes into ac-

EL xi xi 1+–( )2 zi zi 1+–( )2+
i 1=

n 1–

∑=

λ i

zi

xi si–
------------- θitan– 

 

En

zi

xi si–
------------- θitan– 

 

i 1=

n

∑=
2
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count neighbourhood relationships. The EL term in the energy minimization 

leads to the shortest line solution. Minimizing a different form for EL will lead 

to a line with minimal slope change. Both these cases are discussed below.

For a Shortest-Line Solution

The set of points (xi,zi) which minimize EL and En simultaneously result in a 

smooth curve which is consistent with the measurements. Gradient descent may 

be used to minimize the objective function E1 = EL + En, resulting in the x and 

z coordinates of the n surface points. The derivatives for EL and En are given be-

low. In the following equations, the substitution  is used for notational 

convenience.

Derivatives of En with respect to xk and zk respectively:

(3.9)

and 

(3.10)

Qi θitan≡

En∂
xk∂

--------- 2
zk

xk sk–
--------------- Qk– 

  z– k

xk sk–( )2
---------------------- 

 =

zk∂
∂En 2

zk

xk sk–
--------------- Qk– 

  1
xk sk–
--------------- 
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Similarly derivatives of EL with respect to xk and zk are:

(3.11)

and 

(3.12)

Now, the surface points are obtained by applying gradient descent separately for 

the x and z coordinates as follows: 

(3.13)

For a Smooth-Line Solution

Minimizing the function EL produces the shortest line solution. An alternate ob-

jective function, EP, which requires a minimal slope change between consecu-

tive surface points, is presented in equation (3.14).

. (3.14)

xk∂
∂EL 2 xk xk 1+–( ) 2 xk 1– xk–( )–=

zk∂
∂EL 2 zk zk 1+–( ) 2 zk 1– zk–( )–=

xk
m xk

m 1– αL xk∂
∂EL– αn xk∂

∂En–⇐

zk
m zk

m 1– αL zk∂
∂EL– αn zk∂

∂En–⇐

E p

zi 1+ zi–

xi 1+ xi–
--------------------- 

  zi zi 1––

xi xi 1––
-------------------- 

 –
2

i 1=

n 1–
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Minimizing EP results in solutions that have smooth lines with minimal slope 

change.

The derivatives of EP are presented in equations (3.16) and (3.17) respectively. 

The variables xi and zi occur in three terms of the summation each. Hence, be-

fore taking the derivative, the following substitition is performed for notational 

convenience:

(3.15)

Now, the derivatives of EP with respect to xk and zk respectively are:

(3.16)

and

(3.17)
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Algorithm Drawbacks

There is an indexing problem with this algorithm. The objective function En re-

quires that the indices of (s,θ) and (x,z) be the same, i.e. the ith measurement of 

(s,θ) correspond to the ith coordinate pair (x,z). However in reality, it is possible 

that (x,z)i may not be adjacent to (x,z)i+1, as illustrated below:

In the Figure 3.3, the leftmost coordinate pair, (xL,zL) corresponds to the 2nd 

measurement, (s2,θ2) and the rightmost coordinate pair (xR,zR) corresponds to 

the 1st measurement, (s1,θ1). Since the (s,θ) are indexed according to the camera 

θ1 θ2
s1 s2

(xR,zR)(xL,zL)

Figure 3.3 Indexing problem in minimization algorithm
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motion (in this case from left to right), there may not always be a correspon-

dence between (si,θi) and (xi,zi) measured. 

Class of surfaces solvable by Algorithm

This algorithm can only be applied to surfaces satisfying the following proper-

ty:

Let vi be the reflector point (xi,zi) and

ci be the camera position (si,θi)

Let  denote a correspondence between vi and ci. This algorithm can be 

applied to those and only those surfaces that satisfy the following property:

(3.18)

i.e., The algorithm can be applied to any surface for which there exists a one-to-

one and sequential correspondence between reflector points (or (x,z) pairs) and 

camera positions ( (s,θ) pairs). Some examples of such surfaces are presented 

below.

vi ci↔

vi ci↔ vi 1+ ci 1+↔⇔
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Sample Surfaces

Convex surfaces satisfy the property stated above. Some examples of reflectors 

which can be solved using the minimization algorithm are given in Figure 3.4. 

camera
axiscamera

camera
axis

camera
axis

Figure 3.4 Sample surfaces meeting criterion of equation (3.18)

Linear and Convex surfaces can be solved by the minimization aglortihm.
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As shown in Figure 3.4, the reflectors need to be convex w.r.t. the camera axis. 

An example of a suface that does not satisfy this property and hence cannot be 

solved by the minimization algorithm is given in Figure 3.5.

Summary

While this approach has drawbacks which renders it ineffective in solving a 

general class of surfaces, it has contributed towards formulating an algorithm 

(Chapter 4) to accurately reconstruct specular reflectors. 

 

camera
axiscamera

Figure 3.5 Surface not meeting criterion of equation (3.18)

This surface cannot be solved by the minimization algorithm since it con-
tains concavities w.r.t the camera line
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3.2.2 Using Derivatives to Solve for the Surface

For the set-up of Figure 1.1, representing  by mi (for slope), equation (1.1) 

becomes 

(3.19)

Taking the derivative yields:

(3.20)

Then applying equation (3.19) to equation (3.20):

(3.21)

Upon rearranging: 

(3.22)

Which appears to yield a solution. However, there are the following problems 

with this approach: 

1. It fails for points at which camera angle is 90 degrees (looking up) since mi, 

the slope, is then infinity

θitan

z j

x j si–
-------------- mi=

z j

x j si–( )2
---------------------

sid

dmi=

x j si–( ) mi⋅

x j si–( )2
-----------------------------

sid

dmi=

x j mi mid

dsi⋅ si+=
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2. It fails for linear segments since the  will not have a finite value.

Variation: Using a Parametric Transform

As an attempt to solve the above mentioned problems, a parametric transform 

is employed. Using the (ρ,α) representation of the camera line of sight instead 

of the (s,θ) involves the following transformations:

(3.23)

and 

(3.24)

The expression of reflector points (xj,zj), then is: 

(3.25)

Differentiation and some algebraic manipulation yields: 

(3.26)

From which, the following expression for x is obtained: 

(3.27)

Implementing the solution presented in equation (3.27), first for a monotonic 

surface:

mid

dsi

α i 90 θi–=

ρi si α icos⋅=

ρi x j α icos⋅ z j α isin⋅+=

α id

dρi ρi α icos⋅ xk–

α isin
----------------------------------=

x j ρi α icos⋅ α id

dρi α isin⋅+=
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 At a given (s,θ) it is necessary to find the corresponding (ρ,α) and then approx-

imate the derivative using 

(3.28)

These estimated derivative values are then substituted into equation (3.27) 

There is a problem with this solution: While using the parametric transform 

tackles the problem of expressing vertical camera lines of sight effectively, it 

fails for general linear surface segments. This case is illustrated by Figure 3.6.

ρ∆
α∆

-------
ρ ρprev–

α α prev–
---------------------=

Figure 3.6 Problem in using Parametric Transform to Estimate 
Derivatives

camera axis

ρ

s1 s2

θ1 θ2

reflector

α
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Thus, since α does not change for linear segments,  cannot be computed. Us-

ing  instead of  does not yield a suitable solution either. 

To detect linear segments separately, the following approach could be em-

ployed: A histogram for θ can be obtained by summing the instances of θ across 

the ‘s’ values or the rows. Histogram peaks indicate probable linear segments.

Summary

To conclude, the approach of using derivatives to solve for the surface is not ap-

plicable to this problem of reconstructing the shape of a specular reflector.

ρ∆
α∆

-------

ρid

dα i

α id

dρi

Figure 3.7 Detection of linear segments

histogram for θ obtained 
by adding across s values

θ
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3.3 Proposed Algorithms

Two approaches were developed for solving the inverse problem of extracting 

reflector shape from the reflectance information. 

The first of these is an optimization approach, that determines the surface shape 

by minimizing an objective function. It differs from the optimization presented 

in section 3.2.1 in that it meets the reflectivity constraint by a correlation be-

tween measured and estimated reflectance images, rather than through minimiz-

ing an energy function. This algorithm is described in Chapter 4.

The second approach employs relaxation labeling, to find the reflector point, 

(xj,zj) that is visible from each (si,θi). The (s,θ)’s are considered to be objects, 

and all the candidate (x,z) pairs are declared labels. Initially, object-label pairs 

(labelings) are made with each object having one or more than one label asso-

ciated with it. Labelings that are found inconsistent with the others are iterative-

ly discarded. In the end, the labelings that are most consistent with each other 

i.e. the ones with the greatest probability are retained. The solution surface is 

made up of the (x,z) pairs that are present in the final list of labelings. This ap-
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proach is discussed in Chapter 5. It directly recovers the depth of the surface, 

rather than solving for surface normals.
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Chapter 4 Algorithm 1: Shape 
Recovery through 
Optimization 

4.1 Algorithm Description

As discussed in section 3.2.1, there is an inherent difficulty, known as the 

indexing problem in solving for the reflector shape by finding the set of or-

dered pairs (xi,zi) which satisfy equation (4.1).

(4.1)

The problem is caused due to the indexing of the camera positions as (si,θi), 

since it then becomes necessary to find a correspondence between the index-

ing of the camera positions and indexing of the reflector points (xj,zj). In-

stead, another approach to the optimization is presented here. 

zi

xi si–
------------- θitan– 0=
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The camera positions (S,Θ) are not extracted from the input reflectance im-

age. 

The reflector points, (xj,zj) are initialized to give a reflector of an arbitrary 

shape. The camera position, (sj,θj), corresponding to each reflector point is 

approximated from (xj,zj) and its neighbours. These estimates of (S,Θ) are 

expressed in the form of a reflectance map similar to the input reflectance 

image. Plotting (sj,θj) the reflectance image space is equivalent to a discret-

ization of s and θ values and is achieved as follows:

(4.2)

(4.3)

where Ncol = Number of columns in reflectance image

The correlation between the calculated reflectance image and the input re-

flectance image is computed. The optimization process then involves itera-

tively perturbing the (X,Z) values by small amounts in order to maximize the 

correlation between the calculated and input reflectance images. Simulated 

Annealing is used for the optimization process. 

row s j=

col Ncol 1–( )
Ncol 1–

π
------------------- 

  θ j⋅–=
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4.1.1 The Objective Function

The objective function being minimized involves the correlation between 

the calculated and the input reflectance images. The correlation is found to 

have very low values for most (X,Z)s and increases very sharply for (X,Z)s 

faithful to the actual solution. Even (X,Z)s close to the actual solution can 

lead to low correlation values. This makes it difficult for the optimization to 

converge. In order to make the search space more monotonic, the input im-

age is blurred. This ensures that there is a steady increase in the correlation 

as the candidate (X,Z) values approach the actual solution. 

Blurring of Input Reflectance Image
Guassian blurring kernels were experimented with. However, a problem was 

encoutered with Gaussian blurring. The algorithm requires that the blurred 

image possess brightness peaks of equal magnitude at all (sj,θj). This is not 

the case with the output of a Gaussian blur. To counter this, ‘manual blur’ 

was employed. If pixel p corresponds to an (sj,θj), and hence has brightness 

255 in the original image, then the brightness of pixel q is set at:

(4.4)

Where d(p,q) = Distance between pixels p and q

brightness of pixel q 255 50– d p q,( )⋅=
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This difference is shown in Figure 4.1. 

Correlation Energy
If pixel at (s,θ) in the calculated reflectance image is bright (i.e. it corre-

sponds to an observed specularity, (x,z)) AND the pixel at (s,θ) in the blurred 

input image is non-zero, then let I be the set of pixels located at (s,θ) of the 

blurred image.

Figure 4.1 Original and blurred reflectance images

Original Image

Using 5x5 Gaussian 
blurring kernel

Using manual blur
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The correlation between the calculated and input reflectance images is cal-

culated as per equation (4.5). The multiplication by 1 denotes that the nor-

malized brightness of the calculated reflectance image is 1.

(4.5)

Since Simulated Annealing (SA) is traditionally used for minimization, a 

function of the correlation (such as the inverse) is minimized. 

(4.6)

where .

and Ncam = number of bright pixels in input reflectance image, i.e., number 

of camera positions

Using an objective function that involves only the correlation causes the al-

gorithm to converge very slowly. This is because while perturbing the (X,Z) 

values, there is a very wide range over which they can vary. Since Simulated 

Annealing, allows all possible solutions to be reached (even those that do 

not lead to a decrease in the objective function), it takes a long time before 

the effect of candidate (X,Z) values on the objective function is examined. 

So the following two constraints are imposed on the (X,Z) values: 

Corr
Brightness of pixel i of blurred image

Maximum image brightness
------------------------------------------------------------------------------------------ 1×

i I∈
∑=

Ecorr

N cam 10⋅
corr

---------------------- 10–=

corr 0≠
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Shortest Line Energy
The (X,Z) values are constrained to lead to the shortest line solution. This 

leads to the following objective function:

(4.7)

Since the difference between two consecutive x values is always 1, the x val-

ue term can be excluded from the expression of ESL to give

(4.8)

Smoothness Energy
The (X,Z) values are also constrained to yield a smooth solution. The 

smoothness constraint is imposed by the following objective function:

(4.9)

The x value term has been excluded here as well, since it always has a value 

of zero.

The three objective functions in equations (4.6), (4.8) and (4.9) are com-

bined: 

(4.10)

Ecomb is the objective function that is minimized using Simulated Anneal-

ing.

ESL xi xi 1+–( )2 zi zi 1+–( )2+=

ESL zi zi 1+–( )2=

ESM zi 1– 2 z⋅ i zi 1++–( )2=

Ecomb Ecorr ESL ESM+ +=
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4.1.2 Calculation of Estimated Camera Positions

To calculate the camera position corresponding to a particular (xj,zj), first 

the slope of the normal passing through that point is estimated. This is done 

by estimating the slope of the tangent through that point, mtj as the average 

of the slopes of the two line-segments, mtj+1 and mtj-1 connecting (xj,zj) to 

its two neighbours. The normal slope, mj is obtained from the tangent slope 

and used in equation (4.1) to approximate the camera position (sj,θj).

(4.11)

4.1.3 Choice of Candidate Solutions

Each candidate solution is chosen as follows: an index value j is randomly 

chosen, and the associated z-value, zj is perturbed by a random amount. 

s j x j

z j

m j
------–=
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4.1.4 Algorithm - Shape Recovery through Optimization (SA)

1) Blur the input reflectance image as discussed in 4.1.1

2) Calculate the coordinates of the corners of the reflector using the 
algorithm to Extract corners using the Hough Transform, pre-
sented in section 3.1.2.

3) Initialize the reflector points (xj,zj) to straight lines between cor-
ners. The number of reflector points is taken to be the same as 
the number of bright points in the input reflectance image, i.e., 
the number of camera positions.

4) Compute the energy, Eold, for this set of (X,Z) values as per equa-
tion (4.10).

5) Set T = Tinitial

6) While T > Tfinal

6.1 Call subroutine purb to slightly perturb (X,Z) to give a can-
didate set, (Xcan,Zcan), as described in section 4.1.3.

6.2 Compute the energy, Enew, for (Xcan,Zcan)

6.3 Calculate 

6.4 If 

Set  and 

Go to 6.1

6.5 Calculate 

E∆ Enew Eold–=

E∆ 0<

X Xcan= Z Zcan=

V E∆– T⁄( )exp=
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4.2 Algorithm Variations

A variation in the objective function is introduced. Instead of the correlation ob-

jective function of equation (4.6), the sum of squared differences may be mini-

mized. In this case,

(4.12)

The combined energy function, then, is as per equation (4.10). The performance 

of the algorithm with this variation is detailed in section 6.1

6.6 If V>(a randomly produced number between 0 and 1)

Set  and 

Go to Label

6.7 Decrease the value of T by a small amount,  
where through experimentation, α has been chosen to be a 
number in the range [0.8,1)

6.8 Go to 6.1

X Xcan= Z Zcan=

T α T⋅=

Ecorr 1 brightness of pixel i of blurred image
maximum brightness of image

-----------------------------------------------------------------------------------------–
i I∈
∑=
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4.3 Algorithm Drawbacks

4.3.1 Requires Corner Points to be Input

As discussed in section 4.1, the algorithm requires seed points to constrain the 

solution and choice of candidate solutions. Corners have been identified as the 

seed points to be fed into the algorithm. This is vital to the functioning of the 

algorithm, and hence it can reconstruct only those surfaces that possess sharp, 

specular corners.

4.3.2 Requires Length of Reflector to be known

The length of the reflector is an input to the algorithm. The reflectors discussed 

in this thesis have corners as end points. Hence, once the coordinates of the cor-

ners have been extracted as per section 3.1, they can be used to calculate the 

length of the reflector. However, for reflectors not ending in corners, the length 

of the reflector will have to be declared.
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Chapter 5 Algorithm 2: Shape 
Recovery through 
Relaxation Labeling

5.1 Algorithm Description

This algorithm works by assigning labels to objects given some relational 

constraints. It links the (x,z) pairs to the (s,θ) pairs, iteratively evaluating the 

probability of each such link based on certain criteria and eliminating the 

links with low probability. This process is continued till the algorithm 

reaches convergence. This algorithm produces a set of (x,z) pairs, each pair 

corresponding to a camera location, (s,θ).

The linking of (x,z)’s and (s,θ)’s with each other and the evaluation of prob-

abilities is done in accordance with Relaxation Labeling. Section 5.1.1 gives 

an overview of the theory behind Relaxation Labeling.
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5.1.1 Relaxation Labeling - Theoretical Background

The problem of assigning labels to objects given some relational constraints 

occurs quite often in the field of pattern recognition. Of the solutions pro-

posed, Relaxation Labeling is a particularly successful one. It was first pro-

posed by Rosenfeld et al in 1976 [21]. 

Let {a1, a2, .... am} be the set of m objects

and {λ, µ, ....} be the set of n labels

The pairing of an object with a label forms a labeling and will henceforth be 

denoted by [ai,λ].

pi(λ) is the confidence that object ai has label λ. It is a measure of the extent 

to which the labeling [ai,λ] is accepted and can take on any value between 

0 and 1. It is also referred to as the ‘probability’ of [ai,λ]; however, it is not 

strictly a probability since there is no random process involved.

During the initialization, object-label pairs, referred to as labelings, are 

made and each labeling is assigned a certain probability. These probabilities 

are iteratively updated using the revision formula shown in equation (5.1) 

for the k+1th iteration, using values from the kth iteration.
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(5.1)

where qi(λ) is the consistency, a measure of how consistent labeling [ai,λ] is 

with other labelings. 

qi(λ) can take on positive and negative values. A negative value of qi(λ) implies 

that the labeling [ai,λ] is incompatible with most other labelings. qi(λ) is eval-

uated as shown in equation (5.2).

(5.2)

where rij(λ,µ) is the compatibility of labeling [ai,λ] with labeling [aj,µ]. rij(λ,µ) 

can take on any value, v, in the range [-1,1]. 

=> [ai,λ] and [aj,µ] are completely consistent with each other.

=> [ai,λ] and [aj,µ] are completely inconsistent with each other.

=> [ai,λ] and [aj,µ] do not affect each other.

Cij weights the influence that object j has on object i. It can be incorporated into 

the compatibility function.

pi
k 1+ λ( )

pi
k λ( ) 1 qi

k λ( )+[ ]

pi
k µ( ) 1 qi

k µ( )+[ ]
µ
∑
-----------------------------------------------------=

qi
k λ( ) Cij rij λ µ,( ) p j

k µ( )
µ
∑

j
∑=

rij λ µ( , ) 1=

rij λ µ( , ) 1–=

rij λ µ( , ) 0=
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5.1.2 Application of RL to this problem

Let S be the set of camera positions and Θ be the set of camera orientations. 

Then, for a given  and , (s,θ)i is an object, i. 

The (x,z) coordinate pairs within a certain user-defined rectangle are the candi-

date reflector points, (x,z)j. These constitute the labels.

Labelings are defined as object-label pairs, [(s,θ)i,(x,z)j], such that 

, where  is the line intersecting the camera line at si and hav-

ing slope equal to .

Labeling [(s,θ)i,(x,z)j] will also be referred to as labeling [i,j] for short.

si S∈ θi Θ∈

x z( , ) j L s θ( , )i∈ L s θ( , )i

θitan
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Calculation of compatibility
The compatibility between two labelings [i,j] (i.e., [(si,θi),(xj,zj)]) and [k,l] (i.e. 

[(sk,θk),(xl,zl)]) is referred to as r([i,j],[k,l]) and calculated as per the following: 

• Two labelings both involving corners are always compatible with each other.

• If one labeling contains a corner and the second labeling contains a non-corner 

point, (xj,zj) 

• if the orientation of the line segment connecting the corner and the point 

is consistent with the input reflectivity information, the labelings are com-

patible

• else the labelings are neither compatible nor incompatible.

• If neither labeling contains a corner 

• if the labelings they lie on same  they are incompatible

• else

• if they are neighbours , they’re compatible according to the extent to 

which their orientation agrees with input reflectivity information. 

• else, they are neither compatible nor incompatible. 

L si θi( , )
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These considerations can expressed in the form of the following equations:

r([i,j],[k,l]) = 1, if i=k and j=l

= 1, if j and l are both corners points

, if j is a corner, l is a non-corner point & j is 
in the neighborhood of l

, if l is a corner, j is a non-corner point & l is 
in the neighborhood of j

= -1, if neither j nor l are corners and if they lie 
on the i=k

, if neither j nor l are corners, but they are 

neighbours and .

= 0, otherwise.

Where N(j,l) is the angle of the normal to the line-segment connecting points j 

and l.

N j l,( ) θl–( )cos=

N j l,( ) θ j–( )cos=

N j l,( )
θ j θl+

2
---------------– 

 cos=

i k≠

θi
θk

(x,z)j

(x,z)l N(j,l)

normal

Figure 5.1 Compatibility calculation for 2 non-corner points

sisk
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Updating Probabilities
P[(si,θi),(xj,zj)] denotes the probability of labeling [(si,θi),(xj,zj)]. The initial 

probability assignments are made as per:

(5.3)

where ni= the number of labels assigned to object i

The probabilities are then updated iteratively as per the revision formula in 

equation (5.1). Each time, the probabilities are normalized so that

(5.4)

where Li= the set of labels assigned to object i

In each iteration, labelings whose probabilities are below a certain threshold 

(i.e. with probability close to 0) are discarded. So the set of labelings shrinks as 

the algorithm converges. When the algorithm has achieved convergence, some 

labelings have probabilities close to 1, while the rest have probabilities very 

close to 0. For each object, the label from the labeling with highest probability 

is chosen as being the coordinates of the reflector point.

P si θi( , ) x j z j( , )[ , ]( ) 1
ni
----=

P si θi( , ) x j z j( , )[ , ]( )
j Li∈
∑ 1=
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5.1.3 Algorithm - Shape Recovery using Relaxation Labeling

1) Call subroutine camrays to extract camera positions (si,θi) from 
input reflectance image. 

2) Use the Hough Transform approach from section 3.1.2 to calcu-
late the coordinates of corners of the reflector.

3) For every iteration,

If it is not the first iteration,

3.1 If for a particular value of , there is no labeling 
with probability above the threshold,

Retain all the labelings involving x.

3.2 If for a particular (si,θi), there is no labeling with 
probability above the threshold,

Retain all labelings involving (si,θi).

3.3 For every labeling,

If the labeling has probability below the threshold,

Delete the labeling from the set of labelings.

3.4 Normalize the probabilities so that the probabilities 
for all the labels associated with a particular (si,θi) sum 
to 1.

3.5 Call subroutine revision which updates the probabil-
ity values.

4) Call the subroutine maxprobs which declares the final reflector 
points.

x j X∈
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Description of the subroutines is giving below:

Camrays

1) For every bright point, i, in the input reflectance image,

1.1 Calculate si and θi as per  

2) For every camera position (si,θi) 

2.1 Calculate all possible labelings [(si,θi),(xj,zj)]

si row=

θi π col π⋅( ) Ncol⁄–=

Revision

1) Call subroutine qvalcal to calculate the consistency, q

2) Call subroutine denvalcal to calculate the denominator of equa-

tion (5.1)

3) Apply equation (5.1) to compute the probability for each labeling, 

for the current iteration.
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qvalcal

1) For every labeling [i,j]

1.1 For every labeling [k,l]

1.1.1 Calculate r[i,j][k,l] , the compatibility of labeling 

[i,j] with labeling [k,l], as per 5.1.2

1.2 Calculate q[i,j] as per 

q i j[ , ]
n r i j[ , ] k l[ , ]

n P k l[ , ]( )
n 1–×

k l[ , ]
∑=
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5.2 Algorithm Variations

5.2.1 Selection of Final Reflector Points

The subroutine ‘maxprobs’ selects the highest probability labelings that deter-

mine the coordinate points of the reconstructed reflector. This can be done in 

two ways:

1. Selecting maximum probability labelings over each (si,θi)

For each (si,θi), the maximum probability labeling is chosen from all labelings 

associated with (si,θi). The (x,z)’s in these maximum probability labelings make 

up the reconstructed reflector. This method has been detailed in the algorithm 

presented in section 5.1.3. The reconstructed reflectors produced by this method 

have the same number of coordinate points as the number of camera positions 

(si,θi). 

2. Selecting maximum probability labelings over each x

For each , the maximum probability labeling is chosen among all labelings 

containing x. The final points of the reconstructed reflector are the (x,z)’s con-

tained in the set of maximum probability labelings. 

x X∈
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This way of selecting the maximum probability labeling has the disadvantage 

of producing results in which the length of the reflector depends on the length 

of the user-defined rectangle X. Hence, for accuracy, it would require the user 

to have knowledge of the length of the reflector beforehand.

For every 

For every labeling [i,j]

If the labeling contains xj

If it is the maximum probability labeling

Assign the xj and zj of the labeling to 
the set of points constituting the re-
constructed reflector

x j X∈

User-defined
Rectangle, X

x=0 x=xLx=1 x=2

Reflector

Figure 5.2 Selecting a maximum probability labeling for every x
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5.3 Algorithm Drawbacks

5.3.1 High Computational Complexity

The program has a computational complexity of O(2n2+n) where n is the num-

ber of labelings. However, the input to the algorithm is the camera position and 

not the number of labelings. Let N be the number of camera positions. , 

i.e. there is an average of a labelings per camera position. The order of complex-

ity therefore is O(2a2N2+aN), where N is the number of (s,θ) or inputs. Typical 

values of a for the relectors dealt with in this thesis are around 100.

5.3.2 Requires Corner Points to be Input

This algorithm requires that the corner points of the surface be known, in order 

to satisfactorily reconsturct the surface. Hence it has to be used in conjunction 

with the Corner Extraction Algorithm presented in section 3.1.2.

5.3.3 Requires Length of Reflector to be known

As Discussed in section 4.3.2, for reflectors not ending in corners, the length of 

the reflector will need to be entered as an input to the algorithm.

n a N⋅=
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Chapter 6 Results and Conclusion

The simulation and experimental results for the surface reconstruction 

methods proposed in this thesis are presented here. Sections 6.1, 6.2 and 6.3 

contain the results for the Corner Extraction algorithm (section 3.1), Opti-

mization algorithm (Chapter 4) and Relaxation Labeling algorithm (Chapter 

5) respectively. In each section, the simulation results for two 2-D reflectors 

and where possible, experimental results for one approximately 2-D reflec-

tor are considered. The first simulated reflector is the one presented in Fig-

ure 1.1. The second simulated reflector is the simulation of the actual 

reflector used to obtain experimental data. This enables comparison of the 

algorithm performance under simulation and experiment conditions. The 

three reflectors are presented in the figures 6.1 to 6.3.
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si

θi camera axis

zL

(xj,zj) specular reflector

Figure 6.1 Reflector ‘S1’ - 1st reflector used in Simulations 

si

θi camera axis

zL

(xj,zj) specular reflector

Figure 6.2 Reflector ‘S2’ - 2nd reflector used in Simulations 
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Figure 6.3 Reflector ‘R1’ - reflector used to gather experimental data 
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6.1 Corner Extraction

Corner extraction is performed by an algorithm modeled after the Hough trans-

form approach, as described in section 3.1. 

The accumulator images obtained by running the corner extraction on the re-

flectance data of the two simulation reflector, S1 and S2 are presented in Fig-

ures 6.4 and 6.5. For reflector R1, two experiments were carried out to 

demonstrate repeatability. The difference in the two experiments was in the dis-

tance,zL, of the camera line from the reflector. In experiment 1, zL=62 and in 

experiment 2, zL=69. The results of the corner extraction algorithm for both sets 

of experimental data are presented in Figure 6.6 and Figure 6.7 respectively. 

The bottom row of the accumulator image represents the position of the camera 

line. zL, the distance of the camera line from the reflector is also shown. From 

the accumulator images, the corner coordinates were obtained as follows:

1. The clusters of bright pixels in the region z>zL were identified. 

2. In each cluster, the pixel of maximum brightness was located. 

The resulting corner coordinates are marked in each accumulator image as xc 

and zc and the results are summarized in Table 6.1.
75



Figure 6.4 Accumulator image for Reflector ‘S1’ 

xc1=2 xc2=31 xc3=105xc2=60

zL=10

zc1,c2=1

xc1=2 xc2=31 xc2=56

zL=10

zc1,c2=0
zc3=-2

Figure 6.5 Accumulator image for Reflector ‘S2’ 
76



zc=2

xc=11

zL=62

Figure 6.6 Accumulator image for Reflector R1(experiment 1)
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Figure 6.7 Accumulator image for Reflector R1 (experiment 2)

zc=1

xc=10

zL=69
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As seen from Table 1, for reflector S1, the algorithm detects only 4 out of 5 cor-

ners. This is due to the proximity of corners C4 and C5. The lines of sight cor-

responding to C4 and C5, being very close together, lead to only one, not two, 

cluster of bright points in the accumulator. Therefore the corner corresponding 

to C4 is detected, while the corner corresponding to C5 is not. For the remaining 

corners of S1, S2 and R1(both, Expt 1 and 2), the coordinates of the detected 

corners are within and error of two pixels.

Table 1Results of the Corner Extraction Algorithm

Reflector

Number of
Corners 
Present

Coordinates 
of Acual 
Corners

Number of 
Corners 
Detected

Coordinates 
of Detected 

Corners

S1 5 C1=(0,0)

C2=(30,0)

C3=(60,0)

C4=(105,0)

C5=(110,0)

4 c1=(2,1)

c2=(31,1)

c3=(60,0)

c4=(105,0)

S2 3 C1=(0,0)

C2=(28,0)

C3=(58,0)

3 c1=(2,0)

c2=(28,0)

c3=(56,-2)

R1 - Expt 1 1 C1=(11,0) 1 c1=(11,2)

R1 - Expt 2 1 C1=(11,0) 1 c1=(10,1)
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6.2 Algorithm 1 Results

Algorithm 1, Shape Recovery through Optimization, is presented in Chapter 4. 

The simulation results of this algorithm for reflectors S1 and S2 are presented 

in Figure 6.8 and 6.9.

As seen from the figures and a comparison with Figure 6.1 and Figure 6.2, re-

flectors S1 and S2 are successfully reconstructed by Algorithm 1. This accuracy 

is quantified in section 6.4.

Figure 6.8 Reconstruction for reflector ‘S1’ using Algorithm 1

Figure 6.9 Reconstruction for reflector ‘S2’ using Algorithm 1
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6.2.1 Problem with Processing Experimental Data

The experimental reflectance data for reflector R1 is shown in Figure 6.10. As 

seen in the figure, all the values of θ, the angle of the line of sight, are very close 

to π/2. This is because, zL, the distance between the camera and the reflector, is 

high compared to the length of the reflector. Here, . 

Since the values of θ are close to π/2, the reconstruction of the reflector is just 

a straight line between corners. Though not an accurate reconstruction, it is in 

tune with the experimental data. Obtaining data with a wider range of θs, would 

require a zL to the order of , which is not feasible, owing 

to narrow viewing angle range of available cameras.

Figure 6.10 Reflectance image for reflector R1 (experiment 1)

s=-5

s=25

θ=π θ=0

zL 3 Length of reflector×≈

zL
1
2
--- Length of reflector×≈
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6.3 Algorithm 2 Results

Algorithm 2, Shape Recovery using Relaxation Labeling, is presented in Chap-

ter 5. In this section the results of the algorithm are presented for the two simu-

lated reflectors. Section 5.2.2 discussed a variation in selection of the final 

reflector points, once the algorithm has converged satisfactorily. The two vari-

ants were:

1. For each token, (si,θi), select, among its associated labels, (xj,zj)the label with 

maximum probability. This way, the number of points in the reconstructed re-

flector will equal the number of camera positions. So, there need not be a one-

to-one correspondence between x and z-values in the resulting reflector.

2. For each possible x-value,xj, select, among the labels containing xj, the label 

with maximum probability. Then for each x-value, there will be one and only 

one z-value.

For each reflector two results are presented- one for each of the two algorithm 

variants discussed above. The reconstructed shape is superimposed on the actu-

al shape to give an idea of accuracy. The actual reflector shape is represented 
82



by the lighter points and the reconstructed shape is represented by the dark pix-

els.

Figure 6.11 Reconstruction of reflector ‘S1’ using Algorithm 2, Variant 1

Figure 6.12 Reconstruction of reflector ‘S1’ using Algorithm 2, Variant 2
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Figure 6.11 through Figure 6.14 show that while the horizontal line segments 

are reconstructed fairly accurately, the rest of the features are not reproduced to 

a satisfactory degree. However, as seen from Figure 6.11 and Figure 6.13, the 

general shape of the semi-circular segments are reproduced; while the size is 

not. 

Figure 6.13 Reconstruction of reflector ‘S2’ using Algorithm 2, variant 1

Figure 6.14 Reconstruction of reflector ‘S2’ using Algorithm 2, variant 2
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6.4 Summary of Shape Reconstruction 
Results

Here, an accuracy measure is presented, using which the performance of the two 

algorithms can be assessed. The measure quantifies the results presented in sec-

tions 6.2 and 6.3. The accuracy measure was calculated as follows:

1. for the results of Algorithm 1 and Algorithm 2, Variant 2:

These include Figure 6.8, Figure 6.9, Figure 6.12 and Figure 6.14. In these re-

constructions, for every x there exists a value of z. For each figure, the sum of 

absolute differences between the z-values of the original reflector and the recon-

structed reflector was calculated. Then, the maximum possible inaccuracy, or, 

the maximum possible sum of absolute differences was calculated. The Percent 

Accuracy Measure, then, is the percentage of the actual sum of absolute differ-

ence w.r.t. the maximum possible sum of absolute differences. The sum of dif-

ferences and % accuracy measure are entered in Table 2.

2. for the results of Algorithm 2, Variant 1:

These include Figure 6.11 and Figure 6.13. In these, for every x value, there 

need not necessarily exist a z value (as explained in section 6.3). Instead, for ev-

ery (si,θi), there exists an (x,z). So for each result, the sum of differences was 
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calculated not over x, but over the tokens (s,θ). For each figure, the sum of dif-

ferences among the actual (x,z) and the reconstructed (x,z) was calculated. The 

% accuracy measure was calculated as above and both these are presented in Ta-

ble 2.

Table 2Summary of Algorithm 1 and 2 Results

Algorithm Reflector
Sum of 

Differences
% Accuracy 

Measure

Algorithm 1
S1 88 94.6 %

S2 43 95.27 %

Algorithm 2, 
Variant 1

S1 614 62.31 %

S2 271 70.22 %

Algorithm 2, 
Variant 2

S1 566 65.25 %

S2 232 74.5 %
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6.5 Conclusion

In this thesis, two algorithms were presented for shape recovery for 2-dimen-

sional specular reflectors from multiple brightness images. Both these algo-

rithms employed a Corner Extraction Algorithm to obtain seed points used as 

an input for the algorithm. The results for these algorithms are presented in sec-

tions 6.1, 6.2 and 6.3. The analysis of these results is presented here:

• The corner extraction algorithm results for 2 simulation data sets and 2 exper-

imental data sets are presented in Table 1. As seen from the table, the algorithm 

gives the correct solution to within 2 pixels of accuracy.

• Algorithm 1, employing optimization, was tested on 2 simulation data sets. As 

discussed in section 6.2, it was not possible to test it on experimental data. A 

visual perusal of Figure 6.8 and Figure 6.9 indicates that the shape reconstruc-

tion is accurate. This is quantified in Table 2 as the accuracy measure. For Al-

gorithm 1, the accuracy measure was found to be around 95%.

• Algorithm 2, employing relaxation labeling, was also tested on 2 simulation 

data sets, the results of which are presented in Figure 6.11 through Figure 6.14. 

From Table 2, the accuracy measure for the reconstruction varies around 70%. 
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A visual inspection of the results confirms the low accuracy. A reason for this 

could be that the quantization error, introduced by converting from the contin-

uous (distance, length) domain to the discrete (pixels) domain, causes an error 

in the consistency calculations. This error may then be propagated and wors-

ened through the iterations. The order of complexity of this algorithm is 

O(2a2N2+aN), where N is the number of input (s,θ) and a is the average number 

of labelings for every (s,θ). This is further detailed in section 5.3.1.

6.6 Further Work

Suggestions for further work follow:

• The work presented here can be extended for 3-D surfaces. Briefly, this can 

be done by relating corners in 2-D reflectors to edges and corners in 3-D, and 

generalizing the corner extraction algorithm to extract edges (lines) and corners 

(points) for the 3-D reflector. Similarly, the lines and curves need to be related 

to planes and planar curves. 

• Further attempts may be made to improve the performance of Algorithm 2.
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