
 

ABSTRACT 

 

 

JOHNSON, EMILY. Referent Indicators in Tests of Metric Invariance. (Under the direction 

of Adam Meade.) 

 

Organizations frequently administer surveys and psychological measures to multiple 

groups (e.g., cultural and demographic groups).  However, before making direct cross-group 

comparisons, researchers need to ensure that the psychometric properties of these measures 

do not differ by groups.  In order to test this hypothesis of measurement invariance, many 

researchers employ confirmatory factor analytic tests of measurement invariance. These tests 

require a referent indicator (RI) for model identification. This RI is assumed to be perfectly 

invariant across groups. Using simulated data, results indicate that inappropriate RI selection 

may be mildly problematic for scale-level invariance tests and highly problematic for item-

level tests. These findings underscore the importance of careful RI selection. 
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1. INTRODUCTION 

In the social sciences, a considerable amount of research seeks to make comparisons 

among groups of people.  These groups may be defined by variables such as nationality, 

culture, gender, or race, or they may consist of the same people at different points in time.  

Regardless of the substantive research questions, a key assumption is that the observable 

variables on which these comparisons are based, typically sets of items or scales, are related 

to the same latent variables across groups and, moreover, related to the latent variables in the 

same way.  When this assumption holds, any observed differences across groups can be 

interpreted as true differences in the unobservable latent variable(s).  To assess the validity of 

this assumption, tests of measurement invariance (MI) may be employed; more precisely, MI 

is considered the degree to which measurements conducted under different conditions yield 

equivalent measures of the same attributes (Horn & McArdle, 1992).  If measurement 

invariance cannot be supported, differences between groups cannot be meaningfully 

interpreted.  It is, therefore, critical that tests of measurement invariance produce valid, 

unambiguous results.   

 Two methodological frameworks, one based on item response theory (IRT) and one 

based on confirmatory factor analysis (CFA) are available for evaluating measurement 

invariance.  While these methods are similar in purpose, the methodologies have evolved and 

been treated relatively independently of one another.  The current study deals with an issue 

encountered in confirmatory factor analytic tests of measurement invariance, termed the 

“standardization problem” (Cheung & Rensvold, 1999; Rensvold & Cheung, 1998, 2001).  

The problem relates to the standardization procedures required with any use of CFA; 

however, while not problematic in single group applications of CFA, the assumptions 
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inherent in the procedure, when violated, potentially compromise the validity of conclusions 

about MI.  Thus, the goal of the current study is to determine the conditions under which 

researchers should be the most wary of tests of MI and those under which conclusions drawn 

from scale and item-level tests can safely be considered valid.  Specifically, I focus on the 

role of the referent indicator (RI), the item chosen to provide a metric for the latent variable. 

The remainder of this section will proceed as follows: First, I will provide a brief overview of 

the general CFA model. Next I will introduce the procedures in which CFA techniques are 

used to test for measurement invariance. Then, more specifically, I will discuss issues related 

to model identification and scaling inherent in these procedures and, in particular, the role of 

the referent indicator. It is argued that referent indicator selection has serious implication for 

conclusions drawn from tests of measurement invariance; however, the exact nature of these 

implications has not yet been explored in the literature. Therefore, the following sections 

detail the methodology and results of a study designed to investigate these issues.  

1.1 The CFA Model  

Confirmatory factor analysis is a special case of the broader structural equation 

modeling (SEM) or, alternatively, covariance structure analysis.  CFA requires the researcher 

to make a priori predictions regarding the structure of the model to be tested.  The analysis 

provides a quantification of the degree to which this theoretical model ‘fits’ the observed 

data.  The general model can be represented as: 

x = Λξ + δ ,                                             (1) 

where x, a (q x 1) vector of observed variables, is a function of ξ, a (s x 1) vector of latent 

variables, and a (q x 1) vector of item uniqueness terms (δ) which represents the specific and 

random variances associated with each observed variable. Λ  is a (q x s) matrix made up of 
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sijλ  factor loadings, and represents the relationships between the latent variables and the 

observed variables; that is, for ijijix δξλ += , ijλ refers to the number of units change 

expected in ix  for every unit change in jξ .   

 Before conducting any CFA analyses, the researcher must specify a model.  This 

model represents the researcher’s sense as to how latent unobserved variables are reflected 

by observed variables, or indicators.  Model specification allows the researcher to ‘fix’ and 

‘free’ model parameters.  Fixing a parameter constrains it to equal some specified value 

while freeing allows a parameter to be freely estimated from input data.  The model must 

include both fixed and freed parameters.  To specify a two-factor model in which each factor 

has three associated indicators and each indicator is associated with only one factor, factor 

loadings would be fixed and freed so that parameters relating indicators to their predicted 

latent variables may be freely estimated, while parameters relating indicators with the 

unintended latent variable are fixed to 0.  In matrix form these constraints can be thought of 

as:  

      

 

(2) 

 

 

Additionally, a researcher may choose to impose equality constraints.  In the above 

example, it may be believed that indicator variables x1, x2, and  x3 measure ξ1 equally well 

(i.e., they have equal factor loadings).  Constraining λ11 through λ31 to be equal will allow the 
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31313 δξλ +=x

( ) δθ Θ+Λ′ΦΛ=∑ xx

2

)1( +
=

νν
df

parameters to be estimated from input data but requires estimation to produce the same value 

for all three λs.   

The number of available degrees of freedom (df) for the specified model is calculated 

by multiplying the number of observed variables (ν) by ν+1 and then dividing the quantity by 

two.   

 (3) 

 

In the previous example, the model contains ν = 6 observed variables, so the potential df = 

[6(6+1)] / 2 = 21.   

Once a model is specified, the CFA program can then be used to estimate model 

parameters that will reproduce the observed covariance matrix Σ.  To illustrate the 

relationship between the parameters estimated in CFA and the observed covariance matrix 

(Σ), Bollen (1989) shows that the implied covariance matrix of observed variables, given the 

model parameters (θ) can be written as: 

   (4) 

 

Given a one-factor, three-indicator model, 

               

      

       (5) 

      ( ) 0=Ε iδ
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11111 δξλ +=x
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where the covariances among the δ terms is given as: 
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When Σ(θ) is calculated using the above matrices, the result is:  

 

(8) 

 

Given that the covariance matrix of observed variables (Σ) can be written as:  

  (9) 

 

 

it follows that:   

 

(10) 

and so on.   

 When constraints are such that only one possible set of estimates can be produced, the 

model is said to be “identified.”  For identification to occur, the number of parameters 

( ) ,var 1111

2
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estimated must be equal to or less than the number of available df.  When the number of 

estimated parameters equals the available df, the actual df of the model is equal to zero and 

model implied covariance matrix will perfectly match the observed covariance matrix (i.e., 

the model is “just-identified”).  For this reason, in order to test model fit, one less parameter 

must be estimated than available degrees of freedom.  Such a model is said to be “over-

identified”.  

 Additionally, model identification requires that some scaling constraint is placed in 

order to provide a metric for the latent variable.  Because it is rarely the case that the latent 

variable of interest possesses an inherent scale, it is left up to the researcher to assign a scale.  

This can be done by assigning a value to either the variance of the latent factor or one of the 

ijλ s.  Most commonly, scaling is accomplished by the latter procedure (Bollen, 1989), setting 

the factor loading of one item to a value of 1.0.  When this option is chosen, the effect is such 

that scores on the latent variable are expressed in the scale of the selected indicator (called a 

referent indicator, RI); therefore, for each latent variable, factor loadings are interpretable 

with respect to one another.  One advantage of constraining factor variances to a constant is 

that, in models that contain more than one latent variable, constraining the factor variances to 

the same constant produces factor loadings that are expressed in the same scale, regardless of 

latent variable.  However, this method assumes that variances really are equal for all latent 

variables.  Differences in the variances of latent variables will be manifest via different factor 

loadings when standardized factor variances are used to set the metric of the scale.  For this 

reason, this scaling option is generally not recommended in tests of MI (Cheung & Rensvold, 
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MLFN )1(2 −=χ

)(log))(tr()(log 1 qpFML +−−+= −
SSΣΣ θθ

1999).  Note that whether model identification is achieved via a referent indicator or 

standardized factor variances, model fit will not be affected. 

 Using the specified model and observed covariance matrix as input, maximum 

likelihood estimation seeks to match the observed data to the target model.  The discrepancy 

between the target and observed matrices can be evaluated statistically to confirm or reject 

the null hypothesis that the expected model ‘fits’ the data.  The most obvious fit index that 

can be used is the chi-square (χ
2
) statistical significance test, 

(11) 

where FML is the maximum likelihood fit function defined as, 

   (12) 

The fit function represents the degree of difference between the observed covariance matrix 

and the model-implied covariance matrix (as computed from Formula 4 using parameters 

estimated to minimize this difference).  This statistic, with df equal to the difference between 

the model’s available df and the number of estimated parameters, represents a test of 

“badness of fit”.  Thus, a non-significant χ
2
 supports the hypothesized model.  While the χ

2 

statistic has the advantageous property of being a parametric statistic with known 

distributional properties, the χ
2 
statistic is somewhat problematic in that, as the sample size 

increases, the discrepancy between the implied and observed covariance matrices needed to 

reject the null hypothesis decreases (Hu & Bentler, 1999).  This is evidenced by the 

incorporation of sample size in the chi-square formula.  Because of this shortcoming, many 

researchers choose to supplement χ
2 
with other fit indices, such as the normed fit index (NFI; 

Bentler & Bonett, 1980), the comparative fit index (CFI; Bentler, 1990), and the root-mean-
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square error of approximation (RMSEA; Steiger & Lind, 1980).  A review of these and other 

fit indices is beyond the scope of this paper and can be found in Hu and Bentler (1999).  

 While the above discussion is framed in terms of single group analyses, the CFA 

procedure can be utilized to evaluate the invariance of model parameters.  In such a case, 

Equation 1 is modified to read,  

 x
(g)

 = Λ
(g)
ξ
(g)
+ δ

(g)
 (13) 

where the superscript (g) denotes that the parameters are group specific.  As before x 

represents a (q x 1) vector of observed variables, ξ is a (s x 1) vector of latent variables,  Λ is 

a (q x s) vector of factor loadings relating the xs to ξs, and δ is a (q x 1) vector of uniqueness 

terms.   

  MI is investigated via a series of increasingly restrictive hypotheses regarding the 

equality of parameter estimates.  To test these hypotheses, models are nested such that the 

more restrictive model is nested in the less restrictive, baseline model.  Most commonly, 

when groups are compared in CFA, fit is evaluated using the difference between the chi-

square values of the models being compared, with df equal to the difference in the df of the 

two models (Bollen, 1989).  This test is sometimes called a likelihood ratio test (LRT; 

Thissen, Steinberg, & Wainer, 1988) as well.   

1.2 Tests of Measurement Invariance 

The sequential hypothesis tests utilized in multi-group CFA allow MI to be assessed 

for multiple parts of a given model.  In a comprehensive review of MI literature, Vandenberg 

and Lance (2000) observe various consistencies in the way tests of invariance are conducted.  

With regard to test sequence, the authors found considerable agreement in the initial steps.   
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)()2()1(

0 ... gH Σ==Σ=Σ=

Omnibus test. The typical sequence of invariance hypotheses follows from the 

Jöreskog (1971) tradition, in which the first step is to conduct an omnibus test of equality of 

covariance matrices, or a test of the hypothesis, 

 (14) 

where superscripts denote group membership.  In this test, no model parameters are 

estimated.  Instead, observed covariance matrices for the groups are directly constrained to 

be equal across groups.  If the equality constraints do not result in a significant decrement of 

fit, the constraints are considered to reflect the true nature of the data.  In this test, failure to 

find a significant difference is considered evidence of MI.  In such a case, invariance is 

considered to be such that the groups can be treated as one (Byrne, Shavelson, & Muthen, 

1989) and, therefore, additional MI tests are unnecessary.  However, as Cheung and 

Rensvold point out, this situation is unlikely to occur unless the groups were, in fact, drawn 

from the same population (1999, p. 6).  In the more probable case, the hypothesis of equal 

covariance structures is rejected, and a series of increasingly restrictive hypotheses are tested 

to determine the source of invariance.  For this reason and others, some researchers choose to 

omit tests of equal observed covariance matrices. 

 Configural invariance. In the case where the hypothesis of equal covariance matrices 

is rejected, the test is followed by a test of factor loading pattern invariance.  Invariance at 

this level is referred to as “configural invariance” (Horn & McArdle, 1992) and represents a 

necessary condition for further tests of invariance.  In this test, no equality constraints are 

imposed.  Rather, a theoretically derived pattern of fixed and freed factor loadings is imposed 

on the two groups.  The least restrictive test of MI, invariance of model form can be thought 

of the test of the null hypothesis,  
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formformformH Λ==Λ=Λ=  (15) 

If the model is not rejected, it may be used as a baseline against which more restrictive 

models are compared in subsequent tests such as metric invariance (Horn & McArdle, 1992),  

( )()2()1( ... g

xxx Λ==Λ=Λ ), invariant unique variances ( )()2()1( ... g

δδδ Θ==Θ=Θ ), or invariant 

factor variances ( )()2()1( ... gΦ==Φ=Φ ).  On the other hand, if the configural invariance 

hypothesis is rejected, other comparisons between groups cannot be interpreted 

meaningfully.   

Metric invariance. When the hypothesis of configural invariance is not rejected, the 

next test is typically a test of “metric invariance” (Horn & McArdle, 1992) in which the 

established baseline model is compared to a model in which factor loadings of like-items are 

constrained to be equal across groups (i.e., )2()1( Λ=Λ ).  If the constrained model fits well 

and does not produce a significant decrement in fit, metric invariance is supported.  At this 

point, the researcher may proceed with comparisons of means or intercepts across groups.   

 On the other hand, if metric invariance is not supported, the researcher is left with 

few options.  One option would be to stop all additional analyses and declare that the 

measure is not invariant.  That is to say observed and latent scores are not directly 

comparable and, thus, further data analysis should not be conducted.  Obviously, discounting 

all of the efforts of data collection and analysis is not appealing to researchers in most cases.  

Thus, most will attempt to determine the source of non-invariance.  Byrne et al. (1989) and 

more recently Stark, Chernyshenko, and Drasgow (2006), recommend a procedure for testing 

individual items for cross-group equivalence one at a time.  This process is considered a test 

of “partial metric invariance.”  The rationale is that, if the source of the lack of invariance is 
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found to be limited to a small number of items, the researcher can allow those items’ factor 

loadings to differ across groups and continue MI tests, eventually comparing latent mean 

scores. In the current study, the focus will be on tests of metric invariance at the scale- and 

item-level, though tests of other model parameters are certainly possible (see Ployhart & 

Oswald, 2004; Vandenberg & Lance, 2000 for excellent reviews). 

1.3 Model Identification and Scaling in Multi-Group CFA 

Recall from the previous discussion of CFA model estimation that some parameters 

must be constrained in order to provide a scale for the unobservable latent variables, either by 

setting the variances of the latent variables equal to a constant (e.g., to 1.0) or, more 

commonly, by giving them the scale of one of their indicators, by constraining a factor 

loading to 1.0 (Bollen, 1989).  In the latter scenario, the item with a constrained loading is 

typically referred to as a “referent indicator” (RI) item.  In multi-group comparisons, either 

scaling procedure will implicitly assume some degree of invariance; that is, it is assumed that 

the entity selected for standardization, either the variance of the latent variable or RI, is 

invariant across groups (Cheung & Rensvold, 1999).  Both standardization procedures have 

direct consequences for the estimation of factor loadings; therefore, if the standardized entity 

is not truly equal across groups, factor loadings in different groups will be expressed in 

different metrics across groups, possibly compromising the validity of conclusions drawn 

from the test. 

 To elaborate this point, consider the case in which a latent variable is assigned the 

scale of an RI.  By setting the factor loading of the RI to 1.0, the latent variable is 

standardized to a sample-specific quantity, the difference between the RI’s observed and 

unique variances (Bielby, 1986).  Presuming simple structure exists, this quantity will equal 
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the square-root of the communality (or reliability) of the item.  The magnitudes of all other 

relationships between observed variables and the latent variables will be expressed in the 

scale of the RI.  An unpublished manuscript by Hancock, Stapleton, and Arnold-Berkovits 

provides an illustration.  In their example, they consider a one-factor, three-indicator model.  

A constraint is placed such that 0.111 =λ ; however, the true situation is one in which 1.0 is j 

times the actual value of 11λ .  The effect of the scaling constant can be seen upon 

consideration of the relationship between the observed covariance matrix and the estimated 

parameters.  For ( ) 11112112 ,cov φλλ=xx , the quantity 1121φλ  must adjust by 1/j to reproduce the 

observed ( )12 ,cov xx .  Likewise, for ( ) 11113113 ,cov φλλ=xx , the quantity 1131φλ must adjust by 

the same factor, 1/j.  This leaves the remaining expression, ( ) 11213123 ,cov φλλ=xx , in 

which 31λ and 21λ  would adjust by j and 11φ by 1/j
2
.   

 Consider a true model in which a one unit change on the latent variable (ξ1) is, on 

average, reflected in a difference of .8 units on the first indicator variable (x1).  In this case, 

the constraint of 1.0 would be 1/.8, or 1.25 times the actual value of 11λ .  Thus, in order to 

reproduce ( ) 11112112 ,cov φλλ=xx where 11λ  is adjusted by j = 1.25, 1121φλ  must in turn adjust 

by 1/1.25.  Similarly, to reproduce ( ) 11113113 ,cov φλλ=xx , the quantity 1131φλ  must adjust by 

1/1.25.  The effect of the adjustments in these two equations, taken together with the final 

equation, ( ) 11213123 ,cov φλλ=xx , is such that 31λ and 21λ  must adjust by 1.25 and 11φ  by 

1/1.25
2
 in order to reproduce the observed covariance matrix. 

The standardization procedure, while not problematic in single group contexts, has 

potential to greatly obscure the true state of invariance in multi-group comparisons.  Note 



 

13 

that for the comparison to be valid, the selected parameter need not actually have a true value 

of 1.0 (as is never the case).  So long as the parameters are truly invariant, the influence of 

the RI occurs proportionally in both groups and is not problematic (Bielby, 1986).  On the 

other hand, if the value of the RI is, in reality, different across groups, parameter estimations 

will be adjusted differentially across groups.  Several such scenarios are presented in the 

Hancock et al. paper and can be seen in table form in Table 1.  Consider the true situation in 

which configural invariance is present, but metric invariance is not.  In their example, the 

true population parameters are said to be 8.312111 === λλλ  in Group 1 and 

5.312111 === λλλ  in Group 2.  If 11λ  were selected to equal to 1.0 in both populations, )1(

21λ  

and )1(

31λ  would be adjusted by 1/.8 and )2(

21λ  and )2(

31λ would be adjusted by 1/.5.  In this case, 

21λ  and 31λ  would be estimated to be 1.0 in both populations, creating the appearance of full 

metric invariance when, in fact, none of the factor loadings were invariant across 

populations.   

In the preceding situation, the selection of any item to serve as a referent indicator 

would have produced the same result.  Alternatively, the authors offer a scenario of partial 

metric invariance in which 1x  is related to the construct in the same way across populations 

while 2x  and 3x  are not.  In this example, the true parameters are 8.11 =λ  for both groups 

but, while in Group 1 21λ  and 31λ  also equal .8, in Group 2 21λ and 31λ  equal .6.  If 11λ was 

selected as the RI, the constraint would be an appropriate one, and 21λ and 31λ  would be 

correctly identified as differentially functioning (DF) parameters.  Conversely, if the DF 21λ  

parameter was selected instead, estimation would be influenced by a different factor in Group 
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1 than in Group 2, and 11λ  would incorrectly be identified as DF.  Further, λ31 would be 

identified as invariant, also incorrectly.  The adjustments of 1/.8 and 1/.6, or 1.25 and 1.67, 

yield parameter estimates of 00.13111 == λλ  for the first group and 33.111 =λ  ≠ 31λ  = 1.00 

for the second.  The same result would have been produced by selecting 3x  as the referent 

indicator.  In this example, tests of invariance could indicate that either one or two loadings 

are invariant, depending on the choice of RI.  Clearly, this is problematic at any level of 

analysis.   

As these scenarios illustrate, tests of MI require researchers to assume exactly what it 

is that they are investigating, namely, that one item is truly invariant across groups.  Further, 

the assumption is not only un-testable but one that, when violated, could greatly obscure the 

true state of invariance.  In order to partially address this issue, Rensvold and Chueng (2001) 

devised a method to facilitate the choice of an RI.  However, their method is labor intensive 

and is seldom used in practice. As a result, most researchers have taken to simply 

acknowledging that the practice of standardization via RIs is problematic or ignoring it 

altogether.  The acknowledgement speaks little to questions about how problematic the 

practice might be or under which circumstances researchers and evaluators of research 

should be most wary.   

This study seeks to explicate the conditions under which researchers can be most 

confident about the inferences drawn from tests of MI.  To examine these issues, the current 

study used simulated data to manipulate the magnitude of differential functioning (DF; a lack 

of invariance) on the RI.  Additionally, in some conditions, a manipulation was included in 

which either two or no non-RI items are specified to function differentially.  Of primary 
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interest were the effects of DF of the RI on both scale- and item-level tests of MI.  While it is 

generally understood that when the RI is invariant (i.e., the same across groups), DF of other 

items will be accurately detected as a lack of MI (Meade & Lautenschalger, 2004), it is less 

clear how DF of the RI will affect accurate detection of a lack of MI.   

The RI determines the scaling of the latent variable, which is then reflected in the 

estimated factor loadings for all items.  As a result, to the extent to which there is DF in the 

RI, this difference should be reflected in other scale items. Therefore, RI DF may be 

accurately detected as a lack of invariance at the scale-level but result in inaccurate 

conclusions at the item-level. Moreover, with larger magnitudes of DF across groups for the 

RI, the likelihood of accurately detecting DF at the scale-level should increase.  In order to 

investigate the effects of DF of the RIs, conditions were simulated in which the RIs were DF 

to varying degrees but the other scale items were invariant.  In a second set of conditions, 

both the RI and an additional item on each of two factors were functioned differently across 

groups. Finally, as Meade and Lautenschlager (2004) have shown that sample size directly 

affects the power of MI tests, two conditions of sample size were also included.  As the use 

of a RI causes an adjustment in scaling of all item factor loadings, but in somewhat 

unpredictable ways, I propose: 

Hypothesis 1:  Larger sample sizes will be associated with more frequent detection of 

a true lack of MI. 

Hypothesis 2: The effects of selecting a DF RI will have a minimal impact on the 

accuracy of MI conclusions at the scale-level. 

Hypothesis 3: The effects of selecting a DF RI will have a large impact at the item-

level. 
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Research Question 1:  To what extent does the number of DF items affect the 

accuracy of MI conclusions? 

2. Method 

 In this study, data with known properties were simulated to represent various 

conditions of non-invariance. Data properties were simulated to represent “Group 1” data, 

and then some of these properties were changed in order to create several different conditions 

of Group 2 data.  One hundred sample replications were simulated for each of the study 

conditions described below.  A summary of the conditions is presented in Table 2.  

2.1 Sample Size 

 Data will be simulated to represent sample sizes of 150 and 500.  Given the nature of 

the simulated data in this study and the recommendations of previous studies (MacCallum, 

Widaman, Zhang, & Hong, 1999; Meade & Lautenschlager, 2004) these sample sizes were 

selected to represent a condition of minimally adequate power and a condition of a larger 

sample, as might be expected in practice. 

2.2 Nature of the Model 

 Because orthogonal factors are unlikely to be encountered in practice, for all 

conditions, the model simulated was one with two latent variables specified to correlate at .3 

(cf. Meade & Kroustalis, 2006).  For each latent variable, four indicator variables were 

simulated, as represented in Figure 1. While in practice the number of indicators varies 

considerably across studies, a review of published studies using CFA to test MI on non-

simulated data yielded a median and mode of four indicators per latent variable.
1
  The 

population factor variances for both factors were set to 1.0 (cf. Meade & Lautenschalger, 

2004).  Factor loading values used for Group 1 data (see Table 3) were determined based on 
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the estimated loadings from a large sample (N=686) of undergraduate respondents on two 

scales of the Occupational Personality Questionnaire (OPQ-32; SHL, 2000).  

2.3 Factor Loading Differences 

 Five conditions were simulated to represent varying degrees of DF for the RI between 

Group 1 and Group 2: a control condition of true RI invariance (no differences in RI values 

beyond that of sampling error) and differences of 05, .1, .2, and .4.  For each condition of RI 

DF, two conditions of non-RI DF were specified, one in which the non-RI items were truly 

invariant and one in which two non-RI items (Items 3 and 7) were specified to have factor 

loading differences of .25.  Population factor loadings simulated in Group 2 for the different 

conditions are presented in Table 4.    

2.4 Model Parameter Simulation 

 Initial structural models were simulated for the various conditions outlined in Table 2 

using the PRELIS program which accompanies the LISREL 8.51 software package (Jöreskog 

& Sörbom, 1996).  Group 1 data were simulated to represent the 8-indicator, 2-factor model 

(Table 3) and were analyzed in all conditions while Group 2 data were modified to simulate 

conditions of a lack of invariance by subtracting the specified amount of DF (see Table 4). 

2.5 Data Analysis 

 A model of equivalent factor patterns served as a baseline model to which the 

subsequent tests of metric invariance were compared.  In this model, the correct pattern of 

factor loadings was specified and model parameters were freely estimated in each group.  

Nested model chi-square difference tests (i.e., LRTs) were used to evaluate the decrement in 

fit resulting from imposing factor loading equality constraints.  Item-level tests of factor 

loading invariance were also conducted.  In these analyses, the fit of the baseline model was 



 

18 

compared to a model in which the factor loading of a single item (in addition to the RI) was 

constrained to be equal; this was repeated until each of the non-RI items had been 

constrained (see Stark et al., 2006, for the merits of this type of item-level test).  

2.6 Outcome Measures 

 The outcomes of interest in this study were the performance of both scale- and item-

level tests of invariance.  For each condition, the results of tests of scale-level metric 

invariance are reported as the percentage of the 100 data replications in each condition that 

indicate a statistically significant lack of invariance.  Because the results of the metric 

invariance tests are expressed as a dichotomous, significant/non-significant dependent 

variable, logistic regression was used to determine the probability of significant versus non-

significant lack of invariance based on the level of the various study variables (N, RI DF, and 

non-RI DF).  The Cox and Snell Index and the Nagelkerke Index were used to assess the 

acceptability of the proposed model and Wald statistics were used to evaluate the 

significance of the βs relating each of the predictor variables to the dichotomous 

significant/non-significant dependent variable.  A significant Wald statistic signals the 

statistical significance of the associated predictor.  

 At the item level, results were reported in two metrics.  First, true positive (TP; the 

number of truly DF items detected as DF by the item-level analyses) and false positive (FP; 

the number of truly invariant items falsely detected as DF by the item-level analyses) values 

were computed.  TP and FP rates were computed for each of the 100 replications, and then 

averaged across these replications for each condition.  Second, also reported for each 

condition are the percentages of the one-hundred replications that were significant for each 
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item, and whether significance represented TP or FP depending on the true invariance status 

of the particular item. 

3. Results 

 Across the study conditions, for tests of scale-level metric invariance, the percentage 

of 100 data replications indicating a statistically significant lack of invariance ranged from 5 

to 100.  As seen in Table 5, conditions of larger sample sizes, greater RI DF, and greater non-

RI DF exhibited larger percentages of significant replications. In order to provide a more 

thorough investigation of these results, logistic regression analyses were conducted with 

significant versus non-significant lack of scale-level MI as the dependent variable and 

magnitude of RI DF (0, .05, .1, or .2) and DF on two non-RI items (0 or .25) as the 

independent variables, in order to determine whether a statistically significant relationship 

existed between the MI results and the study variables.  Though originally hypothesized to be 

an additional predictor variable in this relationship, it was not possible to include sample size 

in the analysis, as discussed in more detail below.  

3.1 Scale-level Tests of Measurement Invariance 

 The overall logistic regression model for the scale-level analyses was significant 

(Wald = 237.71, p < .0001).  To assess the fit of the model, I looked at two “pseudo-R
2
” 

statistics (Cohen, Cohen, West & Aiken, 2003), the Cox and Snell Index and the Nagelkerke 

Index.  The Cox and Snell index is intended to be a logistic analogue to the multiple 

correlation in OLS regression.  However, the Cox and Snell index is problematic in that it has 

a maximum value of .75 and thus, I also present the Nagelkerke Index, which is adjusted 

such that a maximum value of 1.00 can be attained.  The Cox and Snell R
2
 value for the 

model was .37 and the Nagelkerke R
2
 statistic was .50, indicating that a moderately large 
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proportion of variance in the metric invariance test results was accounted for by the study 

conditions (the variance not accounted for is due to sampling error).  Wald significance 

statistics, standardized parameter estimates, odds-ratios, and their associated confidence 

intervals for individual study variables can be found in Table 6.  Below, I discuss how the 

logistic regression results relate to the study hypotheses. 

 Hypothesis 1. The first research hypothesis predicted that larger sample sizes would 

be associated with a more frequent detection of a lack of invariance.  In order to investigate 

this hypothesis, the sample size (N=150 vs. N=500) was included in the logistic regression 

analyses as a predictor variable, such that a significant main effect for sample size would 

indicate that a lack of MI is more likely to be detected in samples of 500 than in samples of 

150. However, the detection of lack of invariance in the N=500 sample size was so frequent 

that it was not possible to include these data in the logistical regression analyses.  That is, 

when the N=500 data was included in the analyses, the combination of the sample size 

variable and the DF=.25 level of the non-RI DF variable almost always resulted in 

significance (see Table 5), thus resulting in a separation of data points.  In logistic regression, 

when a separation of data points such as this occurs, maximum likelihood estimation cannot 

converge on a solution.  Therefore, data simulated under the N=500 condition was dropped 

from the regression analyses.  Notably, though, with the exception of conditions in which no 

DF was present in the model, the percentage of replications in which significant DF was 

detected was always greater when N=500 than when N=150.  Taking the DF conditions 

together, the mean percentage of replications indicating significant lack of metric invariance 

across study conditions was significantly larger for the N=500 conditions than the mean for 

the N=150 conditions, (m150=52, m500=81.13; t(16), =1.95, p<.05).  
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 Hypothesis 2. Significant Wald statistics for all levels of the RI DF variable (Table 6) 

indicate that the simulated RI DF is accurately detected at the scale level. As the severity of 

RI DF increases, the likelihood of detecting a lack of invariance also increases.  The top half 

of Table 5, which presents the percentages of replications found significant across the various 

study conditions, provides further evidence of this trend, with the percentage of significant 

replications increasing with increasing RI DF in both sample size conditions.  Pictorially, this 

monotonic increase is illustrated by the lighter line (nonRI DF=0) in Figures 2 and 3; 

detection of a lack of MI was more likely when the magnitude of RI DF was large.    

Research Question 1. The final research objective for the scale level analyses was to 

evaluate the extent to which the number of DF items affects the accuracy of invariance tests 

(Research Question 1) for both scale- and item-level MI tests.  In logistic regression terms, 

this is a question of whether or not the presence or absence of non-RI DF predicts the 

likelihood of significant invariance test results, as indicated by a significant Wald statistic.  

Results of these analyses demonstrated a significant relationship, such that when two non-RI 

items were specified to function differentially, the likelihood of rejecting the hypothesis of 

invariance was significantly greater than when all non-RI items were truly invariant 

(Wald=55.70, p<.01).  Furthermore, RI DF interacted significantly with the non-RI DF at all 

levels of RI DF except for that where RI DF=.1 (Table 6).  Figure 2 provides a visual 

representation of this interaction for the N=150 condition.  For conditions of no DF on non-

referent indicator variables, the likelihood of rejecting the metric invariance hypothesis 

increases as RI DF increases.  By inappropriately constraining the DF RI to be invariant 

across groups, the true differences are forced onto the other scale items.  When these 

transferred differences are large, the lack of invariance is more frequently detected at the 
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scale level.  However, when DF of .25 is simulated on two additional items, the probability 

of detecting DF decreases as RI DF decreases to a point, and then begins to increase.  In 

other words, while the line relating magnitude of RI DF to the probability of significant 

invariance test results increases monotonically when no other DF is present in the model, 

when two items non-RI items are DF, the relationship is displayed as a u-shaped line, where 

the probability of detecting a significant lack of invariance decreases for small magnitudes of 

RI DF and then increases for larger magnitudes.  In this case, when the transferred 

differences are small, they actually minimize the effects of the differences introduced by 

specifying non-RI DF; in terms of the logistic regression results, the amount of RI DF does 

not significantly predict measurement invariance test results when RI DF magnitude is .1 and 

non-RI DF is present.  When the transferred differences are larger (i.e. RI DF = .2 or .4), 

however, they interact with non-RI DF, augmenting the difference between groups, 

evidenced by the greater number of tests indicating a lack of invariance.  When N=500 

(Figure 3), the line relating magnitude of RI DF to the probability of significant invariance 

test results, like in the N=150 condition, increases monotonically when no DF is present on 

non-RI items.  However, because of the increased power to detect a lack of invariance 

associated with the larger sample size, when DF is present on other items in the model, the 

line steadily indicates 100 percent detection, demonstrating that, across levels of RI DF, 

nearly all tests of MI indicated a significant lack of invariance.  

3.2 Item-Level Tests of Invariance  

 In order to assess the accuracy of item-level MI tests, true positive (TP; the number of 

truly DF items detected as DF by the item-level analyses) and false positive (FP; the number 

of truly invariant items falsely detected as DF by the item-level analyses) values were 
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computed for each study condition.  TP and FP rates were computed for each of the 100 

replications, and then averaged across these replications for each condition.   

 Hypothesis 1. To determine the extent to which Hypothesis 1, that larger sample sizes 

were associated with more frequent detection of a true lack of MI, was supported, TP rates 

were compared across the two sample size conditions.  The results indicate that, as expected, 

the N=500 sample size condition was characterized by a higher rate of TPs than the N=150 

condition (See Table 7) as shown in Figures 4 and 6.    

 Hypothesis 3. Hypothesis 3 predicted that the effects of selecting a DF RI on 

detection of true MI should be severe for item-level tests of MI.  Support for this hypothesis 

would be indicated a high rate of FP detection of DF items.  As displayed in Figures 5 and 7, 

the percentage of replications which resulted in FPs increased with increasing magnitudes of 

RI DF in both sample size conditions, supporting the hypothesis that RI DF leads to 

inaccurate conclusions at the item-level.  Specific results of item-level tests giving rise to FP 

as well as TP rates can be seen in Table 7.  It is evident that, when no DF is present on the 

non-RI items, the DF introduced by the RI is transferred to other non-DF items, as 

demonstrated by their erroneous detection as DF items (FPs) a sizable percentage of the time.   

Research Question 1. To evaluate Research Question 1 regarding the effect of DF of 

non-RI items on the accuracy of MI conclusions at the item level, TPs and FPs for the 

conditions in which DF was specified on additional items were compared to those in which 

no additional DF was specified (Table 7). Interestingly, when DF is present on non-RI items, 

DF on the RI results in the significant (and erroneous) detection of non-DF items (FPs), 

while truly DF items (Items 3 and 7) are erroneously not detected as DF (False Negatives).  

This trend is apparent in both sample size conditions. 



 

24 

4. Discussion 

 The results of this study illustrate the effects of referent indicator (RI) selection on the 

validity of conclusions drawn from measurement invariance tests conducted at the scale- and 

item-level.  In this study, various conditions of sample size, RI DF, and DF of non-RI items 

were simulated.  The results generally supported the  research hypotheses, namely, that larger 

sample size would result in more frequent detection of a true lack of invariance and that the 

effects of selecting a DF RI have a minimal impact on the accuracy of MI conclusions at the 

scale-level but a large impact at the item-level.  However, the findings with regard to the 

effects of non-RI DF complicate the interpretation somewhat.  DF on non-RI items, in 

conjunction with RI DF, was found to affect the conclusions drawn from scale-level tests of 

measurement invariance while at the item-level, RI DF seems to be the primary determinate 

in the accuracy of MI conclusions.  These findings and the implications for researchers 

conducting tests of measurement invariance on data with unknown properties are discussed 

in the following sections.  

4.1 Sample Size 

 Sample size has been shown to directly affect the power of tests of invariance (Meade 

& Lautenschlager, 2004); specifically, when sample size is large, smaller deviations from the 

baseline model are required to reject the null hypothesis that the two models are not different 

than when sample size is small.  This is a result of the hypothesis testing procedure’s reliance 

on the chi-square statistic, which is calculated by multiplying N by the degree of difference 

between the observed covariance matrix and the model-implied covariance matrix (the 

maximum likelihood fit function).  Thus, Hypothesis 1 predicted that larger sample size 

would result in a more frequent detection of DF.  The results indicated that this was the case 
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and, in fact, when other DF items were included in the model, significant DF was detected 

between 99% and 100% of replications, across magnitudes of RI DF (see Figure 3).  Thus, 

because of the separation of data points, data from any condition in which N=500 was not 

included in the regression analyses.   

4.2 Scale Level Impact of RI DF 

This study provides an illustration of the comparative effects of selecting truly 

invariant and DF items to serve as the RI for tests of measurement invariance.  Further, of 

particular interest is the extent to which the magnitude of RI DF affects the results of 

measurement invariance tests.  The results of this study suggest that, when a truly invariant 

RI is selected, valid conclusions can be drawn regarding the invariance status of other items 

in the model and the validity of these conclusions is not affected by DF in other items.  

Regardless of sample size, when no items functioned differentially, selecting a truly invariant 

RI resulted in the erroneous detection of a lack of invariance in only 5% of the replications 

(i.e. the α level of the LRT).  When DF was present on other items, selecting a truly invariant 

RI resulted in the accurate detection of a lack of invariance in 70% of replications of the 

N=150 condition and 100% of the N=500 condition.  In other words, the results demonstrate 

that when an appropriate RI is selected, that is one that does not function differentially across 

groups, tests will accurately reflect the true state of invariance.   

When the selected RI did function differentially, and all non-RI items were truly 

invariant, the likelihood of rejecting the scale-level hypothesis of metric invariance increased 

as the magnitude of RI DF increased.  Put differently, differences between groups on the RI 

were transferred to other scale items via the constraints on the RI to be equal to 1.0 in both 

groups.  The larger these transferred differences were (i.e. greater magnitude RI DF), the 
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greater the likelihood that these differences will be accurately detected at the scale level.  The 

results indicate that the scale-level test accurately reflects the lack of invariance (while not 

providing specific information about the source of this lack of invariance).  Thus, when 

metric invariance is rejected, the source of DF could be any of the items in the model, 

including the RI.  When researchers find support for metric invariance at the scale level, 

these results suggest that they can be somewhat confident that RI DF was not present.  

However, the effect of selecting a DF RI when additional items also function differentially 

seems to be somewhat less straightforward.   

When small magnitudes of DF were present on the RIs, the frequency with which a 

lack of invariance was detected was less than when only non-RI items functioned 

differentially (no RI DF).  On the other hand, when larger magnitudes of RI DF were present, 

the frequency of detection increased to greater than that found in the truly invariant RI 

condition.  Thus, it seems that the adjustments introduced by relatively low amounts of RI 

DF serve to minimize differences across the two groups’ factor loadings.   The adjustments 

introduced by larger magnitudes of RI DF, on the other hand, appear to compound the effects 

of non-RI DF, producing more readily detectable scale-level differences between groups.  In 

practice, the true amount of RI DF will not be known and, therefore, it is impossible to 

discern whether finding support for metric invariance should be interpreted as true invariance 

or a situation in which small amounts of RI DF have minimized the effects non-RI DF.  On 

the other hand, the findings indicate that large amounts of RI DF will be detected at the scale 

level, whether or not additional items function differentially.   
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4.3 Item Level Impact of RI DF 

At the item level, the results of the current study suggest that the use of inappropriate 

RIs has serious ramifications for the researcher seeking to pinpoint differences in factor 

loadings when the hypothesis of metric invariance is not supported.  Tests of “partial 

measurement invariance,” (Byrne et al., 1989) are believed to provide a means for identifying 

the source of DF by independently testing the invariance of each factor loading.  However, as 

in tests of full metric invariance, this method implicitly assumes RI invariance.  The results 

of the current study suggest that the tenability of this assumption will have consequences for 

the performance of this method and the conclusions drawn from it.  Specifically, as the 

magnitude of RI DF increases, the likelihood of non-DF items being erroneously detected as 

DF increases while the likelihood of truly DF items being accurately detected decreases.  

These findings suggest that researchers seeking to make use of partial invariance tests should 

proceed with caution.  The procedure has obvious appeal in that, rather than abandoning 

further analyses when a lack of metric invariance is detected, specific items can be identified 

as DF and allowed to vary across groups, enabling the comparison of latent means.  

However, the procedure is only useful to the extent that identification of DF and non-DF 

items is possible and, given the results of the current study, may only be appropriate when RI 

DF is minimal.  

4.4 The Case of DF on Non-RI Items 

 Scale level impact. As discussed above, in conditions where DF was simulated for 

two of the non-RI items, the likelihood of detecting DF at the scale-level actually decreased 

with increasing magnitude of RI DF when the magnitude of simulated RI DF was small (.05 

and .1).  While Hypothesis 2 (the effect of RI DF will be minimal at the scale level) was 
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supported when all non-RI items were invariant, when non-RI DF was present, small 

amounts of RI DF obscured the true amount of scale-level DF, leading to fewer accurate 

conclusions than when RI DF was large. Thus, the results do support the notion that RI DF is 

less problematic at the scale-level than it is at the item-level, in the case where non-RI items 

function differentially, RI DF may still obscure the true state of invariance.  

 Item level impact. At the item level, the results of this study suggest that the accuracy 

of MI conclusions decreases with increasing RI DF whether or not non-RI items exhibit DF.  

To answer the research question posed in this study, “to what extent does the number of DF 

items affect the accuracy of MI conclusions,” the rates of FPs across levels of RI DF when 

non-RI DF was present were compared to those for conditions where non-RI DF was absent. 

As depicted in Figures 5 and 7, when the magnitude of DF on the RI is small, the tendency of 

the test to identify truly invariant items as DF is comparable to that when RI DF is absent, 

regardless of the invariance status of other items.  As the magnitude of RI DF increases, so 

does the rate of FPs; however, differences between conditions of non-RI DF remain minimal.  

Moreover, this pattern of results is apparent regardless of sample size, though the tendency of 

the test to produce FPs was severe when the sample size was large.  

4.5 Implications & Recommendations 

 When conducting measurement invariance tests using CFA techniques, care must be 

taken to choose RIs that are truly invariant.  While this study found the DF of the RI can have 

some effect on power at the scale level, the invariance of the RI was imperative for item-

level tests.  Averaging across items, the percentage of tests conducted in the N=150 condition 

detecting truly invariant items as DF when all non-RI items were truly invariant ranged from 

5.83% when the RI was likewise invariant to 76.67% in the largest magnitude RI DF 
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condition. Moreover, the average percentage of accurate detections of non-RI DF decreased 

from 54% when a truly invariant RI was selected to 14% in the largest magnitude RI DF 

condition.  When a larger sample size was simulated, these results were even more 

pronounced, with the rate of false positives reaching 100% when RI DF was large.  As stated 

previously, when scale-level MI tests indicate DF of factor loadings, researchers may either 

stop all further analyses or attempt to identify the source of the invariance.  Given the 

extensive effort required in collecting and analyzing data, cessation of data analysis is 

undesirable.  Thus, it is important to be able to accurately detect the particular item(s) 

responsible for a lack of scale-level invariance (Byrne et al., 1989).  Our results indicate that 

when RI items display DF, the detection of true source of DF will be unlikely.   

 I recommend that researchers carefully choose potential RIs.  Ideally, theory will be a 

guide in RI selection.  In practice, however, it seems somewhat unlikely that researchers 

could anticipate which items may or may not be invariant across groups.  For this reason, I 

believe that procedures such as those illustrated by Rensvold and Cheung (2001) should be 

given much further consideration.   

Rensvold and Cheung’s (2001) factor-ratio test procedure has the benefit of utilizing 

all, versus one, item as referent indicators.  Using an iterative procedure, each indicator is 

specified as the RI and one additional indicator is constrained, for all possible pairings.  By 

comparing each of these models with the unconstrained model, non-invariant indicator pairs 

are identified.  Once all non-invariant pairs have been identified, steps can then be taken to 

identify invariant subsets of indicators.  While I did not evaluate the efficacy of their method 

in this study, any procedure that would increase the likelihood of identifying the true source 

of invariance may prove promising for dealing with the RI issue. 
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4.6 Limitations and Future Directions 

 As in any study, there are a number of limitations.  Due to the very nature of 

simulation studies, the generalizability of these findings is restricted.  While I did investigate 

the effects of including other DF items in our model, I did not vary the magnitude of this DF.  

I simulated DF by subtracting .25 amount from the Group 1 population loadings; however, it 

is possible that the lower reliability (see Fornell & Larcker, 1981) introduced by this practice 

could have had an effect on the results.  That is, the practice of subtracting from Group 1 

factor loadings to form those of Group 2 results in lower reliability for the group model; 

greater RI DF would have resulted in lower Group 2 reliability.  Because lower factor 

reliabilities can produce decrements the power of CFA tests, the results of the current study 

are likely somewhat less pronounced than those that would be produced had reliability been 

held constant across conditions. 

While I attempted to bolster the external validity of the study by using factor loadings 

obtained from real data, these numbers represent only one of an infinite number of possible 

models.  It is important to note that my goal was not to determine the precise power of the 

LRT under different conditions but rather to illustrate the potential effects of DF for the RI.  I 

do not expect that the general pattern of results that I have found would differ in other 

studies, but certainly the percentages of samples in which DF was detected would vary for 

different model conditions. 

 It is my hope that this study will serve to draw increased attention to the largely 

ignored ‘standardization problem’.  Despite its limited scope, the study suggests that the 

tenability of the assumptions inherent in standardization procedures does affect the validity 

of conclusions drawn from measurement invariance tests.   
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6. Footnotes 

1
 A literature search was conducted to identify studies which used the CFA framework 

to test real data for measurement invariance.  Search terms were the following: factorial 

invariance, measurement invariance, measurement equivalence, and alpha, beta, and gamma 

change.  Journals included in the search were: Journal of Applied Psychology, Psychological 

Methods, and Educational and Psychological Measurement.   
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Table 1 

Effects of RI Selection for Three-Indicator CFA Examples 

 

   )1(

11λ  )1(

21λ  )1(

31λ   )2(

11λ  )2(

21λ  )2(

31λ  

 

True value   .8 .8 .8  .5 .5 .5 

Adjustment  .8
-1 

.8
-1
 .8

-1
  .5

-1
 .5

-1 
.5
-1
 

Estimated value  1.0 1.0 1.0  1.0 1.0 1.0 

___________________________________________________________________________ 

True value   .8 .8 .8  .8 .6 .6 

Adjustment  .8
-1
 .8

-1 
.8
-1  

.8
-1 

.8
-1 

.8
-1 

Estimated value  1.0 1.0 1.0  1.0 .75 .75 

___________________________________________________________________________ 

True value   .8 .8 .8  .8 .6 .6 

Adjustment  .8
-1 

.8
-1 

.8
-1  

.6
-1 

.6
-1 

.6
-1 

Estimated value  1.0 1.0 1.0  1.33 1.0 1.0 

Note. Superscripts indicate group.  Underlined values represent RIs.   
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Table 2 

Summary of Manipulated Conditions 

  

Condition      Manipulation 

Sample size     150, 500 

Magnitude of RI difference    0, 0.05, 0.1, 0.2, 0.4 

Magnitude of non-RI difference   0, .25 

Note.  Non-RI difference refers to a difference of .25 for Items 3 and 7 population factor 

loadings.  For all others, population factor loadings are equal across groups.  
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Table 3 

Population Factor Loadings for Simulated Group 1 Data 

 

Item  Factor 1 Factor 2 

1 .82 - 

2 .78 - 

3 .76 - 

4 .63 - 

5 - .81 

6 - .77 

7 - .73 

8 - .70 
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Table 4 

Population Factor Loadings for Simulated Group 2 Data 

 

 Condition 0a Condition 1a Condition 2a Condition 3a Condition 4a 

Item  Factor 

1 

Factor 

2 

Factor 

1 

Factor 

2 

Factor 

1 

Factor 

2 

Factor 

1 

Factor 

2 

Factor 

1 

Factor 

2 

 1 .82 - .77 - .72 - .62 - .42 - 

2 .78 - .78 - .78 - .78 - .78 - 

3 .76 - .76 - .76 - .76 - .76 - 

4 .63 - .63 - .63 - .63 - .63 - 

5 - .81 - 76 - .71 - .61 - .41 

6 - .77 - .77 - .77 - .77 - .77 

7 - .73 - .73 - .73 - .73 - .73 

8 - .70 - .70 - .70 - .70 - .70 

 Condition 0b Condition 1b Condition 2b Condition 3b Condition 4b 

Item Factor 

1 

Factor 

2 

Factor 

1 

Factor 

2 

Factor 

1 

Factor 

2 

Factor 

1 

Factor 

2 

Factor 

1 

Factor 

2 

1 .82 - .77 - .72 - .62 - .42 - 

2 .78 - .78 - .78 - .78 - .78 - 

3 .51 - .51 - .51 - .51 - .51 - 

4 .63 - .63 - .63 - .63 - .63 - 

5 - .81 - .76 - .71 - .61 - .41 

6 - .77 - .77 - .77 - .77 - .77 

7 - .48 - .48 - .48 - .48 - .48 

8 - .70 - .70 - .70 - .70 - .70 

Note. Underlined values indicate DF item. 
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Table 5 

Results of Scale Level Tests of Metric Invariance 

 

 

 

RI DF 

 

N=150 

 

N=500 

 

nonRI DF = 0 

  

 0 5 5 

 .05 7 13 

 .10 14 40 

 .20 43 98 

 

 

.40 95 100 

 

nonRI DF = .25 

  

 0 70 100 

 .05 57 99 

 .10 42 99 

 .20 65 100 

 .40 93 100 

Note. Results are expressed as percentage of 100 replications found significant.  
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Table 6 

Results of Logistic Regression of Metric Invariance Test on Study Variables 

 

 

Parameter 

 

 

β 

 

 

SE 

 

Wald 

Statistic 

 

Odds 

Ratio 

 

Odds Ratio 95% 

Confidence Interval 

Intercept -0.96 0.26 13.42**    

RIdif .05  -1.65 0.35 22.67**    1.43    0.44    4.67 

RIdif .1  -0.88 0.28   9.92**    3.09    1.07    8.95 

RIdif .2  0.66 0.23   8.18**  14.33    5.37   38.39 

RIdif .4  3.88 0.39 97.65** 361.00 101.20 >999.99 

nonRIdif  1.90 0.25 55.70**  44.33   16.38   120.01 

RIdif .05 * 

nonRIdif 

0.99 0.40     6.24*   0.40     0.11    1.49 

RIdif .1 * nonRIdif 0.30 0.34     0.79   0.20     0.06    0.67 

RIdif .2 * nonRIdif -0.98 0.30 10.36**   0.06     0.02       0.18 

RIdif .4 * nonRIdif -2.23 0.51 19.24**   0.02     0.00    0.07 

Note.  * p<.05, **p<.01. df = 1 for all analyses.  For all study variables, no DF was the 

reference category.  
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Table 7 
 

Percentage of Replications Yielding Significant Results for Item-Level Tests of Metric Invariance  

 N=150 

  

RIdif 

 

i2 

 

i3 

 

i4 

 

i6 

 

i7 
 

i8 

 

FP 

Rate 

 

TP 

Rate 

         

nonRI DF 0         

          

 0 4 10 1 7 5 8 5.83  

 .05 4 9 4 6 7 8 6.33  

 .10 14 14 4 10 10 12 10.67  

 .20 40 34 26 26 32 27 30.83  

 

 

.40 78 80 68 83 79 72 76.67  

nonRI DF= .25         

         

 0 4 53 1 8 55 6 4.75 54.00 

 .05 5 40 4 8 38 9 6.50 39.00 

 .10 11 33 5 10 26 13 9.75 29.50 

 .20 31 16 23 24 11 25 25.75 13.50 

 .40 72 17 63 79 11 70 

 

71.00 14.00 

 N=500 

  

RIdif 

 

i2 

 

i3  

 

i4 

 

i6 

 

i7 

 

i8 

 

FP 

Rate 

TP 

Rate 

        

nonRI DF=0         

          

 0 7 4 7 8 1 5 5.33  

 .05 11 14 10 10 7 9 10.17  

 .10 31 39 29 37 21 23 30.00  

 .20 86 85 67 80 79 72 78.17  

 

 

.40 100 100 100 100 100 100 100.00  

nonRI DF= .25        

         

 0 10 98 6 7 98 6 7.25 98.00 

 .05 11 84 9 9 90 7 9.00 87.00 

 .10 26 72 25 29 69 23 25.75 70.50 

 .20 79 12 64 76 17 70 72.25 14.50 

 .40 100 39 100 99 30 100 99.75 34.50 

Note. Underlined values are detection of true DF, all others are invariant items detected as DF.  
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Figure 1.  Measurement Model for All Study Conditions 
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Figure 2.  Effect of DF on Scale-Level Tests of Metric Invariance, N=150 
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Figure 3.  Effect of DF on Scale-Level Tests of Metric Invariance, N=500 
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Figure 4. Effects of DF on True Positive Rates of Item-Level Invariance Tests, N=150 
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Figure 5.  Effects of DF on False Positive Rates of Item-Level Invariance Tests, N=150 
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Figure 6.  Effects of DF on True Positive Rates of Item-Level Invariance Tests, N=500 
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Figure 7. Effects of DF on False Positive Rates of Item-Level Invariance Tests, N=500 


