
ABSTRACT

KAPPIAH, NANDINI: Just-in-Time Dynamic Voltage Scaling: Exploiting Inter-Node Slack

to Save Energy in MPI Programs (Under the direction of Assistant Professor Dr. Vincent

W. Freeh).

Although users of high-performance computing are most interested in raw perfor-

mance, both energy and power consumption have become critical concerns. As a result

improving energy efficiency of nodes on HPC machines has become important and the im-

portance of power-scalable clusters, where the frequency and voltage can be dynamically

modified, has increased.

This thesis investigates the energy consumption and execution time of applications

on a power-scalable cluster. It studies intra-node and inter-node effects of memory and

communication bottlenecks. Results show that a power-scalable cluster has the potential

to save energy by scaling the processor down to lower energy levels. This thesis presents a

model that predicts the energy-time trade-off for larger clusters.

On power-scalable clusters, one opportunity for saving energy with little or no

loss of performance exists when the computational load is not perfectly balanced. This

situation occurs frequently, as keeping the load balanced between nodes is one of the long

standing fundamental problems in parallel and distributed computing. However, despite

the large body of research aimed at balancing load both statically and dynamically, this

problem is quite difficult to solve. This thesis presents a system called Jitter that reduces

the frequency on nodes that are assigned less computation and therefore have idle time

or slack time. This saves energy on these nodes, and the goal of Jitter is to attempt to

ensure that they arrive “just in time” so that they avoid increasing overall execution time.

Specifically, we dynamically determine which nodes have enough slack time so that they

can be slowed down—which will greatly reduce the consumed energy on that node. Thus a

superior energy-time trade-off can be achieved.

This thesis studies a suite of MPI benchmarks, which are profiled, gathering in-

formation about the computation and communication occuring in the application. This

information is used to analyse various energy-time trade-offs of benchmark suite. This the-

sis also proposes an algorithm that exploits load-imbalance to reduce energy consumption

and minimize delays for parallel applications. This algorithm is validated on a large variety

of benchmarks.
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Chapter 1

Introduction

The tremendous increase in computer performance has come with an even greater

increase in power usage. As a result, power consumption is a primary concern. According to

Eric Schmidt, CEO of Google, what matters most to Google “is not speed but power—low

power, because data centers can consume as much electricity as a city” [34]. This does

not imply speed is not important, rather that excessive power limits performance. Such a

limit might exist due to either a limited power supply or a limited capacity to dissipate and

remove heat. Additionally, reducing the energy and cooling costs can be a high priority.

Regardless of the reason, a power constraint is a performance-limiting factor.

As a result, power-aware computing has gained traction in the high-performance

computing (HPC) community. Recently, low-power, high-performance systems have been

developed to stem the ever-increasing demand for energy. We are most interested in clusters

composed of microprocessors that support frequency and voltage scaling. Such systems

increase the energy efficiency of nodes at lower frequency-voltage settings, which we term

lower energy gears in this thesis. This either reduces the energy required to complete a task,

or conversely increases the number of tasks that can be performed with a given amount of

energy. Thus, one can dynamically adjust the trade-offs between performance and energy

savings.

This thesis first investigates the tradeoff between energy and performance (execu-

tion time) for HPC systems. We evaluate trade-offs on a real power-scalable cluster. Each

node is equipped with an AMD Athlon-64 processor that supports frequency and voltage

scaling. Towards this goal, we analyzed benchmarks, both serial and parallel, to determine

the relationship between voltage and frequency settings and execution time. Our results
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show that all of our tests have an energy-time tradeoff, meaning that a decrease in energy

is possible but it comes at the cost of increased time. Not every energy-time tradeoff is

desirable, as some offer little energy savings and large time penalties. However, more than

half of these tests show a savings that is equal to the penalty (e.g., 10% less energy and 10%

more time), and some show an energy savings much greater than the time penalty (e.g.,

10% less energy and 7% more time).

While the emperical data gathered on a 10-node cluster is encouraging, it is unclear

what performance in time and energy can be expected for larger power-scalable cluster.

As we do not have access to more than ten nodes, we address this issue by developing a

simulation model. We model computation and communication of parallel programs on large

clusters by using a combination of Amdahl’s law, trace gathering and source code inspection

and use this model to predict energy-time trade-offs for large clusters.

This thesis also describes the design and implementation of a system that saves

energy on parallel or distributed programs which suffer from load imbalance. Such an

application usually contains one or more instances where two or more nodes synchronize

with each other to exchange data or status information. Nodes that complete their work

early and wait at these synchronization points provide an opportunity to save energy. With

frequency scaling, such a node can shift into a reduced power and performance state so that

computation is potentially completed just in time for the unblocking event. We present a

dynamic, adaptive system for just-in-time dynamic voltage scaling (DVS), called Jitter. It

monitors the time a program waits for external events and then adjusts the CPU frequency

(and voltage) to minimize wait time and energy consumption.

The Jitter system saves 8% energy, with a 2.6% time penalty, on a unbalanced

program, and it does this without modification to the application or the communication

library. Furthermore, our system is within 5% of the hand-tuned, i.e., optimal, solution.

Additionally, we show that our solution adapts transparently to changes in load, which a

hand-tuned solution or a premeditated solution cannot do.
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1.1 The Case for Power-Aware High Performance Comput-

ing

Power-aware computing has flourished over the last decade in many ways, espe-

cially in mobile devices. However, it has gained little traction in the High Performance

Computing (HPC) community because the HPC community has vastly different goals than

those of mobile users. Since computational scientist are using HPC to gain maximum

performance, many may resist any mechanism that increase execution time.

We believe that a significant subset of HPC programmers will be forced to accept

less performance in order to conserve power. This will occur because the large and growing

power consumption of current clusters at supercomputer centers—which are not immune

to economic pressure—will eventually come to bear on the clusters. In addition, a sus-

tained high performance, hence high power, consumption produces excessive heat, which

may cause failure of the CPU and other hardware components. Emperical data from two

leading vendors indicates that the failure rate of a computer node doubles with every 10o C

increment [16]. The total product cost also increases since more complex cooling and pack-

aging systems are required to serve high-energy systems. Intel estimates that more than
�
1/W will be incurred if the CPU’s power dissipation exceeds 35-40W [46]. We argue that

the above cited reasons will cause the programmers to move to lower-power machines such

as Green Destiny [39, 50].

Green Destiny, which consists of a cluster of Transmeta processors, uses less power

and energy than a conventional supercomputer. However, it also provides less performance.

In particular, Green Destiny consumes about one third less energy per unit performance

than the ASCI Q machine. However, because Green Destiny uses a slower (and cooler)

microprocessor, ASCI Q is about 15 times faster per node (200 times overall) [50]. A

reduction in performance by such a factor would surely be unacceptable from the point of

view of many HPC programmers.

We believe that computational scientists would be more likely to consider energy

reduction if we start from a baseline of a high performance, scalable microprocessor. Then

from there we attempt to reduce power with only a small performance loss. The emer-

gence of high-performance scalable microprocessors, such as Athlon-64/Opteron [2] makes

this possible. This microprocessor has performance that is on a par with high-end, fixed

frequency desktop microprocessors, but its power consumption can be reduced to 25% of
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Figure 1.1: Cost Benefit Analysis of frequency reduction

the maximum using frequency and voltage scaling [51].

1.2 Saving Power and Energy with Gear Selection

High-performance computing (HPC) applications and machines are inefficient. For

example, the 2004 Gordon Bell Prize [6], which is given annually to the application with

the greatest performance, was awarded to one that sustained 46% parallel efficiency. This

means that on average, a microprocessor in a supercomputer executing the world champion

application was blocked and idling more than half of the time. In such a situation, a

traditional microprocessor races forward at full speed to the next blocking point and waits.

While blocked, the machine is consuming energy, but not performing any useful work.

Furthermore, when a program has good parallel efficiency, it may not be efficient sequentially

(e.g., it may stall waiting for the memory subsystem).

As an analogy, consider a car speeding between stop lights. Because a traditional

microprocessor has only one gear, which uses full power and provides the maximum per-

formance, it must race between metaphorical stop lights. Recently, manufacturers have

begun producing microprocessors with multiple energy gears. With such a microprocessor,

a computer can shift into a reduced power and performance gear so that computation is

potentially completed just in time for the unblocking event—i.e., arriving just as the light

turns green.

This method of execution saves energy in two ways. First, (wasted) energy con-

sumed while waiting is eliminated. Second, a microprocessor uses less energy per operation
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at lower energy gears. This is because while performance is linearly proportional to clock

frequency, power consumption is proportional to frequency and voltage squared. Thus, at

a slower gear, a microprocessor will consume less energy per operation than at a faster gear

[36]. Again, this follows the analogy of an automobile—it takes less gasoline to travel at

50 MPH for 2 hours than at 100 MPH for one hour, partly because drag is proportional to

velocity squared. Figure 1.1 shows the active and idle power consumption of the Athlon-64,

for all the gears. It may appear that node performance should be reduced solely based on its

percentage of idle time, but this not the case. Doing so blindly will likely mean that events

that are on the critical path are delayed, which increases execution time by the amount

of that delay. In this thesis, we investigate the trade-off between energy and performance

(execution time) for a wide range of applications and specifically look at programs that

have load-imbalance as an opportunity to save energy.

1.3 Contributions

One contribution is a profiler for MPI. This profiler interposes between the ap-

plication and the MPI library, transparently to both, and gathers information about the

computation and communication occuring in the application. We have also created an anal-

yser which obtains trace information from the profiler and analyzes various energy-time

trade-offs of each application. We have validated this profiler and analyser on a suite of

benchmarks, which have provided encouraging energy-time trade-offs. We have also created

a software infrastructure which can alter online the performance of an Athlon-64 processor

by shifting to different frequency and voltage settings. This thesis also proposes an algo-

rithm that exploits load-imbalance and to reduce energy consumption and minimize delays

for parallel applications. We have validated the software infrastructure and algorithm on a

large variety of benchmarks.

The remainder of this thesis is organized as follows. Chapter 2 discusses the related

work. Chapter 3 discusses our approach to saving power in high performance computing.

Chapter 4 describes our model for predicting energy-time trade-offs for large clusters. Chap-

ter 5 discusses the design and implementation of the Jitter system. Chapter 6 describes

performance results of the Jitter systems on a wide variety of benchmarks. Finally, Section 7

summarizes this thesis.
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Chapter 2

Related Work

There has been a voluminous amount of research performed in the general area

of energy management, in both server/desktop and mobile systems. In addition, there has

been a lot of work on dynamic load balancing. Another allied field is real-time DVS that

applies the principles of voltage and frequency scaling to time-critical applications,

2.1 Server/Desktop Systems

Several researchers have investigated saving energy in server-class systems. The

basic idea is that if there is a large enough cluster of machines, such as in hosting centers,

energy management can become an issue. Chase et al. [10] illustrate a method to determine

the aggregate system load and then determine the minimal set of servers that can handle

that load. All other servers are transitioned to a low-energy state. A similar idea leverages

work in cluster load balancing to determine when to turn machines on or off to handle a

given load [42, 43]. Elnozahy et al. [15] investigated the policy in [42] as well as several

others in a server farm. They found that when each node independently sets its voltage, the

performance was almost as good as more complicated schemes that required coordination

between server nodes. Complementary work shows that power and energy management

are critical for commercial workloads, especially web servers [8, 32]. Additional approaches

have been taken to include DVS [14, 45] and request batching [14]. Sharma et al. [45] apply

real-time techniques to web servers in order to conserve energy while maintaining quality

of service.

Our work differs from most prior research because it focuses on HPC applications
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and installations, rather than commercial ones. A commercial installation tries to reduce

cost while servicing client requests. On the other hand, an HPC installation exists to

speedup an application, which is often highly regular and predictable. One HPC effort that

addresses the memory bottleneck is given in [26]; however, this is a purely static approach.

In server farms, disk energy consumption is also significant. Much work has been

done on saving disk energy, including reducing spindle speed [9], modulating the speed of

the disk [22, 23], improving cache performance so that the disk can be kept in a low power

state more often [58], and using program counter techniques to infer the disk access pattern

[20]. In addition, there are schemes to aggregate disk accesses, which again allows the disk

to be kept in a lower power state more often; one of these uses an integrated compiler/run

time approach [24], and the other uses prefetching [40].

Our work is complementary to techniques that save disk energy. Specifically, while

the disk can incur a significant amount of power in HPC applications, the CPU is typically

a much larger power consumer. Furthermore, the CPU is the only commercially available

component that has multiple energy gears or performance states. Therefore we focus solely

on scaling the CPU.

There are also a few high-performance computing clusters designed with energy in

mind. One is BlueGene/L [1], which uses a “system on a chip” to reduce energy. Another

is Green Destiny [50], which uses low-power Transmeta nodes. A related approach is the

Orion Multisystem machines [39], though these are targeted at desktop users. The latter two

approaches sacrifice performance in order to save energy by using less powerful machines.

Finally, our prior work was an evaluation-based study that focused on exploring

the energy/time tradeoff in the NAS suite [19]. Specifically, we found that using a single

slower gear was in some cases able to save energy with little time delay. We also found a

significant benefit of varying the gear per phase, and developed an algorithm for choosing

the assignment of gear to phase [18].

2.2 Mobile Systems

There is also a large body of work in saving energy in mobile systems; most of the

early research in energy-aware computing was on these systems. Here we detail some of

these projects.

At the system level, there is work in trying to make the OS energy-aware through
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making energy a first class resource [47, 13, 11]. Our approach differs in that we are

concerned with saving energy in a single program, not a set of processes. One important

avenue of application-level research on mobile devices focuses on collaboration with the OS

(e.g., [53, 55, 3]). Such application-related approaches are complementary to our approach.

In terms of research on device-specific energy savings, there is work in the CPU

via dynamic voltage scaling (e.g., [17, 41, 21]), the disk via spindown (e.g., [25, 12]), and on

the memory or network [31, 29]. The primary distinction between these projects and ours is

that energy saving is typically the primary concern in mobile devices. In HPC applications,

performance is still the primary concern.

2.3 Dynamic Load Balancing

There has been a large volume of work in load balancing in parallel programs.

It should be noted that application programmers themselves often employ a specific load

balancing scheme. Here, we focus on runtime system techniques to balance the workload. A

few of these include shared-memory systems such as SUIF-Adapt [37] as well as MPI-based

ones such as Adaptive MPI [7, 30], Dyn-MPI [52], and Tern [27].

The important point here is that dynamic load balancing, whether it is employed

at the application or system level, decreases the need for Jitter. However, many applications

are at least somewhat resistant to dynamic load balancing; this is proven by the fact that

the balancing must be done repeatedly throughout the lifetime of the application. In any

case, Jitter could be integrated with the load balancing systems to gain information about

the estimated amount of work per node.

2.4 Real Time DVS

The closest work to ours comes from the real-time community, where the goal is

to meet a given deadline while running each task at the lowest possible energy gear. One

example is in [56], where an approach to slack sharing in multiprocessor real-time systems

is presented. Another is [57], which extends this work to handle AND/OR graphs. In [35]

power-aware scheduling of periodic hard real-time tasks using dynamic voltage scaling by

creating a static (off-line) solution to compute the optimal speed is described, assuming

worst-case workload for each arrival and an on-line speed reduction mechanism to reclaim
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energy by adapting to the actual workload and a speculative speed adjustment mecha-

nism to anticipate early completions of future executions by using the average-case work-

load information. The problem of static and dynamic variable voltage scheduling of tasks

in heterogeneous distributed real-time embedded systems is discussed in [33]. The static

scheduling algorithm constructs a variable voltage schedule via heuristics based on critical

path analysis. The algorithm redistributes the slack in the initial schedule and refines task

execution order in an efficient manner.
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Chapter 3

Saving Energy in HPC applications

with DVS

The energy management issue can be approached from either the hardware or

software perspective. In the hardware perspective, multiple power states are integrated in

the micro-architecture, circuit or device levels to take advantage of hardware power-saving

features. Some industry standard have been developed such as the Advanced Power Manage-

ment APM specification and the Advanced Configuration and Power Interface ACPI [11].

Today’s major microprocessor manufacturers develop their own power management schemes

in processor products such as AMD PowerNow technology, Intel’s SpeedStep technology and

Transmeta’s Longrun technology. From the software layer, energy management has tradi-

tionally focussed on shutdown strategies implemented in operating system kernels, which

puts the computer into a sleep or suspend state whenever the system is idle. There is a fixed

cost in time and energy to enter sleep mode. Since the shutdown and wake-up operations

themselves cost energy, these approaches usually require the existence of a long-enough idle

period in the system to compensate for such overhead. In addition, since the shutdown and

wake-up operations take time, the duration of sleep state must be large enough to amortize

the latency, or one must predict the end of the sleep state and wake up in time for the next

active state. In the absence of long idle periods in a system, such a coarse grained power

management system becomes infeasible and a dynamic voltage scaling system seems more

attractive.

To study the power consumption model, the following power dissipation model for
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CMOS-based processors is widely used [38]:

P = ptCLV 2
ddfclk + IleakVdd + Pshort

where P is the power dissipation, Vdd is the supply voltage, fclk is the clock frequency, pt and

Cl are the probability of switching in power transition and the load capacitance, which can

be regarded as constants. The first term ptCLV 2
ddfclk is called dynamic power which is the

power consumption of charging and discharging the load on each gate’s output. Ileak is called

leakage current. Leakage current contributes to static power. The third component is Pshort,

the short circuit power which reflects the power dissipation due to short-circuit current

from the supply voltage to the ground briefly during a switching process. Among the three

components, the dynamic power is the dominant factor and the other two can be mostly

ignored. This is the assumption through most of our research. According to the above

equation, different solutions have been proposed to reduce the total energy consumption of

a CMOS-based processor.

One of the methods is dynamic voltage scaling (DVS) which lowers the supply volt-

age Vdd to reduce dynamic power of the processor according to system workload variations.

Because of the quadratic relationship between the supply voltage and power consumption,

lowering the voltage results in significant power reductions for CMOS circuits. Voltage lim-

its the maximum clock frequency fmax a processor can operate on, as shown in the following

relationship: fmax ∝ (Vdd -Vt)/Vdd. Therefore, DVS generally implies dynamic frequency

scaling as well.

DVS capable processors usually have a set of special control registers to select the

CPU clock frequency and supply voltage. Although these features are provided by hardware,

it is the software that decides when to adjust the frequency and voltage and which level they

should be scaled to. In contrast to coarse-grained energy saving solutions such as turning off

the processor or I/O devices, DVS is a fine-grained energy saving mechanism. Frequency and

voltage scaling incurs much less performance overhead than processor shutdown operations,

which makes it possible to use much more aggressive power management systems.

3.1 Exploiting Bottlenecks

The primary method we adopt in our research is to identify code sections that

have a significant amount of non-critical operations, which occur when the CPU is not on
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Figure 3.1: Cost Benefit Analysis of frequency reduction

the critical path due to bottlenecks at other components, and execute these sections of code

at lower performance settings. The system power is seen as a function of frequency and is

modeled as P (f) = PCPU (f) + Pother. However, energy is the product of (average) power

and time, so we consider the effect of frequency reduction has on elapsed time. Figure 3.1

shows the situation pictorially. When the program is run at the fastest gear, it takes time

T . On the right is a situation where the program is run in reduced gear taking time T

+ ∆T . The power savings is primarily a function of the frequency. Whether the lower

frequency saves significant energy depends on whether the benefit due to power reduction

is significantly greater than than the cost due to additional time. Essentially, this depends

on ∆T/T : when it is small, there will be energy savings. Broadly speaking, ∆T/T is small

when whole programs or enough phases of programs are memory, I/O, or communication

bound. On the other hand, when most of the program is CPU bound, ∆T/T is large and

little energy can be saved. In a parallel or distributed program, each node performs some

work and usually contains one or more instances where two or more nodes synchronize with

each other to exchange data or status information. Such instances are called synchronization

points. If the node finishes its work by time T , and the synchronization happens at time

T + ∆T , then the node idles, wasting energy. If the performance of such a node can be

reduced, such that it completes it work by T + ∆T , it saves energy, with no time penalty.

To save energy in distributed, high-performance programs we take advantage of

bottlenecks that exist in most, if not all, such applications. The goal of this research is

to identify such reducible code sections, which can be run slower without significant time

penalty, which we examine in greater detail in the following sections.
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Intra-Node Bottleneck

Even though a superscalar processor can issue many instructions per cycle, peak

utilization is hard to sustain for even short durations. A major source of this inefficiency

is memory stalls: the microprocessor is underutilized because the memory system cannot

immediately provide the data. In this case, the microprocessor is executing at a faster

speed than necessary because of a memory bottleneck. The memory bottleneck exists largely

because of the great improvement in microprocessors. Furthermore, attempts to eliminate

this bottleneck, such as instruction scheduling, memory access reordering, and prefetching,

have been met with limited success. This is also an issue with HPC, as memory can throttle

the performance of an individual node. Therefore, reducing the performance of sections of

the application which suffer from the memory bottlenecks can result in a significant energy

savings with a small decrease in performance.

Another intra-node bottleneck is the I/O bottleneck. The I/O bottleneck occurs

when computation is stalled waiting for I/O. This bottleneck provides two opportunities

for saving energy. The first occurs because programs that are I/O bound have relatively

low computation workloads. In this case, similar to the memory bottleneck, significant

energy savings are possible by executing at reduced performance with potentially only a

small performance decrease. However, there is an additional opportunity different from

that provided by the memory bottleneck. Specifically, during blocked periods, it may be

possible to achieve energy savings by switching to the lowest operating point—or even sleep

mode—with no performance loss, because the node can make no progress anyway and the

computational demand is low. Both these are considered intra-node bottlenecks since they

exist independent of other nodes.

Inter-Node Bottleneck

The inter-node bottleneck exists between multiple nodes in a distributed program.

Typically, such programs have multiple phases, where the execution time of the nodes is

due to several reasons, such as load imbalance or differing message latencies. Any node

that is not on the critical path can be executed at reduced performance without decreasing

the overall time of the node on the critical path. The communication and node bottlenecks

exist because parallel efficiency, which is defined as the ratio of speedup to the number of

processors used, generally decreases as the number of nodes increases. This is despite a
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Frequency V oltage Power (W)
(MHz) (V) idle active

2000 1.5 59.6 98.8–108.6
1800 1.4 57.0 86.5–95.2
1600 1.35 55.9 80.1–88.1
1400 1.3 54.8 74.3–81.9
1200 1.2 53.4 67.1–75.4
1000 1.1 52.0 62.2–69.6
800 1.0 51.0 56.8–63.5

Table 3.1: Idle and active power for Athlon-64.

large body of work in parallelizing compilers as well as adaptation by parallel systems.

Rather than eliminate these bottlenecks or increase parallel efficiency, our goal is

to utilize the inevitable idle time to reduce energy consumed and heat generated. While

it is difficult to so while incurring no increase in execution time, a significant reduction is

possible with only a small performance degradation.

3.2 Methodology

Our experimental platform is a cluster of 10 nodes each with a frequency- and

voltage-scalable AMD Athlon-64. Its available operating points are in the range of 800–

2000MHz and 0.9–1.5V, see Table 3.1. Each node has 1GB main memory, a 128KB L1

cache (split), and a 512KB L2 cache, and the nodes are connected by 100Mb/s network.

In this paper, we vary the CPU power and measure overall system energy. Although there

are other components, throttling the CPU is effective in saving energy because the CPU is

a major power consumer. In particular, the Athlon-64 CPU used in this study consumes

approximately 45–55% of overall system energy.1

The programs we studied included two of the ASCI Purple benchmarks [4] as well

as all of the NAS suite [5]. Presumably, such mature benchmarks have been thoroughly

analyzed and are well-written (e.g., see [54])—so some work has been done to balance the

computational load. Therefore, well-tuned programs like those in ASCI and NAS should

result in an approximate lower bound in terms of saving energy due to load imbalance. We

1CPU power is not measured directly. However, the system power at the fastest energy gear is 90–
120 W. While the AMD datasheet states that the absolute maximum CPU power dissipation is 89 W, these
benchmarks do not run that hot. We estimate the peak power of the CPU for our application is in the range
of 40–50 W.
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used as many nodes as possible on each test; this number is typically 8, though BT and SP

run on 9 nodes.

For each program we measure execution time and energy consumed. Execution

time is elapsed wall clock time. Total system power consumed by each node is measured by

Watts-Up power meters at the wall outlet, which are connected to the serial ports of each

node. These meters report average power consumption (in Watts) since last queried. Each

node reads its associated meter every second and integrates power over time to determine

the energy it consumes.

3.3 Results on the AMD cluster

In the results shown below, we used a cluster of ten nodes each with a frequency-

scalable AMD Athlon-64. Table 3.1 shows the per-node system power consumption of

different gears. We control the CPU power (by shifting gears) and measure overall system

energy. This is effective in saving energy because the CPU—a major power consumer—uses

less power. In particular, the Athlon CPU used in this study consumes approximately 55%

of overall system power at 2000MHz and about 23% at 800MHz.

Single Processor Results

Figure 3.2 shows the results of NAS programs on a single Athlon-64 processor. For

each graph, the total system energy consumed at each gear is plotted on the y-axis and the

total execution time is plotted on the x-axis. The higher of two points uses more energy, and

the further right of two points takes more time. Therefore, a near-vertical slope indicates

an energy savings with little time delay between adjacent gears, whereas a horizontal slope

indicates a time penalty and no energy savings. For readability, the origin of the graphs

is not (0, 0). Therefore, the alternate axes show the time and energy relative to the top

gear (leftmost point). Because we tested the in-core version of NAS (i.e., class B), these

programs do not have significant I/O.

All of our tests show (unsurprisingly) that for a given program, using the highest

gear takes the least time (i.e., it is the leftmost point on the graph). The greatest relative

savings in energy is 25%, which occurs in CG operating at 1000MHz. This savings incurs a

delay (increase in execution time) of almost 7%. The best savings relative to performance

occurs at 1400MHz, which saves more than 17% energy with a delay less than 1%. On the
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Figure 3.2: Energy consumption vs. execution time for NAS benchmarks on a single AMD
machine.
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other hand, EP at 1800MHz saves 2% energy with an 11% delay. This delay is the same as

the increase in CPU clock cycle. EP is almost entirely CPU bound. Hence, inspection of

CG and EP indicates that the challenge for system software is determining when to reduce

the gear.

To quantify the degree of CPU (or memory) boundness, we use a metric called β,

introduced in [26]. β is defined as a ratio between 0 and 1:

β =
(T/Tmax − 1)

(fmax/f − 1)

where T and Tmax are execution times at a lower frequency and maximum frequency

(2000MHz in this case), respectively, and f and fmax are the corresponding frequencies.

β = 1 if an application’s performance is completely dependent on the CPU frequency, and

it equals 0 if completely independent. Unfortunately, β cannot be measured online. Fig-

ure 3.3 shows a scatter plot of β versus operations per cache miss, ops/miss(OPM), which

can be measured on line. Regression analysis shows that log(OPM) is an excellent predictor

of β, with a correlation coefficient of 0.84 and p-value of 0.002. Our extensive analysis of the

NAS suite and other benchmarks leads us to conclude the memory pressure (as indicated

by OPM) tends to predict the energy-time tradeoff in sequential programs [19].
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Phases (MHz) Time (s) Energy (KJ)

2000 2000 481 64.1

1800 1800 500 (+4%) 60.1 (-6.2%)

1600 1600 563 (+17%) 58.8 (-8.2%)

2000 1800 482 (+0%) 62.5 (-2.5%)

2000 1600 486 (+1%) 61.6 (-4.0%)

2000 1400 492 (+2%) 60.6 (-5.4%)

1800 1600 505 (+5%) 57.9 (-9.6%)

Table 3.2: Time and energy for different gears in different phases.

Multiple Processor Results

This section studies the effect of different gears on distributed programs. Figure 3.3

shows results for the NAS benchmarks. Each graph has the same general layout as in

Figure 3.2, except that it shows the results from different node configurations. The energy

plotted is the (measured) cumulative energy of all nodes used. These graphs show results

using the same single gear on all nodes at all times. This shows that there are two tradeoffs

to consider. One, which is similar to that on a single node, is the energy-time tradeoff within

a curve (different gears, same number of nodes). The second consideration, which is unique

to multi-node configurations, is the energy-time tradeoff between curves (different number

of nodes). Thus, there are now two dimensions to consider when trading performance for

energy savings.

Figure 3.4 offers several examples where speedup is poor. In particular, this case

is illustrated in SP from 2 to 4 nodes. When speedup is poor, cumulative energy increases

because the number of nodes increases, so the main consideration is within a curve. The

figure also shows an example where speedup is good (but not perfect or superlinear). Con-

sider LU at 4 and 8 nodes. Gear 4 on 8 nodes uses approximately the same energy gear

1 on 4 nodes, but executes 50% faster. This is an important result, as it shows that there

exist cases in which using more nodes with each node at a reduced gear can execute faster

and use less energy.

The results above use the same gear at all times on all nodes. First, we investigate

shifting gears over time. Table 3.2 shows the advantage of dynamically changing gears

between program phases. We placed phase boundaries manually based on MPI blocking

operations as well as significant changes in µop/miss. Then, to determine the proper gear
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Figure 3.4: Energy vs. time for several benchmarks on 2 to 8 nodes: single, uniform gear.
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per phase we used a profile-directed technique described in detail in our prior work [19].

The table shows, for example, that we can save 5.4% energy with only a 2% increase in time

with the two phases run at 2000MHz and 1400MHz, respectively. This is better in time

than any fixed-gear solution (with the exception, of course, of running solely at 2000MHz)

and saves nearly as much energy as any of the other fixed gear solutions.

This chapter gives an overview of the tradeoff between energy and performance

in MPI programs. Trends on both single processor and multiple processor programs are

described. The reason why energy saving is possible is because of delays in the processor,

where executing at a high frequency and voltage does not make the program execute faster,

but wastes energy. This delay is due to the processor waiting for the memory system to fetch

a value or the processor blocking awaiting a message from a remote processor. Exploiting

such bottlenecks provides a unique opportunity to save energy without a significant time

penalty.
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Chapter 4

Simulation Model for Large

Clusters

The previous chapter presented results on our small power-scalable cluster. While

the results are encouraging, it is left unclear what performance (in time and energy) can be

expected for larger power-scalable clusters. Most likely, before building or buying a large

power-scalable cluster, one would like to determine the performance potential. As we do not

have access to more than ten nodes, this section seeks to address this issue by developing a

simulation model.

4.1 Model

Understanding scalability of parallel programs is of course a difficult problem;

indeed, it is one of the fundamental problems in parallel computing [48, 49]. Researchers

try to predict scalability using a range of techniques, from analytical to execution-based.

We will use a combination of both.

Our methodology for predicting the behavior of larger power-aware clusters (that

we cannot run programs on) is as follows. We model computation and communication using

a combination of Amdahl’s law, trace gathering, and source code inspection. To assist in

understanding scalability, we use results from a 32-node (non-power-scalable) cluster. After

that, we use the model to predict execution time on up to 32 power-scalable nodes at the

fastest gear. (Our methodology can be applied to larger instances, but we do not have

reliable results from a larger non-power-scalable cluster.) To determine time and energy on
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slower gears, we measure power consumption on a cluster node and use a straightforward

algebraic formula. Below we describe our five-step methodology in full detail.

Step 1: Gather time traces. The first step is to gather active and idle times on n nodes

(T A(n) and T I(n), respectively, where T I(n) includes the actual communication time) on

each of our clusters.

Step 2: Model computation and communication. The second step is to develop a

model of computation and communication that is based on T A(n) and T I(n). This will help

us predict (in step 3) T A(m) and T I(m) where m > 10, i.e, for power-scalable configurations

with more than ten nodes. Our approach here is distinct for each quantity, out of necessity:

no matter what the gear, the power consumed is different when computing than when

blocking awaiting data.

Determining Fp and Fs. Here, we use Amdahl’s law to estimate Fp and Fs, which

denote the parallelizable and inherently sequential fractions of an application, respectively.

For a test with i nodes, we estimate Fp and Fs as follows:

TA(i) = T A(1)(Fp/i + Fs)

Fp = 1 − Fs

We obtain a family of Fp and Fs values. We will use these to determine Fp and Fs on large

power-scalable clusters. Also, T A(n) represents the maximum computation time over all

nodes.

Classifying communication. Here, we recall that T I includes idle time and

communication time. While idle time (due to load imbalance) can be directly derived from

TA, the communication cost cannot. Hence, our approach is to categorize communication

of each NAS program into one of three groups: logarithmic, linear, or quadratic. These

are three common scaling behaviors for communication. To do this, we rely on three com-

plementary methods: (1) inspection of the behavior of our measured T I on up to nine

power-scalable nodes, (2) dynamic measurements of each MPI call as well as inspection of

corresponding source code, and (3) the literature in the field (e.g., [54]). Specifically, we

classified communication in BT, EP, MG, and SP as logarithmic; CG as quadratic, and LU

as linear.
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Step 3: Extrapolation of T A(m) and T I(m) at fastest gear. Third, we extrapolate

to 16, 25, and 32 power-scalable nodes, i.e., m > 10. For a given number of nodes, m, the

sum of T A(m) and T I(m) yields the execution time.

Predicting active time: Predicting T A(m), requires an appropriate Fp and Fs

for 16 and 32 nodes on the power-scalable cluster. Using our measured values on up to 32

nodes on the Sun cluster and up to 9 nodes on our power-scalable cluster, we fit Fp and Fs

for 16, 25, and 32 nodes on the power-scalable cluster using a linear regression.

Predicting idle time: Given the classification of communication behavior (log-

arithmic, linear, or quadratic) for each application, we use regression to fit a curve to the

communication using measured data on power-scalable nodes. This gives us communication

time on 16, 25, and 32 nodes.

Validation. Our technique is validated in the following way. For T A(m), we

compared Fp and Fs on up to 9 nodes on both clusters. With only 1 exception, it was iden-

tical; the outlier was CG, where the parallelism actually increases from 4 to 8 nodes on our

power-scalable cluster, but is constant on the Sun cluster. For T I(m), each communication

shape that we chose for our power-scalable cluster is identical on the Sun cluster up to 32

nodes. We also note that [54] supports our conclusion on five of the six programs. The

exception is LU; for this program, we found that communication was best modeled as a

constant; our traces showed that when nodes are added, each node sends more messages,

but the average message size decreases.

Armed with estimates of T A(m) and T I(m) on larger configurations (at the fastest

gear), we now turn our attention to determining the effect of different energy gears on exe-

cution time and energy consumption. The last two steps in this methodology are concerned

with this issue.

Step 4: Determine Sg, Pg, and Ig. The next step is to gather power data from a single

power-scalable node. Two values will be needed on a per-application and per-gear basis:

application slowdown (Sg) and average power consumption (Pg). Separately, the power

consumption for an idle (i.e., inactive) system is determined for each gear (Ig).

This data determines the increase in time and the decrease in power. The execution

time for a sequential program is wall clock time. This is done for each (sequential) program

at each energy gear. The ratio Sg is determined as follows: Sg =
Tg(1)−T1(1)

T1(1) . Now that we

are discussing gear, we modify our notation: Tg(1) is the time on one node at gear g.
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The values Pg and Ig are obtained by measuring overall system power. The voltage

and current consumed by the entire system is measured at the wall outlet to determine the

instantaneous power (in Watts). This experimental setup determines the values, Pg, for

each application and for each gear. The same setup, except this time with no application

running, was used to determine the power usage of an idle system (Ig) at each gear.

Step 5: Determine Tg(m) and Eg(m). The final step is to estimate the time and energy

consumption of a power-scalable cluster using the information developed so far. The time

for a lower gear is computed by increasing the active time by the appropriate ratio, Sg.

We assume that executing in a reduced gear does not itself increase the idle time, as our

experimentation has shown that the time for communication is independent of the energy

gear—the computational load during MPI communication is quite low. Using the values of

Pg and Ig, we can estimate energy consumption at each lower gear for the MPI program.

In this straightforward case, the time and energy estimates, on m nodes, for each gear are:

Tg(m) = SgT
A(m) + T I(m) (4.1)

Eg(m) = PgSgT
A(m) + IgT

I(m). (4.2)

At slower gears the compute time is greater than that of the fastest gear, whereas the idle

time is independent of the gear. Thus the time executing in gear g increases to SgT
A.

Communication latency is independent of gear, so this is assumed to remain the same.

However, this naive case above is too simple because it assumes all computation

is on the critical path. In many programs, not all computation is on the critical path. Of

course, reducing the energy gear of any computation on the critical path will delay other

nodes, who must wait for data sent from the (now slower) node. In the refined model, T A is

classified into critical and reducible work (T C and T R), and in our estimates of computation

we separate these and estimate each. In short, executing reducible work in a slower gear

might not increase overall execution time, because an increase in the time of reducible work

will decrease the idle time. On the other hand, executing critical work in a slower gear

always increases execution time. The communication latency, which is unaffected by CPU

frequency, is delayed only by the slowdown applied to the critical work. The idle time

is slack for the reducible work. However, if reducible work is slowed such that all slack is

consumed, then the time will be extended. This point of inflection is when T R+T I = SgT
R.

The post-processing analysis conservatively determines the reducible work to be
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computation between the last send 1 and a blocking point. In between those two points there

is no interaction between nodes, so the work is not on the critical communication path. With

this refinement, Equation (4.1) changes as shown below. Note that for notational simplicity,

we omit number of nodes (m).

Tg =







Sg(T
C + T R), if T I + T R ≤ SgT

R

Sg(T
C + T R) + T I + T R − SgT

R, otherwise

Then, Equation (4.2) becomes

Eg =







PgSg(T
C + T R), if T I + T R ≤ SgT

R

PgSg(T
C + T R) + Ig(T

I + T R − SgT
R), otherwise

4.2 Evaluation

Figure 4.1 shows the results of our simulation on each application ranging from

2–32 nodes. All node configurations up to and including 9 nodes are actual runs on the

cluster, and configurations of 16, 25, and 32 nodes are simulated using the model discussed

previously. (CG has a speedup of less than one on 32 nodes, so that curve is not plotted.)

In the same way that the eight- and nine-node tests tend to be more “vertical”

than the two- and four-node tests, as with the runs up to nine nodes, the shapes of the

graphs tend to become more “vertical” when using 16, 25, or 32 nodes; i.e., using lower gears

becomes a better idea. As an example, consider SP. On four nodes, second gear consumes

the least energy. On the other hand, on 16 nodes, fourth gear consumes the least energy.

One possible implication of this is that for massively parallel power-scalable clus-

ters, the individual nodes can be placed in a relatively low energy gear with only a modest

time penalty. As discussed in the previous section, this may potentially allow for supercom-

puting centers to fit more nodes in a rack while staying within a given power budget. On

the other hand, this could degrade performance significantly if many applications for such

machines are embarrassingly parallel.

Second, speedup on the NAS suite generally starts to tail off around 25 or 32

nodes. Again, this is because this benchmark suite uses non-scaled speedup. The result of

this is that the total cluster energy consumed starts to increase dramatically. Essentially,

continuously increasing the number of nodes causes an application to be placed in the poor

1We assume that the send is asynchronous.
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Figure 4.1: Simulated energy consumption vs execution time for NAS benchmarks on up
to 32 nodes.
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speedup classification (see previous section), which we know is energy inefficient. Also,

for each application, there exists a certain number of nodes that, if exceeded, will cause

program slowdown. It appears that that point is around 32 nodes for the NAS suite on our

power-scalable Athlon-64 cluster.

This problem is not unique to power-aware computing; indeed, it is a problem

with roots in the scalability field. However, it is clear that when this phenomenon occurs,

it is necessarily the case that communication dominates computation. This means that in

fact a lower gear is almost certain to be better. Hence, if one does not know what the

parallel efficiency for a given application is, using a lower energy gear is a safeguard against

excessive energy consumption.

This chapter builds on our understanding of bottlenecks and energy-time trade-

offs of the previous chapter to develop a simulation model. Based on the empirical results

from the 10 node AMD cluster, this model predicts energy-time tradeoff for big clusters.
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Chapter 5

Just-in-Time Scaling

A parallel or distributed program usually contains one or more instances where two

or more nodes synchronize with each other to exchange data or status information. We call

these instances synchronization points. The node that is slowest to reach a synchronization

point is considered the bottleneck node and is said to be on the critical path since it forces

the remaining nodes involved in the synchronization to wait and is largely responsible for

the duration of the synchronization. All other nodes are said to be non-critical, i.e. they

have less or no influence on the duration of the synchronization. Typically, these non-critical

nodes complete their work and wait for an event (e.g., a message) from another node. During

this wait period the node is idle. With just-in-time (JIT) scaling, such a node executes at

reduced performance and completes its work just before the message arrives from the remote

node. Typically, a load imbalanced parallel program is one in which the workload of the

program is not equally distributed among all the nodes or parallel processes. Since the

workload is not equitably distributed, some nodes finish their allocated work earlier and

wait at the above mentioned synchronization points for the slower nodes to catch up. This

provides an opportunity to reduce performance on the non-critical nodes and save energy

without a significant time-penalty to the entire application.

The motivation of just-in-time scaling is to save energy by reducing the perfor-

mance of nodes that are not on the critical path. Ideally, this reduction in performance

of the non-critical nodes does not increase the completion time of the program as long as

the increased completion time of the non-critical nodes does not exceed the running time

of the bottleneck node. To achieve this goal, we must (1) identify the bottleneck node and

its completion time, (2) identify the nodes that are not on the critical path, and then (3)
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determine the optimal CPU speed for the latter such that their completion time is still less

than that of the bottleneck node.

It is important to note that there is a trivial way to address this problem: for

any early-arriving node, once it blocks at a synchronization operation, reduce its gear until

the end of the synchronization operation. This is a simple scheme, yet it does not nearly

produce optimal results in terms of energy savings. The reason is that the difference between

consumed energy at different gears when a node is idle is much less than that difference

when the node is active. For example, on our Athlon-64 nodes, the difference in power

between the fastest and slowest gears is less than 10W when a node is idle and more than

30W when the node is active.

From the previous chapter we know that each communication and computation

burst is T A + T I , where T A is the active time spent in computation and T I is the idle time

spent in waiting for a remote node to respond. The active computation time consists of

computation time that is critical and reducible, T A = T C + T R. The reducible work can be

slowed down as it does not significantly affect the overall time taken by the computation-

communication burst. We can slow down the processor such that T A increases, reducing

T I , keeping in mind not to increase the overall time of the burst. However, reducing

the performance of the processor for every burst is infeasible since they are very small in

duration and the overhead of determining if a gear shift should be made and the cost of

shifting is significant compared to the duration of the burst. Therefore, we aggregate these

computation-communication bursts for a significant time period and then decide if it allows

for any reducible work.

Our programming model is as follows. We assume iterative programs, which com-

prise the vast majority of scientific programs; furthermore, we assume that the iterations

are relatively stable. This allows us to use past behavior to predict future behavior. For

each node i, each iteration takes time Ti, and consists of one or more compute-communicate

bursts. We denote the total compute time within one iteration as Ci and the wait time or

slack time as Wi, where i is the node number (so Ti = Ci + Wi). We monitor the wait time

of each node by measuring the time spent by that node in blocking communication calls.

There are some considerations with this approach. First, ∆C, the increase in

the compute time when performance is reduced, is application dependent, which cannot

be known a priori. Next, there can be hundreds of compute-communicate bursts per sec-

ond. Moreover, these bursts are only synchronized across all nodes when they use global
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communication operations. Consequently, reacting on a per-burst basis is too fine-grain.

Therefore, Jitter considers all bursts in an entire iteration. By aggregating the the individ-

ual wait times or each burst over the entire interval, Jitter determines the slack for each

node over the entire interval, Si=Wi/Ti. The slack metric solves both issues.

We then calculate minimum slack of all the nodes — MinimumSlack = minimum(Si).

Net Slack is calculated as NetSlack = Si - MinimumSlack. If NetSlack = 0, then the

node is the bottleneck node and is on the critical path. As discussed above, the remaining

nodes, which are not on the critical path, provide an opportunity to reduce gears if the

resulting increase in compute time is less than the wait time, i.e., ∆C < S. A large amount

of Net Slack indicates clearly that a node is not on the critical path and is a candidate for

reduced performance. No or very little Net Slack indicates that the corresponding node

provides no opportunity for frequency or voltage scaling.

Net slack is more useful than gross slack because a node with a net slack of 20% is

clearly not a bottleneck whereas a node with 20% gross slack may actually be a bottleneck

node. Also, the amount of slack per node can vary widely between different applications.

For example, in the NAS suite average slack varies from less than 10% to over 90%. Second,

the amount of slack per node can vary widely within an application and in practice is never

zero on any node (because it is highly unlikely that any single node is always last to arrive

at a large number of communication calls within an iteration).

The jitter algorithm only works for programs which are iterative and the behavior

of the past iteration is a predictor for the next iteration. The jitter algorithm gathers

information such as slack and iteration length over an iteration and uses this information to

choose which gear the node should execute in for the next iteration. The decision it makes

will be correct only if the next iteration has the behavior of the next iteration. Therefore,

this discussion is limited to iterative programs (which is the vast majority of programs)

where the past (usually) predicts the future.

Unfortunately, the existence of slack is not a sufficient condition to reduce the

gear. There must be enough slack that reducing the performance will not increase the

execution time too much. Armed with the normalized slack per node, our system reduces

the performance of each node that has enough slack such that reducing the gear is unlikely

to increase the execution time. Our algorithm is then adaptive in that if the gear reduction

was too much, we increase the gear; if it was too little, we further reduce the gear.

We have created a library called MPI-Jack which is interposed between the appli-
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cation and the MPI Library. It is an interface that exploits PMPI [44] the profiling layer

of MPI. MPI-Jack enables a user transparently to intercept (hijack) any MPI call. A user

can execute arbitrary code before and/or after an intercepted call using pre and post hooks.

In this work, we use MPI-Jack to determine the time spent in blocking MPI calls, such as

MPI Recv, MPI Wait, and MPI Barrier. The pre hook records the time the routine began.

The post hook records when it ends, computes the wait time, and updates the node’s overall

wait time. Our MPI-Jack library is dynamically linked to the application during the process

of compilation. When the application executes, all MPI calls made by the application are

trapped by the MPI-Jack library.

To make an effective decision for reducing performance of non-critical nodes, there

are several items that Jitter must determine:

• the iteration boundaries,

• the net slack of each node,

• when to reduce the performance,

• when to increase the performance,

• when to remain in the same gear,

• when to reset algorithm parameters, and

• how to determine the threshold slack

We describe each of these in turn. The Jitter Algorithm is given in pseudocode in Figure

5.1.

Determining the iteration boundaries Currently, we manually insert a special Jitter

MPI call, MPI Jitter, at the top of the main loop in the program; however, this is easily

automated [28]. Such a loop must exist, as we are assuming iterative programs. When itera-

tions are too short, Jitter limits the overhead by waiting several iterations before MPI Jitter

takes action. Thus is also done in order to amortize the overhead of Jitter and because there

is little benefit to reducing performance for only a short period. The current implementation

combines iterations until the time exceeds half a second. Jitter performs several actions in

MPI Jitter, which are described next.

Determining the net slack of each node Slack in Jitter is determined as follows.

First, to determine wait time, we use our MPI-Jack tool as described above. Second, we
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Gross_Slack = Slack / Current_Iteration_Length 

Net_Slack = Gross_Slack − Min_Slack

Current_Iteration_Length = Length of the current Iteration

Min_Slack = Minimum Slack of all nodes

            Reset to gear 0
            Reset upshift and downshift bias to initial values

                             

If Current_Iteration_Length  is much larger than previous iteration

Else if Current_Iteration_Length > Avg_Iteration_Length

                                                          Else If Net_Slack > SLACK_THRESHOLD *  downshift_bias [Current_Gear] 

                        Decrease Performance              (Increase Gear)
downshift_bias[Current_Gear]Increase 

        Increase Performance  (Decrease Gear)

        Increase Slack_Threshold                 
Increase upshift_bias[Current_Gear]

Else if Net_Slack < 0.25 * SLACK_THRESHOLD / upshift_bias [Current_Gear] 

      Increase Performance
Increase upshift_bias[Current_Gear]

Figure 5.1: The Jitter algorithm

then compute the absolute or gross slack as the ratio of the wait time divided by the

iteration time. The global minimum slack among all nodes is determined using a reduction

(MPI Allreduce). Then the node’s net slack is computed as the difference between its wait

time and the global minimum. The need to use net slack has been explained in Chapter 5.

Determining when to reduce performance Jitter reduces a node’s performance if

there is enough net slack. The Jitter prototype uses the following relationship to determine

whether there is enough slack to reduce the gear:

net slack > S · dg → enough slack.

The term S is the base slack threshold. It represents the amount of net slack

needed to reduce the gear. We set the initial value of base slack threshold and the algorithm

learns the correct value of base slack threshold through the course of the iterations. For

example, we dynamically tune the definition of “enough slack” over the first few iterations

of the application.
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While net slack is better than gross slack at identifying a bottleneck node, it is

not enough. If Jitter chooses to reduce and it turns out to be a bad choice (which is

learned when the node later observes a large increase in execution time and so increases

performance) the threshold to reduce again is raised. This threshold increase is captured

in the term dg, which we call the downshift factor. Each time a node reduces from gear g

it increases dg using the formula dg = dg ∗ bias. Through experimentation, we found that

a bias = 1.5 worked well for all applications. We have not found that the benchmarks are

very sensitive to the bias value; however, further experiments are ongoing.

Determining when to increase performance Each node determines if it is a bottle-

neck node according to the following relationship.

net slack < α · S/ug → bottleneck node.

The term α is used to ensure the possibility that Jitter can inform a node to remain

in the same gear. Although it could be a user-provided parameter, we use α = 0.25 in our

tests. This simplifies use and has little adverse effect on Jitter’s performance. We use an

upshift factor, ug, that is similar in spirit to the downshift factor above. It is adjusted each

time there is an increase in performance using bias in the same way as dg. This lowers the

threshold slack required to shift up.

Because there is always at least one bottleneck node every iteration, being a bot-

tleneck node is not a sufficient condition for increasing performance, for two reasons. First,

a node can be a bottleneck in a lower gear without slowing down the computation. This

happens when there is another node that is as slow or slower but is in the top gear. Second,

there is variance in the times between iterations even in the best situation. Therefore, some

conditions are transient and we do not want Jitter to react to them.

Consequently, a bottleneck node will increase its performance if either of the fol-

lowing conditions hold: (1) the iteration time has increased, and the node reduced its

gear on the previous iteration, or (2) the node has been a bottleneck for three consecutive

iterations.

Determining when to remain in the same gear Jitter remains in the same gear

if it chooses not to reduce or increase, as described above. Initially, this range is αS <
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net slack < S. The more the algorithm shifts gears, the larger this range is, due to the

biasing of the upshift and downshift factors. Thus the algorithm tends to stabilize.

To prevent a form of “thrashing”, where the gear constantly changes, we use

thresholds in the following way. If a node reduces the gear too far, we increase the threshold

value for reducing the gear. That threshold is decreased if there is extra slack time still

remaining after a gear reduction. However, we increase the threshold by more when the

gear is reduced too far than we decrease it when the gear is not reduced too much—this

is because we bias towards high performance for HPC applications. Our system learns the

proper thresholds for each application at runtime.

Determining when to reset algorithm parameters In addition to the above three

standard actions (reduce, increase, remain), there is a fourth, extraordinary action, which

is to reset the algorithm parameters. This action is triggered by a dramatic change in the

iteration time. Currently, a reset occurs if the time between adjacent iterations changes

by 50% or more. The reset is not because of a problem within Jitter, but rather because

because the application has changed in a significant way. (Jitter only otherwise changes by

a single gear per iteration, which is not likely to cause a large change because frequencies

change by 20% or less between adjacent gears.) None of the tested NAS or ASCI benchmarks

algorithms causes a reset; however, we force a reset with our synthetic benchmark (see the

next section).

How to determine the threshold slack Our Jitter algorithm chooses to reduce per-

formance for a non-critical node if that node has “enough slack”, such that the decrease

in performance does not increase the overall time of the application. Our study of load-

imbalanced applications shows that what constitutes “enough slack” or the slack threshold

is an highly application dependent quantity. For, some applications such as sweep3d, a

benchmark from the ASCII purple suite, a slack threshold of 5% provides the best energy-

time trade-off, whereas for aztec, yet another benchmark from the ASCII purple suite, a

slack threshold of 15% provides the best energy time trade-off. The slack threshold depends

not only on the net slack but also the gross slack in an application. For example, the slack

in sweep3d varies from 20% to 35%, while the slack in aztec varies from 0% to 40%. We

have seen for applications that have a large gross slack for all nodes require a lesser slack

threshold than applications that do not. A naive way to determine the slack threshold
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would be fix at the rate of change of the frequency.

Hence, the slack threshold is difficult to determine without prior knowledge of the

application. Therefore it was necessary to design Jitter such that is would dynamically

determine the slack threshold for each of the applications. The algorithm begins with an

initial slack threshold of 0.05, which signifies that if a node has 5% net slack, Jitter should

consider it as a candidate to reduce performance. This slack threshold is only incremented

when the algorithm decides to decrease performance for a particular node due to overall

increase of the program time. When the threshold slack is incremented, e.g to 0.07, Jitter

will only consider this node as a candidate to decrease performance only if its net slack is

greater than 7%. Since the algorithm is designed in such a way that that it stabilizes after

initial few iterations, the slack threshold also stabilizes to provide optimum energy-time

trade-off. The slack threshold is further examined in the next chapter. .

In summary, the inter-node bottleneck exists between multiple nodes in a dis-

tributed, HPC program. Slack indicates the relative communication delay on a node. The

node with the least slack is considered the bottleneck node. Net slack is the amount of

slack on a node after subtracting the slack of the bottleneck node. A net slack of zero

or nearly zero indicates that the node is critical, nodes with a large amount of net slack

provide opportunity to reduce performance. The Jitter algorithm determines the amount of

net slack per iteration of an application and reduces performance of the non-critical nodes.

This saves energy on these nodes, and the goal of Jitter is to attempt to ensure that they

arrive “just in time” so that they avoid increasing overall execution time.
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Chapter 6

Jitter Results

In this section, we present the Jitter results. We show the benefits of Jitter on

imbalanced applications. Then, using a synthetic benchmark, we show the full capabilities

of Jitter. Last, we show that Jitter does not slow down a program unnecessarily when its

load is balanced. We also evaluate the overhead and sensitivity of the Jitter implementation.

6.1 Non-Uniform Loads

This section shows the results of two benchmark programs that have load imbal-

ance. The first one, Aztec, is a parallel iterative solver for sparse linear systems from the

Purple suite. Table 6.1 shows results for Aztec using four different methods. All results are

the average of at least 3 runs, with little variance. The first method is Full power, where all

nodes execute in top gear (2000MHz). It is used as the baseline. The next uses a hand-tuned

set of per-node gear settings. Using the slack on each node at Full as a guide, we tested

many solutions to find the “best.” Because we are biasing towards performance, the goal

was to save as much energy as possible while allowing only small performance impact, which

Time (s) Energy (KJ)

Full 64.8 44.4

Hand-tuned 65.0 (0.3%) 38.6 (-13.1%)

Jitter 65.1 (0.4%) 38.7 (-12.8%)

Reduced 67.1 (3.0%) 40.6 (-8.5%)

Table 6.1: Aztec results



37

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0  10  20  30  40  50  60  70
F
r
e
q
u
e
n
c
y

Iteration

0
1

2
3

4
5

6
7

Figure 6.1: Gears for chosen by Jitter for Aztec.

we somewhat arbitrarily define as less than 2.5% increase in time. While our search was

not exhaustive, it was extensive. The third method is Jitter, where all nodes begin in top

gear and dynamically shift according to the algorithm described in the previous chapter. In

the last method (Reduced), every node executes at 1800MHz—performance is reduced by

one gear. This method serves as another baseline.

The hand-tuned run saves 13% energy with no time penalty. Each node executes

in a single, but possibly different gear: one node runs in top gear (node 4), four in 1800MHz

(nodes 1, 2, 3, and 5), and one each in the next three gears. (Frequency is used to name

the gear, but both frequency and voltage are scaled.)

The Jitter run takes more time than Full, but saves nearly 8% energy. As expected,

it does not save as much energy as the hand-tuned method. The primary reason for this is

that the gears selected by the algorithm are higher than in hand-tuned. Five of the nodes

execute more than half of the iterations in top gear. The secondary reason is the cost of

constantly shifting gears, as it takes Jitter a handful of iterations to determine a solution.

During this time it continually refines the gear settings. It should be noted that Aztec is the

least stable of all benchmarks—e.g., it still shifts to some extent after 50 iterations—which

we believe is likely typical of a production application than the other benchmarks.

The four nodes that execute at 1800MHz in the hand-tuned case execute at

2000MHz in Jitter. Jitter mis-predicts this gear because the slack varies due to constant

gear shifting. This variance causes these nodes to shift back to top gear. They often re-

duce performance again, but will eventually shift back to top gear. Each time through this
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Figure 6.2: Gears for each node for each iteration in Sweep3d.

cycle it becomes harder to reduce due to the increasing downshift factor dg. Our goal of

favoring performance over energy forces these nodes into the top gear. Nevertheless, Jitter

performs well. It is possible to extract better numbers from Jitter by tuning the parameters

to optimize it for Aztec; however, this paper presents a more general usage of Jitter.

Figure 6.1 shows the gears per node per iteration for Aztec. It shows a single,

representative run. Because there are more nodes than gears, the lines overlap significantly.

At the end there are 5 nodes that execute at 2000MHz (nodes 1–5). Node 7 reduces one

gear each iteration down to 1000MHz, where it remains for the duration of the program’s

execution. Node 0 predominantly executes at 1200MHz and node 6 at 1400MHz.

The second program that shows load imbalance is Sweep3d, which is also a Purple

benchmark. Sweep3d solves a time-independent discrete geometry neutron transport prob-

lem in 3-dimensions. Table 6.2 shows the results. In the hand-tuned method two nodes, 6

and 7, are in 1800MHz, while the rest are in top gear. There is essentially no time penalty

for hand-tuned. Even with this little difference from full performance, there is a noticeable

energy savings.

Time (s) Energy (KJ)

Full 26.2 19.1

Hand-tuned 26.3 (0.3%) 18.1 (-5.3%)

Jitter 26.3 (0.3%) 18.1 (-5.3%)

Reduced 28.2 (7.0%) 17.9 (-6.3%)

Table 6.2: Sweep3d results
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Figure 6.3: Gears for each node for each iteration in synthetic benchmark with stable,
non-uniform load.

Time (s) Energy (KJ)

Full 80.0 55.1

Hand-tuned 80.1 (0.1%) 47.5 (-13.8%)

Jitter 80.8 (1.0%) 48.3 (-12.4%)

Reduced 88.6 (10.7%) 54.8 (-0.1%)

Table 6.3: Synthetic benchmark results

Figure 6.2 shows the gears used by Jitter in Sweep3d. Because the application

iteration length is about 0.1 seconds, Jitter takes action only every 5 iterations; therefore,

the figure plots every 5 iterations. It stabilizes much more quickly than Aztec, reaching

stability within 50 iterations (10 Jitter iterations). After iteration 50, the nodes are in

the same gears as hand-tuned. Before that, 4 different nodes reduce to 1600MHz, two of

which climb back to top gear. Overall, 89% of the time Jitter is in the same gear as hand-

tuned, and only 2% of the time are any nodes more that one gear away from hand-tuned.

Therefore, Jitter performs nearly the same as hand-tuned.

6.2 Synthetic Benchmark Results

This section presents results from a synthetic benchmark, which was created to

fully exercise Jitter. It is an iterative PDE solver, where we added (artificial) parameters

that make the amount of load per node configurable. Essentially, each node does an cus-

tomized amount of work each iteration. Then it sends data to each of two neighbors and
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executes a barrier.

Figure 6.3 shows gears for each node. In this example, each node has an increasing

amount of work, so node 0 has the least work and node 7 the most. Through separate

experimentation, we determined these loads so that each node should select a different

gear. (Because there are only 7 gears, 0 and 1 should select the same gear).

Table 6.3 shows the overall results. As expected, when using Jitter, there is sig-

nificant energy savings and little time penalty. Jitter is nearly the same as the hand-tuned

case because it stabilizes quickly to the same gear assignments as hand-tuned.

Figure 6.4 shows the slack for each node. There is a large spread initially, from

almost zero to nearly 80%, but this range rapidly compresses. Node 0, which has half as
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Figure 6.6: Gears for each node for each iteration in synthetic benchmark with unstable,
non-uniform load.

much load as node 1, still has a significant amount of slack. However, five nodes have less

than 10% slack. There is spike at iteration 12 that we cannot explain. Apparently, all

communication takes longer in this iteration. Every node’s total wait time increases about

the same amount (15ms). This spike is seen in every run (but different iterations) of the

synthetic benchmark for all methods and every run of MG (from the NAS benchmark suite).

These are the only programs that have several nodes with less than 10% slack. It is possible

that there is a transient delay in the network that programs with more slack are able to

absorb, which is why we do not see spikes in other programs.

Figure 6.5 shows the energy consumed by each node for the three methods. The

less loaded nodes use significantly less energy when using Full because Linux issues a HALT

instruction during idle. The figure shows that the most energy is saved in these lower

loaded nodes. Importantly, for this program, Jitter achieves nearly the same results as the

hand-tuned method.

The next test shows that Jitter can adapt to a changing workload. The work

assigned to each node changes at iteration 17. Initially, the work is assigned as above,

with 0 having the least and 7 the most. In the second, half the workload distribution is

reversed with 0 having the most and 7 the least. Figure 6.6 shows the gears selected at

every iteration. Because node 0 is in the slowest gear and it has a large increase in work,

iteration 18 takes a long time (5 seconds instead of 2 seconds). This causes a reset. After

that the algorithm acts as before, only the nodes select gears in a “mirror-image” fashion.

In Full this test takes 77.5 seconds and consumes 56.8 KJ. Jitter is 4.1% slower, but uses
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Benchmark Method Time (s) Energy (KJ)

Full 72.2 53.7
BT Hand-tuned 72.2 (—) 53.7 (—)

Jitter 72.6 (0.3%) 53.5 (-0.4%)
Reduced 74.1 (2.6%) 50.34 (-6.2%)

Full 118 74.1
CG Hand-tuned 121 (2.5%) 68.5 (-7.6%)

Jitter 121 (2.5%) 68.9 (-7.0%)
Reduced 121 (2.5%) 68.6 (-7.4%)

Full 127 74.9
IS Hand-tuned 129 (1.6%) 69.6 (-7.6%)

Jitter 127 (0.0%) 75.6 (+0.9%)
Reduced 130 (2.3%) 70.0 (-6.5%)

Full 62.0 48.4
LU Hand-tuned 63.5 (2.4%) 47.0 (-2.9%)

Jitter 63.5 (2.4%) 47.1 (-2.6%)
Reduced 66.2 (6.7%) 45.5 (-5.9%)

Full 92.9 64.7
MG Hand-tuned 92.9 (—) 64.7 (—)

Jitter 93.2 (0.3%) 65.1 (+0.6%)
Reduced 94.3 (1.0%) 60.4 (-6.6%)

Full 55.6 40.0
SP Hand-tuned 55.9 (0.5%) 36.4 (-8.9%)

Jitter 55.6 (0.0%) 40.0 (0.0%)
Reduced 56.8 (2.1%) 36.6 (-8.5%)

Table 6.4: NAS benchmark programs using Full, Hand-tuned, and Jitter. Percentage dif-
ferences are given relative to Full; a line (—) means that same gear vector as Full was
used.

11.1% less energy.

6.3 Uniform Loads

This section presents the performance of the NAS benchmark suite. Most of the

NAS programs have well-balanced workloads, with the exception of CG. Therefore, generally

speaking, the actions taken by Jitter should be to choose a uniform gear vector. In other

words, we perform these tests primarily to ensure that Jitter does no harm to the application

when the load is balanced.

We first discuss BT, LU, and MG (see Table 6.4). For these programs, the hand-

tuned version is on average 0.6% slower than Full and saves an average of 0.8% energy.
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Those numbers for Jitter are 1.0% and 0.6%, respectively. Clearly, both hand-tuned and

Jitter perform similarly to Full, which justifies that Jitter does not adversely affect load

balanced applications.

Finally, we consider the cases of CG, IS, and SP. For CG, both hand-tuned and

Jitter save significant energy with a small time penalty. Essentially, the reason for the

impressive performance of CG is because it is highly memory bound, as indicated by the

performance of Reduced. This result is consistent with our previous results that studied

exploiting the intra-node bottleneck [19]. Nevertheless, Jitter and hand-tuning are able to

take advantage of the small amount of load imbalance present.

For IS and SP, there is a large amount of slack time, but it is constant over all

nodes. Hence, the net slack is zero on all nodes, so Jitter takes no action. Note that in this

case, the hand-tuned version reduces the gear such that all nodes execute in first gear (1800

MHz). IS and SP represent programs that do not have an inter-node bottleneck because the

load is well balanced. We have different techniques, that leverage the memory bottleneck,

to save energy in such cases [18].

6.4 Sensitivity and Overhead of Jitter

Now that we have examined the energy savings caused by Jitter, we further study

Jitter to understand its overhead, sensitivity to various parameters.

Overhead of Jitter The overhead of the Jitter systems consists of the overhead caused

by MPI-Jack, the Jitter algorithm, and gear shifts. The overhead of MPI-Jack is overhead

caused by the MPI-Jack wrapper which interposes between the application and the library

measures the time taken by each MPI call. This overhead was measured by linking only the

MPI-Jack library with the application and measuring the difference in the time taken for

the execution of the benchmark with the wrapper and without. This essentially determines

the overhead of profiling all MPI calls at the top gear. The overhead of the Jitter algorithm

is measured as the time taken by the Jitter algorithm to make a decision regarding the

performance of a node.

Table 6.5 shows that the MPI-Jack overhead is less 1% for the benchmarks sweep3d,

aztec and the synthetic benchmark. The overhead is largest for sweep3d because it makes

significantly more MPI calls in each iteration than the other benchmarks. Table 6.5 also
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MPI-Jack Overhead Jitter/iteration Iteration length

aztec 0.1 % 0.41ms (0.04%) 970 ms
sweep3d 0.69 % 0.39ms (0.06%) 650ms
jacobi 0.2% 0.45ms (0.02%) 1990ms

Table 6.5: Overhead of Jitter and MPI-Jack

shows the overhead caused by the Jitter system. This overhead is miniscule, i.e., less than

0.1%. As implemented, Jitter inserts an additional reduction (MPI Allreduce) in the code

that determines the minimum slack of all the participating nodes. A single MPI Allreduce

on 8 nodes takes between 0.3 milliseconds to 0.9 milliseconds, with an average of 0.6 mil-

liseconds.

Table 6.6 gives the cost, in microseconds, of shifting gears for the AMD 3000+

CPU. Since our implementation of jitter only shift up or down by one gear, we have only

provided the costs to perform such shifts. The cost of each shift is less than 1 millisecond

except in the transition from 800MHz to 1000 Mhz. Therefore, the overhead caused by the

MPI-Jack, the Jitter algorithm and the gear changes is not significant for iteration lengths

of typical duration. However, if the iteration lengths are very small (i.e. few milliseconds),

the Jitter system would impose noticable overhead.

From (MHz) To (MHz) Average Minimum Maximum

2000 1800 355.55 340 375
1800 2000 785.46 767 814

1800 1600 278.68 263 300
1600 1800 566.70 551 588

1600 1400 279.47 264 295
1400 1600 279.32 262 299

1400 1200 279.61 264 302
1200 1400 280.20 264 301

1200 1000 362.66 348 383
1000 1200 280.72 265 302

1000 800 297.68 281 316
800 1000 2141.23 2107 2205

Table 6.6: Performance state kernel transition cost (microseconds) between different gears
for an AMD 3000+ CPU.
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Figure 6.7: Selecting correct BIAS

Sensitivity to BIAS While net slack is used to identify the correct gear for a node, it is

not sufficient to ensure that the nodes stay in the correct gear. Jitter sometimes switches

rapidly between successive gears. If Jitter chooses to reduce and it turns out to be a bad

choice (which is learned when the node later observes a large increase in execution time

and so increases performance), the threshold to reduce again is raised by the bias factor.

Similarly, we use an upshift factor which is adjusted each time there is an increase in

performance using bias in the same way as downshift. This lowers the threshold required

to shift up by the bias factor. Figure 6.7 shows Jitter’s behavior with bias values varying

from 1 to 3.5. While a low bias value causes the nodes to fluctuate in their gear selection,

a very high bias value prevents a node which has undergone some initial fluctuations from

reaching the correct gear.

Figure 6.7 shows the sensitivity of Jitter to bias. The bias value is varied from

1.0 to 3.5 and its effect on the benchmark is studied. Accuracy is defined as the number

of nodes that ultimately execute in the correct gears, with reference to the hand-tuned

version. Convergence speed is defined as the number of iterations required to reach the

correct gear. Since minor fluctuations are inherent in Jitter, convergence speed is calculated

by considering 5 consecutive iteration, i.e., 40 possible gear shifts. If less than 4 gear shifts

(or 10 %) occur during this interval, then the benchmark is considered to have stabilized

in its gear selection. Figure 6.7(a) shows that convergence speed does not change much
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Figure 6.8: Selecting correct Slack Threshold

for bias ≥ 1.5. The accuracy is not particularly dependant on bias value (Figure 6.7(b)).

Therefore, an initial bias value of 1.5 or 2.5 appears to be best.

Sensitivity to Initial Slack Threshold In early versions of Jitter, our implementation

did not learn the slack threshold adaptively. The user had to hand-tune slack threshold for

each application as they were very sensitive to the slack threshold. Hence, the implementa-

tion of Jitter was modified to learn slack threshold adaptively throughout the duration of

the application. Slack threshold has been discussed in greater detail in Chapter 5.

Figure 6.8 shows the sensitivity of Jitter to the initial slack threshold. Jitter

starts with an initial slack threshold and adaptively learns the correct threshold. However,

the initial slack threshold determines the speed to convergence and the accuracy of gear

selection. It appears that a low slack threshold causes the nodes to converge to the correct

gears slowly, while a high threshold cause two of the benchmarks to select incorrect gears.

However, in the case of Aztec, a low initial slack threshold results in incorrect selection

of gears while in the case of sweep3d a high threshold causes the application to converge

slowly. From these graphs, we cannot argue for a particular slack threshold. We have found

that a slack threshold of 0.05 worked well in the case of these benchmarks.
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Chapter 7

Conclusion and Future Work

This thesis describes briefly our approach to saving power in High Performance

Computing. We exploit inter-node and intra-node bottlenecks inherently present in high

performance programs to reduce performance in the non-critical sections, thereby reducing

the energy consumed, without an significant increase in time. This thesis presents a method

to extrapolate our findings with our small cluster to predict energy-time trade-offs for large

clusters.

Additionally, we have designed and implemented a system called Jitter, which

leverages inter-node bottlenecks in MPI programs to save energy. The basic idea behind

Jitter is to exploit slack time spent by nodes at synchronization points by reducing the

energy gear on those nodes, which in turn significantly reduces the consumed energy. Jitter

is designed so that nodes will arrive at a synchronization as close as possible to “just in

time”, so that there will be little or no execution time increase.

Performance results showed that Jitter saves as much as 8% energy, with as little

as a 2% time penalty, on a unbalanced program. Furthermore, it has almost no effect on

programs that it cannot help—ones where the load is already balanced. We believe that

as scientific applications become more complex and adaptive, making it more difficult to

balance the load, the usefulness of Jitter will only increase.

Future Work Future work for this research involves testing the Jitter system on different

HPC benchmarks. We need to experiment with large-scale programs; while we believe the

NAS and ASCI programs are representative, they are not industrial codes that number in

the tens or hundreds of thousands of lines. We would like to experiment with large codes
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which have load-imbalanced and unstable behavior i.e., the loads on the individual nodes

vary throughout the lifetime of the program. Behavior of Jitter with unstable loads has

only been tested with the synthetic benchmark, for which Jitter has performed admirably.

We would also like to study the performance of Jitter on large clusters.

A more complete study can be performed to study the effect of bias and slack on

Jitter. We would also like to explore algorithm improvements. We have employed net slack

as our metric to determine load-imbalance in a program and reduce performance. Possibly,

other methods exist to determine any load imbalance and opportunity to reduce performance

which allows better energy-time trade-offs than the current Jitter system. Jitter currently

considers reduction of performance only at iteration boundaries. Considering a smaller

granularity than iterations might provide more opportunities to save energy. Jitter currently

does not exploit memory bottlenecks. The current system could be extended to consider

memory bottlenecks as well as load-imbalance as an opportunity to reduce performance. We

would also like to consider other components, such as disk, for opportunities to save energy.

Overall, the end goal of our research is the development of an energy- and performance-

efficient parallel computing infrastructure.
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