
Abstract

BHARATH, BHASKAR. Symbol Recovery Circuit design for deep-space MARS receiver

using SOI technology(Under the direction of Dr. Paul Franzon)

The motivation for this thesis is to present a design of a symbol recovery circuit for

a receiver on a planetary lander vehicle, which will communicate with a low orbit satellite.

With the development of advanced propulsion mechanisms and autonomous machines, there

has been a great revival of interest in exploration of nearby planets. The Mars rover project

aims to land an autonomous vehicle on the surface of Mars, which would be controlled via a

datalink with an orbiting satellite. The design of a communication system for this presents

a number of issues, including Doppler resistance, Radiation tolerance and minimal power

consumption.

The design of the receiver uses a new modulation technique known as Double

Differential Phase Shift Keying, which provides the inherent robustness to Doppler while

consuming low power. A symbol recovery circuit is an essential part of the receiver and

extracts clock information from received data which is then used to demodulate data. The

symbol recovery circuit for the rover needs to handle multiple bit rates while consuming

minimal power. The design of the receiver on a system level and the symbol recovery circuit

is described in the thesis. The system was modeled using MATLAB simulink, designed in

Verilog/VHDL, synthesized using Synopsys design compiler and converted to SOI using

Cadence.

Symbol Recovery Circuit design for deep-space MARS receiver
using SOI technology

by

Bhaskar Bharath

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial satisfaction of the
requirements for the Degree of

Master of Science

Department of Electrical Engineering

Raleigh

2003

Approved By:

Dr. Keith Townsend Dr. Rhett Davis

Dr. Paul Franzon
Chair of Advisory Committee

ii

To my parents

iii

Biography

Bhaskar Bharath was born in Salem, India in October 1979. He graduated from Indian

Institute of Technology, Madras, with a Bachelors degree in Electrical Engineering, in July

2001. In August 2001, He joined the Masters program in the department of Electrical and

Computer Engineering at North Carolina State University, Raleigh, NC. While working

towards the Masters degree, he worked on his thesis under the guidance of Dr.Paul Franzon.

iv

Acknowledgements

I wish to express my sincere gratitude to my thesis advisor, Dr Paul Franzon, for providing

me a great opportunity to work and learn under him. It was a great experience working

under his guidance. I wish to thank Dr Rhett Davis who has provided me guidance and

has helped me in many issues in my thesis. I would like to thank Dr Keith Townsend

for providing me support and guidance throughout my study here. I would like to thank

Mehmet Yuce and John Damiano for their help and guidance, which went a long way in

helping me do my thesis work.

I am greatly indebted to my parents for everything they have done for me. Without

their love and support, I would never have been able to succeed in my endeavors. I would

like to thank Savitha for helping me and providing me moral support through my thesis.

I would like to thank my friends Sudarshan, Anand, Srikanth and Sandeep for helping my

through tough times and making my stay here worthwhile.

v

Contents

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Motivation . 1
1.2 Organization of Thesis . 2

2 Design of Space receivers 3
2.1 Introduction . 3
2.2 Modulation Techniques for space applications 4

2.2.1 Frequency Shift Keying and FDMA 4
2.2.2 Double-differential phase shift keying 8

2.3 Receiver architecture . 14
2.4 Requirements of the Mars receiver . 17
2.5 Space Receiver Example: UCLA FSK receiver 18

3 Symbol Recovery 21
3.1 Phase Locked Loop (PLL) . 22

3.1.1 Operation of a PLL . 24
3.2 Linear PLL . 24
3.3 Discrete PLL . 27
3.4 All-Digital PLL . 30

4 System Level Design 37
4.1 Introduction . 37
4.2 DDPSK demodulator . 38
4.3 Results . 43

5 Hardware Description 44
5.1 Introduction . 44
5.2 Silicon on Insulator (SOI) . 45
5.3 Design . 46

vi

5.3.1 Block Level Design . 48
5.3.2 Working . 55
5.3.3 Power reduction . 59

5.4 Verification . 61
5.4.1 Gate level verification . 61
5.4.2 Timing verification . 65

6 Conclusion and Future Work 70

A Source Code 72
A.1 Verilog Source . 72
A.2 Synposys Script . 84
A.3 MATLAB Scripts . 88

Bibliography 93

vii

List of Tables

2.1 Encoding with d = 1 to phase 5θ = π and the d = 0 to phase 5θ = 0 with
initial phase π . 11

2.2 Encoding with d = 1 to phase 5θ = π and the d = 0 to phase 5θ = 0 with
initial phase 0 . 11

2.3 Requirements of the Space receiver . 17

5.1 Setup Time Analysis . 66
5.2 Hold time analysis . 66
5.3 Timing circuit parameters . 68

viii

List of Figures

2.1 Frequency Shift Keying (FSK) . 5
2.2 FSK encoder: functional block diagram . 5
2.3 FSK FM detector: functional block diagram 6
2.4 FSK filter detector: functional block diagram 7
2.5 Phase Shift Keying (PSK) . 9
2.6 DDPSK Encoder: functional block diagram 10
2.7 Double Differential Encoder: functional block diagram 11
2.8 DDPSK coherent detector: functional block diagram 12
2.9 DDPSK autocorrelation detector: functional block diagram 12
2.10 Frequency insensitive multiple symbol autocorrelation demodulator 13
2.11 Digital Communication Receiver . 15
2.12 FSK receiver . 18

3.1 Phase Locked Loop . 22
3.2 Linear Phase Locked Loop . 25
3.3 Discrete Phase Locked Loop . 27
3.4 Phase Frequency detector . 29
3.5 Flip Flop Phase Detector . 31
3.6 Nyquist Rate Phase Detector . 31
3.7 Zero Crossing Phase Detector . 32
3.8 Hilbert Transform Phase Detector . 33

4.1 DDPSK receiver: block level model . 38
4.2 DDPSK receiver: Simulink implementation 39

5.1 MOS and SOI processes . 45
5.2 Input bits and Modulated Sequence . 47
5.3 Block Diagram of Clock Recovery Circuit 48
5.4 Edge Detector Circuit . 48
5.5 Received Sequence and Edge generator output 49
5.6 Digital Noise Filter: State Diagram . 49
5.7 Received Sequence after Digital Filter - jitter is removed 50

ix

5.8 Phase Frequency detector: waveforms . 50
5.9 Phase Estimation . 51
5.10 Frequency Estimation . 52
5.11 Block Diagram of frequency divider arrangement 53
5.12 Capture, Locking and Resyncronization . 54
5.13 Changing to a higher clock rate . 56
5.14 Changing to a lower clock rate . 57
5.15 Lock mode - Inc and Dec are both below a threshold 58
5.16 Power Reduction by clock gating - Lower clocks are off till frequency changes 59
5.17 Phase recovery at 100Kbps . 62
5.18 Phase recovery at 10Kbps . 62
5.19 Phase recovery at 1Kbps . 63
5.20 Phase recovery at 100bps . 63
5.21 Bit rate changes and Phase recovery 100Kbps - 10Kbps 63
5.22 Bit rate changes and Phase recovery 100Kbps - 10Kbps - 1Kbps - 10Kbps . 64
5.23 Bit rate changes and Phase recovery 100Kbps - 1Kbps - 100Kbps 64
5.24 Lock . 65
5.25 Layout of the circuit in SOI . 68
5.26 Test using Spectre . 69
5.27 Test using Spectre . 69

1

Chapter 1

Introduction

1.1 Motivation

Space communication via satellites has led to a rapid increase in connectivity

throughout the world. Space based systems find diverse applications in a several areas

including meteorology, geology, wireless applications and defense. The amount of data

processing in these systems has been rising steadily. Wireless space receivers rely on solar

energy for their power needs and hence need to be highly power efficient. Apart from that,

they need to be small and light weight, due to the limited space available in a satellite. The

environment in space is highly prone to cosmic radiation and temperature variation from

the sun and hence satellite-based systems need to be robust to it.

Satellites are of two types, geo-stationary satellites which are stationary with re-

spect to the ground (they move at the same speed as the planet rotates) and Low-orbit

satellites (non-geostationary). The latter move at lower orbits and revolve at velocities

different from the planet’s rotation speed. Design of receivers for such satellites is fur-

ther complicated due to the presence of Doppler shifts. An accelerating satellite leads to a

changing Doppler which affects the received and transmitted data, making design of receiver

complicated.

A design of a receiver targeted for the next generation planetary lander, which

communicates with a low-orbit satellite under such circumstances, is proposed here. The

2

system is designed to support a large number of bit-rates ranging from 100 Kbps to 100

bps while being robust in a channel containing Doppler shifts and additive white Gaussian

noise. The power consumption of the receiver (in the lander) is more critical than that of

the transmitter (in the orbiter). This asymmetry makes it possible to trade off transmit

power against the power consumption in the receiver. The project’s overall objective is to

design a single chip receiver suitable for Mars orbiter to lander communications with the

lowest possible power consumption. Honeywell’s Rad-hard SOI technology is used to make

it robust to radiation and temperature variations.

The design of the symbol recovery circuit for the receiver is also presented here.

The symbol recovery circuit needs to handle a variety of bit-rates while maintaining syn-

chronization with the transmitter at all times. A system level design for the receiver and

a circuit level design of the multi-bit rate clock recovery system are presented here. The

clock recovery system consists of an all-digital phase locked loop (ADPLL) for multi-bit

rate applications. The receiver works at a carrier frequency of 431.7 MHz using a Double

Differential PSK scheme to modulate the data. The supported bit-rates are 100 Kbps, 10

Kbps, 1 Kbps and 100 bps. The emphasis of the design is on power reduction and Doppler

robustness.

1.2 Organization of Thesis

Chapter 2 describes various techniques used in the design of space receivers, with

emphasis on Doppler-resistance and energy efficiency. Chapter 3 covers various methods of

clock/symbol recovery using phase locked loops. Chapter 4 describes the proposed receiver

on a system level and analyzes the impact of architectural changes. Chapter 5 describes the

hardware design of the clock recovery circuit. It describes the design methodology, working

and testing procedure used. Chapter 6 concludes with a discussion of the results and future

work.

3

Chapter 2

Design of Space receivers

2.1 Introduction

Design of receivers is determined by a combination of factors, the most important

being the nature of the channel and cost. In space communication, data transfer between

satellites and between satellites and ground-based station is crucial. Unlike ground based

systems, which are slow moving, satellites revolve around the earth at relatively high veloc-

ities, which results in a constantly varying channel and leads to Doppler variations in the

carrier.

The Mars Lander program aims at landing a mobile robot on the ground which

is in communication with a satellite in low orbit around Mars. The LEO or the Low earth

orbit is a very well studied channel and its treatment is complex due to interference effects

in the atmosphere, motion of the satellite around the planet and due to fading effects in the

earth atmosphere [1, 2, 3, 4, 5, 6, 7]. Martian atmosphere is much rarer than Earth’s and

does not have interference from other satellites. This makes the treatment of a Low Mars

orbit channel much simpler [19].

In this chapter we describe various techniques used to design space based com-

munication receivers. Various modulation techniques used to design space communication

systems are described. Later, an example FSK space receiver is described.

4

2.2 Modulation Techniques for space applications

In a variety of applications of digital communications, the channel introduces a

random frequency shift in the carrier which is difficult to estimate on the basis of its previous

history. An example of such a channel is the random Doppler frequency shift communication

system often found in space based applications. The Doppler shift channel implies that the

modulating carrier frequency as seen by the ground-based receiver keeps varying. Due to

this, it is not possible to use a coherent detection scheme, where the carrier frequency needs

to be well-defined. Hence, one must resort to a form of incoherent detection, which includes

the differential and double-differential detection.

The most common modulation scheme used in space receivers is Frequency Shift

Keying or FSK. FSK demodulators are very simple in design, and hence minimize power

and area, which are critical for space applications. However, in the presence of Doppler

shifts, FSK performance deteriorates and additional circuitry is needed to compensate for

frequency variations. There are a variety of modulation techniques which are inherently

Doppler resistant and provide promising alternatives to FSK. One of these is Double Differ-

ential Phase Shift Keying (DDPSK) which uses the second order difference to compensate

for frequency variations in the carrier.

In this section we discuss in detail two techniques, Non-coherent FSK and Double

differential PSK. The focus is on application to space communication systems and on a

low-power, low-area architecture which is demanded by such systems.

2.2.1 Frequency Shift Keying and FDMA

Frequency Shift Keying [8, 9] is the most commonly used form of digital modulation

and leads to a simple receiver design. A phase locked loop can be used to demodulate FSK

signals, as information is transmitted as frequency variation, which is very well tracked

by a PLL. In an FSK system symbols are distinguished from each other by associating a

different frequency with each symbol. In our discussion here, we focus primarily on the

binary frequency shift keying or BFSK. In this the symbols 1 and 0 are associated with two

different frequencies. An example of a BFSK signal is shown in figure 2.1. A typical pair

of such signals would be,

5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

signal

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

waveform

Figure 2.1: Frequency Shift Keying (FSK)

si(t) =




√
2E
T cos(2πfit) 0 ≤ t ≤ Tb

0 elsewhere.

Where i=1, 2 and E is the energy per bit and T is the bit duration. The transmitted

frequency is given by,

fi = n+i
T for some fixed integer n, i = 1,2

The most commonly used binary FSK system is the Sunde’s FSK. It is a continuous-

phase signal in the sense that the phase continuity is always maintained at the transitions.

Encoding

Binary
FSK
Signal

Binary
Data
Sequence

On−off
level
encoder

Inverter

+
f1

f2

Figure 2.2: FSK encoder: functional block diagram

The design of an encoder for FSK is very simple due to the inherent nature of the

modulation scheme. Figure 2.2 shows the basic block diagram of an FSK encoder known as

6

the on-off encoder. The incoming data sequence is applied to an on-off level encoder which

gives a value of
√

E to the symbol 1 and 0 to the symbol 0. This is then fed to an oscillator

at frequency f1 and another oscillator at frequency f2 through an inverter. This ensures

that only one oscillator is on at any given instant. The output is added to get the resulting

FSK signal.

Decoding

The demodulation techniques for FSK signals fall into two main categories: FM

detector demodulators and filter-type demodulators. These are discussed below

1. FM detector demodulators

FSK
Signal Band

Pass
Filter

Limiter
FM
Discriminator

Low Pass
Filter

Decision
Device

Dmata

Figure 2.3: FSK FM detector: functional block diagram

FM detector demodulators treat the FSK signal as an FM signal with binary data.

These demodulators are the traditional method for recovering FSK data from the

modulated signal. Figure 2.3 shows the block diagram of a FM detector demodulator.

The input signal is band-pass filtered and limited and then passed through an FM

discriminator. The FM discriminator converts the high frequency modulated signal

into a raw, detected low pass signal. This signal is then filtered and passed through

a decision device to get the output data. Phase-locked loop demodulators are a more

recent technique based on the FM detectors. Phase locked loops perform superior to

7

the FM detectors and are more commonly used.

2. Filter-type demodulator

Data
Output

x1

x2

Device

Matched
Filter at f1

Matched
Filter at f2

Input
FSK
Signal

Envelope
Detector

Envelope
Detector

Decision

Figure 2.4: FSK filter detector: functional block diagram

The FM detector demodulator though simple in design is not optimal in spectral

efficiency. The filter-type demodulators try to overcome this by using a matched-

filter arrangement which maximizes spectral efficiency and minimizes bit errors. In

this technique the data is passed through a couple of matched filters designed for the

frequencies of the FSK signal. A decision is made based on the result of the filters.

Figure 2.4 shows an arrangement for FSK demodulation using this technique. The

filters are designed with the channel and signal and mind.

Error Performance

We discuss briefly the error performance of the FSK matched filter non-coherent

detector as shown in figure 2.4. x1 and x2 represent the outputs of the two matched filters

after envelope detection. When a ’1’(frequency f2) is sent, the detector makes an error is

x1 > x2. Therefore, the conditional bit error probability is given by,

pe(1) = Prob(x1 > x2)

=
∫ ∞

x2=0
gx1(x1)

∫ ∞

x1=x2

fx2(x2)dx1dx2

8

Where, f(x) is a Raleigh distribution on x and g(x) is a Rician distribution on x. Evaluating

the integral this leads to pe(1) = 1
2e

− Eb
2N0 . Using a similar procedure for the probability of

error when 0 is transmitted it can be shown the pe(0) = pe(1). Since the symbols 1 and 0

are equally likely, the average probability of error is given by:

pe =
1
2
pe(1) +

1
2
pe(0)

=
1
2
e
− Eb

2N0

Drawbacks

FSK is a simple modulation scheme and leads to an efficient demodulator design

in terms of power and area. However, the performance the FSK signal is inferior to other

modulation techniques like the PSK. This is because the FSK constellation is spaced closer

when compared to BPSK or QPSK. The bandwidth required for an FSK is also larger due to

side-lobes and interference. The performance of FSK degrades when used in an environment

where the carrier frequency changes. Under such conditions, the receiver needs additional

circuitry to tackle the variations in the carrier [10, 19].

2.2.2 Double-differential phase shift keying

Phase shift keying is a modulation scheme in which the signal is modulated in the

phase of the carrier. A symbol 1 implies a phase of 0o while a symbol 0 corresponds to a

phase of 180o. To decode a PSK signal we need to know the carrier frequency and it limits

its practical applicability. To alleviate the problem a differential detection is used.

However, classic differential detection (encoding the data phase information as a

first-order difference phase process) is sensitive to frequency variation of carrier. In partic-

9

ular if ∆ω = 2π∆f denotes the radian shift in carrier frequency introduced in the channel,

and 1
T denotes the data rate, then the detected phase at the output of the differential

detector is shifted by ∆ωT , which if large can have an appreciable effect on performance.

One solution to the above problem is to encode the data as a second-order phase

difference and use a two-stage differential detection. This is the principle behind the double

differential scheme. Depending on the specific implementation, the output will either be

independent of the input frequency or a function of frequency within tolerable limits. A

brief description of Double-differential encoding follows [11, 12, 13, 14, 15], Consider a PSK

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

Figure 2.5: Phase Shift Keying (PSK)

signal (Figure 2.5) of the form,

si(t) =
√

2E
T cos(ω0t + θi), (i-1)T < t ≤ iT

where, si(t) denotes the signal transmitted over the ith symbol interval, and θi is

the transmitted signal phase during the ith symbol interval. For an M-ary communication

system with the data encoded in the phase angles, the digital data di are represented by

phase random variables

θiεΘ(t) = {θ : θ = 2πj
M , j = 0, 1, . . . , M − 1}, i ≥ 3

10

where, the superscript i indicates that this datum will be encoded in the ith symbol

interval.We use the first two symbol intervals to establish a phase reference by letting

θ1=θ2=θref . The phase data is then encoded using a second-order difference equation.

5θ = ∆2θi mod 2π = θi − 2θi−1 + θi−2, i ≥ 3

where ∆ denotes the difference in phase ∆i ≡ θi − θi−1 and where ∆2θ ≡ ∆(∆θi). The ith

transmitted signal phase thus becomes

θi = 5θ − 2θi−1 + θi−2 mod 2π, i ≥ 3

For the case of M=2(DDPSK), the differential encoding simplifies to

θi = 5θ − θi−2 mod 2π, i ≥ 3

since 2θi−1 = 0 module 2π, independent of θi−1 which is either 0 or π. This is the basic

principle of a DDPSK encoder.

Encoding

A functional block diagram for the required transmitter configuration is as shown

in figure 2.6 and figure 2.7 We illustrate second-order differential encoding with an example

Phase
Mapping

2nd−order
Differential
Encoding

Modulator

f

d
s(t)

Figure 2.6: DDPSK Encoder: functional block diagram

using a reference angle θref = π and θref = 0 for the binary scheme. The data stream

and the results of the second order differential phase encoding of the data stream d :

11

Delay TDelay T

+

2 −
1

Figure 2.7: Double Differential Encoder: functional block diagram

1, 0, 1, 1, 1, 0, 0, 1 are shown in tables 2.1 and table 2.2.It can be seen that above operation

is equivalent to xoring the data bits i.e, di = di xor di−2.

i 1 2 3 4 5 6 7 8 9 10
di 1 0 1 1 1 0 0 1
5θ π 0 π π π 0 0 π

θi π π 0 π π 0 0 0 0 π

Table 2.1: Encoding with d = 1 to phase 5θ = π and the d = 0 to phase 5θ = 0 with
initial phase π

i 1 2 3 4 5 6 7 8 9 10
di 1 0 1 1 1 0 0 1
5θ π 0 π π π 0 0 π

θi 0 0 π 0 0 π π π π 0

Table 2.2: Encoding with d = 1 to phase 5θ = π and the d = 0 to phase 5θ = 0 with
initial phase 0

Decoding

The detection of DDPSK signals is similar to the PSK signal except that there are

two levels of difference operations to be performed. There is a large collection of literature

on the demodulation a DDPSK signal [13, 16, 17]

1. Coherent Detection

Figure 2.8 shows the functional diagram of a coherent DDPSK detector. This detector

needs to know accurately the carrier frequency of the signal and hence is very limited

12

Phase
Estimator

y

x

−90

+

Phase
Measurement

Integrate
and Dump

Integrate

Delay TDelay T +

LO

X

X and Dump

Figure 2.8: DDPSK coherent detector: functional block diagram

in practical applications. The demodulator consists of integrate and dump filters

whose output is passed to a phase measurement system. The phase of the signal is

given by θ = tan−1(y
x). The phase is then passed through two differences to get the

final phase. A decision device is used to distinguish the symbols.

2. Matched Filter - Autocorrelation detector

+ Limiter

And Dump
Integrate

And Dump
Integrate

X

X

X

 T
Delay

 T
Delay90

Filter
Band Pass

 T
Delay

X

Figure 2.9: DDPSK autocorrelation detector: functional block diagram

The figure 2.9 shows an autocorrelation detector used for demodulating DDPSK sig-

nals. The first stage of the demodulator converts the frequency error into a phase

error by using a matched filter autocorellator. The second stage then converts this

13

phase error to the required data. This modulator has the advantage of not needing

the input carrier signal for demodulation and hence is used commonly for detection

of DDPSK signals.

3. Frequency insensitive multiple symbol autocorrelation demodulator

Decision
Device

LPF

LPF

LPFX

BPF

X

X
T

T

T

DDPSK
decoder

r(t)

d

Figure 2.10: Frequency insensitive multiple symbol autocorrelation demodulator

This demodulation scheme uses maximum likelihood decoding to demodulate the

DDPSK signal. Figure 2.10 shows the block diagram of such a decoder. The de-

tector decodes a bit stream of L symbols by calculating the autocorrelation and cross-

correlation components and choosing the output bits depending on the maximum

values of correlation product given by Ar,s(l) = ΣL−1
k=l ρl,ks

∗
ksk−1 where ρl,k = rkr

∗
k−l

represents the autocorrelation of the received signal with symbol spaced lags l. A de-

tailed treatment of this receiver is presented in [17]. An advantage of this method is

multiple symbol detection which leads to better performance over the other receivers

at the cost of increased complexity.

Performance

Calculating the probability of error for a DDPSK demodulator is non-trivial prob-

14

lem, due to its complex nature [13, 15]. It can be shown that the performance of the DDPSK

detector under ideal conditions is similar to that of the corresponding non-coherent FSK

receiver and is 3dB below the performance of a DPSK signal. However, under the presence

of frequency errors DDPSK out-performs both DPSK and FSK.

Drawbacks

In DDPSK data is coded as a second order phase difference and decoded by a

double differential detection at the receiver. Because of this, the performance of DDPSK is

considerably degraded (an order of 3-4 dB) relative to the differential (first-order) and PSK

detection. However, in a channel susceptible to carrier frequency variation, differential

modulation performance degrades considerably due to frequency sensitivity. DDPSK is

inherently frequency insensitive due to which its performance degradation is minimal.

The DDPSK receiver offers a simple architecture and hence is preferable over other

schemes in channels when frequency insensitivity (e.g., Doppler shift channel in space) is

important. In particular, it lends to a simple clock recovery scheme as the PSK signal is

subject to changes in Phase which can be detected easily using a PLL.

2.3 Receiver architecture

A digital communication receiver [18] converts the incoming analog modulated

signal into data. The design of a receiver depends on several factors, like cost, power,

channel characteristics and area on a die. A receiver consists of the following components

as shown in figure 2.11:

1. Antenna

15

Band Pass
 Filter X

Low
Noise
Ampifier

Demodulator

Clock
Recovery

Local
Oscillator

Antenna Mixer
Analog to
Digital
Converter

Output
Data

Figure 2.11: Digital Communication Receiver

The modulated signal is propagated in space in the form of electro-magnetic radiation.

This needs to be converted back to an electrical signal, so that further processing can

be done on it. The antenna converts the weak electro-magnetic signal into an electrical

signal.

2. Band Pass Filter

A transmitted signal consists of a modulating carrier with the modulated data in

it. The data is usually contained in a bandwidth around the carrier. The rest of

the spectrum contains noise and interference from other sources and needs to be

removed. The band pass filter is usually an analog circuit which reduces the noise

and interference from other sources by band-limiting the received signal.

3. Low Noise Amplifier (LNA)

The LNA or Low noise amplifier amplifies the weak signal from the antenna into a

large signal to enable better detection and processing. In doing so, the amount of

noise added by the amplifier needs to be minimized. The LNA is an analog amplifier

and often consumes a large amount of power.

4. Mixer

16

The mixer is a circuit which converts the high frequency modulated carrier to a lower

frequency or to a baseband signal. Most modulating carrier frequencies are too high

and designing circuits at those frequencies is not practical. The mixer converts the

modulated signal at the carrier frequency, to a lower known frequency, simplifying the

design of the receiver.

5. Analog to Digital converter (A/D)

An Analog to Digital converter is used in digital receivers to convert the analog output

of the LNA to a digital signal which can be processed using a computer or a DSP.

Digital signals provide the advantage of being easier to manipulate and process. The

analog to digital converter can convert the analog signal to a given number of bits. The

more number of bits, less the quantization noise added by the A/D to the incoming

signal and more the power consumption.

6. Demodulator

The demodulator converts the output of A/D converter into a decoded data stream.

The demodulator can perform a variety of additional functions like frequency correc-

tion and estimation.

7. Symbol Recovery Circuit

Digital data is always processed with an implicit clock. This clock rate needs to be

accurately determined at the receiver to decode the information bits correctly. Most

modulation schemes have encoded clock information in them which is extracted by

the Symbol recovery circuit.

17

8. Oscillator

Receivers need to have some internal clock to be able to produce other clocks and

demodulate the carrier. The Oscillator used is mostly a crystal oscillator, though a

ring oscillator is used in some cases.

2.4 Requirements of the Mars receiver

The Mars receiver is specifically targeted for communications between an orbiting

ship and a planetary landing vehicle. This scenario has three important ramifications that

motivate design of the receiver.

1. The power consumption of the receiver on the lander is much more critical than the

transmission power from the orbiter.

2. No adjacent channel interferes exist, and all noise is additive white Gaussian.

3. The receiver must be able to tolerate large and rapidly changing frequency offsets due

to Doppler.

These requirements are summarized in Table 2.3.

Data Rate Fb 100-1000-10000 Bps
Carrier Frequency Fc 437.1 MHz
Doppler offset Fdop 10kHz
Rate of change of Doppler 10 Hz/s

Table 2.3: Requirements of the Space receiver

18

2.5 Space Receiver Example: UCLA FSK receiver

A space receiver architecture for the above specifications has been designed by

UCLA [19] and is shown in figure 2.12. In their implementation of the receiver they

have used frequency-shift keying (FSK) as the modulation scheme. The receiver utilizes

sub-sampling and 1-bit data processing together with a discrete Fourier transform-based

detection scheme to reduce power consumption dramatically compared to other FSK archi-

tectures. The salient features of their architecture are:

1.2Mhz

ba
se

ba
nd

0.
5K

hz

5K
hz

50
K

hz

i=1,−1,i,−i

10

10

A/D

LNA

Fc=431.7 Mhz

DDFS2

DFT
1624

X

X

X

Filter
SAW

Carrier

D
ec

is
io

n

DDFS1

Recovery

Figure 2.12: FSK receiver

• Sub-sampling

The complete form of the Nyquist criterion, applicable to bandpass signals [19], states

that the signal must be sampled at a frequency at least twice the bandwidth (BW)

of the signal (just 20 kHz for the UCLA design) even if the signal power is centered

around a much higher frequency. This approach results in significant power savings

and is ideal for low-power applications. Since sub-sampling involves sampling below

19

the Nyquist Rate, it leads to aliasing and increased noise at the baseband.

1. Shifted replicas of the signal and noise will overlap with each other.

2. A copy of all signal frequencies will be aliased to some lower frequency.

• One-Bit Data Processing

Processing of 1-bit data allows for maximum power savings, and is thus very desir-

able for low-power applications [20]. In addition, since 1-bit quantization is a highly

nonlinear operation, the preceding analog components need not be linear, and no gain

control is needed. Nonlinear amplifiers track and hold circuits and samplers can be

designed to use considerably less power than their linear counterparts. However, 1-bit

quantization has three major negative effects on the receiver performance as follows.

1. The received sinusoidal waveforms and noise are corrupted into rectangular wave-

forms.

2. Quantization noise is introduced into the system, raising the noise floor.

3. If signals are transmitted in adjacent channels, inter-modulation can cause these

channels to fold on top of each other, making recovery impossible.

The first two effects will degrade the performance of the proposed receiver. Inter-

modulation, however, is not an issue for space communications since only one com-

munications channel exists at any given time.

• DFT-Based receiver architecture

Instead using two correlators, as discussed earlier, to detect the binary FSK, a DFT is

20

used. More specifically, a 16-point DFT is used to take advantage of the efficient radix-

4 fast Fourier transform (FFT) algorithm. The DFT can be considered as a parallel

bank of 16 separate correlators, each at a different frequency. However, by using the

FFT algorithm, the outputs of all 16 correlators are computed using relatively few

operations. The advantage of the DFT is that it allows the receiver to handle large

frequency offsets without the need for down-converting the signal to exactly 0 Hz.

This coupled with the highly efficient implementations of FFT, lead to significant

reduction in power. The DFT detector also allows simple frequency tracking, making

it robust against rapidly changing Doppler.

21

Chapter 3

Symbol Recovery

The symbol recovery circuit is an essential part of any digital receiver synchronizing

the receiver clock with that of the transmitter. An error in the phase or frequency of the

data clock can lead to a bit errors and needs to be corrected.

The Symbol recovery circuit extracts the clock information from the input modu-

lated signal. This circuit often contributes to a large amount of power. This is because it

needs to generate an internal clock and track the received signals clock. Most often these

circuits are analog in nature and need large amounts of currents to drive the systems. The

Phase Locked Loop or the PLL is the most commonly used Symbol recovery circuit, due to

its relative simple design and easy tunability. In this chapter, we discuss the various types

of the phase locked loops and their working.

22

3.1 Phase Locked Loop (PLL)

The phase-locked loop (PLL)[21, 23, 25, 24] causes a particular system to track

another one. It synchronizes an output signal (generated by an oscillator) with a reference

or input signal in frequency as well as in phase. The PLL is a control mechanism which

acts on the oscillator when phase error builds up, and reduces the error. From a control

system stand point the phases of the input and output signals are locked and hence the

term Phase-Locked Loop. Figure 3.1 shows the basic structure of a phase locked loop. The

PLL consists of three basic functional units:

Phase Frequency
 Detector

Input
Frequency
f1

Filter
Loop

Output
Frequency
f2

Controlled
Voltage

Oscillator

Figure 3.1: Phase Locked Loop

1. Voltage-controlled oscillator (VCO)

The voltage controlled oscillator is a tunable frequency oscillator whose frequency is

a function of the input. The VCO is responsible for tracking the data by changing its

frequency to match it with the data. The angular frequency ω2 is given by

ω2(t) = ω0 + K0uf (t)

Where ω0 is the center frequency of the VCO and K0 is the VCO gain in s−1 V−1.

The center frequency is typically set to be the carrier frequency or the frequency at

23

which the oscillator should oscillate if there was no input to the system. This can be

a problem with VCO’s as a free running VCO can consume a large amount of power.

2. Phase detector (PD)/phase-frequency detector (PFD)

The PD-also known as the phase comparator, compares the phase of the output signal

with the reference signal and develops an output signal ud(t) which is proportional to

the phase error θe,

ud(t) = Kdθe

Kd represents the gain of the phase detector. The phase detector acts as a phase error

amplifier which is used to control the variation of the VCO frequency.

3. Loop filter

The output signal of the phase detector ud(t) consists of a dc and a superimposed

ac component. The latter is undesired, since it will lead to VCO frequency changing

with the ac signal. The loop filter cancels this ac component by averaging the value

over a period of time. Most often the loop filter is a low-pass filter of the first order.

The filter also helps to stabilize the VCO and avoid rapid changes due to random

noise at the input of the system.

Most PLLs are designed with their application in mind and hence the implementation of

these functional units may differ considerably. However the basic function of the PLL still

remains the same; to achieve synchronization in phase and frequency between the reference

and the output clocks.

24

3.1.1 Operation of a PLL

Let us assume the frequency of the input signal is equal to the center frequency of

the VCO. In this case the phase error is zero and the output of the loop filter also remains

zero. The PLL is said to be in lock and remains so till a change occurs in the input.

If the frequency of the input signal is changed suddenly by a small amount, then

the phase of the input starts leading the phase of the output signal. This phase error is

built up and increases with time. The phase detector develops a signal which also increases

with time. The output of the loop filter increases with time, leading to an increase in VCO

frequency. With time the VCO frequency matches the input frequency. Depending on the

type of loop filter, the final phase error will reduce to zero or to a finite value.

Depending on the various methods of lock and unlock PLLs can be classified into

three broad categories which are discussed in the next subsections.

3.2 Linear PLL

The Linear PLL consists of a four-quadrant multiplier as the Phase detector and

an analog filter and VCO. In most cases the input signal is a sine wave of frequency f1

and the output is a symmetrical square wave of frequency f2 which equals f1 under lock

condition.

Since the phase detector is an analog multiplier it contains a large number of

frequency terms; the first of these is the DC term which is proportional to the phase error θe

between the two signals; apart from these there are signals at harmonics of the fundamental

at 2ω1, 4ω1, These components are unwanted as they do not represent the phase error,

25

and need to be removed by the loop filter. Due to this the loop filter is a low-pass filter.

The order of the low-pass filter determines the order of the PLL.

Loop FilterPhase Detector

ufud

u2

u1

Oscillator

Voltage
Controlled

Loop
Filter

Multiplier

Figure 3.2: Linear Phase Locked Loop

In order to characterize the PLL, the transfer function of the output phase and the

input phase namely, H(s) = Θ2(s)
Θ1(s) needs to be calculated. It can be shown that the general

form of the PLL’s transfer function for a first order loop filter is given as [21, 23, 24, 25],

H(s) = 2ηωns+ω2
n

s2+2sηωn+ω2
n

Where η and ωn represent the damping factor and natural frequency respectively. The PLL

behaves as a low-pass filter for frequency values less than ωn. As long as the modulation

of the reference signal lies between 0 and ωn the PLL will be able to track the signal. The

damping factor η has an important role on the performance of the PLL. For η = 1 the

system is critically damped. As we make η smaller the system becomes more and more

oscillatory, with the overshoot increasing with decreasing η. For most practical systems

a value of η= 1√
2

is chosen, which represents a second order Butterworth filter. As we

increase η the response of the system becomes more and more sluggish. Three conditions

are necessary for the PLL to stay in the locked condition

1. The angular frequency of the reference signal must be within the hold range ∆ωH

26

2. The maximum frequency step applied to the reference input to the PLL must be less

than the pull out range ∆ωPO

3. The rate of change of the reference frequency must be less than ω2
n

The various key parameters of the PLL are summarized as follows:

1. Hold range ∆ωH

This is the frequency range in which a LPLL can statically maintain phase tracking.

A PLL is conditionally stable only within the range. It is given by ∆ωH = K0KdF (0).

2. Pull-out range ∆ωPO

This is the dynamic limit for stable operation of a PLL. If tracking is lost within this

range, a LPLL will be ∆ωPO = 1.8ωn(η + 1) able to lock-again, but may be slow if it

is a pull-in process.

3. Pull-in range ∆ωP

This is the range within which the LPLL will always become locked, but it can be a

very slow process.It is given by, ∆ωP = 4
√

2
π

√
ηωnK0Kd.

4. Lock range ∆ωL

This is the frequency range within which a PLL locks within one single beat note

between reference frequency and output frequency. Normally the operating frequency

range is restricted to the lock range. It is given by ∆ωL = 2ηωn.

In general, ∆ωL < ∆ωPO < ∆ωP < ∆ωH

27

The LPLL is an analog circuit and designing it in deep sub-micron technologies

is often very hard. This is because of the large number of parasitics and leakage currents

which need to be minimized. The VCO center frequency can change by a large amount due

to these effects. The analog multiplier which is used as a phase detector suffers from a low

pull-in range and issues like non-linearity and noise. Due to this these PLLs are not used

in most modern day on-chip applications.

3.3 Discrete PLL

u1

u2

ud uf

Phase Detector Loop Filter

Digital PD
Filter
Loop Controlled

Voltage

Oscillator

Divide by N
Counter

Figure 3.3: Discrete Phase Locked Loop

The Discrete PLL or the DPLL is a hybrid system consisting of both analog and

digital components (Figure 3.3). The primary difference in the DPLL when compared to

the LPLL lies in the design of the phase-detector. The analog multiplier used in LPLL’s

as phase detector provides limited pull-in range and is prone to problems typical in design

of mixers, namely noise and linearity. There are three important kinds of phase detectors

used in a DPLL:

1. XOR gate

28

The XOR gate phase detector is the digital equivalent of the analog multiplier. Since

the two inputs to the phase detector are square waves the XOR gate multiplies the

two signals giving an output of one when the signals are different and an output of

zero when the signals are identical. The XOR gate is a linear function of the phase

difference unlike the analog multiplier which is proportional to the sine of the phase

error. However, like its analog equivalent it suffers from limited pull-in range and can

only perform phase tracking when the phase error is confined to the range −π
2 < θe <

π
2 . The performance of this detector is also severely affected by asymmetries in the

input waveform and hence is not very widely used. The phase detector gain if this

detector when the logic levels are Vmax and Vmin is given by,

Kd = Vmax−Vmin
π

2. J-K Flip Flop

The problem with asymmetric inputs is taken care of by using a JK flip flop with edge

triggered J and K inputs. The inputs of the flip-flop are connected to the two input

signals and are edge triggered. A positive edge on the J input turns the output to a

high state while a positive edge on K resets the output to zero. This phase detector

has zero phase error when the input and output are the inverse of each other. The

JK flip flop detector can handle a phase error in the range −π < θe < π. However

it suffers from limited pull-in range as the output of the detector depends only on

the phase difference and not on the frequency difference between the two inputs. The

phase detector gain if this detector when the logic levels are Vmax and Vmin is given

by,

29

Kd = Vmax−Vmin
2π

3. The Phase-Frequency detector (PFD)

QD

 Clk

Clr

Up

Down

u1

u2

QD

 Clk

Clr

Figure 3.4: Phase Frequency detector

The Phase-Frequency detector is the most widely used phase detector. The PFD can

sense both variation in phase and in frequency and hence offers virtually unlimited

pull-in range. The PFD is shown in figure 3.4, consists of two D flip flops clocked by

the two phase detector input signals. The flip-flops are connected to the supply rail

in their inputs and are reset when both the outputs are high.

When the input lags behind the output the output of the PFD is proportional to the

duration of this phase error. The PFD can handle a much large phase error in the

range −2π < θe < 2π. The phase detector gain if this detector when the logic levels

are Vmax and Vmin is given by,

Kd = Vmax−Vmin
4π

The main strength of the PFD lies in its ability to distinguish the frequency differences.

The duration of the Up and down pulses at the output of the PFDs give a very good

30

measure of the frequency differences when the system is not locked. If the Up pulse

remains high for much longer than the Down pulse, it means that the input frequency

is higher than the output. The difference in this duration is proportional to the ratio

of the two frequencies. This property makes it possible to offer unlimited pull-in range

and make sure that the PLL locks under any situation.

3.4 All-Digital PLL

Unlike the other PLLs discussed the ADPLL is made up completely of digital parts.

Not only are the blocks digital, even the signals involved in the ADPLL are digital. The

ADPLL doesn’t suffer from the issues of analog circuit design, like mismatch, non-linearity

and effect of parasitics. It also consumes considerably lower power than a conventional

LPLL. However, the ADPLL often needs a clock which is at a much higher rate than the

inputs of the ADPLL and can only be used in situations where such high-rates are available.

Since all parts of the ADPLL are digital, it can be built on-chip and the cost is much lower

when compared to the other PLLs. The mathematical treatment of ADPLLs is usually more

complicated than the others as they are non-linear systems and the dynamics of LPLL can

often not be applied. The main components of the ADPLL are the same as the LPLL,

namely, phase detector, loop filter and voltage-controlled oscillator. However, there is a

large variety of designs in each sub-block depending on applications.

1. All-digital phase detectors

As seen in DPLL, there are three main types of phase detectors- XOR, JKFF and the

PFD. The ADPLL’s phase detectors are extensions of these and can be classified as:

31

• FF-counter phase detectors

The FF phase detectors are extensions of the JKFF type PD with a counter

added to keep track of the phase error. The Flip Flop phase detector is shown

in figure 3.5 The reference signal and the output of the VCO are both binary

u2

u1

Reset

Clock

Enable

phase error

Counter

R

S

Figure 3.5: Flip Flop Phase Detector

valued signals, and are used to set or reset an edge triggered RS flip-flop. The

time period for which the output of the flip-flop is high is proportional to the

phase error. This is counted using a counter running at the high frequency clock

and gives a number N θe, the phase error.

• Nyquist rate phase detector (NRPD)

u2 (digital samples)

u1 Phase error
Multiplier
Digital

Converter
Digital
Analog to

Figure 3.6: Nyquist Rate Phase Detector

As the name suggests, Nyquist rate phase detectors (shown in figure 3.6)are used

when the sampling clock frequency is higher than the Nyquist rate of the signal.

The Nyquist theorem states that in order to reconstruct a signal, the signal needs

to be sampled at a frequency at least twice the highest frequency component in it.

32

The input to the phase detector is an analog signal which is sampled at a high

frequency and multiplied digitally with the output of the VCO. The resulting

signal is then averaged to get the average phase error, θe

• Zero-crossing phase detector

Error
Phase

u2

u1

Converter
Digital
Analog to

Detector
Edge
Positive

Figure 3.7: Zero Crossing Phase Detector

The zero-crossing phase detector uses the generated clock to sample the input

data. The value of the sampled data converted to a digital output using an

ADC. This value is latched till the next output clock edge and represents the

phase error, θe

• Hilbert transform phase detector

The Hilbert transform phase detector extracts the phase error by using trigono-

metric computations. The DCO used in this kind of phase detector produces two

signals and in-phase signal I = cos(ω0t) and a quadrature signal Q = sin(ω0t).

If the input signal is a digital signal of the form

u1(t) = cos(ω0t + θe)

then by trigonometric operations,

33

Arctan

Adder

Divider X/Y

Adder

Multiplier

Multiplier

Multiplier

Discrete

pi/2

Multiplier

cossin

Oscillator

Figure 3.8: Hilbert Transform Phase Detector

cos θe = Iu1 + Qu
′
1

sin θe = Iu
′
1 − Qu1

Where u
′
represents the Hilbert transform of the signal. The two signals gener-

ated are divided to get the tangent and an inverse tangent is performed to get

the value of the phase error. Due to the computational complexity, this kind of

phase detector is used in software driven ADPLLs.

2. All-digital loop filters

Unlike the LPLL and DPLL counterparts the loop filters used in an ADPLL are made

completely by digital components. There are a large number of variations in design

of these filters. However, depending on the kind of phase-detector used we can divide

these into three types:

34

• UP-DOWN counter

The up-down type of loop filter is primarily used with a phase detector which

generates two signals up or down, such as the PFD. It can however be easily

adapted to be used with the JKFF and XOR type phase detectors. The up-

down counter is a counter till N which increments the value of N if up is high

and decrements the value of N if down is high. Over an interval of time the

up-down counter essentially serves as a accumulator or discrete integrator, with

a transfer function roughly given by,

H(s) = 1
sTi

• K counter

The K counter is one of the most widely used loop filter for ADPLL designs. It

is primarily used with phase detectors like the PFD, which generate two signals.

The K counter consists of two separate counters, one counting when up is high

and the other counting when down is high. Both these counter are modulo K.

When the value of any of the counters exceeds K/2, a corresponding signal is

sent to the VCO.

• N-before-M counter

This type of loop filter is also used with the PFD and other phase detectors

producing two signals up and down. the N-before-M filter uses two counters one

counting down to M and the other counting down to N, such that M¿N always.

There are two divide-by-N counters, one counting the up signal and the other the

down signal. The M counter counts both up and down pulses. The N counters

35

generate a high only if the M counter has not counted until M. In general, If

there are N pulses of either Up or down in a total of M pulses (up or down) then

the output of this filter goes high.

• Digital FIR/IIR filters

Digital loop filters are equivalent to their analog counterparts and in many

cases are derived from them using bilinear transformations and other techniques.

Sometimes IIR filter techniques are used to design filters which act as VCOs by

making the filter oscillate at its natural frequency[].These type of filters are used

when we are trying to convert the LPLL into its corresponding digital equivalent.

These types of filters are also commonly used with the Nyquist and the Hilbert

transform phase detectors.

3. Digital VCOs or Numerically controlled oscillators

The NCOs or numerically controlled oscillators are essentially frequency synthesizers

which use a high frequency clock and produce a lower frequency one depending on

the inputs to the filter. In this sense these VCOs are fundamentally different than

there analog counterparts. The Analog VCOs are typically tunable LC oscillators and

generate the frequency of interest. The NCOs consume much less power and current

when compared to their analog counterparts, however they need a high frequency

clock in order for them to function. A large variety of DCOs exist and their design is

application dependent. Following are a few types of DCOs used:

• Divide by N DCO

This is the simplest kind of DCO which is essentially a Divide by N counter,

36

generating a lower bit-rate clock from a high-frequency clock. The value of N is

controlled by the output of the loop-filter.

• Waveform synthesizer DCO

In this type of DCO the sine/cosine waveforms of the given frequency are gen-

erated using a look-up table stored in memory. The frequency of these signals

is changed depending on a control signal. Due to the look-up table, the resolu-

tion of the generated signal depends on the frequency being generated. Lower

frequencies have higher resolution than the higher frequencies. Due to the com-

putational complexity of such DCOs they are primarily used in software/DSP

based PLLs.

37

Chapter 4

System Level Design

4.1 Introduction

In the last two chapters, we discussed various techniques used in the design of space

receivers and symbol recovery techniques circuits. In this chapter, the design of the DDPSK

space receiver targeted for a planetary landing vehicles is discussed. The specifications for

this receiver are similar to the receiver constraints discussed in Section 2.4 in chapter 2.

Summarizing, the receiver needs to operate at a carrier frequency of 431.7MHz, under a

Doppler rate of 10 kHz/s which can vary as much as 10Hz/s/s. A set of three different bit

rates need to be supported including 10 Kbps, 1Kbps and 100bps.

The receiver [26, 27, 28] uses a novel modulation scheme called Double differential

Phase Shift Keying (DDPSK) to counter Doppler shifts. The DDPSK receiver with 1-bit

A/D is shown in Figure 4.1. The design of the baseband is such that it can support two al-

ternative front-ends namely, sub-sampling front-end and a one-stage low IF down-converter.

Depending on the front-end the signal to the A/D can have two different frequencies, the

38

sampling frequency (for the sub-sampling case) or the low-If frequency. The current designs

are meant for the low-IF front-end and can be modified easily for the other receiver. The

input modulated signal is assumed to be down-converted to a low-IF of 1MHz and sampled

by the sample and hold circuit at 4 MHz. The choice of the sampling rate leads to reduced

complexity in the hardware.

X L

X L

I&D

I&D

RC

T

T

X

X

90

2T
A/D

X BPF

BPF

+ sgn

Sub−sampling

Low IF

LNA

High gain LNA

1 bit
limiter

Figure 4.1: DDPSK receiver: block level model

In order to better understand the receiver implementation it was implemented and

tested in MATLAB Simulink. The inputs to the system were generated through MATLAB

scripts which modeled both the transmitter and the Doppler channel. The demodulator

was tested for functionality and changes were done in it before moving on to the circuit

level design and testing. An estimate of bit error rates due to Doppler and white noise was

obtained.

4.2 DDPSK demodulator

A block diagram of the entire system is shown in figure 4.1 and its implementation

in Simulink is shown in figure 4.2. The system can be divided into

1. Transmitter

39

Figure 4.2: DDPSK receiver: Simulink implementation

40

The transmitter modulates the bit-stream using a 431.7 MHz carrier and uses DDPSK

to encode the data. It then transmits the data over the channel. The transmitter was

modeled by a MATLAB script which used the DDPSK equation discussed in section

2.2.2 in Chapter 2. The DDPSK bit stream is then multiplied with the carrier to

obtain the transmitted signal.

2. Channel

The deep space channel used is subject to both additive white Gaussian noise and to

Doppler shifts due to the relative motion of the satellite around the planet There has

been extensive study in this area and the treatment of the channel is very complex

[1, 2, 3, 4, 5, 6]. The channel model used was a simplified version of the system and

was implemented by using an AWGN channel and a Doppler spreading device. The

characteristics of the channel have been described earlier in section 2.4.

(a) Gaussian Noise

AWGN was modeled using Simulink’s communication toolbox, AWGN block.

The value of SNR was changed depending on the specifications.

(b) Doppler effects

The channel in which the receiver operates is susceptible to Doppler shift varia-

tion due to the signal being transmitted from a moving satellite in orbit around

the planet. However, since the satellite cannot change its velocity instanta-

neously, and has to do it in a progressive manner, the Doppler frequency changes

only very slowly. The specifications given were to tolerate a Doppler shift of up

to 10 kHz/s and a rate of Doppler shift up to 100 Hz/s/s. This was modeled us-

41

ing an S-function in MATLAB Simulink. The MATLAB code for the S-function

is given in Appendix A.[29]

3. One-bit Analog to Digital converter

The incoming analog signal is quantized into two levels at a sampling rate of 4 MHz.

The A/D consists of a comparator and a sampling circuit. The choice of a 1-bit

A/D was driven by the need for low-power design. The reduced power, results in

additional performance degradation due to quantization noise. It can also lead to

additional clock jitter errors in the system. The one bit A/D is modeled as signum

block which is followed by a sample and hold circuit.

4. Bit-rate selector

The receiver needs to support a wide range of bit-rates starting from 100kbps down

to 100bps. In order to support such a large variation in bit-rates and yet maintain a

relatively simple design, the clock rate of the receiver is controlled by using a bit-rate

selector. This essentially is a register which samples data at the required bit-rate using

the output of the clock recovery circuit. This block is modeled as a down-converter

whose down conversion rate is controlled by the MATLAB code.

5. Demodulator

The baseband demodulator consists of a two stage differential decoder in order to

remove frequency shifts. The first stage implements an auto-corellator; it converts

frequency error into phase error, and then the second stage eliminates the phase

error.

42

The assumption is that the adjacent symbols are affected by the same frequency and

phase shifts. As a result, the receiver utilizes non-coherent technique and does not

require exact phase and frequency. The 1-bit A/D makes the design of the baseband

completely digital as it replaces all the mixers by XNOR gates and the Integrate and

Dump filters by up/down counters. The size of the accumulator is minimal, as the

system works at a much lower rate. The demodulator implementation consists of the

following sub-units

(a) Auto-corellator

The auto-corellator compares the signal with a delayed version of itself. It con-

sists of a multiplier (XNOR gate for digital signals) with inputs as the signal and

a delayed version of it. The auto-corellator demodulates one level of the DDPSK

signal and thus removes the frequency variation effects from it. The output of

the auto-corellator has only phase error effects in it.

(b) Integrate and dump filter

The integrate and dump filter is an accumulator(counter) which accumulates

its value for a certain duration before resetting itself to zero and starting all

over. This filter is a part of the auto-corellator and averages the value of the

auto-corellator output over a bit-interval.

(c) Delay and multiply filter

The delay and multiply filter does the second stage of demodulation, using the

output of the Integrate and Dump filter and doing a delay and multiply. This is

the second stage of demodulation and is used to decode the signal completely.

43

(d) Decision device

The decision device adds the I and Q channels and determines makes a decision

based on the sign of the signal. A negative value is considered a one while a

positive value is considered a zero.

4.3 Results

After designing the system and describing it in MATLAB, the constraints on the

system were analyzed and performance under various conditions ascertained. The design

was tested for a large variety of inputs and these were used to estimate requirements for the

clock recovery system. The receiver was intended to be designed for the highest possible

bit-rate and through simulation runs, it was determined that the highest useful bit rate

for a 1 MHz low-IF architecture, sampled at 4 MHz was 100 Kbps. This rate gave a very

accurate determination of the clock.

As can be seen in figure 4.2, the delay elements are implemented in multiples of

the bit-rate. This in turn implies that they could be implemented as a series of flip-flops

working at the sampling rate. In order to support the lower bit rates, say 100 bps, with a

sampling clock of 4 MHz, we would need 4 M/100= 40000 flip flops, which is not practical

for the receiver. At 100 bps, the system does not need to work at such a high rate. Hence

the system clock rate was reduced using the bit-rate selector. It was also found through

simulation that the higher bit rate could be 40 times the current rate to produce minimum

effect on performance and make the design of the clock recovery circuit simpler.

44

Chapter 5

Hardware Description

5.1 Introduction

The circuit was designed using Honeywell’s Rad-Hard SOI technology which offers

superior performance required for the space application while consuming very little power.

The design was done using Verilog at the RTL level and synthesized using Synopsys. This

proved to be easier than a full custom implementation as the blocks for the SOI library

had already been defined and their layouts implemented. The designs were optimized for

0.80um TSMC CMOS process and then the resulting gate level design was transferred to

Cadence and converted to the 0.35um Honeywell Rad-hard SOI process. This approach

proved useful as the circuit was to be tested for a large number of clock cycles which was

much easier to do on an RTL level than in a circuit level. The RTL design also gave an

option of testing on a Xilinx FPGA board.

In this chapter we describe the clock recovery module along with its subsystems.

The focus is on design methodologies and choices involved in the design. A brief description

45

of the SOI technology follows.

5.2 Silicon on Insulator (SOI)

Silicon

Impurities Metal Oxide

Silicon Dioxide
(Insulator) Silicon

MOS Process
High Drain−Substrate Capacitance

SOI Process
Low Drain Substrate Capacitance

Silicon

Impurities Metal Oxide

Figure 5.1: MOS and SOI processes

Silicon on Insulator technology [30] was first developed by IBM and is fast turning

out to be one of the most promising for the development of low power and fast systems.

Current fabrication techniques for such systems use the MOS (Metal oxide semiconductor)

process which is shown in Figure 5.1.

In the MOS process, an oxide insulating layer is sandwiched between a thin layer

of metal and a substrate of Silicon. Silicon as such is not a very good conductor of electricity

and impurities need to be doped on a pure Silicon wafer in order to make it conduct better.

When a low voltage is applied to the metal gate, there are not enough charge carriers on

doped Silicon for it to start conducting. However as we raise the voltage, the charge carriers

build up and the channel starts conducting when the applied voltage is greater than the

threshold voltage. Hence, a MOS transistor acts as an on-off switch. The MOS and CMOS

process have been responsible for the rapid growth of the digital industry. However, MOS

transistor circuits are essentially capacitive in nature. There is capacitance between the gate

46

and source, gate and drain and between drain and source and the substrate. With shrinking

die sizes and smaller gate thickness, drain-substrate and source-substrate capacitances have

become significant, while the current levels have kept on decreasing. This has led to slower

speeds and higher power consumption, due to the need to charge and discharge the MOS

capacitors. The SOI process reduces these bulk capacitances by decreasing the substrate

area.

In the SOI process, shown in figure 5.1, an insulating layer (typically Silicon diox-

ide) is placed between the working junction of the transistor and the substrate Silicon. This

effectively reduces the substrate area and hence the drain-substrate and source-substrate

capacitances. Due to the reduced capacitances these circuits are much faster than circuits

built using CMOS processes. SOI also is inherently radiation resistant (Rad-hard), as the

substrate area is small, due to which the probability of cosmic radiation hitting the sub-

strate is greatly reduced. These factors have led to a great interest in development of space

applications using SOI technology. We now describe the design of the clock recovery circuit

using Honeywell SOI technology.

5.3 Design

Among the wide varieties of phase locked loops described in Chapter 2, the all-

digital version was chosen over the analog and discrete variants. This is because the em-

phasis was to design a circuit which would consume ultra-low power and be on-chip taking

up minimal area. Since the signal was being over-sampled it was easier to generate lower

clock rates using a frequency divider network. The highest bit-rate used was 100Kbps while

47

the sampling clock was 4 MHz. This gave an accuracy of utmost 0.025 parts relative to the

data rate, which was sufficient for the space application. The need for multiple bit-rates

made it easier to have a programmable DCO and further motivated the design choices.

The receiver is synchronized by sending a pilot sequence of 01010101 whenever the

bit-rate changes. The input is forced to have at least one transition every four cycles to

stay in lock condition. Apart from the phase-frequency detector the circuit needs to have a

mechanism to estimate the bit rate of the incoming signal and signal if there is a change in

this rate. Hence, apart from the standard phase estimator there is a frequency estimator

circuit to estimate these variations.

−1

0

1

4 4.5 5 5.5 6

x 10
−5

−1

0

1

Time offset: 0

Figure 5.2: Input bits and Modulated Sequence

The input to the demodulator consists of a baseband low-IF signal at a carrier of

1 MHz and sampled at 4MHz. As shown in the figure 5.2 the input PSK signal changes

in phase abruptly when data undergoes a transition. Hence, the signal inherently contains

information regarding the clock edges; as long as there are sufficient data transitions. The

input to the symbol recovery circuit consists of these edges representing clock pulses. These

edges were achieved by XORing the input baseband signal with a delayed version of itself.

48

5.3.1 Block Level Design

Edge Generator Digital Noise Filter Phase
Frequency
Detector

Phase Estimator

Frequency Estimator

Lock Circuit

Controller
Programmable
Frequency
Divider

Output
Clock

Input from
Analog
Frontend

Figure 5.3: Block Diagram of Clock Recovery Circuit

Figure 5.3 shows the block level diagram of the symbol recovery circuit. The clock

recovery module consists of the following components:

1. Edge generator

Carrier

Edges

T=1/8Mhz T=1/8Mhz

4Mhz
Input

Delay TDelay T

Figure 5.4: Edge Detector Circuit

For the PLL to lock accurately, a reasonable estimate of input clock is needed. The

baseband input to the digital back-end of the receiver is a 1 MHz, low IF modulated

signal sampled by 4MHz clock. Due to the nature of the DDPSK signal (Figure 5.2)

49

−1

0

1

4 4.5 5 5.5 6

x 10
−5

0

1

2

Time offset: 0

Figure 5.5: Received Sequence and Edge generator output

it is possible to extract the clock information from the received data. This is done by

delaying the input signal by half a cycle and XORing it with itself. This results in

pulse as shown in Figure 5.5. The delaying by half a clock cycle of the low-IF carrier

is made easy due to over-sampling and amounts to using a two flip-flop shift register

(Figure refedgedet).

2. Digital Noise Filter

 =0
Ouput

Output=1
0−>1

1−>0

1−>0
0−>1

0−>1

11 10

0100

Figure 5.6: Digital Noise Filter: State Diagram

In a noise-free Doppler-free environment, the input to the system, which is a pilot

sequence of 0101010101, would consists of the clock edges as shown in the figure 5.5.

However due to AWGN and Doppler variations the input to the circuit consists of

50

Figure 5.7: Received Sequence after Digital Filter - jitter is removed

a large number of jitter pulses along with the clock edges as shown in figure 5.7.

Although these jitter pulses are of a very small duration, they can drastically affect

the performance of the phase detector and need to be removed. The Digital Noise

Filter removes the jitter from the input signal as shown in figure 5.7. The filter is a

state machine where only signals of at least two clock durations to pass through and

suppresses the other smaller duration pulses (Figure 5.6).

3. Phase Frequency Detector

Figure 5.8: Phase Frequency detector: waveforms

The phase frequency detector acts as the phase and frequency estimator and generates

relevant up and down signals. The PFD used is the standard PFD consisting of two

D-flip flops with an asynchronous clear to reset the flip flops. This kind of detector

51

has the advantage in detecting both the frequency and phase estimate and is essential

for multi-bit rate systems.

4. Phase estimator

Figure 5.9: Phase Estimation

The phase estimator is used to determine the phase difference between the signals

assuming that the frequency is the same. This is done by counting the number of

Up and Down pulse and subtracting them, which gives a good estimate of the phase

differences. However, the phase variation is used to change the phase only when there

is no frequency error. This is because phase is a discrete integration of the frequency

and phase error can also be caused by frequency variations. The phase estimator is

reset to zero after the end of each clock cycle. This is done so that the phase estimates

are relevant to the current cycle and do not represent a frequency shift.

5. Frequency estimator

The frequency estimator circuit determines whether the current frequency of the VCO

needs to be increased or decreased. This is done by counting the number of UP or

down pulses using the sampling clock of 4 MHz. The absolute value of the difference

52

Figure 5.10: Frequency Estimation

gives an idea of the variation in the frequency of the incoming signal. The Up signal is

high only if the input clock is ahead in phase/frequency with respect to the VCO clock.

By counting the value of this signal and checking if it is greater than a threshold, it is

possible to see if the frequency is above a certain margin. Similarly by counting the

Down pulses it is equally possible to estimate if the input is lower in frequency than

the output. A combination of these two and the threshold is then used to trigger a

change in frequency through the control circuit.

6. Programmable frequency divider

The frequency divider consists of a four constant frequency dividers of values of 10,

10 and 10 and 40 respectively, as shown in figure 5.11. Given that the clock is 4

MHz, this generates frequencies of 4 MHz, 400 kHz, 40 kHz and 4 kHz respectively.

These frequencies are used to drive the rest of the baseband receiver. This measure

helps drastically reduce power and area of the system. A programmable divide by 40

counter is used to down-convert this clock to the desired data rate. This arrangement

ensures that the demodulator always functions at a rate 40 times the data rate. Due

53

Divide by
10

Divide by
10

Divide by

 10

4 Mhz
VCO

Divide by
 40

(from controller)
Control Signal

4 M

400K

40K

4K

Output
Clock

From phase
estimator

Programmable
frequency divider

System
Clock

Figure 5.11: Block Diagram of frequency divider arrangement

to this it is possible to fix the demodulator architecture and hence reduce both power

and area. In order to further reduce power consumption these dividers are switched

on by the control circuit only when the relevant frequency is needed. An output

multiplexer is used to select the relevant frequency.

7. Lock Circuit

When handling multiple bit rate signals, it is necessary to distinguish between sudden

variations in frequency and a change in the frequency of the input signal due to a

change in bit-rate. It is also important to make sure that the clock stays locked

once the pilot sequence has been transmitted and data is being sent. This is because

sequences like 0000011111... at 100Kbps are equivalent to 01... sequence at a bit-rate

of 10Kbps.

In order to distinguish such sequences it is essential to have a lock detection circuit.

The circuit along with the controller ensures that the output clock remains locked

after the pilot signal has been sent. It does so by storing a sequence of phase error

54

Figure 5.12: Capture, Locking and Resyncronization

values and repeating them as input to the discrete VCO. The lock detection circuit

sends a lock signal to the controller once the phase error values are below a threshold

error for a given number of clock cycles. Once locked, it bypasses the phase and

frequency error values with the values stored. Every time there is a set of clock edges,

the lock circuit resynchronizes to new phase and thus maintains the lock state. The

lock circuit can be further sub-divided into:

(a) Shift Registers

This is a set of flip-flops which store the phase error values. When the system is

in an unlocked state, this acts as a shift register, storing the phase error values

through it. Once the signal gets locked, the shift register becomes a memory

element looping the output back to itself. Since the amount of variation in

the input sequence is relatively small, three flip flops were used to model the

shift register function. There is a tradeoff between frequency detection and lock

time, as the more the number of flip flops the better frequency variations can be

resolved, but longer time to needed to lock the signal.

(b) Lock Controller

55

Once the system is locked the variation of phase errors is very small. It is possible

to set a threshold value for the phase error below which we can say that the signal

is locked. The Lock controller compares the output of the shift register and sets

lock high when the value remains below a threshold for a fixed number of cycles.

The number of cycles was chosen to be three and the threshold was chosen as

one-sixteenth of the clock cycle. By varying these, the performance of the system

can be fine tuned.

8. Controller

The controller is responsible for the following:

• Initializing the subsystems in the beginning and on a Reset

• Increasing or decreasing the bit rate depending on the output of the frequency

estimator

• Bypassing the phase error when system is locked

• When in lock, determines whether there is a need to unlock and recapture de-

pending on the phase and frequency estimator values

5.3.2 Working

The system shown in figure 5.3 is an All-digital phase locked loop. The input to

the system consists of the PSK pulses as shown in figure 5.2. The edge detector circuit

extracts the sudden phase change information from the high frequency PSK signal. In the

presence of no noise and Doppler, the BPSK signal changes phase abruptly whenever there

is a transition in the data. This property can be used to extract information about the

56

clock. The input to the receiver consists of a pilot sequence, 0101010101, whenever the bit

rate changes. This gives enough time for the circuit to change to the new bit rate and lock

to the phase. Sequences which have no transitions for more than four cycles are forbidden in

the receiver. This is because a sequence like 1111100000 at 100Kbps is identical to sending

a 10 at 10Kbps. Hence, sequences like 11111 or 00000 are not permitted in the receiver.

When the system is in lock, there needs to be at least one data transition every five cycles

to remain in a locked state.

The edge detector circuit uses the property of the BPSK signal, discussed above,

to extract clock information. However, the circuit produces additional jitter pulses in the

presence of noise and these are removed by the digital filter. The outputs of the digital

filter are the edges of the data and hence represent clock intervals. The PFD uses these and

the output clock to generate up and down pulses as shown in figure 5.8. These pulses are

sent to a phase estimator, which counts the number of clock pulses of the next higher clock

rate in one interval of the lower clock rate (If the current bit rate is 10Kbps, the clock used

to measure phase is 400Kbps, the number of transitions in one cycle of 10Kbps are counted

using the 400K clock), giving an accuracy of 1/40.
Page 1 of 1

Cursor−Baseline = 13,003,467,190ps

Baseline = 378,532,810ps

Cursor = 13,382,000,000ps

Clock

x

Inc

3, NI nc_2, NI nc_1

IsnotCorrectt

lower_rate

1

0

0

’d0

0

1

0 0 1 2 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

040,000,000ps 7,120,000,000ps 7,200,000,000ps

Figure 5.13: Changing to a higher clock rate

57

The frequency estimator circuit keeps track of the number of times there are edges

when the Inc (or up) signal of the PFD is high and the duration for which the Dec (or

down) signal are high. Figure 5.13 shows the way the higher bit rate signal is detected.

Inc(or Up) signal of the PFD is high only when the input clock leads the output clock in

phase or is higher in frequency relative to the output clock. If the signal leads in phase

then the Inc signal would remain high just for one clock cycle before going back to zero.

However, if it remains high for more than once cycle of the input, then it either means that

there is some additional jitter in the system or the bit rate of the signal has changed. If

five such transitions of the input occur when Inc is high, it is deduced that the clock rate

has increased to the higher bit rate. This is a fair assumption as five noise pulses are highly

unlikely to occur due to the noise filtering done by the digital filter.

Figure 5.14: Changing to a lower clock rate

Figure 5.14 shows the way a lower bit rate signal is detected. If the Dec signal is

high, it means that the input is lagging compared to the output, or the data rate is changing

or data being sent does not have enough transitions. If the input is lagging relative to the

output and the bit rate is the same, the Dec signal will go back to zero after one clock cycle.

58

The modulation scheme needs to have at least one transition every five cycles and hence if

the Dec signal lasts for more than five cycles of the current clock (50 cycles in the higher

clock), then the clock rate is decreased to the next lower rate.

Figure 5.15: Lock mode - Inc and Dec are both below a threshold

Figure 5.15 shows the behavior of the lock circuit. The lock circuit keeps monitor-

ing the value of the phase error and if it goes below a certain threshold and remains below

it for three cycles, it sets the lock signal high. When phase lock is achieved the phase error

between the input and output clocks is very small and this fact is used to achieve lock.

When data is being transmitted, it is very hard to distinguish between a phase error and a

lack of a transition. By keeping the circuit in lock and re-synchronizing the clock whenever

a transition occurs, it is possible to keep the phase error to a minimum. As can be seen from

the figure 5.15, there may be a large variation in the output of the phase estimator, due to

lack of transition s but these do not change the clock rate. This is because the system is

in lock mode and phase synchronization is maintained. It can also be seen from the figure

5.15, that a phase error is corrected as soon as two transitions occur in the input.

The frequency divider consists of a cascade of dividers which are connected to a

59

multiplexer. Depending on the inputs to the controller and the lock, the controller sends

the relevant selection to the multiplexer and changes the rates.

5.3.3 Power reduction

Since the main aim was to produce a very low-power design, a large number

of architectural adjustments were made to reduce power of the system. From a circuits

perspective, we know that the power consumption in any digital system is given by

P = αCfV 2

where f is the frequency of the system, V is the supply voltage, α is the a proportion of the

circuit undergoing transitions and C is the total load capacitance in the system. Since we

are using an SOI technology for the design the capacitance in the system is already quite

low. The supply voltage is fixed at 2V for the baseband system and cant be changed. Hence

the two other factor namely, frequency and switching factor, had to be reduced to reduce

power.

Figure 5.16: Power Reduction by clock gating - Lower clocks are off till frequency changes

60

The highest frequency available to the system is the sampling frequency 4 MHz.

The data runs at much lower rates of 100Kbps and below. Hence, wherever possible the

lowest clock in the system was used to run various components of the circuit. This made

it possible to reduce the frequency. Extensive clock gating was done to make sure that

unnecessary transitions do not occur. The clock divider circuit consumes a large amount

of power as it is always switching at 50%. The clock divider was gated so that when a bit

rate of 100Kbps was detected, the other bit rate clocks were turned of, this is shown in the

figure 5.16.

Since the clocks are separated by a factor of 10(100K, 10K, 1K and 100), it was

possible to use the higher clock to estimate the phase error of the lower clock to a high degree

of accuracy. This led to decreased power consumption at the cost of reduced frequency

resolution. It also reduced the capacitative load on the sampling clock and further helped

to reduce power. Apart from the edge detection circuit, digital filter and the frequency

estimator, which run at the sampling clock rate the rest of the system runs at a lower clock

rate. The digital filter also reduces the noise in the system and reduces power consumption.

Another method used to reduce power was by using static logic to design the

system. Dynamic logic is used when the system needs to be very fast. It consumes more

power as it has to be pre-charged every cycle and hence the number of transitions is very

high. Since power and stability were the most important criteria, the design was done

wholly using static gates. This also made it easier to follow the Verilog-Synopsys path flow,

as synthesizing dynamic logic is not possible in Synopsys.

61

5.4 Verification

5.4.1 Gate level verification

The clock recovery circuit was thoroughly tested using various varieties of input

waveforms. Care was taken to ensure that sudden changes in bit rates were recognized and

system retained phase lock. The design was done using Verilog RTL and then synthesized

in Synopsys. Finally the synthesized Verilog code was ported to Cadence using the import

option in Cadence tools. The design was then converted to SOI libraries by using some

scripts. This is not necessarily the best design flow for the above circuit, but led to a much

faster design and verification flow. Since the SOI libraries and the corresponding layout were

already available, it was easier to use this flow instead of a full-custom design methodology.

The system was verified at all levels, at the design stage in Verilog, after synthesis

using TSMC 0.80um libraries and then in the circuit level using Cadence and Spectre

and 0.35um Honeywell SOI libraries. Care was taken to make sure that the results were

replicated at all stages.

The test pattern followed was to ensure that the circuit would work for all possible

bit rates, achieve phase lock at a given bit rate, stay in once the phase lock was achieved,

and finally change to a new bit-rate when input data changed. The circuit was initially

tested using no noise or Doppler effects, to make sure that the above steps were verified.

The initial series of tests involved working the PLL at the rate of 100Kbps and

verifying if it achieves phase lock for the exact rate, namely 100Kbps, and then for nominal

rates, like 99.9Kbps. Then AWGN alone was added to see if phase lock was still achieved

and finally the Doppler induced signal was tested. These inputs were provided using the

62

Simulink model developed in the previous chapter. The same process was repeated for each

bit-rate. At this stage no effort was made to change the bit-rates. These tests are shown in

figures 5.17, 5.18, 5.19 and 5.20

Figure 5.17: Phase recovery at 100Kbps

Figure 5.18: Phase recovery at 10Kbps

The next series of tests involved modifying the bit-rates and checking how the

system responds. This was done by starting at a particular bit-rate, say 100Kbps, till the

system locked and then changing the rate. This procedure was repeated until all possible

combinations were exhausted. For example sequences like 100K, 10K, 1K, 100, 100K, 1K,

10K, 100, 1K, 100K... and so on, just to make sure that the PLL was sensitive to all

such transitions. This process was verified with noise and without noise, with Doppler and

without it. These tests are shown in figures 5.21, 5.22 and 5.23.

The final sequence of tests involved testing the lock conditions. The PLL was

63

Figure 5.19: Phase recovery at 1Kbps

Figure 5.20: Phase recovery at 100bps

Figure 5.21: Bit rate changes and Phase recovery 100Kbps - 10Kbps

64

Figure 5.22: Bit rate changes and Phase recovery 100Kbps - 10Kbps - 1Kbps - 10Kbps

Figure 5.23: Bit rate changes and Phase recovery 100Kbps - 1Kbps - 100Kbps

65

made to achieve lock and then artificial phase errors were introduced to make the system

out of sync. A random sequence of data was transmitted, making sure that there was at

least one transition in four cycles, and response of the circuit verified to see if it maintained

phase lock and minimized phase error. These tests were repeated at all frequencies and

verified. Figure 5.24 shows an example of such a test.

Figure 5.24: Lock

These tests were repeated for all frequencies first just in Verilog, then as a post-

synthesis verification using the Synopsys 0.8um libraries and finally after porting it to SOI

in Cadence, they were tested using Spectre. At all these stage it was made sure that the

results were identical and correct. Since the circuit needed to be run for a large number of

cycles in Spectre, the tests were more restrictive and involved just verifying the functionality.

5.4.2 Timing verification

Wwe need to make sure that there are no race conditions or setup violations in

the circuit. The circuit was tested using TSMC 0.8um and then changed to 0.35um SOI

which is a much faster logic family, and hence this verification is essential.

66

The main flip-flop used for design was the D Flip-Flop using C2MOS latches. All

other flip-flops like the DFFR and DFFS were based on the above flip-flop. In order to

estimate the setup and hold times, the design was simulated by varying the D to clock time

and measuring the clock to Q delays. The D-CLK delay at which 95% value of the minimum

clock to Q delay was estimated to be the setup time. In a similar fashion, the hold time

was estimated to be the D-clock time at which the clock to Q delay is the minimum, when

coming from the right side of the clock edge.

D-CK CK-Q CK-Qb D-Q D-Qb
1n 395.4p 612p 1395p 1612p

400p 400p 616p 800p 1016p
300p 406p 623p 706p 923p
210p 442p 657p 652p 867p
200p 449p 666p 649p 866p
190p 460p 677p 650p 867p
180p 481p 697p 661p 877p
170p 533p 748p 703p 928p
160p Meta-stable

Table 5.1: Setup Time Analysis

160p 492p 720p 652p 880p
140p 386p 618p 526p 758p
120p 371p 601p 491p 721p
100p 366p 596p 466p 696p
0p 360p 590.4p 360p 590.4p

-200p 363p 592p 163p 392p
-1n 363p 592p 637p 408p

Table 5.2: Hold time analysis

The above analysis results are shown in table 5.1 and 5.2. From these table the

values of setup and hold times for the D-Flip Flop are estimated. The setup time was

67

found to be tsetup = 280ps and the hold time was estimated to be thold = 0. This is valid

as the flip-flops were chosen to be a master-slave which do not have race condition issues.

The minimum clock to Q was found to be tClk−Qmin = 363ps and the maximum clock to

Q before meta-stability was found to be tClk−Qmax = 533ps. In order to meet setup time

violations we need

tClk ≥ tskew + tlogic−max + tClk−Qmax + tsetup

The clock skew can be estimated from the hold time criteria,

thold + tskew ≤ tlogic−min + tClk−Qmin

Assuming worst case situation of zero logic delay and substituting the values of the delays,

we get, tskew ≤ 363ps. The 4MHz VCO needs to have a skew less than this in order for the

circuit to function correctly. The skew estimates of the VCO were well below the maximum

skew requirements and the chances of hold-violation are minimal.

The setup violation estimates were made based on the worst case skew and logic

delays. The logic delay estimates were derived from Synopsys design compiler. These

are highly pessimistic since the SOI technology is much faster when compared to TSMC

0.80um. Substituting these values, the minimum clock rate needs to be tClk ≥ 363ps +

16.61ns + 533ps + 280ps ≥ 17786ps ≥ 17.786ns. This represents a maximum operating

clock frequency of 56.2 MHz. Since the sampling rate is 4 MHz, the circuit is well within

the range of operation.

A summary of the symbol recovery circuit is given in Table 5.3. The circuit was

further tested in SOI using Spectre and the SOI libraries provided by Honeywell. The results

68

of the test are shown in Figures 5.26 and 5.27. The circuit layout was done in Cadence

Virtuoso and is shown in Figure 5.25. The power values were estimated by simulating the

extracted circuit and determining current levels with a Vdd of 2 Volts.

Input signal frequency, f1 1 Mhz
Sampling frequency, fs 4 MHz
Data rate, fb 0.1-100 Kbps
Length of preamble, NL ≥ 4 bits
Power dissipation 155µA @ 2 V

Table 5.3: Timing circuit parameters

Figure 5.25: Layout of the circuit in SOI

69

Figure 5.26: Test using Spectre

Figure 5.27: Test using Spectre

70

Chapter 6

Conclusion and Future Work

A design of the receiver for application to a planetary land rover was proposed.

The receiver uses a Double Differential Phase Shift Keying scheme which provides inherent

resistance to Doppler shifts. The receiver has a potential for very low power consumption

while occupying a small area on chip. The receiver uses low-IF, 1 bit A/D in order to reduce

power and make the circuit much simpler, while trading of performance.

The design of a symbol recovery circuit for the above receiver was proposed, de-

signed and implemented. The circuit is capable of handling a variety of bit-rates while

consuming minimal power. The circuit uses some novel methods to achieve phase and fre-

quency lock. These methods are highly programmable and can be traded between lock

time and frequency selectivity. The circuit uses a digital variant of the phase locked loop

to reduce power consumption. The design uses the minimum possible clock rates in or-

der to reduce power consumption. Clock gating is used wherever permissible to further

reduce power consumption. The digital frequency divider is highly programmable and can

71

be modified to handle a large variety of bit-rates.

The implementation of the circuit was done in Honeywells 0.35um, Rad hard SOI

process. The power consumption of the circuit was found to be 310uA at a 2V Vdd.

The receiver trades of power for performance. In order to improve performance

while keeping power levels the same, an error control code could be incorporated. The

receiver can be integrated with a trellis coded modulation scheme to reduce the bit error

rate. An alternate solution would be to add a Viterbi encoder-decoder to the system. It

would also be possible to use a multiple symbol detection scheme to improve the basic

performance of the scheme which could be further improved with error control codes. The

signals could be transmitted with a non-NRZ system which will have the clock information

irrespective of the data being sent. This could reduce the unnecessary overhead of sending

synchronizing sequences along with the data.

72

Appendix A

Source Code

A.1 Verilog Source

module clockrecoverer(Reset,Clock,data,outclock);
input Clock;
input Reset;
input data;
output outclock;
wire datao,Change_rate,Bypass,Load;
simple S1(Clock,Reset,data,datao);
//A simple filter
sets_the_bypass B1(Clock,Reset,datao,Bypass);
//this runs at the ref clock rate, may have to change that
//this is because the clock divider uses bypass as an input
clockbyN C1(Reset,Clock,Load,lower_rate,clock);
//This is the programmable clock divider circuit
controls_the_count C2(~Bypass,Clock,clock,datao,Load/*Change_rate*/,
lower_rate/*l_rate*/,outclock);
//The set of counter which are the decision makers
endmodule

module clockbyN(Reset,Clockref,Load,lower_rate,Clockout);
//Implements the frequency synthesizer
input Reset; // synchronous reset (to reference clock 4Mhz??)
input Clockref; // Reference Clock
input Load; // Load Control Signal (synchronous to reference clock)
input lower_rate;

73

output Clockout; // The output clock
wire [1:0] whichrate; //Counter and the Value register
wire [1:0] cntrl_rate;
wire [2:0] Incr,Decr;
reg [2:0] code;
//control
counter_4 clockspeed(Load,Reset,lower_rate,whichrate);
//data
counter_10 clock10kbps(Clockref,~(|whichrate),clk10kbps);
counter_10 clock1kbps(clk10kbps,~whichrate[1],clk1kbps);
counter_10 clock100bps(clk1kbps,~(&(whichrate)),clk100bps);
multiplexor4_1 clockmux(Clockout,Clockref,clk10kbps,clk1kbps,clk100bps,
whichrate[1],whichrate[0]);
endmodule

module counter_10(Clock,Reset,DividebyN);
//Divides the clock by 10 and outputs it in divide by N
input Clock,Reset;
output DividebyN;
parameter N=3’d5;
reg [2:0] Count,Nreg;
reg DividebyN;
always @(posedge Clock or posedge Reset)
if (Reset)

begin
Count<=9’d0;
DividebyN<=1;

end
else

begin
if (Count==(N-1))

begin
Count<=9’d0;
DividebyN<=~DividebyN;

end
else

Count<=Count+1;
end

endmodule

module counter_4(Clock,Reset,lower_rate,Count);
//2-bit counter , selects from the multiple clocks
input Clock,Reset,lower_rate;
output [1:0] Count;

74

reg [1:0] Count;
//Simple 2-bit Counter with increment/decrement
//if lower_rate is high then increment
// else decrement
always @(posedge Clock or posedge Reset)
if (Reset)

Count<=2’d0;
else if (lower_rate)

Count<=Count+1;
else Count<=Count-1;
endmodule

module counter_80(Clock,Reset,NInc,NDec,Nreg,x,DividebyN,Clear);
//Divide by N counter(N is 80 here)
//This N is the basic downconversion from 8Mhz down to the highest
//clock rate
input Clock,Reset,x;
//Count to 80
input [6:0] NInc,NDec,Nreg;
output DividebyN,Clear;
//Clock divider by N
// If Inc is high=> step by 2
// If Dec is High=> step by 0
// If both are high/low => step by 1
//An issue: have to figure out whether to change N or the count
//N change=>change in frequency
//count change=> change in Phase
reg [9:0] Count,Count1;
reg DividebyN,Clear,change;
wire Inc_Dec,Dec_Inc;
assign Inc_Dec=(NInc>NDec)?1:0;
assign Dec_Inc=(NDec>NInc)?1:0;
always @(posedge Clock or posedge Reset)
if (Reset)

begin
Count<=9’d0;
DividebyN<=1’b1;

end
else

begin
if (Count==(Nreg))

begin
Clear=1;
if (Inc_Dec)

75

begin
Count<=NInc;
DividebyN<=~DividebyN;

end
else if (Dec_Inc)

begin
Count<=Nreg-NDec;
DividebyN<=DividebyN;

end
else begin

Count<=0;
DividebyN<=~DividebyN|x;

end
end

else
begin
Clear<=0;
Count<=Count+1;

end
end

endmodule

module controls_the_count(Reset,Clk,Clockref,x,IsnotCorrect,
lower_rate,Clock);
//Set of counter which form the core of the decision making DSP
// These are what decide if the current clock rate is correct or
// if it is wrong
input Clk,Clockref,Reset;
input x;
output IsnotCorrect,lower_rate,Clock;
parameter low_rate_threshold=10’d10;
parameter high_rate_threshold=10’d400;
parameter Clock_bits=6;
parameter freq_bits=3;
parameter Clock_divider_value=7’d19;
parameter
A=3’b000,
B=3’b001,
C=3’b010,
D=3’b011,
E=3’b100;
wire Clr1,clr_state;
reg Inc,Dec,Clr,x1,x2;
wire Clear;

76

reg [Clock_bits:0] pd_Inc,pd_Dec,Nreg;
wire [Clock_bits:0] pl_Inc,pl_Dec;
wire Lock;
reg [freq_bits:0] NDec,NInc1,NInc2,NInc;
wire Clear_in,IsnotCorrectt,lower_ratet,Inc_thresh,Dec_thresh;
reg IsnotCorrect,lower_rate;
reg flip;
//The Phase estimator
assign Clr1= (Inc&Dec)|IsnotCorrect;
always @(posedge Clk)

Clr<=Clr1;
//This is a standard phase-frequency detector
//One FF is controlled by incoming clock
//and the other FF by the reference clock
//when outputs of both FFs are high we reset the FFs
//Asynchronous Reset
//Asynchronous Clr
always @(posedge Reset or posedge Clock or posedge Clr)
if (Reset) Dec<=0;
else if (Clr) Dec<=0;
else Dec<=1;
always @(posedge Reset or posedge x or posedge Clr)
if (Reset) Inc<=0;
else if (Clr) Inc<=0;
else Inc<=1;
//Phase estimator
always @(posedge Clockref or posedge Clear or posedge Reset)

if (Reset) pd_Inc<=1;
else if (Clear) pd_Inc<=1;
else if (Inc) pd_Inc<=pd_Inc+1;

always @(posedge Clockref or posedge Clear or posedge Reset)
if (Reset) pd_Dec<=1;
else if (Clear) pd_Dec<=1;
else if (Dec) pd_Dec<=pd_Dec+1;

//Frequency estimator
always @(posedge Clear or posedge Reset or posedge Clr)

if (Reset) NDec<=0;
else if (Clr) NDec<=0;
else if (Dec) NDec<=NDec+1;
else NDec<=1;

always @(posedge Clockref or posedge Reset or posedge Clr)
if (Reset) NInc1<=0;
else if (Clr) NInc1<=0;
else if (Inc) NInc1<=NInc1+1;

77

else NInc1<=1;
always @(posedge x or posedge Reset or posedge Clr)

if (Reset) NInc<=0;
else if (Clr) NInc<=0;
else if (Inc) NInc<=NInc+1;
else NInc<=1;

assign Inc_thresh=(NInc>=3’d5)?1:0;
assign Dec_thresh=(NDec>=4’d10)?1:0;
assign IsnotCorrectt=Inc_thresh|Dec_thresh;
assign lower_ratet = ~NInc[2];
always @(posedge Clk)
begin

IsnotCorrect<=IsnotCorrectt;
lower_rate<=lower_ratet;

end
always @(posedge Clockref or posedge Reset)
begin
if (Reset)

Nreg<=Clock_divider_value;
else if (IsnotCorrect)

Nreg<=Clock_divider_value;
else //if (x_currstate==E)

begin
Nreg<=Clock_divider_value;//x_f-1;

end
end
check_tran cntrl(Reset,Clockref,NDec,NInc1,Lock,Inc,Dec,Ncntrl);
locker l_1(Reset,Clockref,Clear_in,IsnotCorrect,Ncntrl,pd_Dec,pd_Inc,
pl_Dec,pl_Inc,Lock);
counter_80 c_80(Clockref,Reset,pl_Inc,pl_Dec,Nreg,x,Clock,Clear_in);
clear_delay c_d(Clk,Clear_in,Clear);
endmodule

module check_tran(Reset,Clock,NDec,NInc,Lock,Inc,Dec,Ncntrl);
//This module is responsible for waiting for syncronization sequence
//once lock has been achieved and sending control signals to the rest
//of the system so that the new values can be used to adjust any
//phase errors
input Reset,Lock,Clock,Inc,Dec;
input [3:0] NDec,NInc;
output Ncntrl;
reg Ncntrl;
reg [1:0] sireg,sdreg;
wire [1:0] Ndec,Ninc;

78

wire NcntrlD,NcntrlI;
wire ignD,ignI,startd,starti,IncDec,Clk;
wire Nd00,Nd01,Nd10,Nd11;
wire Ni00,Ni01,Ni10,Ni11;
//The basic premise of the circuit is that Ndec goes from 0 1 2 0 if
//the data is 010 or 101 and this can be used to find out the phase error
//to resynchronize the clock. Any other sequences eg. 0 1 2 3 0 or 0 1 0
//for Ndec imply that the data has no transitions or more than one
//transition in the cycle
//A similiar logic is used for NInc, which is reset if the pattern is 0 1 0
assign ignD=NDec[3]|NDec[2]|(~Lock);
assign ignI=NInc[3]|NInc[2]|(~Lock);
assign Ndec=\{NDec[1]&(~ignD),NDec[0]&(~ignD)\};
assign Ninc=\{NInc[1]&(~ignI),NInc[0]&(~ignI)\};
assign Nd00=(~Ndec[1])&(~Ndec[0]);
assign Nd01=(~Ndec[1])&(Ndec[0]);
assign Nd10=(Ndec[1])&(~Ndec[0]);
assign Nd11=(Ndec[1])&(Ndec[0]);
assign Ni00=(~Ninc[1])&(~Ninc[0]);
assign Ni01=(~Ninc[1])&(Ninc[0]);
assign Ni10=(Ninc[1])&(~Ninc[0]);
assign Ni11=(Ninc[1])&(Ninc[0]);
assign startd=Nd01&(~Inc);
assign starti=Ni01&(~Dec);
always @(posedge Clock)
if (Reset)

sdreg=2’b00;
else
case (sdreg)

2’b00:if (startd) sdreg=2’b01;
2’b01:if (Nd10) sdreg=2’b10;

else if (Nd00) sdreg=2’b11;
2’b10:if (Nd00) sdreg=2’b11;

else if (Nd11) sdreg=2’b00;
else sdreg=2’b10;

2’b11:if (Nd01) sdreg=2’b00;
default: sdreg=2’b00;

endcase
always @(posedge Clock)
if (Reset) sireg=2’b00;
else
case (sireg)

2’b00:if (starti) sireg=2’b01;
2’b01:if (Ni10) sireg=2’b10;

79

else if (Ni00) sireg=2’b00;
2’b10:if (Ni00) sireg=2’b11;

// else if (Ni11) sireg=2’b00;
else sireg=2’b10;

2’b11:if (Ni01) sireg=2’b00;
default: sireg=2’b00;

endcase
assign NcntrlD=(sdreg[1]|sdreg[0])&(~ignD);
assign NcntrlI=(sireg[1]&sireg[0])&(~ignI);
always @(Nd00 or Ni00)
if (Nd00 & Ni00) Ncntrl<=(NcntrlD)|(NcntrlI);
else if (Nd00 & (~Ni00)) Ncntrl<=(NcntrlD);
else if (Ni00 & (~Nd00)) Ncntrl<=(NcntrlI);
else Ncntrl<=0;
endmodule

module clear_delay(Clk,Clear_in,Clear);
//A 1 unit delay for the clear signal
input Clk,Clear_in;
output Clear;
reg Clear,Clear1;
always @(posedge Clk)
begin

Clear<=Clear_in;
Clear1<=Clear;

end
endmodule

module locker(Reset,Clk,Clear_in,Changef,Ncnrtl_cnt,NDec,NInc,NDout,NIout
,Lock);
//This module takes care of the locking criteria
//It does so by assuming a shift register to store patterns of phase errors
//and setting lock depending on the duration for which the phase error
// is below a threshold of 3
input Clear_in,Reset,Clk,Changef,Ncnrtl_cnt;
input [6:0] NDec,NInc;
output [6:0] NDout,NIout;
output Lock;
reg [2:0] countI,countD;
reg [6:0] Nd1,Nd2,Nd3,Nd4;
reg [6:0] Ni1,Ni2,Ni3,Ni4;
wire countI_cnt,countD_cnt,LockI,LockD,Lock,Rst_Clr,Clr_Chg,Cnt1,Cnt0;
wire [6:0] NDout,NIout;
reg Clear;

80

assign Rst_Clr=Changef|Reset;
assign Clr_Chg=Changef|Clear_in;
assign Cnt1=(~Lock)|(Ncnrtl_cnt);
assign Cnt0=(~Clear);
//These multiplexor feed in the values of phase errors to the counter_80
// module depending on the state of the system
//If the signal has been locked the value is the one stored in the shift
//register until there is a syncronization sequence sent in by check_tran
//module. If the lock has not been achieved it sends the actual phase error
//computed by the controls_the_count module
multiplexor4_1 md0(NDout[0],Nd1[0],1’b1,NDec[0],NDec[0],Cnt1,Cnt0);
multiplexor4_1 md1(NDout[1],Nd1[1],1’b0,NDec[1],NDec[1],Cnt1,Cnt0);
multiplexor4_1 md2(NDout[2],Nd1[2],1’b0,NDec[2],NDec[2],Cnt1,Cnt0);
multiplexor4_1 md3(NDout[3],Nd1[3],1’b0,NDec[3],NDec[3],Cnt1,Cnt0);
multiplexor4_1 md4(NDout[4],Nd1[4],1’b0,NDec[4],NDec[4],Cnt1,Cnt0);
multiplexor4_1 md5(NDout[5],Nd1[5],1’b0,NDec[5],NDec[5],Cnt1,Cnt0);
multiplexor4_1 md6(NDout[6],Nd1[6],1’b0,NDec[6],NDec[6],Cnt1,Cnt0);
multiplexor4_1 m0(NIout[0],Ni1[0],1’b1,NInc[0],NInc[0],Cnt1,Cnt0);
multiplexor4_1 m1(NIout[1],Ni1[1],1’b0,NInc[1],NInc[1],Cnt1,Cnt0);
multiplexor4_1 m2(NIout[2],Ni1[2],1’b0,NInc[2],NInc[2],Cnt1,Cnt0);
multiplexor4_1 m3(NIout[3],Ni1[3],1’b0,NInc[3],NInc[3],Cnt1,Cnt0);
multiplexor4_1 m4(NIout[4],Ni1[4],1’b0,NInc[4],NInc[4],Cnt1,Cnt0);
multiplexor4_1 m5(NIout[5],Ni1[5],1’b0,NInc[5],NInc[5],Cnt1,Cnt0);
multiplexor4_1 m6(NIout[6],Ni1[6],1’b0,NInc[6],NInc[6],Cnt1,Cnt0);
always @(posedge Clr_Chg or posedge Reset)
if (Reset) Clear<=1;
else Clear<=~Clear;
always @(posedge Clear or posedge Reset)
begin

if (Reset)
begin

Nd1<=0;
Nd2<=0;
Nd3<=0;
Nd4<=0;

end
else

begin
if (Lock) Nd1<=Nd4;
else Nd1<=NDec;
Nd2<=Nd1;
Nd3<=Nd2;
Nd4<=Nd3;

end

81

end
always @(posedge Clear or posedge countD_cnt)
begin

if (countD_cnt) countD<=2’d0;
else if (countI_cnt) countD<=2’d0;
else if (LockD) countD <=3’d7;
else countD<=countD+1;

end
assign countD_cnt=(Nd1[6]|Nd1[5])|(Nd1[4]|Nd1[3])|Rst_Clr;
assign LockD=countD[2];
always @(posedge Clear or posedge Reset)
begin

if (Reset)
begin

Ni1<=0;
Ni2<=0;
Ni3<=0;
Ni4<=0;

end
else

begin
if (Lock) Ni1<=Ni4;
else Ni1<=NInc;
Ni2<=Ni1;
Ni3<=Ni2;
Ni4<=Ni3;

end
end
always @(posedge Clear or posedge countI_cnt)
begin

if (countI_cnt) countI<=2’d0;
else if (countD_cnt) countI<=2’d0;
else if (LockI) countI <=3’d7;
else countI<=countI+1;

end
assign countI_cnt=(Ni1[6]|Ni1[5])|(Ni1[4]|Ni1[3])|Rst_Clr;
assign LockI=countI[2];
assign Lock=LockI&LockD;
endmodule

module multiplexor4_1(out, in1, in2, in3, in4, cntrl1, cntrl2);
output out;
input in1, in2, in3, in4, cntrl1, cntrl2;
wire notcntlr1, notcntrl2, w, x, y, z;

82

not (notcntrl1, cntrl1);
not (notcntrl2, cntrl2);
and (w, in1, notcntrl1, notcntrl2);
and (x, in2, notcntrl1, cntrl2);
and (y, in3, cntrl1, notcntrl2);
and (z, in4, cntrl1, cntrl2);
or (out, w, x, y, z);
endmodule

module sets_the_bypass(Clock,Reset,x,Bypass);
// this module is the controller for the bypass unit
// This waits for the first data sample to arrive before starting the
// counters which actually do the computation, is useful to reduce power
input Reset,Clock;
input x;
output Bypass;
reg current_state;
wire next_state;
//FSM
//State Table
//Reset S(n) x S(n+1) Bypass
//0 0 0 0 0
//0 0 1 1 1
//0 1 x 1 1
//1 x x 0 0
always @(posedge Clock or posedge Reset)

if (Reset)
current_state=0;

else
current_state=next_state;

assign Bypass=current_state;
assign next_state=\{(x|current_state)\};
endmodule

module simple(clock,reset,x,y);
//this module is a simple FSM which acts like an input filter
//It removes all single bit sequences from the input
input x,clock,reset;
output y;
parameter
A=2’b00,
B=2’b01,
C=2’b10,
D=2’b11;

83

parameter N=2’d3;
reg[1:0] currstate,nextstate;
reg[1:0] Count;
wire test;
reg y,ybar;
//2 BIT Counter used by the FSM
//Asynchronous Reset
always @(posedge clock or posedge ybar)
if (ybar)

Count<=2’d0;
else

Count<=Count+1;
//Control register for the Counter
//Since y is a combinatorial logic output ,subject to change
//we need to make sure that the reset is not an Asyncronous event
always @(posedge clock)

if (reset)
ybar<=1;

else ybar<=~y;
// This is the basic FSM for simple module
// It waits for 2 1’s to occur in consecutive cycles and once that occurs
// it sets an output to high
// The output remains high for 4 clock cycles before going low
always @(posedge clock) // Basic FSM state changer

if (reset)
currstate<=A;

else
currstate<=nextstate;

//State Machine
// State Table is as follows
// q(n) (x) (Count==3) q(n+1) Y COUNT
// A 0 x A 0 0
// A 1 x B 0 0
// B 0 x A 0 0
// B 1 X C 0 0
// C X X D 1 COUNT++
// D X 0 D 1 COUNT++
// D X 1 A 0 0
always @(currstate or x or test)

case (currstate)
A: if (x)

begin
nextstate=B;y=0;
end

84

else
begin

y=0;
nextstate=A;
end

B:if (x)
begin
nextstate=C;
y=0;
end
else begin
y=0;nextstate=A;
end

C:begin nextstate=D;y=1; end
D:if (test)

begin
nextstate=A;
y=0;
end

else begin
nextstate=D;

y=1;
end

default: begin
nextstate=A;
y=0;
end

endcase
assign test=&Count; //control logic to check for Count=2’b11;
endmodule
}

A.2 Synposys Script

read -f verilog clockrecoverer.v
read -f verilog controls_the_count.v
read -f verilog counter_10.v
read -f verilog counter_4.v
read -f verilog counter_80.v
read -f verilog multiplexor4_1.v
read -f verilog sets_the_bypass.v
read -f verilog simple.v
read -f verilog clockbyN.v

85

read -f verilog check_tran.v
read -f verilog locker.v
read -f verilog clear_delay.v
target_library = {"ms080cmosxCells_XXW.db"}
link_library = {"ms080cmosxCells_XXW.db"}
set_operating_conditions -library "ms080cmosxCells_XXW" "T125_V4.5"
//Set dont use list
//The list of cells in 0.35um SOI is limited and hence we need to make
//sure that cells which dont exist are not used.
set_dont_use ms080cmosxCells_XXW/PULLUP
set_dont_use ms080cmosxCells_XXW/PULLDWN
set_dont_use ms080cmosxCells_XXW/AND2X2
set_dont_use ms080cmosxCells_XXW/AND2X3
set_dont_use ms080cmosxCells_XXW/AND2X4
set_dont_use ms080cmosxCells_XXW/BUFX2
set_dont_use ms080cmosxCells_XXW/INVX16
set_dont_use ms080cmosxCells_XXW/INVX2
set_dont_use ms080cmosxCells_XXW/INVX4
set_dont_use ms080cmosxCells_XXW/INVX8
set_dont_use ms080cmosxCells_XXW/NAND2X2
set_dont_use ms080cmosxCells_XXW/NAND2X3
set_dont_use ms080cmosxCells_XXW/NAND2X3
set_dont_use ms080cmosxCells_XXW/NOR2X2
set_dont_use ms080cmosxCells_XXW/NOR2X3
set_dont_use ms080cmosxCells_XXW/NOR2X4
set_dont_use ms080cmosxCells_XXW/OR2X2
set_dont_use ms080cmosxCells_XXW/OR2X3
set_dont_use ms080cmosxCells_XXW/XOR2X2
set_dont_use ms080cmosxCells_XXW/AND3X2
set_dont_use ms080cmosxCells_XXW/AND4X2
set_dont_use ms080cmosxCells_XXW/BUFX4
set_dont_use ms080cmosxCells_XXW/INVX12
set_dont_use ms080cmosxCells_XXW/NAND3X2
set_dont_use ms080cmosxCells_XXW/NAND4X2
set_dont_use ms080cmosxCells_XXW/OR2X4
set_dont_use ms080cmosxCells_XXW/OR3X2
set_dont_use ms080cmosxCells_XXW/OR4X2
set_dont_use ms080cmosxCells_XXW/BUFX12
set_dont_use ms080cmosxCells_XXW/BUFX16
set_dont_use ms080cmosxCells_XXW/BUFX20
set_dont_use ms080cmosxCells_XXW/BUFX8
set_dont_use ms080cmosxCells_XXW/INVX20
set_dont_use ms080cmosxCells_XXW/DEC4
set_dont_use ms080cmosxCells_XXW/DEL1

86

set_dont_use ms080cmosxCells_XXW/DEL2
set_dont_use ms080cmosxCells_XXW/DFFR_SCN
set_dont_use ms080cmosxCells_XXW/DFFSR
set_dont_use ms080cmosxCells_XXW/DSEL4
set_dont_use ms080cmosxCells_XXW/EDFF
set_dont_use ms080cmosxCells_XXW/MAJ3N
set_dont_use ms080cmosxCells_XXW/NDLAT
set_dont_use ms080cmosxCells_XXW/OAI21
set_dont_use ms080cmosxCells_XXW/OR3
set_dont_use ms080cmosxCells_XXW/OR4
set_dont_use ms080cmosxCells_XXW/TBUF
set_dont_use ms080cmosxCells_XXW/TBUFX2
set_dont_use ms080cmosxCells_XXW/TBUFX4
set_dont_use ms080cmosxCells_XXW/TINV
set_dont_use ms080cmosxCells_XXW/TLATR
set_dont_use ms080cmosxCells_XXW/AND5
set_dont_use ms080cmosxCells_XXW/AND6
set_dont_use ms080cmosxCells_XXW/AOI211
set_dont_use ms080cmosxCells_XXW/AOI221
set_dont_use ms080cmosxCells_XXW/AOI222
set_dont_use ms080cmosxCells_XXW/AOI311
set_dont_use ms080cmosxCells_XXW/AOI321
set_dont_use ms080cmosxCells_XXW/AOI322
set_dont_use ms080cmosxCells_XXW/DFFSR_SCN
set_dont_use ms080cmosxCells_XXW/DFFS_SCN
set_dont_use ms080cmosxCells_XXW/DFF_SCN
set_dont_use ms080cmosxCells_XXW/EDFFS
set_dont_use ms080cmosxCells_XXW/EDFFS_SCN
set_dont_use ms080cmosxCells_XXW/EDFF_SCN
set_dont_use ms080cmosxCells_XXW/FADD
set_dont_use ms080cmosxCells_XXW/GPULD
set_dont_use ms080cmosxCells_XXW/GPULU
set_dont_use ms080cmosxCells_XXW/HADD
set_dont_use ms080cmosxCells_XXW/JKFFS
set_dont_use ms080cmosxCells_XXW/JKFF_SCN
set_dont_use ms080cmosxCells_XXW/NAND5
set_dont_use ms080cmosxCells_XXW/NAND6
set_dont_use ms080cmosxCells_XXW/NOR4
set_dont_use ms080cmosxCells_XXW/NOR4X2
set_dont_use ms080cmosxCells_XXW/NOR5
set_dont_use ms080cmosxCells_XXW/NOR6
set_dont_use ms080cmosxCells_XXW/NRLAT
set_dont_use ms080cmosxCells_XXW/OAI211
set_dont_use ms080cmosxCells_XXW/OAI22

87

set_dont_use ms080cmosxCells_XXW/OAI221
set_dont_use ms080cmosxCells_XXW/OAI31
set_dont_use ms080cmosxCells_XXW/PWR_RESET
set_dont_use ms080cmosxCells_XXW/TBUFX12
set_dont_use ms080cmosxCells_XXW/TBUFX8
set_dont_use ms080cmosxCells_XXW/TINVX2
set_dont_use ms080cmosxCells_XXW/TLAT
set_dont_use ms080cmosxCells_XXW/TLATS
set_dont_use ms080cmosxCells_XXW/XNOR2X2
set_dont_use ms080cmosxCells_XXW/XOR3
set_dont_use ms080cmosxCells_XXW/XOR3X2
set_dont_use ms080cmosxCells_XXW/AND7
set_dont_use ms080cmosxCells_XXW/AND8
set_dont_use ms080cmosxCells_XXW/AOI21
set_dont_use ms080cmosxCells_XXW/AOI22
set_dont_use ms080cmosxCells_XXW/AOI31
set_dont_use ms080cmosxCells_XXW/AOI32
set_dont_use ms080cmosxCells_XXW/AOI33
set_dont_use ms080cmosxCells_XXW/AOI331
set_dont_use ms080cmosxCells_XXW/AOI332
set_dont_use ms080cmosxCells_XXW/AOI333
set_dont_use ms080cmosxCells_XXW/BUS_COND
set_dont_use ms080cmosxCells_XXW/EDFFR
set_dont_use ms080cmosxCells_XXW/EDFFR_SCN
set_dont_use ms080cmosxCells_XXW/EDFFSR
set_dont_use ms080cmosxCells_XXW/EDFFSR_SCN
set_dont_use ms080cmosxCells_XXW/JKFFR_SCN
set_dont_use ms080cmosxCells_XXW/JKFFSR
set_dont_use ms080cmosxCells_XXW/JKFFSR_SCN
set_dont_use ms080cmosxCells_XXW/JKFFS_SCN
set_dont_use ms080cmosxCells_XXW/NAND7
set_dont_use ms080cmosxCells_XXW/NAND8
set_dont_use ms080cmosxCells_XXW/NOR7
set_dont_use ms080cmosxCells_XXW/NOR8
set_dont_use ms080cmosxCells_XXW/OAI222
set_dont_use ms080cmosxCells_XXW/OAI311
set_dont_use ms080cmosxCells_XXW/OAI32
set_dont_use ms080cmosxCells_XXW/OAI321
set_dont_use ms080cmosxCells_XXW/OAI322
set_dont_use ms080cmosxCells_XXW/OAI33
set_dont_use ms080cmosxCells_XXW/OAI331
set_dont_use ms080cmosxCells_XXW/OAI332
set_dont_use ms080cmosxCells_XXW/OAI333
set_dont_use ms080cmosxCells_XXW/OR5

88

set_dont_use ms080cmosxCells_XXW/OR6
set_dont_use ms080cmosxCells_XXW/OR7
set_dont_use ms080cmosxCells_XXW/OR8
set_dont_use ms080cmosxCells_XXW/TBUFX16
set_dont_use ms080cmosxCells_XXW/TBUFX20
set_dont_use ms080cmosxCells_XXW/TINVX12
set_dont_use ms080cmosxCells_XXW/TINVX16
set_dont_use ms080cmosxCells_XXW/TINVX20
set_dont_use ms080cmosxCells_XXW/TINVX4
set_dont_use ms080cmosxCells_XXW/TINVX8
set_dont_use ms080cmosxCells_XXW/TLATSR
set_dont_use ms080cmosxCells_XXW/XNOR3
set_dont_use ms080cmosxCells_XXW/XNOR3X2
current_design = clockrecoverer
uniquify
set_max_area 0
compile -incremental
report_timing

A.3 MATLAB Scripts

%DDBPSK demodulator
function y= DDBPSKd(x,k);
y=[];
th=pi/2-(pi/2)*sign(x);
for i=1:(length(x)-(k+1))

thd=(th(i+k+1)-th(i+k))-(th(i+1)-th(i));
ybar=(thd-pi/2)*2/pi;
y=[y -cos(thd)];

end

%DDBPSK modulator
function [A,y]=DDBPSKm(x,SNR,k);
A=sqrt(2)*((10)^(SNR/20));
thd=x*pi/2 + pi/2;
y=[pi*ones(1,k+1)];
for i=1:length(x)

th=abs(thd(i)+y(i+k)+y(i+1)-y(i));
y=[y th];

end

%Doppler channel model
function [sys,x0,str,ts] = sfundsc1(t,x,u,flag,Ts,dmax,ddmax)

89

switch flag,
% Initialization %
case 0,
[sys,x0,str,ts]=mdlInitializeSizes(Ts,dmax,ddmax);
% Update %
case 2,
sys = mdlUpdate(t,x,u,Ts,dmax,ddmax);

% Output %
case 3,
sys = mdlOutputs(t,x,u,Ts,dmax,ddmax);

% Terminate %
case 9,
sys = [];

otherwise
error([’unhandled flag = ’,num2str(flag)]);

end
%end sfundsc1
% mdlInitializeSizes
% Return the sizes, initial conditions, and sample times for the
% S-function.
function [sys,x0,str,ts]=mdlInitializeSizes(Ts,dmax,ddmax)
sizes = simsizes;
sizes.NumContStates = 0;
sizes.NumDiscStates = 2;
sizes.NumOutputs = 2;
sizes.NumInputs = 2;
sizes.DirFeedthrough = 2;
sizes.NumSampleTimes = 1;
sys = simsizes(sizes);
x0 = [0 2*(rand-1)*dmax];%4*pi*(rand-0.5)*dmax*Ts;
str = [];
ts = [Ts 0]; % Ts set by user
% end mdlInitializeSizes
% mdlUpdate
% Handle discrete state updates, sample time hits, and major time step
% requirements.
function sys = mdlUpdate(t,x,u,Ts,dmax,ddmax)
ph=x(1);
dop=x(2);
ph=ph+2*pi*dop*Ts; % new phase = old phase + increment
dop=dop+ddmax; % new doppler = old doppler + change;
if (dop>dmax) dop=dmax;
elseif (dop<-dmax) dop=-dmax;
end

90

sys=[ph;dop];
%end mdlUpdate
% mdlOutputs
% Return the output vector for the S-function
function sys = mdlOutputs(t,x,u,Ts,dmax,ddmax)
ph=x(1);
if (u~=[0 0]’)

th=rand*2*pi;
sys=0.005*[cos(th) sin(th)]’;

end
sys = [u(1)*cos(ph)-u(2)*sin(ph) u(1)*sin(ph)+u(2)*cos(ph)]’;
%end mdlOutputs

%timing simulation data generator for Simulink
clear all;clc
upfreq=4;
N=32;
Fk=100000;
Fc=2e6; %carrier freq
Fs=upfreq*Fc;%sampling rate
Tk=1/Fk;
Tc=1/Fc;
Tb=1/Fk;
Ts=1/Fs;
dmax=10000;
ddmax=10;
upfreq=4; %upsample rate
len=10;
SNR=120;
ain=ones(1,len);
b=[ones(1,10) -ones(1,10)];
b=[b b b b b];
c=abs(b);
ain(1:2:len)=-1;
ain=[ain ain ain ain ain ain ain ain ain ain];
ain=[-ones(1,10) ain ain ain ain ain ain ain ain]
len=length(ain);
grid off
sim(’timingoldver’);
yout=yout(:);
yout=sign(yout);
save -ascii data.mxt yout

91

%reciever simulator for Simulink
clc;
clear all
upfreq=4; %upsample rate
len=10; % no of bits of data
x=randsrc(len,1,[],1235);
dmax=10000;
ddmax=10;
Fk=100e3;
Fc=2e6; %carrier freq
Fb=100e3; %bitrate
Fs=upfreq*Fc;%sampling rate
N=Fs/Fb;% downsample rate
Tb=1/Fb;
Ts=1/(Fs);
Tc=1/(Fc);
Tk=1/Fk;
[len Fb Fc Fs]
snr=[14 10 5];
BER=[0 0 0];
[A,simin]=DDBPSKm(x,1,1);
simin=[cos(simin) -1];
format long
for i=1:length(snr)
SNR=snr(i);
sim(’reciverold’);
temp(1:len)=-yout(4:3+len);
BER(i)=length(find(temp~=x’))/len;
end

%performance comparison between DDPSK1, DDPSK2 and FSK
clear all;
%loop for SNR
format long
bersnr1=[];
bersnr2=[];
Runs = 10000;
k=2;
for SNR = 2:0.1:6

b=rand(1,Runs);
noise1 = randn(1,Runs+k);
noise2 = randn(1,Runs+k+1);

92

signal=sign(b-0.5);
k=1;
transmitted1=DDBPSKm(signal,SNR,k);
recieved1=transmitted1+noise1;
predicted1=DDBPSKd(recieved1,k);
BER1 = length(find(predicted1~=signal))/length(signal);
bersnr1=[bersnr1 BER1];
k=2;
transmitted2=DDBPSKm(signal,SNR,k);
recieved2=transmitted2+noise2;
predicted2=DDBPSKd(recieved2,k);
BER2 = length(find(predicted2~=signal))/length(signal);
bersnr2=[bersnr2 BER2];

end
SNR=2:0.1:6;
bertheo=0.5*erfc(sqrt(SNR));
save bersnr1
save bersnr2
save bertheo
semilogy(SNR,bersnr1,’b’,SNR,bersnr2,’r’,SNR,bertheo,’g-.’);

93

Bibliography

[1] L.M. Davis, I.B. Collings, R.J. Evans, “Estimation of LEO satellite channels ”Proceedings of

1997 International Conference on Information, Communications and Signal Processing, 1997.

ICICS” Vol. 1, pp. 15-19, 9-12 Sept. 1997.

[2] Aura Ganz, Yebin Gong, Bo Li, “Performance study of low earth orbit satellite systems ”,IEEE

transaction on communication Vol. 42, pp. 1866-1871, Feb 1994.

[3] Cheng-Ying Yang, Junghwan Kim, ”Performance analysis of low earth orbit (LEO) land mobile

satellite using moment technique”, IEEE Proceeding Military Communications Conference,

1998, MILCOM 98 Vol. 3, pp. 883-887, 18-21 Oct. 1998.

[4] I. Ali, N. Al-Dhahir, J.E. Hershey, Doppler characterization for LEO satellites,IEEE Transac-

tions on Communications Vol. 46, Issue 3, pp 309-313, March 1998.

[5] E. Vilar, J. Austin, “Analysis and correction techniques of Doppler shift for nongeosynchronous

communication satellites”, International Journal of Satellite Communication, Vol. 9, pp. 123-

126, 1991.

[6] M. Changning, W. Dongjin, The performance of DDPSK over LEO mobile satellite channels.

[7] M. K. Simon and M. H. Sami, Digital Communication Techniques: Signal Design and Detection.

Englewood Cliffs, NJ: Prentice-Hall, 1995.

94

[8] FSK : Signals and Demodulation, http://rfwireless.rell.com/pdfs/TN WJfsk.pdf

[9] Non-Coherent Detection, www.ntu.edu.sg/home/asysgao/SC205-6-P2.pdf

[10] Rafferty W. and Divsalar D., “ Modulation and coding for land mobile satellite channels, “

IEEE Proc. ICC88 June 1988, pp.1105-1111.

[11] M.K. Simon, D. Divsalar, ”Doppler-corrected differential detection, ”IEEE Transactions on

Communications Vol. 37, pp 99-109, Feb 1989.

[12] D. Divsalar, M.K. Simon, ”Multiple-Symbol differential detection of MPSK, ”IEEE transac-

tions on communication Vol. 38, pp. 300-308, Mar 1990.

[13] M.K.Simon and D. Divasalar, “ The implementation and performance of single and double

differential detection schemes, ”IEEE transactions on communication , pp. 278-291, Feb 1992.

[14] Fulvio Gini and Georgios B. Giannakis, “ Generalized Differential Encoding: A Nonlinear

Signal Processing Perspective, ”IEEE Transactions on Signal Processing Vol. 46, No. 11, Nov.

1998.

[15] D.K. Alphen, W.C. Lindsey, ”Higher-order differential phase shift keying, ”IEEE Transactions

on comunication Vol. 42, pp. 440-448, Feb. 1994.

[16] N.Hamamoto, ”Differential detection with IIR filter for improving DPSK detection perfor-

mance, ”IEEE Trnasactions on Communications Vol. 44, pp. 959-966, August 1996.

[17] J.L Buetefuer and W.G Cowley, “ A frequency insensitive demodulator for double differential

PSK, ”DASP 2001

[18] Simon M.K. and Lindsdey W.C., Digital Communication Technique. Englewood Cliffs, NJ:

Prentice-Hall,1995.

95

[19] Grayver, E., Daneshrad, B., “ A low-power all-digital FSK receiver for space applications,

”IEEE Transactions on Communications Vol. 49, Issue 5, May 2001. pp 911-921

[20] Wu, P.H., “ The optimal power BPSK demodulator with a 1-bit front-end, ”Proc. MILCOM’98

Vol. 3.3, 1998. pp 730-735

[21] W. C. Lindsey and C. M. Chie, “ A Survey of digital phase-locked loops, ”Proc. IEEE 69, 4,

pp.410-431, April 1981

[22] Using Field programmable gate arrays for Digital PLL applications,

www.actel.com/appnotes/s04 18.pdf

[23] Rhode, U.L., Digital PLL Frequency Synthesizers, Theory and Design. Englewood Cliffs, NJ:

Prentice Hall, 1983

[24] Gardner, F.M., Phase lock Techniques, 2nd Ed. New York: Wiley, 1979

[25] Lindsey, W.C., Phase-Locked Loops and their applications. New York: IEEE Press

[26] Huang, T.H.D., Zencir E., Yuce M.R., Dogan N.S.,Liu W. and Arvas E., “A 22-mW 435MHz

silicon on insulator CMOS high-gain LNA for subsampling receivers,“ IEEE ISCAS03 in press

[27] Zencir E., Dogan N.S. and Arvas E.,“ A low-power UHF RF frontend for a low-IF receiver,“

IEEE ASIC/SOC02 , pp.331-335.

[28] Yuce M.R., Liu W., Damiano J., Bharath B., Franzon P.F., Dogan N.S., “ A Low-Power PSK

receiver for space applications in 0.35um SOI CMOS“

[29] Simulink Model-Based and System-Based Design - writing S functions

[30] Colinge J.P., Silicon-on-Insulator Technology: Materials to VLSI. Kluwer Academic Publish-

ers,1997.

