
ABSTRACT

LEE, SEUNG YONG. A Framework for Real-time Synchronization in Intelligent Media

Generators. (Under the direction of James C. Lester.)

Recent advances in computer graphics and multimedia technologies have contributed to the

development of interactive media-rich systems that generate media elements dynamically in

multiple modalities to present information in an effective and appealing manner to users.

Utilizing media elements in an application that requires them to be temporally coordinated

in real-time presents synchronization issues because the wrong timing or duration of media

elements will be easily detected by the user. Most media-rich systems have solved various

aspects of the media element synchronization problem. However, they have done so in an

ad hoc manner without providing a generic reusable framework. This thesis proposes a

framework for real-time synchronization in intelligent media generators. Our research

addresses six primary issues that are essential to creating media-rich systems that do not

utilize an ad hoc solution to their media element synchronization problems: synchronization

of media elements, decoupling high-level and low-level processing, extensibility, media

element sequencing, real-time performance, and domain-independence. The framework has

been implemented in an agent-based multimedia generator for an intelligent tutoring system

to demonstrate its feasibility.

A Framework for Real-time Synchronization
in Intelligent Media Generators

by

Seung Yong Lee

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Master of Science

COMPUTER SCIENCE

Raleigh

2004

APPROVED BY:

________________________________ ________________________________

Chair of Advisory Committee

 BIOGRAPHY

Seung Yong Lee was born in Pusan, South Korea in 1970. He immigrated to the United

States in 1987. After graduating from high school he attended North Carolina State

University and received a Bachelor of Science in Chemical Engineering and Pulp and Paper

Science Technology in 1997. He decided to move to a new career in Computer Science

after working in industry for a few years. He began his graduate studies at North Carolina

State University in the Department of Computer Science and joined the IntelliMedia

Initiative. He looks forward to continued success in his new field.

ii

ACKNOWLEDGMENTS

My appreciation goes out to everyone who helped make this research possible. I would like

to express my sincere gratitude to my advisor, James Lester, for his countless hours of

guidance and support. I would also like to thank my committee members, Pat Fitzgerald

and Michael Young, for their direction and collaboration.

My thanks also go to the IntelliMedia team members for their contribution to the project.

Thanks to Charles Callaway, Randy Casstevens, and Wei Zhang for their helpful

suggestions on the PHYSVIZ project. Infinite thanks to Mike Cuales, Pat Fitzgerald and Phil

Motley who helped me build models and characters for the PHYSVIZ project. I especially

thank Bradford Mott for his endless support.

Finally, I thank my family for their patience, support, and encouragement.

Support for this research was provided in part by the National Science Foundation under

REC-9973157.

iii

Table of Contents

List of Figures ……………………………………………………………………………… v

1 Introduction... 1

1.1 Overview of Research... 3
1.2 Thesis Organization .. 5

2 Issues in Multimedia Synchronization.. 7
2.1 Importance of Synchronization in Media-Rich Systems .. 7
2.2 Approaches to Synchronization Specification.. 9
2.3 Criteria for Building a Generic Framework.. 10

3 A Generic Framework for Real-Time Synchronization ... 14
3.1 Specification Parser .. 15
3.2 Specification Interpreter ... 16
3.3 Synchronizer ... 18
3.4 An Animated Agent Based Framework.. 20

3.4.1 Specification Interpreter ... 20
3.4.2 Synchronizer ... 24

3.5 An IMMPS Based Framework ... 29
4 An Implemented Animated Agent Based System .. 31

4.1 Specification Language .. 31
4.2 Gesture Element Selection.. 35
4.3 Media Scheduler ... 38
4.4 Animation ... 40
4.5 Examples... 42

4.5.1 “Hello! I am an animated agent.” ... 43
4.5.2 “I want to introduce you to a very interesting piece of equipment.” 45
4.5.3 “This is a battery operated motor and …” .. 47

5 Related Work .. 49
6 Conclusions and Future Work .. 54

6.1 Future Work.. 55
6.2 Concluding Remarks .. 57

7 References... 58

iv

List of Figures

Figure 1-1: PhysViz – A 3D Learning Environment.. 5
Figure 2-1: Separation of High-Level and Lower-Level Coordination................................ 11
Figure 3-1: A Generic Framework for Multimedia Synchronization................................... 15
Figure 3-2: A Parsed Media Element Specification ... 16
Figure 3-3: An Interpreted Media Element Specification .. 18
Figure 3-4: Synchronized Media Elements .. 19
Figure 3-5: A Framework for Animated Agent Based Systems... 21
Figure 3-6: An Animated Agent Based Specification Interpreter .. 23
Figure 3-7: An Animated Agent Based Synchronizer.. 24
Figure 3-8: Media Scheduler .. 25
Figure 3-9: Sample Media Element Scheduling... 28
Figure 3-10: A Framework for IMMPS Based Systems .. 29
Figure 4-1: Example Gestures .. 32
Figure 4-2: Document Type Definition for PHYSVIZ Specification..................................... 33
Figure 4-3: Document Type Definition Tree Structure .. 33
Figure 4-4: Pointing Gestures in PHYSVIZ ... 37
Figure 4-5: UML Diagram of the Media Scheduler ... 39
Figure 4-6: Sample BVH Animation File... 41
Figure 4-7: “Hello! I am an animated agent.” .. 44
Figure 4-8: “I want to introduce you to a…”.. 46
Figure 4-9: “This is a battery operated motor and…” .. 48

v

1 Introduction

For the past decade, intelligent media generation has been the subject of increasing

attention. Researchers have investigated systems that can dynamically create and sequence

media elements in multiple modalities to present information in an effective and appealing

way to the user. Two primary areas of research that have received much attention are the

study of embodied animated agents and intelligent multimedia presentations. Systems

within both of these areas of inquiry convey information using multiple media elements

from multiple modalities, such as speech, text, sound, and animations. A common problem

that exists for each of these systems is the need to properly synchronize and schedule

dynamically generated media elements. Any irregularities in the synchronization of these

elements are likely to be noticed by the user, which could significantly degrade the overall

effectiveness of the system. However, little attention has been placed on developing a

generic framework for properly handling the synchronization and scheduling of

dynamically generating media elements.

An embodied animated agent is a life-like character embedded in a user interface

with the capacity to interact with users both verbally and nonverbally (Cassell, 2000; Lester

et al., 1999). STEVE is an animated pedagogical agent, inhabiting a virtual learning

environment for the domain of team training, which provides real-time spoken and

1

animated advice to learners (Rickel and Johnson, 1997). If the media elements associated

with the agent’s behaviors are inappropriately synchronized, the wrong information might

be conveyed to the user, which would result in an ineffective learning experience. For

example, during a training exercise, if the learner is uncertain about the next step and asks

STEVE for advice, he might respond with, “I suggest you press the function test button,”

while also using a pointing gesture to clearly disambiguate the function test button among

other buttons. If the pointing gestures were not properly synchronized with the utterance,

the learner might become confused.

Intelligent multimedia presentation systems (André et al., 1993; Daniel et al., 1999;

Feiner and Mckeown, 1993; McKeown et al., 2001; Towns et al., 1998) dynamically

assemble complex multimedia presentation from various media elements. Systems like

these must provide proper media synchronization to ensure that the generated multimedia

presentations are understandable to the listener. Personalized Plan-Based Presenter (PPP)

generates multimedia explanations for a wide range of applications, including computer-

based instruction, guides for information spaces, and Web-based product advertisement

(André and Rist, 1996). For example, in the travel domain, PPP was used to prepare

multimedia presentations regarding destinations such as cities and hotels. Using photos,

animations, and speech the system prepared a customized presentation to help users learn

more about their destinations. If the photos, animations, and speech were not properly

synchronized, the resulting presentation would be very ineffective.

All of the above media-rich systems have solved some aspects of the media element

synchronization and scheduling problem. However, they have done so in an ad hoc manner

2

without providing a generic reusable framework. Since all intelligent media generators

require a synchronization and scheduling component to convey information effectively and

appropriately to the user in a real-time environment, a generic framework for multimedia

synchronization with well-defined interfaces would significantly benefit media-rich

generation applications. This type of component can be utilized in a wide variety of

interactive systems, including virtual reality training, education, simulation, and

entertainment applications.

1.1 Overview of Research

For interactive systems that utilize dynamically generated media elements to be

easily created and properly maintained, it is useful to partition the synchronization and

scheduling into high-level and lower-level processing components operating as separate

entities with well-defined interfaces. Properly decoupled components do not need to know

how their requests are created or where they are executed. In particular, the high-level

processes should communicate with lower-level processes through media element

specifications. These media element specifications provide abstract information regarding

which elements should be executed and when they should be executed relative to other

elements. This is similar to the approach taken by Pelachaud for the Affective Presentation

Markup Langauge (APML) to decouple the specification of facial expressions and facial

models (Pelachaud and Bilvi, 2002). It is the responsibility of the lower-level processes to

handle the detailed media element synchronization, generate appropriate media element

sequences to complement other elements, and schedule generated elements upon receiving

3

the specifications. In this thesis, we propose a generic framework for handling these lower-

level responsibilities. Specifically, the proposed framework has the following goals:

• Synchronization: Because timing is essential in conveying information during

communication, the framework should provide tight synchrony among the various

communicative modalities.

• Decoupling: The communication between high-level and lower-level coordination

processes should occur via well-defined interfaces using media element

specifications and event notifications.

• Extensibility: The entire framework should be modular and extensible enabling new

modalities to be added to the framework with ease without affecting other media

element components.

• Media Element Sequencing: Because the high-level media element specifications

provide only abstract information for selecting elements, the framework should be

able to select appropriate sequences of elements based on the current state of the

environment.

• Real-time Performance: To provide the responsive interaction required by

interactive environments, the framework should operate in real-time.

• Domain Independence: The framework should be adaptable to diverse domains. As

long as knowledge of the current domain is available, the process of handling media

elements should be the same.

The proposed framework has been implemented in the PHYSVIZ test-bed

application. PHYSVIZ is a 3D learning environment for the domain of physics focusing on

concepts of electromagnetism. Users interact with the system via an embodied animated

4

pedagogical agent. The job of the agent is to answer questions from the user by describing

how battery-operated motors work. The agent is a life-like character with a fully articulated

body that communicates with the user using verbal and nonverbal behaviors. In the process

of describing how battery-operated motors operate, the agent uses coordinated speech

utterances and gestures. Figure 1-1 shows the PHYSVIZ system.

Figure 1-1: PhysViz – A 3D Learning Environment

1.2 Thesis Organization

Chapter 1 provides an introduction to the problem and an overview of the research

goals. In Chapter 2, the detailed research problem and motivation is discussed. Chapter 3

presents a description of the framework’s architecture for the synchronization of media

elements in a real-time environment. Chapter 4 provides details associated with the

PHYSVIZ test-bed system. This chapter discusses the low-level details of the implemented

architecture and gives a number of example scenarios. Chapter 5 examines related work

5

and demonstrates how the framework can be applied to other systems. The final chapter

concludes the thesis and proposes future work.

6

2 Issues in Multimedia Synchronization

Due to the advancements in computer graphics and multimedia technologies, the

life-likeness of embodied animated agents and the richness of intelligent multimedia

presentation systems have greatly improved over the last few years. A growing number of

character animation tools and systems are capable of creating very realistic gestures, facial

expressions, and body language. Also, some systems use these realistic life-like characters

along with virtual cameras, speech, and text. However, the synchronization of media

elements in these multimodal environments presents a significant problem. Utilizing media

elements in an application that requires them to be temporally coordinated in real-time

presents synchronization issues because users will easily detect the wrong timing or

duration of media elements. Most of the existing media-rich systems have solved various

aspects of the media element synchronization problem. However, they have done so in an

ad hoc manner without providing a generic reusable framework.

2.1 Importance of Synchronization in Media-Rich Systems

In everyday interaction, people exchange information by participating in

conversations. In face-to-face conversations people use gestures, facial expressions, gaze,

and body movements in addition to their actual speech to disambiguate, emphasize, and

provide additional information to the listener. Such nonverbal behaviors are a fundamental

7

part of a conversation, and it is difficult to imagine separating them from their

corresponding verbal behaviors and retaining the same level of communicative

effectiveness. Furthermore, people instinctively synchronize the gestures and facial

expressions with speech easily and naturally in their daily conversational activities.

However, if these verbal and nonverbal behaviors are inappropriately synchronized or the

wrong behaviors are selected then the participants in the conversation might receive

incorrect information and become confused. Because humans are accustomed to

communicating in this manner, any irregularities with the behavior synchronization and

selection will be very noticeable and distracting. These same issues are present when

humans interact with embodied animated agents as they become increasingly believable

and life-like.

Believability is a key feature of all animated agents. A believable character is one

who seems life-like, who is able to express emotion, and whose actions make sense, thus

allowing users to suspend disbelief (Bates 1994; Mateas 1997). Humans naturally

synchronize and select gestures with speech during communication and change facial

expressions as emotion changes. If media elements for an animated agent are not properly

synchronized and scheduled, believability will be greatly reduced.

Synchronization is an essential feature for an animated pedagogical agent. In

interactive learning environments, the presence of a life-like animated agent can provide

positive influences on student’s learning effectiveness (Lester et al., 1997). However, if

media elements are not properly synchronized then the life-likeness of the agent is

weakened. If the animated agent describes one thing and points to another or if the agent

8

makes a gesture for no apparent reason then the user might get the wrong idea and become

confused which would result in an ineffective learning experience.

Synchronization also serves an important role in intelligent multimedia presentation

systems (IMMPS). An IMMPS has a library of accessible media elements and presentation

methods. By using a combination of these alternative media and presentation techniques,

IMMPSs provide a rich means of communicating information to users through their

presentations (Roth and Hefley, 1993). To attain correct communicating information, the

system must provide proper media synchronization. If the media elements associated with

the multimedia presentation are inappropriately synchronized, the effectiveness of the

presentation will be greatly reduced.

2.2 Approaches to Synchronization Specification

To facilitate modularity and extensibility, a media element specification language

can be used. For example, VHML (Virtual Human Markup Language) is used to allow

interactions between users and a virtual human by providing several sub-languages for each

virtual human modality (Beard and Reid, 2002). FAML is for facial expression, SML is for

speech, EML is for emotion, and GML is for gesture. The MPML (Multi-modal Presentation

Markup Language) is an XML-based language used to control characters for multimedia

presentations on the World Wide Web (Ishizuka et al., 2000). The BEAT (Behavior

Expression Animation Toolkit) system enables animation of agents. It generates

appropriate gestures and facial animations for speech generated from typed text (Cassell et

al., 2001). The BEAT system is used in MACK (Cassell et at., 2002). MACK is an embodied

9

conversational agent who can give directions to the MIT Media Lab research groups and

people. LEA (Busine et al., 2002) is a 2D embodied agent project that uses specifications to

annotate human multimodal behaviors. The specification is based on the Tycoon typology

(Martin et al., 2001) for natural agent behavior. These systems have tried to decouple the

high-level and lower-level coordination processing components. However, their work has

focused on the specification language and not the lower-level synchronization issues.

2.3 Criteria for Building a Generic Framework

Various aspects of the media element synchronization and scheduling problem have

been solved by existing media-rich systems. However, they have done so in an ad hoc

manner without providing a generic reusable framework. In order for media-rich systems

to have such a framework, six fundamental issues must be addressed:

1. Synchronization of media elements: Since interactive media-rich environments have

multiple modalities, it is crucial that media elements are synchronized to deliver the

correct information at the proper time. For example, COSMO (Lester et al., 1999),

an animated pedagogical agent, inhabits a learning environment for the domain of

Internet packet routing and provides real-time spoken and animated advice to

learners. If the agent would like to point out two computers and indicate that one

has low traffic and the other one has high traffic then he might say, “This one has

low traffic and that one has high traffic,” while also using pointing gestures to

clearly disambiguate the two computers. In this case, if the pointing gestures did

not properly synchronize with the utterance of “this one” and “that one” the learner

might become confused. PLANT WORLD (Daniel et al., 1999) generates multimodal

explanations for botanical anatomy and physiology in a 3D learning environment. It

generates visual and verbal explanations to answer questions posed by users.

10

Suppose the system is beginning to explain the role of chloroplasts. The generated

verbal explanation might be “The chloroplasts produce food sugars for the plant.

Food sugars are used throughout the plant for energy,” while the visual explanation

might have the virtual camera show the chloroplasts and an animation of food

sugars. Once again it is important for these different media elements to properly

synchronize.

High-Level Coordination

Lower-Level Coordination

Speech Speech

Gesture Gesture

Sound Sound Sound

Camera

Timeline
Media Elements

Facial Expression

Time

Media

Specification

Figure 2-1: Separation of High-Level and Lower-Level Coordination

2. Decoupling: Decoupling components within a complex system is an important

feature when building a generic framework. By separating high-level and lower-

11

level processing components and clearly defining their operation, media elements

can be easily created and properly maintained as shown in Figure 2-1. The

components operate as separate entities and communicate thru well-defined media

element specifications. Low-level components generate appropriate media elements

and display them in a synchronized manner. Since the only communicative activity

is through media element specifications and event notifications, the low-level

processing components can be used in any media-rich system as long as the high-

level processing components provide the proper specifications.

3. Extensibility: The framework should be modular and extensible, enabling new

modalities to be added to the framework with ease without affecting other media

element components. For example, consider a system that is capable of generating

speech and gesture media elements for an embedded animated agent. If the system

needs to incorporate facial expressions along with speech and gestures for an

animated agent to express emotions, the speech and gesture components should not

be affected by the additional facial expression modality. Also, the specification

language only needs to be extended to include the appropriate tags (assuming it is an

XML-like language).

4. Media Element Sequencing: The media element specifications should contain

abstract information regarding which media elements should be executed and when

they should be executed relative to other media elements. It is the lower-level

processing component’s responsibility to select the appropriate media elements for

the current context. Imagine an animated agent inhabiting a learning environment

who tries to describe a battery-operated motor to the learner. If the agent would like

to point out the motor’s magnets and batteries then the specification could include

associated speech and abstract gesture information. For example, the speech for the

agent might be, “Here are the motor’s magnets and its batteries,” while specifying

pointing gestures to clearly disambiguate the magnets from the batteries. In this

case, the specification does not define which deictic gestures to point out the

12

magnets and batteries. The low-level processing component selects the most

appropriate deictic gestures and locomotion to properly point at the objects with the

utterance of “magnets” and “batteries.”

5. Real-time Performance: One approach to properly synchronizing the media

elements in a media-rich environment is to have a group of expert animators pre-

script all of the possible combinations of media elements. However, this method is

very expensive, time-consuming, and in many cases impractical since it requires a

large number of expert animators to cope with the combinatorics of producing

context-sensitive media elements. In general it is impossible to anticipate all

possible combinations of media elements to be displayed. A more practical

approach is to dynamically generate appropriate media elements during runtime in a

context-sensitive manner and synchronize them in real-time. The system should

automate the process of determining media elements and their synchronization.

6. Domain Independence: By creating a domain-independent framework, the

framework should enable the processing components to be reused for different

applications with few modifications. As long as knowledge of the current domain is

available, the process of handling the media elements should be the same.

A generic framework which addresses these six primary issues would be extremely

useful for building future media-rich systems that do not utilize an ad hoc solution to their

media element synchronization problems.

13

3 A Generic Framework for Real-Time
Synchronization

For interactive media-rich systems to convey information effectively and

appropriately to the user in a real-time environment, it is useful to partition the

synchronization and scheduling of media elements into high-level and lower-level

processing components working as separate entities with well-defined interfaces. To this

end, a generic framework for low-level multimedia synchronization was developed to

properly manage media elements as shown in Figure 3-1. A high-level processing

component, such as a presentation planner or pedagogical planner, generates abstract media

element specifications. These specifications are sent to the lower-level processing

component to extract information and interpret them within the current context to generate

the appropriate media elements. The generated media elements are then synchronized and

scheduled for execution. The synchronized media elements are placed on a multimedia

timeline to execute when the time is appropriate.

14

Specification
Interpreter

Context Model

Media Element
Type1 Library

Specification
Parser

Engines Synchronizer

Specification

User
Synchronized

Media

Media Element
Type1 Engine

Media Element
Typen Engine

Media Element
Type2 Engine

.

.

.

. ..Media Element
Type2 Library

Media Element
Typen Library

. ..

Media Element
Type1 Manager

Media Element
Type2 Manager

Media Element
Typen Manager

Figure 3-1: A Generic Framework for Multimedia Synchronization

3.1 Specification Parser

15

Because the high-level and lower-level processing components work as distinct

entities, their primary communication is via media element specifications. These

specifications are defined in an efficient way for annotations of multimodal behaviors. To

represent the proper relationships of media elements, the specification uses an XML-based

mark-up language. XML provides a natural way to represent media element information

and allows new media element types to be added to the framework by simply extending the

media element specification language with the appropriate tags. Also, XML is a good

choice for application developers since there are many tools available for parsing and

generating XML text.

Welcoming GestureGesture

Speech

Self Point Gesture Deictic Gesture

Hello, I am your
instructor

and this is a battery
operated motor.Pause Pause

Figure 3-2: A Parsed Media Element Specification

The Specification Parser parses the abstract media element specification to

determine what media elements need to be presented to the user. For example, a media

element specification containing three speech clauses is shown in Figure 3-2. Each speech

clause has an associated gesture specification, welcoming gesture for “Hello,” self point

gesture for “I am your instructor”, and deictic gesture for “and this is a battery operated

motor.” In addition, there are speech pauses between each of the clauses. As shown in the

figure, the specification contains abstract gesture information for each of the speech

clauses. The specification encodes the focus object information along with other media

elements to help with selecting the appropriate gestures. The parsed information is then

sent to the Specification Interpreter to select and generate the appropriate media elements.

3.2 Specification Interpreter

Once the Specification Interpreter receives the parsed specification information, the

interpreter analyzes the information and selects the appropriate media elements for the

16

current context. The input may contain abstract media element information along with their

type, focus object, and dependents. In order to choose the appropriate media elements, the

interpreter utilizes the available knowledge resources containing the necessary information

to make appropriate selection decisions. In the previous example, the specification gave

information about speech elements and the associated abstract gestures along with a

corresponding focus object. With this information, the interpreter instantiates media

elements for each of the media types by consulting the knowledge resources.

To select the most appropriate gesture element, the interpreter uses a context model.

The context model provides the current state of the world geometries and key properties of

world objects such as their location and orientation. Given the focus object and context

model, the interpreter is able to select the most appropriate media element for the current

context. For instance, the interpreter can create a sequence of media elements conforming

to the abstract specification, which ensure that the results actions are seamless. If the focus

of a pointing gesture were too far away, a walking behavior would be generated to walk

over to the object and point as shown in Figure 3-3. Additionally, the interpreter

determines the execution duration of the media elements. This duration helps with the

synchronization process when one media element needs to finish its execution at the same

time as an associated media element. Once all of the media elements have been

determined, they are sent to the Synchronizer to properly synchronize and schedule them.

17

Welcoming Gesture
(hand-wave)

Gesture

Speech

Self Point Gesture
(self-point)

Deictic Gesture
(right-middle-point)

Hello, I am your
instructor

and this is a battery
operated motor.Pause Pause

Locomotion Walk

Figure 3-3: An Interpreted Media Element Specification

3.3 Synchronizer

To achieve the proper synchronization, the Synchronizer uses the media scheduler

(a sub-component of the Synchronizer) and the media element managers to schedule each

of the media elements. Upon receiving information from the interpreter, the Synchronizer

distributes the media elements to their corresponding media element managers. Each media

element has an associated set of media execution instructions contained in a library;

however, the elements do not include information about how to invoke the media engine to

execute these instructions. The media element managers place a wrapper object around the

individual media elements to provide the needed interpretation trigger layer. Based on the

trigger type, the media element engines decide whether to start, pause, or stop the current

media element execution. The wrapper objects also include an execution notification

mechanism. Whenever the media element starts or ends its execution, the wrapper object

sends a notification to the media scheduler. This notification indicates to the media

scheduler which media elements, whose activation time is dependent upon notified

element’s start or completion time, are ready for execution.

18

As the media element managers generate the wrapper objects for their

corresponding media elements, the Synchronizer inserts these wrapper objects into the

media scheduler based on the media element dependency information given in the

specification. The media scheduler handles time-based scheduling, event-based scheduling,

or a combination of these scheduling methods. For example, the media scheduler provides

a mechanism to add a media element after an associated media element starts or stops. A

mechanism is also provided which adds a media element after a specified time delay.

Welcoming Gesture
(hand-wave)

Gesture

Speech

Self Point Gesture
(self-point)

Deictic Gesture (right-
middle-point)

Hello, I am an animated
agent

and this is a battery
operated motor.Pause Pause

Locomotion Walk

Hello, I am an animated agent

hand-wave self-point

Walk

Timeline

Time

Media

and this is a battery operated motor.

right-middle-point

Figure 3-4: Synchronized Media Elements

19

Finally, the media scheduler also provides a mechanism to add media elements after

a specified time delay relative to the start or end of an associated media element. Figure 3-

4 shows the results of placing media elements from the previous example on a multimedia

timeline for their execution.

3.4 An Animated Agent Based Framework

A generic framework for multimedia synchronization could help application

developers make animated agents convey information more effectively and appropriately

to the user in a real-time environment Since a generic framework facilitates modularity and

extensibility, application developers can easily develop additional modules without

affecting others. Figure 3-5 shows a framework design for an animated agent based system.

3.4.1 Specification Interpreter

The Specification Interpreter selects the most appropriate media elements, which

ensure an animated agent’s actions are seamless for the current context. In order to select

the proper media elements, the interpreter uses five static knowledge resources that contain

the necessary information to make selection decisions. Each knowledge resource includes

instructions on how to execute the corresponding media elements.

• Locomotion Library: Provides the agent with movements that allow it to move from

one place or orientation to another. Such movements include turning the agent’s

body and walking.

20

Specification
Interpreter Context Model

Locomotion
Library

Specification
Parser

Engines Synchronizer

Specification

User

Synchronized
Media

Speech Engine Sound Engine

Gesture Engine

Gesture Library

Sound Effect
Library

Media Element
Sequence Map

Idle-Time
Gesture Library

Speech Manager

Gesture Manager

Sound Effect
Manager

Route Planner

Locomotion
Manager

Locomotion
Engine

Idle-Time
Gesture History

Gesture History

Figure 3-5: A Framework for Animated Agent Based Systems

• Gesture Library: Maintains agent gesture information. Some examples are hand

waving, head turning, thinking, beat, and deictic behaviors.

• Idle-Time Gesture Library: Contains information about gestures, which are

appropriate to use for idle-time behaviors, such as yawning, scratching, sneezing,

brushing, stretching, and dancing.

21

• Media Element Sequence Map: At times the abstract specification represents more

than one lower-level media element. This resource provides the mappings between

such abstract media element specifications and the corresponding sequences of

media elements.

• Sound Effect Library: Stores information about sound effects.

The framework also contains dynamic resources in addition to the above static

resources. These resources are continuously updated as time passes. They constitute a

comprehensive representation of the state of the world model and agent at any point in time.

• Context Model: Provides the current state of world geometries and properties of

world objects. It also provides information about the agent’s position and

orientation.

• Gesture History: To prevent repeated occurrences of the same gesture, the gesture

history keeps track of how many times a gesture has been selected.

• Idle-Time Gesture History: Provides randomness of idle-time gesture, the idle-time

gesture history keeps track of how often each idle-time gesture has been selected.

Using these knowledge resources, the interpreter is able to translate the

specifications and create sequences of media elements. The algorithm for generating the

media elements is shown in Figure 3-6. First, the interpreter obtains the position and

location of the agent and the focus object, respectively. This information helps to

determine which gestures are appropriate to execute in the current world state. The

interpreter uses the Media Element Sequence Map to convert the parsed specification into a

22

sequence of media element directives. Determining the sequence of media element

directives is necessary since the high-level processing components provide abstract media

element specifications. These abstract media element specifications might result in a

combination of multiple media element directives.

I. Retrieve current location and orientation of agent and world model state.
II. For each remaining abstract media element specifications in set, in order,

A. Given abstract information, interpret a specification into representation of media
element sequences using the media element sequence map. If there is no
corresponding mapping, use the given specification as a sequence containing
one media element. Place the sequence of media elements in the given order of
the media element sequence map.

B. For each remaining media element directives in sequence, in order,
a. If the directive is a sound, retrieve corresponding media element from sound

library and add it to the media element list.
b. If the directive is an idle-time behavior, retrieve all possible corresponding

media elements where the agent can act appropriately for its current location
and orientation from the idle-time gesture library. Using the retrieved idle-
time gesture media elements, consult the idle-time gesture history to get a
single idle-time gesture media element that has a least occurrence. Add it to
the media element list.

c. If the directive is a locomotion behavior, consult the locomotion library
using the current agent location, orientation, and state of the world model to
get the appropriate media element. Add it to the media element list.

d. If the directive is an agent gesture, retrieve all possible corresponding media
elements where the agent can act appropriately for its current location,
orientation, and focus object from the gesture library. Using the retrieved
gesture media element, consult the gesture history to get a single gesture
media element that has a least occurrence. Add it to the media element list.

e. If the behavior is speech behavior, generate the speech media element. Add
it to the media element list.

f. Determine execution duration of the media element.
C. If all of the media element specifications in the sequence have been processed,

add the list of created media elements into a result set.
D. Send the resulting set of media elements to the Synchronizer

Figure 3-6: An Animated Agent Based Specification Interpreter

23

Given the sequence of media element directives, the interpreter consults the

corresponding knowledge resources to generate the most appropriate media elements. The

interpreter also determines how long the media element should execute to meet the

execution end time requirements.

3.4.2 Synchronizer

The media synchronizer plays an important role in the system. To make an agent

life-like, media elements for an animated agent must be properly synchronized. Upon

receiving media elements from the Specification Interpreter, the Synchronizer sends media

elements to the corresponding media element managers. The media element managers

create corresponding media engine triggers. These triggers are used as a communication

mechanism between the media engines and media elements. The triggers allow for the

communication of information such as when to start, pause, and stop media execution.

Each of the resulting media elements is sent to the media scheduler to schedule their

execution. The mechanisms for the basic process are given in Figure 3-7.

For each remaining set of media elements, in order,

A. For each remaining list of media elements in set, in order
a. Separate media elements based on their media type.
b. Send the separated media elements to the corresponding media managers to

create triggering mechanisms for each of the media elements.
B. Once all of the trigger objects for the media elements have been determined,

send them to the media scheduler to schedule their execution.

Figure 3-7: An Animated Agent Based Synchronizer

24

3.4.2.1 Media Scheduler

The resulting media elements produced by the Specification Interpreter are (need a

different verb here but not sure what is meant) sent to the media managers where they

determine the media engine triggering effects. Start and end media execution triggers are

included in the media element. The Media Scheduler utilizes the presentation of each

media element to schedule their execution. The basic scheduling mechanism is shown in

Figure 3-8.

I. While new media elements exist in the scheduler, in order

A. For each media element add it to the trigger dependent collection.
B. If any of media element in the trigger dependent collection meets their activation

criteria, add satisfied media elements into the corresponding resource-waiting
queue.

C. If any of the currently running media finish, send the corresponding media end
notification trigger.

D. If media resources became available, retrieve media element from resource
waiting queue and invoke engine to start the new element. Send the
corresponding media start notification trigger.

Figure 3-8: Media Scheduler

First, the scheduler inserts schedulable media elements into the trigger-dependent

collection. This collection is the waiting place for media elements where they queue for

their execution turn. Once the current media elements sends a start or end notification, the

scheduler moves the notified media elements from the trigger-dependent collection into

their corresponding resource-waiting queue. Media elements in the resource-waiting queue

are ready for their execution and will be executed as soon as the resource is available.

There is one resource-waiting queue per media type, such as gesture, speech, and sound. If

a schedulable media element needs to execute immediately, the element is added to the

25

resource-waiting queue directly. After a media resource becomes available, a media

element from the corresponding resource waiting queue is added to the resource and

executed. As soon as the media element starts and completes execution, a notification is

sent to the scheduler.

There are a few ways media elements can be added to the scheduler by a

component. If a media element is dependent upon the start or completion time of another

media element, a component can add the element to the scheduler by specifying its

dependent media element. A component may also give an execution delay time along with

the element’s dependence. A delay time is a time period where execution of the element is

delayed when the scheduler receives a start or end notification of the depended element. If

a media element needs to be executed immediately, it can be added to the scheduler with no

dependency and a delay time of zero.

Examples of media element scheduling are shown in Figure 3-9. These examples

show how behaviors in each media element can be scheduled and executed. Figure 3-9(a)

displays three batches of schedulable media elements. The first batch of media elements

contains a gesture and speech element that starts and ends at the same time. The gesture

element is depended upon the start time of the speech element. As soon as speech element

starts its execution, the scheduler is notified and moves the gesture element into the

resource-waiting queue. Since media resource is available, the gesture element is moved to

the resource with no waiting and starts its execution as shown in Figure 3-9(b). Because

the ‘hand-wave’ gesture execution time is longer than the speech element ‘hello’, the

26

system uses a frame-skipping technique to ensure that the gesture and speech end at the

same time.

The second batch of media elements consists of one gesture and two speech

elements. The gesture element contains a ‘self-point’ behavior and the two speech elements

contain ‘I am an animated’ and ‘agent’ utterances, respectively. All three media elements

are currently in the trigger dependent collection. After receiving the end media notification

of the ‘hello’ speech element, the scheduler adds ‘I am an animated’ speech element into

the resource waiting queue. If the speech resource is available, the speech element moves

into the resource and starts its execution. Upon receiving the media start notification, the

scheduler also adds the ‘self-point’ gesture element into the gesture resource-waiting queue.

The gesture starts execution immediately since the gesture resource is available. The

gesture resource ensures the gesture element ends with the currently running speech

element. The speech element ‘agent’ is added to the resource waiting queue and moves

into the resource to start execution as soon as the ‘I am an animated’ speech element

finishes its execution as shown in Figure 3-9(c).

After some time, the scheduler receives the third batch of media elements. Since the

speech element is not dependent upon other elements, it is added directly to the speech

resource waiting queue and starts if the resource is available. The gesture element is added

into the resource-waiting queue upon receiving the dependent speech media element start

notification and is executed as shown in Figure 3-9(d).

27

hello

self-point

I am an animated

Time

double-right-point

This is a battery operated motoragent

Media

Gesture

Speech

I II III

(a)

hand-wave

hello

self-point

I am an animated

Time

double-right-point

This is a battery operated motoragent

Media

Gesture

Speech

I II III

(b)

hand-wave

hello

self-point

I am an animated

Time

double-right-point

This is a battery operated motoragent

Media

Gesture

Speech

I II III

(c)

hand-wave

hello

self-point

I am an animated

Time

double-right-point

This is a battery operated motoragent

Media

Gesture

Speech

I II III

(d)

hand-wave

Figure 3-9: Sample Media Element Scheduling

28

3.5 An IMMPS Based Framework

In order to deliver an effective multimedia presentation, application developers

could utilize a generic multimedia synchronization framework to properly synchronize the

media elements. Figure 3-10 shows a designed framework for an intelligent multimedia

presentation based system.

Specification
Interpreter Context Model

Music Library

Specification
Parser

Engines Synchronizer

Specification

User

Synchronized
Media

Narration Engine Sound Engine

Sound Effect
Library

Media Element
Sequence

Mapper

Overlay
Animation

Library

Camera Engine
 Overlay

Animation
Engine

Camera Planner

Scene
Animation

Library

Narration Manager

Overlay Animation
Manager

Camera Manager

Sound Effect
Manager

Music Manager

Scene
Animation

Engine

Scene Animation
Manager

Figure 3-10: A Framework for IMMPS Based Systems

29

 The IMMPS based framework operates in a similar manner as the animated agent

based framework. The primary difference between the frameworks is the type of

knowledge resources and their corresponding media element managers and engines. The

following resources are used primarily in IMMPS synchronization frameworks to make

better media elements selection decisions:

• Scene Animation Library: Provides animation instructions for each of the world

model objects. Each of the animations is pre-scripted and is not created

dynamically.

• Music Library: Stores information regarding music.

• Camera Planner: Plans user viewing goals, based on the current context model,

camera position, and the media element’s focus object.

By employing these resources, the framework can determine the appropriate media

elements for the current multimedia presentation. The selected media elements are then

synchronized to achieve the communicative goals between the user and system.

30

4 An Implemented Animated Agent Based
System

The framework for real-time media synchronization has been implemented in

PHYSVIZ, a 3D learning environment for the domain of high school physics. An animated

agent was incorporated into PHYSVIZ to study the media synchronization framework. The

agent utilizes gesture and speech behaviors and presents them in a synchronized manner to

provide a real-time interaction with the user. Figure 4-1 shows some examples of gesture

media elements for the animated agent in PHYSVIZ.

The framework was implemented in Java and developed as a multithread

application. It uses the Java3D, JavaSound, and JavaSpeech APIs to control media

elements. The speech synthesis employs the IBM ViaVoice text-to-speech system. The

gestures for the agent where created using a motion capture system. FilmBOX, 3D Studio

Max, and Character Studio were used for character modeling and blending of motion

capture data.

4.1 Specification Language

To represent the proper relationships of media elements, the specification uses an

XML-based language. Because of its extensibility, which allows application developers to

design their own customized markup languages for different domains, XML is used. The

31

combination of Java and XML provides interoperability on different platforms. To define a

grammar for the specification language, a DTD (Document Type Definition) was created.

The DTD defines the syntax rules for the specification language. Figure 4-2 shows the

DTD used in PHYSVIZ and a representation of it as a tree structure is shown in Figure 4-3.

The ‘#PCDATA’ entries in the tree structure denotes text data.

(a) beat (b) self-point

(c) upper-left point

(d) stretch (e) hand-wave
Figure 4-1: Example Gestures

32

<?xml version="1.0" encoding="utf-8">
<!DOCTYPE spec [
 <!ELEMENT spec (focus)+>
 <!ELEMENT focus (text | gesture | pause | effect)*>
 <!ELEMENT text (#PCDATA | em | pause | effect)*>
 <!ELEMENT gesture (#PCDATA | em | effect)*>
 <!ELEMENT effect EMPTY>
 <!ELEMENT pause EMPTY>
 <!ELEMENT em (#PCDATA)>
 <!ATTLIST focus name CDATA #REQUIRED>
 <!ATTLIST gesture name CDATA #REQUIRED>
 <!ATTLIST pause size (large | medium | small) "large">
 <!ATTLIST effect

type (sound) "sound"
name CDATA #REQUIRED

 >
]>

Figure 4-2: Document Type Definition for PHYSVIZ Specification

effect

em

focus

effect pause

text

spec

em

gesture

#PCDATA

#PCDATA
#PCDATA

#PCDATA

+

*

*

*

Figure 4-3: Document Type Definition Tree Structure

33

Using tag elements specified in the DTD, the specification can specify types of

media elements and build relationships between media elements. The specification can

provide the following information by using tag elements:

• Focus Object: The tag element <focus> is used to provide the focus object for its

associated media elements by giving the focus name attribute.

• Agent Speech: The content of tag element <text> represents spoken text of an agent.

To make more realistic speech, sub element and <pause> is used. The tag

element is used as emphasizing spoken texts during the agent speech. The tag

element <pause> is used to give some interval time of speech pause between spoken

texts. The spoken text for the agent can be also represented in a <gesture> tag

element.

• Agent Gesture: The specification uses tag element <gesture> for the agent gestures.

The <gesture> tag element can provide the spoken text data along with the name of

the gesture. This action indicates that the presented gesture should start and end

with the given text.

• Special Effect: The tag element <effect> is used to represent sound effects. If a

sound element needs to play by itself without having relations with other media

elements, the sound effect tag can be used under a <focus> tag element. The sound

effect tag elements can also be used under the <text> and <gesture> tag elements.

Each tag element decides when the sound effects can be applied in their context.

The root of all elements is the tag element <spec>, which can define one or more of

the <focus> tag elements. The <focus> tag element can specify the <text>, <gesture>, and

<effect> tag elements an arbitrary number of times. Each of the tag elements utilizes

34

attributes to provide additional information about the elements. The attributes of each tag

elements are list below.

Tag Element Attributes Roles
focus name Indicates the name of the focus object.

gesture name Indicates name of the agent gesture.

pause size Indicates time interval of speech pause. Can
specify “large”, “medium”, and “small” for time
interval. Default size is “large”.

effect type

name

Indicates special effect types. At this point only
sound effect is used.

Indicates name of sound effect that needs to play.

4.2 Gesture Element Selection

In general, gesture specification is defined at an abstract level. If the agent needs to

point to an object, the specification would define its gesture tag element as ‘deictic’. The

Specification Interpreter module would select the appropriate pointing gesture for the

current context. This way the high-level processing component does not need to figure out

the position of the agent and the location of the focus object.

This module uses the Gesture Library, the Context Model, and the Gesture History

resources to determine the proper gesture to use. In selecting the pointing gesture, the

selection is based on the spatial relation between the current agent position and focus object

location. The center of the agent body defines the agent’s current position and the center of

the focus object identifies its location. The Context Model resource continuously keeps

track of these changing agent and model object’s locations. The Context Model resource

35

also remembers the agent orientation. This information is used to decide whether or not the

agent needs to turn his body to point to the object.

Currently, PHYSVIZ has eight different pointing gestures: double-left-point, up-left-

point, middle-left-point, down-left-point, double-right-point, up-right-point, middle-right-

point, and down-right-point. Figure 4-4 illustrates these gestures. If the focus object is on

the right side of the agent’s current position, the interpreter module retrieves the list of

pointing gestures from the Gesture Library and narrows down to the four pointing gestures:

double-right-point, up-right-point, middle-right-point, and down-right-point. The list is

future culled based on the angle between the agent and focus object. If there are multiple

choices for selecting a gesture, the interpreter selects the least used gesture by consulting

with the Gesture History resource. The following steps show the overall algorithm for

selecting the proper gesture:

1. Determine the current agent and focus object position

2. Determine orientation of the agent

3. Calculate the vector between the agent position and the focus object

4. Retrieve the list of pointing gestures

5. Find the appropriate gesture using the calculated vector

6. Choose the least used gesture if more than one is available for selection.

7. Turn the agent body towards to the user if necessary.

8. Point at the object.

36

(a) up-left-point (b) up-right-point

(c) middle-left-point (d) middle-right-point

(e) down-left-point (f) down-right-point

(g) double-left-point (h) double-right-point
Figure 4-4: Pointing Gestures in PHYSVIZ

37

4.3 Media Scheduler

The Media Scheduler handles the temporal relations between events specified by the

media elements. The media events are notified when each media element starts or

completes its execution. The media elements listening to these events can start their

execution conditional upon such receiving these notifications. The Media Scheduler in

PHYSVIZ can handle event-based and time-based scheduling. It can also handle a

combination of these scheduling mechanisms. In time-based scheduling, media elements

specify when they want to be executed by providing time interval information to the

scheduler. The Media Scheduler schedules these media element’s execution after the given

time intervals are passed. Also, the schedulable media elements could ask for both event

and time-based scheduling. In event-based scheduling, media elements can be scheduled

for their execution conditioned upon the start or end event of a media element, optionally

specifying a delay time interval after receiving such an event notification.

Once a listening media element receives an event notification, the scheduler sends

this media element to the media trigger queue. The media elements in the media trigger

collection wait to satisfy the expiration of their delay time intervals. As soon as their delay

time intervals have expired, the scheduler puts them into the corresponding resource

waiting queues. Each media element type has its own resource-waiting queue. This

permits the scheduler to quickly retrieve a media element as soon as the resource becomes

available. Until a media element completes its execution, the resource is marked as busy.

Figure 4-5 shows a UML diagram of the media scheduler.

38

Figure 4-5: UML Diagram of the Media Scheduler

39

The following is short description of the classes used in the media scheduler:

• SchedulableMedia: The Interface that media elements must implement. It provides

methods that are necessary for the media scheduler to schedule the implemented

media elements. An advantage of having this interface is that the media scheduler

can treat all the media elements the same way without knowing the type of media.

• MediaStartsTrigger: This class listens for a media element’s start event notification.

Once a start notification is received it allows dependent media elements to be added

to the media scheduler providing delay time interval and its resource type.

• MediaEndsTrigger: This class listens for a media element’s end event notification.

Once an end notification is received, it allows the dependent media element to be

added to the media scheduler providing delay time interval and its resource type.

• ResourceWaitingQueue: Collection of the media elements that are ready for their

media execution. Waiting place until the resource gets free.

• MediaExecution: The class that controls the execution of the media elements. It

runs as a separate thread.

• MediaScheduler: Only accessible class from outside components. The class

provides methods to schedule media elements.

4.4 Animation

The gesture animation was created using the FilmBOX motion capture system. The

motion-captured data was filtered and blended using FilmBOX and Character Studio. Once

the motion-captured animation was cleaned up, that data was exported as a BioVision

Hierarchy (BVH) file. The resulting BVH file holds the edited character movement

40

information generated from the motion capture system. It contains information about the

character’s joint hierarchy, such as translation, rotation, and scale that are relative to the

parent joint. It also contains information about motion-captured data, which is presented as

numeric values in a series of frames. A sample BVH file showing the first 5 frame of

motion capture data is shown in Figure 4-6.

HIERARCHY
ROOT Hips
{
 OFFSET 0.0 0.0 0.0
 CHANNELS 6 Xposition Yposition Zposition Zrotation
 Xrotation Yrotation
 JOINT LeftHip
 {
 OFFSET 3.43 0.0 0.0
 CHANNELS 3 Zrotation Xrotation Yrotation
 JOINT LeftKnee
 {
 OFFSET 0.0 -18.47 0.0
 CHANNELS 3 Zrotation Xrotation Yrotation
 JOINT LeftAnkle
 {
 OFFSET 0.0 -17.95 0.0
 CHANNELS 3 Zrotation Xrotation Yrotation
 End Site
 {
 OFFSET 0.0 -3.12 0.0
 }
 }
 }
 }
 JOINT RightHip
 {
 OFFSET -3.43 0.0 0.0
 CHANNELS 3 Zrotation Xrotation Yrotation
 JOINT RightKnee
 {
 OFFSET 0.0 -18.47 0.0
 CHANNELS 3 Zrotation Xrotation Yrotation
 JOINT RightAnkle
 {
 OFFSET 0.0 -17.95 0.0
 CHANNELS 3 Zrotation Xrotation Yrotation
 End Site
 {
 OFFSET 0.0 -3.12 0.0
 }
 }
 }
 }
 JOINT Chest
 {
 OFFSET 0.0 4.57 0.0
 CHANNELS 3 Zrotation Xrotation Yrotation
 JOINT LeftCollar
 {
 OFFSET 1.06 15.33 1.76
 CHANNELS 3 Zrotation Xrotation Yrotation
 JOINT LeftShoulder
 {
 OFFSET 5.81 0.0 0.0
 CHANNELS 3 Zrotation Xrotation Yrotation
 JOINT LeftElbow
 {
 OFFSET 0.0 -12.08 0.0
 CHANNELS 3 Zrotation Xrotation Yrotation
 JOINT LeftWrist
 {
 OFFSET 0.0 -9.82 0.0
 CHANNELS 3 Zrotation Xrotation Yrotation
 End Site
 {
 OFFSET 0.0 -7.37 0.0
 }
 }
 }
 }
 }

 JOINT RightCollar
 {
 OFFSET -1.06 15.33 1.76
 CHANNELS 3 Zrotation Xrotation Yrotation
 JOINT RightShoulder
 {
 OFFSET -5.81 0.0 0.0
 CHANNELS 3 Zrotation Xrotation Yrotation
 JOINT RightElbow
 {
 OFFSET 0.0 -12.08 0.0
 CHANNELS 3 Zrotation Xrotation Yrotation
 JOINT RightWrist
 {
 OFFSET 0.0 -9.82 0.0
 CHANNELS 3 Zrotation Xrotation Yrotation
 End Site
 {
 OFFSET 0.0 -7.37 0.0
 }
 }
 }
 }
 }
 JOINT Neck
 {
 OFFSET 0.0 17.62 0.0
 CHANNELS 3 Zrotation Xrotation Yrotation
 JOINT Head
 {
 OFFSET 0.0 5.19 0.0
 CHANNELS 3 Zrotation Xrotation Yrotation
 End Site
 {
 OFFSET 0.0 4.14 0.0
 }
 }
 }
 }
}
MOTION
Frames: 129
Frame Time: 0.033333
0.00 0.00 0.00 0.00 0.00 -0.00 -2.31 11.24 0.80 0.13 -2.52
-0.07 2.06 -8.32 -0.39 2.23 10.70 -0.76 -0.13 -2.52 0.07
-1.99 -7.78 0.38 -0.00 -5.58 -0.00 -21.23 2.53 -4.09 26.17
0.15 -39.68 0.21 -11.18 0.29 -0.90 11.97 20.78 21.65 2.02
2.92 -29.85 0.97 38.95 -0.21 -11.19 -0.29 0.88 11.97
-20.70 -0.00 -0.17 -0.00 -1.20 4.86 0.37

0.00 0.00 0.00 0.00 0.00 -0.00 -2.31 11.24 0.80 0.13 -2.52
-0.07 2.06 -8.32 -0.39 2.23 10.70 -0.76 -0.13 -2.52 0.07
-1.99 -7.78 0.38 -0.00 -5.58 -0.00 -21.23 2.53 -4.09 26.17
0.15 -39.68 0.21 -11.18 0.29 -0.90 11.97 20.78 21.65 2.02
2.92 -29.85 0.97 38.95 -0.21 -11.19 -0.29 0.88 11.97
-20.70 -0.00 -0.17 -0.00 -1.23 4.85 0.40

0.00 0.00 0.00 0.00 0.00 -0.00 -2.31 11.24 0.80 0.13 -2.52
-0.07 2.06 -8.32 -0.39 2.23 10.70 -0.76 -0.13 -2.52 0.07
-1.99 -7.78 0.38 -0.00 -5.58 -0.00 -21.23 2.53 -4.09 26.17
0.15 -39.68 0.21 -11.18 0.29 -0.90 11.97 20.78 21.65 2.02
2.92 -29.85 0.97 38.95 -0.21 -11.19 -0.29 0.88 11.97
-20.70 -0.00 -0.17 -0.00 -1.32 4.84 0.50

0.00 0.00 0.00 0.00 0.00 -0.00 -2.31 11.24 0.80 0.13 -2.52
-0.07 2.06 -8.32 -0.39 2.23 10.70 -0.76 -0.13 -2.52 0.07
-1.99 -7.78 0.38 -0.00 -5.58 -0.00 -21.23 2.53 -4.09 26.17
0.15 -39.68 0.21 -11.18 0.29 -0.90 11.97 20.78 21.65 2.02
2.92 -29.85 0.97 38.95 -0.21 -11.19 -0.29 0.88 11.97
-20.70 -0.00 -0.17 -0.00 -1.45 4.83 0.65

0.00 0.00 0.00 0.00 0.00 -0.00 -2.31 11.24 0.80 0.13 -2.52
-0.07 2.06 -8.32 -0.39 2.23 10.70 -0.76 -0.13 -2.52 0.07
-1.99 -7.78 0.38 -0.00 -5.58 -0.00 -21.23 2.53 -4.09 26.17
0.15 -39.68 0.21 -11.18 0.29 -0.90 11.97 20.78 21.65 2.02
2.92 -29.85 0.97 38.95 -0.21 -11.19 -0.29 0.88 11.97
-20.70 -0.00 -0.17 -0.00 -1.63 4.81 0.85

Figure 4-6: Sample BVH Animation File

41

To incorporate the BVH file data into the PHYSVIZ environment, a BVH interpreter

was developed to apply the motion captured character movements to the animated agent.

The BVH interpreter provides character movement information used by the Java3D API

control the articulated character motion in real-time.

The system attempts to keep the frame rate running at 30 fps at all times. It

continuously monitors the frame rates and if it falls below the given rate, it uses frame-

skipping techniques to keep the animations running at the correct speed. The frame-

skipping technique is also used to achieve synchronization. If a gesture element’s duration

is longer than the associated speech element and they need to start and finish together, the

graphic engine skips frame to reduce the execution duration.

A simple word-level lip-synching animation technique is also implemented in the

system. The animated agent moves his jaw with every word of spoken text. The speed of

jaw movement is determined by the speech rate: if the speech rate is fast, the movement of

the agent’s jaw is quicker.

4.5 Examples

To illustrate how the framework operates for the animated agent in PHYSVIZ, three

examples are presented below. Each example attempts to select the most appropriate

gestures for current context. In the first example, all of the media elements are well-

defined. The specification did not give any abstract level of information. There is an

abstraction of the gesture element in the second example. Finally, the third example shows

that two completely different focus objects can be specified in a single specification.

42

4.5.1 “Hello! I am an animated agent.”

There are two separate speech elements in this example. Each of them has an

associated gesture element. The text elements are “Hello!” and “I am an animated agent”.

The corresponding gestures are “hand-wave” and “self-point”, respectively. The

specification for this example is shown below:

<spec>
 <focus name=””>
 <gesture name=”hand-wave”>”Hello!”</gesture>
 <pause size=”small”/>
 <gesture name=”self-point”>
 “I am an animated agent”
 </gesture>
 </focus>
</spec>

Based on the specification, the “hand-wave” and “self-point” gestures should start

and end with their speech element. The Specification Parser parses the specification and

sends information to the Specification Interpreter. Since the exact gesture name is defined,

the interpreter retrieves the corresponding media element instruction data from the Gesture

Library resource. The interpreter also calculates the duration of each speech elements and

sends this information to the synchronization module. This execution time duration is

helpful to determine the gesture animation time frame. In the Synchronization module, the

media events are created for their proper synchronization and scheduling. In this example,

the speech element “Hello!” fires a start event notification as soon as the speech is started.

The gesture element “hand-wave” was listening for the event and starts its media execution.

The next pair of speech and gesture works the same way. After a brief speech pause, the

43

second speech element sends a start event notification and the gesture element starts its

animation. The graphical version of the example is given in Figure 4-7.

Welcoming GestureGesture

Speech

Self Point Gesture

Hello, I am an animated
agentPause

Gesture

Speech Hello, I am an animated
agentPause

Welcoming Gesture
(hand-wave)

Self Point Gesture
(self-point)

Welcoming Gesture
(hand-wave)Gesture

Speech

Self Point Gesture
(self-point)

Hello, I am an animated
agentPause

Hello, I am an animated agent

hand-wave self-point

Timeline

Time

Media

(a) parsed

(b) interpreted

(c) sychronized

Figure 4-7: “Hello! I am an animated agent.”

44

4.5.2 “I want to introduce you to a very interesting piece of equipment.”

In this example, there is an abstract gesture element is specified. The gesture

element “beat” is specified along with a speech element. The specification is shown below:

<spec>
 <focus name=””>
 <gesture name=”beat”>
 “I want to introduce you to a very interesting
 piece of equipment.”
 </gesture>
 </focus>
</spec>

The interpreter decides which beat gesture is appropriate to use. First, the

interpreter retrieves the beat gesture list from the Gesture Library. Each of the gestures in

the list is compared with the Gesture History to find out its selection count. The gesture

with the lowest selection count is selected. The selected gesture element is sent to the

Synchronizer along with its speech element. By providing the start media event on the

speech element and media execution time duration, the speech element and gesture element

starts and ends together. Figure 4-8 shows step-by-step diagram of the procedure.

45

Beat GestureGesture

Speech I want to introduce you to a very interesting piece of equipment.

Gesture

Speech

Gesture

Speech

one-hand-beat

Timeline

Time

Media

(a) parsed

(b) interpreted

(c) sychronized

I want to introduce you to a very interesting piece of equipment.

Beat Gesture
(one-hand-beat)

I want to introduce you to a very interesting piece of equipment.

I want to introduce you to a very interesting piece of equipment.

Beat Gesture
(one-hand-beat)

Figure 4-8: “I want to introduce you to a…”

46

4.5.3 “This is a battery operated motor and …”

As shown below, the specification defines two focus objects in a single

specification. Each focus object is used to determine the appropriate gestures for the

current context.

<spec>
 <focus name=”motor”>
 <gesture name=”deictic”>
 “This is a battery operated motor.”
 </gesture>

 <pause size=”large”/>
 <text>and</text>
 </focus>
 <focus name=”extra-battery”>
 <gesture name=”deictic”>
 “These are extra batteries”
 </gesture>

 </focus>
</spec>

By determining the current agent and focus object position, the interpreter can

compute the vector between the center of the agent’s body and the model object. Using the

calculated vector, the interpreter can select the appropriate gesture element that conforms to

the current context. The “back-right-point” and “middle-left-point” gestures are selected

for the first and second gesture elements, respectively as shown in Figure 4-9.

47

Deictic GestureGesture

Speech

Deictic Gesture

This is a battey
operated motor these arePause

This is a battery operated motor these are extra batteries

back-right-point middle-left-point

Timeline

Time

Media

(a) parsed

(b) interpreted

(c) sychronized

and em extra batteries.

Deictic Gesture
(back-right-point)Gesture

Speech

Deictic Gesture
(middle-left-point)

This is a battey
operated motor these arePause and em extra batteries.

Deictic Gesture
(back-right-point)Gesture

Speech

Deictic Gesture
(middle-left-point)

This is a battey
operated motor these arePause and em extra batteries.

and

Figure 4-9: “This is a battery operated motor and…”

48

5 Related Work

A large literature has emerged on animated agents and intelligent multimedia

presentation systems. This chapter reviews key work in these areas and discusses how the

framework relates to it.

REA is an embodied conversational agent, which interacts with the user as a real

estate agent (Cassell et al., 1999). She generates nonverbal behaviors along with verbal

behaviors to provide richness in face-to-face conversation with users such as raising

eyebrow for emphasis, eye gaze and head nods for turn taking behaviors, and gestures. The

system formulates behavior sequences to carry out the desired communicative goals based

on the input from a microphone and camera. The Action Scheduler module is responsible

for synchronizing these behaviors and attempts to carry them out. This module could be

replaced with the proposed framework or implemented based on the framework.

KARE is a conversational animated agent integrated with a bilingual-capable talking-

head system (King et al., 2003). TE KAITITO, the dialog system for KARE, supports two

different languages to converse with users, English and Māori. KARE can also support

culture-specific dialog and nonverbal behaviors. The Id module generates nonverbal

behaviors and provides personality to KARE such as eye gazing, blinking, and furrowing the

brows. These generated nonverbal behaviors are culture-specific which means it does not

only depended on the dialog but it also depended on the language used. The generated

49

verbal and nonverbal behaviors are sent to the TalkingHead module to synchronize these

behaviors. In this module, the proposed framework could be effectively utilized.

FLURMAX is a virtual animated agent, which inhabits a wide-screen panel with a

camera attached to get a visual perception of the environment (Jung et al., 2003).

FLURMAX interacts with a person who passing by or standing in front of the panel by using

speech, gesture, and facial expressions. The visual perception component processes the

video data and sends events to the central component to create and schedule behavior

routines. The execution component receives these behavior routines and executes them.

The central component generates MURML (Multimodal Utterance Representation Markup

Language) as behavior specification, which is an XML-based language to specify prosodic

speech, gestures, emotional expression, and locomotion. The proposed framework could be

used in the behavior execution component without affecting the overall system architecture

and the specification language used in FLURMAX.

The framework can also be utilized in other applications that utilize embedded

animated agent. For example, a conversational animated agent is used as a sales assistant in

the virtual market place (Guerin et al., 2001). An agent communicates with users by using

speech and gestures to enhance believability as a sales assistant. The Action Planner

module in the system plans and generates behavioral actions. The actions are formalized in

CML (Character Markup Language) to describe body movements, speech output, and

emotional parameters. CML is an XML-based scripting language. These character actions

are sent to the lower-level processes to synchronize gestures and verbal communications.

50

The system could implement the low-level processes using the proposed framework

without changing CML.

Another example is the STORYTELLER (Silva et al., 2001). The STORYTELLER is an

animated agent, which inhibits a 3D virtual world and narrates a story with proper

emotional expressions as the story progresses. The system uses tags within a text to control

the emotional state of the character and its gestures. The proposed framework can be

applied to their lower-level process to provide the proper synchronization between the

verbal and nonverbal behaviors based on the annotated specification text produced by the

system.

Also, the framework can be applied in Intelligent Multimedia Presentation Systems

as well. PPP system (André and Rist, 1996) generates intelligible presentations that instruct

the user. To achieve complex presentation goals, the system generates the presentation

strategy scripts dynamically and assembles the multimedia sets to be presented to the user

in real-time. PPP also exploits Allen’s temporal relations to satisfy the temporal constraints

between the presentation acts. The proposed framework could provide a solution to the

lower-level processes for carrying out the generated complex multimedia presentation

plans.

ROBOCUP simulation league commentator systems (André et al., 2000) are systems

that could utilize the framework. Rocco, MIKE, and Byrne are commentary systems in the

soccer domain. They generates appropriate spoken commentary in real-time. Rocco

(Voelz et al., 1998) generates TV-style live reports for soccer simulation league with two-

dimensional graphic simulations. Byrne (Binsted, 1998) generates the appropriate speech

51

and facial expressions based on the state of the game. Byrne creates SEEML (the Speech,

Expression and Emotion Mark-up Language) to tag emotional state within a text. As a

result, Byrne provides emotional and expressive talking-head commentary. Mike, the

Multi-agent Interactions Knowledgeably Explained, (Tanaka et al., 1998) is a system that

produces simultaneous spoken commentary. Output is generated in real-time either in

English, Japanese, or French.

IMPROVISE, the Illustrative Metaphor PROduction in VISual Environement, (Zhou

and Feiner, 1998) is a knowledge-based system that can automatically generate coherent

visual presentations. To properly design visual illustrations, the IMPROVISE employs the

PAL (Presentation Authoring Language). PAL can represent visual objects and visual

techniques as the nodes. The specifications of temporal constraints between visual objects

and techniques are encapsulated in the nodes. The proposed framework can be used as their

lower-level process to properly perform the medias specified in specifications.

PMO is a multimodal presentation planner in the EMBASSI project (Elting and

Michelitsch, 2001). EMBASSI is an intelligent user interface trying to simplify the use of

everyday life technology thru proper management of intelligent multimodal interaction.

The system supports speech, an animated life-like character, and a GUI as output

modalities. PMO plans which modalities are used as output and how these modalities

should work with each other. The framework could produce these planned output

modalities with proper synchronization to the user.

52

The current framework supports only temporal based presentations systems. It

would not be appropriate for a spatial presentation system such as AUTOBRIEF (Kerpedijiev

et al., 1997) and PERSIVAL (McKeown, 2001).

Properly handling multimedia synchronization issues are also important in the areas

of transmitting multimedia information over a network. SMIL, Synchronized Multimedia

Integration Language, (SMIL, 2001) is used to describe multimedia presentations for web-

based multimodal applications. The video and audio streaming area receives significant

attention in media synchronization (Herman, 1998; Zhou and Murata, 2001). However, the

proposed framework may be more complex process since it handles significantly more

modalities for proper synchronization.

53

6 Conclusions and Future Work

The management of real-time multimedia synchronization is a critical issue in

multimodal environments because the overall effectiveness of the system is significantly

reduced if it is mismanaged. Most media-rich systems have solved some aspects of the

media element synchronization and scheduling problem. However, they have done so in an

ad hoc manner without providing a generic reusable framework. One approach for

achievingproper media element synchronization in real-time is to partition the

synchronization and scheduling into high-level and lower-level processing components

communicating via a well-defined media element specification. Prior research efforts have

produced specification languages such as VHML (Beard and Reid, 2002), MPML (Ishizuka

et al., 2000), CML (Guerin et al., 2001), and SEEML (Binsted, 1998). However, their work

has focused on the languages and not the details of the synchronization issues.

To this end, we have designed and implemented a generic framework that can

support low-level media synchronization. In the course of designing and implementing the

framework, several benefits emerged. They can be summarized as follows:

• Intuitiveness: By using a specification language and properly defining its syntax, the

presentations of media elements can be unambiguously defined and executed.

54

• Extensibility: Because the framework supports the addition of new modalities

without affecting existing media element components, new knowledge resources

and components can be created with ease. Furthermore, modules in the framework

can be easily modified without affecting others. For example, the Specification

Interpreter can be modified easily when new media element selection strategies are

needed.

• Applicability: The implemented framework can be easily combined with high-level

processing components without any modifications because it clearly defines its

operations and operates as a separate entity from the high-level processing

component.

• Ease of development: Because the high-level and low-level processing components

are properly decoupled, application developers can focus on their own task without

concern for how their changes might affect each other tasks.

To demonstrate the practicality of the framework, it was implemented in PHYSVIZ,

an interactive 3D learning environment for the domain of high school physics. This system

illustrates how using the framework can support the separation of high-level and low-level

media element processing components. In the implementation, these high-level and low-

level components communicated via a media element specification language and achieved

the proper media element synchronization in real-time.

6.1 Future Work

Several areas of additional work have been uncovered resulting the course of

developing the framework:

55

• Extend temporal constraints: By manipulating the order of media element events

and time delays, the framework can provide media synchronization. However, the

present framework’s media element temporal relations are not fully expressive.

Certainly much more remains to be done. Based on Allen’s temporal reasoning

model (Allen, 1983), the current framework can only handle the equal, after, starts,

and started_by temporal relations. By providing more temporal relations, the

framework could achieve a fine-granularity of media synchronization.

• Improve specification language: There are numerous media elements that must be

controlled in a complex media environment such as lighting effects, movements of

objects, changing colors, camera motion, sound effects, character facial expressions,

character movements, and speech. The specification language should be expressive

enough to specify all of these media elements for simultaneous presentation.

Therefore, developing an expressive specification language is necessary to handle

complex media environments.

• Improve animation scaling: The current framework implementation uses a frame-

skipping technique to match the duration of an animation to the accompanying

speech. This mechanism presents a problem when considerably different time

duration exists between the gesture and speech. A more intelligent mechanism to

properly handle this is needed.

• Define levels of abstraction: Determining well-defined levels of abstraction for

media elements is important. The presentation of media elements may not be

expressive enough if the level of abstraction is too high. If it is too low, the high-

level processing component have to perform additional processing to determine the

detailed media element selection.

• Obtain dynamically creating media element duration: Recognizing the execution

time duration of a media element is an essential part of media synchronization.

56

Since the duration is used to provide an appropriate animation to match associated

media elements. If the duration of a media element is unknown because it is created

dynamically, the resulting media presentation would not be synchronized. A

mechanism to obtain the duration of a dynamically generating media element would

be beneficial to the framework.

• Integrate with multimedia network system: The framework should be aware of the

“channel” for which the media presentation is being generated. For example, if the

presentation is being displayed on a small handheld device, the framework should

reason about the target device and determine how the media elements should be

displayed.

6.2 Concluding Remarks

A framework for real-time synchronization in media-rich systems offers significant

potential for improving the quality of media presentations by achieving proper

synchronization and scheduling of media elements. This type of framework can be utilized

in a wide variety of interactive systems, including virtual reality training, education,

simulation, and entertainment applications. As multimedia technology advances, more

complex media systems will be created. The proposed framework offers a solid foundation

for the design and implementation of media synchronization technique for these

applications.

57

7 References

[Allen, 1983] Allen, J. Maintaining knowledge about temporal intervals. Communication
of the ACM, 26(11) pp. 832-843, 1983.

[André and Rist, 1996] André, E., and Rist, T. Coping with temporal constraints in
multimedia presentation planning. In Proceedings of Thirteenth Nationl Conference on
Artificial Intelligence, 1996.

[André et al., 1993] André, E., Finkler, W., Graf, W., Rist, T., Schauder, A., and Wahlster,
W. WIP: The Automatic Synthesis of Multimedia Presentations. In Maybury, M. editor,
Intelligent Multimedia Interfaces, AAAI Press, 1993.

[André et al., 2000] André, E., Binsted, K., Tanaka-Ishii, K., Luke, Sean., Herzog, G., and
Rist, T. Three RoboCup Simulation League Commentator Systems. AI Magazine, Spring,
2000.

[Bates 1994] Bates, J. The role of emotion in believable agents. Communications of the
ACM July, 1994.

[Beard and Reid, 2002] Beard, S. and Reid, D. MetaFace and VHML: A First
Implementation of the Virtual Human Markup Language. Proceedings of Embodied
conversational agents - let's specify and evaluate them! AAMAS, Bologna, Italy. 16th July
2002.

[Binsted, 1998] Binsted, K. Character Design for Soccer Commentary in Proceedings of
the Second International Workshop on RoboCup, pp. 25-35, 1998.

[Busine et al., 2002] Buisine, S., Abrilian, S., Rendu, C., and Martin, J.C. (2002). Towards
experimental specification and evaluation of lifelike multimodal behavior. Proceedings of
the workshop Embodied conversational agents - let's specify and compare them! AAMAS,
pp. 42-48, Bologna, Italy, 2002.

[Cassell et al., 1999] Cassell, J., Bickmore, T., Billinghurt, M., Campbell, L., Chang, K.,
Vilhjálmsson, H., and Yan, H. Embodiment in conversational interfaces: Rea in
Proceedings of the CHI’99 Conference, pp. 520-527. Pittsburgh, PA, 1999.

58

[Cassell, 2000] Cassell, J. More than Just Another Pretty Face: Embodied Conversational
Interface Agents. Communications of the ACM, 43(4) pp. 70-78, 2000.

[Cassell et al., 2001] Cassell, J., Vilhjalmsson, H., Bickmore, T. BEAT: the Behavior
Expression Animation Toolkit. Proceedings of SIGGRAPH, pp. 477-486. August 12-17,
Los Angeles, CA, 2001.

[Cassell et al., 2002] Cassell, J., Stocky, T., Bickmore, T., Gao, Y., Nakano, Y., Ryokai, K.,
Tversky, D., Vaucelle, C., and Vihjálmsson, H. MACK: Media Lab Autonomous
Conversational Kiosk. Proceedings of Imagina02. February 12-15, Monte Carlo, 2002.

[Daniel et al., 1999] Daniel, B., Callaway, C., Bares, W., Lester, J. Student-Sensitive
Multimodal Explanation Generation for 3D Learning Environments. In Proceedings of the
Sixteenth National Conference on Artificial Intelligence, 1999.

[Elting and Michelitsch, 2001] Elting, C., and Michelitsch, G. A multimodal presentation
planner for a home entertainment environment in Proceedings of the 2001 workshop on
Perceptive user interfaces, pp 1-5, Orlando, Florida, 2001.

[Feiner and McKeown 1993] Feiner, S. and McKeown, K. Automating the Generation of
Coordinated Multimedia Explanations. IEEE Computer, 24(10) pp. 33-41, 1993.

[Guerin et al., 2001] Guerin, F., Kamyab, K., Goulev, P., and Mamdani, E. Conversational
Sales Assistants In Autonomous Agents 2001 Workshop on Multimodal Communication and
Context in Embodied Agents. Montreal, pp. 79-83, 2001.

[Herman, 1998] Herman, I., Correia, N., Duce, D., Duke, D., Reynolds, G., and Van Loo, J.
A Standard Model for Multimedia Synchronization: PREMO Synchronization Objects,
Multimedia Systems, 6(2), pp. 88-101, 1998.

[Ishizuka et al., 2000] Ishizuka, M., Tsutsui, T., Saeyor, S., Dohi, H., Zong, Y., and
Prendinger, H. MPML: A multimodal presentation markup language with character control
functions. In Proceedings Agents'2000 Workshop on Achieving Human-like Behavior in
Interactive Animated Agents, pp. 50-54, 2000.

[Jung et al., 2003] Jung, B. and Kopp, S. FlurMax: An Interactive Virtual Agent for
Entertaining Visitors in a Hallway. In T. Rist et al. (eds.): Intelligent Agents, 4th
International Workshop, IVA 2003, Proceedings, Springer, LNCS 2792, pp. 23-26, 2003.

[Kerpedjiev et al., 1997] Kerpedjiev, S., Carenini, G., Roth, S., Moore, J. AutoBrief: A
Multimedia Presentation System for Assisting Data Analysis. Computer Standards and
Interface 18 pp. 583-593, 1997.

59

[King et al., 2003] King, S., Knott, A., and McCane, B. Language-driven nonverbal
communication in a bilingual conversational agent. Proceedings of the 16th International
Conference on Computer Animation and Social Agents (CASA), May 2003.

[Lester et al., 1997] Lester, J., Barlow, S., Converse, S., Stone, B., Kahler, S., and Bhogal,
R. The Persona Effect: Affective Impact of Animated Pedagogical Agents. In Proceedings
of CHI, Atlanta, pp 359-366, 1997.

[Lester et al., 1999] Lester, J. C., Towns, S. G., Callaway, C. B., Voerman, J. L., and
FitzGerald, P. J., Deictic and Emotive Communication in Animated Pedagogical Agents, to
appear in Embodied Conversation Agents, Cassell, J. eds, 1999 MIT Press.

[Martin et al., 2001] Martin, J.C., Grimard, S., Alexandri, K. (2001) On the annotation of
the multimodal behavior and computation of cooperation between modalities. Proceedings
of the workshop on Representing, Annotating, and Evaluating Non-Verbal and Verbal
Communicative Acts to Achieve Contextual Embodied Agents, Montreal, in conjunction
with The Fifth International Conference on Autonomous Agents. pp 1-7, May 29, 2001.

[Mateas 1997] Mateas, M. Tech report CMU-CS-97-156, Carnegie Mellon University, June
1997.

[McKeown et al., 2001] Kathleen McKeown, K., Chang, S., Cimino, J., Feiner, S.,
Friedman, C., Gravano, L., Hatzivassiloglou, V., Johnson, S., Jordan, D., Klavans, J.,
Kushniruk, A., Patel, V., and Teufel, S. PERSIVAL, a system for personalized search and
summarization over multimedia healthcare information. JCDL, pp. 331-340, 2001.

[Nancy et al., 1998] Nancy, G., Kerpedjiev, S., Roth, S., Carenini, G., Moore, J.
Generating Visual Arguments: a Media-independent Approach. AAAI Workshop on
Representations for Multimodal Human-Computer Interaction. Madison, Wisconsin July
26-27, 1998.

[Pelachaud and Bilvi, 2003] Pelachaud, C., Bilvi, M. Computational Model of Believable
Conversational Agents, in Communication in MAS: background, current trends and futur,
Marc-Philippe Huget (Ed), Springer-Verlag, to appear, 2003.

[Rickel and Johnson, 1997] Rickel, J., Johnson, L. Integrating pedagogical capabilities in a
virtual environment agent. In Proceedings of the First International Conference on
Autonomous Agents, pages 30-38, 1997.

[Roth and Hefley, 1993] Roth, S. and Hefley, W. Intelligent Multimedia Presentation
Systems: Research and Principles. In M.Maybury (Ed.) Intelligent Multimedia Interfaces,
AAAI Press, pp.13-58, 1993.

60

61

[Silva et al., 2001] Silva, A., Vala, M., and Paiva, A. The Storyteller: Building a Synthetic
Character that tells Stories in Proceedings of the Workshop on Representing, Annotating,
and Evaluating Non-Verbal and Verbal Communicative Acts to Achieve Contextual
Embodied Agents, at Autonomous Agents Conference, 2001.

[SMIL, 2001] Synchronized multimedia integration language. Technical report, W3C,
2001. TR/2001/REC-smil20-20010807. URL: http://www.w3c.org/TR/smil20/.

[Tanaka et al., 1998] Tanaka, K., Noda, I., Frank, I., Nakashima, H., and Hasida, K., and
Matsubara, H. Mike: An Automatic Commentary System for Soccer in Proceedings of
ICMAS’98, International Conference on Multi-agent Systems, pp 285-292, Paris, France,
1998.

[Towns et al., 1998] Towns, S., Callaway, C., and Lester, J. Generating Coordinated
Natural Language and 3D Animations for Complex Spatial Explanations. Proceedings of
the Fifteenth National Conference on Artifical Intelligence, pp. 112-119, Madison,
Wisconsin, July 1998.

[Volez et al., 1998] Voelz, D., André, E., Herzog, G., and Rist, T. Rocco: A RoboCup
Soccer Commentator System. RoboCup pp. 50-60, 1998.

[Zhou and Feiner, 1998] Zhou, M., and Feiner, S. IMPROVISE: Automated Generation of
Animated Graphics for Coordinated Multimedia Presentations. Cooperative Multimodal
Communication pp. 43-63, 1998.

[Zhou and Murata, 2001] Zhou, Y., and Murata, T. Modeling and Analysis of Distributed
Multimedia Synchronization by Extended Fuzzy-Timing Petri Nets. Journal of Integrated
Design and Process Science, 4(4), pp. 23-38, December 2001.

	Introduction
	Overview of Research
	Thesis Organization

	Issues in Multimedia Synchronization
	Importance of Synchronization in Media-Rich Systems
	Approaches to Synchronization Specification
	Criteria for Building a Generic Framework

	A Generic Framework for Real-Time Synchronization
	Specification Parser
	Specification Interpreter
	Synchronizer
	An Animated Agent Based Framework
	Specification Interpreter
	Synchronizer
	Media Scheduler

	An IMMPS Based Framework

	An Implemented Animated Agent Based System
	Specification Language
	Gesture Element Selection
	Media Scheduler
	Animation
	Examples
	“Hello! I am an animated agent.”
	“I want to introduce you to a very interesting pi
	“This is a battery operated motor and …”

	Related Work
	Conclusions and Future Work
	Future Work
	Concluding Remarks

	References

