
ABSTRACT

WIESELQUIST, WILLIAM A. The New Nuclear Data Sensitivity Analysis and Uncertainty

Propagation Tool in NESTLE. (Under the direction of Assistant Professor D.Y. Anistratov).

In support of the need for better design and evaluation tools for reactor-based transmutation

systems we have upgraded NESTLE, the 2/4 energy group thermal reactor physics code

of the Nuclear Engineering Department at North Carolina State University with: i) the

ability to perform nuclide transmutation calculations for a general, user-defined field of

nuclei and transmutation paths and ii) the ability to analyze sensitivities and propagate

uncertainties in the end-of-cycle (EOC) nuclide inventory with respect to nuclear data and

beginning-of-cycle (BOC) nuclide inventory. We present two methods of sensitivity analysis:

i) direct perturbation and recalculation (DPAR) and ii) sensitivity analysis utilizing an

adjoint system (AS). With DPAR, we simply perturb data and recalculate solutions of

our system and thus may analyze sensitivity of all responses to perturbations in one data

parameter per solution of the perturbed forward problem. With the AS, we form a system

of equations, the solution of which may be used to estimate the first variation of a response

with respect to any data parameters. For the AS, we have developed the equations for both

the predictor and predictor-corrector neutron/nuclide field coupling methods in NESTLE.

To our knowledge, the AS for the predictor-corrector coupling has never been presented.

Then we used the tools we have developed to evaluate the sensitivity of EOC

nuclide concentrations and SNF hazard measures with respect to nuclear data for a cycle 1

pressurized water reactor (PWR) core. In our study, we found that the nuclear data crucial

to modelling US reactors’ once-through cycle (fission cross sections of 235U and 239Pu, the

main fuel nuclei, and capture cross sections for 238U) also has the highest impact on EOC

nuclide inventory of so-called “problem nuclei” (e.g. Am, Cm, etc.) Note that these results

only apply to cycle 1, in which fresh fuel is irradiated for the first time. Because most fuel

assemblies are present in the core for three cycles, two more cycles should be considered

to analyze sensitivity of spent nuclear fuel (SNF)—the fuel for transmutation systems—

with respect to nuclear data. Although, NESTLE has the capability to perform sensitivity

analysis over multiple cycles, NESTLE does not have the capability to determine loading

patterns and the benchmark case we used [1] did not include cycle 2 or cycle 3 data.
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Chapter 1

Introduction

Recently, mostly due to the Advanced Fuel Cycle Initiative (AFCI) program spon-

sored by the Department of Energy (DOE), researchers have begun investigating various

systems for their potential to reduce the inventory of various “problem nuclei” in spent nu-

clear fuel (SNF) by transmuting them into less problematic nuclei. The so-called “problem

nuclei” are those which make SNF difficult to transport, store, or those nuclei in storage

which pose a hazard to the environment and humans in the vicinity of the repository. Re-

ducing the inventory of problem nuclei in SNF reduces the size, cost, and complexity of

containment—thus we can fit more SNF in our first repository at Yucca Mountain, Nevada,

and possibly avoid the need for a second repository, at least a second repository of the in-

credible size and exhaustive design considerations of Yucca Mountain, which was designed

to handle SNF in its current, unprocessed, un-transmuted state. No doubt, processing is

extremely important in reducing the size of the repository, for example, if all 238U was sep-

arated the rest of the nuclei, SNF volume would be reduced by greater than 95%! But to

reduce the design considerations required for the repository, the inventory of some nuclei in

SNF must be reduced (transmuted). Researchers have proposed two types of transmutation

systems to reduce problem nuclei in SNF: i) accelerators and ii) reactors.
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1.1 Accelerator-based Transmutation

Initially, accelerators were favored for the lack of coupling between the SNF and

the source of neutrons. However, after some preliminary research, accelerators seemed

prohibitively expensive, at least to employ en masse on our current stores of SNF.

1.2 Reactor-based Transmutation

Currently, researchers are looking more toward reactors as SNF transmutation

systems. From one perspective, reactor-based transmutation is trickier than accelerator-

based transmutation because if the SNF could still be used as fuel, it would still be in

the reactor! Therefore, some separations and reprocessing of SNF appears essential for

efficient, commercially-viable reactor-based transmutation with our current fleet of reactors.

But the wide variation in optimal destruction environments for different problem nuclei

appears to require a number of different reactor systems to process different stages of SNF,

with accelerators used sparingly to “deep-burn” small volumes of SNF. But right now

things are much less complicated because we can assume that the initial fuel for any multi-

reactor transmutation system will be the fuel discharged from a Pressurized Water Reactor

(PWR) or Boiling Water Reactor (BWR), currently sitting in spent fuel storage pools at

reactor sites around the country awaiting Yucca Mountain’s completion. And for these

systems, nuclei which play a major role in the system (e.g. 235U, 238U,239Pu, etc.) have

very accurate nuclear data—but to design and/or evaluate these reactors as transmutation

systems, additional (and possibly poorly measured) nuclear data may be important. For

example, some of the nuclear data for minor actinides Am and Cm have been estimated

only crudely, with uncertainties of 50% in some cases, and in most SNF, these nuclei are

considered problem nuclei because of their long half-lives and the high heat load some of the

isotopes put on their storage casks. But if the amount of these nuclei present in the SNF

is dependent on some nuclear data with high uncertainty, then the amount of the problem

nuclei may also be highly uncertain, which poses a difficulty to the design and evaluation

of reactor-based transmutation systems.

Our research supports the need for better design and evaluation tools for reactor-

based transmutation systems by adding new tools to NESTLE, a reactor simulator code

developed by the Electric Power Research Center (EPRC) in the Department of Nuclear



3

Engineering at North Carolina State University [2].

1.2.1 Generalized Nuclide Field Solver

The first tool is a generalized nuclide field solver, used to solve the nuclide field

equations which describe change in concentrations of nuclei over time for a user-defined field

of nuclei and transmutation paths that describe how nuclei change into other nuclei. The

two solvers implemented in NESTLE as a result of this research are

1. a 2nd order Rosenbrock method with complex coefficients [3, 4] and

2. a matrix exponential method (like that used by ORIGEN) [5].

Mathematically, the nuclide field equations form a stiff system of first order ODEs. Earlier

versions of NESTLE tracked concentrations of 12 nuclei with about 30 transmutation paths

[2]. These nuclei and transmutation paths were “hard-coded”, but it is well-known that

only these nuclei are needed to accurately model a thermal reactor (PWR or BWR) system

with a once-through cycle. The solver for the hard-coded nuclei (heavy metals 234U, 235U,
236U, 238U, 239Pu, 240Pu, 241Pu, 242Pu, and 241Am and fission products Sm and Xe) was

an analytic linear chain solver [2], which can only be used on linear chains of nuclei—those

in which nuclide A transmutes into nuclide B, nuclide B transmutes into nuclide C, C into

D, and so on...

1.2.2 Sensitivity Analysis Methods

The second tool is two sensitivity analysis methods to help users analyze the sen-

sitivity of the various aspects of the system (responses) with respect to nuclear data and

initial conditions. The two sensitivity analysis methods are

1. direct perturbation and recalculation (DPAR) and

2. first-order perturbation theory for the forward system of reactor cycle equations using

a “physical” adjoint system (AS) [6].

The term “physical” adjoint refers to the adjoint equations realized when perturbation

theory is applied to the differential form of the forward equations. Alternatively, the term

“mathematical” adjoint refers to the adjoint equations realized when perturbation theory
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is applied to a completely discretized forward system. One of the nice characteristics of

the “physical” adjoint is that usually the methods used to solve the forward system (with

inclusion of a special source term) may be used to solve the adjoint system. Under certain

circumstances the mathematical and physical adjoint produce identical adjoint functions—

but this is the exception, not the rule.

1.2.3 Sensitivity Analysis of Cycle 1 PWR

Finally, we apply our tool to analyze sensitivity in the EOC nuclide inventory and

two SNF hazard measures—Hazard Index (HI) and Total Cancer Dose (TCD)—of a cycle 1

PWR core with attributes and loading pattern given by CASE 10 of an Argonne National

Lab (ANL) benchmark source book [1].
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Chapter 2

Notation

From the preface of Richard Bellman’s Introduction to Matrix Analysis [7]:

It follows that at the very beginning a determined effort must be made to
devise a useful, sensitive, and perceptive notation. Although it would certainly
be rash to attempt to assign a numerical value to the dependence of successful
research upon well-conceived notation, it is not difficult to cite numerous exam-
ples where the solutions become apparent when the questions are appropriately
formulated. Conversely, a major effort and great ingenuity would be required
were a clumsy and unrevealing notation employed. Think, for instance, of how
it would be to do arithmetic or algebra in terms of Roman numerals. A well-
designed notation attempts to express the essence of the underlying mathematics
without obscuring or distracting.

When dealing with operators, functions, and functionals in both continuous and discrete

space, adopting a good notation is especially important. Therefore we adopt the following

rules concerning notation, some of which are standard, some of which are not.

2.1 Original Space

Our original (continuous) space has 6 independent variables: energy E, space r̂,

time t, and nuclide index k.

E energy (MeV)
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r̂ space (cm)

t time (s)

k nuclide index k = 1, ..., Nk

2.1.1 Function

1. A function is symbolized using any letter from the Greek alphabet or a lowercase

letter from the English alphabet. Examples: η, φ, Φ, σ, f , g.

2. Use subscripts for extra descriptiveness. Examples: Σs, σf , f1.

3. Use superscripts for even more descriptiveness. Examples: η∗, ϕ†, f∗1 .

4. Indicate the function’s dependence on independent variables using parentheses ( ) to

enclose the comma-separated list of independent variable symbols. Examples: η =

η ( r̂, t ) , Φ = Φ ( t ) , Σs = Σs ( r̂, E, t ) , f = f ( r̂, E, t ) .

5. Suppress unneeded independent variables to increase readability.

2.1.2 Integration

1. Indicate integration of a function over some or all independent variables by enclosing

that function in brackets [ ] with limits of integration subscripting the brackets.

Examples: [
◦

]
V,ε,τ

def=
∫ tN

t0

dt

∫ E0

EN

dE

∫

V
◦ d3r

and [
◦

]
Vi,εg ,τj

def=
∫ tj

tj−1

dt

∫ Eg−1

Eg

dE

∫

Vi

◦ d3r ,

where we introduce

(a) Vi to reference the volume of node i, Vi = δxiδyiδzi,

(b) εg to reference the energy bounds of group g, εg = Eg−1 − Eg,

(c) τj to reference the time across the jth time step, τj = tj − tj−1, and

(d) V , ε, and τ to indicate integration over the entire domain.
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2. To aid readability, include a small space between functions. Example:

[
νΣf φ

]
Vi,εg

=
∫ Eg−1

Eg

dE

∫

Vi

d3r νΣf (r̂, E, t) φ(r̂, E, t).

2.1.3 Functional

1. A functional is symbolized like a function with a Greek or lowercase English letter

with optional sub- and super- scripts. Examples: Σ2→1, r`.

2. Indicate the functional’s dependence on other functions using brackets [ ] (as op-

posed to parentheses ( ) with functions) to enclose the list of function symbols. Ex-

amples: r` = r` [~δ` , ~η ] ; Σf ( r̂, E, t ) = Σ [~σf , ~η ] ; Σs ( r̂, E, t ) = Σ2→1 [ Σs ( E′ →
E ) , φ ( E′ ) ] .

3. The functional’s symbol defines the limits of integration/summation. Examples:

r` [~δ` , ~η ] def=
[

~δ` ~η
]
τ,k

; Σ [~σf , ~η ] def=
[

~σf ~η
]
k
; Σ2→1 [ Σs(E′ → E) , φ(E′) ] def=

[
Σs(E′ → E) φ(E′)

]
ε′

.

2.1.4 Operator

1. An operator is symbolized with an uppercase English letter. Examples: L, F , B, M .

2. Indicate the operator’s dependence on functions, functionals, or other operators using

parentheses ( ) to enclose the semicolon-separated list of symbols. Examples: L =

L(Σs ,Σa , dc); F = F (νΣf , χp , βtot); B = B(ke , L , F ); M = M(σa , σf , σ).

3. Suppress dependencies to increase readability.

4. The only exception is the uppercase English letter N . It is never used as an operator

but used exclusively with a subscript to define a number of something.

(a) Ng is the number of energy groups

(b) Nk is the number of nuclei

(c) Ni is the number of nodes/subregions

(d) Nj is the number of time steps
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2.2 Discrete Space

In our discrete space we only have 4 dimensions, as the 3 dimensional spatial

location, r̂, has been collapsed into 1 index, i. We will use the following indices in the

discretized system.

g energy group index , g = 1, ..., Ng

i subregion/node index, i = 1, ..., Ni

j time node index , j = 0, ..., Nj

k nuclide index , k = 1, ..., Nk

2.2.1 Vector

1. A vector uses the super-symbol~ with a function symbol (Greek or lowercase English

letter). Examples: ~η, ~Φ, ~σf , ~f , ~g.

2. Indicate the vector’s dependence on the four indices with parentheses (see Subvec-

tor/Submatrix below for additional use of this notation for indicating subvectors

and submatrices.) Examples: ~f = (g){ ~f }(j)
(i) for a discrete version of function,

f = f(r̂, E, t); and a vector of functions, such as the nuclide concentration vector,

~η, using both notations, ~η = (k){ ~η(r̂, t) } .

3. As alluded to above, a vector of functions is allowed. Examples: ~η(t), ~σf (r̂, E, t).

4. δmn is the Kronecker delta.

δmn =





1 m = n

0 m 6= n
(2.1)

5. ~δn is a vector of Kronecker deltas.

{ δn }m =





1 m = n

0 m 6= n
(2.2)



9

2.2.2 Matrix

1. A matrix is a special kind of operator for linear systems and uses boldface type and

the super-symbol˜ with an operator symbol (uppercase English letter). Examples:

L̃ = L̃(~Σs , ~Σa , ~dc); F̃ = F̃(ν~Σf , ~χp , ~βtot); B̃ = B̃(~ke , L̃ , F̃); M̃ = M̃(~σa , ~σf , ~σ).

2. As alluded to above, a matrix of functions and operators is allowed, however the

mapping of dependencies to entries in the matrix should be clear.

3. The identity matrix is noted without super-symbol as E.

4. The super-symbol˜ is non-standard for matrix notation but we give the following

justifications.

(a) It is good to have notation that may be easily produced by hand. Simply using

boldface type for matrices, L, is common in literature but difficult to represent

easily by hand.

(b) In some texts, the double line super-symbol is used for matrices, L, and some-

times the single line super-symbol is used for vectors, f . I like these notations

because they seem consistent but the requirement of a double line for matrices

seems like too many pen-strokes when there are so many different single super-

symbols that could be used. Also, I think it would be a shame to not use the

vector symbol, ~f , for vectors as it is such a universally recognized notation.

(c) In other texts, the double line sub-symbol is used for matrices, L, and the single

line sub-symbol is used for vectors, f . I don’t like these for the same reasons

as the super-symbols mentioned above—plus sub-symbols sometimes crowd text,

especially when using single-spacing.

(d) So we will use the˜to denote a matrix. It is a single super-symbol and is easy to

write, read, and recognize.

(e) One possible problem with using the˜ to indicate a matrix is it used frequently to

denote a perturbed operator so we will use a prime superscript instead: if L/L̃ is

the unperturbed operator/matrix then L′/L̃′ is the perturbed operator/matrix.
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2.2.3 Elements of a Vector/Matrix

When working with vector or matrix quantities, it is important to be able to refer

to certain elements of that vector or matrix, thus we adopt the following element notation

system. It may appear clumsy at first but it has numerous advantages.

1. Refer to a single element of a vector or matrix by enclosing the matrix or vector in

braces { } and citing each fixed index.

2. When referring to the most basic element of a vector or matrix, the super-symbols

are dropped.

3. To enhance readability, each phase space index lives in one of the four corners around

the braces.
matrix gg′

kk′{ }j
ii′

vector g
k{ }j

i

4. All vectors are considered column vectors.

5. With all matrices, the first index is a row index and the second is a column index.

6. Examples:

• If the vector ~η is the number of various nuclei, in all subregions/nodes in the core,

at all times; then k{ η }j
i is the concentration of nuclide k, in subregion/node

i, at time nodes tj , j = 0, ..., Nj . Note that when referring to the most basic

element of a vector, such as k{ η }j
i , the vector super-symbol is dropped.

• If the vector ~φ is the scalar flux for all energy groups, in all subregions/nodes

in the core at all times, then g{φ }j
i is the scalar flux for energy group g in

subregion/node i at time nodes tj , j = 0, ..., Nj .

• If the matrix M̃ describes the average rate of transmutation of nuclei into other

nuclei in all subregions/nodes in the core at over all time steps τj , j = 1, ..., Nj ,

then kk′{M }j
ii′ is rate of transmutation of nuclide k′ into nuclide k in subre-

gion/node i over time step τj , j = 1, ..., Nj .
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2.2.4 Summation

1. Indicate a summation of a vector quantity over some indices by enclosing that vector

in brackets [ ] with summation indices subscripting the brackets.

2. A set of weights w may be implicitly applied to any summation in order to approximate

the original integration over continuous space.

3. Example:

[
~φ

]
Vi,εg

= wg wi
g{φ }i ≈

[
φ

]
Vi,εg

=
∫ Eg−1

Eg

dE

∫

Vi

d3r φ(r̂, E, t).

Here, for an integration of the scalar flux, the weights wi = Vi and wg = 1.

2.2.5 Matrix Transpose Definition

The transpose is indicated by a T superscript.

gg′
kk′{A }j

ii′
def= g′g

k′k{AT }j
i′i (2.3)

Matrix-Vector Products

The resultant vectors ~c and ~d of the matrix-vector products,

~c = Ã~b

~d = ÃT~b

are defined below.

~c = Ã~b (2.4a)
g
k{ c }j

i
def=

[
Ã~b

]
g′,i′,k′

=
∑

g′

∑

i′

∑

k′

gg′
kk′{A }j

ii′
g′
k′{ b }j

i′ (2.4b)

~c T = ~bT ÃT (2.4c)
g
k{ c T }j

i
def=

[
~bT ÃT

]
g,i,k

=
∑

g

∑

i

∑

k

g
k{ bT }j

i
gg′
kk′{AT }j

ii′ (2.4d)

~d = ÃT~b (2.4e)
g
k{ d }j

i
def=

[
ÃT~b

]
g′,i′,k′

=
∑

g′

∑

i′

∑

k′

gg′
kk′{AT }j

ii′
g′
k′{ b }j

i′ (2.4f)
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~d T = ~bT Ã (2.4g)
g
k{ d T }j

i
def=

[
~bT Ã

]
g,i,k

=
∑

g

∑

i

∑

k

g
k{ bT }j

i
gg′
kk′{A }j

ii′ (2.4h)

2.2.6 Block Diagonal Matrices

The block diagonal matrix is indicated by repeated subscripts,

δii′ kk′{A }j
ii′ = kk′{A }j

ii .

2.2.7 Subvector/Submatrix

In many cases, one would rather refer to a subset of the elements of a vector or

matrix.

1. Refer to a subvector or submatrix by suppressing indices.

2. Alternately, the suppressed indices may be enclosed in parentheses ( ), like we indi-

cated dependencies of a vector.

3. Examples:

• If the vector ~η is the concentration of all nuclei in all subregions/nodes in the

core at all times, then { ~η }j
i (or (k){ ~η }j

i ) is the vector of nuclide concentrations

in subregion/node i at time tj .

• If the vector ~φ is the scalar flux for all energy groups in all subregions/nodes in

the core at all times, then { ~φ }j (or (g){ ~φ }j
(i) ) is the scalar flux vector at time

tj .

• If the matrix M̃ describes the rate of transmutation of nuclei into other nuclei in

all subregions/nodes in the core over all time steps, then { M̃ }j
ii (or (kk′){M }j

ii )

is the transmutation matrix in subregion/node i over time step τj .

2.3 Inner Products

The concept of an inner product is fundamental to the development of the Adjoint

System (AS) sensitivity analysis method. With our notation, the inner product for functions
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f1 = f1(r̂, E, t), f2 = f2(r̂, E, t) is defined by
〈

f1 , f2

〉
=

[
f1 f2

]
V,ε,τ

=
∫ tN

t0

dt

∫ E0

EN

dE

∫

V
d3r f1(r̂, E, t) f2(r̂, E, t)

and the inner product for vectors ~f1 = (g){ ~f1 }(j)
(i) , ~f2 = (g){ ~f2 }(j)

(i) is defined analogously

by 〈
~f1 , ~f2

〉
=

[
~f1

~f2

]
V,ε,τ

=
∑

j

wj

∑
g

wg

∑

i

wi
g{ f1 }j

i
g{ f2 }j

i .

Note that when we have a vector of functions, like the nuclide concentrations, ~η1 =

(k){ ~η1(r̂, t) } and ~η2 = (k){ ~η2(r̂, t) } , we must use a combination of summation and in-

tegration,
〈

~η1 , ~η1

〉
=

[
~η1 ~η2

]
V,τ,k

=
∑

k

wk

∫ tN

t0

dt

∫

V
d3r k{ η1(r̂, t) } k{ η2(r̂, t) } .

2.3.1 Boundary Terms

The operator L∗ adjoint to operator L is defined as
〈

Lf1 , f2

〉
=

〈
f1 , L∗f2

〉
.

If one considers differential operators, the definition of the operator consists of two parts:

(i) definition of the differential operator and (ii) boundary conditions for functions. If the

boundary conditions for functions are not homogeneous, then the equations for definition

of the adjoint operator have the following form:
〈

Lf1 , f2

〉
=

〈
f1 , L∗0f2

〉
+

〈〈
f1 , f2

〉〉
.

Here the last term is a boundary term. It is defined by an integral over corresponding

phase space at the boundary surface of the domain of definition of operators. In such case

L∗0 is the so-called “formal” adjoint operator and the definition of the adjoint operator L∗

will include delta functions. If the boundary condition for functions in both spaces are

homogeneous, then the boundary term vanishes.

2.4 Final Thought

It is the author’s hope that this notation will not be too burdensome to the reader;

in the following sections, as much of it will be suppressed as possible, when possible.
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Chapter 3

The Problem

Consider a set of responses we think are important in our reactor system (EOC

inventory of Am-242, pin power distribution, etc.) These responses, rs, may be expressed

as functionals of the input data to our system, ~α, and the solution of our system, ~x,

rs = rs [ ~α , ~x ] =
〈

~hs,α , ~α
〉

α
+

〈
~hs,x , ~x

〉
x
, (3.1)

where we have chosen to represent the functional as two inner products, which describe

two distinctly different effects: a direct effect,
〈

,
〉

α
, and an indirect effect,

〈
,

〉
x
. The

response, rs, we seek determines the realization vector for the direct effect, ~hs,α, and the

realization vector for the indirect effect, ~hs,x. We may calculate the direct effect with just

the value ~α. The indirect effect requires we solve a system of equations for ~x. Our goal is

to determine what happens to response, rs, when some data parameters (e.g. 235U thermal

fission cross section, 237Np decay constant, 241Pu fission yields, etc.) in the set of parameters

~α are perturbed. With most responses, perturbing ~α → ~α ′ = ~α + ∆~α also perturbs the

system solution, ~x → ~x ′ = ~x + ∆~x, yielding a perturbed response,

rs
′ = rs[~α , ~x ′] =

〈
~hs,α , ~α ′

〉
α

+
〈

~hs,x , ~x ′
〉

x
.

And in general, the degree of the perturbation (e.g. -1%, 1%, 5%, etc.) will nonlinearly

impact the response so we actually have a perturbed response, { rs
′ }p , that depends on

some perturbation index p,

{ rs
′ }p = rs [ { ~α ′ }p , { ~x ′ }p ] =

〈
~hs,α , { ~α ′ }p

〉
α

+
〈

~hs,x , { ~x ′ }p

〉
x
, (3.2)
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where we can represent the data perturbation as { ~α ′ }p = ~α + {∆~α }p . The elements

of {∆~α }p are given by {∆α }m,p = { f }m,p {α }m , where { f }m,p is the perturbation

fraction of degree p (e.g. -1%, 1%, 5%, etc.) for parameter m. The most efficient manner

in which to analyze sensitivity (i.e. how much responses change when data is perturbed) is

dependent upon three factors:

1. the number of responses we are interested in, Ns,

2. the number of input data parameters we will perturb, Nm and

3. whether we are more interested in

(a) sensitivities of responses to input data,

(b) propagation of uncertainties in input data, or

(c) exact changes in responses, {∆rs }p = { rs
′ }p − { rs }p , for perturbations of

degree p in data parameter m.

Before we proceed, let us remark on the indices m and p we have introduced to deal with

sensitivity analysis. These two indices live in the lower right corner, { ◦ }m,p , like the spatial

index i, but we will only use them when it is absolutely necessary to refer to data parameter

m or perturbation degree p.
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Chapter 4

The Reactor Physics Equations

4.1 Neutron Field Equation

To model the field of neutrons in the reactor system, we use the time-dependent

neutron diffusion equation which describes the neutron scalar flux, φ(r̂, E, t), at all positions

r̂ in the reactor, for all neutron energies E, from BOC at t0 to EOC at tN is given by

1
v

∂φ

∂t
+ Lφ = Fpφ + Pd ~η + Qext (4.1)

i. from t0 < t ≤ tN with initial conditions ~η(r̂, t0) = ~η0(r̂) and

φ(r̂, E, t0) = φ0(r̂, E)

ii. and boundary conditions φ(r̂bc, E, t) = φbc(r̂, E, t) for r̂ ∈ r̂bc

with leakage/loss operator L, prompt fission operator Fp, and delayed neutron precursor

operator Pd defined by

L ◦ def= −∇dc · ∇ ◦+Σt ◦ −
[

Σs(E′ → E)◦
]
ε′

, (4.2a)

Fp ◦ def= χp(E)
[

νΣf (E′) ◦
]
ε′

, (4.2b)

Pd ◦ def=
[

~χd(E)~λd◦
]
k

. (4.2c)
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We are also interested in the local fission power density, p ( r̂, t ) , produced in the reactor

from BOC to EOC described by

p ( r̂, t ) = p [ κΣf (E′) , φ(E′) ] def=
[

κΣf (E′) φ(E′)
]
ε′

. (4.2d)

For reference, the terms appearing in Eq. (4.1) are outlined below.

φ(r̂, E, t) scalar flux
(

neutrons
MeV·cm2·s

)

v(E) velocity of neutrons with energy E
(

cm
s

)

dc(r̂, E, t) diffusion coefficient (cm)

Σt(r̂, E, t) macroscopic total cross section
(

1
cm

)

Σs(r̂, E′ → E, t) macroscopic scattering cross section
(

1
MeV·cm

)

χp(r̂, E, t) prompt neutrons energy spectrum (−)

νΣf (r̂, E, t) macroscopic nu-fission cross section
(

1
cm

)

Qext(r̂, E, t) external source of neutrons
(

neutrons
MeV·cm2·s

)

k{χd(E) } delayed neutron energy spectrum for nuclide k (−)

k{λd } production rate of delayed neutrons for nuclide k
(

1
s

)

k{ η(r̂, t) } concentration of nuclide k
(

nuclei
barn·cm

)

κΣf (r̂, E, t) macroscopic kappa-fission cross section
(

MeV
cm

)

p(r̂, t) local fission power density
(

MeV
cm3·s

)

4.2 Nuclide Field Equation

The model the field of nuclei, we use the time-dependent nuclide transmutation

equations (also called the Bateman equations, burnup equations, and depletion equations)

to be solved for nuclide concentrations, ~η(r̂, t), at all positions r̂ in the reactor from BOC

at t0 to EOC at tN is given by

d

dt
~η =

[
R̃φ

]
ε
~η + D̃ ~η (4.3)

i. from t0 < t ≤ tN with initial condition ~η(r̂, t0) = ~η0(r̂)
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where the reaction matrix R̃ is composed of cross sections describing the transmutation of

nuclei to other nuclei from reactions with neutrons,

k,k′{R } =




− k{σa(r̂, E, t) } k = k ′

k,k′{σ(r̂, E, t) } elsewhere,
(4.4a)

while the decay matrix D̃ describes the transmutation of nuclei to other nuclei via decay,

k,k′{D } =




− k{λtot } k = k ′

k,k′{λ } elsewhere.
(4.4b)

The decay constant λ for a specific transmutation path is usually expressed as

k,k′{λ } = k,k′{ fλ } k′{λtot } , (4.4c)

in terms of path branch ratio k,k′{ fλ } and total decay constant k′{λtot } . Similarly, the

cross section σ for the fissioning of nuclide k′ creating nuclide k is usually expressed as

k,k′{σ } = k,k′{ ff } k′{σf } , (4.4d)

in terms of fission fraction ff times microscopic fission cross section σf . The absorption cross

section σa for nuclide k′ may be expressed as the summation of all other transmutation cross

sections for nuclide k′,

k′{σa } =
[

k,k′{σ }
]
k
. (4.4e)

For reference, the terms appearing in Eq. (4.3) are outlined below.

φ(r̂, E, t) scalar flux
(

neutrons
MeV·cm2·s

)

k{σa(r̂, E, t) } microscopic absorption cross section of nuclide k (barn)

k,k′{σ(r̂, E, t) } microscopic cross section of nuclide k′ which produces k (barn)

k{ η(r̂, t) } concentration of nuclide k
(

nuclei
barn·cm

)

k{λtot } total decay rate for nuclide k
(

1
s

)

k,k′{λ } decay production of nuclide k from k′
(

1
s

)

k,k′{ fλ } fraction of nuclide k′ decays which produce k

k,k′{ ff } fraction of nuclide k′ fissions which produce k
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4.3 Microscopic and Macroscopic Cross Sections, σ and Σ

The coupling between the neutron field equation, Eq. (4.1), and neutron field equa-

tion, Eq. (4.3), is more than just the delayed neutron contribution, Pd ~η. All macroscopic

cross sections, Σ—which describe the interaction probabilities of neutrons with the sur-

rounding media—are actually just a convenient grouping of nuclide concentrations, ~η, and

microscopic cross sections, σ, which describe the interaction probabilities per nuclide in the

system.

Σx(r̂, E, t) = Σ [~σx(r̂, E, t) ; ~η(r̂, t) ] (4.5)

The functional, Σ, which maps microscopic cross sections of type x to macroscopic cross

sections of type x is given by

Σ [~σx(r̂, E, t) ; ~η(r̂, t) ] def=
[

~σx(r̂, E, t) ~η(r̂, t)
]
k

(4.6)

where the microscopic cross sections, σ, are described below.

k{σx(r̂, E, t) } microscopic cross section of type x for nuclide k (barn)

4.4 Reactor Cycle Equations

For a simulation of the reactor cycle, we would like to solve the neutron field

equation, Eq. (4.1), coupled with the nuclide field equation, Eq. (4.3), for the reactor system

from the BOC to the EOC. Such a calculation is called a reactor cycle calculation and

employs a set of standard assumptions and modifications [6] to Eq. (4.1) to accurately

calculate of the scalar flux, φ, and the nuclide concentrations, ~η, of important nuclei over

the reactor cycle. In order to arrive at the equations we use for reactor cycle calculations,

we make the following assumptions:

1. the scalar flux, φ, varies slowly in time, and thus the time derivative in Eq. (4.1) may

be neglected,

2. the scalar flux, φ, may be decomposed into a shape function, ϕ, and an amplitude

function, Φ, such that φ(r̂, E, t) = ϕ(r̂, E, t)Φ(t),

3. over the entire cycle, from t0 to tN , our reactor operates at some constant power pcore,

and



20

4. the external source of neutrons, Qext(r̂, E, t), may be neglected.

Neutron Field Equations for reactor cycle calculations

With these four assumptions, Eq. (4.1) becomes an equation for the flux shape, ϕ

and an equation for the flux amplitude, Φ.

Lϕ =
1
ke

Fϕ (4.7)

i. for separable scalar flux, φ = ϕΦ, with amplitude function

Φ =
pcore[

p ( r̂, t )
]
V

ii. from t0 < t ≤ tN with initial condition ~η(r̂, t0) = ~η0(r̂)

iii. with boundary condition φ(r̂bc, E, t) = φbc(r̂, E, t) for r̂ ∈ r̂bc

iv. with eigenvalue

ke =

[
Fϕ

]
V,ε[

Lϕ
]
V,ε

In Eq. (4.7), the equation for the flux shape is an eigenvalue problem with eigenvalue ke and

associated eigenfunction ϕ. The equation for the flux amplitude is basically a constraint

based on the fact that the reactor operates at some constant power, pcore. To formulate

Eq. (4.7), it is necessary to modify the fission source to include delayed neutron contri-

butions. The (unchanged) loss/leakge operator L and new fission operator F are given

by

L◦ def= −∇dc · ∇ ◦+Σt ◦ −
[

Σs(E′ → E)◦
]
ε′

, (4.8a)

F◦ def=
(
χp(E)(1− βtot) +

[
~βd ~χd(E)

]
k

) [
νΣf (E′) ◦

]
ε′

. (4.8b)

The total delayed neutron fraction, βtot, satisfies

βtot =
[

~βd

]
k
. (4.8c)
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For reference, the new terms appearing in Eq. (4.7) are outlined below.

ϕ(r̂, E, t) scalar flux shape function
(

neutrons
MeV·cm2·s

)

Φ(t) scalar flux amplitude function

k{χd(E) } delayed neutron energy spectrum for nuclide k (−)

k{βd } delayed neutron fraction for nuclide k

βtot total delayed neutron fraction

ke effective neutron multiplication factor

Nuclide Field Equation for reactor cycle calculations

For reactor cycle calculations, the nuclide field equation stated in Eq. (4.3) becomes

d

dt
~η =

[
R̃Φϕ

]
ε

~η + D̃ ~η (4.9)

i. from t0 < t ≤ tN with initial condition ~η(r̂, t0) = ~η0(r̂)

where the only difference between Eq. (4.9) and Eq. (4.3) is that now the scalar flux is

defined as an amplitude function times a shape function, φ = Φϕ.
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Chapter 5

The Discretized Reactor Cycle

Equations

Now let us develop the discretized versions of reactor cycle equations for the neu-

tron field of Eq. (4.7) and the nuclide field of Eq. (4.9). Then we will discuss the solution

methods employed in NESTLE for these calculations. Note that the description and meth-

ods discussed here apply only to cores with rectangular-prism fuel assemblies–those which

may easily be described with Cartesian geometry. Although NESTLE can perform reactor

physics calculations for cores with hexagonal-prism fuel assemblies—which are described

using special Hexagonal geometry including conformal mapping and a special nodal burnup

gradient treatment (see NESTLE documentation [2])—this research project was concerned

only with US PWR and BWR cores which utilize rectangular-prism fuel assemblies.

5.1 Discretized Neutron Field Equations

The continuous neutron field equations for a reactor cycle calculation are given by

Eq. (4.7). In NESTLE, the following discretizations are applied to yield the set of nodal

equations NESTLE solves numerically.

1. The standard energy group approximation is used to discretize energy, E, into energy
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groups, g = 1, ..., Ng.

2. The spatial domain is broken up into a finite number of subregions/nodes, i =

1, ..., Ndom.

3. Ngst extra “ghost nodes” are placed at the surface boundary (i = Ndom +1, ..., Ndom +

Ngst) to help treat boundary conditions. Thus, the total number of space nodes is

Ni = Ndom+Ngst. Boundary conditions are no longer needed as they are incorporated

into the system through the extra “ghost nodes”.

4. We choose some appropriate approximation for the streaming term (see NESTLE

Discretization Options).

5. All material properties, cross sections, etc. are assumed piecewise-constant—that is

constant in each node/subregion i.

6. Time is discretized into time nodes, tj , j = 0, ..., Nj .

The results of the aforementioned discretizations are the system of equations NESTLE

solves for the neutron field in a thermal reactor system over a cycle,

{ L̃ }j { ~ϕ }j =
1

{ ke }j
{ F̃ }j { ~ϕ }j (5.1)

i. for separable scalar flux, { ~φ }j = { ~ϕ }j {Φ }j , with ampli-

tude function

{Φ }j =
pcore[
{ ~p }j

]
V

ii. for times tj , j = 0, ..., Nj with initial condition { ~η(t0) }0 = ~η0

iii. with eigenvalue

{ ke }j =

[
{ F̃ }j { ~ϕ }j

]
i,ε[

{ L̃ }j { ~ϕ }j
]
i,ε

where the loss/leakge matrix L̃ and fission matrix F̃ are defined by

gg′{L }j
ii′

def= − g{ d }j
i,i′ δgg′ +

(
g{Σr }j

i δgg′δii′ − g,g′{Σs }j
i (1− δgg′)δii′

)
Vi, (5.2a)

gg′{F }j
ii′

def=
((

g{χp }j
i (1− βtot) +

[
~βd

g{ ~χd }j
i

]
k

)
g′{ νΣf }j

i δii′
)

Vi. (5.2b)
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We are also interested in the local fission power density shape, { ~p }j , described by

{ p }j
i = p [ {κ~Σf }j

i , { ~ϕ }j
i ] def=

[
{κ~Σf }j

i { ~ϕ }j
i

]
g
. (5.3)

For reference, the terms appearing in Eq. (5.1) are outlined below.

g{ϕ }j
i scalar flux shape for group g, node i, time tj

(
neutrons
cm2·s

)

{Φ }j scalar flux amplitude for time tj

g{ d }j
i,i′ nodal coupling coefficient

(
1

cm

)

g{Σr }j
i macroscopic removal cross section

(
1

cm

)

g′,g{Σs }j
i macroscopic scattering cross section, group g′ → g

(
1

cm

)

g{χp }j
i prompt neutrons energy spectrum (−)

g{ νΣf }j
i macroscopic nu-fission cross section

(
1

cm

)

g{κΣf }j
i macroscopic kappa-fission cross section

(
MeV
cm

)

g
k{χd }j delayed neutron energy spectrum for nuclide k (−)

k{βd }j delayed neutron fraction for nuclide k

{βtot }j total delayed neutron fraction

{ ke }j effective neutron multiplication factor

{ p }j
i local fission power density shape

(
MeV
cm3·s

)

pcore reactor core fission power
(

MeV
s

)

5.2 Discretized Nuclide Field Equations

The continuous nuclide field equation of Eq. (4.9) is easily discretized in space

by just considering the node-average nuclide concentrations in each subregion/node of the

problem domain, i = 1, ..., Ndom. We do not solve for the nuclide field in ghost nodes—they

are only used for the scalar flux boundary condition treatment. We do not discretize the

nuclide field equation in time so we still have the ODE

d

dt
{ ~η(t) }j

i = { M̃(t) }j
ii { ~η(t) }j

i (5.4)
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i. from tj−1 < t ≤ tj , for j = 1, ..., Nj , with initial/interval

condition

{ ~η(tj−1) }j
i =





{ ~η0 }i j = 1

{ ~η(tj−1) }j−1
i j = 2, ..., Nj

ii. for nodes i = 1, ..., Ndom

where we have introduced the transmutation coefficient matrix, M̃(t), for the nuclide field

defined by

{ M̃(t) }j
ii

def=
∑

g

gg{ R̃(t) }j
ii

g{φ(t) }j
i + D̃.

Just like the continuous case, the reaction coefficient matrix R̃ is contains cross sections

which describe the transmutation of nuclei to other nuclei via neutron activation,

gg
kk′{R(t) }j

ii
def= − g

k{σa(t) }j
i δkk′ +

g
k,k′{σ(t) }j

i (1− δkk′) (5.5a)

while the decay coefficient matrix D̃ contains decay constants which describe the transmu-

tation of nuclei to other nuclei via decay,

kk′{D } def= − k{λtot } δkk′ + k,k′{λ } (1− δkk′). (5.5b)

For reference, the terms appearing in Eq. (5.4) are outlined below.

k{ η(t) }j
i concentration of nuclide k in node i over interval τj

(
nuclei

barn·cm
)

g{φ(t) }j
i interval group scalar flux

(
neutrons
cm2·s

)

g
k{σa(t) }j

i interval microscopic absorption cross section of nuclide k (barn)

g
k,k′{σ(t) }j

i interval microscopic cross section for production of nuclide k by k′ (barn)

k{λtot } total decay rate for nuclide k
(

1
s

)

k,k′{λ } decay production of nuclide k from k′
(

1
s

)

5.3 NESTLE Discretization Options

Now we will discuss various facets of the discretized neutron and nuclide field

equations presented in Eq. (5.1) and Eq. (5.4), respectively. Note that these discretization

schemes only apply to Cartesian geometry—Hexagonal geometry is not discussed in this

work.
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5.3.1 Streaming Term Discretization

Two methods exist in NESTLE for the discretization of the so-called “streaming

term” in Eq. (4.1), ∇dc · ∇φ. The discretization method determines the form of the nodal

coupling term introduced in Eq. (5.1), g{ d }j
i,i′ , for all subregions/nodes i′ coupled to node

i (6 neighbors in 3D Cartesian geometry and 8 in 3D hexagonal geometry). Let us introduce

the following subscripts for node i′ in Cartesian geometry, describing it’s location in relation

to the node of interest, i.

1. western node (negative x−direction) i′ = iw

2. eastern node (positive x−direction) i′ = ie

3. northern node (negative y−direction) i′ = in

4. southern node (positive y−direction) i′ = is

5. down node (negative z−direction) i′ = id

6. up node (positive z−direction) i′ = iu

Finite Difference Method (FDM)

The FDM uses a finite difference approximation for ∇ with the requirement that

the current across an interface (i′ → i) be continuous, resulting in Eq. (5.6) for the neighbor

node coupling terms, g{ d }j
i,i′ , in terms of corrected diffusion coefficients, g{ dcc }j

i,i′ , and

cell i thicknesses ∆xi, ∆yi, and ∆zi.

g{ d }j
i,i′ = g{ dcc }j

i,i′ (1− δii′) + (5.6a)
(

( g{ dcc }j
i,iw

+ g{ dcc }j
i,ie

)∆yi∆zi +

( g{ dcc }j
i,in

+ g{ dcc }j
i,is

)∆xi∆zi +

( g{ dcc }j
i,iu

+ g{ dcc }j
i,id

)∆xi∆yi

)
δii′

where g{ dcc }j
i,i′ for two cells joined at an y-z plane interface is given by

g{ dcc }j
i,i′ =

g{ dc }j
i

g{ dc }j
i′ (∆xi + ∆xi′)

g{ dc }j
i ∆xi + g{ dc }j

i′ ∆xi′
. (5.6b)

Nodal Expansion Method (NEM)

The NEM introduces a correction term to the FDM, g{ dl }j
i,i′ , in an attempt to

more accurately approximate neutron currents at the interfaces of subregions/nodes, as
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the currents produced by the finite difference method is inaccurate for coarse cells—as we

usually have with reactor physics problems. The values of the NEM correction terms are

calculated by expanding the current in a series of moments with unknown coefficients, then

solving for the coefficients with a sequence of one-node and/or two-node current calculations

[2]. The result for the neighbor node coupling terms, g{ d }j
i,i′ , in terms of corrected diffu-

sion coefficients, g{ dcc }j
i,i′ ; cell thicknesses ∆xi, ∆yi, and ∆zi; and the NEM corrections,

g{ dl }j
i,i′ , is

g{ d }j
i,i′ = ( g{ dcc }j

i,i′ + g{ dl }j
i,i′ )(1− δii′) + (5.7a)

(
( g{ dcc }j

i,iw
+ g{ dcc }j

i,ie
+ g{ dl }j

i,iw
− g{ dl }j

i,ie
)∆yi∆zi +

( g{ dcc }j
i,in

+ g{ dcc }j
i,is

+ g{ dl }j
i,in

− g{ dl }j
i,is

)∆xi∆zi +

( g{ dcc }j
i,iu

+ g{ dcc }j
i,id

+ g{ dl }j
i,id

− g{ dl }j
i,iu

)∆xi∆yi

)
δii′

where g{ dcc }j
i,i′ for two cells joined at an y-z plane interface is given by

g{ dcc }j
i,i′ =

g{ dc }j
i

g{ dc }j
i′ (∆xi + ∆xi′)

g{ dc }j
i ∆xi + g{ dc }j

i′ ∆xi′
. (5.7b)

5.3.2 Neutron/Nuclide Field Coupling Methods

The neutron and nuclide fields satisfying equations Eq. (5.1) and Eq. (5.4), respec-

tively, are coupled through the influence of ~η on macroscopic cross sections, Σ, and the

influence of ϕ and Φ on the rates of neutron-induced transmutation events. NESTLE has

two methods to resolve this coupling.

Predictor Method

With the predictor (P) method of neutron/nuclide field coupling, the interval group

scalar flux, { ~φ(t) }j , is approximated at its beginning-of-interval value,

{ ~φ(t) }j ≈ {Φ }j−1 { ~ϕ }j−1
(
H(t− tj−1)−H(t− tj)

)
(5.8)

where H is the Heaviside function. The result is an “explicit” system of equations, which

may be solved sequentially from one time step to the next.
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Predictor-Corrector Method

With the predictor-corrector (P-C) method of neutron/nuclide field coupling, the

interval scalar flux, { ~φ(t) }j , is approximated as linear from the beginning-of-interval to

end-of-interval,

{ ~φ(t) }j ≈ {Φ }j−1 { ~ϕ }j−1

(
tj − t

τj

)
+ {Φ }j { ~ϕ }j

(
t− tj−1

τj

)
. (5.9)

The result is a system in which the nuclide field calculation may depend on a neu-

tron field calculation that has not yet been performed. This “implicit” system of equations

is solved through the iteration process summarized below.

1. Use the P method to solve the nuclide field equations from tj−1 to tj (time step τj)

and determine “predicted” end-of-interval nuclide concentrations, { ~η (0)(tj) }j .

2. Use the “predicted” nuclide concentrations, { ~η (0)(tj) }j , to solve the neutron field

equations at tj and determine “predicted” scalar flux, { ~φ (0) }j .

3. Now use the P-C method to re-solve the nuclide field equations over time step τj and

determine “once-corrected” end-of-interval nuclide concentrations, { ~η (1) }j
(tj)

.

4. Use the “once-corrected” nuclide concentrations, { ~η (1)(tj) }j , to re-solve the neutron

field equations at tj and determine “once-corrected” scalar flux, { ~φ (1) }j .

5. Steps 3 and 4 above may be repeated indefinitely and although this process seems

reasonable, we are not aware of proof that this process converges—this is certainly not

the conventional Predictor-Corrector algorithm [8]. Nonetheless, it appears convergent

and exhibits the second order behavior of the conventional algorithm. Currently in

NESTLE, corrector updates of the nuclide field occur after a user-defined number

of iterations on the neutron field solution. In the problems we tested, the nuclide

field was “corrected” an average of 2-3 times before convergence of the neutron field

solution.

5.4 NESTLE Neutron Field Solvers

To solve the discretized neutron field equation, Eq. (5.1), NESTLE uses the Gauss-

Seidel (G-S) method of iteratively solving a linear algebraic system with Red-Black Line
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Successive Over Relaxation (LSOR) in Cartesian geometry and Red-Black-Yellow LSOR in

Hexagonal geometry. At each time node tj , the matrix { L̃ }j from Eq. (5.1) is iteratively

inverted using G-S LSOR, with right side { F̃ }j { ~ϕ }j . The system is very sparse—the 3D

Cartesian system has only 6 + Ng nonzero bands. From NESTLE v5.2.1 documentation on

the strategy for solving the resulting system of equations [2]:

...much work has been done on formulating, understanding and implementing the
iterative solution of this large, sparse matrix system. NESTLE takes advantage
of this wealth of knowledge in its iterative solution implementation, utilizing an
outer-inner iterative strategy. The outer iterations are used to update the fission
source term and the inner iterations to approximately solve the resulting fixed
source problem. The outer iterations correspond to a power method.

5.5 NESTLE Nuclide Field Solvers

We have created and implemented three generalized nuclide field solvers to replace

the old explicit linear chain solvers:

1. EQUI — a simple equilibrium method to calculate concentrations of nuclei in equilib-

rium,

2. MATEXPSS — a matrix exponential method with scaling and squaring for solving sys-

tems of ODEs,

3. ROSENBROCK2 — A 2nd order Rosenbrock method for solving stiff systems of ODEs

(SODEs).

The following sections will discuss the methodology behind each procedure in detail, but

before we continue, let us introduce the following representation of Eq. (5.4),

d

dt
~η(t) = M̃(t) ~η(t) (5.10)

i. for a single time step from ta < t ≤ tb with initial/interval

condition ~η(ta) = ~ηa

where we have suppressed some notation by using ~η(t) instead of { ~η(t) }j
i and M̃(t) instead

of { M̃(t) }j
ii . The nuclide field equation in Eq. (5.10) may be considered a SODE if
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1. it describes simultaneous processes with significantly different rates of change for the

components of the solution (highly varying eigenvalues) and

2. we must find the solution on the time scale of the slowest changing component [9].

From fission products such as Xe and I to heavy metals like U and minor actinides like Am,

the system of Eq. (5.10) contains rates of change for different components which may differ

by many orders of magnitude and we wish to solve the system on the time scale for which

we can expect significant changes in fuel nuclei concentrations, which is very slow compared

to initially fast changing nuclei such as fission products. Thus we may consider Eq. (5.10)

as an SODE. The matrix exponential method of MATEXPSS is not inherently well-suited to

solving SODEs, but when we split the nuclide field into two parts, as we discuss in the

next section Equilibrium Method, MATEXPSS appears to be a fairly efficient solver. The

Rosenbrock method implemented in ROSENBROCK2 is well suited to solving SODEs (see 2nd

Order Rosenbrock Method with Complex Coefficients).

5.5.1 Equilibrium Method

In most reactor cycles, a number of nuclei (especially fission products) achieve an

equilibrium state relatively fast because their transmutation rates are very fast compared

to fuel nuclei—again this is the mathematical property of this system called stiffness. We

attempt to reduce stiffness by removing nuclei from the system of equations when they

achieve an equilibrium state. First we divide the nuclide field into two sets, nuclei which

have reached equilibrium, ~η e, and nuclei that have not and still require the full ODE

solution, ~η h, via either MATEXPSS or ROSENBROCK2.



d
dt~η

h

d
dt~η

e


 =


 M̃h→h M̃ e→h

M̃h→e M̃ e→e





 ~η h

~η e




The matrices M̃h→h, M̃ e→h, M̃h→e, and M̃e→e represent internal coupling of the full–

calculation nuclei, coupling of the equilibrium nuclei to the full-calculation nuclei, coupling

of the full-calculation nuclei to the equilibrium nuclei, and internal coupling of the equi-

librium nuclei, respectively. Because the equilibrium nuclei’s concentrations do not change

with time, d
dt~η

e = 0. We also require that equilibrium nuclei do not transmute into full-
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calculation nuclei (M̃ e→h = 0) and we obtain the system



d
dt~η

h

0


 =


 M̃h→h 0

M̃h→e M̃ e→e





 ~η h

~η e




for the nuclide field. Now (in our full notation) we solve the system of ODEs

d

dt
{ ~η h(t) }j

i = { M̃h→h(t) }j
ii { ~η h(t) }j

i (5.11)

i. from tj−1 < t ≤ tj , for j = 1, ..., Nj , with initial/interval

condition

{ ~η h(tj−1) }j
i =





~η h
0 j = 1

{ ~η h(tj−1) }j−1
i j = 2, ..., Nj

for the full-calculation nuclei concentrations, { ~η h(t) }j
i —which do not depend on equilib-

rium nuclei, { ~η e(t) }j
i . Then, because of the impact many equilibrium nuclei may have on

the neutron field (e.g. fission products), we calculate equilibrium nuclei whenever we solve

for the neutron field,

{ ~η e(tj) }j
i = −

(
{ M̃ e→e(tj) }j

ii

)−1
{ M̃h→e(tj) }j

ii { ~η h(tj) }j
i (5.12)

i. for times tj , j = 0, ..., Nj

where −1 denotes a matrix inverse.

5.5.2 Matrix Exponential Method

The matrix exponential method seeks a solution to a system of ODEs analogous

to the solution of the simple system, dη(t)/dt = λη(t) for ta < t ≤ tb with initial condition

η(ta) = ηa, has end-of-interval solution ηb = eλτηa. Thus the linear system of ODEs—

Eq. (5.10) or Eq. (5.4) in full notation)—repeated below for convenience,

d

dt
~η(t) = M̃(t) ~η(t)
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i. for a single time step from ta < t ≤ tb with initial/interval

condition ~η(ta) = ~ηa.

The matrix exponential solution requires that we fix M̃(t) at some time t′ [5]. Integration

of the above ODE yields

~ηb − ~ηa =
∫ tb

ta

M̃(t′) ~η(t′) dt′. (5.13)

Without knowledge of the behavior of ~η(t′) over the interval, the fixed value of M̃(t′) which

best satisfies the above expression is M̃(ta + tb−ta
2 ), the transmutation coefficient matrix is

fixed at the midpoint of the interval. Thus the solution to Eq. (5.10) utilizing the matrix

exponential [5] is,

~ηb = e
fMτ~ηa (5.14a)

where τ
def= tb − ta, M̃ def= M̃(ta + τ

2 ), and the exponential of a matrix is defined by

e
fMτ def=

∞∑

m=0

Ỹm (5.14b)

and

Ỹm
def=





E m = 0,
(fM τ)m

m! elsewhere.
(5.14c)

Solution Verification

We will now show that our matrix exponential solution satisfies the nuclide field

equation by substituting our proposed solution, Eq. (5.14), into the integrated nuclide field

equation, Eq. (5.13), with our fixed M̃ = M̃(ta + τ
2 ).

~ηb − ~ηa = M̃
∫ tb

ta

~η(t′) dt′

e
fMτ~ηa − ~ηa = M̃

∫ tb

ta

~η(t′) dt′

∞∑

m=1

Ỹm~ηa = M̃
∫ tb

ta

e
fMτ ′~ηa dt′

∞∑

m=1

Ỹm~ηa = M̃τ~ηa +
∞∑

m=1

M̃m+1

m!
~ηa

∫ τ

0
(τ ′)m dτ ′

∞∑

m=1

Ỹm = M̃τ +
∞∑

m=1

M̃m+1τm+1

m + 1!
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∞∑

m=1

Ỹm =
∞∑

m=0

M̃m+1τm+1

m + 1!
∞∑

m=1

Ỹm =
∞∑

m=0

Ỹm+1

∞∑

m=1

Ỹm =
∞∑

m=1

Ỹm

Thus the matrix exponential solution as stated in Eq. (5.14) satisfies the system of first

order ODEs integrated in Eq. (5.13).

Matrix Exponential Series Properties 1: Convergence

So we know that the matrix exponential is a solution to Eq. (5.10). Now let us

show the series we have defined converges by showing that the ratio of the matrix norms of

successive terms goes to zero,

lim
m→∞

∥∥∥Ỹm

∥∥∥
∥∥∥Ỹm−1

∥∥∥
= 0. (5.15)

We begin with the left side of Eq. (5.15), substitute the definition of Ỹm, and use the law

of norms, ‖xy‖ ≤ ‖x‖ ‖y‖,

lim
m→∞

∥∥∥Ỹm

∥∥∥
∥∥∥Ỹm−1

∥∥∥
= lim

m→∞

∥∥∥∥
(fM τ)m

m!

∥∥∥∥
∥∥∥∥
(fM τ)m−1

(m−1)!

∥∥∥∥

= lim
m→∞

1
m!

∥∥∥
(
M̃ τ

)m∥∥∥
1

(m−1)!

∥∥∥∥
(
M̃ τ

)m−1
∥∥∥∥

= lim
m→∞

1
m

∥∥∥
(
M̃ τ

)m∥∥∥
∥∥∥∥
(
M̃ τ

)m−1
∥∥∥∥

≤ lim
m→∞

1
m

∥∥∥∥
(
M̃ τ

)m−1
∥∥∥∥

∥∥∥M̃ τ
∥∥∥

∥∥∥∥
(
M̃ τ

)m−1
∥∥∥∥

lim
m→∞

∥∥∥Ỹm

∥∥∥
∥∥∥Ỹm−1

∥∥∥
≤ lim

m→∞

∥∥∥M̃ τ
∥∥∥

m
(5.16a)
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lim
m→∞

∥∥∥Ỹm

∥∥∥
∥∥∥Ỹm−1

∥∥∥
≤ 0. (5.16b)

and because norms are always positive, the inequality in Eq. (5.16b) is actually an equality,

which proves convergence of the matrix exponential series by Eq. (5.15).

Matrix Exponential Series Properties 2: The Hump

To calculate the matrix exponential, as with any series, one must truncate the

series and know the effect of that truncation—i.e. what is neglected in the truncation. To

investigate how the matrix exponential series converges, we shall consider the ratio of two

successive terms as in Eq. (5.16a)—but not in the limit as m approaches infinity,
∥∥∥Ỹm

∥∥∥
∥∥∥Ỹm−1

∥∥∥
≤

∥∥∥M̃ τ
∥∥∥

m
. (5.17)

If ‖ eYm‖
‖ eYm−1‖ > 1, the series is increasing. If ‖ eYm‖

‖ eYm−1‖ < 1, the series is decreasing. Because
∥∥∥M̃ τ

∥∥∥ is simply a fixed number, we are guaranteed that eventually with some m, the series

will be decreasing. Once we know the series is decreasing, we can think about truncation,

making the argument that what we will truncate is small compared to what we have kept.

However, by Eq. (5.17), it is quite possible that terms increase in magnitude before they

decrease. This is called the hump phenomenon—when the numerator, (M̃ τ)m, dominates

the denominator, m!, for a number of terms. The practical concern is where the hump

lies. If we cannot estimate its position a priori—or cannot guarantee we pass over it in a

certain number of terms—we may be required to calculate billions of terms, each with one

more matrix multiplication than the last, in order to crest the hump. Luckily, we avoid this

possibility with the matrix exponential property of scalability.

Matrix Exponential Series Property 3: Scalability

We cannot overstate the usefulness of scalability with the matrix exponential. This

is the property that makes the efficient computation of the matrix exponential possible for

a wide range of M̃τ . For some real scaling factor, q, we can write

e
fM τ = e(

fM τ/q)q

,
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which is true for all scaling factors q. If we choose a special scaling factor, q = 2r, where

r is some integer, then we can utilize a procedure called “scaling and squaring”. In this

procedure, we

1. modify the time step from τ to τ/q,

2. calculate e
fM τ/q, and then

3. repeatedly square the resultant matrix r times to obtain the exponential matrix for

the full time step, e
fM τ = e(

fM τ/q)2r

, with a substantial reduction in required matrix

multiplications.

An especially wise choice of scaling factor q is such that term mhump of the series is guaranteed

to be over the hump, ∥∥∥Ỹmhump

∥∥∥
∥∥∥Ỹmhump−1

∥∥∥
< 1.

From Eq. (5.17), let us use the maximum value of the ratio of successive terms (the most

restrictive case), ∥∥∥M̃ τ/q
∥∥∥

mhump

< 1,

to choose q in the following way,

q >

∥∥∥M̃ τ
∥∥∥

mhump

. (5.18)

We should require that q is a power of 2 to take advantage of the repeated squaring algorithm

and that we bypass the hump by term mhump = 1 and we have

r = log2

∥∥∥M̃ τ
∥∥∥ + 1, (5.19a)

q = 2r . (5.19b)

Truncation Error

Now we must truncate the infinite series after some finite number of terms. In [5],

the truncation error ξtrc associated with considering only N terms of the matrix exponential

series satisfies

∥∥∥Ỹ(N) − e
fM τ/q

∥∥∥ ≤
(
‖M̃‖N+1

(N + 1)!

)(
1

q/τ − ‖M̃‖/(N + 2)

)
≤ ξtrc
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where Ỹ(N) is the sum of all terms up to term N , defined by

Ỹ(N) def= E +
N∑

m=1

(
M̃τ

)m

qmm!
.

Therefore, we should truncate the series when the expression below is true to achieve an

absolute truncation error less than ξtrc for the scaled matrix exponential.
(
‖M̃‖N+1

(N + 1)!

)(
1

q/τ − ‖M̃‖/(N + 2)

)
≤ ξtrc (5.20)

Roundoff Error

Now we shall consider the roundoff error associated with the repeated matrix

multiplies necessary to scale our intermediate matrix exponential, e
fM τ/q, to the full time

step matrix exponential, e
fM τ . According to scaling-and-squaring, accounting for finite

precision arithmetic with machine precision ξeps, the following is true:

(1± ξtol)~ηb =
(
(1± ξeps)(e

fM τ/q ± ξtrc)
)2r

(1± ξeps)~ηa, (5.21)

where ξtrc is the truncation error discussed in the previous section and ξtol is some error

tolerance on the solution specified as input to MATEXPSS. Let us neglect the terms of order

greater than O(ξ) to get

~ηb =
(
(1± ξeps)e

fM τ/q ± ξtrc

)2r

(1± ξeps)~ηa. (5.22)

Now let us perform the first squaring to get

(1± ξtol)~ηb =
(
(1± ξeps)2e2fM τ/q ± 2ξtrc(1± ξeps)e

fM τ/q + ξ2
trc

)2r−1

(1± ξeps)~ηa

and neglect the terms of order greater than O(ξ) to get

(1± ξtol)~ηb =
(
(1± 2ξeps)e2fM τ/q ± 2ξtrce

fM τ/q
)2r−1

(1± ξeps)~ηa.

We repeat this process over and over to arrive at the expression

(1± ξtol)~ηb =
(
(1± qξeps)e

fM τ ± qξtrce
fM τ(q−1)/q

)
(1± ξeps)~ηa,

and then simplify to obtain

(1± ξtol)~ηb =
(
1± qξeps ± qξtrce

−fM τ/q ± ξeps

)
e
fM τ~ηa
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which means ξtol =
(
qξeps ± qξtrce

−fM τ/q ± ξeps

)
. But let us assume the worst so we get a

simple expression:

ξtol =
(
(1 + q)ξeps + qξtrc

∥∥∥e−fM τ/q
∥∥∥
)

, (5.23)

with ξeps specified by the machine and ξtrc calculated by

ξtrc =

(
‖M̃‖N+1

(N + 1)!

)(
1

q/τ − ‖M̃‖/(N + 2)

)
.

However, using Eq. (5.23) to determine N may demand a significant increase in computa-

tional burden to calculate
∥∥∥e−fM τ/q

∥∥∥. Let us use more laws of norms to arrive at a more

agreeable expression for
∥∥∥e−fM τ/q

∥∥∥.

∥∥∥e−fM τ/q
∥∥∥ =

∥∥∥∥∥∥

∞∑

m=0

(
−M̃τ

)m

qmm!

∥∥∥∥∥∥
≤

∞∑

m=0

∥∥∥
(
−M̃τ

)m∥∥∥
qmm!

≤
∞∑

m=0

∥∥∥M̃τ
∥∥∥

m

qmm!

Because our scaling procedure requires
∥∥∥M̃τ

∥∥∥ /q < 1, we can assume the worst case,∥∥∥M̃τ
∥∥∥ /q = 1, and thus the normed series becomes

∥∥∥e−fM τ/q
∥∥∥ ≤

∞∑

m=0

1
m!

,

which is the series representation of the number e = 2.71828.... So we now can write an

expression (simplified using
∥∥∥M̃τ

∥∥∥ /q = 1 again) which we may evaluate a priori to choose

q by Eq. (5.19) and choose N to achieve a solution within tolerance, ξtol,
(

(1 + q)ξeps + 2.71828

(
‖M̃‖N

(N + 1)!

)(
1

1− 1/(N + 2)

))
≤ ξtol. (5.24)

Summary of the Matrix Exponential Method

1. The matrix exponential is a solution to a system of first order ODEs like our nuclide

field equation, Eq. (5.10), with transmutation coefficient matrix fixed at the interval

midpoint over an interval, { M̃ }j
ii = { M̃(tj−1/2) }j

ii .

2. The series may exhibit an increasing trend for a number of terms before the m! in the

denominator starts to dominate the numerator (hump phenomenon).
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3. The matrix exponential may be scaled such that term mhump of the series is guaranteed

to be over the hump. For example, if we choose mhump = 1, then we are guaranteed

the first term of the series will be over the hump if

r = log2

∥∥∥ { M̃ }j
ii τj

∥∥∥ + 1,

q = 2r .

4. Once we calculate the matrix exponential for a scaled time step, e {fM }j
ii τj/q, we may

square the scaled time step matrix r times to determine the full time step matrix

exponential.

e {fM }j
ii τj =

(
e {fM }j

ii τj/q
)2r

5. The series representation of the matrix exponential is a convergent series for all

{ M̃ }j
ii and τj .

6. We may choose when to truncate the series expansion to achieve a given tolerance,

ξtol, by using Eq. (5.24).

7. For any time step, τj = tj − tj−1,the matrix exponential solution of end-of-interval

nuclide concentrations, k{ η(tj) }j
i , is

{ ~η(tj) }j
i = e {fM }j

ii τj { ~η(tj−1) }j
i . (5.25)

5.5.3 2nd Order Rosenbrock Method with Complex Coefficients

This Rosenbrock method of solving systems of ODEs may be thought of as one

of the initial-final-weighting scheme which approximates an integral as some weighted sum

of the initial and final values of the integrand. Consider the following simple system,

dη(t)/dt = λη(t) for ta < t ≤ tb with initial condition η(ta) = ηa. This ODE has a solution

given by

ηb = ηa +
[

λη
]
τ

where time step, τ = tb − ta. If we use an initial-final-weighting scheme we get a solution

of the form

ηb = ηa +
(

1 + γ

2
ηa +

1− γ

2
ηb

)
τ

where γ is some weight. If we use γ = ı, where ı is the imaginary number
√−1, then we

get the 2nd order Rosenbrock method.
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A Derivation

We now present a derivation of this Rosenbrock Method for solving systems of

first order ODEs. Note that this is not the way that this Rosenbrock Method was originally

presented by H. H. Rosenbrock [3], where it was simply stated as a family of schemes

with unknown coefficients. With our notation, choosing coefficients γ = ı and fixing the

transmutation coefficient matrix M̃(t) at its middle-of-interval value, M̃ = M̃(ta + τ
2 ), leads

to the only one-stage method in this family which is of second order and both L-monotonous

and L-decremented [9]. For our “derivation”, let us start with the integration of Eq. (5.10)

over some time interval τ ,

~ηb = ~ηa + M̃
[

~η(t)
]
τ
. (5.26)

Now let’s use our initial-final-weighting scheme with γ = ı to evaluate the integral of ~η.

Our choice of γ causes Eq. (5.26) to have complex values—~η is the real-valued solution to

Eq. (5.26) while ~u is the complex-valued solution of

~ub = ~ua + M̃
(

1 + ı

2
~ua +

1− ı

2
~ub

)
τ, (5.27)

~ηb = Re [ ~ub ] .

The above system may be solved many ways—we choose to define ∆~u
def= ~ub − ~ua [4] and

reorganize Eq. (5.27) to obtain
(
E− 1 + ı

2
M̃τ

)
∆~u = M̃τ ~ηa,

where we have used the fact that our initial vector is always real, ~ua = ~ηa. Thus the 2nd

order Rosenbrock method with complex coefficients is fully specified by

∆~u =
(
E− 1 + ı

2
M̃τ

)−1 (
M̃τ ~ηa

)
, (5.28)

~ηb = Re [ ∆~u ] + ~ηa.

Summary of the 2nd Order Rosenbrock Method with Complex Coefficients

1. The 2nd order Rosenbrock method with complex coefficients is an efficient one stage

method which is both L-monotonous and L-decremented—both properties well-suited

to solving SODEs.
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2. To preserve the second order accuracy of the method, the transmutation coefficient

matrix must be fixed at the midpoint of the interval, { M̃ }j
ii = { M̃(tj−1/2) }j

ii .

3. For any time step, τj = tj − tj−1, the solution is given in terms of auxiliary complex

solution ∆~u, as in [4]

{∆~u(tj) }j
i =

(
E− 1 + ı

2
{ M̃ }j

ii τj

)−1 (
{ M̃ }j

ii τj { ~η(tj−1) }j
i

)
, (5.29)

{ ~η(tj) }j
i = Re

[
{∆~u(tj) }j

i

]
+ { ~η(tj−1) }j

i .
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Chapter 6

Sensitivity Analysis Methods

In the following sections we will discuss three sensitivity analysis methods applied

to our set of reactor physics equations for reactor cycle calculations developed in the previous

chapter. First we will reorganize the reactor cycle equations so that there is no division of

terms and most terms reside on the left side. Then we will discuss the following sensitivity

analysis methods:

1. direct perturbation of data and recalculation (DPAR) of perturbed solution ~x ′,

2. calculation of first variation in solutions, δ~x, via a modified forward system (MFS),

and

3. calculation of auxiliary solutions, δ~x ∗, via an adjoint system (AS) to the MFS—with

the AS we can calculate the first variation in any response, δrs.

Note that we do not consider the transverse-integrated NEM equations in our description

of the system, nor do we consider thermal hydraulics (T/H) feedback parameters (coolant

density, coolant temperature, fuel temperature, etc.) These T/H and NEM equations are

solved by NESTLE for the forward system only. In other words, we assume that, compared

to neutron and nuclide distributions, perturbations in data have a negligible impact on T/H

parameters and NEM current corrections.
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6.1 Forward System

The forward system (or main system) for which we will analyze sensitivities has a

neutron field equation of the form

{ B̃ }j { ~ϕ }j = 0 (6.1)

i. with amplitude function

[
{ ~p }j

]
V
{Φ }j = pcore

ii. for times tj , j = 0, ..., Nj with initial condition { ~η(t0) }0 = ~η0

iii. with eigenvalue

{ ke }j =

[
{ F̃ }j { ~ϕ }j

]
i,ε[

{ L̃ }j { ~ϕ }j
]
i,ε

where we have defined a new diffusion operator, { B̃ }j which combines the loss and fission

operators,

{ B̃ }j def= { ke }j { L̃ }j − { F̃ }j . (6.2)

The form of the nuclide field equations for which we will analyze sensitivities is given by

nuclide field equations below.

d

dt
{ ~η(t) }j

i − { M̃ }j
ii { ~η(t) }j

i = 0 (6.3)

i. from tj−1 < t ≤ tj , for j = 1, ..., Nj , with initial/interval

condition

{ ~η(tj−1) }j
i =





{ ~η0 }i j = 1

{ ~η(tj−1) }j−1
i j = 2, ..., Nj

ii. for nodes i = 1, ..., Ndom



43

The forward system may be put in a compact form using master matrix Ã and master

solution vector ~x,

Ã ~x = ~q. (6.4)

The master matrix Ã is a block diagonal matrix of the form

Ã def=




{ Ã }0 0 0 0 0 0

0 { Ã }1 0 0 0 0

0 0
. . . 0 0 0

0 0 0 { Ã }j 0 0

0 0 0 0
. . . 0

0 0 0 0 0 { Ã }Nj




, (6.5)

the master solution vector ~x is a column vector of the form

~x
def=

( { ~x }0 , { ~x }1 , . . . , { ~x }j , . . . , { ~x }Nj
)T

, (6.6)

and the master source vector ~q is a column vector of the form

~q
def=

( { ~q }0 , { ~q }1 , . . . , { ~q }j , . . . , { ~q }Nj
)T

. (6.7)

At time tj , the solution vector { ~x }j has the form

{ ~x }j def=
( { ~η(t) }j , { ~ϕ }j , {Φ }j

)T
, (6.8)

the matrix { Ã }0 has the form

{ Ã }0 def=




2δ(t− t0)E 0 0

0 { B̃ }0 0

0 0 { ~p }0


 , (6.9)

while the matrices { Ã }j , j = 1, ..., Nj , has the form

{ Ã }j def=




d
dt − { M̃ }j 0 0

0 { B̃ }j 0

0 0 { ~p }j


 , (6.10)

and the source vector { ~q }0 has the form

{ ~q }0 def= ( 2δ(t− t0)~η0 , 0 , pcore )T (6.11)
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while the source vector { ~q }j , j = 1, ..., Nj has the form

{ ~q }j def= ( 0 , 0 , pcore )T . (6.12)

Probably, the only surprising element of these equations is the 2δ(t− t0)E in the equation

for j = 0. We include this term because we wish the solution vectors at all times to have

the same 3 components and there is no equation to solve for the nuclide field at t0 so we

fabricate this simple condition that when integrated over some bounds which include t0, we

obtain the initial condition for the nuclide field, { ~η(t0) }0 = ~η0. We want solution vectors

(and matrices) to have the same form for all tj because this facilitates taking the transpose

of the system which we will do when we develop the adjoint system equations.

6.2 The Response Functional

6.2.1 A General Response Functional rs

Let us define the following master inner product for master vector ~x,

〈
~x1 , ~x2

〉
x

def=
〈

~η1(t) , ~η2(t)
〉

η
+

〈
~ϕ1 , ~ϕ2

〉
ϕ

+
〈

~Φ2 , ~Φ2

〉
Φ

(6.13)

where we will define the component inner products for η, ϕ, and Φ shortly. Once we have

solved the forward problem defined by Eq. (6.4), we can evaluate a response, rs, given in

terms of a “direct effect”
〈

,
〉

α
and an “indirect effect”

〈
,

〉
x
,

rs = rs [ ~α , ~x ] =
〈

~hs,α , ~α
〉

α
+

〈
~hs,x , ~x

〉
x
. (6.14)

Let us use the definition in Eq. (6.13) to break the inner product in Eq. (6.14) into its η, ϕ,

and Φ components,

rs = rs [ ~α , ~x ] =
〈

~hs,α , ~α
〉

α
+ (6.15a)

〈
~hs,η(t) , ~η(t)

〉
η

+ (6.15b)
〈

~hs,ϕ , ~ϕ
〉

ϕ
+ (6.15c)

〈
~hs,Φ , ~Φ

〉
Φ
. (6.15d)
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If we perturb ~α → ~α ′, then we have a perturbed response,

{ rs
′ }p = rs [ ~α′ , ~x′ ] =

〈
~hs,α , ~α′

〉
α

+ (6.16a)
〈

~hs,η(t) , { ~η ′(t) }p

〉
η

+ (6.16b)
〈

~hs,ϕ , { ~ϕ ′ }p

〉
ϕ

+ (6.16c)
〈

~hS,Φ , { ~Φ ′ }p

〉
Φ
. (6.16d)

The inner products for the 3 components are defined by

〈
~ϕ1 , ~ϕ2

〉
ϕ

=
[

~ϕ1 ~ϕ2

]
j,g,i

(6.17a)

=
Nj∑

j=0

Ng∑

g=1

Ndom∑

i=1

Vi
g{ϕ1 }j

i
g{ϕ2 }j

i ,

〈
~Φ1 , ~Φ2

〉
Φ

=
[

~Φ1
~Φ2

]
j

=
Nj∑

j=0

{Φ1 }j {Φ2 }j , (6.17b)

〈
~η1(t) , ~η2(t)

〉
η

=
[

~η1(t) ~η2(t)
]
j,k,i,τj

(6.17c)

=
Nj∑

j=1

Nk∑

k=1

Ndom∑

i=1

Vi

∫ tj

tj−1

k{ η1(t) }j
i k{ η2(t) }j

i dt.

6.2.2 Some Specific Responses

In this section we shall introduce the necessary realization vectors, ~h, to evaluate

some specific responses.

The End Of Cycle Nuclide Response r` [ ~η ]

Now let us introduce a specific response s = `, the number of nuclide ` in the core

at EOC,

r` [ ~η ] =
〈

~hη,`(t) , ~η(t)
〉

η
. (6.18)

where {~hη(t) }` is the realization vector given by

k{hη,`(t) }j
i

def= 2δ(t− tN ) δ`,k δj,Nj . (6.19a)
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Note that the EOC nuclide response does not have a “direct effect” part. Using the real-

ization vector ~hη,`(t) in the inner product
〈

,
〉

η
produces

〈
~hη,`(t) , ~η(t)

〉
η

=
[

~hη,`(t) ~η(t)
]
j,k,i,τj

(6.19b)

=
Nj∑

j=1

δj,Nj

Nk∑

k=1

δ`,k

Ndom∑

i=1

Vi

∫ tj

tj−1

2δ(t− tN ) k{ η(t) }j
i dt (6.19c)

=
Ndom∑

i=1

Vi `{ η(tN ) }Nj

i (6.19d)

which verifies that the realization vector ~hη,`(t) does indeed produce the number of nuclide

` in the core at EOC.

The Hazard Index Response rHI [ ~wHI , ~η(t) ]

The Hazard Index (HI) is meant to be a simple but effective measure of the hazard

of SNF, given in the form of a response by

rHI [ ~wHI , ~η(t) ] =
〈

~hη,HI(t) , ~η(t)
〉

η
, (6.20)

where the realization vector is given by

k{hη,HI(t) }i
def= 2δ(t− tN ) δ`,k k{wHI } , (6.21)

where the HI weights are given by

k{wHI } =
AWI

k{ALI } ,

where AWI is the annual water intake of the reference human and k{ALI } is the annual

limit on intake of nuclide k [10].

The Total Cancer Dose Response rTCD [ ~wTCD , ~η(t) ]

The Total Cancer Dose (TCD) is another simple measure for the hazard of SNF,

given in the form of a response by

rTCD [ ~wTCD , ~η(t) ] =
〈

~hη,TCD(t) , ~η(t)
〉

η
, (6.22)
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where the realization vector is given by

k{hη,TCD(t) }i
def= 2δ(t− tN ) δ`,k k{wTCD } , (6.23)

where the TCD weights are given by

k{wTCD } = k{TF } k{λtot } ,

in terms of toxicity factor, k{TF } , for nuclide k [11] and the total decay constants ~λtot.

6.2.3 Response Sensitivity

In order to analyze sensitivities of responses, let us write the change in response

to first order for response rs and perturbation p,

{∆rs }p = { δrs }p + O(δ2rs) (6.24)

where δrs is the 1st variation of rs about the nominal state. Now let us write the change

in response as a Taylor series of our perturbed response about our nominal response and

nominal data,

{ rs
′ }p = rs +

∑
m

drs

d {α }m

∣∣∣∣
~α

{∆α }m,p + O(∆α2). (6.25)

In this work, only the linear term above is considered with our forward system of reactor

cycle equations in order to develop a linearized system of equations [12]. We calculate

the first order term of Eq. (6.25) by assuming that ∆α is small enough to discard higher

order terms, then we have a relationship for the first variation δrs in terms of derivatives of

response rs with respect to data parameter α.

∑
m

drs

d {α }m

∣∣∣∣
~α

{∆α }m,p = { δrs }p

Assuming that we can separate the m-components of δrs, we can arrive at

∑
m

drs

d {α }m

∣∣∣∣
~α

{∆α }m,p =
∑
m

{ δrs }m,p

and then equating each component for data parameter m, we obtain an expression for the

response sensitivity, %s, independently of the perturbation p,

{ %s }m
def=

drs

d {α }m

∣∣∣∣
~α

=
{ δrs }m,p

{∆α }m,p

. (6.26)
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The sensitivity coefficient { cs }m may also be useful in analyzing sensitivities,

{ cs }m
def=

{α }m

rs

drs

d {α }m

∣∣∣∣
~α

=
{α }m

rs
{ %s }m . (6.27)

The sensitivity coefficient is basically a relative change in response s per relative change in

parameter m often used to rank the importance of system parameters to aid in identifying

key players—parameters which have a great impact on a certain response of interest. For

example, maybe key players satisfy | { cs }m | > 1, that is a 1% change in the data parameter

produces a greater-than 1% change in the response of interest.

6.2.4 Response Variance

Assuming that the dominant terms of Eq. (6.24) and Eq. (6.25) are the linear ones

(the condition for which we can consider first order perturbation theory) we may estimate

the variance of responses as per [12] by

v2
s =

(
~%s

)(
Ṽ

)(
~%s

)T
(6.28)

where Ṽ is the covariance matrix given by

{V }mn =





{ ρα }m,n { v }m { v }n for m 6= n

{ v2 }m for m = n
(6.29)

where ρα is a correlation coefficient and { v2 }m is the variance in input data parameter m.

Eq. (6.28) is known colloquially as the sandwich rule [12].

6.3 Direct Perturbation and Recalculation (DPAR)

The DPAR methodology is the simplest way to investigate sensitivities and/or

propagate uncertainties. Assuming the nominal calculation of the Eq. (6.4) system is already

complete, the change in all responses s are given simply by subtracting Eq. (6.15) from

Eq. (6.16) to obtain

{∆rs }p =
〈

~hs,α , {∆~α }p

〉
α

(6.30)

+
〈

~hs,η , {∆~η }p

〉
η

+
〈

~hs,ϕ , {∆~ϕ }p

〉
ϕ

+
〈

~hs,Φ , {∆~Φ }p

〉
Φ
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where {∆~α }p , {∆~η }p , {∆~ϕ }p , and {∆~Φ }p are the exact change in quantities which we

calculate by perturbing parameters and re-solving Eq. (6.4) for { ~x ′ }p for each perturbation

set p and then using the definition

{∆~x }p
def= { ~x′ }p − ~x. (6.31)

6.3.1 Response Surfaces with DPAR

One of the strengths of DPAR is the ability to generate response surfaces. With

each perturbation set p we can calculate the perturbed response, { rs
′ }p , of all Ns responses

for the perturbation of input data vector ~α by {∆~α }p . Particularly for searches on values

of a few parameters, DPAR may be used effectively to hone in on parameter combinations

that do not violate a number of constraints. But for calculating response sensitivities or

variances, DPAR may be inefficient because

1. each perturbation set p may contain only one perturbed parameter m′ and

2. multiple runs of the same perturbed parameter m′ with different perturbations p (1%,

5%, 10%, etc.) should be performed to ensure the total variation {∆~x }p calculated

is approximately equal to the first variation, { δ~x }p .

These two inefficiencies will be discussed in the next section.

6.3.2 Sensitivity Analysis with DPAR

For sensitivity analysis, we must split the first variation for an entire perturbation

set { δrs }p into the sum of components
∑

m′ { δrs }m′,p in order to arrive at the expression

for { %s }m′ of Eq. (6.26). In order to do this with DPAR, each perturbation set p may

contain only one nonzero component, {∆α }m′,p so that when the total variation {∆rs }p

is calculated, it is the total variation of the response with respect to only one data parameter

m′ at a time, {∆rs }m′,p .

{∆rs }m′,p = rs [ {∆~α }m′,p , {∆~x }p ] (6.32)

where {∆α }m,m′,p = 0 for m′ 6= m

To apply Eq. (6.26), we must also verify that our total variation used a small enough pertur-

bation {∆α }m,m′,p such that it is approximately equal to the first variation, {∆rs }m′,p ≈
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{ δrs }m′,p —but, the perturbation {∆α }m,m′,p must not be too small or noise will domi-

nate the calculation.

6.3.3 Uncertainty Propagation with DPAR

Using DPAR to propagate uncertainties has similar problems to using DPAR for

sensitivity analysis, because we still need to calculate response sensitivity { %s }m′ with

Eq. (6.26). However, for uncertainty propagation, we need the vector of response sensitivities

~%s for all parameters m′ which are present in the covariance matrix Ṽ in order to calculate

response variance, vs, with the sandwich rule, Eq. (6.28).

6.3.4 DPAR Efficiency Remarks

Again, the upside of DPAR is that all Ns response sensitivities may be calcu-

lated with one perturbation run—the downside is that the response sensitivities, { %s }m′ ,

needed for sensitivity analysis or uncertainty propagation require that perturbations in data

parameters are performed one at a time.

Sensitivity Analysis

To calculate sensitivities for Ns responses with respect to Nm′ input data parame-

ters for Np different perturbation sets, one would need a number of runs given by

NDPAR-sa = Nm′ ×Np efs

where we have introduced the unit (efs) which stands for Equivalent Forward Solutions. In

this way we can compare (approximately) the computational advantages of DPAR, MFS,

and AS sensitivity analysis methodologies. For example:

• with a case of 100 parameters (Nm = 100),

• considering one quarter of them for sensitivity analysis (Nm′ = 25),

• with interest in 20 different responses (Ns = 20), and

• requiring 2 different perturbations of each parameter (Np = 2) to make sure we are

in the “range of linearity”,
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we would need NDPAR-sa = 25× 2 = 50efs to analyze sensitivities of responses to variations

in input data.

Uncertainty Propagation

If we have covariance data for all parameters, then we should propagate all uncer-

tainties (variances), and thus one would need a number of runs given by

NDPAR-up = Nm ×Np efs.

For example:

• with a case of 100 parameters (Nm = 100),

• considering all of them for uncertainty propagation (Nm′ = Nm), and

• with interest in 20 different responses (Ns = 20),

we would need NDPAR-up = 100×2 = 200efs to propagate variances in input data to variances

in system responses.

6.4 Modified Forward System (MFS)

The MFS is another way to investigate sensitivities, using a modified form of

the forward system of equations in Eq. (6.4) to calculate the derivative term of Eq. (6.26),
drs

d {α }m

∣∣∣
~α
, exactly. To determine the MFS equations, we take the unperturbed reactor cycle

equations in Eq. (6.4) and subtract this set of equations from the perturbed reactor cycle

equations

B̃ ′~ϕ ′ = 0

Φ ′p′ = pcore
′

d

dt
~η ′(t)− M̃ ′~η ′(t) = 0

where for clarity we have suppressed some notation. Now we carry out the subtraction of

perturbed system minus forward system, and linearize by assuming that the perturbation is

small, neglecting all terms of order of smallness greater than first. Then we get the following

linear system of equations for the first variation.
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6.4.1 Equations for the First Variations

The first variation in the neutron field, resulting from linearization of the difference

between perturbed and unperturbed forward equations, is given by
[
{~bη(t) }j { δ~η(t) }j

]
k,τj

+ { B̃ }j { δ~ϕ }j = − {∆~bα }j (6.33a)

− { δke }j { L̃ }j { ~ϕ }j

i. with amplitude function
[
{ ~pη(t) }j { δ~η(t) }j

]
i,k,τj

+
[
{ ~pϕ }j { δ~ϕ }j

]
i,g

+
[
{ ~p }j

]
i
{ δΦ }j = δpcore − {∆pα }j

ii. for times tj , j = 0, ..., Nj with initial condition { δ~η(t0) }0 =

∆~η0

iii. with change in eigenvalue

{ δke }j′ =

〈
δjj′ {∆~bα }j , { ~ϕ ∗ }j

〉
ϕ〈

δjj′ { L̃ }j { ~ϕ }j , { ~ϕ ∗ }j
〉

ϕ

where the new operators are defined below in the section titled New Operator Defini-

tions. The nuclide field equations which result from linearizing Eq. (6.4) are given below.
( d

dt
− { M̃ }j

)
{ δ~η(t) }j − { M̃ϕ−(t) }j { δ~ϕ }j−1 (6.33b)

− { M̃ϕ+(t) }j { δ~ϕ }j

− { ~mΦ−(t) }j { δΦ }j−1

− { ~mΦ+(t) }j { δΦ }j = {∆~mα(t) }j

i. from tj−1 < t ≤ tj , for j = 1, ..., Nj , with initial/interval

condition

{ δ~η(tj−1) }j
i =





{∆~η0 }i j = 1

{ δ~η(tj−1) }j−1
i j = 2, ..., Nj

ii. for nodes i = 1, ..., Ndom
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New Operator Definitions

As a result of the linearization process we have created the following new operators:
~bη, M̃ϕ−, ~mΦ−, ~Mϕ+, ~mΦ+, ~pη, ~pϕ, ∆~bα, ∆~mα, and ∆~pα, defined below. Note that some

operators have different definitions based on whether predictor (P) or predictor-corrector

(P-C) coupling is used.

g
k{ bη(t) }j

i
def= 2δ(t− tj) { ke }j gg

k {Lη }j
ii′

g{ϕ }j
i′ − (6.34a)

2δ(t− tj)
∑

g′

gg′
k {Fη }j

ii
g′{ϕ }j

i′

gg
k {Lη }j

ii′
def= g

k{σa }j
i δii′ Vi (6.34b)

gg′
k {Fη }j

ii
def=

(
g{χp }j

i (1− βtot) +
[

~βd
g{ ~χd }j

i

]
k

)(
g′
k { νσf }j

i

)
Vi

g{∆bα }j
i

def=
∑

g′

∑

i′
{ ke }j gg′{Lα }j

ii′
g′{ϕ }j

i′ − gg′{Fα }j
i′i′

g′{ϕ }j
i′ (6.34c)

gg′{Lα }j
ii′

def= − g{∆d }j
i,i′ δgg′ − g,g′{∆Σs }j

i δii′ Vi (6.34d)

+ g{∆Σa }j
i δgg′δii′ Vi +

∑

k

g
k{∆σa }j

i k{ η(tj) }j
i δgg′δii′ Vi

gg′{Fα }j
ii

def=
(

g{χp }j
i (1− βtot) +

[
~βd

g{ ~χd }j
i

]
k

)
× (6.34e)

(∑

k

g′
k {∆νσf }j

i k{ η(tj) }j
i + g′{∆νΣf }j

i

)
Vi

+
(

g{∆χp }j
i (1− βtot) +

[
∆~βd

g{ ~χd }j
i

]
k

)(
g′{ νΣf }j

i

)
Vi

+
(

g{χp }j
i (1−∆βtot) +

[
~βd

g{∆~χd }j
i

]
k

)(
g′{ νΣf }j

i

)
Vi

{∆pα }j def=
∑

i

Vi

∑
g

g{∆κΣf }j
i

g{ϕ }j
i {Φ }j + (6.34f)

∑

i

Vi

∑
g

∑

k

g
k{∆κσf }j

i k{ η(tj) }j
i

g{ϕ }j
i {Φ }j

k{ pη(t) }j
i

def=
∑

g

2δ(t− tj)
g
k{κσf }j

i
g{ϕ }j

i {Φ }j (6.34g)

g{ pϕ }j
i

def= g{κΣf }j
i {Φ }j (6.34h)

k{∆mα(t) }j
i

def=
∑

k′

∑
g

gg
kk′{∆R(tj−1/2) }i

g{φ(tj−1/2) }j
i k′{ η(t) }j

i + (6.34i)

∑

k′
kk′{∆D } k′{ η(t) }j

i
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k{mΦ−(t) }j
i

def=





∑
k′

∑
g

gg
kk′{R(tj−1/2) }i

g{ϕ }j−1
i k′{ η(t) }j

i P

0.5
∑

k′
∑

g
gg
kk′{R(tj−1/2) }i

g{ϕ }j−1
i k′{ η(t) }j

i P-C
(6.34j)

k{mΦ+(t) }j
i

def=





0 P

0.5
∑

k′
∑

g
gg
kk′{R(tj−1/2) }i

g{ϕ }j
i k′{ η(t) }j

i P-C
(6.34k)

1g
k {Mϕ−(t) }j

i
def=





∑
k′

gg
kk′{R(tj−1/2) }i {Φ }j−1

k′{ η(t) }j
i P

0.5
∑

k′
gg
kk′{R(tj−1/2) }i {Φ }j−1

k′{ η(t) }j
i P-C

(6.34l)

1g
k {Mϕ+(t) }j

i
def=





0 P

0.5
∑

k′
gg
kk′{R(tj−1/2) }i {Φ }j

k′{ η(t) }j
i P-C

(6.34m)

Note that the first variation equations in Eq. (6.33) have some of the same operators as

the forward system’s operators in Eq. (6.4), so it is reasonable to thing that the same

solution methods we used for the forward system could apply, but because of the presence

of some additional terms, we cannot solve these equations exactly like we would solve the

forward system. The subject of the next section is how we solve the first variation equations

presented in Eq. (6.33).

6.4.2 Solving the MFS

The first problem one may notice with Eq. (6.33), is that we have introduced

another unknown, the first variation in eigenvalue, { δke }j , at all times tj we will solve

the scalar flux equations. To determine this extra unknown, we must introduce another

equation. Let us first introduce some shorthand for the sources in Eq. (6.33).

{ δ~qη(t) }j def= − {∆~mα(t) }j for j = 1, ..., Nj (6.35a)

{ δ~qϕ }j def= − {∆~bα }j − { δke }j { L̃ }j { ~ϕ }j for j = 0, ..., Nj (6.35b)

{ δqΦ }j def= − {∆pα }j + δpcore for j = 0, ..., Nj (6.35c)

We propose to introduce an equation for the fundamental mode adjoint flux, { ~ϕ ∗ }j , which

allows us to calculate { δke }j when we take the inner product of the neutron field equation

of Eq. (6.33) with fundamental mode adjoint flux { ~ϕ ∗ }j ,
〈

δjj′ B̃δ~ϕ , ~ϕ ∗
〉

ϕ
=

〈
δjj′ ~qϕ , ~ϕ ∗

〉
ϕ
. (6.36)

Because our inner product for ϕ was defined as a sum over all times, we have introduced

Kronecker delta δjj′ so that we only consider only time tj when we determine { δke }j . Now
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on the left side, we use the properties of inner products to transfer the operation of matrix

B̃ from δ~ϕ to ~ϕ ∗:
〈

δjj′ δ~ϕ , B̃∗~ϕ ∗
〉

ϕ
=

〈
δjj′ ~qϕ , ~ϕ ∗

〉
ϕ

(6.37)

where B̃∗ def= B̃T . Now let us expand the source on the right side, ~qϕ,
〈

δjj′ δ~ϕ , B̃∗~ϕ ∗
〉

ϕ
= −

〈
δjj′ { δ~bα }(j′) , ~ϕ ∗

〉
ϕ

(6.38)

−
〈

δjj′ { δ~ke }(j′) { L̃ }(j′) { ~ϕ }(j′) , ~ϕ ∗
〉

ϕ

and we see that if we solve

{ B̃ ∗ }j { ~ϕ ∗ }j = 0 (6.39a)
[
{ ~ϕ ∗ }j

]
g,i

= 1 (6.39b)

for tj , j = 0, ..., Nj

using { B̃ ∗ }j def= { ke }j { L̃T }j + { F̃T }j

then we can determine { δke }j by

{ δke }j =

〈
δjj′ ∆~bα , ~ϕ ∗

〉
ϕ〈

δjj′ L̃~ϕ , ~ϕ ∗
〉

ϕ

. (6.40)

The above equation, Eq. (6.40), for the first variation in eigenvalue is the same as the result

presented in [13], among others.

Realizing Source Orthogonality

Calculating the first variation in eigenvalue as in Eq. (6.40) and using it in the

expression for the source, ~qϕ, results in the following orthogonality condition,
〈

~qϕ , ~ϕ ∗
〉

ϕ
= 0. (6.41)

Eq. (6.41) must be satisfied whatever the formulation of the source term, ~qϕ. It happens

that here Eq. (6.41) is automatically satisfied because of the formulation of our eigenvalue

problem and the choice of using Eq. (6.40), but this may not be the case. Especially when

a “k-reset” procedure [14] is performed to search for the value of some control parameter

that makes the system critical (ke = 1), the form of ~qϕ is different than presented above (it

will not include the δke term) but Eq. (6.41) must still be satisfied.
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Realizing Fundamental Mode Orthogonality

The next problem we face is commonly called fundamental mode contamination

[14]. It arises from the fact that Eq. (6.33) for the first variation of the scalar flux is valid

for any solution of the form

{ δ~ϕ† }j = { δ~ϕ }j + f† { ~ϕ }j (6.42)

where f† is any constant multiplying the fundamental mode, { ~ϕ }j , and { δ~ϕ }j is the

particular solution of such that the expansion of { δ~ϕ }j does not contain any fundamental

mode. We can remove contamination by demanding orthogonality of the fundamental mode

and our “contaminated” solution,

〈
δ~ϕ† , ~ϕ

〉
ϕ

= 0. (6.43)

Eq. (6.42) and Eq. (6.43) may be combined into the Gram-Schmidt orthogonalization ex-

pression

{ δ~ϕ }j = { δ~ϕ† }j − f† { ~ϕ }j , (6.44)

where

f† =

〈
δjj′δ~ϕ† , δ~ϕ

〉
ϕ〈

δjj′ ~ϕ , ~ϕ
〉

ϕ

.

Note that fundamental mode contamination is a numerical problem due to finite precision

arithmetic, and periodically during our numerical solution of Eq. (6.39) we will make use of

Eq. (6.44) to decontaminate our solution.

Summary of the First Variation in Neutron Field Solution

1. Calculate first variation in eigenvalue { δke }j with Eq. (6.40).

2. Solve for the first variation in flux shape { δ~ϕ }j using Eq. (6.4.2) provided we know

{ δ~η }j and { δke }j . Periodically during the iterative solution of Eq. (6.4.2) it will be

necessary to decontaminate { δ~ϕ }j with Eq. (6.44).

3. The first variation in the amplitude function { δΦ }j may be determined using con-

straint i) of Eq. (6.4.2) provided we have already determined { δ~η }j and { δ~ϕ }j .
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Matrix Form of the MFS

At this point, we would like to present the MFS in matrix form.

Ãxδ~x = ~q (6.45)

The master solution vector δ~x has the following form.

δ~x
def=

( { δ~x }0 , { δ~x }1 , . . . , { δ~x }j , . . . , { δ~x }Nj
)T

(6.46a)

The solution vector { δ~x }j for j = 0, ..., Nj has the following form.

{ δ~x }j def=
( { δ~η(t) }j , { δ~ϕ }j , { δΦ }j

)T (6.46b)

The master matrix Ãx has the following form.

Ãx
def=




{ Ãx+ }0 0 0 0 0 0

{ Ãx− }1 { Ãx+ }1 0 0 0 0

0
. . . . . . 0 0 0

0 0 { Ãx− }j { Ãx+ }j 0 0

0 0 0
. . . . . . 0

0 0 0 0 { Ãx− }Nj { Ãx+ }Nj




(6.47a)

The matrices { Ãx− }j for j = 1, ..., Nj and { Ãx+ }j for j = 0, ..., Nj have the following

form.

{ Ãx+ }0 def=




2δ(t− t0)E 0 0[
{ B̃η(t) }0 ◦

]
k,τ0

{ B̃ }0 0
[
{ ~pη(t) }0 ◦

]
i,k,τ0

[
{ ~pϕ }0 ◦

]
i,g

{ p }0


 (6.47b)

{ Ãx− }j def=




0 − { M̃ϕ−(t) }j − { ~mΦ−(t) }j

0 0 0

0 0 0


 (6.47c)

{ Ãx+ }j def=




d
dt − { M̃ }j − { M̃ϕ+(t) }j − { ~mΦ+(t) }j

[
{ B̃η(t) }j ◦

]
k,τj

{ B̃ }j 0
[
{ ~pη(t) }j ◦

]
k,i,τj

[
{ ~pϕ }j ◦

]
i,g

{ p }j




(6.47d)
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The master source vector ~q has the following form.

~q
def=

( { ~q }0 , { ~q }1 , . . . , { ~q }j , . . . , { ~q }Nj
)T

(6.48a)

The source vector { ~q }j for j = 0, ..., Nj has the following form.

{ ~q }0 def=
(
2δ(t− t0)∆~η0, { ~qϕ }0 , { ~qΦ }0

)T (6.48b)

{ ~q }j def=
( { ~qη(t) }j , { ~qϕ }j , { ~qΦ }j

)T (6.48c)

6.4.3 First Variation in Responses

The response we may evaluate with MFS methodology is shown below. Note that

we still must solve the forward system of Eq. (6.33) as the forward solutions are needed to

construct the MFS equations.

{ δr }s,p = rs[ {∆~α }p , { δ~x }p ] (6.49)

=
〈
{~hα }s , {∆~α }p

〉
α

+
〈
{~hx }s , { δ~x }p

〉
x

where {∆~α }p is the exact change in input parameters, and { δ~x }p , is the MFS solution

obtained by taking the first variation of the forward system with perturbation of input

parameters {∆~α }p . Note that the first variation is dependent on the perturbation set p,

but it is linearly dependent such that our sensitivity coefficients, Eq. (6.27), will always be

independent of the perturbation.

6.4.4 Response Surfaces with MFS

Generating response surfaces with the MFS is not very productive because the

first variation is linearly dependent on the perturbation, so the response “surface” is flat

and only valid in the some region of linearity about the location of the nominal calculation.

6.4.5 Sensitivity Analysis with MFS

The strengths of the MFS lie in the fact that it may generate exact first derivatives,

as opposed to DPAR in which we must approximate derivatives with finite differences

and perform multiple runs with various perturbation levels (1%, 5%, 10%, etc.) to check

the validity of our finite difference approximation. However, just like for DPAR, each
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perturbation set p may contain only one perturbed parameter m because we need to split

{ δr }s,p into the sum of components
∑

m { δr }m,s,p in order to arrive at the expression for

{ rα }s,m of Eq. (6.26). So if each perturbation set p contains only 1 nonzero m-component

of {∆~α }p then the first variation calculated by Eq. (6.30), { δr }s,p , is the first variation

of the response with respect to only one data parameter m, { δr }s,m,p .

{ δr }s,m,p = rs[ {∆~α }m,p , {∆~x }m,p ] (6.50)

where {∆α }m′,m,p = 0 for m′ 6= m

The upside of MFS (as with DPAR) is that all Ns response sensitivities may be calculated

with one run. However, in order to determine the sensitivity of responses (and sensitivity

coefficients) we can only consider 1 perturbed parameter per run. However, whereas with

DPAR, we estimated three different perturbation sets (Np = 3) were needed to conclu-

sively determine the finite difference first derivative, with MFS, only one perturbation set is

needed. However, we have introduced another system of equations to solve at each time tj ,

the fundamental mode adjoint system of Eq. (6.39). Solving Eq. (6.39) does not double the

amount of work we must do, but with the extra work of fundamental mode decontamination

and updating nuclide variations at time nodes, it is not too far off to assume that solving

the MFS is double the work of a single forward system solution. So to calculate sensitivities

for Ns responses with respect to Nm′ input data parameters, one would need approximately

NMFS = 2×Nm′ efs

where the units (efs) have been previously introduced as Equivalent Forward Solutions.

For example, with a case of 100 parameters (Nm = 100), considering one quarter of them

for sensitivity analysis (Nm′ = 25), with interest in 20 different responses (Ns = 20), we

would need NMFS,sa = 2× 25 = 50efs to analyze sensitivities. For this example, the DPAR

method required NDPAR,sa = 75efs to analyze sensitivities.

6.4.6 Uncertainty Propagation with MFS

Using MFS to propagate uncertainties is very similar to using MFS for sensi-

tivity analysis, because we still need to calculate sensitivities of responses { rα }s,m with

Eq. (6.26). However with uncertainty propagation, we use { rα }s,m to calculate the vari-

ance of responses { v }s with Eq. (6.28), and if we propagate all variances, we must consider
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all parameters, not the one quarter of parameters we assumed for sensitivity analysis. For

our previous example of 100 parameters (Nm = 100), considering all of them for uncertainty

propagation (Nm′ = 100), with interest in 20 different responses (Ns = 20), we would need

approximately NMFS,up = 2 × 100 = 200efs to propagate uncertainties. For this example,

the DPAR method required NDPAR,up = 300efs to propagate uncertainties.

6.5 The Adjoint System (AS)

The concept of an adjoint equation has already been introduced in one of the aux-

iliary requirements of our modified forward system (MFS)—the fundamental mode adjoint

scalar flux was introduced in Eq. (6.39) to calculate the change in eigenvalue, { δke }j . But

first, before we go into the derivation of the AS, let us use a simplified version to illustrate

some sensitivity analysis concepts and review.

d

dt
η(t) = λη(t)

for t0 ≤ t ≤ tN

initial condition η(t0) = η0

6.5.1 Inner Product

First we need an inner product for our system which maps functions to numbers

to form our response. 〈
η1 , η2

〉
=

∫ tN

t0

η1(t) η2(t) dt

The response we are interested in a final time nuclide concentration response, so the real-

ization function is hη = 2δ(t− tN ).

r =
〈

hη , η(t)
〉

=
∫ tN

t0

2δ(t− tN ) η(t) dt = η(tN )

By perturbing parameter λ → λ′ = λ + ∆λ and/or initial condition η0 → η′0 = η0 + ∆η0,

we change the solution of the ODE, η → η′ = η + ∆η.

d

dt
η′(t) = λ′η′(t)

η′(0) = η′0
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The DPAR method

The DPAR method seeks to determine ∆r = r′ − r =
〈

hη , η′ − η
〉

=
〈

hη , ∆η
〉

by solving for η′. The resulting sensitivity of the response to λ or initial conditions is given

below, assuming only parameter λ or initial condition η0 is perturbed.

sλ ≈ ∆r

∆λ
=

〈
hη , ∆η

〉

∆λ
(6.51a)

sic ≈ ∆r

∆η0
=

〈
hη , ∆η

〉

∆η0
(6.51b)

The MFS method

The MFS system is the linearized forward system we may solve for the first varia-

tion in the solution, δη, in order to determine the first variation in response, δr =
〈

hη , δη
〉
.

d

dt
δη(t) = λ δη(t) + ∆λ η(t)

δη(t0) = ∆η0

The resulting sensitivity of the response to λ or initial conditions is given below, assuming

only parameter λ or initial condition η0 is perturbed.

sλ =
δr

∆λ
=

〈
hη , δη

〉

∆λ
(6.52a)

sic =
δr

∆η0
=

〈
hη , δη

〉

∆η0
(6.52b)

6.5.2 The AS method

To derive the AS equations we must make use of the following property for con-

tinuous and matrix operators, respectively.

〈
Dη , η∗

〉
=

〈
η , D∗η∗

〉
+

〈〈
η , η∗

〉〉
(6.53a)

〈
D̃~η , ~η ∗

〉
=

〈
~η , D̃T ~η ∗

〉
(6.53b)

Note that there are no formal boundary terms when dealing with a completely discretized

system containing only matrix operators. With differential operators (as with our ODE for
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nuclide concentrations), it is preferable to make some boundary terms vanish by choosing

some appropriate initial conditions for our adjoint function η∗. Our goal is to compute

the first variations in response, { δr }s = rs[∆~α, δ~x ], but avoid solving the MFS for every

possible parameter perturbation—this is exactly what the AS allows.

Two different approaches are generally used to formulate the AS equations: the

variational approach and the differential approach [15, 16]. Although the concept of the

Frechêt derivative mathematically unifies the two approaches and proves that they will

produce the same AS [15, 16], the actual operations each approach applies to a non-linear

forward system of equations to arrive at an AS to solve is different. In the next two

sections we shall briefly explain the two approaches and cite some of the advantages and

disadvantages of each. For more information on variational and differential approaches

applied to reactor physics problems, please see [6, 14, 15, 11, 17].

The Differential Approach

The differential approach basically defines a response, rs and then its Gâteaux

variation is taken, resulting in variation of the response given by { δr }s . The first variations

in solutions are obtained by taking the Frechêt differentials of the governing system of

equations, resulting in a system we may solve for δ~x. However, this system depends on

the variation in input ∆~α. But we can create a linear system which does not depend on

∆~α—the adjoint system. We believe the differential approach to perturbation theory (and

sensitivity analysis) has the following advantages over the variational approach.

1. With the differential approach, the equations to solve to obtain the adjoint functions

easily “fall out”. This is very different from the variational approach, where with

complex problems especially, one must almost know the adjoint equations (or have

developed good intuition in this regard) to guess the right variational principle. In

some papers on perturbation theory, it appears as if the author derived the adjoint

system using the differential approach in order to realize the variational principle

he/she needs, then presents the derivation of the adjoint system using the variational

approach with “given” variational principle.

2. With the differential approach, the AS is realized as a “transposed-and-time-reversed”

MFS. The method of solving the AS is usually not much different than the method
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to solve the MFS, but if it is, you will be able to see it in the equations. In the

variational approach, the entire system is combined into one giant functional, the

variational principle, and details such as the order in which to solve equations or the

correct way to evaluate coupling between equations may be subtle.

With the differential approach, we begin with undefined operator D∗, undefined source

hη(t), and undefined initial condition,

D∗δη∗(t) = hη(t).

Let us now take the inner product of the AS with δη and the inner product of the MFS

with δη∗ and subtract the two equations,

〈 d

dt
δη , δη∗

〉
−

〈
D∗δη∗ , δη

〉
=

〈
λ δη , δη∗

〉
+

〈
∆λ η , δη∗

〉
−

〈
hη , δη

〉

δη(t0) = ∆η0.

We would like to transfer operations on δη to operations on δη∗ in order to group some

terms in order to define D∗. This is trivial except for the left side of the MFS equation,

〈 d

dt
δη , δη∗

〉
=

∫ tN

t0

d

dt
δηδη∗ dt,

which we shall use integration by parts to obtain
∫ tN

t0

d

dt
δη δη∗ dt = δη δη∗|tNt0 −

∫ tN

t0

δη
d

dt
δη∗ dt.

Now we have realized the so-called “boundary terms”, δη δη∗|tNt0 . To avoid solving the MFS

for δη(tN ), we set δη ∗(tN ) = 0, which becomes the initial condition for the AS equation.

Let us revert to the inner product representation of the left side using the boundary inner

product notation,

−∆η0δη
∗(t0)−

∫ tN

t0

δη
d

dt
δη∗ dt = −

〈〈
∆η0 , δη∗(t0)

〉〉
−

〈
δη ,

d

dt
δη∗

〉
.

Notice that the initial condition for the adjoint system is at time tN , the final time of our

forward system. Therefore, we must solve the adjoint equations backwards through time.

So completely transferring all operators to δη∗ and grouping terms, we have

〈
δη ,

(
− d

dt
− λ−D∗

)
δη∗

〉
=

〈〈
∆η0 , δη∗(t0)

〉〉
+

〈
∆λ η , δη∗

〉
−

〈
hη , δη

〉
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If we define D∗ def= − d
dt −λ then we can remove dependence on the MFS solution δη, except

at the initial time t0 and evaluate the change in our response δr.

δr =
〈

hη , δη
〉

=
〈〈

∆η0 , δη∗(t0)
〉〉

+
〈

∆λ η , δη∗
〉

Notice that our response now depends on δη∗ which is obtained by solving the following

equation. So if we solve the following adjoint system,

− d

dt
δη∗(t) = λ δη∗(t) + hη

δη∗(tN ) = 0

we may estimate sensitivities of the response with

sλ =
δr

∆λ
=

〈
hη , δη

〉

∆λ
=

〈
∆λ η , δη∗

〉

∆λ
=

〈
η , δη∗

〉
, (6.54a)

sic =
δr

∆η0
=

〈
hη , δη

〉

∆η0
=

〈〈
∆η0 , δη∗(t0)

〉〉

∆η0
= δη∗(t0). (6.54b)

One of the beauties of the differential approach is how apparent it is that the MFS and

AS methods are complimentary. With the MFS, the form of the equations is dependent on

the data perturbation m′ but solving the system of equations determines all Ns responses.

With the AS, the form of the equations is dependent on the response s, but solving the

system of equations determines the response for all data perturbations Nm′ . In cases where

Ns > Nm′ , the MFS method is more efficient. In cases where Nm′ > Ns, the AS method is

more efficient.

The Variational Approach

The variational approach formulates a functional rvar as a combination of our

desired response functional rs and the inner product of each equation in our forward system

with some unknown functions called Lagrange multipliers [18].

rvar[~α, ~x] = rs[~α, ~x] −
〈 d

dt
~η − M̃~η , ~η ∗

〉
η

(6.55)

−
〈

B̃~ϕ , ~ϕ ∗
〉

ϕ
(6.56)

−
〈

p Φ− pcore , Φ ∗
〉

Φ
(6.57)
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Next, we attempt to find the stationary points of the functional rvar (just like with functions,

we can have maxima, minima, or saddle points) by taking the functional derivative of rvar

with respect to α and setting it equal to zero, drvar
dα = 0. The unknowns η, ϕ, and Φ also

must be considered implicit functions of α [6]. The resulting equations imply the equations

which Lagrange multipliers η∗, ϕ∗, and Φ∗ must satisfy—the AS. The resulting expression

for drs
dα involves only the forward equation solutions η, ϕ, and Φ and the adjoint equation

solutions η∗, ϕ∗, and Φ∗ and functional derivatives of operators B̃, M̃, and p with respect

to α. We believe the variational approach to perturbation theory (and sensitivity analysis)

has the following advantages over the differential approach.

1. Many equations which live in different spaces (have different independent variables

in continuous space or have different sets of indices in discrete space) can be easily

incorporated into one giant variational principle.

2. Additional constraints may be added to the variational principle with ease.

Let us illustrate the use of the variational method to derive the AS for the simple one

nuclide problem we have already considered with the differential approach.

rvar[λ, η] = rs[λ, η]−
〈 d

dt
η − λη , η∗

〉
(6.58a)

Apply the functional derivative (Frechêt differential) to the above equation to get

0 =
〈 drs

dλ
, ∆λ

〉
+

〈 drs

dη0
, ∆η0

〉
+

〈 drs

dη
, δη

〉
−

〈 d

dt
δη − λδη −∆λη , η∗

〉
. (6.58b)

Reorganize,

−
〈 drs

dλ
, ∆λ

〉
−

〈 drs

dη0
, ∆η0

〉
+

〈
∆λη , η∗

〉
= (6.58c)

〈 drs

dη
, δη

〉
−

〈 d

dt
δη − λδη , η∗

〉

and transfer operations on δη to operations on η∗ as we did before for the differential

approach, to get

−
〈 drs

dλ
, ∆λ

〉
−

〈 drs

dη0
, ∆η0

〉
+

〈
∆λη , η∗

〉
+

〈〈
∆η0 , η∗0

〉〉
= (6.58d)

−
〈(

− d

dt
− λ

)
η∗ − drs

dη
, δη

〉
.
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Using integration by parts, the boundary terms
〈〈

∆η0 , η∗0
〉〉

have appeared again and

the initial condition for η∗ has been determined to be η∗(tN ) = 0. Now we can see that if

we solve

− d

dt
η∗ = λη∗ +

drs

dη
, (6.58e)

η∗(tN ) = 0

, then we can evaluate our responses

〈 drs

dλ
, ∆λ

〉
+

〈 drs

dη0
, ∆η0

〉
−

〈
∆λη , η∗

〉
−

〈〈
∆η0 , η∗0

〉〉
= 0, (6.58f)

and response sensitivities using

sλ =
drs

dλ
=

〈
drs
dλ , ∆λ

〉

∆λ
=

〈
∆λ η , η∗

〉

∆λ
=

〈
η , η∗

〉
, (6.58g)

sic =
drs

dη0
=

〈
drs
dη0

, ∆η0

〉

∆η0
=

〈〈
∆η0 , η∗0

〉〉

∆η0
= η∗(t0). (6.58h)

Notice that these two response sensitivities are the exact same as those derived using the

differential approach.

6.5.3 More “Approaches”

In Sensitivity Theory for General Systems of Nonlinear Equations [15] D.G. Cacuci,

et. al. notes that Generalized Perturbation Theory (GPT) is a widely used “approach” for

sensitivity analysis in reactor physics, but should not really be considered another approach

as the core of the core of GPT is the variational methodology. Development of Depletion

Perturbation Theory for Coupled Neutron/Nuclide Fields by M.L. Williams [6] developed

a GPT for reactor cycle calculations, calling the result Depletion Perturbation Theory

(DPT), also viewed by many nuclear engineers as another approach to sensitivity analysis.

But again it is merely an application of variational methods to reactor physics problems.

D.G. Cacuci, et. al. introduced a another new “approach” called the “matrix approach” in

[15] and later refined and revisited in [12]. The matrix approach deals with the completely

discretized systems of equations that are actually solved in most real-life situations and has

an advantage over other “approaches” in that it can analyze sensitivities of parameters of

entirely numerical origin (e.g. time step size, relaxation factors, etc.) It is worth noting that

the matrix AS is not the same as the AS obtained when the AS is found for the continuous
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system of equations and then discretized. The first method of developing adjoint equations

based on the discretized system, presented thoroughly in [15] as the “matrix approach”, is

known in the reactor physics community as the mathematical adjoint. The second method

of developing adjoint equations based on the continuous system of equations, and then dis-

cretizing is known in the reactor physics community as the physical adjoint. The physical

adjoint is widely used because it appears to be fairly accurate and all solvers used for the

forward problem can be used (with small modification) to solve the physical AS. However,

unfortunately, in many cases the AS equations found using the mathematical adjoint “ap-

proach” is not solvable by any of the forward system solvers and requires a solution via a

sparse linear system solver. For the reactor cycle equations, we represent the flux part of

our system (ϕ and Φ) as a completely discretized matrix system but represent the nuclide

part of our system (η) as a first order ODE in time. In our case, the AS equations are

actually a combination of “mathematical” adjoint and “physical” adjoint. One nice side

effect of using the physical adjoint for the nuclide field is that we will develop an AS which

is independent of the nuclide ODE solution method.

6.5.4 The AS Matrix System

Consider an auxiliary system for response-dependent auxiliary solution, { δ~x ∗ }s ,

Ã∗
x { δ~x ∗ }s = { ~q ∗ }s (6.59)

and some undefined source, { ~q ∗ }s , which also depends on response s. Let us take the

complete inner product of the MFS with the auxiliary system solution, { δ~x ∗ }s , and the

complete inner product of the auxiliary system with the MFS solution, { δ~x }p , and subtract

the two.

〈
Ãx { δ~x }p , { δ~x ∗ }s

〉
−

〈
Ã∗

x { δ~x ∗ }s , { δ~x }p

〉
= (6.60)

〈
{ ~q ∗ }s , { δ~x }p

〉
−

〈
{ ~q }p , { δ~x ∗ }s

〉

If we can determine the master matrix Ã∗
x which makes the left side of the above equation

0 (less boundary terms), then we have

〈
{ ~q ∗ }s , { δ~x }p

〉
=

〈
{ ~q }p , { δ~x ∗ }s

〉
−

〈〈
{ δ~x }p , { δ~x ∗ }s

〉〉
. (6.61)
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Now we can use the auxiliary source { ~q ∗ }s to realize our response. To do this, let us

define the auxiliary source as the realization vector for response s plus some extra term we

will discuss shortly, { ~q ∗ }s
def= {~hx }s + {~a }s . Substituting this in Eq. (6.61), we obtain

rs =
〈
{~hx }s , { δ~x }p

〉

=
〈
{ ~q }p , { δ~x ∗ }s

〉
−

〈
{~a }s , { δ~x }p

〉
−

〈〈
{ δ~x }p , { δ~x ∗ }s

〉〉
, (6.62)

our response as the inner product of our MFS source, ~q, and AS solution, δ~x ∗, and two

terms which we must make known or identically zero. First, let us discuss this extra term, ~a,

which is required when solvability conditions demand modification of the auxiliary source.

The extra term has the form,

{~a }j
s =

( { aη(t) }j
s , { aϕ }j

s , { aΦ }j
s

)T for j = 0, ..., Nj . (6.63)

Note that ~a is a single scalar value for each equation. So upon further inspection the inner

product
〈
{~a }s , { δ~x }p

〉
must be 0 or the AS requires solution of the MFS, which we

must avoid if the AS is to be useful. Therefore we have the following expression for change

in response s for perturbation p.

{ δ~r }s,p =
〈
{ ~q }p , { δ~x ∗ }s

〉
−

〈〈
{ δ~x }p , { δ~x ∗ }s

〉〉
(6.64)

All data perturbations are contained in { ~q }p so we can solve the entire auxiliary (adjoint)

system for { δ~x ∗ }s and then perform data perturbations to calculation response changes—

all provided we can determine the master matrix Ã∗
x which makes the left side of Eq. (6.60)

vanish and an expression for the boundary terms which does not depend on unknown

values of δ~x. But since boundary terms appear as a result of applying integration by

parts to differential equations, the only boundary terms we have will come from the nuclide

transmutation equation.

6.5.5 Determining the Form of the Adjoint Matrix

At this point, we would like to present the AS in matrix form.

Ã∗
xδ~x∗ = ~q∗ (6.65)

The master solution vector δ~x∗ has the following form.

δ~x ∗ def=
( { δ~x ∗ }0 , { δ~x ∗ }1 , . . . , { δ~x ∗ }j , . . . , { δ~x ∗ }Nj

)T
(6.66a)
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The solution vector { δ~x }j for j = 0, ..., Nj has the following form.

{ δ~x ∗ }j def=
( { δ~η ∗(t) }j , { δ~ϕ ∗ }j , { δΦ ∗ }j

)T (6.66b)

The master matrix Ã∗
x has the following form.

Ãx
def=




{ Ã ∗
x+ }0 { Ã ∗

x− }0 0 0 0 0

0 { Ã ∗
x+ }1 { Ã ∗

x− }1 0 0 0

0 0
. . . . . . 0 0

0 0 0 { Ã ∗
x+ }j { Ã ∗

x− }j 0

0 0 0 0
. . . . . .

0 0 0 0 0 { Ã ∗
x+ }Nj




(6.67a)

The matrices { Ã ∗
x− }j for j = 1, ..., Nj−1 and { Ã ∗

x+ }j for j = 0, ..., Nj have the following

form.

{ Ã ∗
x+ }0 def=




2δ(t− t0)E { B̃T
η (t) }0 { ~pη(t) }0

0 { B̃T }0 { ~pϕ }0

0 0 { p }0


 (6.67b)

{ Ã ∗
x− }j def=




0 0 0

−
[
{ M̃T

ϕ−(t) }j+1 ◦
]
k,τj+1

0 0

−
[
{ ~mΦ−(t) }j+1 ◦

]
k,i,τj+1

0 0




(6.67c)

{ Ã ∗
x+ }j def=




− d
dt − { M̃T }j { B̃T

η (t) }j { ~pη(t) }j

−
[
{ M̃T

ϕ+(t) }j ◦
]
k,τj

{ B̃T }j { ~pϕ }j

−
[
{ ~mΦ+(t) }j ◦

]
k,i,τj

0 { p }j




(6.67d)

We have also changed operator d
dt → − d

dt which introduces the boundary term[
{ δ~η ∗(t0) }0 ∆~η0

]
k,i

, assuming we demand the adjoint nuclide function at EOC is zero,

{ δ~η ∗(tN ) }Nj = 0. The master source vector ~q ∗ has the following form.

~q ∗ def=
( { ~q ∗ }0 , { ~q ∗ }1 , . . . , { ~q ∗ }j , . . . , { ~q ∗ }Nj

)T
(6.68a)

The source vector { ~q ∗ }j for j = 0, ..., Nj has the following form.

{ ~q ∗ }j def=
( { ~q ∗η (t) }j , { ~q ∗ϕ }j , { ~q ∗Φ }j

)T (6.68b)

Now let us reconstruct our system of adjoint equations.
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Adjoint Flux Shape Equation

For the adjoint flux shape equation at j = Nj we have

{ B̃T }Nj { δ~ϕ ∗ }Nj
s =

[
{ M̃T

ϕ+(t) }Nj { δ~η ∗(t) }Nj
s

]
k,τN

− (6.69)

{ ~pϕ }Nj { δΦ∗ }Nj
s + {~hϕ }Nj

s + { aϕ }Nj
s ,

at j = 1, ..., Nj − 1, we have

{ B̃T }j { δ~ϕ ∗ }j
s =

[
{ M̃T

ϕ+(t) }j { δ~η ∗(t) }j
s

]
k,τj

+ (6.70)
[
{ M̃T

ϕ−(t) }j+1 { δ~η ∗(t) }j+1
s

]
k,τj+1

−

{ ~pϕ }j { δΦ∗ }j
s + {~hϕ }j

s + { aϕ }j
s ,

and at j = 0 we have

{ B̃T }0 { δ~ϕ ∗ }0
s =

[
{ M̃T

ϕ−(t) }1 { δ~η ∗(t) }1
s

]
k,τ1

− (6.71)

{ ~pϕ }0 { δΦ∗ }0
s + {~hϕ }0

s + { aϕ }0
s ,

Adjoint Flux Amplitude Equation

For the adjoint flux amplitude function at j = Nj we have

{ δΦ∗ }Nj
s =

[
{ ~mΦ+(t) }Nj { δ~η ∗(t) }Nj

s

]
k,i,τN

{ p }Nj
+ (6.72)

{hΦ }
Nj
s + { aΦ }

Nj
s

{ p }Nj
,

at j = 1, ..., Nj − 1, we have

{ δΦ∗ }j
s =

[
{ ~mΦ+(t) }j { δ~η ∗(t) }j

s

]
k,i,τj

{ p }j
+ (6.73)

[
{ ~mΦ−(t) }j+1 { δ~η ∗(t) }j+1

s

]
k,i,τj+1

{ p }j
+

{hΦ }j
s + { aΦ }j

s

{ p }j
,



71

and at j = 0 we have

{ δΦ∗ }0
s =

[
{ ~mΦ−(t) }1 { δ~η ∗(t) }1

s

]
k,i,τ1

{ p }0
+

{hΦ }0
s + { aΦ }0

s

{ p }0
,

Adjoint Nuclide Field Equation

For the adjoint nuclide field equation for time steps τj , j = 1, ..., Nj we have

− d

dt
{ δ~η ∗(t) }j

s = { M̃T }j { δ~η ∗(t) }j
s − { B̃T

η (t) }j { δ~ϕ ∗ }j
s − (6.74)

{ ~pη(t) }j { δΦ ∗ }j
s + {~hη }j

s + { aη }j
s ,

and for j = 0, we have

{ δ~η ∗(t) }0
s = −

[
{ B̃T

η (t) }0
]
τ0
{ δ~ϕ ∗ }0

s (6.75)

− { ~pη(t) }0 { δΦ ∗ }0
s + {~hη }0

s + { aη }0
s .

Now, as we have said before, solvability concerns dictate the values of ~a. For our first

orthogonality condition, realized from our MFS equations, we realize we may need to take

into account the fact that if we take the inner product of the adjoint flux shape equation

with the nominal solution,
〈
{ B̃T }j { δ~ϕ ∗ }j

s , { ~ϕ }j
〉

=
〈 [

{ M̃T
ϕ+(t) }j { δ~η ∗(t) }j

s

]
k,τj

, { ~ϕ }j
〉

+ (6.76)
〈 [

{ M̃T
ϕ−(t) }j+1 { δ~η ∗(t) }j+1

s

]
k,τj+1

, { ~ϕ }j
〉
−

〈
{ ~pϕ }j { δΦ∗ }j

s , { ~ϕ }j
〉

+
〈
{~hϕ }j

s + { aϕ }j
s , { ~ϕ }j

〉

=
〈
{ δ~ϕ ∗ }j

s , { B̃ }j { ~ϕ }j
〉

= 0

then the following must be true,

{ aϕ }j
s =

1〈
1 , { ~ϕ }j

〉
(〈

{ ~pϕ }j { δΦ∗ }j
s , { ~ϕ }j

〉
− (6.77)

〈
{~hϕ }j

s , { ~ϕ }j
〉
−

〈 [
{ M̃T

ϕ+(t) }j { δ~η ∗(t) }j
s

]
k,τj

, { ~ϕ }j
〉
−

〈 [
{ M̃T

ϕ−(t) }j+1 { δ~η ∗(t) }j+1
s

]
k,τj+1

, { ~ϕ }j
〉)



72

which is small but not zero in most cases. For the adjoint flux amplitude equation to be

solvable, we must require

〈
{ p }j { δΦ∗ }j

s , {Φ }j
s

〉
=

〈 [
{ ~mΦ+(t) }j { δ~η ∗(t) }j

s

]
k,i,τj

, {Φ }j
s

〉
+ (6.78)

〈 [
{ ~mΦ−(t) }j+1 { δ~η ∗(t) }j+1

s

]
k,i,τj+1

, {Φ }j
s

〉
+

〈
{hΦ }j

s + { aΦ }j
s , {Φ }j

s

〉

=
〈
{ δΦ∗ }j

s , { p }j {Φ }j
s

〉
=

〈
{ δΦ∗ }j

s , pcore

〉

which actually is just the same as our original equation so we can set { aΦ }j
s = 0. The

adjoint nuclide field equation also does not require a solvability condition, { aη }j
s = 0



73

Chapter 7

Implementation

A The INPUT READER section of NESTLE reads input from the directory set at compile

time by parameter dir input. The root input file is the first command-line argument

of NESTLE or the NESTLE.CNTL by default. Memory for an input data variable is

allocated upon first entry to that subroutine to the subroutine that reads the variable’s

data blocks.

B The PREPROCESSOR section of NESTLE has four main jobs.

• Convert units from input units to internal working units with convert units.

• Set up the geometry with geometry setup.

• Allocate the appropriate space for runtime variables based on input data variables

and runtype parameters found in the input file.

• Produce an “input edit” output file—basically just a file easier on the human

eyes than the input files to check for input data errors.

C The CONTROLLER section is the brains of NESTLE. It has complete control over the

runtime behavior of NESTLE. It executes sequences of calculations based on the

runtype parameters found in the input files. The main subroutines the CONTROLLER

accesses for calculations are explained below, however, the CONTROLLER has the ability

to direct the calculation back to re-reading input with INPUT READER (and subsequent

preprocessing) or preprocessing with PREPROCESSOR.
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Figure 7.1: NESTLE Flow Diagram
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1. The subroutine Nuclide Field drives the calculation of the nuclide field (number

density of various nuclei in the core). Usually the input is the beginning-of-

interval nuclide concentrations and the neutron scalar flux over an interval and

the output is the end-of-interval nuclide concentrations.

2. The subroutine MacroXS Update, calculates macroscopic cross sections (para-

meters of the neutron transport equation) by interpolating them for burnup

and feedback from thermal-hydraulic parameters. Macroscopic cross sections are

also updated with new microscopic data and nuclide concentrations, if they have

changed since the last update. Usually the input is burnup, macroscopic input

data, and optionally microscopic input data and nuclide concentrations. The

output is the burnup-interpolated and/or feedback-interpolated parameters of

the diffusion equation.

3. The subroutine Neutron Field calculates of the neutron field (neutron space

and energy distribution in the core) by our chosen neutron transport equation

using the macroscopic cross sections calculated in MacroXS Update. Subroutine

Neutron Field also calculates the core power distribution.

4. The subroutine TH Field calculates the thermal-hydraulic field resulting from

the core power distribution calculated in Neutron Field.

5. The subroutine Perturbations performs perturbations of data to facilitate sen-

sitivity analysis and uncertainty analysis.

6. The subroutine Control Search performs searches on various core control pa-

rameters to achieve some constraints (e.g. ke = 1 for the eigenvalue problem,

etc.)

7. The subroutine Output produces three types of output:

• calculation results

• data CONTROLLER will need later and does not wish to keep in RAM—the

data becomes an external data source

• input for another NESTLE run to be read by INPUT READER

D Many procedures use Runtime Output, which prints information about the stage of

the calculation, residuals, stop messages, etc. assuming the parameter
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Requesting_RuntimeOutput=TRUE. The output device is the second command-line

argument of NESTLE or the screen if the second argument was not present.

E Many procedures use Error Checking, which writes error and warning information

to a file, assuming Requesting_Errors=TRUE’ and Requesting_Warnings=TRUE, re-

spectively. Traceback information may also be written using Error Checking if

Requesting_Traceback=TRUE, however traceback should only be used for debugging

purposes as it writes information for every NESTLE procedure executed and will slow

down the code tremendously. The output of errors, warnings, and traceback informa-

tion before the input edit file is written (during the INPUT_READER and PREPROCESSOR

sections) is set according to Requesting_InputErrors, Requesting_InputWarnings,

and Requesting_InputTraceback.
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Chapter 8

Results

8.1 Generalized Nuclide Field Solver Benchmark

In order to test our methods for solving the nuclide field equations, we have used a

test problem found in an Argonne National Lab (ANL) Computational Benchmark Source

Book [1]. The given data is a set of 2-group cross sections and decay constants for a

variety of nuclei and a constant 2-group scalar flux. The initial material enriched uranium

(5% 235U and the rest 238U) and the desired result is the nuclei concentrations after 50

days of irradiation. Other code systems have submitted results to this source book—most

contributors to the ANL source book submitted two calculations of the nuclide field:

1. “standard-refinement” results obtained by using error tolerances and/or time step

sizes representing that of a standard calculation and

2. “high-refinement” results obtained by using very small error tolerances and/or a very

small time step size to achieve so-called “benchmark-quality” results.

The other code systems are Savanna River Lab’s (SRL) 4th order Runge-Kutta-Gill scheme,

General Atomic’s analytic and difference method, and MEDIUM-2—another analytic and

difference method. With the MATEXPSS solver, error tolerances of 1E-6 and 1E-10 were

used for the standard-refinement case and the high-refinement case, respectively. With the

ROSENBROCK2 solver, time steps of 1 day and 1 second were used for the standard-refinement
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case and the high-refinement case, respectively. Both NESTLE’s depletion methods show

good agreement with the results of the codes of this benchmark, as shown in Fig. 8.1(a) and

Fig. 8.1(b) for the standard-refinement and high refinement cases, respectively. The differ-

ence between MATEXPSS and the other nuclide ODE solution methods is shown in Fig. 8.2(a)

(with zoomed view in Fig. 8.2(b)) and Fig. 8.3(a) (with zoomed view in Fig. 8.3(b)), for

the standard-refinement and high-refinement cases, respectively. Note that the differences

between solvers for the high-refinement case is much smaller than the difference for the

standard-refinement case. The reason is different methods are being used with different

orders of accuracy and this definitely matters for the standard-refinement case. But for the

high-refinement case, as all numerical solutions tend to the real solution as the error toler-

ance or time step goes to zero, we see less method-dependent effects. The error tolerance for

the matrix exponential with scaling and squaring as implemented in MATEXPSS dictates when

to truncate the matrix exponential series expansion— the series is truncated when the max-

imum relative change in the nuclide concentrations at end-of-interval from adding a term

is less than the error tolerance. We used 1E-6 as the tolerance for the standard-refinement

case because this is the default value of the tolerance in NESTLE. Typically, with a toler-

ance of 1E-6, 8 to 12 terms of the matrix exponential series are needed. With a tolerance

of 1E-10, up to 14 terms are needed. Overall, our matrix exponential method implemented

in MATEXPSS and our second order Rosenbrock method implemented in ROSENBROCK2 agree

well with the data from other similar codes. Additionally, we tested MATEXPSS against

MATLAB’s expm as well as the matrix exponential solver in EXPOKIT, a Fortran matrix

exponential toolkit [19] which utilizes the Pade approximation of the matrix exponential

[5]. We have found a maximum relative difference between MATEXPSS-calculated and expm-

calculated nuclide concentrations of about 1E-7%. The maximum relative difference always

occurred in nuclei of small concentrations—usually 234U or 245Cm.



79

1.00000E-20

1.00000E-19

1.00000E-18

1.00000E-17

1.00000E-16

1.00000E-15

1.00000E-14

1.00000E-13

1.00000E-12

1.00000E-11

1.00000E-10

1.00000E-09

1.00000E-08

1.00000E-07

1.00000E-06

1.00000E-05

1.00000E-04

1.00000E-03

1.00000E-02

1.00000E-01

U
235

U
236

U
237

U
238

U
239

N
p237

N
p238

N
p239

N
p240

Pu238

Pu239

Pu240

Pu241

Pu242

Pu243

Am
241

Am
242

Am
242m

Am
243

Am
244

C
m

242

C
m

243

C
m

244

C
m

245

I135

Xe135

N
d147

Pm
147

Pm
148

Pm
148m

Pm
149

Sm
149

Nuclide

Co
nc

en
tra

tio
n 

(n
uc

le
i/b

ar
n-

cm
)

ROSENBROCK2 MATEXPSS (tol=1E-6) SRL GA MEDIUM-2

(a) Standard-Refinement Case

1.00000E-20

1.00000E-19

1.00000E-18

1.00000E-17

1.00000E-16

1.00000E-15

1.00000E-14

1.00000E-13

1.00000E-12

1.00000E-11

1.00000E-10

1.00000E-09

1.00000E-08

1.00000E-07

1.00000E-06

1.00000E-05

1.00000E-04

1.00000E-03

1.00000E-02

1.00000E-01

U
235

U
236

U
237

U
238

U
239

N
p237

N
p238

N
p239

N
p240

Pu238

Pu239

Pu240

Pu241

Pu242

Pu243

Am
241

Am
242

Am
242m

Am
243

Am
244

C
m

242

C
m

243

C
m

244

C
m

245

I135

Xe135

N
d147

Pm
147

Pm
148

Pm
148m

Pm
149

Sm
149

Nuclide

Co
nc

en
tra

tio
n 

(n
uc

le
i/b

ar
n-

cm
)

ROSENBROCK2 MATEXPSS (tol=1E-10) SRL GA MEDIUM-2

(b) High-Refinement Case

Figure 8.1: Generalized Nuclide Field Solver Benchmark Comparisons
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Figure 8.2: Benchmark Differences in Concentrations for Standard-Refinement Case
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Figure 8.3: Benchmark Differences in Concentrations for High-Refinement Case
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8.2 Sensitivity Analysis Results

To demonstrate the use of the sensitivity analysis tool in NESTLE we consider

a two-dimensional slice of a Westinghouse-style Pressurized Water Reactor (PWR). The

fuel loading pattern contains 6 different materials, 5 of them fuel materials with UO2 (see

Fig. 8.4). Fig. 8.4 is a cycle 1 core, utilizing fresh UO2 (contains only 235U and 238U at BOC),

material id 235U
{ ~η0 } 238U

{ ~η0 } 1BP
{ ~η0 }

1 - - -
2 1.40E-02 6.31E-01 0.00E+00
3 1.60E-02 6.29E-01 8.00E-04
4 2.20E-02 6.23E-01 8.00E-04
5 1.60E-02 6.29E-01 0.00E+00
6 2.20E-02 6.23E-01 0.00E+00

Figure 8.4: Core geometry (southeast quarter) and initial fuel composition.

taken from another ANL benchmark source book we will call CASE 10 [20]. The UO2 fuel

for CASE 10 is enriched in the fissile nuclide 235U to varying degrees and materials 3 and 4

contain a simple burnable poison, 1BP. Material 1 is a non-fuel material. For this problem,
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we use the heavy metal nuclide field of Fig. 8.5. The fission products 135I, 135Xe, 147Nd,
147Pm, 148Pm, 148mPm, 149Pm, 149Sm, and 135Cs have also been included in the chain, but

sensitivities of their concentrations to data perturbations will not be analyzed. In CASE 10,

cross sections were only present for common fuel nuclei (U, Pu) so additional 2-group cross

sections needed for all other nuclei were taken from the depletion methodology benchmark.

Before we proceed into actual sensitivity analysis results, let us become familiar with the

behavior of the core for the forward problem.



84

A
A

A
m

X
x

Z
Z

24
2

24
3

24
4

24
5

24
6

C
m

C
m

C
m

C
m

C
m

96
96

96
96

96

24
1

24
2

24
3

24
4

A
m

A
m

A
m

A
m

95
95

95
95

23
8

23
9

24
0

24
1

24
2

24
3

P
u

P
u

P
u

P
u

P
u

P
u

94
94

94
94

94
94

23
7

23
8

23
9

24
0

24
2

N
p

N
p

N
p

N
p

A
m

93
93

93
93

95

23
4

23
5

23
6

23
7

23
8

23
9

24
1

24
2

1
U

U
U

U
U

U
A

m
A

m
92

92
92

92
92

92
95

95

6.
75

d
23

.4
5m

2.
12

d
2.

35
65

d
7.

5m
87

.7
y

14
.3

5y
4.

95
6h

16
.0

2h
26

m
18

.1
y

16
2.

8d
82

.7
%

17
.3

%
16

.0
2hβ α E

C

(n
,γ)

(n
,2

n)
(n

,*
)

K
E

Y
A

A
A

  
 -

 a
to

m
ic

 m
as

s
Z

Z
  

  
  

- 
pr

ot
on

 n
um

be
r

X
x 

  
  

 -
 e

le
m

en
t 

sy
m

bo
l

m
  

  
  

 -
 m

et
a-

st
at

e 
(m

 n
ot

 p
re

se
nt

 f
or

 g
ro

un
d 

st
at

e)
(n

,γ)   - neutron capture
(n

,2
n)

 -
 n

eu
tr

on
 p

ro
du

ct
io

n 
re

ac
tio

n
(n

,*
) 

  
- 

ne
ut

ro
n 

ca
pt

ur
e 

to
 m

et
a-

st
ab

le
 e

xc
ite

d 
st

at
e

α        - alpha decay β        - beta (also known as β
- 

de
ca

y)
E

C
  

  
 -

 e
le

ct
ro

n 
ca

pt
ur

e 
(a

ls
o 

kn
ow

n 
as

  
β+ decay)

γ        - gamma release
γ 14

1 
y

14
1 

y
0.

46
%99

.5
4%

L
E

G
E

N
D

Figure 8.5: NESTLE nuclide field for heavy metal sensitivity analysis problems.



85

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

0 2000 4000 6000 8000 10000 12000 14000

exposure (MWD/MTU)

k_
e

Figure 8.6: Eigenvalue, ke, versus Exposure (MWD/MTU) over the reactor cycle.

8.2.1 Core Behavior

We now simulate our Fig. 8.4 core over a cycle using the reactor cycle equations

presented in this paper. Let us look at various aspects of the core’s behavior.

Eigenvalue

First let us look at the eigenvalue, ke, as a function of core-average exposure

(proportional to time) over the cycle. As you can see in Fig. 8.6, the fuel loading pattern is

somewhat appropriate with the EOC ke not too much less than 1. The reader should know

that with the original CASE 10 nuclide field, with only the U-Pu chain and 135Xe, ke at EOC

was much closer to unity. The extra nuclei we considered introduced some neutron sinks

into the system, which were taken into account approximately by inclusion of these nuclei

in “background” macroscopic absorption cross sections for materials in the benchmark. So
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despite the slightly non-physical nature of this core (lacking sufficient reactivity for the

whole cycle), because our goal here is to examine the behavior of a UO2-fuelled core in

terms of sensitivities of EOC nuclide concentrations to nuclear data, the CASE 10 core

should be sufficient.

Scalar Flux Shape, ~ϕ

The scalar flux shape function, { ~ϕ }j , is shown at initial time t0 in Fig. 8.7(a)-

8.7(b), middle times t9 and t14 in Fig. 8.7(c)-8.8(b), and final time t18 in Fig. 8.8(c)-8.8(d).

Notice that over the cycle, neutrons “move” from the center of the core to the outer edge of

the core. Also, over the cycle, the flux distribution becomes much more uniform as neutrons

“move” from the high thermal neutron-absorbing center of the core (due to the presence of

fission products and minor actinides which absorb neutrons far more often than they release

them) to the low(er) thermal neutron-absorbing periphery of the core.

Scalar Flux Amplitude, ~Φ

The neutron field amplitude function, ~Φ, changes over the cycle in a manner given

by Fig. 8.9.

Scalar Flux Fast-To-Thermal Ratio

As the core becomes saturated with thermal neutron absorbing nuclei, the flux

spectrum “hardens”—i.e. the ratio of fast neutrons to thermal neutrons in the core in-

creases, which one can see in Fig. 8.10(a)-8.10(d).

EOC Nuclide Concentrations, ~η(tN ).

The EOC nuclide field versus position in the core for all heavy metal nuclei is

shown in Fig. 8.11(a)-8.17(b). We will use the sensitivity analysis methods we have de-

veloped and implemented in NESTLE to analyze how sensitive this nuclide distribution is

to perturbations in various data parameters. We present these graphs to familiarize the

reader with the nominal distribution of nuclei as we believe this is helpful in understanding
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Figure 8.7: Fast and Thermal Scalar Flux Shape versus Position in the reactor core at
various Exposures (approximately BOC, 1/3 cycle)
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Figure 8.8: Fast and Thermal Scalar Flux Shape versus Position in the reactor core at
various Exposures (approximately 2/3 cycle, EOC)
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Figure 8.9: The Scalar Flux Amplitude versus Exposure (MWD/MTU), ~Φ.

the results of the perturbation theory. Additionally, the nuclide field provided in Fig. 8.5,

complete with transmutation paths, may also prove helpful.
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Figure 8.10: Fast-to-Thermal Flux Ratios versus Position in the reactor core (northeastern
symmetric quarter) at various Exposures
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Figure 8.11: Nuclide Concentrations
(

nuclei
barn·cm

)
versus position at EOC (13969 MWD/MTU)
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Figure 8.12: Nuclide Concentrations
(

nuclei
barn·cm

)
versus position at EOC (13969 MWD/MTU)
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Figure 8.13: Nuclide Concentrations
(

nuclei
barn·cm

)
versus position at EOC (13969 MWD/MTU)
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Figure 8.14: Nuclide Concentrations
(

nuclei
barn·cm

)
versus position at EOC (13969 MWD/MTU)
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Figure 8.15: Nuclide Concentrations
(

nuclei
barn·cm

)
versus position at EOC (13969 MWD/MTU)
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Figure 8.16: Nuclide Concentrations
(

nuclei
barn·cm

)
versus position at EOC (13969 MWD/MTU)
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Figure 8.17: Nuclide Concentrations
(

nuclei
barn·cm

)
versus position at EOC (13969 MWD/MTU)
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Core-Average Nuclide Concentrations

The large scale behavior of the nuclide field may be seen in graphs of core-average

concentrations of nuclei over time. One can see the steady decrease in fuel nuclide 235U

and the accumulation of Np, and Pu in Fig. 8.18. Note that 235U is the main fuel (fission
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Figure 8.18: Core-Average Concentrations of U, Np, and Pu versus Exposure

neutron producer) but over the cycle, 239Pu become a more and more significant fission

neutron producer as fast neutron captures of 238U build up the store of 239Pu in the core.

Similarly to fast neutron captures in 238U, fast neutron captures in 235U build up the store

of 236U—which explains the similarity between 236U and 239Pu changes in concentration

over time. One can see the 239Pu concentration moving toward some equilibrium, as the

capture rate that produces it (proportional to the practically static 238U concentration)

approaches the fission rate (proportional to the concentration of 239Pu itself) that destroys

it.

Average core concentrations of minor actinides Am and Cm are shown in Fig. 8.19.

These minor actinides are a relatively small part of the fuel, yet their presence makes disposal
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Figure 8.19: Core-Average Concentrations of Am and Cm versus Exposure

of the fuel much more difficult as the minor actinides are long-lived radioactive nuclei, some

of which produce a great deal of heat when they decay.

The concentrations of fission products—while not considered in our sensitivity

analysis—nonetheless play a role in the core behavior. Although at each time we solve the

neutron field equation, we assume the fission products are in equilibrium (their production

rate from fissioning nuclei equal their destruction rate—a good assumption) the equilibrium

concentrations do change a little over time as the flux spectrum changes and the presence

of fissioning nuclei which produce the fission products changes.
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Figure 8.20: The core-average concentrations of fission products versus time.

8.2.2 Core Sensitivity Analysis

Now we proceed to the sensitivity analysis, which we ran using this new version of

NESTLE. The main response of interest is EOC nuclide concentrations and their sensitivity

to nuclear data perturbations. This gives us information about how the core transmutes

nuclei into other nuclei. But to really evaluate various transmutation designs, one must be

able to quantify the hazard associated with handling, storing, and disposing of the SNF.

The Hazard Index and Total Cancer Dose are two such hazard measures which we will

investigate. But first, let us showcase some comparisons of various methods, particularly

the DPAR vs. AS, and predictor (P) vs. predictor-corrector (P-C).

Method Comparisons

To compare the P and P-C methods of neutron field coupling with respect to

sensitivity analysis, we evaluated the `2 norm of all response sensitivities calculated with
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each method for increasingly refined time meshes, from 18 steps in the most coarse mesh

to 180 steps (a mesh refinement factor of 10) in the finest time mesh. The results are

shown in Fig. 8.21 and one can see the difference between the two methods seems to be

approaching zero, although even at 180 steps there is still some disparity. At the most

coarse mesh, the maximum relative difference between the two methods in evaluating a

response sensitivity was about 20%. Only in cases where the response sensitivity was very,

very small (sensitivity coefficient less than 0.0001), was a difference in sign observed between

the response sensitivity predicted by the P and P-C methods.

To compare DPAR vs. AS methodologies, we show how a single response changes

with respect to data parameter perturbations. In Fig. 8.22, one can see the 245Cm concen-

tration response with 235U thermal fission cross section perturbation, a response with a very

high sensitivity coefficient of -2.53 (see all the key players and their sensitivity coefficients

in Table 8.1). The change in 245Cm concentration is nonlinear with respect to 235U thermal

fission cross section perturbation, but up to about 5% perturbation in 235U fission cross

section, the linear change in response estimated by the AS remains within 1% of the true

value predicted by DPAR.
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Figure 8.21: Relative change in `2 norms of all response sensitivities for P and P-C Methods
versus time mesh refinement factor.
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Figure 8.22: Relative change in EOC 245Cm concentration versus relative change in 235U
thermal fission cross section.

Hazard Index (HI)

Using our sensitivity analysis tool, we determined the 20 data parameters which

influence the HI of the spent fuel at EOC, Fig. 8.23(a)-8.23(b). Note that the HI neglects

environmental transport of nuclei from a storage/disposal facility to humans. As is to be

expected, fast (n, γ) capture in 238U is the leading data parameter which influences the HI

as all minor actinides originate from this transmutation event (see Fig. 8.23(a)). But there

is one great way in which we can avoid producing minor actinides—take advantage of the

extremely high thermal fission cross section of 239Pu (see Fig. 8.23(b)), which if destroyed

by fissioning, cuts off all the minor actinides resulting from capture events in the Pu chain.

Unfortunately, “softening” the flux spectrum (increasing the prevalence of thermal energy

neutrons) leads to an increase in the HI through thermal (n, γ) capture in 238U—however,

per percentage change in cross section, the thermal fission of 239Pu impacts the HI by

−6.64% while thermal (n, γ) capture in 238U impacts the HI by only +4.47%, so we would

expect a net decrease in the HI from softening the flux spectrum.
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Np-239 β decay, 0.0007Pu-241 thermal fission, 0.0012U-236 fast (n,γ), 0.0027Pu-241 thermal (n,γ), 0.0035U-235 thermal (n,γ), 0.0077Pu-239 thermal (n,γ), 0.0085U-238 thermal (n,γ), 0.0447 BP1 thermal (n,γ), 0.0511
U-238 fast (n,γ), 0.0975U-235 fast (n,γ), 0.0007

U-235 fast (n,γ)Np-239 β decayPu-241 thermal fissionU-236 fast (n,γ)Pu-241 thermal (n,γ)U-235 thermal (n,γ)Pu-239 thermal (n,γ)U-238 thermal (n,γ)BP1 thermal (n,γ)U-238 fast (n,γ)
(a) Top 10 Positive Sensitivity Coefficients

U-235 thermal fission, -0.0107Pu-240 thermal (n,γ), -0.0088U-235 fast fission, -0.0049Pu-239 fast fission, -0.0042U-238 fast fission, -0.0039Pu-240 fast (n,γ), -0.0006Pu-240 fast fission, -0.0003Np-237 fast (n,γ), -0.0001Am-242m fast fission, -0.0001 Pu-239 thermal fission,-0.0664 Pu-239 thermal fissionU-235 thermal fissionPu-240 thermal (n,γ)U-235 fast fissionPu-239 fast fissionU-238 fast fissionPu-240 fast (n,γ)Pu-240 fast fissionNp-237 fast (n,γ)Am-242m fast fission
(b) Top 10 Negative Sensitivity Coefficients

Figure 8.23: Sensitivity Coefficients for the Hazard Index (HI) Response
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It is a little surprising to learn that the data parameters that most influence the

HI are those of the fuel nuclei (235U and 239Pu) and 238U. In the past, the simulation

of the reactor core has only been concerned with a handful of nuclei which are pivotal in

the UO2-fuelled thermal reactor system without the consideration of transmutation of SNF

and/or minimization of some quantification of the SNF hazard. Now as we design AFCI

SNF recycling/transmutation schemes (and GEN-IV reactors), and start to consider the

change in composition of SNF as an objective (or constraint), it is nice to know that the

parameters which appear to most influence the HI are not some obscure minor actinide

cross sections with uncertainty ±50%.

Total Cancer Dose (TCD)

Using our sensitivity analysis tool, we determined the 20 data parameters that

most influence the TCD of SNF, Fig. 8.24(a)-8.24(b). Note that the TCD neglects environ-

mental transport of nuclei from a storage/disposal facility to humans. We see the same basic

trends in the TCD as for the HI, but with much higher sensitivity coefficients. The TCD

appears to be a much more sensitive quantification of SNF hazard than the HI. Thermal

fission cross section for 235U is the parameter which reduces the TCD most dramatically:

with a 1% increase in 235U thermal fission cross section, the TCD decreases by 59.45% (see

Fig. 8.24(b)!) The (n, γ) capture events dominate the field of parameters which increase

the TCD: with a 1% increase in fast (n, γ) capture in 238U, the TCD increases by 47.92%

(see Fig. 8.24(a)!) As with the HI, by examining Fig. 8.24(a)-8.24(b), one may notice that

softening the flux spectrum could lead to a decrease in the TCD.

Again, we see the fuel nuclei (235U and 239Pu) and 238U are most influential—but

in the TCD, as opposed to the HI, we see a greater impact of decay constants with this

quantification of SNF hazard.

Nuclide Field Sensitivity

There exist many, many different proposed hazard measures for SNF, but nearly all

of them may be formulated just like the HI and TCD: as weighted sums of the concentrations

of nuclei. So with sensitivities of EOC concentrations of nuclei, one may easily obtain

sensitivities of such hazard measures. Next, the NESTLE code was run to produce a list of
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Am-241 thermal (n,γ), 0.0906Np-237 fast (n,γ), 0.0922U-236 fast (n,γ), 0.1600U-235 thermal (n,γ), 0.2061Pu-241 β decay, 0.2067BP1 thermal (n,γ), 0.2139 Pu-239 thermal (n,γ), 0.3917U-238 thermal (n,γ), 0.2438
U-238 fast (n,γ), 0.4792Np-237 thermal (n,γ), 0.0734

Np-237 thermal (n,γ)Am-241 thermal (n,γ)Np-237 fast (n,γ)U-236 fast (n,γ)U-235 thermal (n,γ)Pu-241 β decayBP1 thermal (n,γ)U-238 thermal (n,γ)Pu-239 thermal (n,γ)U-238 fast (n,γ)
(a) Top 10 Positive Sensitivity Coefficients

U-235 fast fission, -0.1132U-238 fast fission, -0.0930Cm-242 α decay, -0.0356Pu-239 fast fission, -0.0305Am-242 EC decay, -0.0283Cm-244 α decay, -0.0189BP1 fast (n,γ), -0.0115Pu-241 thermal fission,-0.0487 Pu-239 thermal fission,-0.4678
U-235 thermal fission, -0.5945 U-235 thermal fissionPu-239 thermal fissionU-235 fast fissionU-238 fast fissionPu-241 thermal fissionCm-242 α decayPu-239 fast fissionAm-242 EC decayCm-244 α decayBP1 fast (n,γ)

(b) Top 10 Negative Sensitivity Coefficients

Figure 8.24: Sensitivity Coefficients for the Total Cancer Dose (TCD) Response
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the 6 most influential data parameters (3 with positive impact/3 with negative impact) on

the core-average EOC concentrations of all heavy metal nuclei in Table 8.1. Again, one can

notice how sensitive practically all minor actinides are to the 235U fission cross section, at

least for our cycle 1, CASE 10 core.

Table 8.1: CASE 10 Response Sensitivities and Sensitivity

Coefficients for EOC Nuclide Concentrations

nuclide data m′ { δr+
`
}

m′,p r+
`

{∆α+ }
m′,p {α+ }

m′ { %+
`
}

m′ { c+
`
}

m′

` x k g
�

nuclei
barn·cm

� �
nuclei

barn·cm
�

(barn)/(-) (barn)/(-)
�

nuclei
barn2·cm

�
(−)

241Am

fission 235U 2 -3.60E-10 4.75E-08 2.3860 238.60 -1.51E-10 -0.76

fission 239Pu 2 -1.68E-10 4.75E-08 6.1700 617.00 -2.72E-11 -0.35

fission 241Pu 2 -1.27E-10 4.75E-08 6.3520 635.20 -2.00E-11 -0.27

(n, γ) 240Pu 2 2.64E-10 4.75E-08 9.1590 915.90 2.88E-11 0.56

(n, γ) 239Pu 2 3.74E-10 4.75E-08 3.4810 348.10 1.07E-10 0.79

β decay 241Pu - 4.71E-10 4.75E-08 0.0100 1.00 4.71E-08 0.99

242Am

fission 235U 2 -1.68E-12 1.49E-10 2.3860 238.60 -7.02E-13 -1.12

β decay 242Am - -1.21E-12 1.49E-10 0.0083 0.83 -1.46E-10 -0.81

fission 239Pu 2 -7.21E-13 1.49E-10 6.1700 617.00 -1.17E-13 -0.48

(n, γ) 240Pu 2 7.92E-13 1.49E-10 9.1590 915.90 8.64E-14 0.53

(n, γ) 239Pu 2 1.19E-12 1.49E-10 3.4810 348.10 3.41E-13 0.80

β decay 241Pu - 1.48E-12 1.49E-10 0.0100 1.00 1.48E-10 0.99

242mAm

fission 235U 2 -7.54E-12 7.84E-10 2.3860 238.60 -3.16E-12 -0.96

fission 242mAm 2 -3.24E-12 7.84E-10 17.7640 1776.40 -1.82E-13 -0.41

fission 239Pu 2 -3.07E-12 7.84E-10 6.1700 617.00 -4.98E-13 -0.39

(n, γ) 240Pu 2 4.63E-12 7.84E-10 9.1590 915.90 5.06E-13 0.59

(n, γ) 239Pu 2 6.40E-12 7.84E-10 3.4810 348.10 1.84E-12 0.82

β decay 241Pu - 7.78E-12 7.84E-10 0.0100 1.00 7.78E-10 0.99



107

nuclide data m′ { δr+
`
}

m′,p r+
`

{∆α+ }
m′,p {α+ }

m′ { %+
`
}

m′ { c+
`
}

m′

` x k g
�

nuclei
barn·cm

� �
nuclei

barn·cm
�

(barn)/(-) (barn)/(-)
�

nuclei
barn2·cm

�
(−)

243Am

fission 235U 2 -9.54E-10 5.19E-08 2.3860 238.60 -4.00E-10 -1.84

fission 239Pu 2 -2.31E-10 5.19E-08 6.1700 617.00 -3.74E-11 -0.44

(n, γ) BP1 2 -1.81E-10 5.19E-08 8.0000 800.00 -2.26E-11 -0.35

(n, γ) 239Pu 2 4.07E-10 5.19E-08 3.4810 348.10 1.17E-10 0.78

(n, γ) 241Pu 2 4.32E-10 5.19E-08 2.2280 222.80 1.94E-10 0.83

(n, γ) 242Pu 1 4.50E-10 5.19E-08 0.3650 36.50 1.23E-09 0.87

244Am

fission 235U 2 -7.05E-14 3.34E-12 2.3860 238.60 -2.95E-14 -2.11

β decay 244Am - -3.30E-14 3.34E-12 0.0100 1.00 -3.30E-12 -0.99

fission 239Pu 2 -2.35E-14 3.34E-12 6.1700 617.00 -3.81E-15 -0.70

(n, γ) 241Pu 2 2.78E-14 3.34E-12 2.2280 222.80 1.25E-14 0.83

(n, γ) 242Pu 1 2.89E-14 3.34E-12 0.3650 36.50 7.91E-14 0.86

(n, γ) 239Pu 2 3.00E-14 3.34E-12 3.4810 348.10 8.63E-15 0.90

242Cm

fission 235U 2 -1.25E-10 9.40E-09 2.3860 238.60 -5.26E-11 -1.34

fission 239Pu 2 -3.69E-11 9.40E-09 6.1700 617.00 -5.98E-12 -0.39

(n, γ) BP1 2 -2.99E-11 9.40E-09 8.0000 800.00 -3.73E-12 -0.32

(n, γ) 240Pu 2 5.54E-11 9.40E-09 9.1590 915.90 6.04E-12 0.59

(n, γ) 239Pu 2 7.37E-11 9.40E-09 3.4810 348.10 2.12E-11 0.78

β decay 241Pu - 9.32E-11 9.40E-09 0.0100 1.00 9.32E-09 0.99

243Cm

fission 235U 2 -1.11E-12 6.31E-11 2.3860 238.60 -4.65E-13 -1.76

fission 239Pu 2 -2.82E-13 6.31E-11 6.1700 617.00 -4.57E-14 -0.45

fission 235U 1 -1.84E-13 6.31E-11 0.0760 7.60 -2.42E-12 -0.29

(n, γ) 242Cm 1 4.56E-13 6.31E-11 0.0312 3.12 1.46E-11 0.72

(n, γ) 239Pu 2 5.18E-13 6.31E-11 3.4810 348.10 1.49E-13 0.82

β decay 241Pu - 6.26E-13 6.31E-11 0.0100 1.00 6.26E-11 0.99

244Cm

fission 235U 2 -5.54E-11 2.55E-09 2.3860 238.60 -2.32E-11 -2.17

α decay 244Cm - -1.89E-11 2.55E-09 0.0100 1.00 -1.89E-09 -0.74

fission 239Pu 2 -1.66E-11 2.55E-09 6.1700 617.00 -2.69E-12 -0.65

(n, γ) 241Pu 2 2.12E-11 2.55E-09 2.2280 222.80 9.53E-12 0.83

(n, γ) 242Pu 1 2.22E-11 2.55E-09 0.3650 36.50 6.07E-11 0.87

(n, γ) 239Pu 2 2.25E-11 2.55E-09 3.4810 348.10 6.47E-12 0.88
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nuclide data m′ { δr+
`
}

m′,p r+
`

{∆α+ }
m′,p {α+ }

m′ { %+
`
}

m′ { c+
`
}

m′

` x k g
�

nuclei
barn·cm

� �
nuclei

barn·cm
�

(barn)/(-) (barn)/(-)
�

nuclei
barn2·cm

�
(−)

245Cm

fission 235U 2 -2.89E-12 1.14E-10 2.3860 238.60 -1.21E-12 -2.53

α decay 244Cm - -8.07E-13 1.14E-10 0.0100 1.00 -8.07E-11 -0.71

fission 239Pu 2 -7.87E-13 1.14E-10 6.1700 617.00 -1.28E-13 -0.69

(n, γ) 242Pu 1 1.00E-12 1.14E-10 0.3650 36.50 2.75E-12 0.88

(n, γ) 239Pu 2 1.08E-12 1.14E-10 3.4810 348.10 3.09E-13 0.94

(n, γ) 244Cm 1 1.10E-12 1.14E-10 0.3213 32.13 3.43E-12 0.97

237Np

fission 235U 2 -3.92E-09 4.74E-07 2.3860 238.60 -1.64E-09 -0.83

fission 239Pu 2 -1.26E-09 4.74E-07 6.1700 617.00 -2.04E-10 -0.26

fission 235U 1 -6.48E-10 4.74E-07 0.0760 7.60 -8.53E-09 -0.14

(n, γ) BP1 2 1.65E-09 4.74E-07 8.0000 800.00 2.07E-10 0.35

(n, γ) 235U 2 3.70E-09 4.74E-07 0.4290 42.90 8.63E-09 0.78

(n, γ) 236U 1 4.25E-09 4.74E-07 0.0790 7.90 5.38E-08 0.90

238Np

fission 235U 2 -1.67E-11 1.46E-09 2.3860 238.60 -6.99E-12 -1.15

β decay 238Np - -1.40E-11 1.46E-09 0.0100 1.00 -1.40E-09 -0.96

fission 239Pu 2 -6.38E-12 1.46E-09 6.1700 617.00 -1.03E-12 -0.44

(n, γ) 237Np 1 7.38E-12 1.46E-09 0.2407 24.07 3.07E-11 0.51

(n, γ) 235U 2 1.21E-11 1.46E-09 0.4290 42.90 2.81E-11 0.83

(n, γ) 236U 1 1.30E-11 1.46E-09 0.0790 7.90 1.65E-10 0.89

239Np

β decay 239Np - -5.61E-09 5.66E-07 0.0100 1.00 -5.61E-07 -0.99

fission 235U 2 -1.43E-09 5.66E-07 2.3860 238.60 -6.01E-10 -0.25

fission 239Pu 2 -1.42E-09 5.66E-07 6.1700 617.00 -2.31E-10 -0.25

(n, γ) 238U 2 1.33E-09 5.66E-07 0.0123 1.23 1.08E-07 0.23

(n, γ) BP1 2 2.06E-09 5.66E-07 8.0000 800.00 2.58E-10 0.36

(n, γ) 238U 1 3.21E-09 5.66E-07 0.0085 0.85 3.78E-07 0.57

240Np

β decay 239Np - -3.14E-14 3.16E-12 0.0100 1.00 -3.14E-12 -0.99

β decay 240Np - -3.13E-14 3.16E-12 0.0100 1.00 -3.13E-12 -0.99

fission 235U 2 -1.63E-14 3.16E-12 2.3860 238.60 -6.81E-15 -0.51

(n, γ) 238U 1 1.45E-14 3.16E-12 0.0085 0.85 1.70E-12 0.46

(n, γ) BP1 2 2.43E-14 3.16E-12 8.0000 800.00 3.04E-15 0.77

(n, γ) 239Np 1 2.73E-14 3.16E-12 0.2634 26.34 1.04E-13 0.86
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nuclide data m′ { δr+
`
}

m′,p r+
`

{∆α+ }
m′,p {α+ }

m′ { %+
`
}

m′ { c+
`
}

m′

` x k g
�

nuclei
barn·cm

� �
nuclei

barn·cm
�

(barn)/(-) (barn)/(-)
�

nuclei
barn2·cm

�
(−)

238Pu

fission 235U 2 -7.27E-10 5.88E-08 2.3860 238.60 -3.05E-10 -1.24

fission 239Pu 2 -1.82E-10 5.88E-08 6.1700 617.00 -2.95E-11 -0.31

fission 235U 1 -1.28E-10 5.88E-08 0.0760 7.60 -1.68E-09 -0.22

(n, γ) 237Np 1 2.90E-10 5.88E-08 0.2407 24.07 1.20E-09 0.49

(n, γ) 235U 2 4.80E-10 5.88E-08 0.4290 42.90 1.12E-09 0.82

(n, γ) 236U 1 5.03E-10 5.88E-08 0.0790 7.90 6.37E-09 0.85

239Pu

fission 239Pu 2 -1.33E-07 2.39E-05 6.1700 617.00 -2.16E-08 -0.56

(n, γ) 239Pu 2 -3.40E-08 2.39E-05 3.4810 348.10 -9.75E-09 -0.14

fission 239Pu 1 -8.37E-09 2.39E-05 0.0980 9.80 -8.54E-08 -0.04

(n, γ) 238U 2 9.20E-08 2.39E-05 0.0123 1.23 7.48E-06 0.39

(n, γ) BP1 2 1.14E-07 2.39E-05 8.0000 800.00 1.42E-08 0.48

(n, γ) 238U 1 2.02E-07 2.39E-05 0.0085 0.85 2.38E-05 0.85

240Pu

(n, γ) 240Pu 2 -3.42E-08 6.22E-06 9.1590 915.90 -3.73E-09 -0.55

fission 239Pu 2 -3.21E-08 6.22E-06 6.1700 617.00 -5.21E-09 -0.52

fission 235U 2 -1.48E-08 6.22E-06 2.3860 238.60 -6.20E-09 -0.24

(n, γ) 238U 2 1.98E-08 6.22E-06 0.0123 1.23 1.61E-06 0.32

(n, γ) 238U 1 4.24E-08 6.22E-06 0.0085 0.85 4.99E-06 0.68

(n, γ) 239Pu 2 4.96E-08 6.22E-06 3.4810 348.10 1.42E-08 0.80

241Pu

fission 235U 2 -2.44E-08 3.74E-06 2.3860 238.60 -1.02E-08 -0.65

fission 239Pu 2 -1.78E-08 3.74E-06 6.1700 617.00 -2.89E-09 -0.48

fission 241Pu 2 -1.22E-08 3.74E-06 6.3520 635.20 -1.93E-09 -0.33

(n, γ) 238U 1 1.74E-08 3.74E-06 0.0085 0.85 2.04E-06 0.46

(n, γ) 240Pu 2 1.75E-08 3.74E-06 9.1590 915.90 1.91E-09 0.47

(n, γ) 239Pu 2 2.94E-08 3.74E-06 3.4810 348.10 8.45E-09 0.79

242Pu

fission 235U 2 -9.19E-09 6.67E-07 2.3860 238.60 -3.85E-09 -1.38

(n, γ) BP1 2 -3.84E-09 6.67E-07 8.0000 800.00 -4.80E-10 -0.58

fission 239Pu 2 -2.58E-09 6.67E-07 6.1700 617.00 -4.19E-10 -0.39

(n, γ) 240Pu 2 3.47E-09 6.67E-07 9.1590 915.90 3.79E-10 0.52

(n, γ) 239Pu 2 4.84E-09 6.67E-07 3.4810 348.10 1.39E-09 0.73

(n, γ) 241Pu 2 5.47E-09 6.67E-07 2.2280 222.80 2.45E-09 0.82
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nuclide data m′ { δr+
`
}

m′,p r+
`

{∆α+ }
m′,p {α+ }

m′ { %+
`
}

m′ { c+
`
}

m′

` x k g
�

nuclei
barn·cm

� �
nuclei

barn·cm
�

(barn)/(-) (barn)/(-)
�

nuclei
barn2·cm

�
(−)

243Pu

fission 235U 2 -3.20E-12 1.94E-10 2.3860 238.60 -1.34E-12 -1.65

β decay 243Pu - -1.92E-12 1.94E-10 0.0100 1.00 -1.92E-10 -0.99

fission 239Pu 2 -1.25E-12 1.94E-10 6.1700 617.00 -2.02E-13 -0.64

(n, γ) 241Pu 2 1.60E-12 1.94E-10 2.2280 222.80 7.18E-13 0.82

(n, γ) 239Pu 2 1.63E-12 1.94E-10 3.4810 348.10 4.68E-13 0.84

(n, γ) 242Pu 1 1.66E-12 1.94E-10 0.3650 36.50 4.55E-12 0.85

234U

fission 235U 2 -1.46E-12 1.13E-10 2.3860 238.60 -6.13E-13 -1.29

fission 235U 1 -2.63E-13 1.13E-10 0.0760 7.60 -3.45E-12 -0.23

fission 239Pu 2 -2.28E-13 1.13E-10 6.1700 617.00 -3.70E-14 -0.20

(n, γ) 235U 2 9.47E-13 1.13E-10 0.4290 42.90 2.21E-12 0.84

(n, γ) 236U 1 9.85E-13 1.13E-10 0.0790 7.90 1.25E-11 0.87

α decay 238Pu - 1.13E-12 1.13E-10 0.0100 1.00 1.13E-10 1.00

235U

fission 235U 2 -8.89E-08 9.01E-05 2.3860 238.60 -3.73E-08 -0.10

(n, γ) 235U 2 -7.60E-08 9.01E-05 0.4290 42.90 -1.77E-07 -0.08

(n, γ) 235U 1 -3.24E-08 9.01E-05 0.0420 4.20 -7.71E-07 -0.04

(n, γ) 238U 2 5.50E-08 9.01E-05 0.0123 1.23 4.47E-06 0.06

fission 239Pu 2 9.62E-08 9.01E-05 6.1700 617.00 1.56E-08 0.11

(n, γ) 238U 1 1.15E-07 9.01E-05 0.0085 0.85 1.36E-05 0.13

236U

fission 235U 2 -7.47E-08 1.38E-05 2.3860 238.60 -3.13E-08 -0.54

fission 239Pu 2 -1.72E-08 1.38E-05 6.1700 617.00 -2.79E-09 -0.13

(n, γ) 238U 1 -1.66E-08 1.38E-05 0.0085 0.85 -1.96E-06 -0.12

(n, γ) BP1 2 8.36E-09 1.38E-05 8.0000 800.00 1.04E-09 0.06

(n, γ) 235U 1 3.66E-08 1.38E-05 0.0420 4.20 8.71E-07 0.27

(n, γ) 235U 2 9.56E-08 1.38E-05 0.4290 42.90 2.23E-07 0.69

237U

β decay 237U - -2.54E-10 2.65E-08 0.0100 1.00 -2.54E-08 -0.96

fission 235U 2 -2.05E-10 2.65E-08 2.3860 238.60 -8.61E-11 -0.77

fission 239Pu 2 -1.01E-10 2.65E-08 6.1700 617.00 -1.63E-11 -0.38

(n, γ) BP1 2 1.45E-10 2.65E-08 8.0000 800.00 1.81E-11 0.55

(n, γ) 235U 2 2.01E-10 2.65E-08 0.4290 42.90 4.69E-10 0.76

(n, γ) 236U 1 2.35E-10 2.65E-08 0.0790 7.90 2.97E-09 0.89
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nuclide data m′ { δr+
`
}

m′,p r+
`

{∆α+ }
m′,p {α+ }

m′ { %+
`
}

m′ { c+
`
}

m′

` x k g
�

nuclei
barn·cm

� �
nuclei

barn·cm
�

(barn)/(-) (barn)/(-)
�

nuclei
barn2·cm

�
(−)

238U

(n, γ) 238U 1 -3.80E-07 6.21E-03 0.0085 0.85 -4.47E-05 -0.01

(n, γ) 238U 2 -1.77E-07 6.21E-03 0.0123 1.23 -1.44E-05 0.00

(n, γ) BP1 2 -1.37E-07 6.21E-03 8.0000 800.00 -1.72E-08 0.00

fission 235U 1 4.73E-08 6.21E-03 0.0760 7.60 6.22E-07 0.00

fission 239Pu 2 1.05E-07 6.21E-03 6.1700 617.00 1.71E-08 0.00

fission 235U 2 2.28E-07 6.21E-03 2.3860 238.60 9.55E-08 0.00

239U

β decay 239U - -3.88E-11 3.92E-09 0.0100 1.00 -3.88E-09 -0.99

fission 235U 2 -9.96E-12 3.92E-09 2.3860 238.60 -4.18E-12 -0.25

fission 239Pu 2 -9.89E-12 3.92E-09 6.1700 617.00 -1.60E-12 -0.25

(n, γ) 238U 2 9.19E-12 3.92E-09 0.0123 1.23 7.47E-10 0.23

(n, γ) BP1 2 1.43E-11 3.92E-09 8.0000 800.00 1.79E-12 0.37

(n, γ) 238U 1 2.22E-11 3.92E-09 0.0085 0.85 2.62E-09 0.57
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Chapter 9

Conclusion

The research presented in this paper had the objectives of

1. implementing a generalized nuclide field solver in the reactor physics code NESTLE,

capable of handling an arbitrary field of nuclei and an arbitrary number of user-defined

transmutation paths describing the change of one nuclide to another,

2. implementing sensitivity analysis methods in NESTLE capable of predicting changes

in EOC nuclide inventory due to perturbations in input data (nuclear data and initial

nuclide concentrations),

3. and providing a sample of EOC nuclide inventory analysis using the tool we developed.

Addressing the first goal, we designed and implemented a generalized nuclide field

solver capable of handling an arbitrary field of user-defined nuclei with an arbitrary num-

ber of user-defined transmutation paths. Each nuclide defined may have neutron capture

cross section σ(n,γ), neutron production cross section σ(n,2n), neutron capture and nucleus

excitation cross section σ(n,∗), and fission cross section σf which NESTLE then uses in its

nuclide and flux calculations. All decay paths, decay constants, and branch ratios are user

input. For the resulting system of ODEs, we have developed two solvers capable of cal-

culating time-dependent nuclide concentrations ~η(t): a 2nd order Rosenbrock method and

a matrix exponential method. The 2nd order Rosenbrock method is a stiff ODE solver,

and in practice, a field of nuclei will exhibit stiff behavior if the time constants associated
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with different transmutation paths vary dramatically (e.g. One path has a time constant

indicating a slow change, like 1E-05 s−1, and another has a time constant indicating a fast

change, like -2E-01 s−1.) We have benchmarked our nuclide field solution methods against

a small set of other methods and found the agreement to be very good.

Addressing the second goal, we developed and implemented a sensitivity analysis

and uncertainty propagation method in North Carolina State University’s reactor physics

code, NESTLE. For this work, we read many references on perturbation theory, before pro-

ceeding with a physical adjoint formulation of the system of adjoint equations. In the end,

we decided not to add a sparse linear system solver to NESTLE, believing a perturbation

theory independent of the method of nuclide field ODE discretization was a nice feature,

as despite any changes in the future to NESTLE’s nuclide and neutron field solvers, the

tool we have developed will still be applicable. The AS we developed through differential

methods is the same as the “depletion perturbation theory” developed through variational

methods presented in [6] for a predictor neutron/nuclide field coupling method. In this work

we extended the AS formulation to include capability to analyze sensitivities when using

the predictor-corrector neutron/nuclide field coupling method. As a result, NESTLE user

now has the ability to use first order perturbation theory to evaluate response sensitivities

~rα when input data ~α is perturbed. We envision typical uses of this tool may be

• propagating uncertainties in nuclide concentrations using the AS and input data co-

variance matrices and/or

• identifying the data parameters which influence a response the most using the AS,

then use DPAR to check the results.

The AS is well-suited to targeting a specific response and efficiently determining all the

parameters which impact that response. When exact changes in many responses with

respect to few parameters are desired, then DPAR is probably the best way to proceed.

Addressing the third goal, we performed calculations on the EOC nuclide inventory

for a cycle 1 PWR 2D core slice, and found some good news: at least for cycle 1 cores (and

probably extended to the first cycle for fresh fuel) it appears that the cross sections for
235U, 238U, and 239Pu are the dominant parameters which influence EOC inventory of most

nuclei and spent nuclear fuel (SNF) hazard measures, the Hazard Index (HI) and the Total

Cancer Dose (TCD).
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The tools developed in this research and implemented in reactor physics code

NESTLE, represent a significant upgrade in the research capabilities of the code, helping

to support the need for better design and evaluation tools for reactor-based transmutation

systems (as well as Generation IV reactor systems). However, NESTLE has received other

significant upgrades in the course of the work, in the hope that the more accessible a code

is, the better it can become. The upgrades NESTLE has received as a result of this research

are summarized below.

1. Conversion of 90% of the NESTLE source code from fixed-form FORTRAN77 to

free-form FORTRAN95. The reasons were

1. free-form FORTRAN95 produces cleaner, more readable source code

2. this is the FORTRAN known by most students—thus future students who work

on the code do not need to experience the FORTRAN77 “learning curve”, and

3. many implicitly parallel intrinsic functions/subroutines exist in FORTRAN95—

by using them, the parallel efficiency of NESTLE has been greatly increased.

2. To facilitate the general chains of nuclei and transmutation paths, a more versatile

input scheme was needed. After searching and not finding an appropriate package to

handle this, the IO module was created to handle input/output in a command-plus-

arguments format. With IO

1. data may be written and read as text for user input/output or debugging or

binary for internal saving of data for use at a later time (in our case, as the

forward system solutions are generated, they are written to binary files and

later when the AS calculations are performed, forward system data is loaded as

needed) and

2. one may initiate restarts or initialization seamlessly.

3. To aid future development, the NESTLE code was restructured to

1. remove the “container array” storage method for all arrays of problem-dependent

size and instead use dynamically allocatable arrays contained in appropriately-

named variable modules and



115

2. remove hard-coded dependence of the code on specific algorithms so now one can

easily add another nuclide solver, flux solver, interpolation algorithm, etc. by

just inserting a couple lines in the part of the code with the other procedures

which perform the same operation.

Future work in the realm of sensitivity analysis and uncertainty propagation with

NESTLE would be to incorporate additional responses into the code and develop methods to

solve adjoint equations for thermal hydraulics (T/H) feedback and nodal expansion method

(NEM) current correction terms. Also, the capability to determine end-of-life (EOL) versus

end-of-cycle (EOC) isotopic concentrations, implying multi-cycle depletions, without the

need to obtain EOC spatial isotopic concentration distributions, remains a challenge to be

addressed.
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