
ABSTRACT

THIRUNAVUKKARASU, SENGANAL. Absorbing Boundary Conditions for Molecular
Dynamics. (Under the direction of Professor Murthy N. Guddati).

With the goal of minimizing the domain size for Molecular dynamics (MD) simula-

tions, we develop a new class of absorbing boundary conditions (MD-ABC’s) that can mimic

the phonon absorption of an unbounded exterior. The proposed MD-ABC’s are extensions

of perfectly matched discrete layers (PMDL), originally developed as an absorbing bound-

ary condition for continuous wave propagation problems. Called MD-PMDL, this extension

carefully targets the absorption of phonons, the high frequency waves, whose propagation

properties are completely different from continuous waves.

This thesis presents the derivation of MD-PMDL for general lattice systems, fol-

lowed by explicit application to one-dimensional and two-dimensional square lattice sys-

tems.The accuracy of MD-PMDL for phonon absorption is proven by analyzing reflection

coefficients, and demonstrated through numerical experiments. Unlike existing ABC’s that

are effective for high frequency phonon absorption, MD-PMDL is local in both space and

time and is thus more efficient. Based on their favorable properties, it is concluded that

MD-PMDL could provide a more effective alternative to existing MD-ABC’s.
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Chapter 1

Introduction

Molecular Dynamics (MD) is a widely used method to study physical phenomenon

at the atomic scale. It offers valuable insights into the behavior of certain macroscopic pro-

cesses, like fracture, that are fundamentally triggered at the atomistic scale. One of the ma-

jor problems in using MD simulation to study such processes is the computational expense

involved in simulating a large system. To make the simulation tractable, the MD domain is

usually truncated with simple (Dirichlet/Neumann/Periodic) boundary conditions applied

at the boundary. However, a simple boundary condition would result in significant energy

being artificially reflected back into the region of interest and can completely distort the

physical phenomenon being studied. To minimize this error, the simulation domain is taken

to be much larger than the region of interest which significantly increases the computational

expense of the simulation. This can be avoided by using a more appropriate boundary con-

dition that mimics the effect of the exterior at the truncated boundary. Applying such a

boundary condition would necessitate a much smaller computational domain, thus resulting

in significant savings in computational expense.

The problem discussed above is similar to the problem of suppressing artificial

reflections at a truncated boundary of an infinite domain in continuum wave propagation.

This problem has been studied extensively and there exist boundary conditions called Ab-

sorbing Boundary Conditions (ABC’s) that are quite effective in absorbing the incoming

energy thus mimicking the exterior[1]. It seems natural to try and extend these boundary

conditions to the discrete domain encountered in MD. However, the spectrum of waves

(phonons) generated in the MD domain spreads over all frequencies which for continuum
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wave propagation is not the case where the frequencies are low. Thus, ABC’s developed for

continuous wave propagation would not be able to handle the high frequency phonons gen-

erated in the MD domain. Instead, ABC’s are to be derived explicitly for discrete domains.

Many ABC’s are developed for this purpose and the following is a summary.

Exact boundary conditions based on the Green’s function of the exterior

In this approach, the exact boundary condition is found as the response function

at the interface. The main problem is that these boundary conditions are non-local in

space and time. In [2], Cai et al. propose methods to numerically obtain these boundary

conditions for square lattice structures by computing response functions for the boundary.

Liu and co-workers have extended the idea of Green’s function for more general crystals

[3, 4]. Though exact boundary conditions can be derived, they are difficult to implement

as they are non-local in both space and time. Since the response functions decay rather

slowly, this coupling in time makes the BC’s computationally very expensive.

Perfectly Matched Layers (PML type methods)

The PML method is a continuum ABC and is based on the idea that propagating

waves are damped in complex space [5, 6]. The method involves appending to the compu-

tational domain, a border region that is stretched into complex space. This complex border

region essentially acts like a lossy material and dissipates any incoming energy thereby re-

ducing the reflection into the domain. While continuous PML may have the disadvantage of

being less efficient than rational ABC’s [7], it can be considered highly successful, owing to

its flexibility. An extension of PML to discrete problems is explored by S. Li and co-workers

[8, 9]. While the extension is valid for low frequency waves, it can be shown that it is not

accurate for high frequency phonons that are central to discrete ABC’s.

Variational boundary conditions (VBC’s)

E and co-workers tackle the problem from a optimization view point by using vari-

ational principles to minimize the total phonon reflection [10, 11]. The main advantage of

VBC is its generality; theoretically, the procedure is applicable to complex lattice systems.

While VBC’s appear to perform better than the Green’s function based methods and PML
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based methods, they still involve expensive convolution operations and are computationally

expensive. Also, their long-term stability properties are not clear. Though appropriate

stabilization can be performed through explicit constraints, such constraints appear to de-

grade the performance of the method. Other minor shortcomings of the method are the

lack of transparency in the approximation properties of the method and ease of extension

to corners.

Proposed Absorbing Boundary Conditions

In this thesis, we present a new direction for developing ABC’s for Molecular

dynamics. The basic ideas stem from earlier research linking PML with local absorbing

boundary conditions [12] to create a class of boundary conditions called Perfectly Matched

Discrete Layers(PMDL)[13]. PMDL is essentially PML discretized using linear finite ele-

ments with mid-point integration. It was shown that the integration error exactly cancels

the discretization error, thus resulting in perfect matching even after the discretization of

the exterior. Furthermore, it was shown that PMDL is equivalent to rational-approximation

based ABC’s and thus inherits their efficiency while retaining the flexibility of PML. The

main limitation, however, is that PMDL is perfectly matched with the continuous interior,

but not with the discrete interior. Thus PMDL, like other ABC’s for wave equation, works

well for low frequency limits, but fails in absorbing high frequency phonons.

The main contribution of this thesis is to show that PMDL can be utilized to absorb

even high frequency phonons. The key idea is that PMDL can be viewed as a discrete lattice

with non-uniform spacing that has the special property of the characteristic impedance

being independent of the atomic spacing. It is then shown that, for a particular choice

of parameters, the PMDL lattice can be made algebraically identical to a general periodic

harmonic lattice. Since the PMDL lattice has the additional property of being perfectly

matched irrespective of the spacing, any phonon reflections that are introduced due to the

truncation of the lattice can be damped out using a few exterior atoms with complex atomic

spacing. Thus PMDL can be extended in a systematic manner to to yield highly accurate

boundary conditions for discrete systems, called MD-PMDL, that are similar in form to

PMDL and requires slightly more computational effort. Compared to existing methods for

discrete systems, the proposed method shows promise in providing a more efficient and

systematic boundary condition. It should be noted that while MD-PMDL is similar in
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spirit to PML/PMDL boundary conditions, it is not the same as applying PML/PMDL

discretization to the continuum limit equation of the original harmonic lattice. We present

both analytical and numerical results that demonstrate this crucial difference.

The outline of the rest of the thesis is as follows. The basic problem setup is

presented in Chapter 2 with the help of one-dimensional Frenkel-Kontorova model. Since

MD-PMDL is closely related to PMDL, a summary of PMDL ABC’s is provided in Chapter

3, and the extension to the discrete interior is explained in Chapter 4. The formulation

of MD-PMDL including a-priori error analysis and a numerical example is presented in

Chapter 5. The extension of MD-PMDL to a square lattice along with numerical examples

is presented in Chapter 6 and the thesis is concluded with some closing remarks in Chapter

7.
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Chapter 2

Problem Setup

We choose the 1-D Frenkel-Kontorova(FK) model to illustrate the ideas in a 1-

D setting. A lattice is an infinite chain of atoms with mass m that are spaced apart at

a distance h(see Fig(2.1a)). The atoms are labeled with fractional indices, while integer

indices are used for the interconnecting cells.

The governing equations for the FK model is given by:

müj+ 1
2

= p
(
uj+ 3

2
− 2uj+ 1

2
+ uj− 1

2

)
− V ′

ext(xj+ 1
2
) + fext

j+ 1
2

,

xj+ 1
2

= (j +
1
2
)h + uj+ 1

2
for j = −∞ . . . ∞,

(2.1)

where u is the displacement field of the atoms, Vext is an external potential field and p

describes the strength of nearest-neighbor interaction between the atoms. Let us consider

a partition of the 1D infinite lattice into interior and exterior atoms, corresponding to

negative and positive indices respectively. This results in the partitioning of the cells into 3

regions (interior, boundary and exterior) as shown in Fig(2.1b). The interior is essentially

the region of interest in the MD simulation, while the exterior is to be replaced by an

MD-ABC. Specifically, the goal is to devise an MD-ABC at x 1
2

that mimics the absorption

properties of the exterior. It should be emphasized that the dynamics of the exterior is

important only at the interface as we are interested merely in the propagation of energy

from the interior into the exterior.
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Figure 2.1: Schematic of an infinite 1-D lattice.
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2.1 Harmonic Approximation of the Exterior

The potential field is assumed to be a harmonic function in the exterior (this is

typical for the development of most MD-ABC’s; it appears important to include the entire

nonlinear region in the interior). This is a reasonable assumption as the exterior is far

away from the region of activity and the displacements of the atoms in the exterior are

small. Under this assumption, the force due to the external potential, i.e V ′(x), can be

approximated by:

V
′
ext

(
xj+ 1

2

)
= l uj+ 1

2
, (2.2)

where l = V
′′
ext(
(
j + 1

2

)
h) is the force constant and can be found by evaluating the linearized

force due the potential about the equilibrium positions. Thus, (2.1) can be written in

frequency domain as :

−aD2uj+ 1
2
− buj+ 1

2
= fext

j+ 1
2

, j = 0, ..,∞, (2.3)

where a = ph2, b = mω2 − l and D2 is the central difference operator given by:

D2uj =
1
h2

(uj+1 − 2uj + uj−1) . (2.4)

The reduced equation (2.3) is also known as the discrete wave equation and is used

to model the transportation of energy in a lattice. The propagation of energy in a lattice

is usually modeled as the propagation of discrete waves, called phonons, that are governed

by the discrete wave equation. Thus the discrete wave equation (2.3) will be used as the

governing equation for the exterior.

2.2 The Assembly Operator

A lattice is a periodic structure with a unit cell being the basis. Thus it is natural

to express the lattice as an assembly of unit cells as shown in Fig(1d). To make the

subsequent discussions simpler, the finite element assembly operator is used to represent

(2.3) in a concise form. The assembly operator and the modified equations are discussed

next.

Let the equation for an individual unit cell i be given by: ai −bi

−bi ai

ui = fi (2.5)
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where ui
t =

[
ui− 1

2
ui+ 1

2

]
are the displacements of the left and right atoms, and fit =[

fi− 1
2

fi+ 1
2

]
are the corresponding forces from the rest of the lattice. The assembly oper-

ator, A, is defined as follows:

 ∞
A

i=−∞

a b

c d

 =


. . .

c a + d b

. . .


 ∞

A
i=−∞

a

b


 =


...

b + a
...


(2.6)

where i represents the unit cell index. Using the above definitions, the 1D discrete wave

equation can now be written as: ∞
A

i=−∞

a− b
2 −a

−a a− b
2

U = F. (2.7)

The assembly operation can also be defined for the case of a 2D lattice in a similar way.

Consider a 2D cell given by:

Au = f =⇒


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44




u1

u2

u3

u4


=


f1

f2

f3

f4


, (2.8)

where u1, u2, u3 and u4 are the displacements at the nodes of the cell. Then the 2D assembly

can be written as  A
i=−∞,..,∞
j=−∞,..,∞

{A}

U =

 A
i=−∞,..,∞
j=−∞,..,∞

{f}

 (2.9)
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where A
i=−∞,..,∞
j=−∞,..,∞

{} is called the 2D assembly operator and is defined as

A
i=−∞,..,∞
j=−∞,..,∞

{A} =



m1 . . . m2 . . . m3 . . . m4 . . .

↓ ↓ ↓ ↓
m1 → .. + a11 .. + a12 .. + a13 .. + a14

...

m2 → .. + a21 .. + a22 .. + a23 .. + a24

...

m3 → .. + a31 .. + a32 .. + a33 .. + a34

...

m4 → .. + a41 .. + a42 .. + a43 .. + a44

...



,

(2.10)

A
i=−∞,..,∞
j=−∞,..,∞

{f} =



m1 → .. + f1

...

m2 → .. + f2

...

m3 → .. + f3

...

m4 → .. + f4

...



, (2.11)

where m1,m2,m3 and m4 are the indices of the displacements u1, u2, u3 and u4 in the

assembled system U.

2.3 Problem Statement for a 1D Periodic Lattice

To make the subsequent discussions generic to any harmonic and periodic lattice,

the governing equations are assumed to be ∞
A

i=−∞

p q

r p

U = F, (2.12)
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where p, q and r depend on the specific governing equation.

Let ui, fi be the displacement and force vectors for the interior and ue, fe be

displacement and force vectors for the exterior i.e.,

ui =


u−∞

...

u− 1
2

 , fi =


f−∞

...

f− 1
2

 and ue =


u 1

2
...

u∞

 , fe =


f 1

2
...

f∞

 . (2.13)

The discrete system (2.12) can now be written as,Aii 0

0 Aee

ui

ue

 =

 f̄i

f̄e

 , (2.14)

where Aii and Aee are given by:

Aii = P̂ +

 −1
A

i=−∞

p q

r p

 , P̂ =


. . .

...

0 0

. . . 0 p

 ,

Aee = P̄ +

 ∞
A

i=1

p q

r p

 , P̄ =


p 0 . . .

0 0
...

. . .

 ,

(2.15)

and f̄i, f̄e are given by:

f̄i = fi −


0
...

qu 1
2

 , and f̄e = fe −


ru− 1

2

0
...

 . (2.16)

Note that in (2.16), the interior is coupled to the exterior through the displacement

at i = 1
2 and thus to solve the interior we only need the displacement at i = 1

2 . Also, note

that f̄e is zero except at i = 1
2 . Thus, u 3

2
, 5
2
,..∞ can be eliminated and the effect of the

exterior can be written solely in terms of u 1
2
. This is essentially the Dirichlet-to-Neumann

relation for the exterior and can be written as

Ku 1
2

= f 1
2
, (2.17)
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where K is the Dirichlet-to-Neumann(DtN) map for the exterior. K is also commonly

referred to as the discrete half-space stiffness and both terms will be used interchangeably

in subsequent discussions.

The goal of the MD-ABC can be restated as approximating the DtN map, or the

discrete half-space stiffness, of the exterior. This is analogous to the problem of approx-

imating the DtN map of a continuous half-space in wave propagation. This problem has

been studied extensively and there exist mature continuous methods that approximate the

DtN map in an accurate and efficient manner. We choose a particular class of ABC’s called

Perfectly Matched Discrete Layers (PMDL) for its generality and flexibility [12, 13]. The

PMDL boundary conditions are summarized in the next chapter.
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Chapter 3

A Summary of Perfectly Matched

Discrete Layer (PMDL)

3.1 PMDL for the Scalar Wave Equation

PMDL is a class of ABC that approximates the stiffness of a continuous half-space

[13]. Though PMDL is applicable to any second order system [14], for the sake of simplicity

the central ideas are summarized using a one dimensional scalar wave equation. Consider

a right half-space with left boundary at x = 0 as shown in Fig(3.1a). Let the governing

equation be given by

−∂2u

∂x2
− Λu = 0, (3.1)

where Λ is a differential operator. Equation (3.1) can be written as

−
(

∂

∂
− i
√

Λ
)(

∂

∂
+ i
√

Λ
)

u = 0, (3.2)

where first factor represents forward propagating waves while the second factor represents

backward propagating waves. When the excitation is limited to the boundary, x=0, waves

propagate only in the positive x direction (since the half-space does not reflect any waves).

This translates into a relation

∂u

∂x
− ikxu = 0, kx = +

√
Λ, (3.3)

where kx is the wave number. Equation (3.3) can be viewed as a relationship between

Dirichlet and Neumann data at the boundary x=0. This relation is deceptively simple;
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note that kx is a square-root of the differential operator Λ. Due to the irrational nature of

the square-root operator, kx is a pseudo differential operator involving expensive convolu-

tion operations. Traditionally the computational expense is reduced by approximating the

square-root operator with a rational function, thus leading to a differential form of (3.3).

The above procedure of factorization and rational approximation is not possible

for all wave equations. PMDL takes a different route and completely circumvents the need

for explicit factorization or rational approximation. PMDL derivation instead involves a

multi-step procedure based on complex coordinate stretching and special finite-element

discretization of the half-space, which eventually results in a robust approximation of the

half-space impedance, and thus in an effective one-way wave equation. The steps of the

derivation are given below.

Step 1

Split the half-space (0,∞) into a finite element (0, L) and another half-space (L,∞)

, with the finite element discretized using linear shape functions as shown in Fig(3.1b). The

stiffness matrix of the finite element layer can be easily derived as,

Kfe =

ã b̃

b̃ ã

 , where

 ã = 1
L − k2

x
L
2 ,

b̃ = − 1
L .

(3.4)

Considering that there is no excitation at the interior node at x = L, the assembled finite-

element equations take the form,ã b̃

b̃ ã + Kexact

u0

u1

 =

f0

0

 , (3.5)

where Kexact is the stiffness of the right half-space, F0 is the Neumann data at x = 0, u0

and u1 are the displacements at x = 0 and x = L. Eliminating u1 from (3.5), results in:

F0 =

(
ã− b̃2

ã + Kexact

)
u0. (3.6)

The above equation is a relationship between the Dirichlet and Neumann data of the dis-

cretized half-space. The term in the parentheses is effectively the stiffness of the composite

half-space. It can be clearly seen that the above relationship is approximate in that, if exact
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half-space stiffness is substituted for the right half-space, i.e. Kexact = −ikx, the resulting

composite half-space stiffness is not recovered (this can be verified easily with the help of

(3.4)).

Step 2

This step is the key to the development of PMDL and involves the elimination of

the finite-element discretization error (with respect to the half-space stiffness at x = 0).

This is achieved by simply using midpoint integration to approximately evaluate the finite

element stiffness matrix, i.e.,

Kmid−pt
fe−layer =

a b

b a

 , where

 a = 1
L − k2

x
L
4 ,

b = − 1
L − k2

x
L
4 .

(3.7)

When the above approximation is used, we get the following relationship between the stiff-

nesses of the composite half-space and the right half-space:

Kcomposite =
(

a− b2

a + Kexact

)
. (3.8)

It is easy to verify that, when the exact stiffness, −ikx , is substituted for Kexact , we

obtain Kcomposite = −ikx, which is also exact (this can be clearly seen by noting that

a2 − b2 = K2
exact). Note that the relationship is exact irrespective of the element length L;

it can be arbitrarily large and even complex.

Step 3

The above splitting is recursively applied to discretize the original half-space into

infinite number of finite element layers, i.e
⋃∞

j=1 (xj−1, xj), without introducing any dis-

cretization errors. This is equivalent to saying that the assembly, ∞
A

j=1

 1
Lj

 1 −1

−1 1

− k2
xLj

4

1 1

1 1


 , where Lj = xj − xj−1, (3.9)

is an exact representation of the the half-space stiffness at x = 0.
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Step 4

For reasons of computability, the number of layers is limited to n, with Dirichlet

boundary condition applied at x = xn as shown in Fig(3.1d). However, imposing a Dirichlet

boundary condition results in complete reflection of any incoming wave and hence these

elements would fail to act as an ABC. This is handled by using the idea that propagating

waves are damped out by complex media. By choosing the lengths of the finite element to

be complex (see Fig.3.1e) the incoming energy into the PMDL elements can be damped out

and thus the reflections can be reduced significantly.

3.2 PMDL for a General Second Order Vector Equation

While the arguments in the previous section are explained in the context of scalar

wave equation, they are also valid for any second order vector equation [14]. Specifically, it

is shown in [14] that the half-space for a system governed by a second order vector equation

of the form,

−A
∂2u
∂x2

+ B
∂u
∂x

+ Cu = 0, (3.10)

can be replaced by the infinite assembly:

∞
A

i=1

 1
Li

 A −A

−A A

+
1
2

−B B

−B B

+
1
4
Li

C C

C C

Ue = Fe, (3.11)

that preserves the DtN map of the original system at the interface x = 0. The assembly

operator in (3.11) can be rewritten as an assembly of Kronecker products, i.e.

∞
A

i=1

 1
Li

 1 −1

−1 1

⊗A +

−1 1

−1 1

⊗ 1
2
B + Li

1 1

1 1

⊗ 1
4
C

 . (3.12)

If we define basis matrices as,

A−1 =

 1 −1

−1 1

 , A0 =

−1 1

−1 1

 and A1 =

1 1

1 1

 , (3.13)

and coefficient matrices as,

C−1 = A, C0 =
B
2

and C1 =
C
4

, (3.14)
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Figure 3.1: Steps in the formulation of PMDL
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then (3.12) can be expressed concisely as ∞
A

i=1

 ∑
f∈{−1,0,1}

Lf
i Af ⊗Cf


Ue = Fe. (3.15)
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Chapter 4

MD-PMDL: An Extension of

PMDL for Molecular Dynamics

In section (2.3), it was shown that the exterior of a harmonic lattice can be ex-

pressed as P̄ +
∞
A

i=1


p q

r p


Ue = Fe, (4.1)

where P̄ is defined in (2.15). In fact, for the more generic vector system, the exterior can

be expressed as P̄ +
∞
A

i=1


P Q

R P


Ue = Fe, (4.2)

where P,Q and R are stiffness matrices that describe the interaction between the unit cells.

Note that (4.2) can be rewritten asP̄ +
∞
A

i=1


 1 −1

−1 1

⊗P−1 +

−1 1

−1 1

⊗P0 +

1 1

1 1

⊗P1


Ue = Fe (4.3)

where

P−1 =
P
2
− Q + R

4
, P0 =

Q−R
2

and P1 =
P
2

+
Q + R

4
(4.4)

Using the basis matrices defined in (3.13), (4.3) can be expressed concisely asP̄ +
∞
A

i=1

 ∑
f∈{−1,0,1}

Af ⊗Pf


Ue = Fe. (4.5)
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Note that (4.5) is identical to the PMDL system in (3.15) for Li = 1 and Cf = Pf . Since

the stiffness-preserving property of PMDL is independent of Li, (3.15) with variable Li is

still an exact representation of the discrete half-space with respect to the stiffness at the

interface with the interior at x = 0. Thus the discrete half-space can be replaced by PMDL

elements with Cf = Pf . However, the PMDL system in (3.15) is still infinite. To make the

computation tractable, it is truncated and a Dirichlet boundary condition applied at the

end. The truncation introduces an error in the approximation of the discrete half-space.

This can be handled by choosing complex values for Li in a manner similar to PMDL.

This will be discussed in more detail in Sec(4.3), where an error estimate for the boundary

condition is derived.

To summarize, the exterior of the discrete lattice in (4.5) can be approximated in

an efficient and accurate manner using the PMDL boundary conditions. This procedure

to extend a continuum ABC to the discrete domain is the central idea of this thesis. This

particular extension of PMDL to the discrete problem is named MD-PMDL. The details of

the formulation of MD-PMDL for 1D is discussed in the subsequent sections.

4.1 MD-PMDL Formulation for 1D Lattice

Consider the governing equation for the exterior (including boundary cell) in

(2.15),  ∞
A

i=1


p q

r p

+ P̄

Ue = Fe. (4.6)

It was shown in the previous sections that the operator on the left can be approximated

using a truncated m layered PMDL system, i.e.,

∞
A

i=1


p q

r p

Ue ≈
m
A

i=1

{
1
Li

c−1A−1 + c0A0 + Lic1A1

}
Ue, (4.7)

where A−1,A0 and A1 are the basis matrices defined in (3.13) and the coefficients c−1, c0

and c1 are given by:

c−1 =
p

2
− q + r

4
, c0 =

q − r

2
and c1 =

p

2
+

q + r

4
. (4.8)
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Note that A−1 = v−1vt
−1 and A1 = v1vt

1, where vt
−1 =

[
−1 1

]
and vt

1 =
[
1 1

]
. Thus,

(4.7) can be written as,(
m
A

i=1

{
1
Li

c−1v−1vt
−1 + c0A0 + Lic1v1vt

1

}
+ P̄

)
Ue = Fe. (4.9)

As mentioned in Sec(3), the lengths Li in (4.9) are chosen to be complex to minimize

the error in the approximation. This is discussed in more detail in Sec(4.3). Also, the

imaginary part of Li are made frequency dependent so that the equations are real valued

when transformed back to time domain. Thus, the lengths are assumed to be of the form,

Li = pi +
qi

iω
, i = 1, . . . ,m, (4.10)

where pi and qi are parameters of the method that can be optimized to minimize the error

in the approximation. Let us define state variables s1,i and s2,i for a unit cell i as,

s1,i =
1
Li

c−1vt
−1ui, and

s2,i = Lic1vt
1ui.

(4.11)

The governing equation (4.9) can now be expressed in terms of the state variables as,

m
A

i=1
{v−1s1,i + v1s2,i}+

(
m
A

i=1
{c0A0}+ P̄

)
Ue = Fe. (4.12)

Since Li are frequency dependent, s1 and s2 are also frequency dependent, and can be

derived by first substituting (4.10) into (4.11) and expanding:

pi (iωs1,i) + qis1,i = c−1vt
−1 (iωui) ,

(iωs2,i) = c1vt
1 (pi (iωui) + qiui) .

(4.13)

The time domain definition of state variables is obtained through an inverse fourier trans-

form of (4.13) and is given by,

pi
∂s1,i

∂t
+ qis1,i = c−1vt

−1

∂ui

∂t
,

∂s2,i

∂t
= c1vt

1

(
pi

∂ui

∂t
+ qiui

)
.

(4.14)
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Equation (4.12) together with (4.14) is the complete statement of a m-layered MD-PMDL

boundary condition for a 1D lattice and can summarized as

m
A

i=1
{v−1s1,i + v1s2,i}+

(
m
A

i=1
{c0A0}+ P̄

)
Ue = Fe,

pi
∂s1,i

∂t
+ qis1,i = c−1vt

−1

∂ui

∂t
∂s2,i

∂t
= c1vt

1

(
pi

∂ui

∂t
+ qiui

)
 for i = 1, . . . ,m .

(4.15)

4.2 Time Domain Implementation

The equations for the exterior at time t = tn+1 can be written as:

m
A

i=1

{
v−1s

n+1
1,i + v1s

n+1
2,i

}
+
(

m
A

i=1
{c0A0}+ P̄

)
Ue

n+1 = Fe
n+1 (4.16)

sn+1
1 and sn+1

2 can be obtained by discretizing (4.14) about t = tn+ 1
2

using the Crank-

Nicolson scheme, which is given by:

∂(.)
∂t

n+ 1
2

=
(.)n+1 − (.)n

∆t
,

(.)n+ 1
2 =

(.)n+1 + (.)n

2
.

(4.17)

Using (4.17) to discretize (4.14) results in the evolution equations for the state variables

and are given by:

sn+1
1,i =

r̂i

ri
sn
1,i +

c−1

ri
vt
−1

(
un+1

i − un
i

)
, (4.18)

sn+1
2,i = sn

2,i + c1vt
1

(
riun+1

i − r̂iun
i

)
, (4.19)

where ri = pi + qi
∆t
2 and r̂i = pi− qi

∆t
2 . Substituting the expressions for the state variables

(4.18) and (4.19) into (4.16), we obtain,

m
A

i=1

{
v−1

r̂i

ri
sn
1,i

}
+
(

m
A

i=1

{
c−1

ri
v−1vt

−1

})(
Ue

n+1 −Ue
n
)
+

+
m
A

i=1

{
v1s

n
2,i

}
+
(

m
A

i=1

{
c1v1vt

1

})(
riUe

n+1 − r̂iUe
n
)

+
(
P̄ +

m
A

i=1
{c0A0}

)
Ue

n+1 = Fn+1
e .

(4.20)
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The above equation can be rearranged and expressed as

KLUe
n+1 = Fe

n+1 + Fsv
n + KRUe

n, (4.21)

where KL and KR are the stiffness matrices and Fsv is the forcing term due the state

variables and are given by:

KL = P̄ +
m
A

i=1

{
c−1

ri
A−1 + c0A0 + ric1A1

}
,

KR =
m
A

i=1

{
c−1

ri
A−1 + r̂ic1A1

}
,

Fsv
n =

m
A

i=1

{
r̂i

ri
sn
1,iv−1 + sn

2,iv1

}
.

(4.22)

4.3 Derivation of an Error Estimate

Consider a general harmonic and periodic lattice governed by the equation, ∞
A

i=−∞

A B

C A

U = F. (4.23)

The solution takes the form un+ 1
2

=
∑

k ūke
ink, where k are the allowed wave modes that

satisfy the governing equation (4.23). Substituting a single mode ūke
ink in (4.23) results in,(

Ce−ik + 2A + Beik
)
ūk = 0. (4.24)

The relation (4.24) is also known as the dispersion relation.

The goal is to find the error in the approximation of the discrete half-space using

MD-PMDL layers. Let us consider a wave mode traveling right in the interior and incident

on the interface. If the exterior is an exact representation of the discrete half-space then the

wave mode would travel into the exterior without causing any reflections at the interface.

This is because the discrete half-space can only support outgoing wave modes. However,

if the exterior is replaced by MD-PMDL layers, then the inexactness of the exterior would

result in waves reflected into the interior. Thus the magnitude of the reflected wave com-

pared to the incident wave could be taken as a quantitative measure of the error in the

approximation of the discrete half-space.

Consider the solution field in the interior+boundary region (i ≤ 1
2) as,

un+ 1
2

= Ieink1 + R Ieink2 for n ≤ 0, (4.25)
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where k1 is forward propagating wave number, k2 is the backward propagating wave number,

I is the amplitude of the incident wave mode and R I is the magnitude of the reflected wave.

The scalar R, which is the ratio of the the reflected mode to the incident mode is known

as the Reflection Coefficient. Note that R = 1 if the wave is completely reflected at the

interface and R = 0 if it is completely absorbed. Thus, a low value of R implies a good

approximation of the discrete half-space.

The incident and the reflected modes should satisfy the dispersion relation, i.e.,(
Ce−ik1 + 2A + Beik1

)
I = 0, (4.26)

R
(
Ce−ik2 + 2A + Beik2

)
I = 0. (4.27)

Subtracting (4.26) from (4.27) and simplifying, we get:(
ek1 − ek2

)(
Ce−k1e−k2 −B

)
I = 0,

=⇒ Bek1I = Ce−k2I for k1 6= k2.
(4.28)

Substituting (4.28) into (4.26), we get:(
Ce−k2 + A

)
I = −

(
Ce−k1 + A

)
I. (4.29)

Now consider the boundary cell, i.e n = 0. The governing equation for the cell can be

written as, A B

C A

u− 1
2

u 1
2

 =

f− 1
2

f 1
2

 . (4.30)

Using the definition of the half-space stiffness (2.17), i.e f 1
2

= Kapproxu 1
2
, and substituting

(4.25) into second equation of (4.30), we get:

C
(
Ie−ik1 + RIe−ik2

)
+ A (I + RI) = Kapprox (I + RI) ,

=⇒ R
(
Ce−ik2 + A

)
I +

(
A + Ce−ik1

)
I = Kapprox (1 + R) I.

(4.31)

Note that if the half-space was exact then R = 0 and (4.31) yields:

(Ce−ik1 + A)I = KexactI. (4.32)

Using (4.29) and (4.32), (4.31) can be simplified to:

(1−R)(Ce−k1 + A)I = (1 + R)KapproxI

=⇒ (1−R)KexactI = (1 + R)KapproxI.
(4.33)
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Thus, we finally obtain a relation for the Reflection Coefficient R given by:

det((1−R)Kexact − (1 + R)Kapprox) = 0. (4.34)

Error Estimate for 1D MD-PMDL

For the 1-D case, Reflection Coefficient in (4.34) can be written as,

R =
∣∣∣∣Kexact −Kapprox

Kexact + Kapprox

∣∣∣∣ . (4.35)

Also, the equation of the exterior for the general lattice, (2.15) is given by: ∞
A

i=1

p q

r p

U = F, (4.36)

where p, q and r are scalars. It can be easily shown that the the exact half-space stiffness

for the above system is given by K2
exact = p2 − qr.

Assuming n MD-PMDL cells are used in the approximation of the exterior, i.e : ∞
A

i=1

p q

r p

 ≈

 n
A

i=1

ai bi

ci ai

 (4.37)

where,

ai =
1
2

(
p− q + r

2

)
1
Li

+
1
2

(
p +

q + r

2

)
Li,

bi = −1
2

(
p− q + r

2

)
1
Li

+
1
2

(q − r) +
1
2

(
p +

q + r

2

)
Li and

ci = −1
2

(
p− q + r

2

)
1
Li
− 1

2
(q − r) +

1
2

(
p +

q + r

2

)
Li.

(4.38)

If Kn is the stiffness of the n-cell MD-PMDL exterior, then the reflection coefficient is given

by

Rn =
∣∣∣∣Kexact −Kn

Kexact + Kn

∣∣∣∣ . (4.39)

Note that ai and bi have the property

a2
i − bici = K2

exact. (4.40)

Also, since PMDL is a rational approximation of the half-space (3.8), we can write,

Ki = ai −
bici

ai + Ki−1
. (4.41)
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Note that if Kj−1 is exact, i.e Kj−1 = Kexact, then we recover back the exact half-space

stiffness from (4.41), i.e Ki = Kexact. Substituting (4.41) into (4.39) and using (4.40) to

simplify, we get a recursive definition for reflection coefficient, i.e.:

Rn =
∣∣∣∣(an −Kexact) (Kexact −Kn−1)
(an + Kexact) (Kexact + Kn−1)

∣∣∣∣
=
∣∣∣∣(an −Kexact)
(an + Kexact)

∣∣∣∣Rn−1.

(4.42)

Since, the layers are truncated with a fixed boundary condition we set K0 = ∞. Thus the

reflection coefficient can be written explicitly as:

Rn =
n∏

i=1

∣∣∣∣ai −Kexact

ai + Kexact

∣∣∣∣ . (4.43)

If Kexact is imaginary(propagating modes) and L is real, then R = 1 and hence the wave

mode will be completely reflected. Thus to prevent reflection Li should be chosen complex.

Similarly, if Kexact is real(evanescent wave modes) then Li has to be real. This is the reason

for choosing the general complex form in (4.10) for the lengths Li.

Since the aim of MD-PMDL is to be minimize the reflections, the lengths Li should

be chosen such that R is close to 0. Note that since each term is smaller than 1, the product

goes to zero exponentially with the number of layers. Thus, the error decays exponentially

with the number of MD-PMDL layers. We could optimize the number of layers by choosing

optimal values for parameters Li such that R is minimized. However, ad-hoc values of Li

are used for the simulations in this work and optimization of the parameters is a topic for

future study.

4.3.1 A comparison of the error estimates between PMDL and MD-

PMDL for the Discrete Wave Equation

Consider the exterior for the 1D discrete wave equation in (2.3) and for simplicity

assume a = h, b = hk2
x and f = 0, i.e.,

−D2
xuj+ 1

2
− k2

xuj+ 1
2

= 0, j = 0, ..,∞ (4.44)

or, the equivalent assembly: ∞
A

i=1

 1
h −

k2
xh
2 − 1

h

− 1
h

1
h −

k2
xh
2

ue = fe. (4.45)
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The MD-PMDL approximation for (4.45) can be written as, n
A

i=1

āi b̄i

b̄i āi

ue = fe, where

āi =
(

1
h
− k2

xh

4

)
1
Li
− k2

xh
Li

4

b̄i = −
(

1
h
− k2

xh

4

)
1
Li
− k2

xh
Li

4
.

(4.46)

Also from (4.24), the dispersion relation for (4.45) is given by:

1
h

(
e−ikh − 2 + eikh

)
= k2

xh

=⇒ sin2 kh

2
=

k2
xh2

4
.

(4.47)

As seen earlier, the discrete half-space stiffness is given by:

Kdisc
exact =

√(
1
h
− k2

xh

2

)2

−
(

1
h

)2

= −i

√
k2

x

(
1− k2

xh2

4

)
.

(4.48)

Using (4.47), (4.48) can be simplified to

Kdisc
exact = − i

h
sin (kh), . (4.49)

and substituting (4.49) and (4.46) in (4.43), we get the reflection coefficient as:

Rmd−pmdl
n =

n∏
j=1

∣∣∣∣∣ ih− Lj tan
(

kh
2

)
ih + Lj tan

(
kh
2

)∣∣∣∣∣
2

. (4.50)

We now derive the reflection coefficient when PMDL is used for the right exterior.

The reflection coefficient when PMDL is used for the right exterior is given by:

Rpmdl
n =

Kdisc
exact −Kpmdl

Kdisc
exact + Kpmdl

, (4.51)

where, Kpmdl is the stiffness of the PMDL layers formulated for the system obtained as the

continuum limit (h → 0) of the discrete wave equation. i.e.,

−∂2u

∂x2
− k2

xu = f. (4.52)
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The Reflection Coefficient when PMDL is used to approximate the continuous half-space

stiffness of (4.52) is given by:

Rcont
n =

Kcont
exact −Kpmdl

Kcont
exact + Kpmdl

(4.53)

where Kcont
exact = −ikx is the continuous half-space stiffness. Using (4.53), the stiffness of the

PMDL layers can be written as,

Kpmdl = αKcont
exact, where α =

1−Rcont
n

1 + Rcont
n

. (4.54)

Finally, substituting (4.54) into (4.51), we get:

Rcontinuous−pmdl
n =

Kdisc
exact − αKcont

exact

Kdisc
exact + αKcont

exact

. (4.55)

Substituting the expressions for the half-space stiffnesses, (4.55) can be further simplified

to:

Rcontinuous−pmdl
n =

cos
(

kh
2

)
− α

cos
(

kh
2

)
+ α

. (4.56)

Thus (4.50) and (4.56) are the error measures when MD-PMDL and Continuous PMDL are

used to approximate the right exterior and are plotted in Fig.(4.1). The Reflection coeffi-

cients are plotted against normalized horizontal wave-numbers (kh) for a set of parameters

(L′is) that were chosen in an ad-hoc fashion. The plot shows that at low wave-numbers

the Reflection Coefficients are equal for PMDL and MD-PMDL. However, for high wave-

numbers MD-PMDL performs much better than PMDL which does not improve even with

a large number of layers. This justifies our initial claim that continuum ABC’s cannot be

directly used to approximate discrete systems. We will now present some numerical results

that shows the effectiveness of MD-PMDL.

4.4 Numerical Experiment: 1D Discrete Wave Equation

The wave equation for a discrete half-space (x ≥ 0) is given by:

−axD2
xu(x, t) +

∂2u(x, t)
∂t2

= 0 (4.57)
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Figure 4.1: Plot of the Reflection Coefficient when continuous PMDL and MD-PMDL
boundary conditions are used for the Discrete Wave Equation.

The domain of interest is chosen to be n(=10) atoms with positions xj = (j − 1) ∗ h, j =

1, 2, .., 10 where h is the lattice spacing. The initial and the loading condition are given by:

f(0, t) =

sin2(π
2 t) t < 2π

0 otherwise
(4.58)

u(x, 0) = 0 (4.59)

u̇(x, 0) = 0 (4.60)

The velocity norm is used as the criteria to compare the different boundary conditions, as it

provides a measure of the total KE of the system and hence the temperature. The simula-

tion is performed using MD-PMDL and continuous PMDL to approximate the discrete half-

space. 3 layers of MD-PMDL were used with parameters {(pi, qi) = (0, 1
16), (0, 4

16), (0, 9
16)},

and the same parameters are used for the PMDL boundary conditions. Note that the

parameters were chosen in an ad-hoc manner. The results are compared with the exact so-

lution which is computed by using a much larger domain (1000 atoms) so that the boundary

effects are not seen in the region of interest.

The relative errors from the two simulations are shown in Fig(4.2). As expected,

Continuous PMDL has significant errors( 10%) while MD-PMDL has a much smaller er-

ror(0.2%).
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Figure 4.2: A semilog plot of the relative error in velocity norm over the duration of the
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Chapter 5

MD-PMDL Formulation for 2D

Square Lattice

Similar to the 1-D case, the governing equation for a periodic square lattice can

be written in terms of the basis matrices defined in (3.13) as:

A
i=−∞,..,∞
j=−∞,..,∞


∑

f∈{−1,0,1}
g∈{−1,0,1}

cf,gAf ⊗Ag

U = F, (5.1)

where cf,g are constants that can be determined from harmonic approximation of the system.

The 2-D assembly on the left hand side of (5.1) can be rewritten as a 1-D assembly given

by:
∞
A

i=−∞

 ∑
f∈{−1,0,1}

Af ⊗Of

 , (5.2)

where,

Of =
∞
A

j=−∞

 ∑
g∈{−1,0,1}

cf,gAg

 . (5.3)

Note that the assembly in (5.2) is exactly the same as in (4.5), and hence can be rewritten

(similar to the 1-D case) using the equivalent assembly in (3.15) as:

∞
A

i=−∞

 ∑
f∈{−1,0,1}

Lf
i Af ⊗Of

 . (5.4)
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Substituting back Of from (5.3) into (5.4), we get:

A
i=−∞,..,∞
j=−∞,..,∞


∑

f∈{−1,0,1}
g∈{−1,0,1}

cf,gL
f
i Af ⊗Ag

 . (5.5)

This procedure can be repeated in a similar fashion for the assembly along y direction to

get:

A
i=−∞,..,∞
j=−∞,..,∞


∑

f∈{−1,0,1}
g∈{−1,0,1}

cf,gL
f
i Lg

jAf ⊗Ag

 . (5.6)

The assembly in (5.6) is the final form of PMDL lattice that is equivalent (with

respect to stiffness) to the original system and has exact stiffness matching property at any

interface irrespective of the spacings Li and Lj . Note that for the choice of Li = 1 and

Lj = 1, (5.6) is identical to the original matrix operator in (5.1).

Similar to the decomposition in the 1-D lattice, the 2-D lattice can also be split

into an interior and an exterior system that are coupled by the boundary region, i.e.,

AiiUi = Fi −AieUe,

AeeUe = Fe −AeiUi.
(5.7)

Note that the interior is coupled with the exterior only along the boundary and the treat-

ment of the interior is exactly the same as in the 1-D case and thus only the treatment of

the exterior will be discussed here. Note that the exterior can be viewed as an assembly of

3 super cell’s(see Fig.5.1(b)) Ex,Ey and Cxy, i.e.

AeeUe =
(
P̄ + A {Ex,Ey,Cxy}

)
Ue. (5.8)

The super cells Ex and Ey will be referred to as edge exteriors as they extend to +∞ along

x and y respectively. Similarly the super cell Cxy will be referred to as the corner exterior as

it extends to +∞ along both x and y directions. The system of equations for the super-cells
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is given by:

Ex = A
i=1,..,∞

j=−∞,..,−1


∑

f∈{−1,0,1}
g∈{−1,0,1}

cf,gL
f
i Af ⊗Ag

 ,

Ey = A
i=−∞,..,−1

j=1,..,∞


∑

f∈{−1,0,1}
g∈{−1,0,1}

cf,gL
g
jAf ⊗Ag

 ,

Cxy = A
i=1,..,∞
j=1,..,∞


∑

f∈{−1,0,1}
g∈{−1,0,1}

cf,gL
f
i Lg

jAf ⊗Ag

 .

(5.9)

We now need to truncate Ex along x and Ey along y and Cxy along both x and

y. Again, similar to the 1-D case, the truncated system can be written as:

Ex = A
i=1,..,mx

j=−∞,..,−1


∑

f∈{−1,0,1}
g∈{−1,0,1}

cf,gL
f
i Af ⊗Ag

 ,

Ey = A
i=−∞,..,−1
j=1,..,my


∑

f∈{−1,0,1}
g∈{−1,0,1}

cf,gL
g
jAf ⊗Ag

 ,

Cxy = A
i=1,..,mx
j=1,..,my


∑

f∈{−1,0,1}
g∈{−1,0,1}

cf,gL
f
i Lg

jAf ⊗Ag

 .

(5.10)

Note that the unit cell of Cxy reduces to that of Ex and Ey for Lj = 1 and Li = 1

respectively. Thus, the formulation for Cxy is derived first and the formulations for Ey and

Ex can then be obtained as a special case of the corner formulation.

5.1 Formulation for the Corner Exterior

The system of equations for the corner region Cxy are given by:

A
i=1,..,mx
j=1,..,my


∑

f∈{−1,0,1}
g∈{−1,0,1}

cf,gL
f
i Lg

jAf ⊗Ag

Uc = Fc. (5.11)
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Figure 5.1: A schematic of an infinite square lattice.

Recall that the basis matrices can be decomposed as

A−1 = v−1vt
−1, A0 = v1vt

−1 and A1 = v1vt
1 (5.12)

where vt
−1 =

[
−1 1

]
and vt

1 =
[
1 1

]
. Based on (5.12), Kronecker product of any two

basis matrix can be represented as

Ai ⊗Aj =
(
a1at

2

)
⊗
(
b1bt

2

)
= (a1 ⊗ b1) (a2 ⊗ b2)t

(5.13)

Using (5.13) and (5.12), we can rewrite (5.11) as

A
i=1,..,mx
j=1,..,my


(v−1 ⊗ v−1) s1,(i,j) + (v−1 ⊗ v1) s2,(i,j)+

+ (v1 ⊗ v−1) s3,(i,j) + (v1 ⊗ v1) s4,(i,j)+

+ c0,0 (A0 ⊗A0)ui,j

 = Fc, (5.14)

where s1, s2, s3 and s4 are the state variables for the corner region and are given by

s1,(i,j) =
c−1,−1

LiLj
(v−1 ⊗ v−1)t ui,j ,

s2,(i,j) =
c−1,0

Li
(v−1 ⊗ v−1)t ui,j +

c−1,1Lj

Li
(v−1 ⊗ v1)t ui,j ,

s3,(i,j) =
c0,−1

Lj
(v−1 ⊗ v−1)t ui,j +

c1,−1Li

Lj
(v1 ⊗ v−1)t ui,j ,

s4,(i,j) = c0,1Lj (v−1 ⊗ v1)t ui,j + c1,0Li (v1 ⊗ v−1)t ui,j ,

+ c1,1LiLj (v1 ⊗ v1)t ui,j .

(5.15)
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Once the state variables are defined, the derivation is identical to the 1D derivation. Thus

(5.15) are inverse fourier transformed to obtain the time domain equations for the state vari-

ables which are then discretized using the Crank-Nicolson method to obtain the evolution

equations for the state variables. These evolution equations are given by

sn+1
1,(i,j) =

r̂i

ri
sn
1,(i,j) +

1
ri

(
ŝn+1
1,(i,j) − ŝn

1,(i,j)

)
,

ŝn+1
1,(i,j) =

r̂j

rj
ŝn
1,(i,j) +

c−1,−1

rj
(v−1 ⊗ v−1)t

(
ui,j

n+1 − ui,j
n
)
,

(5.16)

sn+1
2,(i,j) =

r̂i

ri
sn
2,(i,j) +

c−1,0

ri
(v−1 ⊗ v−1)t

(
ui,j

n+1 − ui,j
n
)
+

c−1,1

ri
(v−1 ⊗ v1)t

(
rjui,j

n+1 − r̂jui,j
n
)
,

(5.17)

sn+1
3,(i,j) =

r̂j

rj
sn
3,(i,j) +

c0,−1

rj
(v−1 ⊗ v−1)t

(
ui,j

n+1 − ui,j
n
)
+

c1,−1

rj
(v1 ⊗ v−1)t

(
riui,j

n+1 − r̂iui,j
n
) (5.18)

sn+1
4,(i,j) = sn

4,(i,j) + c0,1 (v−1 ⊗ v1)t
(
rjui,j

n+1 − r̂jui,j
n
)
+

c1,0 (v1 ⊗ v−1)t
(
riui,j

n+1 − r̂iui,j
n
)
+(

riŝ
n+1
4,(i,j) − r̂iŝ

n
4,(i,j)

)
,

ŝn+1
4,(i,j) = ŝn

4,(i,j) + c1,1 (v1 ⊗ v1)t
(
rjui,j

n+1 − r̂jui,j
n
)
.

(5.19)

Substituting (5.16), (5.17), (5.18) and (5.19) into (5.14) evaluated at t = tn+1, we get the

final system of equations for the corner exterior as

KL,cxyU
n+1
cxy

= Fn+1
cxy

+ Fn
sv,cxy

+ KR,cxyU
n
cxy

, (5.20)

where Fcxy is the coupling force with the edge exteriors, KL,cxy and KR,cxy are the stiffness

matrices and Fsv,cxy is the force term from the state variables. The explicit expressions for

these are given by
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KL,cxy = A
i=1,..,mx
j=1,..,my



c−1,−1

rirj
A−1 ⊗A−1 +

c−1,0

ri
A−1 ⊗A0 +

c−1,1rj

ri
A−1 ⊗A1+

+
c0,−1

rj
A0 ⊗A−1 + c0,0A0 ⊗A0 + c0,1rjA0 ⊗A1+

+
c1,−1ri

rj
A1 ⊗A−1 + c1,0riA1 ⊗A0 + c1,1rirjA1 ⊗A1


, (5.21)

KR,cxy = A
i=1,..,mx
j=1,..,my



c−1,−1

rirj
A−1 ⊗A−1 +

c−1,0

ri
A−1 ⊗A0 +

c−1,1r̂j

ri
A−1 ⊗A1+

+
c0,−1

rj
A0 ⊗A−1 + c0,1r̂jA0 ⊗A1+

+
c1,−1r̂i

rj
A1 ⊗A−1 + c1,0r̂iA1 ⊗A0 + c1,1rir̂jA1 ⊗A1


,

(5.22)

Fn
sv,cxy

= A
i=1,..,mx
j=1,..,my



v−1 ⊗ v−1

[
r̂i

ri
sn
1,(i,j) +

r̂j

rirj
ŝn
1,(i,j)

]
+

+ v−1 ⊗ v1
r̂i

ri
sn
2,(i,j) + v1 ⊗ v−1

r̂j

rj
sn
3,(i,j)+

+ v1 ⊗ v1

[
sn
4,(i,j) + (ri − r̂i) ŝn

4,(i,j)

]


. (5.23)

5.2 Formulation for Edge Exteriors

The state variables for the edge exterior along x, Ex, can be obtained from by

setting Lj = 1 in (5.15) and are given by

s1,(i,j) =
c−1,−1

Li
(v−1 ⊗ v−1)t ui,j ,

s2,(i,j) =
c−1,0

Li
(v−1 ⊗ v−1)t ui,j +

c−1,1

Li
(v−1 ⊗ v1)t ui,j ,

s3,(i,j) = c1,−1Li (v1 ⊗ v−1)t ui,j ,

s4,(i,j) = c1,0Li (v1 ⊗ v−1)t ui,j + c1,1Li (v1 ⊗ v1)t ui,j .

(5.24)

Substituting Li in (5.24) and following the same procedure as the corner, we can get the

evolution equations for the state variables as

sn+1
1,(i,j) =

r̂i

ri
sn
1,(i,j) +

c−1,−1

ri
(v−1 ⊗ v−1)t

(
ui,j

n+1 − ui,j
n
)
, (5.25)

sn+1
2,(i,j) =

r̂i

ri
sn
2,(i,j) +

c−1,0

ri
(v−1 ⊗ v−1)t

(
ui,j

n+1 − ui,j
n
)
+

c−1,1

ri
(v−1 ⊗ v1)t

(
ui,j

n+1 − ui,j
n
)
,

(5.26)
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sn+1
3,(i,j) = sn

3,(i,j) + c1,−1 (v1 ⊗ v−1)t
(
riui,j

n+1 − r̂iui,j
n
)
, (5.27)

sn+1
4,(i,j) = sn

4,(i,j) + c1,0 (v1 ⊗ v−1)t
(
riui,j

n+1 − r̂iui,j
n
)
+

+ c1,1 (v1 ⊗ v1)t
(
riui,j

n+1 − r̂iui,j
n
)
.

(5.28)

The stiffness matrices and the state variable force are given by

KL,ex = A
i=1,..,mx

j=−∞,..,−1


c−1,−1

ri
A−1 ⊗A−1 +

c−1,0

ri
A−1 ⊗A0 +

c−1,1

ri
A−1 ⊗A1+

+ c0,−1A0 ⊗A−1 + c0,0A0 ⊗A0 + c0,1A0 ⊗A1+

+ c1,−1riA1 ⊗A−1 + c1,0riA1 ⊗A0 + c1,1riA1 ⊗A1

 , (5.29)

KR,ex = A
i=1,..,mx

j=−∞,..,−1


c−1,−1

ri
A−1 ⊗A−1 +

c−1,0

ri
A−1 ⊗A0 +

c−1,1

ri
A−1 ⊗A1+

+ c0,−1A0 ⊗A−1 + c0,0A0 ⊗A0 + c0,1A0 ⊗A1+

+ c1,−1r̂iA1 ⊗A−1 + c1,0r̂iA1 ⊗A0 + c1,1r̂iA1 ⊗A1

 , (5.30)

Fn
sv,ex

= A
i=1,..,mx

j=−∞,..,−1


v−1 ⊗ v−1

r̂i

ri
sn
1,(i,j) + v−1 ⊗ v1

r̂i

ri
sn
2,(i,j)+

+ v1 ⊗ v−1sn
3,(i,j) + v1 ⊗ v1sn

4,(i,j).

 . (5.31)

A similar procedure can be followed to get the contributions from the edge exterior along

y. Thus, the combined system of equations for the exterior can be written as

KLUn+1
e = Fe

n+1 + Fn
sv + KRUn

e (5.32)

where

KL = A
{
KL,cxy ,KL,ey ,KL,ex

}
+ P̄ (5.33)

KR = A
{
KR,cxy ,KR,ey ,KR,ex

}
(5.34)

Fn
sv = A

{
Fn

sv,cxy
,Fn

sv,ex
,Fn

sv,ey

}
(5.35)

5.3 Numerical Experiment: 2D Discrete Wave Equation

The wave equation for a discrete half-space in 2D (x ≥ 0 ∪ y ≥ 0) given by:

−D2
xu−D2

yu +
∂2u

∂t2
= f. (5.36)

The domain of interest has 100 atoms along each dimension and the external force is applied

at the node at position (75, 75) of the square lattice. The domain of interest here is taken



37

larger than the 1D problem so that the wave reflections can be seen clearly at the edges. The

simulation is performed using both MD-PMDL and continuous PMDL boundary conditions

and compared with the exact solution that is obtained by simulating a much larger domain.

The parameters for both PMDL and MD-PMDL are taken as {(pi, qi) = (0, 1)}. The loading

and initial conditions are given by

f(75, 75, t) =

10 ∗ sin(0.9 ∗ πt)2 t < 100
(

π
0.9

)
0 otherwise

(5.37)

u(i, j, 0) = 0 (5.38)

u̇(i, j, 0) = 0 (5.39)

Fig.(5.3) shows the energy contours at t = 100. The figure clearly shows significant

reflection at the corner boundary for continuous PMDL as compared to hardly any reflec-

tions for MD-PMDL boundary conditions. Also, Fig.(5.3) shows the error evolution over

the duration of the simulation and again the superior absorption properties of MD-PMDL

are clearly seen(MD-PMDL has an error of < 1% while Continuous PMDL’s error reaches

9%). Based on the 1D and 2D results, we can conclude that MD-PMDL is more accurate

in phonon absorption than continuous PMDL.

5.4 Numerical Experiment: Mode 3 Fracture

In this simulation, a semi-infinite strip with an initial crack is subjected to out-

of-plane displacements resulting in a steady growth of the initial crack. The aim of the

simulation is to see the effectiveness of MD-PMDL in absorbing the phonons emitted due

to the breaking of bonds during crack propagation. While this is not a full fledged crack

propagation simulation, it gives an idea of the usefulness of MD-PMDL in a realistic fracture

simulation involving moving boundaries(which is out of scope of this thesis). This example

also illustrates the applicability of MD-PMDL where the interior is nonlinear.

We use the Slepyan model of fracture in which the atoms are connected to the

neighbors through bonds that are elastic when the deformation is less than a limit,uf = 2,

and snap when the deformation exceeds the limit. We use the same setup as in [15] to study

the effect of the high frequency phonons that are emitted when the bonds break. The setup
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(a) MD-PMDL is used as the boundary condition. There

is almost no reflection near the boundary.

(b) Continuous PMDL is used as the boundary condition.

Significant reflections can be seen in the region near the

boundaries.

Figure 5.2: The energy contours at t = 100 for the 2D discrete wave equation using (a)MD-
PMDL and (b)continuous PMDL boundary conditions.
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Figure 5.3: Plot of the evolution of Error in velocity norm over the simulation duration.

is as shown in Fig(5.4(a)). The interior is a rectangular grid that is 20 atoms wide and 100

atoms long. The initial crack is taken to be 20 atoms long.

The exterior region is approximated using MD-PMDL using 5 identical layers

with parameters {(pi, qi) = (0, 1)}. The other boundary condition used for comparison,

is essentially a buffer region that is 10 atoms wide with a dirichlet condition at the end.

Also, dirichlet conditions u = +U,−U , is applied at the top and bottom row of atoms. The

dirichlet condition at the left edge is taken to be +U for atoms above the crack and −U

for the atoms below the crack, and for the right edge is taken to vary linearly from −U

at the bottom row to +U at the top row. Also, for the atoms outside the initial cracked

zone, the initial displacements are taken to vary linearly between the dirichlet conditions

at the top and bottom rows. For the atoms in the cracked zone, the initial conditions

are taken to vary linearly between the dirichlet condition at the left edge and the initial

displacement immediately to the right of the crack tip. The value of U is taken to be 20 for

this simulation. The initial velocities are taken to be zero over the entire domain.

In [15], the author uses moving boundaries to simulate a steady state crack growth.

However, steady state is not simulated in this example, and the crack is allowed to grow from

initial configuration until it reaches the end of the domain. A velocity norm is measured

for small region (40 atoms wide) near the left boundary to see the effect of reflections due
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to phonon. The simulations are carried out for MD-PMDL and a truncated boundary with

an offset of 10 atoms. The results are compared against the exact solution obtained using

a much larger domain. Fig(5.4(b)) shows the error in velocity norm and it is clear that

MD-PMDL performs better than a truncated boundary(MD-PMDL has < 5% error while

truncated BC has almost 30% error). Though the magnitude of the values are small, this

would be significant in an actual fracture simulation with moving boundaries as the domain

size would be small and reflection of phonon back into the domain will be a major problem.

This also demonstrates that MD-PMDL performs well for the case of non-linear interaction

in the interior domain.
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(a) A schematic of the setup for crack simulation.
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(b) Plot of the relative Error in velocity norm at a small region(40 atoms wide) near the

left boundary.

Figure 5.4: Simulation of Mode 3 crack propagation.
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Chapter 6

Concluding Remarks

We have presented a systematic procedure to develop ABC’s for MD domains and

have demonstrated through numerical examples that they are superior in performance com-

pared to their continuum counterpart. This validates our initial assertion that a continuous

ABC cannot be used directly for the MD domain.

We also presented an explicit expression for the error estimate in terms of the

parameters of the boundary condition. The error estimate makes the approximation char-

acteristics of the boundary condition transparent, indicating that it can be easily optimized

for performance.

The final form of the boundary conditions for 1D and 2D lattices is presented in an

explicit form that is easy to implement. We note that while the boundary condition couples

the domain along the boundary, it is still local to the region near the boundary. Since the

error decays exponentially with the number of layers, often only a few layers are needed to

obtain accurate results. Thus, the additional overhead due to MD-PMDL is not high. Also

the method does not involve any expensive convolution operations as it is completely local in

time. The only computational burden is the solution of sparse linear system (factorization

needs to be done just once). While explicit comparison with other existing MD-ABC’s is

not made, we believe that the local nature of MD-PMDL provides an efficient alternative

to existing MD-ABC’s.

While MD-PMDL’s effectiveness was illustrated for a square lattice with scalar

field variable, the derivation of MD-PMDL is applicable for a vector equation. Thus, it

should be possible to extend MD-PMDL for more complex lattices by expressing them as a
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simple lattice with multiple degrees of freedom per node. However, complex lattices involve

optical phonon branches that are similar to dispersion branches for elastic wave propagation

in continuous waveguides. Since PMDL has stability issues in simulating elastic waves in

layers [13], we anticipate that the extension to complex lattices might not be straightforward

and would be investigated in the future.

The current formulation is limited to the case of zero temperature in the exterior.

For a more realistic simulation, MD-PMDL should be extended to handle non-zero temper-

atures in the exterior. This extension to non-zero temperature would be investigated in the

near future.

Another area of focus is the extension of MD-PMDL as an interface condition for

atomistic-continuum coupling. While interface conditions act like an ABC in dissipating

the high frequency phonons, they also need to enable the exchange information with the

continuum domain. A related extension would be for moving boundaries as seen in the

numerical experiment involving crack propagation.

A minor disadvantage of MD-PMDL is that the atoms are coupled along the

boundary. However such coupling is limited to the neighboring super-atoms. Furthermore,

the MD-PMDL equations are completely linear. The linearity and local coupling will be

utilized to develop effective linear solution techniques that would require minimal compu-

tational cost.
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