
Abstract

GEGICK, MICHAEL CHARLES. Analyzing Security Attacks to Generate Signatures from
Vulnerable Architectural Patterns. (Under the direction of Dr. Laurie Williams.)

Current techniques for software security vulnerability identification include the use of

abstract, graph-based models to represent information about an attack. These models can

be in the form of attack trees or attack nets and can be accompanied with a supporting text-

based profile. Matching the abstract models to specific system architectures for effective

vulnerability identification can be a challenging process. This thesis suggests that abstract

regular expressions can be used to represent events of known attacks for the identification

of security vulnerabilities in future applications. The process of matching the events in the

regular expression to a sequence of components in a system design may facilitate the

means of identifying vulnerabilities. Performing the approach in the design phase of a

software process encourages security to be integrated early into a software application.

Students in an undergraduate security course demonstrated a strong ability to accurately

match regular expressions to a system design. The identification of vulnerabilities is limited

to known attacks of other systems and does not offer descriptions of what new attacks are

possible to a future application. Extending the approach to incorporate new attacks is an

avenue of future work.

Analyzing Security Attacks
to Generate Signatures from Vulnerable

Architectural Patterns

by
Michael Charles Gegick

A thesis submitted to the Graduate Faculty of

North Carolina State University
in partial fulfillment of the

requirements for the Degree of
Master of Science

Computer Science

Raleigh
2004

APPROVED BY:

Committee Member

Committee Member

Chair of Advisory Committee

ii

Biography

Michael has a BA in Biology from Washington and Jefferson College (1998) and a BS in

Computer Science from North Carolina State University (2001). He enjoys swimming,

biking, running, and rock climbing.

iii

Acknowledgements

Thanks to the members of my thesis committee, Dr. Laurie Williams (chair), Dr. Annie

Antón and Dr. Julia Earp for their support and suggestions during my research. Dr.

Williams helped to steer me through the entire thesis and was always optimistic and

amazingly patient. I would like to sincerely thank Dr. Gary McGraw (of Cigital), Dr. Michael

Reiter (of Carnegie Mellon University), and Dr. Eugene Spafford, Dr. Pascal Meunier, and

Rajeev Gopalakrish (each of Purdue University) for taking the time to understand my thesis

approach and give opinions on its validity and practicality in the field of security engineering.

I would also like to thank Nick Green and Eric Isakson for their suggestions on the approach

when I first arrived at the concept. Additionally, Bruce Wieand was helpful in determining if

regular expressions were a possible means of representing events that may occur in an

attack and deserves much appreciation. Without Julie Starr, the teacher for CSC405 at

North Carolina State University, the feasibility and validation studies would not have been

possible. She was very cooperative and understanding with the incorporation of my

assignment in her class. Many thanks to Penney Martin for helping to elicit the idea

proposed in this thesis.

This material is based upon work supported by the National Science Foundation under

Grant No. 0346903. Any opinions, findings, and conclusions or recommendations expressed

in this material are those of the author(s) and do not necessarily reflect the views of the

National Science Foundation.

iv

Table of Contents

LIST OF TABLES... vi
LIST OF FIGURES.. vii
1.0 Introduction ...1
2.0 Background..5

2.1 Vulnerability Representation ..5
2.2 Security Collaboration for non-experts...14
2.3 Integrating Security into the Software Process ..17
2.4 Risk Management ..19

3.0 Methodology..21
3.1 Background ..21
3.2 Regular Expressions ..23
3.3 The System Design..29
3.4 Knowledge Base of Regular Expressions ..31
3.5 Methodology Scenario – Securing Applications from Enumerated Threats (SAFET) ..32
3.6 Risk Management ..33

4.0 Vulnerability Collection Methodology ..35
4.1 Limitations ..38

5.0 Vulnerability Collection Results...40
6.0 Feasibility Study ..66

6.1 Feasibility Study Methodology ...66
6.2 Feasibility Study Results ..69
6.3 Metadata ..72
6.4 Valid and Invalid Answers ..73
6.5 Unique Attack Paths...78
6.6 Regular Expressions Not Represented in the Design..80
6.7 Miscellaneous Data..84

7.0 Validation Study ..86
7.1 Validation Study Methodology..86
7.2 Validation Study Results ..87
7.3 Metadata ..90
7.4 Valid and Invalid Answers ..91
7.5 Unique Attack Paths...96
7.6 Regular Expressions Not Represented in the Design..100
7.7 Miscellaneous Data..103

8.0 Conclusions and Future Work...105
9.0 References..110
10.0 ppendices..112

10.1 Vulnerability Collection...113
10.2 Feasibility Assignment ...135
10.3 Time Spent on the Feasibility Study...145
10.4 Valid and Invalid Attack Paths for the Feasibility Study ...146
10.5 Feasibility Study Likert Scale ...166
10.6 Student Comments on the Feasibility Study ..167
10.7 Time Spent on the Validation Study...169
10.8 Valid and Invalid Attack Paths for the Validation Study ...170
10.9 Validation Study Likert Scale ...200
10.10 Student Comments for the Validation Study ..201
10.11 Student Questions in the Validation Study...205

v

10.12 Validation Study Assignment ...209

vi

LIST OF TABLES

Table 1: Regular Expression Operators..25
Table 2: The Initial Five Regular Expressions...40
Table 3: Classes of Vulnerabilities Not Used. ...42
Table 4: Regular Expression Knowledge Base...44
Table 5: Regular Expressions Occurring Frequently in the Knowledge Base.......................55
Table 6: Further Specified Regular Expressions...57
Table 7: Regular Expressions Representing Buffer Overflows. ..59
Table 8: Regular Expressions Representing Malformed Data. ...61
Table 9: Regular Expressions Representing Remote Executions.62
Table 10: Regular Expressions Representing Excessive Data Exploits.62
Table 11: Regular Expressions Representing Escalated Privilege Attacks.63
Table 12: Regular Expressions Representing Error Message Attacks.63
Table 13: Miscellaneous Regular Expressions. ..64
Table 14: Student Answers for One Regular Expression..69
Table 15: Attack Paths Found by 100% of the Participating Students..................................73
Table 16: Regular Expressions Further Specified...74
Table 17: Regular Expressions with Least Number of Valid Attack Paths............................75
Table 18: Regular Expressions without Invalid Attack Paths ..76
Table 19: Regular Expression with the Most Number of Invalid Attack Paths.77
Table 20: Regular Expressions with Valid Unique Attack Paths ...78
Table 21: Regular Expressions with Invalid Unique Attack Paths...79
Table 22: Regular Expressions not Found in the Design..81
Table 23: Invalid Attack Paths for Regex20 ..82
Table 24: Valid Attack Paths for Regex17 ..83
Table 25: Student Answers for One Regular Expression..88
Table 26: Regular Expression with the Most Number of Valid Attack Paths.........................93
Table 27: Regular Expressions without Invalid Attack Paths ..94
Table 28: Regular Expression with the Most Number of Invalid Attack Paths95
Table 29: Regular Expressions with Valid Unique Attack Paths ...97
Table 30: Regular Expressions with Invalid Unique Attack Paths...98
Table 31: Regular Expression with the Most Number of Invalid Attack Paths101
Table 32: Valid Attack Paths found for Regex22. ...102
Table 33: Invalid Attack Paths found for Regex22. ...103
Table 34: Vulnerability Collection..113
Table 35: Time Spent on the Feasibility Study..145

vii

LIST OF FIGURES

Figure 1: Get File Attack Tree ...7
Figure 2: Get File Attack Net...9
Figure 3: A Data Flow Diagram..30
Figure 4: SecurityFocus Example ..35
Figure 5: A Simple Design ..68
Figure 6: Number of Valid Attack Paths per Regular Expression. ..74
Figure 7: Number of Invalid Attack Paths per Regular Expression.76
Figure 8: Number Students Indicating that the Regular Expression was not in the Design..81
Figure 9: Number of Valid Attack Paths per Regular Expression.92
Figure 10: Number of Invalid Attack Paths per Regular Expression.94
Figure 11: Number of Students Indicating that the Regular Expression was not in the

Design. ..100
Figure 12: Time Spent on the Feasibility Study ..145
Figure 13: Valid Attack Paths for Regex1. ..146
Figure 14: Valid Attack Paths for Regex2. ..147
Figure 15: Invalid Attack Paths for Regex2..147
Figure 16: Valid Attack Paths for Regex3. ..148
Figure 17: Invalid Attack Paths for Regex3...148
Figure 18: Valid Attack Paths for Regex4. ..149
Figure 19: Invalid Attack Paths for Regex4...149
Figure 20: Valid Attack Paths for Regex5. ..150
Figure 21: Valid Attack Paths for Regex6. ..151
Figure 22: Valid Attack Paths for Regex7. ..152
Figure 23: Invalid Attack Paths for Regex7...152
Figure 24: Valid Attack Paths for Regex8. ..153
Figure 25: Invalid Attack Paths for Regex8...153
Figure 26: Valid Attack Paths for Regex9. ..154
Figure 27: Valid Attack Paths for Regex10. ..155
Figure 28: Invalid Attack Paths for Regex10...155
Figure 29: Valid Attack Paths for Regex11. ..156
Figure 30: Valid Attack Paths for Regex12. ..157
Figure 31: Invalid Attack Paths for Regex12...157
Figure 32: Valid Attack Paths for Regex13. ..158
Figure 33: Valid Attack Paths for Regex14. ..159
Figure 34: Invalid Attack Paths for Regex14...159
Figure 35: Valid Attack Paths for Regex15. ..160
Figure 36: Invalid Attack Paths for Regex15...160
Figure 37: Valid Attack Paths for Regex16. ..161
Figure 38: Invalid Attack Paths for Regex16...161
Figure 39: Valid Attack Paths for Regex17. ..162
Figure 40: Invalid Attack Paths for Regex17..162
Figure 41: Valid Attack Paths for Regex18. ..163
Figure 42: Invalid Attack Paths for Regex18...163
Figure 43: Valid Attack Paths for Regex19. ..164
Figure 44: Invalid Attack Paths for Regex19...164
Figure 45: Valid Attack Paths for Regex20. ..165
Figure 46: Invalid Attack Paths for Regex20...165
Figure 47: Feasibility Study Likert Scale ...166

viii

Figure 48: Time Spent on the Validation Study...169
Figure 49: Time Spent on the Validation Study...169
Figure 50: Valid Attack Paths for Regex1. ..170
Figure 51: Valid Attack Paths for Regex2. ..171
Figure 52: Invalid Attack Paths for Regex2...171
Figure 53: Valid Attack Paths for Regex3. ..172
Figure 54: Invalid Attack Paths for Regex3...172
Figure 55: Valid Attack Paths for Regex4. ..173
Figure 56: Invalid Attack Paths for Regex4...173
Figure 57: Valid Attack Paths for Regex5. ..174
Figure 58: Invalid Attack Paths for Regex5...174
Figure 59: Valid Attack Paths for Regex6. ..175
Figure 60: Valid Attack Paths for Regex7. ..176
Figure 61: Invalid Attack Paths for Regex7...176
Figure 62: Valid Attack Paths for Regex8. ..177
Figure 63: Valid Attack Paths for Regex9. ..178
Figure 64: Invalid Attack Paths for Regex9...178
Figure 65: Valid Attack Paths for Regex10. ..179
Figure 66: Invalid Attack Paths for Regex10...179
Figure 67: Valid Attack Paths for Regex11. ..180
Figure 68: Valid Attack Paths for Regex12. ..181
Figure 69: Invalid Attack Paths for Regex12...181
Figure 70: Valid Attack Paths for Regex13. ..182
Figure 71: Invalid Attack Paths for Regex13...182
Figure 72: Valid Attack Paths for Regex14. ..183
Figure 73: Invalid Attack Paths for Regex14...183
Figure 74: Valid Attack Paths for Regex15. ..184
Figure 75: Invalid Attack Paths for Regex15...184
Figure 76: Valid Attack Paths for Regex16. ..185
Figure 77: Invalid Attack Paths for Regex16...185
Figure 78: Valid Attack Paths for Regex17. ..186
Figure 79: Valid Attack Paths for Regex18. ..187
Figure 80: Valid Attack Paths for Regex19. ..188
Figure 81: Valid Attack Paths for Regex20. ..189
Figure 82: Valid Attack Paths for Regex21. ..190
Figure 83: Invalid Attack Paths for Regex21...190
Figure 84: Valid Attack Paths for Regex22. ..191
Figure 85: Invalid Attack Paths for Regex22...191
Figure 86: Valid Attack Paths for Regex23. ..192
Figure 87: Invalid Attack Paths for Regex23...192
Figure 88: Valid Attack Paths for Regex24. ..193
Figure 89: Invalid Attack Paths for Regex24...193
Figure 90: Valid Attack Paths for Regex25. ..194
Figure 91: Invalid Attack Paths for Regex25...194
Figure 92: Valid Attack Paths for Regex26. ..195
Figure 93: Invalid Attack Paths for Regex26...195
Figure 94: Valid Attack Paths for Regex27. ..196
Figure 95: Invalid Attack Paths for Regex27...196
Figure 96: Valid Attack Paths for Regex28. ..197
Figure 97: Invalid Attack Paths for Regex28...197

ix

Figure 98: Valid Attack Paths for Regex29. ..198
Figure 99: Invalid Attack Paths for Regex29...198
Figure 100: Valid Attack Paths for Regex30. ..199
Figure 101: Validation Study Likert Scale ...200

 1

1.0 Introduction

Adding security late in the software development process, sometimes only after an

actual penetration by an attacker, is a common practice in the industry setting. However,

adding security to even a partially-completed software application is an insufficient means

for securing against threats [20]. If many changes to a partially completed system are

needed to fortify the code, then developers may need to make significant modifications to

other parts of the system to accommodate the changes. If this is the case, then rewriting

the code from scratch with security in mind may be less expensive in terms of time and effort

and potentially be less error prone. A means of integrating security at the beginning of the

software process is needed to overcome the consequences of starting security when it is too

late. Incorporating a feasible method of security can help prevent weak security that leads

to drastic consequences, such as endangering the integrity and prosperity of ecommerce

and compromising the privacy of electronically-stored health information.

Organizations cannot completely rely on firewalls and cryptography that do not prevent

all security attacks. Cryptography has provided many safe opportunities for the computing

environment, but it is not a panacea. Fred Schneider’s [16] analysis of CERT advisories

shows that the majority of security vulnerabilities occur from “buggy code” and that applying

cryptography would have prevented less than 15% of the vulnerabilities. Spafford contends

that “using encryption on the Internet is the equivalent of arranging an armored car to deliver

credit card information from someone living in a cardboard box to someone living on a park

bench.” [9] Thus, software engineering techniques should provide practical techniques for

building secure software.

Viega and McGraw [20] assert that software engineers should begin early, know the

security threats, design for security, and subject system design to thorough objective risk

analyses and testing. The abundance of vulnerabilities that exist today can present a

 2

challenge for security experts to expose threats in a system. The efficacy of the security

process depends on how early a vulnerability is found in the software process and removed.

The longer any defect remains in a product the more expensive it is to fix it in terms of time,

resources and money [4] , including security vulnerabilities. It is therefore essential to have

a dependable means of identifying vulnerabilities in a software system early enough so that

security can be built into the application from the start.

Most security attacks exploit known vulnerabilities in software systems, and thus old

vulnerabilities cannot be ignored when building a new application [2]. This suggests that

any system that has a vendor’s application with a known vulnerability is highly susceptible to

attack and implies that any product with the same functionalities as the vulnerable

application is at risk by the same attack. Also, identical intrusions have been known to be

repeated years later, suggesting that it is important to secure for even the oldest attacks that

may appear forgotten [2]. Script kiddies, those individuals who execute scripts by written

crackers, are the most likely candidates to execute these types of repeat attacks. Hence,

basic security begins with a thorough knowledge of known attacks and with the examination

of whether these same vulnerabilities can threaten a system under development.

My research objective is to create and validate abstract representations of known attack

paths found in vulnerability databases to facilitate the identification of threats in a software

system. The form of the proposed abstract representations is regular expressions that

represent the components and the sequence of events that occurred in known attacks.

Regular expressions can be used to show how data may flow from one component to

another and represent where system components have accessed a resource in an illegal

way. A matching of the events in the regular expression to a sequence of components in a

system design can help identify potential attack paths for stakeholders of an application. A

knowledge base of the regular expressions will serve as a means of identifying many known

 3

vulnerabilities to decrease the possibility of overlooking and, thus, perpetuating known

vulnerabilities in a system design. Once the vulnerabilities are identified, a risk

management process is needed to determine which vulnerabilities threaten the system the

most. Software engineers can thus know which threats to secure in their code as they begin

to build the system. In this way, security is built into the system at the start of the software

process.

Four vulnerability databases (SecurityFocus1, Help Net Security2, Secunia3, and

SecurityTracker4) were studied for the purpose of collecting and analyzing the descriptions

of previously-discovered vulnerabilities. The descriptions are used to determine the events

that occurred in the attack and the components that were responsible for triggering the

events. A total of 409 vulnerabilities were analyzed, and 53 regular expressions were

produced. An initial twenty of these regular expressions were used in a feasibility study to

test if advanced undergraduate students could map the expressions to the components of a

system design. The results of the feasibility study motivated further study. Three hundred

and fifty two vulnerabilities were additionally studied and 33 more regular expressions were

developed. After the completion of this work, a validation study was conducted with

advanced undergraduate students and 30 of the regular expressions. The results are

discussed in this thesis and suggest that encapsulating known attacks with regular

expressions for the identification of vulnerabilities in system designs may be a viable

approach to finding security vulnerabilities in the design phase.

In this thesis, we examine the efficacy of using regular expressions to identify security

vulnerabilities in software designs. The remainder of this thesis is organized as follows.

Chapter 2 provides a background of related work on vulnerability identification. Chapter 3

1 http://www.securityfocus.com
2 http://net-security.org/
3 http://secunia.com/
4 http://www.securitytracker.com/

 4

provides the methodology used to create and apply regular expressions. Chapter 4

presents the means in which vulnerabilities were collected. Chapter 5 shows the results of

vulnerability collection. Chapter 6 presents the methodology and results of a feasibility

study. Chapter 7 discusses the methodology and results of the validation study. Lastly,

Chapter 8 presents a summary and gives ideas for future work.

 5

2.0 Background

This chapter provides information on how vulnerabilities can be represented, how

security can be a collaborative effort, where security can be integrated with the software

process, and how risk management can be used to manage the assessment and

implementation of security.

2.1 Vulnerability Representation

Once a vulnerability is found, it should be documented in a way that others can

understand. If documented well, a person who did not find the vulnerability should be able

to read the description and find the same vulnerability, if it exists, in their own system.

Documenting vulnerabilities to find the same vulnerability in the same context is useful, but

does not provide a scaleable approach for the many vulnerabilities among the different

systems of today. If a vulnerability or attack can be represented abstractly to show a

vulnerability in a different type of system or even a slightly different form, then the

documentation becomes applicable to providing security in the general sense.

In 1975, Carlstedt et al. were perhaps the first researchers to generalize what they called

“protection errors.” [6] In their discussion, they made abstract representations of objects in

the system. For example, any object such as memory, files, or variables was classified as

an abstract cell that holds information. They excluded as much information about an error

as possible while still instantiating it for specific objects in the system they assessed. Their

abstractions are termed error-patterns and are represented by an enumerated list of the

events that transpired among objects in the system. A raw pattern is an error pattern that

describes a detailed error in a specific operating system as shown in the following example.

1. Load is called by Snap Dump to return the core address of IEAQADOA.

2. It is critical to Snap Dump that the module loaded is the actual system module

IEAQADOA.

 6

3. The identity of the module loaded is not verified by either Load or Snap Dump.

This raw pattern can be abstracted to higher-level components so it can be applied to a

wider class of operating systems. The error pattern in its abstracted form looks like the

following:

1. Supervisor procedure A is called by supervisor procedure B to return the core

address of a procedure or data element C having name N.

2. It is critical to B that C is the bona fide system element named N.

3. The identity of C is not verified by either A or B. [5]

In the studies of Carlstedt et al., error patterns were applied to operating systems such

as OS/360, Multics, TENEX and Exec-8. The authors did not include any numerical or

statistical results from their study, but they qualitatively described searches that included the

aid of error patters as effectively helping identify many more errors in a system when

compared with blind searches that did not include the use of error patterns. In one case,

two of the same errors were textually adjacent to each other. The first error was found, but

the second was not found until weeks or months after the discovery using the error pattern

that described the error. This implies that although a person is able to identify an error they

may not be able to find other instances even if the errors are in the same vicinity as the

found one.

In 1999, Schneier [17] developed the idea of attack trees to model different attack

scenarios on the same target resource. An attack tree is a tree of nodes that represent

events that an attacker can perform to achieve an attack; an example of an attack tree

appears in Figure 1.

Figure 1: Get File Attack Tree. An attack tree that demonstrates possible scenarios for
obtaining a file on a computer.

Each root node of the attack tree represents a goal of the attacker, and each leaf is a

possible starting point of an attack. Each node under the root node is either an AND node

or an OR node. AND nodes are those nodes that represent multiple goals an attack must

accomplish to achieve the next goal. OR nodes are those nodes that an attacker can

accomplish independently to reach his/her next goal. AND and OR nodes are distinguished

by the insertion of “AND” directly below the parent that has at least two children nodes that

represent events that must both be achieved to progress forward in the attack. All other

nodes (except the root node) are OR nodes by default. Like the error patterns in the

approach by Carlstedt et al. [6], attack trees can be applied to other systems where the

 7

 8

ed for the identification of vulnerable components in a system. Unlike Carlstedt et

al.

or designer to understand how the

pat

 to any organization’s

architecture. Designers and analysts read the generic description and look for instances

where they can apply the attack profile. Once the architecture is identified as potentially

vulnerable, the attack patterns are used to demonstrate the attack scenarios associated with

that architecture. The idea of using generic profiles facilitates the process of applying attack

trees to different architectures, which aids in the extendibility and thus usefulness of attack

trees. An attack tree alone does not provide the additional information that an attack

profile and attack pattern contain and thus the approach set by Moore et al. may aid in the

identification and understanding of an attack scenario.

In 2001, McDermott developed another graph-based approach to security called attack

nets. Attack nets are based on Petri nets, Schneier’s [17] attack trees. Attack nets are

same attack scenarios are possible. Therefore, attack trees are also reusable patterns that

can be us

[6] who used text-based descriptions, Schneier [17] uses a graph-based approach that

shows an attack from the point of view of the attacker whereas the Carlstedt et al. approach

uses a series of events in the machine instructions that results in an error.

Moore et al. [15] extend the idea of attack trees by creating attack patterns and attack

profiles. Like attack trees, attack patterns contain the overall goal of the attack and the

steps for achieving the attack. A list of pre-conditions for the attacker to attack the system is

provided as well as the post-conditions, which are the results of a successful attack. Moore

et al. [15] propose that an attack profile be associated with attack patterns. Attack profiles

describe a common reference model for an analyst

tern can be applied to any architecture related to the vulnerability. Also included in the

profile are a set of variants, a set of attack patterns, and a glossary of defined terms and

phrases.

An attack profile should be generic enough to be applicable

 9

similar to attack trees in that they can have an attack tree structure and show different attack

scenarios in a system; see Figure 2 for an example of an attack net.

Figure 2: Get File Attack Net. An attack net that demonstrates possible scenarios for

obtaining a file on a computer. The tokens at the leaves of the attack tree structure represent
the progress of the attack.

Petri nets have different symbols/semantics than attack trees. Attack nets have places that

are analogous to nodes in an attack tree. Places are connected by transitions which

represent the actions of the attacker. Additionally, arcs are used to connect transitions to

places. A token is used to represent the attacker’s progress in the attack net as it moves

from place to place via transitions. Like attack trees, attack nets are reusable for different

systems with the use of generic places and transitions. However, the use of a token gives

 10

ot show. Petri nets need not take the form of an attack tree, but may

als

and their goal. The

atta

rompted

with the standard security requirements are associated with each stereotype. This

an advantage over attack trees because the sequence of events is shown via the token.

Attack trees do not represent the sequence of events between multiple nodes at the same

level of the attack tree. Also, attack nets can model inputs or commands at the transitions

that attack trees cann

o be cyclic to show an attack that can repeat the same sequences of actions. For

example, a cyclic Petri net may show an attack logging on to different machines on the

same network [19].

The supplementary information about the attack can be included in an accompanying

document to convey a detailed description of the attack that helps users identify what

scenarios are possible in their system. Both the attack tree and attack net scenarios show

the view point of an attacker by indicating the attacker’s location

cker’s goal is not explicit in the text-based model used by Carlstedt et al. [6] and is thus

an advantage of these graph-based approaches. Furthermore, a graph-based approach is

likely to better illustrate an attack than a list of actions in a text format.

Another graphical approach is an extension of UML, UMLsec, [12] that was developed to

facilitate the identification of security vulnerabilities in application designs. Stereotypes

along with tagged values and constraints are used to encapsulate standardized security

requirements in UML diagrams. Software engineers who design their systems with UMLsec

can use pre-defined threat scenarios associated with the stereotypes to learn what attacks

are possible in their system and what measures need to be taken to prevent them. For

example, a client and sever communication can be represented with the <<Internet>>

stereotype as opposed to the <<encrypted>> or <<LAN>> stereotype. The <<Internet>>

stereotype has an associated threat profile that suggests an attacker can perform a delete,

read, or insert in the communication. With this knowledge, software engineers are p

 11

tech

f, however, the filename

use

nique requires software engineers to know UML, which is a beneficial skill for

applications that have static requirements at the beginning of the software process.

Bishop and Dilger [3] experiment with an automated pattern-directed search on source

code of C applications to identify race conditions on UNIX operating systems. The type of

race condition studied is termed time-of-check-to-time-of-use (TOCTTOU) which describes a

condition where a system first checks a characteristic of an object (e.g. a file) and then

performs a second event that depends on the characteristic of the first event. The specific

class of TOCTTOU analyzed is the binding flaw where identifiers of an object are assumed

to be true by the second event that carries out an action. The two types of identifiers for

files in the UNIX operating system are path names and file descriptors. Path names are a

path of pointers that start from the file system root and traverse through subdirectories down

to the file. File descriptors are pointers that point to the memory address of the file without

having to traverse the file system. File descriptors are bound to a file object making the

naming scheme a more direct approach to identifying a file. An example of a TOCTTOU

flaw can be demonstrated in a setuid to root program that first uses a file system call to

check the access rights of the user before opening it. If the access rights allow the process

to open it, then a second file system opens the file as it should. I

d to identify the file changes between the first and second file system calls, then the

program can open a file in which the user does not have privileges.

Bishop and Dilger [3] applied an analyzer, written in perl, to scan the code in the

sendmail version 8.6.10 application for the program intervals of two file system calls to the

same file. The programming condition for the race condition depends on how the file was

referred. If both of the file system calls refer to the file by its path name, then an attacker

can change the pointers in the construction of the pathname and thus alter the binding of the

name to the file. If both file system calls refer to the file using file descriptors, then the race

 12

s for each of the five pairs of file system calls permitted the race condition. One of

the

tha

ding flaws. IDS

rep

condition will not be possible. If only one of the file system calls uses the path name to refer

to the file, then the race condition is possible. A human analyzer was used to determine if

the programming condition was present for the flagged pairs of file system calls. Then, the

environmental condition was manually inspected to determine if a race condition was

possible for the file system calls. Their findings show that the analyzer found 24

programming intervals in the sendmail application. Only five of the 24 pairs met the

programming condition that was susceptible to the race condition. The environmental

condition

 five pairs was a previously undiscovered flaw and was made known to the program

vendor.

Bishop and Dilger [3] show that a pattern-directed approach for identifying vulnerabilities

can be applied directly to source code. Their study suggests that different entities can be

searched in a system and determined if their relationship can cause a vulnerability. Unlike

Carlstedt et al. that set out to find many error types for an operating system, only a specific

type of vulnerability was sought in the source of C programs. The specificity of the source

code analyzer is also a differentiating factor in that attack trees and attack nets can be used

to show different scenarios of an attack. This is the first approach mentioned in this thesis

t attempts for an automated identification process. However, manual analyses are still

required to determine if the cases returned by the analyzer are true positives or not.

The goal of intrusion detection systems (IDS) is to model the behavior of a

completed/operational system during an attack [14]. This is unlike the objective of attack

nets and attack trees, which is to show different scenarios of attacks in a system. Also, IDS

cannot show access control violations such as those in TOCTTOU bin

resent the last line of defense against attacks since all development efforts have

completed and the product is must be operational to be used with an IDS.

 13

eeds to be generic for the IDS to be system-independent. Lastly,

The

t can be achieved in the CPA. Upon a match

in a

 their IDS does have the

Kumar and Spafford [13] propose a generic pattern-matching technique as a method for

the identification of attacks with IDSs. As with Carlstedt et al. [6], Moore et al. [15], Schneier

[17], and McDermott [14], the IDS uses abstract representations of attacks to identify

specific attacks in different contexts. There are three levels of abstractions used:

Information layer, Signature layer and Matching Engine. The Information Layer is

comprised of the raw data used in the analysis. This can either be in the form of an audit

trail or network packet. The Signature Layer is a means of representing attacks by their

characteristics, which n

 Matching Engine is used to match patterns of actions of known attacks to the data in

the Information Layer.

The signatures of attacks are a set of strings that are matched by a Colored Petri

Automata (CPA). The CPA is based on a Colored Petri net [10] that uses colored tokens for

an advanced knowledge of the path the token took from the start state to the end state. In

the approach by Kumar and Spafford [13], tokens contained a local set of variables that

were written to as the token progressed along the path. All strings that are defined in the

Signature Layer are defined by scenarios tha

n audit trail or network analysis, the IDS can signal an alarm to a system administrator

that an attack is progressing in their system.

Kumar and Spafford [13] acknowledge that their approach has limitations. The IDS

should be able to process large numbers of entries in the audit trail records or in network

packet transactions. The amount of data to be analyzed and the number of strings to be

matched against can be a time consuming process. If too much time is required to analyze

the ongoing processes of the system, then the IDS may not be able to identify an attack

before the attack has already exploited the system. However,

 14

adv

akeholder is not required to inspect a component in the design to determine

process for each remaining component in the

sys

antage that it is portable to different systems to detect the same errors, which follows the

trend of generic identification of the previously mentioned efforts.

The process of matching abstract representations to the instances in a system can be a

fatiguing process especially in large systems. Manually searching for errors in code via

error types is possible, but depends on the motivation of the individual searching for the

error. An automated process of searching is possible, but in the case of the TOCTTOU

binding flaws, the search is specific to only one type of error. In the case of the IDS

searches, many attacks can be identified, but these type of attacks are not data flow or

access control oriented and are used only one the software product is released by the

vendor. Applying attack trees to a system requires that either the design or code to be in

place, but does not offer a facilitated process of matching the scenarios to the system. Also,

attack nets were meant to be created by a brainstorming process when the design or doe of

a system is analyzed. This thesis approach attempts to aid the matching process of abstract

representations to design by explicitly indicating where in the design a vulnerability may

exist. Thus, a st

if the attack is possible and repeat the same

tem design.

2.2 Security Collaboration for non-experts

The number of vulnerabilities in a new system may be very large and the effort to find

these vulnerabilities time consuming, making the security process difficult. The task of

identifying a complete set of all of an organization’s system vulnerabilities is infeasible by

one or a few security engineers. Furthermore, security engineers, especially if contracted,

are not likely to know what digital assets are the most sensitive and should have the most

precautions to assure secrecy. Thus, a security team may offer the most plausible way to

answer these deficits. The Operationally Critical Threat, Asset, and Vulnerability Evaluation

 15

ossible, and what security strategy should be

tak

ext-based attack profiles in which non-experts could read comprehensive

des

(OCTAVE) Method [1] created at the Software Engineering Institute at Carnegie Mellon

University is a method that encourages an interdisciplinary team of business, information

technology, partners, contractors, service providers and end users to collaborate on the

current state of the security, what risks are p

en to secure their system. The broad view of security enables the risk assessment and

risk management to be effective as possible.

Without a formalized notation of attacks that is readable to those with no security

experience or those unfamiliar to a vulnerability, security is limited to experts that may or

may not be available. The practice of abstracting security vulnerabilities and attacks to high-

level representations, such as was done by Carlstedt et al. [6], Schneier [17], Moore et al.

[15], McDermott [14], Steffan and Schumacher [19], not only makes the vulnerability or

attack portable to different contexts, but provides a means of enabling individuals without

thorough security backgrounds to perform security analyses. This thesis also suggests a

means for non-experts in the security field to contribute to the security process. The text-

based vulnerabilities used in Carlstedt et al. [6] approach are at the level where non-experts

can read the vulnerability and look for the vulnerability in the operating system code.

However, Carlstedt et al. mention that the workers that perform the analyses must at least

be familiar with the system to perform the pattern-directed approach. Nonetheless, in his

observations Carlstedt [6] noted individuals without any previous experience with protection

evaluation could find errors with the use of error patterns. Furthermore, Moore et al. [15]

produced t

criptions of attacks and apply them to their architecture for the identification of attack

scenarios.

The graph-based approaches may offer insight on an attack and thus may be a more

effective method of identifying attacks. Schneier [17] comments that the attack tree is a

 16

s a Red Hat Linux attack

sce

es were adequate to identify precisely

wh

difficult process that requires practice. However, once the attack tree is made, non-experts

can apply the attack trees to their system for assessing attack scenarios. However, pictures

alone cannot describe an attack. The information provided by transitions and tokens in

attack nets may still be inadequate to describe an attack. Steffan and Schumacher [19] use

an approach they term ATicki, which uses a WikiWikiWeb [7] to share information about

attacks between security experts and non-experts. Conditions and transitions are

hyperlinked to a WikiPage that contain background information, code samples and

discussion threads about the attack. Thus, a non-expert can quickly learn the details of an

attack by reading about what others have entered in the web pages. To further clarify an

attack, a WikiPage specific to the context of the attack is also provided. This page

describes the context of the attack and can also reference other contexts that serve as the

base context of the attack. For example, if an attack net describe

nario, then the context page may reference a corresponding Linux WikiWikiWeb

scenario since Red Hat Linux inherits its functionality from Linux.

The authors used a ATiki describing PHP vulnerabilities to test the efficacy of sharing

knowledge between experts and non-experts. Vulnerabilities were analyzed in

SecurityFocus and other security portals to initiate the descriptions of PHP systems and

their vulnerabilities. Their analyses were met with ambiguities and questions that were

noted on the WikiPages. These gaps were filled in by the users of the WikiPages and

eventually the descriptions of the PHP vulnerabiliti

at occurred in an attack. The time required to obtain the accurate descriptions and the

users of the system were not specified in the study.

This thesis’ approach attempts to allow non-experts of software security to contribute to

the identification of attacks in system designs. A non-expert can use a regular expression to

match the sequence of events explicitly represented by architectural components to a

 17

ue. Furthermore, code

ly known to non-experts and abstract

sig

by the risk

ma

sequence of components in a system design. The abstract representations of events

conceal the low-level details of a component that may be confusing to non-experts. A

successful match of a regular expression to a sequence of components in the system

design by a non-expert suggests an attack path can be found without prior knowledge of

that attack. The attack profile that accompanies the regular expression aids the non-expert

(or expert) to understand the context and characteristics of the attack. The thesis approach

is similar to the use of attack profiles and attack patterns by Moore et al. [15], but a non-

expert may not be able to map the text in the attack profile to the components in the system

architecture. Also, the approach in this thesis and the approach by Moore et al. [15] have

more opportunity for non-experts to identify places of attack in a system using text-based

descriptions to explain the attack. The approaches just mentioned are dissimilar to IDSs

and code scanners in that collaboration not a part of the techniq

scanners use low-level descriptions that are not readi

natures of IDSs are only useful when the system is under attack.

2.3 Integrating Security into the Software Process

Security practices can be injected throughout phases of the software process. Some

practices are limited to a particular phase where others can be applied to multiple phases.

Applying security techniques to applications under development is best done early in the

software process. Starting in the design phase permits security to be designed into the

application. Knowing what threats are possible to a system allows for a risk management to

guide well-informed decisions on how to approach potential attacks. Software developers

can start coding security fortifications based on the strategies provided

nagement assessment at the beginning of the coding cycle. This section provides a

description of different techniques for applying security in the software process.

 18

ized security

req

ck profiles suggest where the organization’s

arc

attacks are then tested against source code to determine if the scenario is valid. If the tests

UMLsec is one example of a security approach that encourages security to begin in the

design phase. UMLsec designers can identify possible threat scenarios in their UML

diagrams and warn coders of possible attacks with the use of standard

uirements that designate what security measures should be implemented in their code.

UMLsec is intended for security-critical systems and is thus best suited for systems with

static requirements that are known at the beginning of the software process.

The idea of attack patterns and attack profiles proposed by Moore et al. [15] is intended

for designers and analysts. Similar to UMLsec, their approach provides a method of

integrating security in the design phase, but the process does not include standardized

security requirements. Instead, the atta

hitecture is subject to attack. Thus, attack patterns can be applied in the design phase,

but can also be applied in any other software phase where there is enough information

exists to apply the graphical attack model.

McDermott’s [14] use of attack nets is intended for penetration testing, which can be

applied to the operation, implementation, and design of a system. The penetration testing

approach McDermott bases his attack nets on is the flaw hypothesis approach [21], an

approach that is commonly used for penetration testing. The six steps that McDermott [14]

recommends for penetration testing using attack nets are: (1) define goals (2) background

study (3) attack net generation (4) hypothesis verification (5) flaw generalization and (6) flaw

elimination. The first step is to determine what will be tested in the system. Secondly,

research on the system and its artifacts is performed to know the characteristics of

architecture. In step 3, the attack nets are used to model hypothetical vulnerabilities and

attacks. This is achieved by a collaborative effort among penetration testers imagining any

attack scenario possible as long as it can be represented by an attack net. The hypothetical

 19

l or similar vulnerability exists. Finally, the attack scenarios undergo risk

ma

 applied in the development stages of the software process, unlike

 more time to implement security before the product is released into

the

indicate the attacks are valid, then a check in the system is performed to determine if an

identica

nagement to determine what vulnerabilities will be addressed and with what priority to fix

them.

The approach of this thesis is to attempt the integration of security as early as possible

in the software process. The approach using regular expressions and system designs offers

the same early start of UMLsec, but does not restrict itself to standardized security

requirements nor UML diagrams. Attack profiles, attack patterns, and attack nets also offer

the same benefit of starting security early. Approaches that start early in the software

process offer security analysts and perhaps non-experts more time to find and fix

vulnerabilities than do code scanners such as the one proposed by Bishop and Dilger [3] or

searching techniques in code as done by Carlstedt et al. [6] Lastly, techniques to find

vulnerabilities that can be

IDSs, enable developers

 hands of customers.

2.4 Risk Management

No computer system is 100% secure [20]. Security vulnerabilities are always present

because they are not found or there are not enough resources (e.g. time, people, expertise)

to secure them. Therefore, security should be implemented through risk management

where each threat is prioritized by its cost to the system. Those threats that are the most

pernicious to the system are secured first [16]. Carlstedt et al. [6] proposed an economical

process to search for the errors in operating systems. Those errors that give the greatest

security relative to the effort required to develop effective search packages for patterns of

these types should be secured first. Schneier [17] proposed a means of identifying which

attack paths should have the highest priority of receiving security implementation. Each

 20

aths identified in the matching process of regular

expressions to sequences of components in the system design according to the probability

and cost associated with the system.

node in the attack tree can be assigned a value that represents the probability of being

exploited, the cost to exploit it, or the cost that results when the node is achieved. Attack

trees can then be prioritized based on the sum of values in the nodes. It may not be

necessary to assign security implementations to the attack trees with the highest values.

The organization can consider the profile of the attackers that are likely to attack their

system. High profile attackers have the potential to attack the most costly attack paths

whereas low profile attackers may not have the knowledge of how to exploit a technical

vulnerability. McDermott [14] also recommends the prioritization of the list of attack

scenarios generated from the brainstorming session in step 4 of his process. Some of the

scenarios may not be as likely in the system and are ranked with low priority to allot more

time for the implementations needed to fortify against more imminent attacks. Finally,

Kumar and Spafford [13] implemented a method of assigning priorities to the signatures of

their IDS. The token associated with each signature can be assigned a thread that runs in

the system and the thread can then be prioritized to match the attacks that pose greater risk

to the system. The approach in this thesis does not explicitly assign probabilities or costs to

attack paths because the integrity, secrecy, and confidentiality of digital assets of all

systems may be vary among the type of system. A risk management team, if available to an

organization, can rank the attack p

 21

3.0 Methodology

In this chapter a background of software security as related to this thesis is provided.

Next, a discussion of the use of regular expressions to represent attack paths is given,

followed by a section that shows how to apply the regular expressions to a system design.

The application of regular expressions to a design is used to expose attack paths that an

attacker can use to exploit a vulnerability. The use of a knowledge base to store regular

expressions to supply a comprehensive means of identifying many different attack paths is

also explained. A scenario of creating and applying regular expressions to system designs

is then given to exemplify the process of identifying vulnerabilities. Finally, a risk

management section describes what an organization should do once the vulnerabilities of a

system design are identified.

3.1 Background

Generally, software systems contain components that access resources (e.g. hard drive,

memory) to do useful work. In this thesis, we use the term component to be any object in

the system that transfers or requests information to any object or resource. We use the term

resource to be any object that contains digital assets of the system, including those

components that act as resources for other components. Preparing an upfront inventory of

what components and resources are in a software system and how they interact is beneficial

for determining possible security vulnerabilities. Additionally, an organization should create

a security policy that includes (1) the identification of what resources are to be protected; (2)

what threats to protect the resources from and; (3) a risk analysis of the threats to permit

vulnerability analysis [8]. The interaction of components and resources should be carefully

managed to prevent unwanted access to the resources in the system. To do this, a formal

description describing the access control rights can be established to describe the restraints

that prevent inappropriate accesses, which may otherwise lead to software exploits. Herein

 22

lays the focus of software security, the enforcement of the rules that enforce a controlled

environment. Any malicious or inadvertent access because a rule in the policy is not

enforced or does not exist is a security breech. [17]

The security policy should not have generic descriptions that describe access control

rights for specific components. Instead, each component and resource in the system should

have an accurate and detailed list of rules stated in the policy that demonstrates how that

object should be accessed. Schneier [17] claims that security should answers questions

such as “Secure from whom?” and “Secure for how long?” In this thesis, the strategy is not

only from whom or for how long, but accounts for the components in the system accessing a

resource. That is, one should not secure the hard drive by asking “How do I protect the hard

drive?” They must instead ask themselves “From what components do I protect the hard

drive?”

Each component may have different usage frequencies, demands, and authorization

levels of a resource thus providing for many different access types. Furthermore, a

component that directly accesses a resource may work with other components,

combinations of different components, or may be used in different environments. All of

these differences may contribute to subtle, undetected accesses that result in security

attacks. Thus, a sequence of component interactions leading to a resource can provide for

an accurate description of what information is sent to or requested from the resource. A

clearly-defined mapping between components and the resources they access in the security

policy may enhance the ability to produce access-control requirements. The requirements

can then be entered in a security requirements document to show software engineers where

to implement security implementations.

 23

3.2 Regular Expressions

In this research, regular expressions are used to model attacks on software systems. A

regular expression is a grammar that determines the set of strings in a language. Software

engineers can match a set of strings that represent attack paths to system designs during

the design phase to identify potential security vulnerabilities. Incorporating vulnerability

analyses in the design phase affords developers to design for security. The security coding

efforts that are required are recognized early in the software process, which offers two

advantages to software developers. First, more time can be allocated to complete the task

of securing a vulnerability. Additionally, the appropriate security tactics can be implemented

in conjunction with the coding phase instead of added on afterwards when efforts to secure

the system may be infeasible.

In this research, regular expressions are used as signatures of previously-successful

attacks by representing the events that transpire at each software component involved in the

path chosen by the attacker. Each regular expression begins with a “start” event,

symbolized by the component that was used to initiate the attack. Each major successive

event in the attack is expressed with its associated component and is appended to the string

starting with the start component. Finally, the resource the attacker maliciously accessed

terminates the string of components to complete the illustration of the attack path. For

example, the regular expression below represents a user running a process on a CPU.

(User)(Server)(CPU)

1. A User (the start component) can make an excessive number of requests;

2. The Server (resource) accepts the requests; and finally

3. A process/thread runs on the CPU (resource).

The third event represents that the CPU can be consumed by the excessive number of

requests by a malicious user. The user may have the required access privileges to make

 24

requests, but the server should not be allowed to create the large numbers of

threads/processes that run on the CPU. The regular expression only provides a means for

searching for specified vulnerable sequences of components in a system design. It does

not clearly inform a software engineer how the attack will occur, but shows that the potential

for a vulnerability exists and should be handled appropriately. Thus, a description of the

attack, or attack profile as used by Moore et al. [15] to elaborate abstract attack patterns can

be used in conjunction with the regular expression to accurately describe the events

occurring at each component in the attack.

The security requirements doctrine is a document that is created by requirements

engineers that contains the rules of how data flows between components. The

requirements should be checked against the security policy of an organization that

describes which digital assets of a system are to be protected. If the security requirements

comply with the descriptions in the security policy, then developers can know what

implementations are needed to secure their code. We propose that regular expressions can

be used to illuminate the data flow and access-control scenarios that lead to security

exploits by showing known instances of where they occur in a system design.

As mentioned, access control is not limited to a binary setting that permits or denies

access to a component/resource. Instead, access control is viewed as everything in-

between and including the binary permissions. In the regular expression given above, there

is the possibility of a malicious attacker sending excessive number of requests to a web

server. The web server can potentially consume the resources of the CPU, causing a

denial-of-service. A security breech that results from an access control violation occurs

between the client and the server because the security policy states that the server should

restrict the number of requests from a client in a given time increment. Also, the server

needs to restrict its access to the CPU as to allow other processes and threads to have a

 25

chance to perform their duties. Another example is that a malicious client could send an

excessive amount of data to a web server in a buffer overflow attack. Thus, the access-

control violation is that too much data was written to the memory on the server. In this

scenario, access rights cannot be simply turned off or on because there is no way to

determine the nature of the client. Thus, observing how data may be un-sanitized in the

component transfer can help indicate a noncompliance with the security policy.

There are four regular expression operators used in this thesis, and these are listed in

Table 1: Regular Expression Operators. Four regular expression operators were used to
symbolize events in an attack path.

Operator Description
Kleene closure (*) An event may occur zero or more times.
+ The event to the left or right of the operator

will occur, but not both.
+ (superscript) The event occurs at least once.
? The event occurs zero times or once.

Regular expression operators can be used to further clarify the characteristics of an event.

Each of these four operators will be explained by example in this section. In the earlier

example there existed no regular expression operators associated with the events. The

absence of regular expression operators implies that each event must occur once and only

once for a successful attack. Thus, the previous example can be clarified by the use of

operators:

(User+)(Server+)(CPU+).

The regular expression now suggests that the User must make at least one request,

followed by at least one acceptance of the request by the Server, followed by at least one

process/thread from the malicous user occupying some number of CPU cycles to cause a

denial-of-service. It is difficult to know in advance exactly how many requests are required

to perform the attack and hence the regular expression is intentionally ambiguous about

how many requests need to be submitted to the Server.

 26

The Kleene closure can indicate where an event may not be required. The same regular

expression can be extended to look like

(User+)(Server+)(CPU+)(HardDrive*).

A malicous User submits at least one request, followed by the Server accepting at least

one request, followed by the CPU running at least one process/thread, followed by the

threads making zero or more disk writes. It is possible that each thread can write large

amounts of information to the disk and potentially consume the hard drive thus causing a

denial-of-service. This event may or may not occur and is thus characterized with the

Kleene closure.

Regular expressions can also make use of the ? operator. In this example,

(User)(CommandLineArgumentEntry)(ApplicationServer?)(Application)

(CommandLineArgumentBufferWrite)(Buffer),

a User works on an application, and enters an excessively long command line argument,

which is read by an Application, which may or may not be on server, followed by writing

the command line argument, followed by the data overflowing the buffer. This ? operator

allows the regular expression to represent that a standalone or sever-based environment is

susceptible to the same attack.

Lastly, the + operator can used to show that either the event to left or to the right of the

operator occurs, but not both. In this example,

(User) (Variable + Filename + Header)(HTTPServer)(PostMethod)

(BufferWrite)(Buffer),

a User interacts with a web server, makes a POST request with either a long Variable or

Filename or Header, followed by the HTTPServer accepting the request, followed by the

PostMethod processing the request, followed by the Variable or Filename or Header

 27

written into a buffer, followed by the buffer overflowing. Any of the Variable, Filename,

or Header can be used to cause a buffer overflow. Only one of these events is needed to

exploit a small buffer on the vulnerable server.

The idea of expressing attacks with regular expressions includes the ability of portraying

the same attack in different environments [11]. The components represented by the regular

expressions are abstracted and expressed as generically as possible to accomplish a

flexible usage in different systems. For example, a denial-of-service attack may occur when

a client repeatedly makes a request to a web server. The regular expression for the attack

can be represented as

(Client+)(Server+)(LogFile+)(HardDrive+),

which describes a series of Client requests, followed by a series of Server actions,

followed by a series of log updates to the LogFile, followed by a series of disk writes to the

HardDrive. The access log records an entry for each request and if enough requests are

made, then the hard drive is consumed by the access log file. The same vulnerability may

occur in a database, FTP, or audit server environment. Therefore, the regular expression is

generic enough to represent the database server with Server. Also, the same attack may

occur if an error log file becomes large, and thus the event, LogFile, is generic enough to

represent either access log or error log.

In general, regular expressions are also intended to be program language independent

so that coding vulnerabilities can be found regardless of the implementation. However,

regular expressions such as

(Class)(Subclass)(OverriddenSecuredMethods)(Application)

are specific to low-level software designs where classes and methods are specified. The

 28

attack that is captured by this expression is that a Class is extended to form a Subclass.

The Subclass overrides secured methods of the parent Class to form its own

OverriddenSecuredMethods. If the OverriddenSecuredMethods are not secured,

then a vulnerability may exist in Application. This representation is not overwhelmingly

flexible in that it could only apply to programming languages that allow a parent class to be

extended, such as Java or C++. This regular expression was the only code level

vulnerability extracted from the analyses performed for this study and, thus, the focus of this

thesis is at higher/system level vulnerabilities.

A security engineer should always anticipate that an attacker will either defeat or bypass

a defense. Thus, a security measure should be implemented at each possible component in

an attack path leading toward the target resource. A regular expression can indicate the

multiple opportunities to prevent an exploit to encourage layered defenses, a best practice

technique [11]. The regular expression,

(User+)(HTTPServer+)(GetRequestRoutine+)(Buffer + CPU)

describes an attack where a User submits at least one large GET request, followed by the

HTTPServer accepting the request at least one request, followed by the

GetRequestRoutine processing at least one request and writing it to a Buffer causing a

buffer overflow. Also, if there are many of these large requests, then the CPU must process

each one, which could consume the CPU cycles on the machine in which the server resides

and cause a denial-of-service. The denial-of-service caused by the consumption of CPU

cycles can be avoided if an implementation is provided to halt the HTTPServer from

accepting a flood of requests. If this implementation fails, then a secondary defense could

be a method that prevents the Server from accepting an unreasonably large GET request.

 29

In this way, the two defenses that secure the CPU from wasting cycles in a denial-of-service

attack are restricting the number of requests and managing the size of the requests.

3.3 The System Design

A suitable format for the application of regular expressions is a system design. Designs

show the components that are involved in the application and how they interact with one

another. System-level designs typically have components connected by arrows that indicate

data flow, as shown in Figure 3.

Figure 3: A Data Flow Diagram. A data flow diagram derived from Howard and LeBlanc [11]
can show the flow of data between components, which can be captured by regular
expressions.

 30

 31

Dat

fits best with a low-level design, such as a UML diagram. Regardless of high-level or low-

level, regular expressions are constructed to literally match with sequences of components

in the design. Thus, a security analyst physically maps the regular expressions to sections

of the design. A match between the regular expression and string of components signifies a

potential vulnerability. For example, the regular expression

+ + + +

on of old

m recurring. Also, if the newest attacks are stored in the knowledge

base, then future appli

a flow diagrams were chosen for this research because most of the regular expressions

represent high-level components involving data transfer. Also, high-level designs are not

impacted as severely as low-level designs upon a change in requirements, which is

common in the software life cycle. However, not all regular expressions are limited to

system designs. For instance, the regular expression,

(Class)(Subclass)(OverriddenSecuredMethods)(Application),

(Client)(Server)(LogFile)(HardDrive)

can be mapped to Client 4 (component #1) making a request to the , Authentication

Server (component # 2), which logs the request to the Access Log (component # 6),

which are stored on the Hard Drive (component # 7). The sequence of components can

be represented as “1-2-6-7” which shows a possible attack path in the system design.

3.4 Knowledge Base of Regular Expressions

No application should be a victim of the “oldest trick in the book.” Therefore, an

organization should have a compilation of regular expressions and their corresponding

profiles in a knowledge base. A knowledge base can be used to aid in the preventi

and forgotten attacks fro

cations may not suffer from these attacks either. Retaining the

profiles and possibly methods of securing attacks in a knowledge base achieves the

problem of losing tacit knowledge in an organization. This knowledge is especially useful in

 32

AVE Method [1] encourages all stakeholders in a software project to be

inv lve

enting security vulnerabilities for the diverse

team is regular expressions. Regular expressions offer a high-level, human-readable model

that abstracts operational and low-level detail to achieve a common view of the system

among stakeholders. Using a structured format, stakeholders can collaborate on the

identification of vulnerabilities in a system design. Furthermore, mapping the events that

cause an attack to the components that are responsible for triggering the events narrows the

scope of a search for the attack in a broad system design. Thus, stakeholders (technical or

non-technical) can participate in the matching of a given set of attack paths, represented by

regular expressions, to the sequence of components and resources in the system design. A

team effort of exposing threats to a system can show different views of an attack and how

the case where a security expert has been temporarily contracted for an organization. The

knowledge base thus serves as the collection of regular expressions that are used to

examine system designs for potential vulnerabilities.

3.5 Methodology Scenario – Securing Applications from Enumerated Threats (SAFET)

The OCT

o d with the assessment of which threats are possible in the system. Customers,

marketers, and information technology engineers each have a different perception of how

the system will achieve its goals based on their background knowledge of their organization,

customer’s demands, and development strategies. For example, customers and business

workers may have an advanced knowledge of the tendencies and limitations of users.

Additionally, software engineers may have an advanced lower-level view of the system that

grasps the intricacies of component functionalities. Bridging these specialized views by

working together can help elicit the desired behaviors of the system and illuminate its

potential threats.

Thus, a potentially useful format for repres

 33

nalysis in an organization’s design for known

thre

osed

by this research provides a means of identifying security vulnerabilities to provide enough

basic security to aid non-experts with important security advice so an application can be

released with some confidence of withstanding attacks.

3.6 Risk Management

Many security vulnerabilities are possible in large complex systems, and it is infeasible

to secure each one. A risk management team is necessary to prioritize the attack paths

found based on how much each threatens the system. The security engineer should be a

member of the risk management team is made of members. The vulnerabilities with the

most risk are then assigned to software engineers so that security measures can be built

into the system from the start. Each component should be analyzed for potential threats and

then a numeric value of the risk involved should be calculated using the following Equation 1

 isk = (probability) * (loss) (1)

they should be addressed. The security a

ats is given the reference Security Analysis for Existing Threats (SAFET).

A security engineer is beneficial for this approach because of their expert knowledge in

attacks in software systems. They can help identify subtle attacks that may be overlooked

by non-experts or determine if an attack path found by stakeholders is valid or invalid.

However, the role of security engineer is not necessary if software engineers have enough

expert knowledge about security. Also, a security engineer may not be available to a

software team and thus they must make do with what they have. The approach prop

[5].

R

In Equation 1, the risk of the attack is calculated by multiplying the probability of the attack

occurring by a numeric value on what the organization stands to lose if the attack occurs.

The risk assessment for each vulnerability should also include the risk of not meeting the

project goals such as functionality, usability, efficiency, time-to-market because of the

 34

f the software system and thus identify the highest ranking

thre

incorporation of security implementations in the application [20]. This equation allows risk

analysts to rank the threats o

ats as those that should be secured first. This tactic is often used because it is

infeasible to address all security threats and so the most impending threats should be

secured before addressing less costly threats.

 35

4.0 Vulnerability Collection Methodology

Publicly-known vulnerabilities were collected from the following four full-disclosure

vulnerability databases: SecurityFocus owned by Symantec, Help Net Security

independently owned by Help Net Security, Secunia, an IT security company, and

SecurityTracker owned by SecurityGlobal.net LLC. The SecurityFocus database was the

most preferred database because of its ability to search for security attacks and the

organization in which it used to display the attacks. An analysis was made of the

“discussion” and “exploit” pages for each attack entry in the database (see Figure 4).

Figure 4: SecurityFocus Example. A page from SecurityFocus that shows the different pages about

urpose of making a knowledge

base of surveyed attacks. Each attack was investigated in the three other named

a GET request vulnerability.

These pages usually contained the information needed to analyze the attack, but

occasionally there was a script available to analyze the attack, too. The date, title, and

SecurityFocus ID (see Appendix I) were recorded for the p

 36

vuln

sults of the effort inconsistent and thus hinder the ability to make accurate conclusions

about the from the

four vulnerability database ing information.

 the attack was marked as not having enough information. At

 the study I had no experience with security vulnerabilities. For each

vul

milar to previously

liste

d

erability databases to confirm the accuracy and ensure the completeness of the attack

information before continuing.

At the beginning of the vulnerability database analyses, I attempted to determine exactly

how the attack occurred by performing searches on the Internet. The searching yielded hits

that included informal web pages and message threads. The process of searching and

studying the attacks could require many hours and sometimes there was not any additional

information that proved useful. Furthermore, some searches did not yield any hits making

the re

study. Therefore, information about the attacks was exclusively obtained

s to provide a consistent means of gather

If enough information was available to understand the attack, then a regular expression

was generated. Otherwise,

the beginning of

nerability I had to research the terms and descriptions that were included in the attack.

For example, I researched how cross-site scripting vulnerabilities occurred when I first

encountered a cross-site scripting attack. When I next encountered a cross-site scripting

error I was more likely to know how the attack occurred. However, some cross-site scripting

errors had variations and required further study. The first week of the analyses resulted in

understanding approximately ten vulnerabilities. By the end of the study, I could anticipate

how an attack occurred before completely reading the description of the attack in the

vulnerability database. Vulnerabilities that were either repeated or si

d vulnerabilities required less than 10-15 minutes to analyze. Vulnerabilities that were

cryptic or lacked enough information still required approximately a half an hour to study an

examine in the four databases.

 37

he

 in

ut details that were not explicitly stated in the descriptions. Thus, for the

vulnerabilities that I claimed did not have enough information to form regular expressions

may actually be understood by a security expert who could produce a regular expression.

The regular expressions in this thesis are not necessarily the regular expressions that

should be used by an organization, but may provide ideas and motivation for those who

create regular expressions.

The process of producing a regular expression starts with the identification of what

events transpired in the attack. The events are represented by the components in the

software system that triggered the event. Components are then abstracted to a readable

term that can best represent any component of its type. For example, “web server” is

abstracted to Server to represent any server (e.g. database, FTP, audit). The terms are

then placed in parentheses for readability purposes. Some events that could help elaborate

an attack were inserted between the events that are represented by components. For

example, BufferWrite is an event that may occur during a buffer overflow attack and may

be inserted between the process that performed the event and a buffer. Next, the

components are logically arranged in the temporal order of the attack. If an event could be

characterized by any of the regular expression operators (?, +, +, *), then they were applied

to term. A brief attack profile was also made to elaborate the abstract regular expression. A

unique integer ID was then assigned to the regular expression and was entered into the

regular expression knowledge base along with its corresponding attack profile. Such a

knowledge base can be found in chapter 5.

The means of determining if a vulnerability had enough information to describe t

attack was subjective. The ability to understand the attack was based on my experience

computer science. A security expert with excessive experience is more qualified to make

assumptions abo

 38

as compared to the pre-existing regular expressions

and

ld value as represented in regex4. Since these three methods

k

d)(Vari

(Header)(BufferWrite)(B

If the regular expression was too dissimilar to any of those in the knowledge base, then it

was added as a new entry.

The proposed approach of using regular expressio d on two

assumptions. First, all components in the design have not already been created, that is no

third party software that already has the vulnerability se med that

the vulnerabilities will exist with the sequence of compo a security

hat stakeholders use a desig

software process. A high-level design is the minimum r pressions

to be used for a security analysis. A low-level design would work best if the requirements

ning of the softw

The accuracy of the regular expressions is dependen the information

ffered in the vulnerability databases. Each database allows anyone interested in security

 subscribe to their mailing lists to receive the latest security advisories. SecurityFocus,

ecunia and SecurityTracker allow anyone to post security vulnerabilities to their web

Each successive attack examined w

 attack profiles in the knowledge base. If the attack was a repeat, then it was given the

ID of the already existing regular expression. If the attack was similar enough to be included

in a pre-existing regular expression, then the two regular expressions were merged. For

example, a buffer overflow may occur in a POST request from a large hidden variable, a

large filename, or header fie

of overflowing a buffer are similar they were combined into one regular expression to loo

like:

(Use H stMethor)(TTPServer)(Po able + ame +

uffer)

 Filen

4.1 Limitations

ns and designs is base

cured is used. It is presu

nents/resources unless

measure is taken. The second assumption is t n in their

equirement for regular ex

are well known and are static at the begin are process.

t on the precision of

o

to

S

 39

alidity of this study is dependent on the accuracy of those posting the

ecially Se have

been referenced in many research papers and are likely l ation for

security studies.

pages. Thus, the v

vulnerabilities. The vulnerability databases, esp curityFocus (or Bugtraq),

egitimate sources of inform

 40

At the initial stages of th e analys as piloted to determine the

viability of the approach for abstracting the variety of attacks present. At the time the

feasibility study was cond -two vuln ad been analyzed from the

SecurityFocus database; these vulnerabilities were able to be abstracted by five regular

xpressions (see Table 2).

given.

5.0 Vulnerability Collection Results

e research, th is approach w

ucted twenty erabilities h

e

Table 2: The Initial Five Regular Expressions. An initial analysis of 22 vulnerabilities yielded
five regular expressions. The frequency of the vulnerability occurring in the collection is also

Regular Expression Profile Frequency
(Client+)(Server+)(Log+)(Hard Drive+) An attacker can

exceedingly access
server augmenting an
access or error log file
and eventually fill the
hard drive causing the
system to crash.

15 (68.2%)

(User)(Machine)(SyslogFunction)(Log)

the Syslog() function, a
logging function. This

It is possible to corrupt
memory by passing
format strings through

4 (18.2%)

may potentially be
exploited to overwrite
arbitrary locations in
memory with attacker-
specified values

(Client)(HTMLPage)(Server)(Hard Drive) A user may submit an
excessive amount of
data in an HTML page,
thus filling up the hard
drive

1 (4.5%)

(
(GetMethodBufferWrite)(Buffer)
Client)(Server)(GetMethod) Writing an excessively

long Get request into a
small buffer will cause
a buffer overflow

1 (4.5%)

 41

Tab
(Client)(HTMLMessageBoard)(Server)
(

An attacker may

and script code in

board. This code may

browser the user who

1 (4.5%)
le2 (continued)

HTMLMessageBoard)(Client) include hostile HTML

posts to a message

be rendered in eh web

views the message.

 Of this sample, there was evidence that attackers commonly exploited vulnerabilities in the

HTTP GET request routine. A search on “GET request” in the SecurityFocus database

yielded 35 attacks since December 1998. This frequency gives evidence that the

vulnerabilities in SecurityFocus represent a serious threat and are worthy of study.

The most recent attacks at the later stages of the study were obtained by searching for

the latest posts to the SecurityFocus database. Three hundred and fifty-two vulnerabilities

posted between 19 January 2004 and 9 March 2004 were analyzed and reviewed further in

Help Net Security , Secunia , and SecurityTracker. Of these, one was a report and the other

a duplicate of a previous vulnerability in SecurityFocus. Therefore, a total of 409 (including

the 22 vulnerabilities from the initial study and the 35 vulnerabilities from the search in

SecurityFocus) entries in SecurityFocus were studied and of these were 407 confirmed

vulnerabilities5. These vulnerabilities were studied and subjected to the process of regular

expression generation.

One hundred and seventy (41.8%) of the observed vulnerabilities were not used to make

regular expressions. Table 3 sums the type of vulnerabilities excluded from the study.

5 Please note that the results in this study may no longer agree with the data published in the online
databases. These databases periodically update attack profiles and may include more attacks that
had not been revealed at the time of the analysis

 42

ions.
Frequ

Table 3: Classes of Vulnerabilities Not Used. Six classifications of vulnerabilities were not used to
make regular express

Description ency
Lack of information 85 (20.9%)
Specific to vendor 48 (11.7%)
Inapplicable 21 (5.2%)
Networking 14 (3.4%)
Encryption 1 (0.25%)
Hardware 1 (0.25%)

Eighty-five (20.9%) of the vulnerabilities in SecurityFo ptions with sufficient

detail to form regular expressions. Often, Help Net S yTracker

contained almost identical descriptions to each other s suggesting the lack

of detail made available to the public. The absence of detailed information is potentially due

t ndor inform d

market advan cription y given is at a high level,

thus preventing the a m a regular ex gh-level abstractions.

Therefore, using online vulnerability databases m ficient means for

understanding

The scope mmon software application coding problems.

Therefore, networking and encryption vulnerabilities Networking attacks

made up 14 (3.4%) of the attacks found and include cket level, network

protocols, port scan, and switch vulnerabilities. One (0.25%) vulnerability was a hardware

roblem that allowed an attack to obtain secret keys in a memory. There

as also one encryption vulnerability that existed because the encryption was too weak to

ecure user passwords. These classes of attacks are valid and detrimental to software

ystems, but do not fit the software coding schemes that regular expressions represent.

herefore, other techniques such are needed in tandem to support the wide variety of

ulnerabilities.

cus lacked descri

ecurity, Secunia, and Securit

and SecurityFocu

o the ve s not sharing data because the ation could be use

 that is usuall

pressions to hi

ay not be a suf

maliciously or for

tage [18]. Furthermore, the des

bility to for

 attacks.

 of this study was limited to co

 were excluded.

d attacks at the pa

module’s run-time p

w

s

s

T

v

 43

%) of the observed vulnerabilities could not be represented as a

sequence of nents in included: (1) the

failure to secu load users to open files

on a server: (3) passwords kept in plaintext, (4) time eal passwords, and (5)

configuration errors. Regular expressions rely upon on the interaction of multiple

components and thus cannot be used to abstract thes

48 (11.7%) attacks that were specific to vendors and would not likely serve helpful in the

protection of typical or example, these soft XP

specific probl en sc and the

ability for Internet Explorer to capture user keystrokes. Retaining attacks that are specific to

vendors would increase the size of a vulnerability knowledge base and thus decrease the

efficiency of matching the enumerated regular expressions to components in the system

d

A total of cted maining vulnerabilities.

Table 4 shows the regular expressions and associated profiles. These regular expressions

will be classified and explained further in subsequent d

Twenty-one (5.2

events triggered by the compo

re permissions to a file; (2) file up

 a system. These

ability that allowed

d attacks to st

e types of attacks. Lastly, there were

software applications. F included Micro

anning files in certain folders,ems, Norton Antivirus crashing wh

esign.

53 regular expressions were abstra from the 237 re

iscussion.

 44

ression Knowledge Base. Fifty three regular expression were found from
2 rabil
Table 4: Regular Exp
37 vulne ities.

Regular
Expression

ID

Regular Expression Attack Profile Frequency N (%)

Regex1

s

 log

ill

ial-

y

1 (0.25%) (User+)(Server+

e
)(Log+)

(HardDriv +)
A user can
exceedingly access
a server that log
accesses to the
hard drive. If
permitted, the
file may become
large enough to f
the hard drive
causing the system
to crash -- a den
of-service attack
(DoS). This ma
also occur on
servers that log
errors.

Regex2 (User)(Message)(Server)
(Header+)
(MessageHeaderHandler)
(Memory + CPU)

nd a

U

1 (0.25%) A user may se
message with
thousands of
headers (e.g. MIME
headers) to a
server, causing a
server memory/CP
DoS.

Regex3

(Buffer)

 request

may
a buffer

 too

28 (6.9%) (User)(HTTPServer)
hod) (GetMet

(GetMethodBufferWrite)

A user that submits
an excessively long
HTTP GET
to a web server
cause
overflow. Either the
requestURI or HTTP
version may be
long for the buffer.
The attacker may be
able to escalate
their privileges.

 45

hod)
uffer)

vely long

st via a

idden

Table 4 (continued)
Regex4 (User)

(Variable + Filename +
Header)
(HTTPServer)(PostMet
(BufferWrite)(B

A user that submits
an excessi
POST reque
Variable, Filename
or Header, may
cause a buffer
overflow on the
server. The POST
request may be in
the form of a h
variable, filename or
header). The
attacker may be
able to escalate
their privileges.

7 (1.7%)

Regex5 (User)(Server)(Message)
(HeaderFieldBufferWrite)
(Buffer)

vely long

,

5 (1.2%) A user may submit
an excessi
header field value
causing a buffer
overflow on the
server (e.g. HTTP
email headers).
The attacker may be
able to escalate
their privileges.

Regex6 (User)(HTTPServer)
(HTTPMessageHandler)(Log)
(SysAdmin)(LogEntryRead)
(BufferWrite)(Buffer)

ter

stem

1 (0.25%) A user that submits
an excessively long
message to the
server can la
induce a buffer
overflow when
viewed by a sy
administrator. It is
possible for the
attacker to escalate
their privileges.

Regex7 (User)(HTTPServer)
(PostMethod)
(HTTPContent-

 a
ST

e

).

1 (0.25%)

LengthHeaderValue)
(HTTPMessagePayloadLength)

nnectionState) (ServerCo

A user may submit
value via the PO
method that
specifies the
Content-Length of
the HTTP header be
less than the
content-length of th
message, thus
causing the socket
to stay open (DoS
(see regex37)

 46

ationRoutine)
(BufferWrite)
(Buffer)

g
ters

Table 4 (continued)
Regex8 (User)(UserNameEntry)

(PasswordEntry)
(Server)
(Authentic

A user that submits
an excessively lon
string of charac
for either the
username or
password may
cause a buffer
overflow in the
authentication
routine. The
attacker may be
able to escalate
their privileges.

4 (0.98%)

Regex9 (User)(SQLInput)(Server)
(WebApplication)
(Database)(Data)

r

of

Failure to sanitize
user input (e.g.
query string) can
allow a user to
submit an arbitrary
SQL query, thus
allowing fo
unauthorized
access to data.
This regex is too
abstract to cover the
many possibilities
invalid SQL input.

19 (4.7%)

Regex10 (User)(SQLInputField)
(Server)
(WebApplication)(Database)
(CPU)

h as
f

CPU.

1 (0.25%) An attacker may
submit a malicious
SQL query (suc
a Cartesian join o
all tables)
consuming the

Regex11 (User)
(CommandLineArgumentEntry)
(ApplicationServer?)
(Application)
(CommandLineArgumentBufferW
rite)(Buffer)

A user may submit
an excessively long
command line
parameter causing a
buffer overflow. The
attacker may be
able to escalate
their privileges.

2 (0.49%)

Regex12 (User+)(HTMLPage+)(Server+)
(HardDrive+)

A user may submit
an excessive
amount of data in an
HTML page, thus
filling up the hard
drive on which the
server resides.

1 (0.25%)

 47

alicious

ata*)
(ServerVariables*)
(Information) EMBED,

les

in a
g.

L

S TAG, or

o

.

Table 4 (continued)
Regex13 (User)(InjectionOfM

HTMLTags/scriptInURL/Form)
(Cookie*)(FormD

A user may inject
malicious
scripts/tags
(SCRIPT, OBJECT,
APPLET,
FORM) or variab
(e.g. JSP, ASP,
search string)
web page, ms
board, email,
message (e.g. IM),
Script in URL, UR
parameter or
HTML/CS
HTML injection in
HTML tag to obtain
access t
information such as
cookies. This is
called Cross Site
Scripting (XSS)

47 (11.5%)

Regex14 (User)(Machine)
(SyslogFunction)(Log)
(Memory)

emory by

s through the

y
y

.

 a

y
s

1 (0.25%) It is possible to
corrupt m
passing format
string
Syslog(), a logging
function. This may
potentially be
exploited to
overwrite arbitrar
locations in memor
with attacker-
specified values
The Syslog function
is often improperly
used and is thus
target of attacks.
Machine is an
computer that use
the syslog function.

Regex15 (User)(ReadUserInput) bmit
ly long

. The

s.

5 (1.2%)
(EnvironmentVariableWrite)
(Buffer)

A user may su
an excessive
environment
variable causing a
buffer overflow in
the application
attacker may be
able to escalate
their privilege

 48

owser)

Write)
(Buffer)

n

e

. The

s.

Table 4 (continued)
Regex16 (User)(GUI/Br

(BookMarkSave)
(BookmarkBuffer

A user may save a
excessively long
bookmark and
cause a buffer
overflow. The
bookmark may be
written by the
attacker or com
from a long web
page title
attacker may be
able to escalate
their privilege

1 (0.25%)

Regex17 (User)(Application)(File)
(FileRead)

en
ith by an

1 (0.25%) An application that
reads a file may
throw an exception
or halt if the file is
corrupt or has be
tampered w
attacker.

Regex18 (SocketRead)
(SocketBufferWrite)(Buffer)

t

any
 the
ET

he

83 (20.4%) A user may submit
an excessively long
stream to a socke
and cause a buffer
overflow. This is
true for handling
connection on
internet (e.g. G
request). T
attacker may be
able to escalate
their privileges.

 49

nSecuredMethods)
r

der

es like

/j
/docs/guid

uctor

Table 4 (continued)
Regex19 (Class)(Subclass)

(Overridde
(Application)

Overriding methods
that have been
secured in a supe
class may create a
software
vulnerability. In
Netscape 4.0 the
ClassLoa
overrode the
definition of built-in
"system" typ
java.lang.Class -
applications usually
subclass
ClassLoader - a
better example is
from
http://java.sun.com
2se/1.4.2
e/security/jce/JCER
efGuide.html -
suggests to not
override
methods/constr
s in
CipherInputStream
because the class
takes into account
many security
considerations.

1 (0.25%)

Regex20
(HyperlinkBufferWrite)

ay

2 (0.49%) (User)(Hyperlink)(Server)

(Buffer)

A user may make
an excessively long
hyperlink on a
webpage and cause
a buffer overflow on
a server. If the
hyperlink is used to
connect to a
session, then the
malicious user m
take over the
application.

Regex21 (User)(Server)
aderHandler) (MessageHe

(Server)

A user may send a
negative, NULL, or
invalid value (e
not include ":'
between header
name/value) in a
header field
resulting in a DoS

.g.

on the server.

5 (1.2%)

 50

on)

r
ed

Table 4 (continued)
Regex22 (UserInput)

(PointerDereference)
(Applicati

A user may fail to
submit a username
causing a DoS.
This could be the
result of a pointe
that is dereferenc
to obtain the
username, but
NULL is returned
instead.

2 (0.49%)

Regex23 (CPU+)
(HardDrive*)

ke

ake

3 (0.74%) (User+)(Server+) A script that ma
an excessive
number of
connections to the
listening daemon
process of a server
may cause a DoS.
This script need
only m
connections --
further I/O may not
be necessary with
the connections.

Regex24
aluationRoutine)

(BufferWrite)(Buffer)
r

6 (1.47%) (UserInpu
(IntegerEv

t) A user that supplies
an integer large
than the integer
variable type
expected may
cause an
exception/buffer
overflow or DoS.

Regex25
tRoutine)

(Application + Information)
ersals,

de

L)

ctory

27 (6.6%) (User)(HTT
(GetReques

PServer) A malformed URL
(e.g. excessive
forward slashes,
directory trav
special chars such
as '*', Unico
chars, format string
specifier, NUL
may cause a DoS or
in case of dire
traversal the user
may obtain private
information.

Regex26 (User)(Server)
(SearchString)
(Information)

a
.g.

 obtain
private information.

2 (0.49%) A user may insert a
directory traversal
such as "../../" in
search string (e
CGI) and

 51

r)(BufferWrite)
(Buffer)

Table 4 (continued)
Regex27 (User)(SearchString)

(Server)
(Data)(Use

A user that requests
data from an
untrusted server
may receive large
data and result in a
buffer overflow.
Often happens in
gaming
environments.

4 (0.98%)

Regex28 (Read)(FileHeader)
(BufferWrite)(Buffer)

bel a

se

system

1 (0.25%) A user may la
file with an
excessively long
filename and cau
a buffer overflow in
the process reading
the file. This
occurred in an
operating
context.

Regex29 (User)(EmailHeader)
(Firewall)(Buffer)

A user can overflow
a buffer in their
firewall with a large
email header to
escalate their
privileges

(the user
n can attack their ow

company's LAN).

1 (0.25%)

Regex30

mory) L

sume
mory.

1 (0.25%) (User)(MalformedDTD)
(SOAPServer)

 + Me(XMLParser)(CPU

A user that submits
a malformed DTD
may cause the XM
parser of a SOAP
server to con
the CPU/Me

Regex31 (User)(HTTPRequest)
(ProxyServer)(BufferWrite)
(Buffer)

its
vely long

er

s.

 A user that subm
an excessi
HTTP GET request
to a proxy server
may cause a buff
overflow. The
attacker may be
able to escalate
their privilege

3 (0.74%)

Regex32 (User)(RequestMessage)
(Router)

mits

to
supply expected
headers) may cause
a DoS. Also, NULL
as a header value
may cause a DoS.

1 (0.25%) A user that sub
malformed headers
(e.g. failing

 52

est)
dedServer)

n.

Table 4 (continued)
Regex33 (User)(HTTPgetRequ

(Router)(Embed
(Bufer*)

A user that sends
an excessively long
GET request to a
router may cause a
DoS via a buffer
overflow or CPU
consumptio

2 (0.49%)

Regex34 (User+)(HTTPServer+) ubmit

r.

2 (0.49%)
(GetRequestRoutine+)
(Buffer + CPU)

A user may s
consecutive multiple
long GET request
URIs to either
consume the CPU
or overflow a buffe

Regex35 (User)(HTTPgetRequest)
(Router)

k

outer to

1 (0.25%) A user may submit a
malformed GET
request (e.g. a blan
(NULL)) request and
cause a r
DoS.

Regex36

OSCommand)(FTPServer +
MailServer))(BufferWrite)
(Buffer)

ubmits

he

8 (2.0%) (User)
((FTPCommand+MailCommand)+

A user that s
an overly long OS
command or
FTP/Mail command
may cause a buffer
overflow in t
FTP/Mail server.
The attacker may be
able to escalate
their privileges.

Regex37 er)
(ExceptionThrown*)
(Server)

2 (0.49%) (User)(Socket)(Serv A user may cause
an exception to be
thrown in the server
and cause it to
hang. (No data
needs to be
transferred) (similar
to regex 7)

Regex38 (User)(UserNameEntry)
(PasswordEntry)
(AuthenticationServer?)
(AuthenticationRoutine)

ay

name

A user that submits
a malformed
username or
password for
authentication m
cause a DoS (e.g.
format string
specifier) or NULL
as part of the
may bypass the
authentication
routine.

2 (0.49%)

 53

e)
(Buffer)

ry

the

 or

P

Table 4 (continued)
Regex39 (User)(FTPRequest)

(FTPServer)(BufferWrit
A user may submit a
long directo
request (e.g. in
URL of a browser)
by using long
directory names
"/" can cause a
buffer overflow or
DoS in the FT
server. The
attacker may be
able to escalate
their privileges.

7 (1.7%)

Regex40 (User)(FTPRequest)
(FTPServer)
(GetRoutine)(Server) er

2 (0.49%) A user that requests
a file that does not
exist on the serv
may cause a DoS
(e.g. Get
<unavailable file>)

Regex41

(BufferWrite)(Buffer)

es
f a
ss

1 (0.25%) (Metafile)(SizeFiel
(FileHeader)(FileRead)

d) A user that specifi
the "Size" field o
metafile to be le
than the actual file
may cause a buffer
overflow.

Regex42

leFileLocation)
(AttackerReference)
(Information)

ions

ow for

disclosure.

2 (0.49%) (Application)
(DownloadMalicousFile)
(Predictab

A user that saves
files to predictable
locations especially
where applicat
let you reference
them may all
information

Regex43 (Application)(FileCreation) If an application
creates a
file/directory that
allows malicious

7 (1.7%)
(System)

users to write to
them (makes them
symbolic links or
simply changes

ers can
escalate their
privileges.

them), then
attack

 54

R (Ap
(Pr
(Sy a

er execute

SYSTEM privileges.

2 (0
Table 4 (continued)

egex44 plicationRun) An application that
M ivileges) runs with SYSTE

ivileges and letsstem) pr
us
another program
such as CMD.EXE
may grant
themselves

.49%)

Regex45 (User)(MessageHeader+
QueryParam))
(Server)(System)

A user may insert

a message handler

email server), which
may allow the
attacker run those
commands on that
system.

3 (0.74%)
shell commands into

on a server (e.g.

Regex46 (User)(Message)(Server)
(System)

A user that submits 1 (0.25%)
a message
(command) to the
server before

cause a DoS (done
authentication may

in C code).
Regex47

(EnvironmentVariable+

URLparam)(System)

An attacker can
change/influence an
environment,
program, or URL
variable to point to a
remote machine. If
the variable points

directory, then the

file can be executed

8 (2.0%) (SourceFile)(IncludeFile)

ProgramVariable+

to an "include"

attacker's include

on the target system
Regex48 (User)(MalformedFTPCommand)

(BufferWrite)(Buffer)

A user that submits
an excessively long
FTP command may
cause a DoS or
buffer overflow.

1 (0.25%)
(FTPServer)

Regex49 (User)(InvalidRequest)
(ErrorMessage)
(System)

A user that submits 2 (0.49%)
an invalid request
may be returned
with an error
message that shows
the installation path
of the server.

 55

plication)
ubprocess)(Sy

An application that
ns a

process to
handle a user

st

1 (0.25%)
Table 4 (continued)
Regex50 (User)(Ap

(S stem) spaw
sub

command mu
ensure that the
subprocess does

 not have elevated
permissions.

Regex51 (WebBrowser)(CLSID)
(Filename)(System)

A user that embeds
a CLSID in the

f a
 file can

rowser
into opening the file

an

2 (0.49%)

filename o
malicious
trick a web b

with a different
application th
intended.

Regex52 (Ser
(Com the

execute that
 the
te

cution attack)

1 (0.25%) ver)(QueryString) A user may insert a
command for mand)(System)
value of a URL
parameter and

command on
server (remo
exe

Re Use
Sys

ser that submits
a URL with a device

rt of the
est may cause

OM1

) gex53 (r)(URL)(Server)(Device) A u
(tem)

 1 (0.25%

as pa
requ
a DoS (e.g.
http://[victim]/C)

On average, six vu s mapped to one regular

expression. The to requency of representation in

the vulnerability coll

Table 5: Regular Exp dge Base.

Expression
uency
%)

lnerabilities in the collection of vulnerabilitie

p five regular expressions with the highest f

ection are shown in Table 5.

ressions Occurring Frequently in the Knowle
Regular

ID

Regular Expression Freq
N (

Regex3 (U
(G

ser)(HTTPServer)(GetMethod)
etMethodBufferWrite)(Buffer)

28 (6.9%)

Regex9 (User)(SQLInput)(Server)(WebApplication)
(D
(D

atabase)
ata)

19 (4.7%)

Regex13 (User)(InjectionOfMaliciousHTMLTags/scriptI
nU
(ServerVariables*)(Information)

RL/Form)(Cookie*)(FormData*)
48 (11.8%)

 56

able 5 (continued)
83 (20.4%)

T
Regex18 (SocketRead)(SocketBufferWrite)(Buffer)
Re (U

(A
(6.6%) gex25 ser)(HTTPServer)(GetRequestRoutine)

pplication + Information)
27

After analyz g the , r d regex18

were found be to ctly how vulnerability may occur.

Regex13 attempts t ting vulnerabilities that may

r users and the type of data that

res

in results and the associated vulnerabilities, regex9

o abstract to accura

egx13, an

to tely describe exa

o represent the many types of cross-site scrip

occur on a web page. Because there are many different methods for this attack to occur

(e.g. hyperlinks, URLs, Cascading Style Sheet (CSS) tags) there were many vulnerabilities

associated with this regular expression. The regular expression should precisely identify

where vulnerabilities may occur in CSS tags, URLs and hyperlinks otherwise stakeholders

may needlessly perform a test for each case.

The high degree of abstraction is also true for regex9, a representation for SQL injection

attacks. SQL injections attacks include a large number of possibilities that can depend on

the database administer who determines the rights fo

ides in the database. For example, if passwords are kept in a database, then a crafty

query may be able to extract the passwords. If, however, there are no passwords stored in

the database, then the attack cannot occur. One regular expression cannot effectively

represent the many possible attacks to the many possible databases that exist. Regex9 and

regex13 were nevertheless included in the feasibility and validation studies because of their

frequency (combined 16.5%) in the analyses. Lastly, regex18, which represents any buffer

overflow occurring from a socket connection, could be further specified by the 19 (35.8%)

regular expressions shown in Table 6.

 57

Tab
representations of regex18.

le 6: Further Specified Regular Expressions. Nineteen regular expressions are specific

Regular
Expression

ID

Regular Expression Frequency N
(%)

Regex2 (User)(Message)(Server)(Header)
(MessageHeaderHandler)(Memory + CPU)

1 (0.25%) +

Regex3 (User)(HTTPServer
hodBufferWrite)

)(GetMethod)(GetMet 28 (6.9%)

(Buffer)
regex4 (User)

(Variable + Filename + Header)
(HTTPServer)(PostMethod)
(Buff

7 (1.7%)

erWrite)(Buffer)
Regex5 (User)(Server)(Message)

(HeaderFieldBufferWrite)(Buffer)
5 (1.2%)

Regex8 (User)(UserNameEntry)(Pa
(Server)(AuthenticationRoutine)

sswordEntry)

(BufferWrit

4 (0.98%)

e)(Buffer)
Regex11 (User)(CommandLineArgumentEntry)(App

fferWrite)

2 (0.49%)
lication)
(ApplicationServer?)

dLineArgumentBu(Comman
r)(Buffe

Regex12 1 (0.(User+)(HTMLPage+)(Server+)
(HardDrive+)

25%)

Regex15
te)

5 (1.2%) (User)(ReadUserInput)
(EnvironmentVariableWri
(Buffer)

Regex16 MarkSave) 1 (0.25%) (User)(GUI/Browser)(Book
(BookmarkBufferWrite)
(Buffer)

Regex20
ferWrite)(Buffer)

2 (4.9%) (User)(Hyper
inkBuf

link)(Server)
(Hyperl

Regex27 4 (0.(User)(SearchString)(Server)(Data)
(User)(BufferWrite)
(Buffer)

98%)

Regex28 1 (0.(Read)(FileHeader)(BufferWrite)
(Buffer)

25%)

Regex29 (0.25%) (User)(EmailHeader)(Firewall) 1
(Buffer)

Regex31 (User)(HTTPRequest)(ProxyServer) 3
(BufferWrite)(Buffer)

(0.74%)

Regex33 (User)(HTTPgetRequest)(Router)(Embed 2 (0.49%)
dedServer)
(Bufer*)

Regex34 2 (0.(User+)(HTTPServer+)
(GetRequestRoutine+)(Buffer + CPU)

49%)

 58

 onti
Regex36 (2.0%)

 Table 6 (c nued)

 MailCommand) + 8 (User)((FTPCommand +
OSCommand)

 (FTPServer +
r) MailServer))(BufferWrite)(Buffe

Regex39 (User)(FTPRequest)(FTPServer)(Buffer 7 (1.7%)
Write)(Buffer)

Regex48
r)

1 (0.(User)(MalformedFTPCommand)
)(Buffe(FTPServer)(BufferWrite

25%)

Re s cre n ad ount

of abstract n fo that are transfe

so ev that there were 1 ays

thi sed ression suc and

regex26, already er of vulnerabilities and should thus be

rep as rresp cks.

res the events that occur when an attack submits

exc

vulnerabilities in a design.

gex18 wa ated at the onset of the study and appeared to have a equate am

io r vulnerabilities involving large amounts of data rred via

ckets. How er, as the study continued, it was found 9 different w

s socket-ba attack could occur. Furthermore, regular exp h as regex3

 map to a relatively high numb

resented distinct vulnerabilities to accurately capture the co onding atta

Because regex18 should be more definitive toward the identification of vulnerabilities in a

system design, it was not used in the validation study.

Regex3 and regex25 mapped to higher numbers than most other regular expression not

because the regular expression was abstract enough to capture many different types of

vulnerabilities, but because the same attack was repeated frequently in the SecurityFocus

database. Both of these regular expressions represent vulnerabilities in the GET requests to

an HTTP server. Regex3 captu

essively long requests that results in buffer overflows. Regex25 identifies the different

types of malformed requests that attackers use to exploit the vulnerabilities in the application

processing the request. The combined percentage, 13.5%, of their representation in the

vulnerability collection demonstrates attackers’ attraction to the request process. Thus, the

use of two regular expressions to represent likely attacks to a system with the associated

vulnerable sequence of components may provide a swift means for the identification of the

 59

d on

buffer overflows; (2) malformed

data; (3) inserted commands; (4) excessive data or requests; (5) access privileges; (6) error

and

ost co ve .

 (39 f n

s to

ular E
lar
sion

Fr

The regular expressions have been grouped into seven classifications to demonstrate

the ability of representing different types of attacks. The seven classifications are base

the means in which the attacker exploited a vulnerability: (1)

messages; (7) miscellaneous means.

The m mmon type of attack present in the analysis was the buffer o rflow attack

Twenty-one .6%) of the regular expressions in Table 7 describe the data low that ca

cause buffer overflow.

Table 7: Reg xpressions Representing Buffer Overflows.
Regu

Expres
ID

Regular Expression equency

Regex3 thod) 28 (6.9%) (User)(HTTPServer)(GetMe
(GetMethodBufferWrite)
(Buffer)

Regex4 (User)
(Variable + Filename + Header)
(HTTPServer)(PostMethod)(BufferWrite)
(Buffer)

 7 (1.7%)

Regex5 (User)(Server)(Message)
(HeaderFieldBufferWrite)
(Buffer)

 5 (1.2%)

Regex6 (User)(HTTPServer)(HTTPMessageHandler)
(Log)(SysAdmin)(LogEntryRead)
(BufferWrite)
(Buffer)

 1 (0.2%)

Regex8 (User)(UserNameEntry)(PasswordEntry)
(Server)(AuthenticationRoutine)
(BufferWrite)(Buffer)

 4 (1.0%)

Regex11 (User)(CommandLineArgumentEntry)
(Application)(ApplicationServer?)
(CommandLineArgumentBufferWrite)(Buffer)

 2 (0.5%)

Regex15 (User)(ReadUserInput)(EnvironmentVariable 5 (1.2%)
Write)(Buffer)

Regex16 (User)(GUI/Browser)(BookMarkSave)
(BookmarkBufferWrite)(Buffer)

 1 (0.2%)

Regex18 (SocketRead)(SocketBufferWrite)(Buffer) 83 (20.4%)
Regex20 (User)(Hyperlink)(Server)

(HyperlinkBufferWrite)(Buffer)
 2 (0.5%)

Regex24 (UserInput)(IntegerEvaluationRoutine)
(BufferWrite)(Buffer)

 6 (1.5%)

 60

R (User)(SearchString)(Server)(Data)(User)
(BufferWrite)(Buffer)

 4
 Table 7 (continued)

egex27 (1.0%)

Regex28 (Read)(FileHeader)(BufferWrite)(Buffer 1 (0.2%)
Regex29 1(User)(EmailHeader)(Firewall)(Buffer) (0.2%)
Regex31 (User)(HTTPRequest)(ProxyServer)

(BufferWrite)(Buffer)

 3 (0.7%)

Regex33 2(User)(HTTPgetRequest)(Router)
ufer*) (EmbeddedServer)(B

 (0.5%)

Regex34 ine+) 2(User+)(HTTPServer+)(GetRequestRout
(Buffer + CPU)

 (0.5%)

Regex36 8(User)((FTPCommand + MailCommand) +
OSCommand)(FTPServer + MailServer))
(BufferWrite)(Buffer)

 (2.0%)

Regex39 (User)(FTPRequest)(FTPServer)
(BufferWrite)(Buffer)

 7 (1.7%)

Regex41 (Metafile)(SizeField)(FileHeader)
(FileRead)(BufferWrite)
(Buffer)

 1 (0.2%)

Regex48 (User)(MalformedFTPCommand)(FTPServer)
(BufferWrite)(Buffer)

 1 (0.2%)

The ability to overflow an unprotected buffer is not always a difficult task for the attacker.

Thu

raries in programming languages such as C are becoming more secure to

buffer overflows to prevent an attacker from elevating his/her privileges [20]. However, the

frequency in which these attacks o ffer overflows are an important

vulnerability to identify and secure.

cond ction contains ten (18.9%)

re essio exploit es.

ata rrect format (to

s, it may be one of the first vulnerabilities sought in an attack. The challenge to

attackers lies in the ability to insert exploit code into the adjacent memory location.

Currently, lib

ccur suggests that bu

The se largest classification in the vulnerability colle

gular expr ns and describes the use of malformed data to vulnerabiliti

Malformed d includes: format specifiers; NULL values; inco e.g. failing

supply a ‘:’ between a header field and header field value); negative value; special

characters; malicious use of Unicode characters; and directory traversals that are used to

cause security breeches, such as a range of application errors, data theft, and escalation of

 61

Regular

ID

Regular Expression Frequency

privileges. Ten (18.9%) of the regular expressions are used to capture the different

scenarios where malformed data can exploit susceptible vulnerabilities (see Table 8).

Table 8: Regular Expressions Representing Malformed Data.

Expression

regex14 (User)(Machine)(SyslogFunction)(Log)(Memory) 1 (0.2%)
regex17 (User)(Application)(File)(FileRead) 1 (0.2%)
regex21 (User)(Server)(MessageHeaderHandler)(Server) 5 (1.2%)
regex22 (UserInput)(PointerDereference)(Application) 2 (0.5%)
regex25 (User)(HTTPServer)(GetRequestRoutine)

(Application + Information)
27 (6.6%)

regex26 (User)(Server)(SearchString)(Information) 2 (0.5%)
rege (User)(MalformedDTD)(SOAPServer)(XMLParser)

PU + Memory)
x30

(C
 1 (0.2 %)

r segex32 (U er)(RequestMessage)(Router) 1 (0.2%)
r (Usegex35 er)(HTTPgetRequest)(Router) 1 (0.2%)
r (Us

(Au
(Au

egex38 er)(UserNameEntry)(PasswordEntry)
thenticationServer?)
thenticationRoutine)

 2 (0.5%)

 H ular ex unt d

m machine. Upon executing the commands, attackers can learn

info

what vulnerable code makes these

ence, reg pressions can capture attacks dealing with large amo s of data an

with malformed data. Buffer overflows and malformed data are two types of attacks that are

the most directly related to data flow between components suggesting that the approach this

thesis proposes is especially useful in data flow diagrams.

Attackers can also take advantage of systems that do not properly handle executable

data that is submitted by the user. Malicious data can be inserted in the format of HTML

tags in web pages, shell commands in message handlers, or command arguments in URLs

unexpectedly on the victi

rmation about other users or gain privileges on the system. The six (11.3%) regular

expressions in Table 9 attempt to warn stakeholders

attack possible.

 62

sions Representing Remote Executions.

r
Expression

y
Table 9: Regular Expres

Regula

ID

Regular Expression Frequenc

Regex13 (User)(InjectionOfMaliciousHTMLTags/scriptI
nURL/Form)
(Cookie*)(FormData*)(ServerVariables*)
(Information)

48 (11.8%)

Regex45 (User)(MessageHeader + QueryParam))
(Server)(System)

 3 (0.7%)

Regex46 (User)(Message)(Server)(System) 1 (0.2%)
Regex51 (WebBrowser)(CLSID)(Filename)(System) 2 (0.5%)
Regex52 (Server)(QueryString)(Command)(System) 1 (0.2%)
Regex53 (User)(URL)(Server)(Device)(System) 1 (0.2%)

Cross-site scripting vulnerabilities, represented by regex13, are commonly exploited on user

machines when a victim visits an attacker’s web page. The victim unknowingly executes the

ma

 show where malicious data can be placed in

vulnerable places that are executed.

%) regular expression ed because each re

attack that involves submitting excessive data that can consume memory or the CPU (see

Table 10).

gular xploits.

Regular
sion

ion Frequency

licious code on his/her machine and potentially gives the attacker access to private

information. These regular expressions

Four (7.5 s are data flow relat presents an

Table 10: Re Expressions Representing Excessive Data E

Expres
ID

Regular Express

Regex1 (User+)(Server+)(Log+)(HardDrive+) 1 (0.2%)
Regex2 (User)(Message)(Server)(Header+)

(MessageHeaderHandler)(Memory + CPU)
1 (0.2%)

Regex12 ive+) (User+)(HTMLPage+)(Server+)(HardDr 1 (0.2%)
Regex23 (User+)(Server+)(CPU+)(HardDrive*) 3 (0.7%)

 general, thes imple compared with the other attacks. Some of

these attacks are automated and send a plethora of requests or data to the victim machine.

Or, the attack could involve a simple upload of a prodigious amount of data. Since each of

In e attacks are relatively s

 63

Expression ID

these regular expression involved the same events occurring at least once, the

superscripted + is used. To ensure the strictest security, software engineers must assume

that a large load on the CPU can be normal and that the load may be just short of the

maximum capacity of the CPU. Thus, it is possible, but not likely, that only one more user

request may put the machine into a denial-of-service.

The four (7.5%) regular expressions in Table 11 represent attacks on machines that

allowed a user/application to assume elevated privileges in the system.

Table 11: Regular Expressions Representing Escalated Privilege Attacks.

Regular Regular Expression Frequency

Regex9 (User)(SQLInput)(Server)(WebApplication) 19 (4.7%)
(Database)(Data)

Regex43 (Application)(FileCreation)(System) 7 (1.7%)
Regex44 (ApplicationRun)(Privileges)(System) 2 (0.5%)
Regex50 (User)(Application)(Subprocess)(System) 1 (0.2%)

The attacks found in the databases were accomplished by submitting SQL commands to

obtain user accounts; by applications spawning child processes with the same permissions

as the parent; by applications creating files with elevated permissions; or by systems that

give processes system privileges. These regular expressions indicate where access

privileges are not enforced on processes or files. Unlike the previous three data flow-

oriented classifications, this is the first example where access control is the primary

objective of the attacker.

The three (5.7%) regular expressions in Table 12 are attacks that may either cause a

denial-of-service or disclosure of sensitive information.

Table 12: Regular Expressions Representing Error Message Attacks.
Regular

Expression
ID

Regular Expression Frequency

Regex37 (User)(Socket)(Server)(ExceptionThrown*)
(Server)

2 (0.5%)

Regex40 (User)(FTPRequest)(FTPServer)(GetRoutine)
(Server)

2 (0.5%)

 64

Regex49 (User)(InvalidRequest)(ErrorMessage)(System) 2 (0.5%)
 Table 12 (continued)

In the scenarios represented by these regular expressions, it is possible to cause the

system to hang because an exception (error) was thrown in the process. If the process was

a server, then the result is a denial of service. In another case, if the server encountered an

erro

Expression

r and returned the error to an attacker and the server root directory was disclosed with

the error, then the attacker has gained important directory structure knowledge about the

victim system. Thus, regular expression can warn stakeholders how error messages are

harmful to their systems. These regular expressions represent another classification that

are not primarily involved with data flow.

The remaining five regular expressions in Table 13 are not immediately related to any of

the previous six groups or to each other.

Table 13: Miscellaneous Regular Expressions.

Regular

ID

Regular Expression Frequency

regex7 (User)(HTTPServer)(PostMethod)(HTTPContent-

(ServerConnectionState)

1 (0.2%)
LengthHeaderValue)(HTTPMessagePayloadLength)

regex10 (User)(SQLInputField)(Server)

(CPU)

1 (0.2%)
(WebApplication)(Database)

regex19 (Class)(Subclass)(OverriddenSecuredMethods)
(Application)

1 (0.2%)

regex42 (Application)(DownloadMalicousFile)

(AttackerReference)(Information)

2 (0.5%)
(PredictableFileLocation)

regex47 (SourceFile)(IncludeFile)

URLparam)(System)

8 (2.0%)
(EnvironmentVariable + ProgramVariable +

These five regular expressions are therefore grouped together in the miscellaneous

category. Regex7 is a scenario where an attacker can specify the payload length of a

message as less than the actual size of the payload, which caused a socket to stay open on

 65

alyzed

col

ations in this group and in the previous

two groupings, regular expressions are not limited to data flow, but to a variety of attacks

re valid sources of security information that stakeholders can use to protect their systems.

the server. In this reported vulnerability, a clever attacker falsified the metadata of the

information that was sent to the victim machine. Additionally, a query that is CPU-intensive

such as a Cartesian join, can cause a denial-of-service, as represented with regex10. This

is a case where legal commands should be monitored for their requests on the resources of

the system. Regex42 is a case where an attacker knows the location of a downloaded file

and takes advantage of this knowledge. Regex47 occurred eight times in the an

lection and represents attackers changing system variables in victim applications to point

to attacker machines. If the variables include directories of applications, such as PHP, then

the attacker can control the PHP program with the malicious source code. Finally, regex19

is a low-level regular expression that illuminates that the overridden methods of parent

classes in source code must be secured from the same vulnerabilities as methods in the

parent class. For example in Java, one must protect their overridden methods in the

CipherInputStream class to ensure the stream remains encrypted otherwise the data may

become available to an attacker. From the observ

that have been recently exploited applications. Therefore, regular expressions in this study

a

 66

pression not in the design, and miscellaneous data.

logy

e given 14 days to complete the assignment

and as s also posted on the course web

 handed

At the time of the feasib ere were 20 regular expressions fabricated from the

vulnerability databases and all were inc nm profiles containing a

written synopsis wer lso given to des tract re ssions. Five regular

xpressions were no iven attack pro if eeded the profiles to

6.0 Feasibility Study

This chapter provides information on the methodology used to create the feasibility study

and then discusses the results in the order of the metadata of the study, valid and invalid

answers, unique attack paths, regular ex

6.1 Feasibility Study Methodo

To test the hypothesis of a regular expression mapping to a design and the ability of a

human to perform the approach, a blind feasibility study (see Appendix II) was conducted in

an upper-level undergraduate security course at North Carolina State University in Fall

2003. The course was chosen because it is an introductory security course that teaches

concepts such as information security management and because the students represent

individuals that have at best a limited background in security, which would validate if non-

experts could identify attack paths in a system design. Also, the students in the class were

not familiar with me as a student, teacher or teaching assistant, which further enabled the

study to be blind. The paper-based study was given to the class as an addendum to an

already-scheduled assignment. Students wer

ked to work on it independently. The assignment wa

page for those students who did not attend the lecture in which the assignment was

out. Questions could be asked on an Internet message board specific to the class or by

email.

ility study, th

luded in the assig ent. Attack

e a cribe the abs gular expre

e t g files to determine students n

find the attack path. Also included in the assignment was a simple, high-level design

consisting of 16 components that represented a hypothetical banking system which was

 67

strate the remote attacks described by the

reg

her while looking for components and attack paths.

Giv process of

derived from Howard and LeBlank’s data flow diagram [11]. The design consisted of four

clients and four commonly-known severs to illu

ular expressions. The design was limited to components that students most likely

learned or used in classes because it was not known how students would react to the

complexity and size of the assignment. The design was also limited to one page to prevent

the thrashing of one page to anot

en the design and knowledge base of attacks, students could enact the

finding security vulnerabilities in the design phase of software application. Students were

asked to match the components/events described by the regular expressions to the strings

of components in the system design. Upon a match, the string of components were written

down using the numbers associated with each component labeled in the design in a

“<component number >-<component number>” template. In the simple illustration shown in

Figure 5, a User can request information to a Server, which records accesses and errors

in its log files that are stored on the Hard Drive.

Figure 5: A Simple Design. A simple illustration of a data flow diagram used to show a
vulnerable sequence of components.

+ + + +The regular expression, (Client)(Server)(LogFile)(HardDrive), has a profile

that may look like

An attacker can exceedingly access the web server or
e and
system

imum number of

atta

database server augmenting the access log fil
eventually filling the hard drive causing the
to crash, a denial-of-service attack.

Using the profile to understand how the attack occurs, students can match the components

in the regular expression to the components in the diagram. This regular expression yields

two possible answers: 1-2-3-5 and 1-2-4-5. Students were told to match as many attack

paths in the design to each regular expression as possible. They were allowed to make any

assumptions necessary about how an attack could occur so that the max

ck paths could be found. Two of the regular expressions were purposefully not shown in

the design to validate that components in the design cannot be confused with the

components in the regular expressions.

 68

 69

number 7). The student’s

atta

paths in the system design that were represented by regex1.

Number Attack Path of Student

6.2 Feasibility Study Results

The intention of the feasibility study was to assess whether students can read a

knowledge base of regular expressions and find their instances, if any, in a system design.

Students were asked to follow the “<component number>-<component number>” template

to make all answers look like the example attack path, “14-13-12-11-6-7,” given in the

homework assignment. This attack path represents a sequence of six components in the

design; Client 1 (component number 14), Web Pages (component number 13), Web

Server (component number 12), Service Client Request (component number 11),

Access Log (component number 6), Hard Drive (component

ck paths were organized based on the resource that was attacked and the path in which

the attack occurred. For example, for regex1,

(Client+)(Server+)(Log+)(Hard Drive+),

students gave a combined total of five different attack paths as shown in Table 14.

Table 14: Student Answers for One Regular Expression. Students found five different attack

Attack Path Valid Number

Finds
1 14-13-12-11-6-7 43 (100%)
2 10-9-6-7 43 (100%)
3 1-2-6-7 11 (25.6)
4 1-5-4-9-6-7 1 (2.3%)
5 15-12-12-11-6-7 1 (2.3%)

The different attack paths submitted for each regular expression were arbitrarily numbered

for identification purposes. Each student answer for an attack path is termed an “instance”

of that attack path. So, since 43 each gave the answer “14-13-12-11-6-7,” then there are 43

instances of the same attack path being found.

Students did not describe the same attack path with the same sequence of component

numbers. Some students did not include all the components in the path, while others

 70

ient Request (component number 11) routine where the

cur. However, the data flow arrows in the design make it

obv

along

gn

support tions necessary t then the answer was considered

val n r

ient+)(Se eaderHandler+),

43 f the class s st via the Web

Pages to the Web Ser t Request process.

included extra components beyond the regular expression to elaborate how the attack

occurred. For example, regex5,

(Client)(Server)(HTTPMessage)(HeaderFieldBufferWrite),

included three different component sequences submitted by students that identified the

same attack path. In the component sequence “15-13-12,” one student did not include the

Service Cl

HeaderFieldBufferWrite would oc

ious that the attack path would eventually lead to the Service Client Request

process and so the answer was accepted. In the component sequence “15-13-12-11,” ten

students included the Service Client Request process to accurately describe where

the buffer write exists. One student appended Hard Drive to the sequence to obtain “15-

13-12-11-7,” which elaborates where the buffer resides in the system. These

inconsistencies were tolerated if the attack path was still obvious in showing how the attack

occurred.

The attack paths students reported for each regular expression were checked for

validity. Valid attack paths were based on the plausibility that the attack could occur

the sequence of components answered by the students. If the components in the desi

ed the ac

xample, i

o achieve the attack,

id. For e egex2,

(Cl rver+)(HTTPMessageH

(100%) o entered “14-13-12-11” where Client1, make a reque

ver, which is handled by the Service Clien

The Web Pages component is not listed in the regular expression because a web page is

not necessary for the vulnerability to be exploited. Students were instructed to include all

intermediate components for clarification and thus Web Pages is included in their answers.

 71

lient can make a

req

MessageHeaderHandler was the target

resource of an attacker and so terminated the string of components in the regular

expression. After the feasibility study was performed, resources such as memory and the

CPU were explicitly inserted in the regular expressions for clarity. All valid answers were

considered equally viable because each attack path led to a vulnerable resource.

If an attack path seemed unreasonable, but an assumption was supplied that justified

the attack, then the answer was accepted. For example, regex20,

(Class)(Subclass)(OverriddenSecuredMethods),

is associated with two answers that would have been marked wrong if assumptions were not

iven. Both students entered the attack path “1-2-16” and wrote that they assumed the

ribed the Java class,

Cipher ng overridden without proper security

 special case and is discussed later section 6.6.

components could achieve the attack profile, th er was classified as invalid. In

regex2, one student answered “1-5-4-9-6-7-11” and another “1-5-4-9-7-11.” These answers

were marked invalid because s not assumptions about how the attack

would occur. These paths do y message travels from Client4 to

the Service Client Request If the students had assumed that the

Application Server (comp was a ication server, then the component

equences would be correct. T ame applie n instances of “10-9-8-11” and one

The attack path, “14-13-12-11,” is valid because it includes components that have been

specified from the abstractions in the regular expression and because a c

uest to a web server containing a large number of headers to cause consumption of the

hard drive. At the time of the study, the HTTP

g

sequence involved a secured socket stream method being overridden. The assumptions

are derived from the hint given in the class lecture that desc

InputStream, as having methods bei

measures. Regex20 is a

If an attack was not obvious because the student did not clearly show how the

en the answ

tudents did write any

not explain wh an HTTP

 process.

onent 4) web appl

s he s s to seve

 72

inst

ass,

vali

ssions discussed in

 that the

also numbered differently than the final knowledge base in Section 5 lar

ex know he assign 1 of

Appendix II.

6.3 Metadata

Approximatel e

day the assignment was discussed in class. Therefore, approximate the

class were not fa round and instructions in-advance of

partaking the assignment. Furthermore, only 43 of the 62 students completed the

assignment. To ensure a blind study, a hardcopy of the assignment was distributed with

unique IDs that replaced student names. Fortunately, students that did not receive the

hardcopies entered arbitrary numbers on the assignment they downloaded from the course

web site, which permitted the study to be performed blindly. Students were asked to record

how much time they spent on the assignment; on average, they spent 53.7 minutes on the

assignment based on the input of 41 of the 43 students that gave valid times. The two times

entered they were not included were textual responses of “obviously, very little” and “too

ance of “1-2-6-7-11.” None of the answers included assumptions about the

Authentication Server or Database Server having the capability of handling an

HTTP message. Also, answers that had only one component such as “15” were marked

invalid because none of the attacks involve only one component.

The findings in this study are presented in the following order: metadata of the cl

d and invalid answers, unique paths, student answers to regular expressions that were

not existent in the design, and miscellaneous data. The regular expre

these results refer to the regular expression in the KB for the assignment. Note

regular expressions in the feasibilit re numbered differentlyy and validation study a and are

.0. The regu

pression ledge base (for the feasibility study) is in t ment in Table

y one-third of the 62 students registered for the course attended class th

ly two-thirds of

miliarized with the assignment backg

 73

much.” The range of time to complete the assignment was 15 minutes to 180 minutes (see

Appendix III).

The 43 students responded with a sum of 937 valid answers that were grouped into 75

different valid attack paths. Students also entered 65 instances of where an abstract attack

path was represented in the design and were organized into 36 invalid attack paths (see

ts represent an approximate 2:1 ratio of valid to invalid attack

paths and approximately a 14:1 ratio of es found. These results

indicate that stud expressions into specific

a s pres

ndred path

fo ular e

a ack Pa dred percent of the

Regular Regular Expression Valid

6.4 Valid and Invalid Answers

Appendix IV). These resul

valid to invalid instanc

ents were able to instantiate the abstract regular

ttack path ent in the system design.

One hu percent of the participating students found the same four valid attack

r three reg xpressions represented in the design (see Table 15).

T ble 15: Att ths Found by 100% of the Participating Students. One hun
participating students found four attack paths represented by three regular expressions.

Expression ID Attack Path
14-13-12-11-6-7 regex1 (Client+)(Server+)(Log+)

(Hard Drive+) 10-9-6-7
regex2 (Client+)(Server+)

(HTTPMessageHeaderHandler+)
14-13-12-11

regex12 (User)(CommandLineArgumentEntry)

(CommandLineArgumentBufferWrite)

1-5-4
(Application)(ApplicationServer*)

The perfect agreement between classmates may have resulted from an easier correlation

r

expressio ve more sse nts

a e sign. The r essions do not

have similar profiles thus they do not require similar/obvious attac

between the components in the system design and the components in the regula

n. Or, students may ha experience in their cla s with these compone

nd were better able to find them in th system de egular expr

k paths.

An analysis to determine the number of valid attack paths found per regular expression

was performed and is represented in Figure 6.

 74

5
3 3 3 3 3

2 2
3 3

2

5 5 5
3

5

10

2

0

4
6
8

10

RegEx

No
 P

at
h

4 4

2

12

1 3 5 7 9 11 13 15 17 19
.

s

Figure 6: Number of Valid Attack Paths per Regular Expression.

Responses

The average number of valid attack paths per regular expression is 3.8. The regular

expression with the highest number of valid attack paths is regex19,

(SocketRead)(SocketBufferWrite),

with ten (see Table 16).

Table 16: Regular Expressions Further Specified. Regex19 is associated with the largest
number of valid attack paths per regular expression.

Valid
Attack Path

Number
of Student

14-13-12 9 (20.9%)
1-5-4 4 (9.3%)
13-12-11-2 1 (2.3%)
15-13-12-11 2 (4.7%)
10-9 3 (7.0%)
9-12 1 (2.3%)
9-6 1 (2.3%)
1-2-4 2 (4.7%)
12-11-8 1 (2.3%)
7-8 1 (2.3%)

Regex19 is considerably more abstract than most of the other regular expressions. It

can apply to any socket connection and thus the students found many vulnerabilities in the

design. Another factor that may have contributed to the large number of different attack

 75

 attack profile given with this regular expression. Students may

not

Tabl xpressions with tack Paths. The fo
expr e least number of valid attack paths are regex7, regex8, regex

Expression

paths is that there was no

 have understood the regular expression and were more creative with their answers.

The regular expressions with the lowest number of valid attack paths found are regex7,

regex8, regex13, and regex20 with only two paths each (see Table 17).

e 17: Regular E
essions with th

Least Number of Valid At ur regular
13, regex20.

Regular

ID

Regular Expression Valid
Attack Path

14-13-12-11 regex7 (
(HTTPContent)(LengthHeaderValue)
(
(ServerConnectionState)

-11

Client)(Server)(PostMethod)

HTTPMessagePayloadLength) 15-13-12

1-2-16 r (User)(UserNameEntry)(PasswordEntry)
(
(-4-5-1-2-16

egex8
AuthenticationServer*)
AuthenticationRoutine) 10-9

14-13-12-11-7 r (Client)(HTMLPage)(Server)(Hard Drive)
13-12-11-7

egex13
15-
10-9-4-5 regex20 (Class)(Subclass)

(OverrridenSecuredMethods) -16 1-2

to the design that corr se This is due the small number of vulnerabilities in elate to the

attacks. Regex20 was not in the design and was expected to have zero valid attack paths.

However, there were two attack paths given with valid assumptions and thus they were

classified as valid attack paths. Also, Regex20 did not have a corresponding attack profile;

consequently students may not have understood this expression well enough to realize it

was not in the design.

Figure 7 shows the number of invalid attack paths that students answered for the regular

expressions.

0 0 0
1 1

0
1

0
1

0
1

0

2

3 34. P

2No 1

4

1

910

7 19

egEx

4 4
6at

h

8s
1 3 5 7 9 11 13 15 1

R

Fig ths per Regular Expression.

T e num es e regular

e with 1 6, regex9,

re d reg

Table 18: Regular Expressions Six regular e ssions were associated
w lid att

Regular
on

ID

lar Expression

ure 7: Number of Invalid Attack Pa

he averag ber of invalid attack paths per regular expr sion is 1.8. Th

xpressions the least number of attack paths, zero, are regex , regex5, regex

gex11, an ex13 (see Table 18).

without Invalid Attack Paths. xpre
ith zero inva ack paths.

Expressi
Regu

Regex1 (Client)(Server+)(Log+)(Hard Drive+) +

Regex5 (Client)(Server)(HTTPMessage)(HeaderFieldBufferWrite)
Regex6 (Client)(Server)(HTTPMessageHandler) ysadmin)

(LogEntryRead)
(Log)(S

Regex9 (Client)(SQLInputField)(Server)(WebApp)(Database)
Regex11 (Client)(HTMLForm)(WebApp)(Server)(cgihtml)

(FileSystem)
Regex13 (Client)(HTMLPage)(Server)(Hard Drive)

Thus, students did not identify any invalid paths for six (30%) of the twenty regular

 most invalid attacks is regex20 with nine.

Regex20, also ha rs, is a spec ase and is discussed

in detail in Section 6.6.

The largest number of invalid attacks was entered for regex2; three paths were found

with a total of ten instances, as shown in Table 19.

expressions. The regular expression with the

ving the least number of valid answe ial c

 76

 77

number of invalid attack paths with three.
Table 19: Regular Expression with the Most Number of Invalid Attack Paths. Regex2 had the most

Regular Expression Invalid Attack Path Number of Student
Finds

10-9-8-11 7 (16.3%)
1-5-9-6-11 2 (4.7%)

(Client+)(Server+)
(HTTPMessageHeaderHandler)

1-2-6-7-11 1 (2.3%)

+

The invalid attack paths were considered incorrect because the paths are unlikely using

HTTP headers between the client and server. None of the students clearly indicated how an

HTTP header could be sent to any of the authentication, application or database servers. If

the application server was a web application server, then the attack could be considered

valid, but there were no assumptions made. These results indicate that designs may not

 assumptions are important to

det used the web server component

(compo invalid

attack case and is discussed in

(Client)(HTMLMessageBoard)(Server)(HTMLMessageBoard)(Client),

produced one attack path that was “14-13-12-13-14.” Twenty-six students found this attack

path and 12 more found “14-13-12-13-15”. The components in the attack paths correlate

offer enough detail to determine if an attack may occur, thus

ermining security attacks. The best answers

nent number 13), which clearly requires HTTP headers. Regex20 had nine

paths with 24 instances, but this is considered a special

Section 6.6.

The differences in the number of instances of each attack path per regular expression

depends on how well the regular expression and attack profile describe the attack; the

accuracy of the abstraction of the regular expression; the ability of students to make

assumptions about components; and their desire to find attack paths that snake their way

through the design. The attack paths with the most instances imply that they are the most

obvious in the design. Attack paths with fewer instances suggest that more assumptions

must be made about how the attack may occur and that the path may be more complex.

For example, regex14,

 78

one-to-one with the components in the regular expression. One creative student found “15-

13-12-11-8-9-4-5-1” as a sneaky attack path that traversed most of the components in the

design. Extra components in the attack path suggest how subtle security attacks may be in

a system. This valid attack path was not discovered by any other student and was not

intentionally put into the design. This unexpected valid path indicates that regular

expressions are flexible enough encapsulate many attack paths that threaten the system.

An analysis was done to determine how many attack paths had only one instance.

 paths for seven regular expressions.
ar

Expression
Regular Expression Valid Unique

Attack Path

6.5 Unique Attack Paths

Twelve (16.0%) of the valid attack paths found were found only once as shown in Table 20.

Table 20: Regular Expressions with Valid Unique Attack Paths. Students found 12 valid
unique attack

Regul

ID
1-5-4-9-6-7 Regex1 (Client+)(Server+)(Log+)(Hard Drive+)
15-13-12-11-6-7

Regex8 (User)(UserNameEntry)(PasswordEntry)
(AuthenticationServer*)

(AuthenticationRoutine)

10-9-4-5-1-2-16

Regex11 erv
m)

(Client)(HTMLForm)(WebApp)(S er) 1-5-4-9-8
(cgihtml)(FileSyste

Regex14 (Server)

15-13-12-11-8-9-
4-5-1

(Client)(HTMLMessageBoard)
nt)(HTMLMessageBoard)(Clie

Regex18 (User)(File)(FileRead)(BufferWr 6 ite) 3-
9-12
9-6
12-11-8
7-8

Regex19 (SocketRead)(SocketBufferWrite)

13-12-11-12

Regex20 (Class)(Subclass)
(OverriddenSecuredMethods)

-9-4-5 10

Regex19 may ha s because it is more generalized than

the other regular lmost anywhere in the design. Also, there

for this regular expression because it was used as a determining factor

on e regular expre validation study.

tudents may have been confused on what to do without a profile and thus been more

ve the highest number of unique path

expressions, and it can appear a

was no profile given

 whether or not to provide a profile for th ssions in the

S

 79

nty six (72.2%) of the

inv e and are show in Table 21.

Table 21: wenty-six invalid unique

Regular

ID

Regular Expression Invalid Unique

creative in their answers. The low percentage of valid unique attack paths suggests that

students usually find the same valid attack paths.

The number of unique answers is higher for invalid answers. Twe

alid attack paths were only found onc

Regular Expressions with Invalid Unique Attack Paths. T
attacks associated with eight regular expressions were submitted by students.

Expression Attack Path

Regex2 (Client+)(Server+)
+

1-2-6-7-11
(HTTPMessageHeaderHandler)

1-2-16-2-1-5 Regex3 (Client)(Server)(GetMethod)
(GetMethodBufferWrite) 1-2-16

10-9-4-5 Regex4 (Client)(Server)((GetMethod)+

(PayloadValueBufferWrite)(WebApp)
(PostMethod)) 1-5-4-9-8

Regex8 (User)(UserNameEntry)

(AuthenticationServer*)

4-2-16
(PasswordEntry)

(AuthenticationRoutine)
Regex10 (Client)(SQLInputField)(Server) 11

(WebApp)(Database)
Regex12 (User)(CommandLineArgumentEntry)

(CommandLineArgumentBufferWrite)

14-13-12-11-7
(Application)(ApplicationServer*)

Regex14 (Client)(HTMLMessageBoard)(Server)
(HTMLMessageBoard)(Client)

14-13-12-11-8

10-9-6
1-2-1-2

Regex16 (User)(ReadUserInput)
(Environme ri

10
ntVariableW te)

Regex17 (User)(GUI/Browser)(BookMarkSave)
(BookmarkBufferWrite)

10-9-8

1
14
10

Regex18 (User)(Fil FileRead)
(BufferWrite)

15

e)(

12-11-2
6-7

Regex19 (SocketRead)(SocketBufferWrite)

1

 80

15
Table 21 (continued)

14
5
8
2-4-6-9

Regex20 (Class)(Subclass)
(OverriddenSecuredMethods)

10-9

r of unique answers to be produced. The number of invalid unique

atta ely twice that of the valid unique attack paths. The high

percen ar enough

ted in the Design

(User)(GUI/Browser)(BookMarkSave)(BookmarkBufferWrite) and

(Class)(Subclass)(OverriddenSecuredMethods),

were purposefully inserted into dge b re not represented in the system

esign to determine if students accurately found components in the design that matched the

Regex20 was not in the design, but many students believed it existed and so arrived at

vague and creative answers. As with regex19, a profile was not given with regex20 possibly

causing students to guess on where such a vulnerability may exist. The guesses likely

caused a larger numbe

ck paths is approximat

tage of invalid unique attack paths suggest that regular expressions are cle

to students so that many students will not find the same wrong answer. Also, the

percentages of valid and invalid unique answers represent that students are more likely to

find invalid unique attacks than valid unique attacks.

6.6 Regular Expressions Not Represen

Two regular expressions, regex17 and regex20,

 the knowle ase that we

d

components in the regular expression. Any answer that was left blank or was indicated

explicitly as not being in the design was recorded. Two (4.7%) students indicated that

regex17 was not in the design and 14 (32.6%) students indicated that regex20 was not in

the design. Regex20 was associated with the most students who claimed that an instance

of the regular expression was not present in the design. Furthermore, students also claimed

 81

).

that some of the regular expressions were not represented in the design when in actuality

they were (see Figure 8

0 0 0 0 0 0
4

0 0 0
5

0 0 1 2 2 3

1314

10

20

1 3 5 7 9 11 13 15 17 19

RegEx

No
 S

tu
de

30

40

nt
s

8

0

.

Figure 8: Number Students Indicating that the Regular Expression was not in the Design.

These data show that seven or 38.9% of the 18 of the regular expressions that were

intended to be found by students were incorrectly marked as not present in the design (see

Table 22).

Table 22: Regular Expressions not Found in the Design. Seven regular expressions were
incorrectly identified as not being in the design by students.

Regular
Expression

ID

Regular Expression Number Students
Indicating not

in Design
Regex7 (Clien

(HTTPC
t)(Server)(PostMethod)
ontent)

4 (9.3%)

(LengthHeaderValue)
(HTTPMessagePayloadLength)
(ServerConnectionState)

Regex11 Client)(HTMLForm)(WebApp)
(Server)(cgihtml)
(FileSystem)

5 (11.6%)

Regex14 (Client)(HTMLMessageBoard)
(Server)
(HTMLMessageBoard)(Client)

1 (2.3%)

Regex15 (User)(Machine)
(SyslogFunction)(Log)

2 (34.9%)

Regex16 (User)(ReadUserInput)
(EnvironmentVariableWrite)

8 (37.2%)

Regex18 (User)(File)(FileRead)
(BufferWrite)

3 (7.0%)

 82

Regex19 (SocketRead) 13 (44.1%)
Table 22 (continued)

(SocketBufferWrite)

s, eleven (61.1%) of the regular expressions that were actually

in t

e components were not explicitly shown in the design. There were

24

 Invalid Number

Responses

The average number of students incorrectly determining that the regular expressions were

not in the design is 5.1. Thu

he design were always correctly labeled as existing in the design.

The code-level regular expression,

(Class)(Subclass)(OverriddenSecuredMethods),

denoted by regex20 was purposefully not shown in the high-level design. This vulnerability

had the largest instance of students, 14 (32.6%), responding as not existing in the design.

However, one student found the attack path “10-9-4-5” and assumed it was possible if a

secured connection existed. Two students found the attack path “1-2-16” by making

assumptions about a secured socket stream present in path. These three students either

investigated the hint supplied with the regular expression that discussed the vulnerability

occurring in a Netscape Java implementation, or they listened to the explanation of the

regular expression in the lecture when the assignment was given. The valid answers were

not expected because th

instances of invalid answers grouped into nine different attack paths (see Table 23).

Table 23: Invalid Attack Paths for Regex20. Nine invalid attack paths were submitted by students for
regex20, which did not exist in the design.

Attack Path of Student

1-5-4 7 (16.3%)
15 1 (2.3%)
14 1 (2.3%)
14-13-12-11 8 (18.6%)
14-13-15 3 (7.0%)
5 1 (2.3%)
8 1 (2.3%)
2-4-6-9 1 (2.3%)
10-9 1 (2.3%)

 83

 had only one component involved suggesting that students thought

the attack would be initiated from the component itself. The other 20 paths were routes

between clients and servers, but did not have any assumptions about how they may have

had secured connections. For example, the path “1-5-4” (Client4-Software

) does not suggest that a secured method is

overridden. As mentioned in Section 6.4, there were more invalid answers and invalid

essions. It is concluded that students were

eag

esponded with three attack paths (totaling 46 instances) that were evaluated as

val

Four of the attack paths

Application-Application Server

unique attack paths than with other regular expr

er to find attack paths that could possibly exist for an attack. Security attacks can often

be subtle and the extra effort shows that regular expressions may entice students to find

hidden vulnerabilities.

The regular expression

(User)(GUI/Browser)(BookMarkSave)(BookmarkBufferWrite),

represented by regex17 was not explicitly shown in the design. However, 41 (95.3%)

students r

id because GUIs and Internet browsers can be implied on the client components that

connect to the servers (see Table 24).

Table 24: Valid Attack Paths for Regex17. Three attack paths were found for regex17, which
did not exist in the design.

 Valid
Attack Path

Number
of Student
Responses

14-13-14 28 (65.1%)
15-13-15 10 (23.3%)
1-5-4 8 (18.6%)

This represents that students were able to look at components in a system design and

creatively suggest how such an attack may occur even though it does not directly

correspond with the regular expression. One unique answer, “10-9-8,” attempts to show a

bookmark being saved via a database server was marked as the only invalid answer

 84

cket. The unexpectedly high number of

 was in the design may have occurred because saving a

boo

regular expressions. Students were also asked to evaluate how helpful the attack profiles

because it is not clear how such an attack would occur. Two students (4.7%) said the

regular expression was not represented in the design. No valid unique attacks paths were

submitted for regex17.

The regular expression,

(SocketRead)(SocketBufferWrite),

represented by regex19 existed in the design, but was not explicitly shown. Unlike regex17,

sockets are an implied component in design, and thus the states in the regular expression

can be assumed to occur. Thirteen (30.2%) students indicated that this attack was not

possible in the design and thus was the regular expression that was represented in the

design with the highest instance of “not in design” answers. Hence, although 95.3% of the

class could determine that a bookmark save may exist in the system, 30.2% of the students

did not find the buffer overflow occurring at a so

students indicating that regex17

kmark is an action that could occur on the client, which in the directions was described

as possibly being an Internet browser. The socket, a physical component, could have been

something students wanted to see to make the attack seem possible. The high number of

instances could also be due to the absence of the attack profile in the knowledge base.

6.7 Miscellaneous Data

Forty-one students responded to the question on the assignment that asked to rate the

approach (see Appendix V). The possible choices were (1) Poor (2) Below Average (3)

Average (4) Good and (5) Excellent. The rating that most students (36.6%) agreed upon

was Good (4). Three students gave the approach a 1 and three gave the approach a 5.

The Likert scale ratings chosen by the students suggest that most students thought the

approach was a good approach to detecting security vulnerabilities in a system design via

 85

ts left the answer blank) and 23 (56.1%) responded with “yes” indicating that the

attack profiles were u to be helpful. As a

as will

e discussed in Chapter7.

collected ased on similarity. Thirty students

gave comments and 11(35.5%) responded with complaints about not knowing enough about

the functi of the comp the system worked. This in s used to

recognize at an impor about this One must

assume t if the compo esent in the design, th rity attack

 possible even in the absence of detailed information about the system and its

nts is necessary

for

were in determining if an attack was present. Forty-one students responded to the question

(two studen

seful. Therefore, attack profiles were considered

result, attack profiles were used for each regular expression in the validation study,

b

Student comments that were requested to support their rating of the approach were also

in the assignment and are grouped together b

ons onents and how formation wa

 th tant assumption must be made approach.

hat nent sequences are pr en the secu

is

components. Not all stakeholders will know the characteristics of components in the

system, and thus some attack paths will be based on blind knowledge of the subject matter.

Therefore, when one attempts to find an attack path, he or she must consider the

components to be “black boxes” and assume that only the sequence of eve

the attack to occur.

The final piece of data for this assignment was the number of questions about the

assignment after the initial lecture. Only one question was asked and was asked on the

student message board; the only question asked was “[f]or column 2, do we need to include

all the component sequences we can find for a regular expression or will one possible path

be fine?” The question was answered with “find as many attack paths as possible.”

 86

This chapter provides information on the methodology used to create the validation

study and then discusses the results in the order of the metadata of the study, valid and

invalid answers, unique attack paths, regular expression not in the design, and

miscellaneous data.

ssions should be used in the

ass

looking for multiple paths

for 20 regular ex were selected

t

7.0 Validation Study

7.1 Validation Study Methodology

The validation study (see Appendix XII) was an advanced version of the feasibility study,

done in a similar fashion. Validation was performed in the next semester (Spring 2004) in

the same undergraduate security course with a different class of students. The assignment

was done completely on the Internet using WebAssign (http://webassign.com) to host the

questions and assignment description and a personal web page to display the system

design. Students electronically submitted their answers once the 14 day deadline was

reached.

During the time of the feasibility study, time records were used to track the amount of

time required for the following phases of the study: vulnerability collection and analysis,

assignment creation, collection and analysis of student answers. These times were used to

scope the validation study and set a predetermined number of vulnerabilities to analyze and

the number of regular expressions to subject to the study. The conclusions of the time

records indicated that a subset consisting of 30 regular expre

ignment. This value also reflected student patience and motivation that was observed in

the comments of the study. Students seemed to become wary of

pressions in a system design. The 30 regular expressions

on how well they fit a high-level design. Most of the regular expression abstracted from the

databases could be represented with high-level system designs, and thus there were no

 87

ther

ular expressions that were used, 16 were

the

 of the assignment was an advanced version of the design from the feasibility

assignm esses,

s (component number 25), Proxy

erver + Firewall (component number 24), HTTP/FTP Server (component number

23), (component number 19),

(component number 11), (component number 12). However, some students

instead replaced the hyphen with either spaces or commas to look like “16 15 14 12” or

enough regular expressions to apply to a possible second design that could show the o

types of low-level vulnerabilities. Of the thirty reg

 same as the feasibility study. The regular expressions that were not in the design from

the feasibility study were again tested under the same conditions. Also adding to the

complexity

ent. The design included 14 more components to explicitly show proc

buffers, firewalls, routers, and to test the student’s ability to find attack paths that are

obscured with added complexity in the design. The instructions to the students were the

same for the validation study. However, 11 (25.6%) students that partook in the feasibility

study complained about n knowing the role of the components in the design. Thus, the

students in the validation study were told to black box the components and assume that the

attack was achievable if the components existed.

7.2 Validation Study Results

The intention of the validation study was to assess whether students can read a

knowledge base of regular expressions and find their instances, if any, in a system design.

Students were asked to follow the “<component number>-<component number>” template

to make all answers look like the example attack path, “26-25-24-23-19-11-12,” given in the

homework assignment. This attack path represents a sequence of seven components in the

design; Client (component number 26), Web Page

S

HTTP Message & Header Handler Access Log

Hard Drive

“26,25,24,23,19,21”. The student’s attack paths were organized based on the resource that

 88

able 25: Student Answers for One Regular Expression. Students found seven different attack paths
sented by regex1.

Attack Path Valid Attack Path Number

Finds

was attacked and the path in which the attack occurred (see Appendix VIII). For example,

for regex1,

(Client+)(Server+)(Log+)(Hard Drive+),

students gave a combined total of seven different attack paths as shown in Table 25.

T
in the system design that were repre

 Number of Student

1 1-2-3-11-12 30 (52.6%)
2 16-15-14-11-12 37 (64.9%)
3 17-18-25-24-23-19-11-12 9 (15.8%)
4 17-18-25-24-27-28-21-19-11-12 1 (1.8%)
5 1-7-8-9-10-14-11-12 4 (7.0%)
6 26-25-24-23-19-11-12 29 (50.9%)
7 26-25-24-27-28-21-19-11-12 4 (7.0%)

The different attack paths submitted for each regular expression were arbitrarily assigned an

Attack Path Number for identification purposes. Each student answer for an attack path is

3-11-12,” then there are 30 instances of the same attack path being found.

Students did not describe the same attack path with the same sequence of component

included extra components beyond the regular expression to elaborate how the attack

occurred. For example, regex1 included two different component sequences submitted by

students that identified the same attack path. In the component sequence “26-23-11-12,”

one student did not include the intermediate components Web Pages (component number

25), Proxy Server + Firewall (component number 24), or HTTP Message and Header

Han

of the attack path. The remaining 44 students that

termed an “instance” of that attack path. So, since 30 students each gave the answer “1-2-

numbers. Some students did not include all the components in the path, while others

dler (component number 19). However, the data flow arrows in the design make the

excluded components obvious parts

 89

fo

These inconsistencies were tolerated if the attack path was still obvious in showing how the

 Drive. The Web Pages, Proxy Server + Firewall and HTTP

Mes

erability to be exploited. Students were

instructed to include all intermediate components for clarification and thus Web Pages is

cluded in their answers. The attack path, “26-25-24-23-19-11-12,” is valid because it

ssive number of requests to a web

server to cause idered equally

If an attack path seemed unreasonable, but an assumption was supplied that justified

ubclass)(Overridde ethods)

is as g if assumptions were not

given. Each student assumed that the system was b nd that secured methods

und this attack path included all the components to look like “26-25-24-23-19-11-12.”

attack occurred.

The attack paths students reported for each regular expression were checked for

validity. Valid attack paths were based on the plausibility that the attack could occur along

the sequence of components answered by the students. If the components in the design

supported the actions necessary to achieve the attack, then the answer was considered

valid. For example, in regex1, 45 (78.9%) of the class entered “26-25-24-23-19-11-12” a

Client1, makes a request via the Web Pages, which goes through the Proxy

Server + Firewall to the HTTP/FTP Server, followed by processing in the HTTP

Message & Header Handler, which enters the request to the Access Log and is saved

on the Hard

sage & Header Handler components are not listed in the regular expression

because they are not necessary for the vuln

in

includes components that have been specified from the abstractions in the regular

expression, and because a client can make an exce

 consumption of the hard drive. All valid answers were cons

viable because each attack path led to a vulnerable resource.

the attack, then the answer was accepted. For example, regex29,

(Class)(S nSecuredM ,

sociated with 13 answers that would have been marked wron

uilt in Java a

 90

were that did not implemen easures. Regex29 is a

spec later Section 6.6.

If an attack was not obvious because the student did not clearly show how the

components could achieve the attack profile, then the answer was classified as invalid. In

regex15,

(User)(ReadUserInput)(EnvironmentVariableWrite)(Buffer),

four students answered “1-2-3-4-30,” two entered “1-2-3-4-30-4-3-1,” and one entered “1-3-

4-30.” Each of the three paths are organized in the same group because they are the same

attack path with varying degrees of included components. These answers were marked

invalid because students did not write any assumptions about how the attack would occur.

These paths do not explain why an Authentication Server would accept a username and

password for environment variables. Also, answers that had only one component such as

“3” were marked invalid because none of the attacks involve only one component.

The findings in this study are presented in the following order: metadata of the class,

valid and invalid answers, unique paths, student answers to regular expressions that were

not existent in the design, and miscellaneous data. The regular expressions discussed in

these results refer to the regular expression in the knowledge base for the assignment.

Note that the regular expressions are numbered differently and are also numbered

differently than the final knowledge base in Section 5.0.

7.3 Metadata

There were 70 students in the class, but only 58 completed the assignment. One

student’s answers were eliminated because the student only answered one of the 30 regular

expression answers. Unlike the cla ly 100%

 overridden with methods t security m

ial case and is discussed

ss in the feasibility study, there was approximate

attendance to the lecture in which the assignment was presented. Students were asked to

record the amount of time they spent on the assignment. On average, students spent 114.2

 91

he ten added regular expressions and 14 new components in

e system design.

s responded with a sum of 2067 valid answers that were grouped into 137

different valid attack paths. Students also entered 155 instances of where an abstract

attack path was r organized into 45 invalid attack paths.

These results represent an approximately 3:1 ratio of valid to invalid attack paths and a 13:1

ratio of valid to of

va attac are more likely to

d rrect proportionally

similar to that of valid

ttack path more often t udents

finding wrong answers, then this would indicate the approach is not viable for finding

security vulnerabilities. However, the large numbers indicate that a security engineer will

face the challenge of analyzing a large number of attack paths and approximately 30% of

them may be false positives. These data also show that regardless of attack path validity,

students can effectively instantiate abstract regular expression into specific attack paths in

the system design. Lastly, these data suggest that there is more potential for attacks as

crease in complexity, and that students are more likely to find more attacks given

a larger know

The highest freque d by students was 55

(96.5%), which occurred for regex11,

minutes on the assignment, which was based on 55 students that gave valid times. The

range of time to complete the assignment was 20 to 480 minutes (see Appendix VII). The

average time difference between the feasibility and validation studies was 60.5 minutes.

The increase time was due to t

th

7.4 Valid and Invalid Answers

The student

epresented in the design and were

invalid instances found. The large difference between the number

lid/invalid k paths and number of instances suggests that students

iscover co answers than incorrect answers. These differences are

the feasibility and thus provide further support that student can find a

a han invalid attack paths. If there were large quantities of st

systems in

ledge base of attack profiles.

ncy of instances for a valid attack path reporte

(User)(CommandLineArgumentEntry)(Application)(ApplicationServer*)

 92

(CommandLineArgumentBufferWrite)

regex12 in the feasibility study, wh 00% of the class fi same attack path.

In both studies, the students found the same path albeit the lidation study is

technologically m both studies, there alternative attack

paths that studen scenario

 in Figure 9.

with the sequence “1-7-8-9-10-9-8-6”. Regex11 in the validation study is the same as

ich had 1 nding the

path in the va

ore advanced. Also in were two

ts found, but these paths had less than four instances each. The

that the attack profile describes is probably more familiar to the students than other attacks,

making it easier to distinguish among the many components in the design. Also, the

components in the regular expression are not explicitly shown in the design (as with the

feasibility study), representing that students can instantiate an attack path from an abstract

description.

 An analysis to determine the number of valid attack paths found per regular expression

was performed and is represented

7
6

4
3

6
7

4

2

5
4 4

5 5 5
6 6

4

7 7
6

4

2

5

2 2
3

2

4

2

4

6

8

N
o

at
h

9

1

0

10

. P
s

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
RegEx

Figure 9: Number of Valid Attack Paths per Regular Expression.

The average number of attack paths per regular expression is 4.6. The regular expression

with the most number of valid attack paths is regex23,

 93

Valid Attack Path Number of Student Responses

(Client)(SearchString)(Server)(Data)(Client),

 with nine, which describes clients requesting information from servers (see Table 26).

Table 26: Regular Expression with the Most Number of Valid Attack Paths.

26-25-24-23-24-25-26 20 (35.1%)
16-31-15-14-15-31-16 18 (31.6%)
17-18-25-24-23-19-22-21-20-19-23-24-25-26 7 (12.3%)
17-18-25-24-23-24-25-18-17 7 (12.3%)
1-7-8-9-10-14-10-9-8-6-8-7-1 4 (7.0%)
1-7-8-9-10-14-15-31-16 3 (5.3%)
26-25-24-23-23-24-25-18-17 1 (1.8%)
16-31-15-14-10-9-8-7-1 1 (1.8%)
26-25-24-23-19-13-14-15-31-16 1 (1.8%)

This is the case because there are many combinations of clients potentially polling servers

The regular expression with the least number of valid attack paths is regex29,

(Class)(Subclass)(OverriddenSecuredMethods).

hirteen students assumed that the vulnerability may occur anywhere in the system that is

plemented with Java and overrode secured methods. Regex29 was represented as

ths.

Regex29 is a special condition w lly not put i

discuss ection 7.6.

Fig hows that were produced for each

regular expression.

in the design.

T

im

regex20 in the feasibility study, which also had the fewest number of valid attack pa

here it was purposefu n the design. This is

ed further in S

ure 10 s the frequency of invalid attack paths

0
1 1

0 0
1

0
1 1 1

0 0
0

2
2 2 2

1 1

4
3 3 3 34

0 0

7

1

1 3 5 7 9 11 13 15 17 19 21 23 25
N

o.
 P

at
hs

1
0

4

9

6

8

10

27 29

RegEx

Figure 10 xpression.

The average number e regular

expression with the lar 9 ine. Regex29 is

identic 20 in pattern of it being the regular

expres g the lds. discussed

in Section 7.6. The regular expressions with the least invalid attac tances

found, are shown in Table 27.

able 27: Regular Expressions without Invalid Attack Paths. Six regular exp ad zero invalid
ttack paths.

Expression

: Number of Invalid Attack Paths per Regular E

of invalid attack paths per regular expression is 1.7. Th

 with ngest number of invalid attack paths is regex2

al to regex the feasibility study, and continues the

sion havin highest invalid yields and lowest valid yie This will be

k paths, zero ins

T ressions h
a

Regular

ID

Regular Expression

Regex1 (Client)(Server)(Log)(Hard Drive) + + + +

Regex6 (Client)(HTTPServer)(HTTPMessageHandler)(Log)
(Sysadmin)(LogEntryRead)

Regex8 (User)(UserNameEntry)(PasswordEntry)(Server)
(AuthenticationRoutine)

Regex11 (User)(CommandLineArgumentEntry)(Application)
(ApplicationServer*)(CommandLineArgumentBufferWrite)

Regex17 (Client)(Hyperlink)(Server)
Regex18 (Client+)(Server+)(MessageHeaderHandler+)
Regex19 (Client)(Server)(DaemonProcess)(Hard Drive)
Regex20 (UserInput)(IntegerEvaluationRoutine)
Regex30 (Client)(Application)

(EnvironmentVariable + ProgramVariable + URLParam)
(MaliciousIncludeFile)

 94

 95

s.

This is the same percentage of regular expressions not producing any invalid answers in the

feasibility st r expressions (regex1, regex6, regex9) are the same

b e two answers. Therefore, with the appropriate

degree of abstrac d to id le

a s in sy

Regex28,

(Client)((FTPCommand + MailCommand) + OSCommand)
er

had the most ins roup id attack

paths (see Table

T egular tta ex28 had 29
in ks pa

Nu

Thus, students did not submit any invalid answers for nine (30%) of the regular expression

udy. Only three regula

etween th experiments that had zero invalid

tion, regular expressions appear to be use entify multiple vulnerab

ttack path stem designs.

(FTPServer + Mailserver))(Buff),

ed into our invaltances of invalid attacks, 29, which were g f

28).

able 28: R Expression with the Most Number of Invalid A ck Paths. Reg
valid attac ths grouped into four attack paths.

Invalid
Attack Path of Studen

Res

mber
t

ponses
26-25-24-27-28-21 24 (42.1%)
1-7-8-9-10-14-11-3-4-30 3 (5.3%)
16 15 14 12 1 (1.8%)
16-31-15-14-13-19-21-29-23-24-27-28-21 1 (1.8%)

Twenty-four of these instances involved component number 27 (email server) instead of

component number 23 (the FTP server).

together and may o students who gave a cursory glance to the

design. This is e med the assignment online

where viewing the aper. ining instances

w ible u ho

along the specified components.

The average the feasib es

(3.8 and 4.6) are verage numbers of invalid attack paths (1.9 and 1.7).

 The FTP and email servers are located closely

 have thus been confusing t

specially likely for those students who perfor

 design was more difficult than it was on p The rema

ere infeas nless assumptions were provided to clarify w an attack would occur

numbers of valid attack paths i

 the a

n both ility and validation studi

 larger than

 96

T ngs s n instantiate abstract pressions into

concrete attack path also represent that one regular

xpression can effectively encode multiple attack paths in a system design.

Several of the invalid answers are due to the complexity of the design. Some students

thought that if they simply found a path of components that could be connected by arrows

a valid attack path. This error is also due to the lack of experience and knowledge of the

system. This was typically found when the attack paths involved the process required with

an email server, followed by a call to the GET request routine, and then to the HTTP

Message and Header Handler. This sequence of events is not valid, but the student

considered this because the attack mapped to the regular expression with extra

intermediate components. The GET, POST and message header handler were all handled

by one component in the feasibility study and thus the misconception did not occur with the

simpler design. Therefore a flaw in approach proposed in this thesis is that the stakeholders

must have a good understanding of how components interact to know how data flows and

where attacks may occur.

th for a particular regular expression (see

able 29).

hese findi uggest that students ca regular ex

s in a system design. These data

e

and started and ended with what was described in the regular expression, then the path was

server requests. For example, “26-25-24-27-28-21-20-19-11-12” shows that a client uses

7.5 Unique Attack Paths

In the validation study, 17 (12.4%) of the valid attacks paths had only one instance. That

is, there was only one instance of an attack pa

T

 97

attack paths for 12 regular expressions.
Table 29: Regular Expressions with Valid Unique Attack Paths. Students found 17 valid unique

Regular
Expression

ID

Regular Expression Valid Unique
Attack Path

Regex1 (Client)(Server)(Log)
(Hard Drive

+ + +

11-12
+)

17-18-25-24-
27-28-21-19-

Regex3 (Client)(HTTPSever)(GetMethod)
(GetMethodBufferWrite)(Buffer)

1-7-8-9-10-14-
12-19-20-12

Regex5 (Client)(Server) 1-7-8-9-10-9-8-
(HeaderFieldBufferWrite)(Buffer) 6

Regex6 (Client)(HTTPServer)
(HTTPMessageHandler)(Log)

ryRead)

1-7-8-9-10-14-
13-19-11

(Sysadmin)(LogEnt
 26-25-24-27-

1-29-23-
1-5-11

28-2
19-1

Regex7 (Client)(HTTPServer)
(PostMethod)(HTTPContent-
LengthHeaderValue)
(HTTPMessagePayloadLength)
(ServerConnectionState)

16-15-14-13-
19-23-29-21-
19-22

Regex9 (Client)(SQLInput)(Server)
(WebApp)(Database)(Data)(Buffer)

1-7-8-9-10-14-
10-9-8-6
26-25-24-23-
19-13-14

Regex10 (Client)(SQLInputfield)(Server)
(WebApp)(Database)(CPU)

17-18-25-24-
-14 23-19-13

Regex11 30 (User)(CommandLineArgumentEntry) 1-2-3-4-
(Application)
(ApplicationServer*)
(CommandLineArgumentBufferWrite)

1-2-3-1-7-8-9-
10-14-13

Regex13
(Injection of malicious HTML
tags, script in URL, Form)
(Cookie*)(FormData*)
(ServerVariables*)(VictimClient)

16-31-15-14-
13-14

(MaliciousClient)

Regex17 (Client)(Hyperlink)(Server) 1-7-8-9-10-14
Regex20

(IntegerEvaluationRoutine)
17-18-25-24-
27-28-21

(UserInput)

26-25-24-23-
23-24-25-18-17
16-31-15-14-
10-9-8-7-1

Regex23
(Data)(Client)
(Client)(SearchString)(Server)

26-25-24-23-

31-16
19-13-14-15-

 98

Although regex23 had the most number of unique attacks, there were only three and is a

result of creative students finding ways of one client attacking another client in the system

design. Regex29, not present in the design, had no valid unique attack paths. Regex1 in

unique attack paths. The low percentage of valid unique attack paths suggests that

students usually find the same valid attack paths.

Twenty-six (57.8%) of the invalid attacks path ly found once for 14 regular

expressions (see Table 30

Table 30: Regular Expressio ue Attack Paths. Twenty-six invalid unique attack
paths are associated with 14 submitted by students.

Regular
Expression

pression Invalid Unique
Attack Path

the validation study is the same as regex1 in feasibility study, which had two instances of

s were on

).

ns with Invalid Uniq
 regular expressions

ID

Regular Ex

1-10-19-12 Regex2 (Client+)(Server+)
(MessageHeaderHandler+)
(Hard Drive+)

1-2-3-11-12-19-12

Regex3 (Client)(HTTPSever)(GetMethod)
(GetMethodBufferWrite)(Buffer)

23-25-24-23-19-20-21

17-18-25-24-27-28-21-
22-19-20-21
1-7-8-9-10-14-13-19-
22-21

Regex4 (Client)(HTTPServer)(PostMethod)
(Variable + Filename + Header)
(Buffer)

1-2-3-11-12-13-19-22-
21
1-7-8-9-10-14-13-
23-29-21-22-19

19-

Regex7

(ServerConnectionState) 26-25-24-27-28-21-29-

 (Client)(HTTPServer)(PostMethod)
(HTTPContent-LengthHeaderValue)
(HTTPMessagePayloadLength)

23-19-22-19
Regex9 (Client)(SQLInput)(Server)(WebApp)

(Database)(Data)(Buffer)
26 25 24 12

3 4 5 6 Regex10 (Client)(SQLInputfield)(Server)
(WebApp)(Database)(CPU) 16 15 14 28 24

Regex13 (MaliciousClient)(Inj
malicious HTML tags, script in

ection of

URL, Form)
(Cookie*)(FormData*)
(ServerVariables*)(VictimC

17-18-25-24-23-29-12

lient)

 99

able 30 (continued) T

14-11 Regex14 (User)(Computer)(SyslogFunction)
(Log) 1-7-8-6

Regex21 (Client)(HTTPServer) 26-25-24-27-28
(GetRequestRoutine)

Regex22 (User)(GUI/Browser)(BookMarkSave) 1-2-3-4-30
(BookmarkBufferWrite)

23-28-21
14-19-21

Regex24 (Client)(SearchString)(Server)

17-18-25-24-27-28-21
(Data)(Client)

Regex27 (Client)(RequestMessage)(Router) 16 15 14 12
(CPU)

16 15 14 12 Regex28 (Client)
((FTPCommand+MailCOmmand)+
(OSCommand)(FTPServer+
Mailserver))
(Buffer)

16-31-15-14-13-19-21-
29-23-24-27-28-21

13-19-22
17-18-25-24-23-19-21
19-20-19-22

Regex29 (Class)(Subclass)
(OverriddenSecuredMethods)

13-13-13

Regex29 may be associa answers because it

was not in the design. This was also true for r the feasibility study, which

presented the same attack. However, regex22, also not shown in the design, had only

one invalid unique path. Regex22 and regex29 will be discussed further in Section 7.6. The

high percentage of invalid unique attack paths suggest that regular expressions are clear

enough to students so that many students will not find the same wrong answer. Also, the

percentages of valid and invalid unique answers represent that students are more likely to

find invalid unique attacks than valid unique attacks.

The percentages of unique answers between the feasibility and validation assignments

are similar; 16% and 12.4% for valid attacks and 72.2% and 57.8% for invalid attacks. This

suggests that students are more likely to agree on valid attack paths than invalid attack

paths. The security engineer’s role is facilitated by the number of paths that stakeholders

consistently find. If an attack path is unique, it is more probable that the attack path is

ted with the largest number of invalid unique

egex20 in

re

 100

s also depends on the number of stakeholders on the project. A larger number of

takeholders will generate a higher probability of attacks that are agreed upon and thus a

higher probability of accuracy in finding attacks.

incorrect, but his/her judgment must determine the validity. The number of occurrences of

attack path

s

7.6 Regular Expressions Not Represented in the Design

Two regular expressions, regex22 and regex29,

(User)(GUI/Browser)(BookMarkSave)(BookmarkBufferWrite) and

(Class)(Subclass)(OverriddenSecuredMethods),

were purposefully inserted into the knowledge base that were not represented in the system

design to determine if students accurately found components in the design that matched the

components in the regular expression. Answers that were left blank or were explicitly

indicated as not existing in the design were analyzed. Figure 11 show the number of

students that indicated a regular expression was not in the design.

2 2
3

2 2 2
3

2
3

2
0

3 3
2

3
2 2

3 3

0

4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

RegEx

N
o.

 S 4 4 4 4 4 4

2

12

t
t

5
6

5

10

6
6
8

10

ud
en

s

Figure 11: Number of Students Indicating that the Regular Expression was not in the Design.

Thus, only one regular expression, regex12,

(Client)(HTMLPage)(Server)(Hard Drive),

 101

 the design. As mentioned in Section 7.4, there were

larg

stu

Invalid Number

had no students saying it was not in

e numbers of invalid attack paths for regular expressions not shown in the design and a

relatively small number of valid attack paths that were accepted for the regular expressions

not intended to be in the design. This trend is similar to that of the feasibility study.

The regular expression

(Class)(Subclass)(OverriddenSecuredMethods)

was represented by regex29 was purposefully not shown in the high level design to

determine if students accurately found components in the design that matched the

components in the regular expression. Ten (17.5%) students reported the regular

expression as not present in the design. As with regex20 in the feasibility study, 14 (32.6%)

students was the maximum number of “not in design” responses of all the regular

expressions. Therefore, although a low percentage of the class recognized that the regular

expression was not represented in the design, it still has the highest incidence of all regular

expression of students declaring it as being not in the design.

Regex29 produced the most number of unique invalid attacks, most number of invalid

attacks, and was among the fewest valid attacks in both studies suggesting that when

dents do not understand a regular expression, they still try to find it in the design.

Twenty-two invalid answers were found and placed into nine different attack paths for

regex29 (see Table 31).

Table 31: Regular Expression with the Most Number of Invalid Attack Paths. Regex29 was
associated with the most number (nine) of invalid attack paths.

Attack Path of Student
Responses

31-31-31 1 (1.8%)
13-19-22 1 (1.8%)
17-18-25-24-23-19-21 1 (1.8%)
19-20-19-22 1 (1.8%)
26-25-24-23-24-25-26 3 (5.3%)
16-31-15-14-13-12 7 (12.3%)

 102

13-13-13 1 (1.8%)
10-9-8-6-8-9-10 3 (5.3%)
1-7-8-9-10 4 (7.0%)

There were five unique attack paths suggesting that students were uncertain about how this

attack could occur in the design. However, ten (17.5%) students made generalized

assumptions about how the regular expression could be applied to the system and thus their

answers were accepted and all classified under one path. There were four invalid unique

attacks and zero valid unique attack paths.

The regular expression

represented by regex22 was another example of a regular expression not existing in the

design. However, students found two valid attack paths with a total of 43 instances (see

Table 32).

Attack Path of Student

(User)(GUI/Browser)(BookMarkSave)(BookmarkBufferWrite)

Table 32: Valid Attack Paths found for Regex22.

Valid Number

Responses
26-25-24-23-19-21 36 (63.2%)
17-18-25-24-23-19-21 7 (12.3%)

ven though it does not directly correspond with the

reg

Similar to the feasibility study, where 95.3% of the students found attack paths, a regular

expression not intended to be in the design was found by the majority of the students. This

represents students were able to look at components in a system design and creatively

suggest how such an attack may occur, e

ular expression. Three different invalid attack paths were found with a frequency of five,

five and one (see Table 33).

 103

Attack Path of Student

Table 33: Invalid Attack Paths found for Regex22.

Invalid Number

Responses
16-31-15-14-13-19-21 5 (8.8%)
1-7-8-9-10-14-13-12-21 5 (8.8%)
1-2-3-4-30 1 (1.8%)

Six students (

10.6% of the class) indicated that the regular expression was not represented

in t

7.7 Miscellaneous Data

Fifty-one students responded to the question that asked to rate the approach (see

Appendix IX). The possible choices were (1) Poor (2) Below Average (3) Average (4) Good

and (5) Excellent. The rating that most students (39.0%) agreed upon was 3. The Likert

scale ratings chosen by the students suggest that most students thought the approach was

an average approach to detecting security vulnerabilities in a system design via regular

expressions Student comments were also collected in the assignment and are grouped

he design. There was one invalid unique attack path and zero valid unique attack paths.

Twenty-eight of the regular expressions were intended to be found in the design.

Twenty seven of the 28 regular expressions (96.4%) were incorrectly labeled as not existing

in the design and the average number of students indicating this was 3.0. For regex1

through regex10, two students had suspiciously similar data and did not answer the first ten

questions that asked to find component sequences for the first ten regular expressions in

the knowledge base, thus these answers were considered not in the design and presumable

corrupted the data. Only one of the regular expressions, regex12, had no students saying it

was not in the design. In both the feasibility and validation studies, there were not any

instances of any regular expressions that existed in the design that were not found by

students.

 104

tog

. There was one student

who

ether based on similarity (see Appendix X). Six (10.5%) students remarked that there

was not enough information to perform the assignment, which is approximately the same

percentage as in the feasibility study. The approach attempts to allow non-experts

contribute to the identification process and so conceals details about the components in the

design, and thus formal descriptions about the components were not made available to the

students. In industry, it is unlikely that all stakeholders will know all the details about

components and thus they must research the component to know its identity.

Fourteen (24.6%) of the students wrote positive feedback on the approach, which is

much more than the four (9.3%) students in the feasibility study

 did not understand regular expressions 28, 29 and 30 and so indicated this in his

answer; there were not any students in the feasibility study that did not understand the

regular expressions. The students also asked 13 questions regarding the assignment and

can be seen in Appendix XI. Also, there were 49 paths that were entered as answers that

were meaningless indicating that students were not interested in the assignment. This did

not occur in the feasibility study.

 105

r expression to occur. If a

ma

8.0 Conclusions and Future Work

Security vulnerabilities were analyzed in the SecurityFocus, Help Net Security, Secunia

and SecurityTracker databases to study what attacks occur today and the techniques used

to exploit vulnerabilities. The information in the databases describes how a vulnerability

could be exploited in a software application. An analysis of the attack descriptions in the

databases reveals the events that transpired and what software components were used in

the attack. The events of an attack were formalized by using regular expressions to

encapsulate the steps that an attacker took in the exploitation of the software application.

This thesis suggests that regular expressions can be used to represent signatures of known

attack paths for the identification of security vulnerabilities in future applications. The

method of identifying attacks is achieved via matching a sequence of components in a

system design that permits the sequence of events in the regula

tch exists, then the vulnerability that was exploited in the known attack may exist in the

application being analyzed. Performing the matching in the design phases increases

security awareness at the beginning of the software process and encourages risk

management to begin early so a security team can determine how to fortify their application.

The development of a system design to identify vulnerabilities allows for a graph-based

representation of an attack. A pictorial paradigm is consistent with the graph-based

approaches proposed by Schneier [17] and McDermott [14] that illuminate different attack

scenarios in a system. However, a diagram alone may not be sufficient to thoroughly

describe the attack for those partaking in the security assessment. Therefore, text-based

profiles are included with each regular expression to explain the events in the attack.

Documentation to supplement graphs is also the idea of Moore et al. [15] with the inclusion

of attack profiles associated with attack patterns and Steffan and Schumacher [19] with their

contribution of a ATiki that allows for collaborative efforts in the description of places and

 106

k nets. The availability of both a graph- and text-based description of an

tudents, with at most a limited security background, finding excessively more valid attacks

paths hat do not have a security engineer accessible to

ttack trees, attack patterns, attack profiles, attack nets, or ATikis to integrate security into

e design phase of their software process. Each approach requires that a human read the

archite d then determine if the architecture matches an attack profile, attack tree, or

s in

A total of 409 vulnerabilities from the SecurityFocus, Help Net Security, Secunia and

37

ould be used in the regular expression-oriented approach. Fifty-three regular expressions

were c t six

ulnerabilities. The regular expressions were classified into the following six categories:

buffer remote executions, CPU/hard drive consumptions,

ttacks.

The re vulnerabilities can be abstracted to form regular expressions

formation

supplie

 fe

a syste oth studies students gave more correct answers than incorrect

many a und representing the high degree of correlation

transitions in attac

attack alleviates the requirements of a strong security background as evidenced by

s

than invalid ones. Vendors t

evaluate their systems have the alternative of using the approach in this thesis or the use of

a

th

cture an

attack net. The matching process of regular expressions to sequences of component

the design facilitates the identification of vulnerabilities for the stakeholders by indicating

exactly what components need to be searched.

SecurityTracker vulnerability databases were studied in this thesis. Of this sample, 2

c

reated, and on average one regular expression was able to abstrac

v

overflows, malformed data,

privilege escalation errors, and a miscellaneous category that contained dissimilar a

sults indicated that

although the process of producing regular expression is bounded by the in

d in the vulnerability databases.

A asibility and validation study tested students’ ability to match a regular expression to

m design. In b

answers of how an attack path could match with a regular expression. Also, students found

ttack paths that other students fo

 107

esign. This is contradictory evidence that regular expressions do accurately represent

ttack paths in the design. More elaborate profiles and perhaps WikiWikiWebs to allow for

collabo

ecessary to prevent incorrect identification of attack paths represented by regular

expres

he ity to

softwar ftware coding flaws excluding the

onfiguration, encryption, and networking errors mentioned in Chapter 5. Thus, this

approach is intended to be used in tandem with different approaches that address other

dimensions of security. Secondly, the vulnerabilities studied are limited to known

vulnerabilities and do not show what new types of attacks are possible nor vulnerabilities

that may be specific to the system under security analysis. Furthermore, vulnerability

identification is limited to the comprehensiveness of a knowledge base containing known

attacks. A knowledge base with few attack entries does not have the same potential as a

knowledge base of many attack entries. A comprehensive knowledge base that contains

every vulnerability or attack ever discovered is an insurmountable task. However,

stakeholders involved with the security of an organization can update their knowledge base

by entering the new vulnerabilities described in security databases such as SecurityFocus.

Also, security vulnerabilities found within an organization that are not in the knowledge base

should also be added to the collection to retain the tacit knowledge of the individual(s) that

discovered the attack. Ideally, knowledge bases among different organizations could be

merged to account for more attack paths, but such a method of sharing is not likely because

of the proprietary information that may be released in the description of the attack.

between a regular expression and a sequence of components in a system design. Most of

the invalid answers resulted from students trying to find attack paths that were not in the

d

a

ration on attack paths as suggested by Steffan and Schumacher [19] may be

n

sions.

T re are several limitations that accompany this thesis’ approach to applying secur

e. First, the vulnerabilities studies pertain to so

c

 108

The accuracy of the regular express files is dependent on the genuineness

of the information in the four vulnerability databases studied. The validity of the data

entered in the databases depends on thorough research and testing on vendor software by

those who discover and enter the vulnerability. Due to most of the software applications

being proprietary, the information that explicitly describes the vulnerabilities is confidential.

Thus, the information in the vulnerability descriptions is, in general, limited to high-level

descriptions limiting most regular expressions to be high-level representations of attack

paths. Low-level detail in the regular expressions could aid software engineers in the

identification of subtle flaws in their code that could be exploited.

The approach presented in this thesis relies on an organization to use designs at the

beginning of the software process. Since not all organizations and software processes

require designs, this approach can be quickly ruled out of any attempt for security

assessment in those organizations. Also, software applications that have volatile

requirements are likely to change the design, and hence the security evaluation may need

repeated, especially for low-level regular expressions. However, regular expressions that

represent high-level attack paths may endure requirements changes alleviating the need for

a secondary security evaluation. And, the technique assumes that all components in the

design are made from scratch. That is, third party software that will be used in the future

application may already have security built into their applications. Applying regular

expressions to fortified components may thus be a wasted attempt of identifying security

vulnerabilities.

The identification of false positives in this study represent common problem with security

approaches today. False positives were found in feasibility and validation studies because

the regular expression was not accurate enough to describe an attack path and because

stake holders did not find valid attack paths. False positives reduce the efficacy of the

ions and pro

 109

approach when all the attack paths submitted by stakeholders are submitted for review for a

risk management team. Each p consumes time that could have

ve. A large number of false positives would certainly slow

the ty process of the ap o results from

the feasibility and validation studies indicated the number of false positives is much less

than the true mbers of false positives a threat to the system,

but so are large numbers of regular expressions. It may seem infeasible to have a large

number of reg n even higher number of attack paths that they map to.

Perfect secur d thus an organization needs to determine

what impendi loss. The responsibility of securing a software

a manageme am that de mines what

vulnerabilities must be secured and are acceptable.

o professionals, computer sc uate

stu show if th roach is effective for those

i i cience backg s, and if the proach can

b ence. Also, further work to is needed to

e erabilities educe the number of false

po pressions components in the system

design conse vulnerabilities and grants more time for risk

m more accu identify atta paths, thus

d urity anal Lastly, test es between

each component in the system design need to be created to restrict the flow of data and

provide acce cks. Successful implementations of the

re dient and rate method of identifying

s re ftware pplications.

ath that is a false positive

been used to assess a true positi

 securi and question the validity proach. F rtunately, the

positives. Not only are large nu

ular expressions and a

ity is likely to be unattainable an

ng attacks will cause the most

pplication should thus be given to a risk

what losses

nt te ter

The appr ach should further be validated with ience grad

dents, and business students. The results will e app

ndividuals w th security expertise, computer s round ap

e performed without a background in computer sci

xpedite the identification process of finding vuln and r

sitives. Automating the matching of regular ex

rves the time for identifying

to the

anagement. An automated process may also rately ck

ecreasing the number of false positives in a sec ysis. cas

ss control to prevent the atta

commended future work may offer an expe accu

ecurity vulnerabilities in futu so a

 110

1. Alberts, C. and Dorofee, A. OCTAVE Criteria, Version 2.0, CMU/SEI, Pittsburgh, PA,
2001.

2. Arbau Windows of Vulnerability: A Case Study

s

3. File Accesses. Computing

System 52.

4 m ics. Prentice-Hall, New Jersey, 1981.

5 ement, IEEE Computer Soc

6 ttern-Dir Protection E luation,

I a del Rey, .
7 i /c2.com/cgi/wiki?WelcomeVisitors), 1994.

8 n F. Brebn ntrol and Se rity of

eman/Computer Science Press,
Septe

9 urity & Comm O'Reilly & Associates,

10. e

tion, Design and Implementation of
t s.

11. Howa . Microsoft Corporation, Redmond,

12. Jürjen : Extending UML for Secure Systems Development, Fifth

deling La e - the Lang ge and its
applic

13. Kuma Matching Model for Misuse Intrusion

Detec dings of the 17th National Computer Security Conference, (West
e

14. McDe k Net Penetration Testing. In The 2000 New Security Paradigms

nd, Sept. ACM SIGSAC, ACM
Press

1 M nger. Attack m ng for inform on security

and su SEI-2001-TN-001, CMU Software
Engin , March 2001.

9.0 References

gh, W.A., Fithen, W.L. and McHugh, J.
Analy is. IEEE, 3 (12). 52-59.

Bishop, M. and Dilger, M. Checking for Race Conditions in
s, 9 (2). 131-1

. Boeh , B. Software Engineering Econom

. Boehm
1989.

, B.. Tutorial: Software Risk Manag iety Press,

. Carlstedt, J., Bisbey II, R. and Popek, G. Pa ected va
USC

. Cunn
nformation Sciences Institute, Marin
ngham, W. The WikiWikiWeb. (http:/

 1975

. Fites,
Comp

Philip E., Martin P. J. Kratz, and Ala
uter Information Systems, W. H. Fre
mber. 1988.

er, Co cu

. Garfinkel, S. and Spafford, E. Web Sec
ebastapol, 1997.

erce.
Inc., S

Helm
Tree a

r, G., Wong, J., Slagell, M., Honavar, V., Miller, L. and Lutz, R. Software Fault
nd Colored Petri Net Based Specifica
-Based Intrusion Detection-SyAgen stem

rd, M. and LeBlanc, D. Writing Secure Code
2003

s, J.: UMLsec
International Conference on the Unified Mo

ations, 2002
nguag ua

r, S. and Spafford, E., A Pattern
tion. in Procee

Lafay tte, 1994), Purdue University.

rmott, J. Attac
Workshop (Ballycotton, County Cork, Irela

, pp.15-22.
2000),

5. A. P. oore, R. J. Ellison, and R. C. Li
rvivability. Technical Note CMU/

eering Institute

odeli ati

 111

6. Schneider, F. Trust in Cyberspace. National Academy Press, Washington, DC, 1998.

1 g Security Th Dr. Dobb's
Media

1 ail-arch 98/Oct/0093 l) 1999.

19. Jan S Schumacher, Collaborative Attack Modeling, Proceedings of the

A g (SAC adrid, Spain p. 253-259,
ACM P , 2002

2 ng Secure Software to Avoid Sec ty Problems

the Ri 2002.

2 g. In M. Abrams, S. Jajodi

Podel ated Collection of Essays, pp. 269-296.
Los A

1

7. Schneier, Bruce, Attack Trees: Modelin
, Inc. December 1999.

reats. Journal, CMP

8. Spafford, E., (http://www.landfield.com/isn/m

teffan, Markus

ive/19 .htm

2002 CM Symposium on Applied Computin
ress, ISBN: 1-58113-445-2

'02, M), p

0. Viega, J. and McGraw, G. Buildi
ght Way. Addison-Wesley, Boston,

 How uri

1. Weissman, Clark (1995). Penetration Testin
l (Eds.),Information Security: An Integr
lamitos, CA:IEEE Computer Society Press.

a, and H.

 112

Appendices

 113

Appendix I

lection

T

Published ulnerability
Bug

ID
Associat

Regular
Expressi

Vulnerability Col

able 34: Vulnerability Collection

Date SecurityFocus Title of
V

traq ed

on
14-Feb-04

erability
9660 1 Microsoft IIS Unspecified Remote

Denial Of Service Vuln
3-Sep-98 Multiple Vendor MIME Header DoS

Vulnerability
1760 2

29-Aug-99 rprise Server GET 1024 3 Netscape Ente
Request Vulnerability

17-Jan-00 GET 949 3 InetServ 3.0 WebMail Long
Request Vulnerability

14-Dec-00 2114 3 Watchguard SOHO Firewall
Oversized GET Request DoS
Vulnerability

21-Feb-02 Nombas ScriptEase:WebServ
Edition GET Request Den

er
ial of

Service Vulnerability

4145 3

17-Apr-02 eporting Center GET 4531 3 WebTrends R
Request Buffer Overflow
Vulnerability

8-Jul-02 MyWebServer GET Request
Overflow Vulnerability

Buffer 5184 3

16-Sep-02 ng GET Request

5710 3 PlanetWeb Lo
Buffer Overflow Vulnerability

30-Sep-02 alformed GET Request 5831 3 WN Server M
Buffer Overflow Vulnerability

12-Oct-02 er Long Get Request 5954 3 My Web Serv
Denial Of Service Vulnerability

7-Nov-02 Run IIS ISAPI Filter 6122 3 Macromedia J
GET Request Buffer Overrun
Vulnerability

12-Nov-02 GET Request Buffer 6162 3 Light HTTPD
Overflow Vulnerability

16-May-03 7619 3 Snowblind Web Server HTTP GET
Request Buffer Overflow
Vulnerability

23-Jun-03 ased Web Server 8017 3 Armida Datab
Remote GET Request Denial Of
Service Vulnerability

14-Jul-03 Twilight WebServer GET Request
Buffer Overflow Vulnerability

8181 3

25-Sep-03 Athttpd Remote GET Request Buffer
Overrun Vulnerability

8709 3

 114

f Service

Table 34 (continued)
8-Oct-03 Centrinity FirstClass HTTP Server

Long Version Field Denial O
Vulnerability

8793 3

3-Nov-03 ET
r Overrun Vulnerability

8965 3 IA WebMail Server Long G
Request Buffe

24-Jan-04 TinyServer Multiple Vulnerabilities 9485 3
26-Jan-04

ap Overflow
9500 3 InternetNow ProxyNow Multiple

Stack and He
Vulnerabilities

28-Jan-04 ote
nial Of

9519 3 Loom Software SurfNow Rem
HTTP GET Request De
Service Vulnerability

28-Jan-04

9522 3 Macromedia ColdFusion MX Form
Fields Denial of Service Vulnerability

17-Feb-04 nial of
bility

9678 3 Vizer Web Server Remote De
Service Vulnera

1 r GET 7-Feb-04 KarjaSoft Sami HTTP Serve
Request Buffer Overflow
Vulnerability

9679 3

17-Feb-04 KarjaSoft Sami HTTP Server GET
Request Buffer Overflow
Vulnerability

9679 3

23-Feb-04 T Remote
lnerability

9721 3 Avirt Voice HTTP GE
Buffer Overrun Vu

23-Feb-04 er 9722 3 Avirt Soho Server HTTP GET Buff
Overrun Vulnerability

23-Feb-04 Avirt Soho Web Service HTTP GET
Buffer Overrun Vulnerability

9723 3

5-Mar-04 Seattle Lab Software SLMail Pro
Remote Buffer Overflow Vulnerability

9809 3

27-Jul-02 D-Link Print Server Long Post
Request Denial Of Service
Vulnerability

 5330 4

25-Nov-02 Pserv HTTP POST Request B
Overflow Vulne

uffer
rability

6242 4

31-Jul-03 McAfee ePolicy Orchestrator Agent
POST Request Heap Overflow

16

Vulnerability

83 4

22-Jan-04 gent
ffer Mismanagement

9476 4 McAfee ePolicy Orchestrator A
HTTP POST Bu
Vulnerability

9-Feb-04 M Post 9607 4 Sambar Server Results.ST
Request Buffer Overflow
Vulnerability

26-Feb-04 ge Web Server 9750 4 Dell OpenMana
POST Request Heap Overflow
Vulnerability

 115

T
26-Feb-04 ver

st Heap Overflow
9750 4

able 34 (continued)

Dell OpenManage Web Ser
POST Reque
Vulnerability

29-Oct-03 server HTTP

8925 5 TelCondex SimpleWeb
Referer Remote Buffer Overflow
Vulnerability

1-Nov-03 BRS WebWeaver httpd `User-Agent`
Remote Denial of Service
Vulnerability

 8947 5

1
g

8-Feb-04 Metamail Multiple Buffer
Overflow/Format String Handlin
Vulnerabilities

9692 5

24-Feb-04 Apple QuickTime/Darwin Streaming
Server DESCRIBE Request Remote
Denial of Service Vulnerability

9735 5

27-Feb-04 UUDeview MIME Archive Buffer
Overrun Vulnerability

9758 5

8-Nov-03 Liteserve Server Log Handling Buffe
Overflow Vuln

r
erability

0 6

24-Sep-03 NullLogic Null HTTPd Remote Denia
Of Service Vulnerabili

l
ty

8697 7

16-Feb-04 RobotFTP Server Username Buffer
Overflow Vulnerability

9672 8

27-Feb-04 rd Heap Overrun 9756 8 Calife Passwo
Vulnerability

1-Mar-04 9776 8 Calife Local Memory Corruption
Vulnerability

23-Jan-04 ction 9481 9 QuadComm Q-Shop SQL Inje
Vulnerabilities

4-Feb-04 All Enthusiast ReviewPost PHP
Multiple SQL Injection Vulnerabilitie

Pro
s

9574 9

6-Feb-04 le Database 9587 9 Multiple Orac
Parameter/Statement Buffer
Overflow Vulnerabilities

9-Feb-04 PHP-Nuke Public Message SQL
Injection Vulnerability

 9615 9

10-Feb-04
ty

9630 9 PHPNuke Web_Links Module
Remote SQL Injection Vulnerabili

11-Feb-04 n 9639 9 BosDev BosDates SQL Injectio
Vulnerability

16-Feb-04 SQL
erability

9674 9 YABB SE Quote Parameter
Injection Vuln

18-Feb-04 Ecommerce Corporation Online
Store Kit Multiple SQL Inje

ction

Vulnerabilities

9687 9

 116

19 L
Table 34 (continued)

-Feb-04 PunkBuster Database Remote SQ
Injection Vulnerability

9697 9

28-Feb-04 r Board Search.PHP 9766 9 Invision Powe
"st" SQL Injection Vulnerability

1-Mar-04 SQL 9771 9 IGeneric Free Shopping Cart
Injection Vulnerability

1-Mar-04 YABB SE Multiple Input Validation
Vulnerabilities

 9774 9

3-Mar-04 hopping Cart Multiple 9799 9 SpiderSales S
Vulnerabilities

9-Mar-04 jection 9830 9 Confixx DB Parameter SQL In
Vulnerability

18-Jul-02 SQL Injection Legalities Dev
Archive

10

4-Mar-04 Sun Solaris Multiple Unspecifi
Local UUCP Buffer Overrun
Vulnerabilities

ed

9837 11

15-Jul-03 Citadel/UX Unlimited Biography Data
Denial Of Service Vulnerability

8192 12

7-Nov-02 Summit Computer Networks Lil'
HTTP Server pbcgi.cgi Cross Site
Scripting Vulnerability

5211 13

31-Dec-03 iple
ripting Vulnerabilities

9336 13 GNU Mailman Admin Page Mult
Cross-Site Sc

21-Jan-04 Darkwet Network WebcamXP Cross
Site Scripting Vulnerabi

-
lity

9465 13

21-Jan-04 Mephistoles HTTPD Cross-Site
Scripting Vulnerability

 9470 13

22-Jan-04 Acme thttpd CGI Test Script C
Site Scripting Vulnerabilit

ross-
y

9474 13

23-Jan-04 Novell Netware Enterprise Web
Server Multiple Vulnerabilities

9479 13

23-Jan-04 QuadComm Q-Shop Cross Si
Scripting Vulnerabilities

te 9480 13

24-Jan-04 Server isqlplus Cross- 9484 13 Oracle HTTP
Site Scripting Vulnerability

26-Jan-04 Error 9488 13 IBM Net.Data db2www
Message Cross-Site Scripting
Vulnerability

26-Jan-04 Herberlin BremsServer Cross-Site
Scripting Vulnerability

9491 13

26-Jan-04 Cherokee Error Page Cross Site
Scripting Vulnerability

9496 13

26-Jan-04 Xoops Viewtopic.php Cross-Site
Scripting Vulnerability

9497 13

27-Jan-04 WebLogic Server and Express HTTP
TRACE Credential Theft Vuln

erability

9506 13

 117

T
27-Jan-04 wise Webaccess Cross 9508 13

able 34(continued)

Novell Group
Site Scripting Vulnerability

28-Jan-04 ISkeleton.dll 9516 13 BRS WebWeaver ISAP
Cross-Site Scripting Vulnerability

29-Jan-04 orm HTML Injection 9526 13 CPAN WWW::F
Vulnerability

3-Feb-04 orks Lil'
I HTML

5115 13 Summit Computer Netw
HTTP Server URLCount.CG
Injection Vulnerability

3-Feb-04 PHPX Multiple Vulnerabilities 9569 13
4-Feb-04 Scripting 9575 13 RXGoogle.CGI Cross Site

Vulnerability.
9-Feb-04

ility
9605 13 PHP-Nuke 'Reviews' Module Cross-

Site Scripting Vulnerab
9-Feb-04 JShop E-Commerce Suite xSearch

Cross-Site Scripting Vulnerability
 9609 13

9-Feb-04 le Cross-Site 9613 13 PHP-Nuke 'News' Modu
Scripting Vulnerability

10-Feb-04 9625 13 MaxWebPortal Multiple Input
Validation Vulnerabilities

12-Feb-04 9649 13 JelSoft VBulletin Cross-Site Scripting
Vulnerability

13-Feb-04 P Cross-
ty

9656 13 JelSoft VBulletin Search.PH
Site Scripting Vulnerabili

18-Feb-04 WebCortex WebStores2000
Error.ASP Cross-Site Scripting
Vulnerability

9693 13

19-Feb-04 9700 13 LiveJournal HTML Injection
Vulnerability

23-Feb-04 EZBoard Font Tag HTML Injection
Vulnerability

9725 13

23-Feb-04 SS HTML Injection 9727 13 LiveJournal C
Vulnerability

24-Feb-04 nology FlexWATCH 9739 13 Seyeon Tech
Server Cross-Site Scripting
Vulnerability

26-Feb-04 ail Webmail System 9748 13 CalaCode @m
Cross-Site Scripting Vulnerability

26-Feb-04 ror
ting

9755 13 Symantec Gateway Security Er
Page Cross-Site Scrip
Vulnerability

28-Feb-04 ostorder"
ripting Vulnerability

9765 13 PHPBB ViewTopic.PHP "p
Cross-Site Sc

1-Mar-04 Invision Power Board Multiple Cross-
Site Scripting Vulnerabilities

9768 13

 118

-
Table 34 (continued)

1-Mar-04 IGeneric Free Shopping Cart Cross
Site Scripting Vulnerability

9773 13

1-Mar-04 602Pro LAN Suite Web 9777 13 Software602
Mail Cross-Site Scripting
Vulnerability

1-Mar-04 602Pro LAN Suite Web 9781 13 Software602
Mail Installation Path Disclosure
Vulnerability

2-Mar-04 eries 9791 13 NetScreen SA 5000 S
delhomepage.cgi Cross-Site
Scripting Vulnerability

3-Mar-04 SandSurfer Multiple Undisclosed
Cross-Site Scripting Vulnerabilities

9801 13

5-Mar-04 s VirtuaNews Multiple 9812 13 VirtuaSystem
Module Cross-Site Scripting
Vulnerabilities

8-Mar-04 VirtuaSystems VirtuaNews 9819 13
Admin.PHP Cross-Site Scripting
Vulnerability

9-Mar-04 op Parameter
ty

9822 13 Invision Power Board P
Cross-Site Scripting Vulnerabili

1-Mar-04 te Syslog Format 10438 14 JFTPGW Remo
String Vulnerability

2
ocal Buffer

7-Jan-04 Apple Mac OS X
TruBlueEnvironment L
Overflow Vulnerability

9509 15

27-Jan-04
lnerabilities

9511 15 IBM Informix Multiple Local Privilege
Escalation Vu

5-Feb-04 SGI IRIX Libdesktopicon.so Local
Buffer Overflow Vulnerability

9547 15

21-Feb-04 LGames Lbreakout2 Multiple
Environment Variable Buffer
Overflow Vulnerabilites

9712 15

27-Feb-04 9764 15 xboing Local Buffer Overflow
Vulnerabilities

19-Feb-98 e archive 16 Netscape 4 DoS/Possibly exploitabl
buffer overflow

20-Feb-04
 Buffer Overflow

9701 17 Xfree86 Direct Rendering
Infrastructure
Vulnerabilities

14-Jul-98
Vulnerability

164 19 Malicious Java applet security flaw in
ClassLoader

4-Feb-04 Multiple RealPlayer/RealOne Player
Supported File Type Buffer Overrun
Vulnerabilities

9579 20

7-Feb-04
Remote Buffer Overflow Vulnerability

9602 20 The Palace Graphical Chat Client

 119

Table 34 (continued)
10-Nov-02 Monkey HTTP Server Invalid POST

Request Denial Of Service
Vulnerability

6096 21

2-Dec-02 libSieve Header Name Buffer
Overrun Vulnerability

6294 21

19-Dec-02 CUPS Negative Length HTTP
Header Vulnerability

6437 21

21-Nov-03 Imatix Xitami Post Request Header
Remote Denial Of Service
Vulnerability

9083 21

4-Feb-04 Web Crossing Web Server
Component Remote Denial Of
Service Vulnerability

9576 21

3-Dec-03 ote Denial
nerability

9029 22 GNU Zebra / Quagga Rem
of Service Vul

4-Feb-04 GNU Radius Remote Denial Of
Service Vulnerability

9578 22

11-Jun-03 r Multiple GET
vice

7873 23 ArGoSoft Mail Serve
Requests Denial Of Ser
Vulnerability

12-Feb-04 al Of 9651 23 Crob FTP Server Remote Deni
Service Vulnerability

26-Feb-04 ystem
ervice

9749 23 CalaCode @mail Webmail S
POP3 Remote Denial of S
Vulnerability

26-Jan-04 ry
or Vulnerabilities

9489 24 Gaim Multiple Remote Bounda
Condition Err

16-Feb-04 Microsoft Internet Explorer Bitmap
Processing Integer Overflow
Vulnerability

9663 24

24-Feb-04 ost Recon Game 9738 24 RedStorm Gh
Engine Remote Denial Of Service
Vulnerability

2-Mar-04 Width Argument 9793 24 Coreutils DIR
Integer Overflow Vulnerability

3-Mar-04
le Integer

9797 24 QMail-QMTPD RELAYCLIENT
Environment Variab
Overflow Vulnerability

8-Mar-04 on
bility

9818 24 Network Time Protocol Daem
Integer Overflow Vulnera

17-Dec-98 Microsoft IIS Malformed HTTP Get
Request Denial Of Service
Vulnerability

6789 25

29-Mar-00 3511 25 Xitami Webserver empty GET
request DoS Vulnerability

11-Apr-01
Request DoS Vulnerability

2571 25 Lotus Domino R5 Server GET

 120

et
Table 34 (continued)

8-Jul-02 Working Resources BadBlue G
Request Denial Of Service
Vulnerability

5187 25

29-Jul-02 Abyss Web Server HTTP GET
Request Directory Contents
Disclosure Vulnerability

5345 25

18-Nov-02 alformed 6192 25 Perception LiteServe M
GET Request Buffer Overflow
Vulnerability

17-Mar-03 cy Orchestrator HTTP 7111 25 McAfee ePoli
GET Request Format String
Vulnerability

12-May-03 Pi3Web Malformed GET Request
Denial Of Service Vulnerability

7555 25

12-Jun-03 s GET 7890 25 WebBBS Pro Maliciou
Request Denial Of Service
Vulnerability

19-Jun-03 Power Server Remote GET Reque
Denial of Service Vulnerabi

st
lity

7983 25

19-Jan-04 Pablos FTP Server Unauthorize
Existence Disclosure

d File
Vulnerability

9443 25

2
ersal

0-Jan-04 Anteco Visual Technologies
OwnServer Directory Trav
Vulnerability

9461 25

20-Jan-04 2Wire HomePortal Series Directory
Traversal Vulnerability

9463 25

20-Jan-04 am Webserver 9456 25 AIPTEK NETC
Directory Traversal Vulnerability

20-Jan-04 9517 25 Leif M. Wright Web Blog File
Disclosure Vulnerability

22-Jan-04 9475 25 Netbus Directory Listings Disclosure
and File Upload Vulnerability

24-Jan-04
tory Traversal

9486 25 Borland Webserver for Corel
Paradox Direc
Vulnerability

26-Jan-04 ory
nerability

9493 25 Herberlin BremsServer Direct
Traversal Vul

29-Jan-04 PJ CGI Neo Review Directory
Traversal Vulnerability

9524 25

30-Jan-04 hp 9529 25 PhpGedView Editconfig_gedcom.p
Directory Traversal Vulnerability

30-Jan-04 y 9535 25 JBrowser Browser.PHP Director
Traversal Vulnerability

12-Feb-04 Macallan Mail Solution Web Inte
Authentication Bypass Vulnerabi

rface
lity

9646 25

23-Feb-04 ager Functions Script
File Disclosure Vulnerability

9720 25 phpNewsMan

 121

ersal
Table 34 (continued)

24-Feb-04 Apache Cygwin Directory Trav
Vulnerability

9733 25

24-Feb-04 9742 25 GWeb HTTP Server Directory
Traversal Vulnerability

4-Mar-04 rMail Multiple 9805 25 SmarterTools Smarte
Vulnerabilities

8-Mar-04 Remote Directory 9817 25 PWebServer
Traversal Vulnerability

16-Feb-04 9670 26 ShopCartCGI Remote File
Disclosure Vulnerability

18-Feb-04 File 9689 26 Owl's Workshop Multiple Remote
Disclosure Vulnerabilities

22-Jan-04 EA Black Box Need For Speed
Pursuit 2 Game Client Remote Bu

 Hot
ffer

Overflow Vulnerability

9473 27

16-Feb-04 urge/Purge 9671 27 Freeform Interactive P
Jihad Game Client Remote Buffer
Overflow Vulnerability

1-Mar-04 Volition Red Faction Game Client
Remote Buffer Overflow Vulnerability

9775 27

2-Mar-04 Volition Freespace 2 Game Client
Remote Buffer Overflow Vuln

erability

9785 27

1
e

lnerability

8-Feb-04 Linux Kernel NCPFS ncp_lookup()
Unspecified Local Privileg
Escalation Vu

9691 28

1

9-Feb-04 Zone Labs ZoneAlarm SMTP
Remote Buffer Overflow Vulnerability

9696 29

20-Feb-04 lication/Database

9703 30 Oracle 9i App
Server SOAP XML DTD Denial Of
Service Vulnerability

17-Jun-03 roxy Server Long Get 7954 31 Proxomitron P
Request Remote Denial Of Service
Vulnerability

2 0-Feb-04 PSOProxy Remote Buffer Overflow
Vulnerability

9706 31

23-Feb-04 l GateKeeper 9716 31 Proxy-Pro Professiona
Web Proxy Buffer Overrun
Vulnerability

3 Malformed
uest Denial of

1-Mar-03 Kerio WinRoute Firewall
HTTP GET Req
Service Vulnerability

7245 32

3-Dec-02
r Overflow

6301 33 Multiple Linksys Devices GET
Request Buffe
Vulnerability

28-Feb-03 T 6994 33 USRobotics Broadband-Router GE
Request DoS Vulnerability

 122

1 ilter
Table 34 (continued)

2-Oct-02 SurfControl SuperScout WebF
Malformed GET Request DoS
Vulnerability

5854 34

2 T 4-Apr-03 VisNetic ActiveDefense Multiple GE
Request Denial of Service
Vulnerability

7428 34

3-Dec-03 Linksys WRT54G Router Blank
HTTP GET Request D

enial Of

Service Vulnerability

9152 35

4-Feb-04 l
lnerability

9573 36 TYPSoft FTP Server Remote Denia
Of Service Vu

1 ITE
w

6-Feb-04 RhinoSoft Serv-U FTP Server S
CHMOD Buffer Overflo
Vulnerability

9675 36

20-Feb-04 U
e

9702 36 TYPSoft FTP Server Remote CP
Consumption Denial Of Servic
Vulnerability

26-Feb-04 DTM
nt Buffer

9751 36 RhinoSoft Serv-U FTP Server M
Command Time Argume
Overflow Vulnerability

27-Feb-04 9770 36 ArGoSoft FTP Server Multiple
Vulnerabilities

28-Feb-04 9767 36 Multiple WFTPD Vulnerabilities
2-Mar-04 te_ascii_write() Buffer 9782 36 ProFTPD _xla

Overrun Vulnerability
2-Mar-04 1st Class

emote Buffer Overflow
9794 36 1st Class Internet Solutions

Mail Server R
Vulnerability

23-Jan-04

9482 37 Reptile Web Server Remote Denial
Of Service Vulnerability

1 al 7-Feb-04 TransSoft Broker FTP Server Deni
of Service Vulnerabilities

9680 37

7-Feb-04

9600 38 BolinTech Dream FTP Server User
Name Format String Vulnerability

1-Mar-04
ulnerability

9778 38 Squid Proxy NULL URL Character
Unauthorized Access V

2
w

4-Jan-04 RhinoSoft Serv-U FTP Server MDTM
Command Stack Overflo
Vulnerability

9483 39

5-Feb-04
ial Of Service

9585 39 XLight FTP Server Long Directory
Request Remote Den
Vulnerability

10-Feb-04 9627 39 XLight FTP Server Remote Denial Of
Service Vulnerability

16-Feb-04 FTP Remote 9666 39 ACLogic Cesar
Resource Exhaustion Vulnerability

 123

able 34 (continued)
TP Server Remote Send File 9668 39

T
16-Feb-04 XLight F

Request Denial Of Service
Vulnerability

17-Feb-04 emote Denial Of 9684 39 SmallFTPD R
Service Vulnerability

12-Mar-03
f Service Vulnerability

7073 40 Novell Netware FTPSERV.NLM FTP
GET Denial O

20-Feb-04 Microsoft Windows XP explorer.exe
Multiple Memory Corruption
Vulnerabilities

9707 41

19-Feb-04
ness

9698 42 AOL Instant Messenger Buddy Icon
Predictable File Location Weak

20-Feb-04 s 9709 42 Multiple Outlook/Outlook Expres
Predictable File Location
Weaknesses

20-Jan-04
le Handling Symbolic

9457 43 SuSE Multiple Scripts Insecure
Temporary Fi
Link Vulnerabilities

27-Jan-04 9512 43 IBM Informix Dynamic
Server/Informix Extended Parallel
Server Multiple Vulnerabilities

28-Jan-04 Internet Security Systems BlackIC
PC Protection Upgrade File

E

Permission Vulnerability

9513 43

30-Jan-04 9530 43 GNU LibTool Local Insecure
Temporary Directory Creation
Vulnerability

12-Feb-04 Mailmgr Insecure Temporary File
Creation Vulnerabilities

9654 43

22-Feb-04 Insecure File Creation 9713 43 Synaesthesia
Vulnerability

8-Mar-04 orary
mbolic Link

9816 43 GNU Automake Insecure Temp
Directory Creation Sy
Vulnerability

16-Feb-04 Scan Engine For 9662 44 Symantec AntiVirus
Red Hat Linux Insecure Temporary
File Vulnerabilities

22-Feb-04 Dell TrueMobile 1300 WLAN Syst
Tray Applet Local Privilege
Escalation Vu

em

lnerability

9714 44

20-Jan-04 PHPix Remote Arbitrary Command
Execution Vulnerability

9458 45

31-Jan-04 Leif M. Wright Web Blog Remote
Command Execution Vulnerability

9539 45

23-Feb-04 Confirm E-Mail Header Rem
Command E

ote
xecution Vulnerability

9728 45

 124

e-

rability

Table 34 (continued)
23-Feb-04 RobotFTP Server Remote Pr

authenticated Command Denial Of
Service Vulne

9729 46

26-Jan-04 Kietu Index.PHP Remote File Incl
Vulnerability

ude 9499 47

26-Jan-04 ote Global Variable
y

9490 47 Gallery Rem
Injection Vulnerabilit

29-Jan-04
ent

9523 47 Third-party CVSup Binary Insecure
ELF RPATH Library Replacem
Vulnerability

30-Jan-04 PhpGedView [GED_File]_conf.php
Remote File Include Vulnerability

 9531 47

30-Jan-04 mentaires 9636 47 Laurent Adda Les Com
PHP Script Multiple Module File
Include Vulnerability

11-Feb-04 ezContents Multiple
bility

9638 47 VisualShapers
Module File Include Vulnera

16-Feb-04 9664 47 Voice Of Web AllMyPHP Remote
File Include Vulnerabilities

24-Feb-04
rability

9732 47 Opt-X header.php Remote File
Include Vulne

3-Mar-04 BolinTech Dream FTP Server FTP
Command Format String
Vulnerability

9800 48

2-Mar-04 Lib.PHP 9786 49 Magic Winmail Server LDap
Remote Installation Path Disclosure
Vulnerability

5-Mar-04 Invision Power Board Error Message
Path Disclosure Vulnerability

 9810 49

9-Mar-04 IBM DB2 Remote Command Server
Privilege Escalation Vulnerability

9821 50

27-Jan-04 rnet Explorer CLSID 9510 51 Microsoft Inte
File Extension Misrepresentation
Vulnerability

11-Feb-04 wser CLSID File 9640 51 Opera Web Bro
Extension Misrepresentation
Vulnerability

26-Jan-04 Antologic Antolinux Administrative
Interface NDCR Parameter Remote

Command Execution Vulnerability

9495 52

26-Jan-04 eb HTTP 9494 53 Mbedthis Software AppW
Server Empty Options Request
Denial Of Service Vulnerability

2
re

9-Oct-02 Apache 2 WebDAV CGI POST
Request Information Disclosu
Vulnerability

6065 220

 125

2
Table 34 (continued)

0-Jan-04 NetScreen Security Manager
Insecure Default Remote
Communication Vulnerability

9455 220

26-Jan-04 9492 220 mIRC DCC Get Dialog Denial Of
Service Vulnerability

28-Jan-04 TRR19 Privilege Escalation
Vulnerability

9520 220

2
erability

8-Jan-04 Macromedia ColdFusion MX Security
Sandbox Circumvention Vuln

9521 220

28-Jan-04 s BlackICE

lity

9514 220 Internet Security System
PC Protection blackd.exe Local
Buffer Overrun Vulnerabi

29-Jan-04 Firewall Local
ity

9525 220 Kerio Personal
Privilege Escalation Vulnerabil

30-Jan-04 enial of 9532 220 ChatterBox Remote D
Service Vulnerability

30-Jan-04 FExec Custom Profile 9534 220 Sun Solaris P
Arbitrary Privileges Vulnerability

31-Jan-04 ration 9542 220 BugPort Unauthorized Configu
File Viewing Vulnerability

1-Feb-04 ary
lity

9606 220 Eggdrop Share Module Arbitr
Share Bot Add Vulnerabi

3-Feb-04 Sambar Server Results.STM
Request Buffer

 Post
 Overflow

Vulnerability

9607 220

4-Feb-04 9129 220 Apache mod_python Module
Malformed Query Denial of Service
Vulnerability

4-Feb-04
rivilege Escalation

9570 220 Linux Kernel R128 Device Driver
Unspecified P
Vulnerability

4-Feb-04 plied
ation Vulnerability

9571 220 Apache mod_digest Client-Sup
Nonce Verific

4-Feb-04 FreeBSD NetINet TCP Maximu
Segment Size Remote Denial Of

m

Service Vulnerability

9572 220

5-Feb-04 olver
akage Vulnerability

6116 220 Multiple Vendor libc DNS Res
Information Le

5-Feb-04 Netpbm Temporary File
Vulnerabilities

9442 220

5-Feb-04 GNU LibTool Local Insecure
Temporary Directory Creation
Vulnerability

9530 220

5-Feb-04 ote 9583 220 IBM Cloudscape Database Rem
Command Execution Vulnerability

6-Feb-04 l
lation Vulnerability

9586 220 BSD Kernel SHMAT System Cal
Privilege Esca

 126

ting

Table 34 (continued)
6-Feb-04 Mambo Open Source Itemid

Parameter Cross-Site Scrip
Vulnerability

9588 220

6-Feb-04 9589 220 Cactusoft CactuShop Lite Remote
Arbitrary File Deletion Backdoor
Vulnerability

6-Feb-04 Apache-SSL Client Certificate
Forging Vulnerability

9590 220

6-Feb-04 Joe Lumbroso Jack's Formm
Unauthorized Remote File Uplo
Vulnerability

ail.php
ad

9591 220

6-Feb-04 Linux VServer Project CHRoot
Breakout Vulnerability

9596 220

7-Feb-04 ewall-1
mote

9581 220 Multiple Check Point Fir
HTTP Security Server Re
Format String Vulnerabilities

7-Feb-04 Brad Fears PHPCodeCabinet
comments.php HTML Injection
Vulnerability

9601 220

7-Feb-04 Apache mod_php Global Variables
Information Disclosure Weakness

9599 220

8-Feb-04 dling

9577 220 OpenBSD ICMPV6 Han
Routines Remote Denial Of Service
Vulnerability

8-Feb-04 ssage
al Of Service

9620 220 GNU Mailman Malformed Me
Remote Deni
Vulnerability

9-Feb-04
cal Buffer

erability

8973 220 CDE LibDTHelp
DTHelpUserSearchPath Lo
Overflow Vuln

9-Feb-04 Check Point VPN-1/SecuRemote
ISAKMP Large Certificate
Payload Buffe

 Request
r Overflow Vulnerability

9582 220

9-Feb-04 Multiple Nokia Object Exchange
Protocol Message Remote Denial Of
Service Vulnerabilities

9603 220

9-Feb-04 Nadeo Game Engine Remo
of Service Vulnerability

te Denial 9604 220

9-Feb-04 d 9610 220 ClamAV Daemon Malforme
UUEncoded Message Denial Of
Service Vulnerability

9-Feb-04 ssociates eTrust 9616 220 Computer A
InoculateIT For Linux Vulnerabilities

9-Feb-04 9618 220 Multiple Red-M Red-Alert Remote
Vulnerabilities

10-Feb-04 Microsoft Windows Internet Naming
Service Buffer Overflow Vulnerability

9624 220

 127

formation Disclosure

Table 34 (continued)

10-Feb-04 Multiple Vendor Bluetooth Device
Unspecified In
Vulnerability

9024 220

10-Feb-04 or Mac
n

9632 220 Microsoft Virtual PC F
Temporary File Privilege Escalatio
Vulnerability

10-Feb-04 Microsoft Baseline Security Analyz
Vulnerability Identification Weakness

er 9634 220

10-Feb-04 Samba Mksmbpasswd.sh Insec
User Account Creation Vulnerab

ure
ility

9637 220

1
ommand

0-Feb-04 Platform Load Sharing Facility
LSF_ENVDIR Local C
Execution Vulnerability

7655 220

11-Feb-04 File
k Buffer Overflow

8658 220 Midnight Commander Virtual
System Symlin
Vulnerability

11-Feb-04 le 8911 220 Apache Web Server Multiple Modu
Local Buffer Overflow Vulnerability

11-Feb-04 mulation
ghts Vulnerability

9429 220 Linux Kernel 32 Bit Ptrace E
Full Kernel Ri

1 dary 1-Feb-04 Gaim Multiple Remote Boun
Condition Error Vulnerabilities

9489 220

11-Feb-04 Novell Groupwise Webaccess Cross
Site Scripting Vulnerability

9508 220

1 n 1-Feb-04 Util-Linux Login Program Informatio
Leakage Vulnerability

9558 220

11-Feb-04 128 Device Driver

9570 220 Linux Kernel R
Unspecified Privilege Escalation
Vulnerability

1

rability

2-Feb-04 Sophos Anti-Virus Delivery Status
Notification Handling Scanner
Bypass Vulne

9650 220

12-Feb-04 AIM Sniff Temporary File Symlink
Attack Vulnerability

9653 220

1 uffer 2-Feb-04 Libxml2 Remote URI Parsing B
Overrun Vulnerability

9718 220

12-Feb-04 Sophos Anti-Virus MIME Header
Handling Denial Of Service
Vulnerability

9648 220

16-Feb-04 ry
ity

9673 220 Microsoft Outlook Express Arbitra
Program Execution Vulnerabil

16-Feb-04 DB sdbscan
ty

9661 220 Paul Daniels Signature
Local Buffer Overflow Vulnerabili

17-Feb-04
Weakness

9677 220 YaBB Information Leakage

 128

assword

Table 34 (continued)
17-Feb-04 APC SmartSlot Web/SNMP

Management Card Default P
Vulnerability

9681 220

17-Feb-04 Microsoft Windows XP Help And
Support Center Interface Spoofing
Weakness

9685 220

18-Feb-04 Microsoft Windows
NtSystemDebugControl() Kernel AP
Function Privilege Es

I
calation

Vulnerability

9694 220

18-Feb-04 l execve() Malformed 9695 220 Linux Kerne
ELF File Unspecified Local Denial Of
Service Vulnerability

19-Feb-04 Cisco ONS Platform Vulnerabilities 9699 220
20-Feb-04 9704 220 Oracle9i Lite Multiple Unspecified

Vulnerabilities
20-Feb-04 Oracle9i Database Server

Unspecified Security Vulnerabilities
9705 220

20-Feb-04 am Factor
uption

9708 220 Singularity Software Te
Integer Handling Memory Corr
Vulnerability

21-Feb-04 specified Remote 9711 220 W3C Jigsaw Un
URI Parsing Vulnerability

23-Feb-04
 Vulnerability

9715 220 Samhain Labs HSFTP Remote
Format String

2 4-Feb-04 Multiple Apple Mac OS X Local And
Remote Vulnerabilities

9731 220

24-Feb-04 6B Wireless Router
lity

9740 220 Gigabyte Gn-B4
Authentication Bypass Vulnerabi

24-Feb-04 ment Kit
al Of Service

9741 220 Gamespy Software Develop
Remote Deni
Vulnerability

25-Feb-04
verflow

9743 220 Microsoft ASN.1 Library Multiple
Stack-Based Buffer O
Vulnerabilities

25-Feb-04 nial Of Service 9744 220 FreeChat Remote De
Vulnerability

27-Feb-04 sswd
mpromise Vulnerability

9757 220 Sun Solaris Unspecified Pa
Local Root Co

27-Feb-04 Sun Solaris conv_fix Unspecified
Overwrite Vulnerability

 File 9759 220

29-Feb-04 ignitionServer Global IRC Operator
Privilege Escalation Vulnerability

9783 220

1-Mar-04 Multiple Remote Buffer 9772 220 GNU Anubis
Overflow and Format String
Vulnerabilities

 129

able 34 (continued)
n Tickets Unspecified 9790 220

T
2-Mar-04 Hot Ope

Privilege Escalation Vulnerability
2-Mar-04 d

ation Request Denial
9795 220 SureCom Network Device Malforme

Web Authoriz
Of Service Vulnerability

4-Mar-04 t Reader XFDF File

9802 220 Adobe Acroba
Handler Buffer Overflow Vulnerability

4-Mar-04 ed

ty

9803 220 HP Tru64 UNIX Unspecifi
IPsec/IKE Remote Privilege
Escalation Vulnerabili

5-Mar-04 Seattle Lab Software SLWebMail
Multiple Buffer Overflow
Vulnerabilities

9808 220

9-Mar-04 ere Unspecified 9833 220 IBM WebSph
Security Vulnerability

9-Mar-04 lation 9835 220 IBM AIX Rexecd Privilege Esca
Vulnerability

19-Jan-04 Insecure 9444 221 Multiple JDBC Database
Default Policy Vulnerabilities

20-Jan-04 9460 221 WebTrends Reporting Center
Management Interface Path
Disclosure Vulnerability

20-Jan-04 DUware Software Multiple
Vulnerabilities

9462 221

21-Jan-04 Cisco Voice Product IBM Director
Agent Unauthorized Remote
Administrative Access Vulnerability

9468 221

21-Jan-04 Cisco Voice Product IBM Director
Agent Port Scan Denial Of Service
Vulnerability

9469 221

21-Jan-04 File
urce Exhaustion

9467 221 Microsoft Windows Samba
Sharing Reso
Vulnerability

21-Jan-04
akage Vulnerability

9471 221 Apache mod_perl Module File
Descriptor Le

2 e

2-Jan-04 Native Solutions TBE Banner Engin
Server Side Script Execution
Vulnerability

9472 221

2 zed
rability

2-Jan-04 Sun Solaris modload() Unauthori
Kernel Module Loading Vulne

9477 221

23-Jan-04 9478 221 Finjan SurfinGate FHTTP Restart
Command Execution Vulnerability

26-Jan-04 r Self-
der Vulnerability

9487 221 Microsoft Windows XP Explore
Executing Fol

29-Jan-04 Clearswift MAILsweeper For SMTP
RAR Archive Denial Of Servic
Vulnerability

e
9556 221

 130

able 34 (continued)
D mksnap_ffs File System 9533 221

T
30-Jan-04 FreeBS

Option Reset Vulnerability
6-Feb-04

nerability
9138 221 Linux Kernel do_brk Function

Boundary Condition Vul
6-Feb-04 Linux Kernel do_mremap Function

Boundary Condition Vulnerability
221 9356

9-Feb-04 Shaun2k2 Palmhttpd Server Remote
Denial of Service Vulnerability

221 9608

9-Feb-04 Microsoft Internet Explorer
LoadPicture File Enumeration
Weakness

9611 221

9-Feb-04 ws XP HCP URI 9621 221 Microsoft Windo
Handler Arbitrary Command
Execution Vulnerability

10-Feb-04 Device 9032 221 Nokia Bluetooth
Unauthorized Access Vulnerability

10-Feb-04 et Explorer Shell: 9628 221 Microsoft Intern
IFrame Cross-Zone Scripting
Vulnerability

10-Feb-04 Microsoft Internet Explorer Double-
Null URI Denial Of Service
Vulnerability

1 9629 22

12-Feb-04 XFree86 Unspecified Vulnerability 9655 221
12-Feb-04 9652 221 XFree86 CopyISOLatin1Lowered

Font_Name Buffer Overflow
Vulnerability

13-Feb-04 Microsoft Internet Explorer
Unspecified CHM File Processing

ecution

9658 221

Arbitrary Code Ex
Vulnerability

17-Feb-04 Ipswitch IMail Server Remote LDAP
Daemon Buffer Overflow
Vulnerability

9682 221

18-Feb-04 Linux Kernel do_mremap Function
VMA Limit Local Privilege Escalation
Vulnerability

9686 221

18-Feb-04 Linksys WAP55AG SNMP
Community String Insecure
Configuration Vulnerability

9688 221

18-Feb-04 Linux Kernel Vicam USB Driver
Userspace/Kernel Memory Copying
Weakness

9690 221

21-Feb-04 Jabber Software Jabber Gadu-Gadu
Transport Multiple Remote Denial Of
Service Vulnerabilities

9710 221

25-Feb-04 Mozilla Browser Zombie Document
Cross-Site Scripting Vulnerability

9747 221

 131

Table 34 (continued)

25-Feb-04 MTools MFormat Pr
Vulnerability

9746 221 ivilege Escalation

26-Feb-04 PerfectNav Malformed URI Denial Of
Service Vulnerability

9753 221

26-Feb-04 eXtremail Authentication Bypass
Vulnerability

9754 221

27-Feb-04 Microsoft Internet Explorer Cross-
Domain Event Leakage Vulnerability

9761 221

27-Feb-04 FreeBSD Unauthorized Jailed
Process Attachi

9762 221
ng Vulnerability

1-Mar-04 Motorola T720 Phone Denial Of 9779 221
Service Vulnerability

5-Mar-04 Norton AntiVirus 2002 ASCII Control
Character Denial Of Service
Vulnerability

9811 221

6-Mar-04 Norton AntiVirus 2002 Nested File
AutoProtect Bypass Vulnerability

9814 221

6-Mar-04 Apple Safari Large JavaScript Array
Handling Denial Of Service
Vulnerability

9815 221

9-Mar-04 Microsoft MSN Messenger 9828 221
Information Disclosure Vulnerability

9-Mar-04 Apache Mod_Access Access Control
Rule Bypass Vulnerability

9829 221

9-Mar-04 Apache Mod_SSL HTTP Request 9826
Remote Denial Of Service

221

Vulnerability
9-Mar-04 Confixx Perl Debugger Remote

Command Execution Vulnerability
9831 221

9-Mar-04 F-Secure SSH Server Password
Authentication Policy Evasion
Vulnerability

9824 221

9-Mar-04 WU-FTPD restricted-gid
Unauthorized Access Vulnerability

9832 221

9-Mar-04 IBM DFSMS/MVS Tape Utility
Unspecified Vulnerability

9834 221

9-Mar-04 Microsoft Outlook Mailto Parameter
Quoting Zone Bypass Vulnerability

9827 221

5-Feb-04 SqWebMail Authentication Response
Information Leakage Weakness

9541 222

5-Feb-04 Crossday Discuz! Cross Site
Scripting Vulnerability

9584 222

11-Feb-04 HP-UX NLSPATH Environment
Variable Format String Vulnerability

8985 222

 132

Table 3
27-Ja

4 (continued)
n-04 TCPDump ISAKMP Decoding

Routines Denial Of Service
Vulnerability

9507 223

7-Fe

bility

b-04 Multiple Vendor Network Device
Driver Frame Padding Information
Disclosure Vulnera

6535 223

16-Feb-04 Computer Associates eTrust
e Detection

9665 223
Antivirus Malicious Cod
Bypass Vulnerability

17-Feb-04 Snort Signature Mislabeling
Weakness

9683 223

24-Feb-04 Digital Reality Game Engine Remote
Denial Of Service Vulnerability

9736 223

25-Feb-04 Alcatel OmniSwitch 7000 Series
Security Scan Denial Of Service
Vulnerability

9745 223

26-Feb-04 Internet Security Systems Protocol
Analysis Module SMB Parsing Heap
Overflow Vulnerability

9752 223

27-Feb-04 Apple Mac OS X Apple Filing
Protocol Client Multiple
Vulnerabilities

9763 223

2-Mar-04 Nortel Wireless LAN Access Point
2200 Series Denial Of Service
Vulnerability

9787 223

2-Mar-04 SonicWall Firewall/VPN Appliance
Multiple ARP Request Handling
Vulnerabilities

9789 223

2-Mar-04 BSD Out Of Sequence Packets
Remote Denial Of Service
Vulnerability

9792 223

4-Mar-04 Cisco Content Service Switch
Management Port UDP Denial Of
Service Vulnerability

9806 223

6-Mar-04 NFS-Utils rpc.mountd Denial Of
e Vulnerability

9813 223
Servic

9-Mar-04 Microsoft Windows Media Services
Remote Denial of Service

9825 223

Vulnerability
27-Jan-04 BEA WebLogic Operator/Admin

Password Disclosure Vulnerability
9501 224

27-Jan-04 BEA WebLogic Server and Express
SSL Client Privilege Escalation
Vulnerability

9502 224

27-Ja WebLogic Server/Express 9503 224 n-04 BEA
Potential Administrator Password
Disclosure Weakness

 133

Table 3

27 9505 224
4 (continued)

-Jan-04 BEA WebLogic Incorrect Operator
Permissions Password Disclosure
Vulnerability

27-Jan-04 B
Vulnerability

9528 224 odington Uploaded File Disclosure

28-Jan-04 Inlook Unauthorized User Password 9527 224
File Access Vulnerability

30-Ja 9537 224 n-04 JBrowser Unauthorized Admin
Access Vulnerability

31 onse

9541 224 -Jan-04 SqWebMail Authentication Resp
Information Leakage Weakness

31-Jan-04 Aprox Portal File Disclosure
Vulnerability

9540 224

4-Feb-04 RealOne Player SMIL File Script
Execution Variant Vulnerability

9378 224

7-Feb-04 OpenJournal Authentication
Bypassing Vulnerability

9598 224

10-Feb-04 Caucho Technology Resin Source
Code Disclosure Vulnerability

9614 224

10-Feb-04 Caucho Technology Resin Directory
Listings Disclosure Vulnerability

9617 224

16-Feb-04 mnoGoSearch UdmDocToTextBuf 9667 224
Buffer Overflow Vulnerability

23-Feb-04 Platform Load Sharing Facility EAuth
Component Buffer Overflow

9719 224

Vulnerability
23-Feb-04 Platform Load Sharing Facility EAuth

Privilege Escalation Vulnerability
9724 224

24-Feb-04 Apple Mac OS
String Memory Disclosu

 X PPPD Format
re

9730 224

Vulnerability
24-Feb-04 Working Resources BadBlue Server 9737 224

phptest.php Path Disclosure
Vulnerability

2-Mar-04 Symantec Firewall/VPN Appliance 9784
Cached Plaintext Password
Vulnerability

224

4-Mar-04 DAWKCo POP3 with WebMAIL
Extension Session Timeout
Unauthorized Access Vulnerability

9807 224

9-Mar-04 LionMax Software Chat Anywhere
User IP Address Obfuscation
Vulnerability

9823 224

23-Feb-04 nCipher Hardware Security Module
Firmware Secrets Disclosure
Vulnerability

9717 225

 134

28-Jan-04 OracleAS TopLink Mapping
Workbench Weak Encryption
Algorithm Vulnerability

9515 226

Table 34 (continued)

10-Feb-04 EvolutionX Multiple Remote Buffer
Overflow Vulnerabilities

9631 11, 8

13-Feb-04 Sami FTP Server Multiple Denial Of
Service Vulnerabilities

9657 39, 40

28-Jan-04 DotNetNuke Multiple Vulnerabilities 9518 9, 13
14-Feb-04 Multiple ASP Portal Vulnerabilities 9659 9, 13
16-Feb-04 EarlyImpact ProductCart Multiple

Vulnerabilities
9669 9, 13

17-Feb-04 Ecommerce Corporation Online
Store Kit More.PHP Multiple
Vulnerabilities

9676 9, 13

23-Feb-04 XMB Forum Multiple Input Validation 9726 9, 13
Vulnerabilities

4-Mar-04 Multiple Vendor HTTP Response 9804 a report
Splitting Vulnerability

27-Ja le Mac OS X Operating
m Component Vulnerabilities

9504 see 9509 n-04 Multiple App
Syste

 0 = Not enough information 22
 specific to vendor 221 =
 d the attack 222 = Did not understan
 223 = networking
 224 = Does not fit this approach
 225 = hardware vulnerability
 226 = encryption

 135

Appendix II

Feasibility Assignment

New attacks to software may not be predictable, but a software team should not permit
recurrences of old attacks in new software. Many of the vulnerabilities in this assignment
are repeated (in some cases dozens of times) in the Bugtraq database
(http://www.securityfocus.com). By acknowledging that a system design contains the same
vulnerable component sequences in previous software applications, developers can be
warned about possible attacks in their future code. This assignment encourages security to
be built into the software application instead of being added at the end of the software
process as an afterthought.

The following terms and background information will be useful for the assignment.
Terms
1. Security policy - formal statement of the rules by which people who are given access to
an organization's technology and information assets must abide [4].

2. Access policy (a subcomponent of a security policy) - access rights and privileges to
protect assets from loss or disclosure by specifying acceptable use guidelines for users,
operations staff, and management. It should provide guidelines for external connections,
data communications, connecting devices to a network, and adding new software to
systems [4].

3. Security – From the terms 1 & 2, security can be defined as enforcing the rules defined in
a security policy that describes access to resources. A security breach occurs when a
component maliciously or undesirably accesses a resource [1].

Background
The OCTAVE framework created by the Software Engineering Institute (SEI) at Carnegie
Mellon University suggests that all stakeholders in a software application should be involved
in evaluating security risks. It is therefore necessary for software vulnerabilities to be
recognized by developers, security experts, marketers, and customers. In this way, non-
experts of a system (including developers) should be able to quickly predict security
vulnerabilities at the onset of the software process. One approach is to define error patterns
that are used to find vulnerabilities in a system. This assignment will be used to evaluate
the human-readable aspect of representing security vulnerabilities with regular expressions
(regex for short). Regexs are utilized because they can be adapted into a programmable
form for automation and because they attempt to be environment/language independent [2].

Directions
Twenty vulnerable component sequences have been abstracted into regular expressions to
conceptualize the access paths used in known attacks. Each path contains at least one
access control violation that risks the use of a resource in the system. Determine what
access control violation scenarios are achievable in the given system design.

1. Search the system design for the string (i.e. the sequence of components) that is
defined by each regular expression listed in Column 1 of Table 1.

2. Enter your findings in the blank table cells. In Column 2, write down the number
associated with each component in the sequence path (e.g. 1-2-3) that corresponds
to the regular expression (there may be more than one string in the design for a

 136

given regular expression). Document any assumptions about the system you think
are necessary to qualify your answer in Column 3. Your assumptions would, in

ractice, be considered in the access policy (not given). Not all strings may be
ent in th d m s the s The last five
 of Col p ve e at l scenario

 acce ola the on a hint to
rin

pressio
Each regex represents a sequence of events that are invol etween
components. For example, (Clien +)(Hard Driv f client
requests, followed by a series o ollowed b pdates,
followed by a series of disk writes.

Example
Servers often log each request a user makes into an access log
implemented, an attacker could send millions of requests to th the hard
drive with access log entries. The primary components involve he client,
server, access log and hard drive. The vulnerable compone
regular expression (Client+)(Server+)(Log+)(Hard Drive+). The hows
that Client 1(component #14) can make requests to the Web Server (#12) via the web

 T Service Client equest rou is re ing the
and payloads of a the request of the t routine

e information into the Ac ess Log (# to rive (#7).
Therefore, the sequence o compone the matches
(Client+)(Server+)(Log+)(Hard Drive) is #14, #13, #12, #11, #6, #7 (14-13-12-11-6-7).
Components #13 and #11 are intermediate components not shown in the regex because

pping stones in lved in the attack. The database environment with
 #9, #6, #7 (10-9 -7) reflect t gula

t without the web mponents, #13 and #11. How
2-6-7? Is this feasible? If yo ption that

a user (or script) can log into the authentication server millions ping an
intrusion detection alarm and proper software checks are not in rability

mber that this approach takes place in the design phase (before coding
ny assumptions an be made about how the system will be implemented.

s:
1. The regexs are abstract and can therefore be fulfilled i Server

implies Web Server or Database Server)
2. Some regexs will be straightforward and others will req Software

 o not often sho many imp leve o document any

p
pres e design an ultiple attack may exploit ame string.
cells
of the
ans e

umn 5 are an o
ss con i

tional, creati
tion. Use

xercise th
 informati

asks for a potentia
 in Column 4 as trol v

olumn 5. w g C

Interpreting a Regular Ex n

t
ved with data flow b
e+)(Server+)(Log +) shows a series o
y a series of log u

. If the server is not properly
e server and flood
d in the attack are t
nts are represented by the
given system design s

f server actions, f

pages (#13). he R tine (#11) sponsible for process
server. The reques
red on the Hard D
 design that

HTTP headers
enters th

ll s made
c 6), which is s
f
+

nts in

they are only s
components #10
vulnerability), bu
about the component sequence 1-

te
,

vo
-6 he same re r expression (thus the same

u make the assum
 of times without trip
 place, then the vulne

 environment specific co

may exist. Reme
has started) so m

Excessively
Vital Regex Note

a c

n different ways (e.g.

uire assumptions.
designs d w ortant low l details, s

ons necessary abo t how an at ccur.
 only show the m n compone volved in may

assume that a vulnerability exists if there are intermediate components/processes in
the design sequence. Include the intermediate comp ers for
Column 2.

onent may be responsible for e

assumpti
3. Regexs

u tack may o
 a vulnerability. You

onents in your answ

ai nts in

4. One comp consecutiv multiple events in a regex (e.g.
i e Client Request routine may read a packet s). the Serv c tream and write to a buffer

 137

y represent the repetition as s ing like (in this
mple, component #2 ca es out two consecutive eve

5. Review of regular expressions
a. (A*) (Kleene closure) implies event A occurs 0 or
b. (A+) implies event A occurs one or more times.

+ B) implies even A or event B

esources (e.g. har drives, me ing in the
cause of page size constraints.
present data flow.

represent processes/methods.

5. Assume the “Service Client Request” routine contains a thods for
processing HTTP headers and Get & Post Methods.

n 2 of Table 1 ans ers are 20 l). P
ptions in Column 3 Feedback ns are 5

Please send all comments/questions to mcgegick@ncsu.edu.

References
[1] J. Viega and G. McGraw, Building Secure Software: How to Avoid Security Problems the

t , MA: Addison-Wesley,

[2] M. Howard and D. LeBlanc, Writing Secure Code. Redmond, WA: Microsoft Press, 2003.

[3] http://securityfocus.com

[4] http://www.sei.cmu.edu/

f this type has n ver been g re in
s refine the st

1. What parts of the assignment are not clear?

You ma
exa

ometh 1-2-2 or simply 1-2
nts.)

 more times.

rri

c. (A

Vital System Design Notes:

1. Not all r
design be

2. Arrows re
3. Circles
4. “Client” and “user” are synonymous.

 t occurs.

d mory (includ buffers)) are shown

ll the necessary me

Grading: Colum
based on assum

w points (tota artial credit will be awarded
 points (total). . questio

Right Way. Bos
2002.

on

Feedback
An assignment
feedback that will help u

o e iven befo CSC 405. Please provide
er. assignment for next seme

 138

ime did you spend answering the in Ta

e last five rows of Table 1 do not have explanations ava lumn 5. Did you
find the information in Column 5 necessary to determine an attack?

roach of identifying ecurity vuln nd g

2. Below average

3. Average

4. Good

5. Excellent

2. How much t

3. Th

 questions ble 1?

ilable in Co

4. Rate the app

1. Poor
 s erabilities a ive a brief explanation.

 139

 140

Table 1
Co Column 5

lumn 1 Column 2 Column 3 Column 4

Regular
Expression

Component
Sequence

Assumptio
ns

Type of
Attack

Attack Scenario

(Client+) +

(Log+)(H

how large
the access
log file
becomes.

er the
web server or
database server
augmenting the
access log file
and eventually
filling the hard
drive causing the
system to crash,
a denial-of-
service attack
(DoS).

(Server)
ard Drive+)

14-13-12-11-6-7

10-9-6-7

There is no
check to
determine

Boundary
Condition
Error

An attacker can
exceedingly
access eith

(Client+)(Server+)
(HTTPMessageHea
derHandler+)

Failure to
Handle
Exceptional
Conditions

A client may
send a message
with thousands of
headers, causing
a denial-of-
service.

(Client)(Server)(Get
Method)(GetMethod
BufferWrite)

Boundary
Condition
Error

Writing an
excessively long
Get Request into
a small buffer will
cause a buffer
overflow.

(Client)(Server)((Ge
tMethod)+(PostMet
hod))(PayloadValue
BufferWrite)(WebAp
p)

Boundary
Condition
Error

Data (e.g params
in a query string)
that are sent to a
software
application are
too large for their
intended buffers.

(Client)(Server)(HT
TPMessage)(Heade
rFieldBufferWrite)

Boundary
Condition
Error

Excessive
header field
values written
into small buffers
will cause a
buffer overflow.

(Client)(Server)(HT
TPMessageHandler

Boundary
Condition

A system
administrator can

 141

)(Log)(Sysadmin)(L
ogEntryRead)

Error induce a buffer
overflow when
viewing an
excessively long
log entry.

(Client)(Server)(Pos
tMethod)(HTTPCont
ent-
LengthHeaderValue
)(HTTPMessagePay
loadLength)(Server
ConnectionState)

Handle
Exceptional
Conditions

g a value
via the Post
method in the
Content-Length
of the HTTP
header not equal

ntent-
length may cause
the socket to stay
open (DoS)

 Failure to Sendin

to the co

(User)(UserNameE
ntry)(PasswordEntry
)(AuthenticationServ
er*)(AuthenticationR
outine)

Boundary
Condition
Error

Writing an
excessively long
string of
characters for
either the
username or
password into a
small buffer will
cause a buffer
overflow.

(Client)(SQLInputFi
eld)(Server)(WebAp
p)(Database)

Input
Validation
Error

Failure to sanitize
user input can
allow a user to
submit any SQL
query, thus
allowing for
unauthorized
access to data.

(Client)(SQLInputFi
eld)(Server)(WebAp
p)(Database)

Failure to
Handle
Exceptional
Conditions

An attacker may
submit a
malicious SQL
query (such as a
Cartesian join of
all tables)
consuming the
CPU.

(Client)(HTMLForm)
(WebApp)(Server)(c
gihtml)(FileSystem)

Input
Validation
Error

A bug in cgihtml
will allow a user’s
form-data to
overwrite
specified files in
the victim’s file
system

 142

(User)(CommandLin
eArgumentEntry)(A
pplication)(Applicati
onServer*)(Comma
ndLineArgumentBuf
ferWrite)

 Boundary
Condition
Error

A user may enter
excessively long
command line
parameters
causing buffer
overflows.

(Client)(HTMLPage)
(Server)(Hard Drive)

Boundary
Condition
Error

A user may
submit an
excessive
amount of data in
an HTML page,
thus filling up the
server’s hard
drive.

(Client)(HTMLMess
ageBoard)(Server)(
HTMLMessageBoar
d)(Client)

Input
Validation
Error

An attacke ay r m
exploit this
vulnerability by
including hostile
HTML and script
code in posts to a
message board.
This code may
be rendered in
the web browser
of a user who
views message.

(User)(Machine)(Sy
slogFunction)(Log)

Input
Validation
Error

It is possible to
corrupt memory
by passing
format strings
through the
Syslog(), a
logging function.
This may
potentially be
exploited to
overwrite
arbitrary
locations in
memory with
attacker-specified
values.

(User)(ReadUserInp
ut)(EnvironmentVari
ableWrite)

Input
Validation
Error

 143

(User)(GUI/Browser
)(BookMarkSave)(B
ookmarkBufferWrite
)

Condition
Error

 Boundary

(User)(File)(FileRea
d)(BufferWrite)

Boundary
Condition
Error

(SocketRead)(Sock
etBufferWrite)

Boundary
Condition
Error

(Class)(Subclass)(O
verriddenSecuredM
ethods)

Access
Validation
Error

(Hint: Occurred in
a Netscape java
implementation
that used
java.lang.ClassL
oader)

Descriptions of Errors

Boundary Condition Error

A boundary condition error occurs when:

1. A process attempts to read or write beyond a valid address boundary. (e.g. buffer
overflow)

2. A system resource is exhausted.
3. An error results from an overflow of a static-sized data structure. This is a classic

buffer overflow condition.

Access Validation Error

An access validation error occurs when:

1. A subject invokes an operation on an object outside its access domain.
2. An error occurs as a result of reading or writing to/from a file or device outside a

subject's access domain.
3. An error results when an object accepts input from an unauthorized subject.
4. An error results because the system failed to properly or completely authenticate a

subject.

Input Validation Error

An input validation error occurs when:

 144

1. An error occurs because a program failed to recognize syntactically incorrect input.
2. An error results when a module accepted extraneous input fields.
3. An error results wh t fields.
4. An error results becau

Failure to Handle Exceptional Conditions

1. An error manifests itself because the system failed to handle an exceptional
condition generated by a functional module, device, or user input.

[4]

en a module failed to handle missing inpu
se of a field-value correlation error.

 145

Appendix III

Time Spent on the Feasibility Study

0

50

100

150

200

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Student

Ti
m

e
(m

in
ut

es
)

Figure 12: Time Spent on the Feasibility Study

Data Table

Table 35: Time Spent on the Feasibility Study.

Time
(minutes)

Number
Students

15 2
20 3
30 6
45 8
50 2
60 12
65 1
75 1
80 2
90 3

180 1

 146

Appendix IV

Valid and Invalid Attack Paths for the Feasibility Study

43 43

11

1 1
0

10

20

30

40

50

1 2 3 4 5

Attack Paths

In
st

an
ce

s

Figure 13: Valid Attack Paths for Regex1.

(No invalid answers reported)

43

12 14

0

10

20

30

40

50

1 2 3

Attack Paths

In
st

an
ce

s

Figure 14: Valid Attack Paths for Regex2.

7

2
1

0

2

4

6

8

1 2 3

Attack Paths

In
st

an
ce

s

Figure 15: Invalid Attack Paths for Regex2

 147

35

12
6

0

10

20

30

40

1 2 3

Attack Paths

In
st

an
ce

s

Figure 16: Valid Attack Paths for Regex3.

2

1 1

0

0.5

1

1.5

2

2.5

1 2 3

Attack Paths

In
st

an
ce

s

Figure 17: Invalid Attack Paths for Regex3.

 148

20

6 7

0

5

10

15

20

25

1 2 3

Attack Paths

In
st

an
ce

s

Figure 18: Valid Attack Paths for Regex4.

1 12

0
0.2
0.4
0.6
0.8

1
1.

1 2

Attack Paths

In
st

an
ce

s

Figure 19: Invalid Attack Paths for Regex4.

 149

42

12

2
0

10

20

30

40

50

1 2 3

Attack Paths

In
st

an
ce

s

Figure 20: Valid Attack Paths for Regex5.

(No invalid answers reported)

 150

 151

39

11
3

0

10

20

30

40

50

1 2 3

Attack Paths

In
st

an
ce

s

Figure 21: Valid Attack Paths for Regex6.

(No invalid answers reported)

36

7

0

10

20

30

40

1 2

Attack Paths

In
st

an
ce

s

Figure 22: Valid Attack Paths for Regex7.

2

0

0.5

1

1.5

2

2.5

1

Attack Paths

In
st

an
ce

s

Figure 23: Invalid Attack Paths for Regex7.

 152

42

1
0

10

20

30

40

50

1 2

Attack Paths

In
st

an
ce

s

Figure 24: Valid Attack Paths for Regex8.

1
1
2

0
0.2
0.4
0.6
0.8

1.

1

Attack Paths

In
st

an
ce

s

Figure 25: Invalid Attack Paths for Regex8.

 153

27

8 8
3

0
5

10
15
20
25
30

1 2 3 4

Attack Paths

In
st

an
ce

s

Figure 26: Valid Attack Paths for Regex9.

(No invalid answers reported)

 154

11

28

3

0
5

10
15
20
25
30

1 2 3

Attack Paths

In
st

an
ce

s

Figure 27: Valid Attack Paths for Regex10.

1

0
0.2
0.4
0.6
0.8

1
1.2

1

Attack Paths

In
st

an
ce

s

Figure 28: Invalid Attack Paths for Regex10.

 155

32

9

1 2
0
5

10
15
20
25
30
35

1 2 3 4

Attack Paths

In
st

an
ce

s

Figure 29: Valid Attack Paths for Regex11.

(No invalid answers reported)

 156

43

3 2
0

10

20

30

40

50

1 2 3

Attack Paths

In
st

an
ce

s

Figure 30: Valid Attack Paths for Regex12.

12

0
0.2
0.4
0.6
0.8

1
1.

1

Attack Paths

In
st

an
ce

s

Figure 31: Invalid Attack Paths for Regex12.

 157

42

8

0

10

20

30

40

50

1 2

Attack Paths

In
st

an
ce

s

Figure 32: Valid Attack Paths for Regex13.

(No invalid answers reported)

 158

26

12

4 5
1

0
5

10
15
20
25
30

1 2 3 4 5

Attack Paths

In
st

an
ce

s

Figure 33: Valid Attack Paths for Regex14.

12

0
0.2
0.4
0.6
0.8

1
1.

1

Attack Paths

In
st

an
ce

s

Figure 34: Invalid Attack Paths for Regex14.

 159

13

18
21

3 2

0

5

10

15

20

25

1 2 3 4 5

Attack Paths

In
st

an
ce

s

Figure 35: Valid Attack Paths for Regex15.

2
2

0

0.5

1

1.5

2.5

1

Attack Paths

In
st

an
ce

s

Figure 36: Invalid Attack Paths for Regex15.

 160

2

14

9

3
5

0

5

10

15

1 2 3 4 5

Attack Paths

In
st

an
ce

s

Figure 37: Valid Attack Paths for Regex16.

1

4

1 1

0

1

2

3

4

5

1 2 3 4

Attack Paths

In
st

an
ce

s

Figure 38: Invalid Attack Paths for Regex16.

 161

28

10 8

0
5

10
15
20
25
30

1 2 3

Attack Paths

In
st

an
ce

s

Figure 39: Valid Attack Paths for Regex17.

1

0
0.2
0.4
0.6
0.8

1
1.2

1

Attack Paths

In
st

an
ce

s

Figure 40: Invalid Attack Paths for Regex17.

 162

17
14

8
6

1
0

5

10

15

20

1 2 3 4 5

Attack Paths

In
st

an
ce

s

Figure 41: Valid Attack Paths for Regex18.

1 1 1 1

0
0.2
0.4
0.6
0.8

1
1.2

1 2 3 4

Attack Paths

In
st

an
ce

s

Figure 42: Invalid Attack Paths for Regex18.

 163

9

4

1
2

3

1 1
2

1 1

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10

Attack Paths

In
st

an
ce

s

Figure 43: Valid Attack Paths for Regex19.

1

2

1 1

0

0.5

1

1.5

2

2.5

1 2 3 4

Attack Paths

In
st

an
ce

s

Figure 44: Invalid Attack Paths for Regex19.

 164

1

2

0

0.5

1

1.5

2

2.5

Attack Pa s

In
st

an
ce

s
1 2

th

Figure 45: Valid Attack Paths for Regex20.

7

1 1

8

3

1 1 1 1

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9

Attack Paths

In
st

an
ce

s

Figure 46: Invalid Attack Paths for Regex20.

 165

 166

Appendix V

Feasibility Study Likert Scale

3

7

13
15

3

0

5

10

15

20

1 2 3 4 5

Likert Rating

N
um

be
r o

f S
tu

de
nt

s

Figure 47: Feasibility Study Likert Scale

 167

Appendix VI

Student Comments on the Feasibility Study

The Approach is Bad

1. The expression scan apply to many scenarios, but in this example the terminology is
confusing and does not represent the diagram very well. If this approach was
automated it could be quite effective, but doing it by hand is tedious, especially in
large networks.

2. This was annoying.
3. Method seems like its trying too hard to be rigorous (using regexs) when the issue is

too grey to be as precise

Students are Not Qualified to Determine the Validity of the Approach.

1. Don’t know enough about industry to understand the effectiveness. Not really sure I
know what other approaches are.

2. I have nothing to compare it against

The Approach is Good

1. It was a good idea of how network components work together and how to exploit
vulnerabilities.

2. Because it is based upon everyone’s past experience
3. Because anyone can use this approach to find security vulnerabilities
4. I would say that based on the given path to look for they were not all that hard to

visualize based on the given diagrams.

The Approach has Limitations

1. Good attempt, and the graph help a lot to see the whole picture and identify risks that
may be overlooked. And the regular expressions help direct the attack. However, it
still seems like a system that misses the goal of use throughout the development
process since deployment of products is rarely, if ever, static.

2. Diagrams of real systems will be much more complicated and dynamic. There are
many more paths that would have to be checked. Plus, even after taking the
incredible amount of time to find all possible vulnerable paths in a system, you would
still have to go and traverse each of those paths to determine if there is actually a
vulnerability. Some paths may be difficult to travel.

3. It seems to do well with what has been identified, but a more thorough, systematic
approach (start with one point and explore all reasonable paths) might be more
beneficial.

4. Seems good, but it only finds known vulnerabilities.

The Approach is Too Hard

1. This assignment seems a bit too complicated for 405.

 168

The Approach is Advantageous to Software Engineering

1. If exercised early in design process, you can prevent errors before they happen, later
it is just as valuable to hack the problems out.

2. This approach sees like it would be extremely powerful if time were made for it in the
design cycle. Also, latter releases would be able to incorporate the lessons learned
from the previous release.

3. This is a good way of identifying security holes because it’s designed in such high
level that everyone can get involved in security issues.

There is Not Enough Information to Understand the Approach

1. If I had prior knowledge of networking via a networking class, then this exercise
would’ve been more effective. My lack of network knowledge limits what I take from
this assignment.

2. It’s a good idea but takes a great deal of predefined knowledge about the system.
For instance, some of the portions of the regular expression are unclear as to where
exactly in the network they occur.

3. Without specific occurrences and solid understanding of the diagram + regex it is
very difficult to identify security vulnerabilities.

4. It is a good approach but it needs to have better definition for regular expression and
what all the servers do.

5. We need a better understanding of each component in the system to actually find
these vulnerabilities.

6. Too many assumptions are required. Students who don’t have experience with this
will have a difficult time. Clearer directions are needed.

7. The approach would be food/excellent if I knew more specifics of what the individual
components did.

8. I’m sure this is a real good method of determining vulnerabilities if we only knew
what each of the objects in the regular expressions meant.

9. It is hard to identify vulnerabilities without listing the specific capabilities of each
machine.

10. If it was labeled better.
11. Excellent approach but poor implementation (the diagram is poorly labeled).

Students Did Not Understand the Approach

1. Not completely clear of the whole picture and exactly what is happening. A little
confusing… Structure of homework very poor. Need to arrange things in a
better/clearer order as to what is what and explain (exactly) what is to be done.

2. This is definitely a great approach to finding security vulnerabilities, but more detailed
examples would have helped me deliver more of what you wanted. Explain your two
examples more.

 169

Appendix VII
Time Spent on the Validation Study

0

100

200

300

400

500

600

1 5 9 13 17 21 25 29 33 37 41 45 49 53

Student

Ti
m

e
(m

in
ut

es
)

Figure 48: Time Spent on the Validation Study

Data Table

Time (minutes) Number Students
20 2
30 1
35 1
55 1
60 10
70 1
75 1
80 1
90 11

100 3
105 1
115 1
120 6
150 4
154 2
180 5
240 2
300 1
480 1

Figure 49: Time Spent on the Validation Study

 170

Appendix VIII

Valid and Invalid Attack Paths for the Validation Study

30
37

9
1 4

45

4

0

10

20

30

40

50

1 2 3 4 5 6 7

Attack Paths

In
st

an
ce

s

Figure 50: Valid Attack Paths for Regex1.

(No Invalid Attack Paths Reported)

34
42

19 16
12

7

0

10

20

30

40

50

1 2 3 4 5 6

Attack Paths

In
st

an
ce

s

Figure 51: Valid Attack Paths for Regex2.

1 1

0
0.2

0.4
0.6
0.8

1
1.2

1 2

Attack Paths

In
st

an
ce

s

Figure 52: Invalid Attack Paths for Regex2.

 171

54

2

14

1
0

10

20
30
40

50
60

1 2 3 4

Attack Paths

In
st

an
ce

s

Figure 53: Valid Attack Paths for Regex3.

1

0
0.2
0.4
0.6
0.8

1
1.2

1

Attack Path

In
st

an
ce

s

Figure 54: Invalid Attack Paths for Regex3.

 172

2

13

53

0
10

20
30
40

50
60

1 2 3

Attack Paths

In
st

an
ce

s

Figure 55: Valid Attack Paths for Regex4.

1 1

3

1

0
0.5

1
1.5

2
2.5

3
3.5

1 2 3 4

Attack Paths

In
st

an
ce

s

Figure 56: Invalid Attack Paths for Regex4.

 173

19

28

10

18

3
1

0
5

10
15
20

25
30

1 2 3 4 5 6

Attack Paths

In
st

an
ce

s

Figure 57: Valid Attack Paths for Regex5.

6

0
1
2
3
4
5
6
7

1

Attack Paths

In
st

an
ce

s

Figure 58: Invalid Attack Paths for Regex5.

 174

2 3

19

1

43

4 1
0

10

20

30

40

50

1 2 3 4 5 6 7

Attack Paths

In
st

an
ce

s

Figure 59: Valid Attack Paths for Regex6.

(No Invalid Attack Paths Reported)

 175

4 1

11

41

0

10

20

30

40

50

1 2 3 4

Attack Paths

In
st

an
ce

s

Figure 60: Valid Attack Paths for Regex7.

1 1

2

0

0.5

1

1.5

2

2.5

1 2 3

Attack Paths

In
st

an
ce

s

Figure 61: Invalid Attack Paths for Regex7.

 176

52

4

0
10

20
30
40

50
60

1 2

Attack Paths

In
st

an
ce

s

Figure 62: Valid Attack Paths for Regex8.

(No Invalid Attack Paths Reported)

 177

52

3 1 2 6

0
10
20
30
40
50
60

1 2 3 4 5

Attack Path

In
st

an
ce

s

Figure 63: Valid Attack Paths for Regex9.

1

0
0.2

0.4
0.6
0.8

1
1.2

1

Attack Paths

In
st

an
ce

s

Figure 64: Invalid Attack Paths for Regex9.

 178

51

1 3 1
0

10

20
30
40

50
60

1 2 3 4

Attack Paths

In
st

an
ce

s

Figure 65: Valid Attack Paths for Regex10.

1 1

0
0.2

0.4
0.6
0.8

1
1.2

1 2

Attack Paths

In
st

an
ce

s

Figure 66: Invalid Attack Paths for Regex10.

 179

3 1

55

2
0

10

20
30
40

50
60

1 2 3 4

Attack Paths

In
st

an
ce

s

Figure 67: Valid Attack Paths for Regex11.

(No Invalid Attack Paths Reported)

 180

42

15

2 2
6

0

10

20

30

40

50

1 2 3 4 5

Attack Paths

In
st

an
ce

s

Figure 68: Valid Attack Paths for Regex12.

5

0
1

2
3
4

5
6

1

Attack Paths

In
st

an
ce

s

Figure 69: Invalid Attack Paths for Regex12.

 181

9

40

1
7

1
0

10

20

30

40

50

1 2 3 4 5

Attack Paths

In
st

an
ce

s

Figure 70: Valid Attack Paths for Regex13.

1

0
0.2

0.4
0.6
0.8

1
1.2

1

Attack Paths

In
st

an
ce

s

Figure 71: Invalid Attack Paths for Regex13.

 182

27

8

17

8
4

0
5

10
15
20

25
30

1 2 3 4 5

Attack Paths

In
st

an
ce

s

Figure 72: Valid Attack Paths for Regex14.

2

1 1

0

0.5

1

1.5

2

2.5

1 2 3

Attack Paths

In
st

an
ce

s

Figure 73: Invalid Attack Paths for Regex14.

 183

10

33

7
4 2 2

0
5

10
15
20
25
30
35

1 2 3 4 5 6

Attack Paths

In
st

an
ce

s

Figure 74: Valid Attack Paths for Regex15.

7

0
1
2
3
4
5
6
7
8

1

Attack Paths

In
st

an
ce

s

Figure 75: Invalid Attack Paths for Regex15.

 184

4

21
17 16

7

2

0

5

10

15

20

25

1 2 3 4 5 6

Attack Paths

In
st

an
ce

s

Figure 76: Valid Attack Paths for Regex16.

6

4

0
1
2
3
4
5
6
7

1 2

Attack Paths

In
st

an
ce

s

Figure 77: Invalid Attack Paths for Regex16.

 185

6

18

50

1
0

10

20
30
40

50
60

1 2 3 4

Attack Paths

In
st

an
ce

s

Figure 78: Valid Attack Paths for Regex17.

(No Invalid Attack Paths Reported)

 186

3
6 8

16

31
35

2
0
5

10
15
20
25
30
35
40

1 2 3 4 5 6 7

Attack Paths

In
st

an
ce

s

Figure 79: Valid Attack Paths for Regex18.

(No Invalid Attack Paths Reported)

 187

15

6

21

14

27

9

3

0
5

10
15
20

25
30

1 2 3 4 5 6 7

Attack Paths

In
st

an
ce

s

Figure 80: Valid Attack Paths for Regex19.

(No Invalid Attack Paths Reported)

 188

33

15
9 10

3 1
0
5

10
15
20
25
30
35

1 2 3 4 5 6

Attack Paths

In
st

an
ce

s

Figure 81: Valid Attack Paths for Regex20.

(No Invalid Attack Paths Reported)

 189

54

5

16

5

0
10

20
30
40

50
60

1 2 3 4

Attack Paths

In
st

an
ce

s

Figure 82: Valid Attack Paths for Regex21.

1

0
0.2

0.4
0.6
0.8

1
1.2

1

Attack Paths

In
st

an
ce

s

Figure 83: Invalid Attack Paths for Regex21.

 190

36

7

0
5

10
15
20
25
30
35
40

1 2

Attack Paths

In
st

an
ce

s

Figure 84: Valid Attack Paths for Regex22.

5 5

1

0
1

2
3
4

5
6

1 2 3

Attack Paths

In
st

an
ce

s

Figure 85: Invalid Attack Paths for Regex22.

 191

4
1 1

18

7

20

3
1

7

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9

Attack Paths

In
st

an
ce

s

Figure 86: Valid Attack Paths for Regex23.

5

0
1

2
3
4

5
6

1

Attack Paths

In
st

an
ce

s

Figure 87: Invalid Attack Paths for Regex23.

 192

16

32

12

3

10

0
5

10
15
20
25
30
35

1 2 3 4 5

Attack Paths

In
st

an
ce

s

Figure 88: Valid Attack Paths for Regex24.

6

4

1 1

6

3

1

0
1
2
3
4
5
6
7

1 2 3 4 5 6 7

Attack Paths

In
st

an
ce

s

Figure 89: Invalid Attack Paths for Regex24.

 193

15

38

0
5

10
15
20
25
30
35
40

1 2

Attack Paths

In
st

an
ce

s

Figure 90: Valid Attack Paths for Regex25.

4

5

3

0
1

2
3
4

5
6

1 2 3

Attack Paths

In
st

an
ce

s

Figure 91: Invalid Attack Paths for Regex25.

 194

14

54

0
10

20
30
40

50
60

1 2

Attack Paths

In
st

an
ce

s

Figure 92: Valid Attack Paths for Regex26.

3

0
0.5

1
1.5

2
2.5

3
3.5

1

Attack Paths

In
st

an
ce

s

Figure 93: Invalid Attack Paths for Regex26.

 195

10 12

33

0
5

10
15
20
25
30
35

1 2 3

Attack Paths

In
st

an
ce

s

Figure 94: Valid Attack Paths for Regex27.

1

0
0.2

0.4
0.6
0.8

1
1.2

1

Attack Paths

In
st

an
ce

s

Figure 95: Invalid Attack Paths for Regex27.

 196

18

40

0

10

20

30

40

50

1 2

Attack Paths

In
st

an
ce

s

Figure 96: Valid Attack Paths for Regex28.

24

3
1 1

0
5

10
15
20

25
30

1 2 3 4

Attack Paths

In
st

an
ce

s

Figure 97: Invalid Attack Paths for Regex28.

 197

15

0
2
4
6
8

10
12
14
16

1

Attack Paths

In
st

an
ce

s

Figure 98: Valid Attack Paths for Regex29.

1 1 1 1

3

7

1

3

4

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9

Attack Path

In
st

an
ce

s

Figure 99: Invalid Attack Paths for Regex29.

 198

 199

31

4
9

17

0
5

10
15
20
25
30
35

1 2 3 4

Attack Path

In
st

an
ce

s

Figure 100: Valid Attack Paths for Regex30.

(No Invalid Attack Paths Reported)

 200

Appendix IX

Validation Study Likert Scale

4
6

22

16

3

0

5

10

15

20

25

1 2 3 4 5

Likert Rating

N
um

be
r o

f S
tu

de
nt

s

Figure 101: Validation Study Likert Scale

 201

Appendix X

Student Comments for the Validation Study

Does not Scale

1. Like other testing methods, limited to how much it can really test (29^29 paths in this
single example).
-Within each path also lies a number of testing parameters as well; testing the range
of a single integer along one point in a single path makes a complexity of
(2^31)(29^29) ... simply not feasible.

2. It seems to me that this is not scalable to large environments. There are too many
application level vulnerabilities and physical vulnerabilities to take into account all
possibilities. It seems novel in approach, but I am not sure it will hold up in a robust
environment.

The Approach is Bad

1. It takes a complicated system and shows 100's of potential ways it can be
vulnerable. Way to many ways for all of them to be usefully examined. And all of
them rely on incomplete information and guesswork. I hope that this was either a
"trick" assignment or a joke of some kind.

2. it felt like a paint by numbers with a network
3. Doesn't really help the student understand what's going on, doesn't translate well

from diagram analysis to actually using it to identify vulnerabilities.
4. I really didn't learn much more than simple patterns
5. not terribly informative. Mostly time-consuming and repetitive.
6. below average. While I do understand how this helps, I think most of the obvious

flaws I already knew and the other ones I didn't understand enough to know if I did it
right.

7. this assignment was pretty monotonous and i didnt feel like i learned alot
8. Students who know, let's say, what component has "cookies" might rate it to 5. But

I'm sorry, it was not much help for me.
9. i don't feel this is how it's done in the real world and thus it isn't relavent
10. This exercise does a decent job of showing you the routes that attackers might take

when conducting a malicious activity. Since there is no real interaction/experience,
this exercise is limited in its effectivcness. I learn best with hands-on activities.

11. I don't like the approach really, but understand that it is not the easiest subject to
bring across though. I understand the need for the design to be abstracted to be
general in case, but the nature of the profiles in comparison to the design is so "out
of whack" in many instances that the question became useless to me and I simply
read the description of the attack in order to learn something. Given all of this, the
time involved with this homework in terms of value of learning is wasted in
comparison to our other homeworks. I spent less time on all of those (the pgp key,
the picture, the key logic, etc) combined than I did on this and learned substantially
more

The Approach has Limitations

 202

1. This approach is good for identifying KNOWN weaknesses. That makes this way of
acknowledging security risks a good start. However, there must be an effort to come
up with new hacks in order to make this an excellent approach.

2. when it's all drawn out, it's easy to find the vulnerabilities, but i believe more are out
there not detectable by an architectual diagram

3. if the design is incomplete or subject to change, this method will be a waste of time.
4. if a complete design is available, i suppose this can be a useful tool.
5. As long as you identify all the parts that are secruity vulenabilties. There could be

vulenabilties or components that are vulenrable in this system that aren't show which
makes it hard to indentify them.

6. unless highly trained, it seemed like a difficult task to do.
7. Such a system for identifying architectural security vulnerabilites is only good if the

documentation and material supporting it is also good. Since there isn't much
explanation on how to use the system, wading through the design is too complicated
(and designs should be simple).

8. I would say average if you completely understand the process, but it seems vague to
me. It is a good high level set up though.

9. I guess it would work good if there were paths that were used many times, so i would
presume that those would be the most vulnerable paths.

The Approach is Advantageous to Software Engineering

1. It's not bad, but not as good as it could be. I think it'd be best to have all the people
involved with the project to sit down together and try to brainstorm possible security
risks. This would be a good start, and they could build off of it, but more than just this
would be needed.

2. I think it is good to approach security design early on, however, there are many
possible paths of attack here and this method makes it very difficult to check that you
have covered every path.

3. From a good viewpoint, organize the system and being able to trace pathways
visually can help deter common attacks and trace sources/restore systems quicker.

4. such an approach can make the program more secure by covering the domain of
likely attacks. Also, it is good to take care of these things at the design stage so that
the desired changes can be made and that too at a low cost.

The Approach is Good

1. Between average and above average since it takes into account a huge number of
combinations a hacker could use to attack the system. Besides the system to
analyze include a really good number of devices that can be present in a real
system.

2. I think its a pretty neat approach as by acknowledging that a system design contains
the same vulnerable component sequences as previously attacked software
applications, developers can be warned about possible attacks in their future code.

d...

5. software on top of the architecture could stop malicious activitiy, and looking at just
the hardware wouldn't show that.

3. It's okay, maybe a 4. It's simplistic, which makes it both good and ba
4. I was interesting and learned a lot from it. It was a good idea.

 203

f

lnerabilities.

an "Above Average" rating as it is a good way of flagging possible
vulnerabilities. It is a fairly good method, but it doesn't mean that secure programs
don't proceed on the same paths, as well. It is a way, it seems, to focus concern for
possible security vulnerabilities.

me
aths seem unrealistic to me.

10. It is very comprehensive and may even be too much so! Very good for high security

11. While this method of securing a system should be used along side other approaches
for the maximum level of security, it still does an amazingly good job of letting you
visualize the attacks, and to identify obscure paths that otherwise might go
unnoticed.

12. it gives the network admin an overview of the whole system. this can be used to pin
point any weaknesses in the system. also, it can help identify any attacks that might
occur within the network.

13. it was a cool little assignment, though some i didn't understand it was neat to see
how some of these exploits snaked their way through

14. This is a great idea i give it a 5. Because you can find similar attack patterns and
prevent it in the future.

Did Not Understand Assignment

1. It's good but it's not excellent because I had a hard time understanding what am i
suppose to do and were to start but ones i figured out it was not that hard..

2. It would be better if there we're more examples given covering some of the more
complex regular expressions used.

There is Not Enough Information to Understand the Approach

1. By looking at the high-level design we can clearly figure out the possible attacks, but
its hard to figure out with having implemented that design, so that we know what the
low level components are. With out know the low level components its hard to figure
out ALL the possible attacks.

2. Not sure what i was doing. Just went with the flow. Need more explaination*
3. If greater detail was given – eg. code vulnerability samples it would be more effective

in my opinion.
4. The system design needs to be much more detailed to accurately predict

vulnerabilities.
5. It seems to be too vague. Instead of 30 regular expressions, maybe there should be

less, more detailed, expressions that would give a better understanding of the
material.

6. Some of these vulnerabilities are easy to find but for most part where there are
variables and reads and writes involved, it is very hard to detect attacks.

6. I like this way of identifying vulnerabilities. Instead of considering the vulnerabilities o
each system independently, we get to see how systems can interact, sometimes
poorly, which may cause vu

7. Excellent. This makes sure we go through an array of situations thus exposing
vulnerabilites.

8. I give it

9. An excellent first attempt to automated a security review of a design. However, so
of the p

considerations (governement/classified networks

 204

Approach Should be Automated

1. This approach is probably helpful in detecting attacks especially since the same
attacks are repeated over and over. But, there should be a mechanize to check for
any new attacks or unusual behavior.

2. I guess this is a good approach, especially if it is automated. It formalises the design
of the system, which makes it easy to see all the interconnections. Of course, it is still
a hard homework assignment.

Profiles Needed?

1. I like the examples listed with each attack
2. profile does not have to be explored to understand these concepts.

 205

Appendix XI

Student Questions in the Validation Study

Threads from the online message board.

1. Student Question
We don't have to include assumptions right?

Also, am I just looking at this wrong, can't for number 2, you list these which are all pretty
close to the same:

26-25-24-23-19-12
26-25-24-23-19-20-12
26-25-24-23-19-22-21-12
26-25-24-23-19-22-21-20-12

Or is this going overboard. and just the first one is sufficient?

Are we suppose to list every possible path it can take to achieve the RegEx, or just the most
obvious ones?

My Response
Assumptions are *not* required. Only put them in your answer if you think you need them.

For #2, the attack deals with sending thousands of headers to the server. Since the
GET/POST requests are not necessarily involved in the attack you don't need to include
components #20, #22 (thus your first answer is the best one)

2. Student Question
is data in hard drive? if yes, does user have to access log

My Response
Component # 14 is botha database and a database server so assume there is a hard driver
on component 14. This will make it simpler than going to the access log to get to the hard
drive. You may assume each server has a CPU and Hard Drive and you can stop there in
your component sequence unless you need to get to that access log. Good question.

3. Student Question
can packet go from database server --> web application --> http message & header handler

My Response
Yes, it is certainly possible depending how you see the system being *implemented*.
Include your assumption in your answer

4. Student Question
Can this path exist 17-18-25-24-23-19-11-12

My Response

 206

Sure. It seems possible that the HTTP Message Handler could log the messages.

I posted this for clarify the assignment.
Since the system design is an abstraction, not all the little components will be shown in the
design. However, the major components will be represented and you can simply assume in
your answer that the little components do exist.

For example, these are just a few components not shown in the design are
CPU (there will always be a CPU somewhere in a system)
hyperlink (implied to be on the web pages component #25)
HeaderFieldBufferWrite (assume this to be taken care of by the HeaderHandler #19)
The “variable”, “Filename”, “Header” components in RegEx #4 can be assumed to be
passed in on the URL from a client. There is no component that represents this, but you can
assume that a client may make a POST request like this since there is a POST request
handler (#22)
ServerConnectionState – this is the state of the server/client connection, that is not shown,
but you know it must exist for any communication to exist.

5. Student Question
There is a CPU somewhere but what component number I need to include or just assume
there is a CPU inside database server for question 10

My Response
Just assume there is a CPU inside the servers.

Questions received from email
1.

1) You give A* A+ and A+B examples. What about the ones with no +, *, or A+B? They
can only happen once, correct? If so, do they HAVE to happen? That is to say, an object
without any of these, such as #3:
"(Client)(HTTPServer)(GetMethod)(GetMethodBufferWrite)(Buffer) ", all of these can happen
only once, but they MUST happen once?

2) In your example, the 3rd ansewr you give states an "assumption". Why do we need to
state the assumption for that path? Beccause they are going through a firewall? Would the
answer be wrong without the assumption? It
looks right to me, so long as they can break through the firewall.

3) You ask "What attack paths are possible for regular expression ##?" Does that mean we
have to list all possible attack paths for that regular expression or just a single one?

4) As for answers, we ONLY need to answer with a number sequence, and not explain
what function each performs? ie., in your regex notes, #4, you talk about the client
performing 2 functions. If we put 1-2-2, is that
sufficient? My understanding was that the number sequence was enough.

 207

You say that some components may not exist in the design. If this is the case, how do we
represent them in our answer if there is no number to associate with them? i.e., you have
components such as PostMethod,
Variable, Filename, GetMethod, HTTPContent-Length, CommandLineArgumentEntry,
etc. How are we to know how to represent these or what path requires you to
access them?

2.

I'm having a hard time to do this homework. I don't know much about this stuff. Can you
please help?

Can I use the answers in the example to answer question 1?

Can this path exist 17-18-25-24-23-19-11-12?
Is there a proxy firewall from 24 to 27?

Can this path exist 16-15-14-13-19-12?

What component is HeaderFieldBufferWrite

3.
Hi, i'm kind of lost with this assignment and i don't know for sure if what i did is ok or not. I
don't know if you can take a look to the submition i did already and tell me if at least i got the
idea or i am completely wrong. That would be great. If you can not do that i would
appreciate if you can guide my in some of the cases like number 29, 13, 16 & 24.

Does (A+B) mean event A or event B occurs only one time; or does it mean event A or B
occurs at least one time?

In other words if I have (A) does that mean A occurs only one time or at least one time?

The example given in http://www4.ncsu.edu/~mcgegick/example.html
looks like the answer for problem 1 of hw 4.

I am correct or NOT.????????????

26-25-24-23-19-11-12
16-15-14-11-12

1-2-3-11-12
Assume a user (or script) can excessively log into the authentication server without tripping
an intrusion detection alarm and proper software checks are not in place, then the
vulnerability may exist.

 208

101010101010101010101010
I just want to make sure that I am understanding what I am doing. Just to
build my confidence on how to do the hw.

Would this be how the answers for problem 2 of HW4 supposed to look like.
26-25-24-27-28-21-20-19-11-12
26-25-24-27-28-21-20-19-13-12
26-25-24-27-28-21-22-19-11-12
26-25-24-27-28-21-22-19-13-12
26-25-24-27-28-23-19-11-12
26-25-24-27-28-23-19-13-12

This is the profile (Client+)(Server+)(MessageHeaderHandler+)(Hard Drive+)

101010101010101010101
I can NOT figure out this
[(Client)(HTTPServer)(GetMethod)(GetMethodBufferWrite)(Buffer)] regex in
the design.

Any hints.

4.
Regex for problem 3=
(Client)(HTTPServer)(GetMethod)(GetMethodBufferWrite)(Buffer)
What do you do when you get to the buffer?
This what I came up with 26-25-24-23-19-20-21

The source code below looks like a flavor of the virus W32.NetSky.P@mm

I do NOT understand how is this helpfull. Can you give me some
enlightment of this. Thx.

5.
or problem 4 the only thing I see that matches the regex:
(Client)(HTTPServer)(PostMethod)(Variable + Filename + Header)(Buffer)
is the following:
26-25-24-23-19-22-21

I am not sure of anything else.

6.
I was wondering if we have to give every path possibility for each set of
regular expressions.

 209

Appendix XII

Validation Study Assignment

y

Designing for Securit

About this assignment
New attacks to software may not be predictable, but a software team should
not permit recurrences of old attacks in new software. Many of the
vulnerabilities in this assignment are repeated in the Bugtraq database
(http://www.securityfocus.com). By acknowledging that a system design
contains the same vulnerable component sequences as previously attacked
software applications, developers can be warned about possible attacks in
their future code. This assignment encourages security to be built into the
software application instead of being added at the end of the software process
as an afterthought.

Background
Software engineering approaches are being investigated for building secure
software. Viega and McGraw claim that "[t]he fundamental technique [of
security] is to begin early, know your threats, design for security, and subject
your design to thorough objective risk analyses and testing" [1]. One approach
is to define attack patterns that are used to find vulnerabilities in a system.
This assignment will be used to evaluate the human-readable aspect of
representing security vulnerabilities with regular expressions (regex for short).
Regexs are utilized because they can be adapted into a programmable form
for automation and because they attempt to be environment/language
independent.

Directions
Thirty vulnerable component sequences have been
abstracted into regular expressions to conceptualize the
access paths used in known attacks. Each path contains at
least one access control violation that risks the use of a
resource in the system. Determine what component
sequences in the system design can be represented by the
regular expressions.
1. Search the system design for the string (i.e. the
sequence of components) that is defined by each regular
expression listed in the regular expression profiles .
2. Enter your findings in the essay formatted answer boxes
in WebAssign. Write down the number associated with
each component in the sequence path (e.g. 1-2-3) that
corresponds to the regular expression (there may be more
than one string in the design for a given regular
expression). You may document any assumptions about
the system you think are necessary to qualify your answer
after your answer. Not all strings may be present in the
design and multiple attacks may exploit the same string.

 210

Interpreting a Regular Expression
Each regex represents a sequence of events that are
involved with data flow between components. For
example, (Client+)(Server+)(Log+)(Hard Drive+) shows a
series of client requests, followed by a series of server
actions, followed by a series of log updates, followed by a
series of disk writes.

Use this example to guide you through the assignment.

Vital Regex Notes:
1. The regexs are abstract and can therefore be fulfilled in
different ways (e.g. Server implies WebServer, Database
Server, etc.)
2. Some regexs will be straightforward and others will
require assumptions. Software designs do not often show
many important low level details, so document any
assumptions necessary about how an attack may occur.
3. Regexs only show the main components involved in a
vulnerability. You may assume that a vulnerability exists if
there are intermediate components/processes in the
design sequence. Include the intermediate components in
your answers.
4. One component may be responsible for consecutive
multiple events in a regex (e.g. the Service Client Request
routine may read a packet stream and write to a buffer).
You may represent the repetition as something like 1-2-2
or simply 1-2 (in this example, component #2 carries out
two consecutive events.)
5. Review of regular expressions
a. (A*) (Kleene closure) implies event A occurs 0 or more
times.
b. (A+) implies event A occurs one or more times.

 (A + B) implies event A or event B occurs.

stem Design Notes:
1. Arrows represent data flow.

. Circles represent processes/methods.

. "Client" and "user" are synonymous. A client can either
e a browser such as Netscape Navigator or a user.

mments/questions to
mcgegick@ncsu.ed

References

c.

Vital Sy

2
3
b

Please send all co
u.

 211

Building Secure Softwa
How to Avoid Security Problems the Rig
MA: Addison-Wesley, 2002.

[1] J. Viega and G. McGraw, re:
ht Way. Boston,

1. Qu ack paths are possible fo

[3]

estion 1 [340089] What att r regular expression #1?

r regular expression #2?

2. Question 2 [340090] What attack paths are possible fo

[3]

r regular expression #3?

3. Question 3 [340091] What attack paths are possible fo

[3]

r regular expression #4?

4. Question 4 [340097] What attack paths are possible fo

[3]

r regular ex

5. Question 5 [340098] What attack paths are possible fo pression #5?

[3]

6. Q ossible fouestion 6 [340099] What attack paths are p r regular expression #6?

 212

[3]

7. Q fo

[3]

uestion 7 [340100] What attack paths are possible r regular expression #7?

r regular expression #8?

8. Question 8 [340101] What attack paths are possible fo

[3]

r regular expression #9?

9. What attack paths are possible fo

[3]

Question 9 [340103]

10. sible

[3]

Question 10 [340104] What attack paths are pos for regular expression #10?

 for regular expression #11?

11. What attack paths are possible

[3]

Question 11 [340124]

 for regular expression #12?

12. Question 12 [340105] What attack paths are possible

 213

[3]

 for regular expre

13. le

[3]

Question 13 [340106] What attack paths are possib ssion #13?

 for regular expression #14?

14. Question 14 [340107] What attack paths are possible

[3]

 for regular expression #15?

15. What attack paths are possible

[3]

Question 15 [340108]

 for regular expre

16. What attack paths are possible ssion #16?

[3]

Question 16 [340109]

gular express

17. What attack paths are possible for re ion #17?

[3]

Question 17 [340110]

18. Qu 111] What attack paths are possibleestion 18 [340 for regular expression #18?

 214

[3]

 for regular e

19. Quest possible

[3]

ion 19 [340112] What attack paths are xpression #19?

 for regular expression #20?

20. Question 20 [340113] What attack paths are possible

[3]

Question 21 [340114] What attack paths are possible for regular express

21. ion #21?

[3]

Question 22 [340115] What attack paths are possible for regular express

22. ion #22?

[3]

Question 23 [340116] What attack paths are possible for regular express

23. ion #23?

[3]

24. Question 24 [340117] What attack paths are possible for regular expression #24?

 215

[3]

Question 25 [340118] What attack paths are possible for regular express

25. ion #25?

[3]

Question 26 [340119] What attack paths are possible for regular express

26. ion #26?

[3]

Question 27 [340120] What attack paths are possible for regular express

27. ion #27?

[3]

Question 28 [340121] What attack paths are possible for regular express

28. ion #28?

[3]

Question 29 [340122] What attack paths are possible for regular express

29. ion #29?

[3]

30. Question 30 [340125] What attack paths are possible for regular expression #30?

 216

[3]

31. Question 31 [340237] How much time did you spend on this assignment? Give your answer in minutes.

[3]

32. Question 32 [341495] What parts of the assignment are not clear?

[3]

33. Question 33 [341496] Rate the approach of identifying architectural security vulnerabilities and give a brief
explanation. 1. Poor 2. Below Average 3. Average 4. Above Average 5. Excellent

[3]

HTUSubmit for TestingUTH

Knowledge Base
Key RegEx Profile

1 (Client+)(Server+)(Log+)(Hard Drive+) An attacker can exceedingly access
either the web server or database
server augmenting the access log
file and eventually filling the hard
drive causing the system to crash, a
denial-of-service attack (DoS).

 217

Key RegEx Profile
2 (Client+)(Server+)

(MessageHeaderHandler+)
(Hard Drive+)

A client may send a message with
thousands of headers to a server
(HTTP, email, etc), causing a denial-
of-service.

3 (Client)(HTTPServer)(GetMethod)
(GetMethodBufferWrite)(Buffer)

Writing an excessively long Get
Request into a small buffer will
cause a buffer overflow . Either the
requestURI or HTTP version is too
long for the buffer. Privileges can be
escalated or a DoS may occur. See
http://downloads.securityfocus.com/v
ulnerabilities/exploits/sp-
samihttpddos.c as an example of
how this may be implemented.

4 (Client)(HTTPServer)(PostMethod)
(Variable + Filename + Header)(Buffer)

Excessively long Post requests can
cause a buffer overflow. The
attacker may send an excessively
long variable name, filename, or
header.

5 (Client)(Server)(HeaderFieldBufferWrite)
(Buffer)

Excessive header field values
(HTTP headers, email headers, etc.)
written into small buffers will cause a
buffer overflow.

6 (Client)(HTTPServer)
(HTTPMessageHandler)(Log)
(Sysadmin)(LogEntryRead)

A system administrator can induce a
buffer overflow when viewing an
excessively long log entry. Notice
that the attack is against a sys.
admin. (as opposed to a typical
user)

7 (Client)(HTTPServer)(PostMethod)
(HTTPContent-LengthHeaderValue)
(HTTPMessagePayloadLength)
(ServerConnectionState)

Sending a value via the Post method
in the Content-Length of the HTTP
header less than the content-length
of the message may cause the
socket to stay open. This has
potential to cause a DoS in some
systems.

8 (User)(UserNameEntry)(PasswordEntry)
(Server)(AuthenticationRoutine)

Writing an excessively long string of
characters for either the username
or password into a small buffer will
cause a buffer overflow.

9 (Client)(SQLInput)(Server)(WebApp)
(Database)(Data)(Buffer)

A long query string submitted to the
database may overwrite a buffer and
eventually escalate privileges of the
attacker.

10 (Client)(SQLInputField)(Server)
(WebApp)(Database)(CPU)

An attacker may submit a malicious
SQL query (such as a Cartesian join
of all tables) consuming the CPU.

11 (User)(CommandLineArgumentEntry)
(Application)(ApplicationServer*)
(CommandLineArgumentBufferWrite)

A user may enter excessively long
command line parameters causing
buffer overflows.

12 (Client)(HTMLPage)(Server)(Hard Drive) A user may submit an excessive

 218

Key RegEx Profile
amount of data in an HTML page
(e.g. in an HTML form), thus filling
up the server’s hard drive

13 (MaliciousClient)(Injection of malicious
HTML tags, script in URL,
Form)(Cookie*)(FormData*)
(ServerVariables*)(VictimClient)

Injecting malicious
scripts/tags(SCRIPT, OBJECT,
APPLET, EMBED, FORM) or
variables (e.g. JSP, ASP, search
string) in a web page, msg. board,
email, message (e.g. IM)Script in
URL, URL parameter or
HTML/CSSTAG can give an attacker
cookie-based authentication data,
HTML form data, or server
information. A simple example can
be illustrated by the following:
http://www.example.com/<script>ale
rt('XSS')</script>
Where any malicious script code can
be inserted between the script tags.

14 (User)(Computer)(SyslogFunction)(Log) It is possible to corrupt memory by
passing format strings through the
Syslog(), a logging function. This
may potentially be exploited to
overwrite arbitrary locations in
memory with attacker-specified
values.

15 (User)(ReadUserInput)
(EnvironmentVariableWrite)(Buffer)

A user can read in a malicious
environment variable that exceeds a
buffer and thus possibly escalate the
privileges of the attacker.

16 (User)(File)(FileRead)(BufferWrite*) A file that is corrupted may cause an
exception to be thrown in application
as it is read, thus causing a DoS.
Also, if the file is made longer than
what is expected a buffer can be
overrun and privileges can be
escalated.

17 (Client)(Hyperlink)(Server) Supplying excessively long data into
the hyperlink can cause a buffer
overflow. If a hyperlink is used to
connect to a session, then the
malicious client can take over the
application.

18 (Client+)(Server+)
(MessageHeaderHandlerP

+
P)

Client can send a negative, NULL,
invalid value (e.g. not include ":'
between header name/value) for a
header field and cause a DoS. This
may occur on any server with
messages that have headers (email
server e.g. to, from, subject)

19 (Client)(Server)(DaemonProcess)(Hard A script that makes an excessive

 219

Key RegEx Profile
Drive) number of connections in a small

period of time to the listening
daemon process of a server may
cause a DoS.

20 (UserInput)(IntegerEvaluationRoutine) A user that supplies an integer larger
than the variable type expected may
cause an exception/buffer overflow
or DoS.

21 (Client)(HTTPServer)
(GetRequestRoutine)

A malformed URL (as well as the in
search string) may be NULL, contain
Unicode chars, or format string
specifiers and cause a DoS. Also,
the URL may contain directory
traversals in which an attacker can
view files on the file system. An
example of a directory traversal may
look like this:
http://www.example.com/../../../../etc/
passwd. A search string (or query
string) is the data that follows the ‘?’
in a URL (e.g.
http://www.example.com/path?para
m1=arg1¶m2=arg2)

22 (User)(GUI/Browser)(BookMarkSave)
(BookmarkBufferWrite)

A user maliciously saves a long
bookmark in a web browser can
cause a buffer overflow and escalate
their privileges. This normally
happens in custom made Help
browsers that allow users to read the
HTML documentation describing
their product.

23 (Client)(SearchString)(Server)(Data)
(Client)

A client that requests data from an
untrusted server may receive large
data and result in a buffer overflow.
This most often happens in online
gaming environments.

24 (Read)(FileHeader)(Buffer) Reading the length of a long file
name into a buffer may cause a
buffer overflow.

25 (Client)(EmailHeader)(Firewall)(Buffer) An attacker may send an email with
excessively long headers to overflow
buffers in a firewall to escalate their
privileges.

26 (Client)(HTTPRequest)(ProxyServer)
(Buffer)

A user can submit a long HTTP GET
request to the proxy server and
cause a buffer overflow.

27 (Client)(RequestMessage)(Router)
(CPU)

Malformed headers of a message
(e.g. failing to supply expected
headers) may cause a DoS in a
network router.

28 (Client)((FTPCommand + A user that submits an overly long

 220

Key RegEx Profile
MailCommand) +
OSCommand)(FTPServer + Mail
server))(Buffer)

OS command or FTP/Mail command
in an FTP program can cause a
buffer overflow in the FTP/Mail
server.

29 (Class)(Subclass)
(OverriddenSecuredMethods)

When extending or subclassing a class
(e.g. in Java) developers must make
sure that the methods they override
remain secure otherwise a security
vulnerability will be possible. This is a
source code oriented vulnerability.

30 (Client)(Application)(EnvironmentVariabl
e + ProgramVariable + URLparam)
(MaliciousIncludeFile)

An attacker can change/influence an
environment or program variable to
point to an "include" directory on a
remote machine. The attacker's
include file will then executed on the
target system. This attack often
occurs to PHP scripts.

The System Design

 221

