
ABSTRACT

SUPPLE, MEGAN A. Probabilistic Allele Calling to Improve Population Size Estimates
from Non-Invasive Genetic Mark–Recapture Analysis. (Under the direction of Dr. Kenneth
H. Pollock).

Accurate estimates of population sizes are often necessary to help researchers bet-

ter understand how wildlife populations are changing over time. Researchers often use

traditional mark–recapture methods to estimate wildlife population sizes. A variety of

models, with varying assumptions, are available to analyze traditional mark–recapture data.

The utility of traditional mark–recapture methods is limited when sampling rare or elusive

species. Capture probabilities may not be high enough due to the difficulties and cost of

capturing the animals. In addition, physical capture can be stressful, even deadly, to the

animals.

The limitations of traditional mark–recapture methods can sometimes be ad-

dressed by utilizing non-invasive genetic mark–recapture methods. Using the non-invasive

genetic method, individuals are not physically captured and tagged. Instead, non-invasive

genetic samples, such as hair or scat, are collected and genotyped at multiple microsatel-

lite markers. An individual’s genotype serves as a DNA tag, uniquely identifying that

individual. DNA is extracted from each sample and the extracted DNA is PCR amplified

multiple times at several microsatellite loci. The results of each PCR amplification are vi-

sualized using capillary electrophoresis, resulting in an electropherogram. Alleles are called

by interpreting the peak heights and/or peak areas on the electropherogram.

While non-invasive genetic methods solve some of the problems of traditional

mark–recapture, they also introduce some new problems. One major problem introduced

by non-invasive genetic methods is the misidentification of individuals. The DNA from

non-invasive samples is often low in quality and/or low in quantity, which increases the

probability of genotyping errors. In addition, poor marker selection can result in individ-

uals sharing a genotype. Traditional mark–recapture methods are not robust to violations

of the assumption that individuals are correctly identified. Genotyping errors cause overes-

timation of population size; markers that lack the power to distinguish between individuals

cause underestimation of population size.



To achieve better population size estimates, I propose a new probabilistic allele

calling method. In the traditional method, definitive allele calls are made independently for

each PCR replicate of a sample. Then, the definitive allele calls are examined to determine

the sample’s genotype. The new method assigns probabilities to allele calls, rather than

determining a definitive allele call. Probabilities are assigned to possible allele calls based

on electropherogram peak heights. For cases of possible allelic drop out, a portion of

the probability distribution for the PCR replicate is assigned to a heterozygous allele call

with one undesignated allele. For each sample, the allele call probabilities at each locus,

including allele calls with undesignated alleles, are averaged from the PCR replicates. Then,

possible allele calls with undesignated alleles are assigned based on the allele frequencies

in the averaged probabilities. The genotype with the highest probability is assigned as the

sample’s genotype. Using the probabilistic method, uncertainty remains in the allele calls

until all the PCR replicates of a sample are examined. This allows more information from

the electropherograms to be utilized when determining genotypes.

To examine the proposed probabilistic allele calling method, I compared it to a

traditional method by running computer simulations that examine a variety of scenarios.

For each simulation scenario, a population was generated and sampled using non-invasive

genetic mark–recapture methods. Each sample, which contained DNA of low quality and

quantity, was genotyped at multiple microsatellite loci, with multiple PCR replicates for

each locus. Genotypes were determined for samples using a traditional allele calling method

and the new probabilistic allele calling method. The resulting genotypes were matched and

the data was analyzed using four traditional closed mark–recapture models.

The probabilistic method performed better than the traditional method in almost

all cases. When more than two PCR replicates were examined, the estimates from the

probabilistic method were less biased and more precise than estimates from the traditional

method. Using the probabilistic method, good estimates can be achieved using fewer PCR

replicates. This new method of analyzing non-invasive genetic mark–recapture data has the

potential to allow wildlife population sizes to be accurately estimated using non-invasive

methods in less time and at lower cost than current methods.
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BIOGRAPHY

From the time I learned to ride horses when I was a kid, I spent as much time as

possible at the barn. I would ride any horse I could get my hands on—including the unbroke

or wild ones. My sister and I rode a pony named Sparkle (also known as The Little Witch)

who was being given away because she had the intelligence and athleticism to dump any

rider. Our parents, not being knowledgeable about horses, thought keeping Sparkle was a

good idea. Sparkle excelled at jumping, bucking, and keeping her rider humble...the kind

of pony every kid should learn to ride on.

At 18 years old, it was on to the University of Michigan. Being born and raised

in sunny southern California, I thought it would be fun to go somewhere with snow. I

imagined sledding, snowball fights, and building snowmen. Instead it was just bitter cold

the entire school year. Every summer I took the opportunity to seek adventure elsewhere,

including the Sierra Nevada Mountains and Yellowstone National Park. After four years,

I graduated from Michigan with a degree in Aerospace Engineering. Unlike most rocket

scientists, I did not to put my degree to work. Instead I thru-hiked the Appalachian Trail,

spending six months walking from Georgia to Maine.

After a stint living in a tent in Alaska, I moved to Washington State to pursue a

career as a stable hand. While working as a stable hand, I also worked as an EMT on an

ambulance, retrained problem horses, and worked at a fecal DNA lab. While in Washington,

I took up foxhunting. I am proud to say that, while foxhunting, I have fallen off horses on

three different continents.

Eventually I landed in Raleigh, North Carolina to pursue higher education and

more horses. I spend my free time volunteering for a local equine rescue organization. I am

the proud foster mom to a string of naughty ponies who need to learn to behave themselves

before anyone will adopt them. I still backpack every chance I get, even if it is −200F or

over 1000F. Breaks from school find me anywhere from the swamps to the mountains.

I am one of the founders and a regular contributor to Hillbilly Farms, a world

famous website devoted to our battle against perfection in the equestrian world. In addition

to contributing fodder for the website, I also write the “Jumping Clinic” column under the

pseudonym George Morris. I have recently opened Ponies on Probation, a branch of Hillbilly

Farms.
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allele A microsatellite allele is defined by the number of tandem repeats of the short DNA

sequence.

allele call An estimation of which alleles are present in a sample based on examination of

the electropherogram. See false alleles and allelic drop out for examples of errors in

allele calling.

allelic drop out The failure of one allele in a heterozygote to amplify.

capillary electrophoresis The method used to separate DNA fragments of different sizes

to allow visualization of alleles.

capture frequencies The capture frequencies are represented by a vector where the ith

coordinate is the number of individual animals that were captured exactly i times.

capture history An individual animal’s capture history is the record, for each sampling

occasion, of whether or not the individual was captured. “0” indicates no capture and

“1” indicates a capture.

capture history matrix The collection of individual capture histories for all animals cap-

tured during at least one sampling occasion. It indicates for each animal, at each sam-

pling occasion, whether the animal was capture during that occasion. “0” indicates

no capture and “1” indicates a capture.

capture probability The probability that an individual animal will be captured during a

sampling occasion.

consensus genotype A sample’s consensus genotype is the collection of the two alleles

determined to be present for each locus. It is determined by examining, for each

locus, the allele calls of each PCR replicate. The number of replicates that contain a

given allele is compared to the consensus threshold value. If the count is larger than

the threshold, the allele is considered part of the genotype at that locus.

electropherogram A graph of the intensity of the electrophoresis signal versus the size

of the amplified DNA fragments. One electropherogram is generated for each PCR
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replicate, at each locus, for each sample. Alleles are called by examining the peak

heights and/or peak areas of the electropherogram.

false allele An allele that is called as part of the sample’s genotype, but that is not part

of the animal’s true genotype. False alleles are caused by contamination and stutter.

genotype A locus genotype is the two alleles present at a given locus. An animal’s geno-

type is the collection of locus genotypes for that animal. A sample’s genotype is

the estimation of the animal’s genotype based on a DNA containing sample from the

animal.

ghost A non-existent individual that appears in the capture history matrix due to the

misidentification of a sample.

locus (loci pl.) A microsatellite locus is a region of DNA containing a microsatellite

marker.

mark–recapture A method used to estimate wildlife population sizes by capturing, mark-

ing, and releasing individual animals at multiple sampling occasions. Captured indi-

viduals are marked with unique tags that allow researchers to determine each individ-

ual’s capture history. A population size estimate is obtained by analyzing the capture

history matrix.

microsatellite markers A region of DNA containing tandem repeats of short DNA se-

quences. The number of repeats varies between individuals in a population.

non-invasive genetic mark–recapture A mark–recapture method that uses genotypes

from non-invasive DNA sources as the tags to uniquely identify individuals.

PCR (polymerase chain reaction) A method to amplify the number of DNA molecules

from a selected region of DNA.

PCR replication PCR performed multiple times at a given locus, for a given sample.

sampling occasion The period of time during which animals are captured or samples

containing DNA are collected.
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shadow An individual whose genotype is identical to the genotype of another individual

in the population.

study period The time frame encompassing the multiple sampling occasions, during which

animals are captured or DNA samples are collected for the study.

stutter A type of genotyping error that results in a false allele due to a PCR amplification

error.
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Chapter 1

Introduction

Accurate estimates of population sizes and other demographic parameters are nec-

essary to help researchers better understand how wildlife populations are changing over

time. Understanding how various factors affect demographic parameters allows researchers

to design effective conservation plans for species at risk of extinction. The continued mon-

itoring of demographic parameters after a conservation plan has been implemented allows

researchers to determine the effectiveness of the plan.

There are a variety of methods that allow researchers to effectively estimate wildlife

population sizes when time and money are limited. Most of these methods are based on

counts of a portion of the population, rather than a complete census, but each uses a

different approach to estimate the unseen portion of the population. These count methods

include simple count indicies, distance methods, and mark–recapture methods (Williams

et al. 2002). I will focus on mark–recapture methods because they are commonly used and

allow researchers to obtain estimates of population sizes using a variety of tagging methods,

including non-invasive genetic tags.

1.1 Traditional Mark–Recapture Methods

Researchers often use traditional mark–recapture methods to estimate wildlife pop-

ulation sizes. Individuals from the population are physically captured, marked with a unique

tag, and released back into the population. The population is re-sampled multiple times

and researchers identify individuals with marks from a previous capture. A capture history



2

is generated for each captured individual indicating, for each sampling occasion, whether

or not the individual was captured. The capture histories of all of the captured individuals

in the study are entered into a capture history matrix (see Table 1.1 for example matrix).

A variety of models with varying assumptions are available to analyze capture history ma-

trices (Williams et al. 2002). When model assumptions are met, mark–recapture methods

can provide researchers with accurate estimators of population size.

Table 1.1: Example capture history matrix for 8 individuals and 10 sampling occasions.
sampling occasion

individual 1 2 3 4 5 6 7 8 9 10
1 0 1 1 0 0 0 1 0 1 0
2 1 1 0 1 1 0 0 0 1 1
3 0 0 0 0 1 0 0 0 0 1
4 0 1 1 1 0 0 1 1 1 0
5 1 1 0 1 0 1 1 0 0 0
6 1 0 0 0 0 1 1 0 0 1
7 0 0 0 1 0 0 0 0 0 0
8 1 1 1 1 0 1 1 1 0 1

0 indicates individual not captured.
1 indicates individual captured.

There are three categories of mark–recapture models—closed population models,

open population models, and combined open and closed models (see Figure 1.1). The

closed population models assume that there are no births, no deaths, and no migration

during the study period. The open models relax these assumptions, allowing births, deaths,

or permanent migration. Neither open nor closed population models allow for temporary

emigration (Pollock et al. 1990). Some combined models can yield unbiased population size

estimates in the presence of temporary emigration (Kendall et al. 1997).

The simplest mark–recapture model is the Lincoln–Petersen model, which has two

sampling occasions. This model has very restrictive assumptions: a closed population,

equal capture probabilities for all individuals at each occasions, and marks are not lost

(Williams et al. 2002). While the assumptions of the model are restrictive, it serves as a

good model to understand the general mark–recapture concept. During the first sampling

occasion, individuals are captured, marked, and released back into the population. During

the second sampling occasion, individuals are captured and researchers take note of the
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mark‐recapture models
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occasions
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Figure 1.1: Types of mark–recapture models and examples of each type.

number of individuals that are marked, indicating that they were captured during the

first sampling occasion. To estimate the population size, first researchers calculate the

proportion of individuals captured in the second sampling occasion that were marked in

the first sampling occasion. Then researchers determine the equation of the proportion of

individuals in the entire population that are marked, which is the total number of marked

individuals divided by the unknown population size. Under the assumptions of the model,

these two proportions are equal. Equating them and solving for the population size will

yield an estimate of population size (Williams et al. 2002).

More robust estimates can be obtained by using models that relax the assumptions

and increase the number of sampling occasions. For more than two sampling occasions

there is a standard suite of closed mark–recapture models. These models assume a closed

population and that individuals are correctly identified using unique tags. The models vary

in their assumptions regarding the capture probabilities, which can vary between sampling

occasions, between individuals, and in response to prior trapping (Williams et al. 2002).

The baseline model in the suite of closed mark–recapture models is model M0. This
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model makes the assumption that the capture probabilities are the same for each sampling

occasion, for each individual, and regardless of whether the animal has been previously cap-

tured. Population size estimates can be obtained from model M0 using maximum likelihood

estimation. Estimates from model M0 can be significantly biased if capture probabilities

are not equal (Otis et al. 1978; Williams et al. 2002). The direction of the bias depends

on the source of variation in the capture probabilities, with individual variation causing a

negative bias (Pollock et al. 1990).

There are many sources of variation in capture probabilities. Capture probabilities

can vary over time for various reasons, including varying weather conditions (Williams et al.

2002). Capture probabilities can vary between individuals in relation to many factors,

including gender and age (Williams et al. 2002; Boulanger et al. 2004). An animal that has

been previously captured may exhibit behavioral variation in capture probabilities due to a

“trap–shy” or a “trap–happy” response when they encounter traps in subsequent sampling

occasions (Pollock et al. 1990; Williams et al. 2002). The remainder of the models in the

suite of closed mark–recapture models allow for different sources of variation in capture

probabilities in all possible combinations (Table 1.2).

Table 1.2: Sources of variation in capture probabilities allowed in the closed mark–recapture
models.

source of variation in capture probabilities
model time (t) individual (h) trap response (b)
M0

Mt
√

Mh
√

Mb
√

Mth
√ √

Mtb
√ √

Mhb
√ √

Mthb
√ √ √

√
indicates a source of variation allowed in the model.

The importance of heterogeneity in capture probabilities necessitates a more de-

tailed discussion of model Mh. Model Mh allows for capture probabilities to vary between

individuals, but not over time or due to prior trapping. Since each animal has its own cap-

ture probability, model Mh has a large number of parameters to estimate. For this reason a
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variety of methods are used to obtain estimates under model Mh (Otis et al. 1978; Williams

et al. 2002). Three commonly used approaches are the finite mixture estimator (Pledger

2000), the jackknife estimator (Burnham and Overton 1978), and the Chao estimator (Chao

2006).

The finite mixture approach models heterogeneity by separating individuals into

a small number of groups. Individuals within each group have equal capture probabilities.

In many cases, separating the individuals into two groups is sufficient to model the hetero-

geneity (Pledger 2000). The jackknife estimator is an ad hoc method that assumes that

the capture probabilities are a random sample from an unspecified distribution (Burnham

and Overton 1978). The jackknife estimator, although it does not have a strong theoretical

basis, is fairly robust (Otis et al. 1978), but population size estimates can be negatively bi-

ased if capture probabilities are very low (Chao 1989). The Chao estimator was developed

to handle sparse data, due to low capture probabilities, where other heterogeneity models

do not perform well (Chao 1989). It is based on the idea that rarely captured individuals

contribute the most information about uncaptured individuals. Estimates from the Chao

estimator can be negatively biased (Chao 1989) because it was intended as a lower bound

on population size, not a point estimate (Chao 2006).

While using models that account for heterogeneous capture probabilities is often

necessary, these models introduce some additional problems. These models reduce bias, but

the cost is a decrease in precision (Otis et al. 1978; Boulanger et al. 2004). In addition,

the estimates of population size depend on the specific model used due to an identifiability

problem. Simulating two populations with very different sizes, each under a different model,

can result in the same capture history for both populations (Link 2003). Regardless of the

identifiability problem, heterogeneity models are often used to analyze mark–recapture data

because there is extensive evidence of heterogeneous capture probabilities.

Researchers must also consider the assumption of population closure. When the

closure assumption cannot be met, it is necessary to use an open population model. The

Jolly–Seber model—which allows births, deaths, immigration, and permanent emigration—

provides an estimate of population size at each sampling occasion. The model assumptions

include equal capture probabilities of all individuals present during a sampling occasion

and correct identification of individuals (Pollock et al. 1990). When there is substantial

variation in capture probabilities between individuals and capture probabilities are not
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high, the estimates of population size can be negatively biased (Williams et al. 2002). The

Jolly–Seber model can be extended to consider capture probabilities that are stratified by

age class (Pollock et al. 1990), which may reduce some of the individual variation in capture

probabilities.

The robust design combines open and closed models, with each type of model

analyzing the data at a different scale. The robust design utilizes multiple primary sampling

periods, each containing multiple secondary sampling periods. The secondary sampling

periods within a single primary period are close enough in time that closure can be assumed,

allowing analysis with closed population models that allow variation in capture probabilities.

The primary periods are analyzed by combining the data from the secondary periods for

each primary period. The data at this scale can be analyzed using an open population model

(Pollock et al. 1990). When using the robust design, the data must meet the assumptions

of the models used at the different scales (Williams et al. 2002); however, the model can be

extended to allow for temporary emigration (Kendall et al. 1997).

There are a variety of models with varying assumptions that allow researchers

to obtain accurate population size estimates. However, traditional mark–recapture has

limitation, especially when sampling rare, elusive, or endangered species (Mills et al. 2000).

If individuals are elusive, or if the density of the population is low, capture probabilities

may not be high enough to obtain accurate population size estimates. In addition, physical

capture can be stressful to an animal, decreasing the animal’s ability to survive in the wild.

Physical capture can also directly cause the injury or death of the animal (Langer 2006).

These limitation have lead researchers to examine modifications of the traditional mark–

recapture methods that have higher capture probabilities and do not rely on physically

capturing the animals. I will focus on the use of non-invasive genetic samples to estimate

wildlife population sizes under the closed mark–recapture models.

1.2 Non-Invasive Genetic Sampling

The limitations of low capture probabilities and stress on the animals that occur

when using traditional mark–recapture methods can be addressed by utilizing natural tags

instead of applied tags. In traditional mark–recapture, tags are physically applied to the

animal to allow identification at a future capture. Instead of applying tags, animals can
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be identified without physical capture by using natural tags. Animals can be uniquely

identified using photographs showing scars or color patterns (photo tags), or by genotypes

from non-invasive DNA samples (DNA tags) (Yoshizaki 2007). I will focus on DNA tags

because they are currently being used to study a wide variety of species.

To uniquely identify individual animals using DNA tags, non-invasive samples con-

taining DNA, such as hair or scat, are collected and genotyped at multiple microsatellite

markers. An individual’s genotype serves as its DNA tag, uniquely identify that individ-

ual. When the same genotype is encountered in two different samples, the second sample

is considered a “recapture”. Non-invasive samples may be abundant, resulting in higher

capture probabilities than when traditional physical capture is used (Mills et al. 2000). The

higher capture probabilities result in larger sample sizes. In addition, the animals are not

physically captured, so there is no stress on the animals and no risk of injury or death of

the animals due to capture. Mark–recapture methods that utilize DNA tags often allow re-

searchers to obtain accurate estimates of population sizes more quickly and more efficiently

than when traditional tags are physically applied to the animals (Waits 2004).

1.2.1 Genotyping Non-Invasive Samples

Mark–recapture methods that utilize DNA tags require samples to be identified by

genotype. The process of genotyping begins with the extraction of DNA from the samples.

DNA can be extracted from a variety of non-invasive sources including hair, scat, urine,

skin, feathers, and egg shells (see references in Waits (2004)). The two most common

sources of non-invasive DNA used in wildlife studies are hair and scat (Waits 2004). Hair

sampling has been used on a wide variety of species including bears, chimpanzees, and

gibbons (see references in Waits (2004)). Hair is often collected by attracting animals to

the sampling area using food or scent lures. In the sampling area, hair is collected on

barbed wire hair snags. Shed hair can also be collected. Shed hair is often collected at

nesting sites, provided the nest is occupied by a single individual (Gagneux et al. 1997).

Animal hair contains follicular cells on the roots from which DNA can be extracted (Waits

2004). Samples with multiple hairs can be difficult to analyze since a single sample may

contain hair from more than one individual. Scat sampling has been used on a wide variety

of species including bears, elephants, wolves, bonobos, gibbons, chimpanzees, langurs, and

rhinoceros (see references in Waits (2004)). Scat is a plentiful resource and it contains
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numerous epithelial cells from the intestinal mucosa from which DNA can be extracted

(Wasser 1997; Waits 2004). It is easier to visually determine if a scat samples is from the

target species than it is for a hair sample (Ruell and Crooks 2007). In addition, DNA

extracted from scat has a higher concentration of DNA than DNA extracted from hair

(Morin et al. 2001).

After DNA is extracted from the non-invasive sample, multiple microsatellite re-

gions of the DNA are examined. Microsatellites, also known as simple sequence repeats

(SSRs) or short tandem repeats (STRs), are regions of nuclear DNA that are non-coding

and highly variable between individuals in a population. A microsatellite contains multiple

tandem repeats of a small sequence of DNA, usually 1–5 base pairs in length (Tamaki 2007).

The different alleles found in a population are due to differing number of tandem repeats,

which result in differently sized DNA fragments.

For each DNA sample, multiple microsatellite regions are amplified using poly-

merase chain reactions (PCR). For each sample, each microsatellite region is usually PCR

amplified multiple times for verification of the results. PCR amplification is a method used

to increase the amount of specific DNA sequences using temperature cycles that denature

the DNA, anneal the primers, and copy the DNA (Pierce 2003). The amplified DNA is

labeled with fluorescent dye and visualized by capillary electrophoresis, resulting in an elec-

tropherogram for each PCR amplification. An electropherogram is a graph of the intensity

of the fluorescent signals versus the size of the amplified DNA fragments (see Figure 1.2).
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Figure 1.2: Example electropherogram from a single PCR replicate of a single locus for a
single sample. The electropherogram shows a heterozygote with alleles 128 and 140. The
two small peaks to the left of the two larger peaks are the stutter peaks. See section 1.2.2
for an explanation of stutter peaks.
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Alleles are then called for each PCR amplification. Allele calling is the determi-

nation of which alleles are present in the sample by interpreting the peak heights and/or

peak areas of the electropherogram (Butler 2005). The intensity of the fluorescent signal

at a given fragment size, as measured by the peak height and/or peak area on the electro-

pherogram, indicates how many DNA fragments of that size are present in the sample. The

size of the amplified DNA fragment indicates how many tandem repeats are present, which

indicates what allele is present. To determine a sample’s genotype, alleles are called for each

PCR replicate, of each locus, for that sample. Then, all of the PCR replicates at each locus

for that sample are examined to determine the sample’s genotype at each locus. A sample’s

locus genotype is the two alleles that are determined to be present in the sample at that

locus. Finally, the overall genotype is determined by combining all of the locus genotypes

for a sample (see Table 1.3 for example genotypes).

Table 1.3: Examples genotypes for three samples at eight loci.
sample 1 sample 2 sample 3

locus genotype locus genotype locus genotype
G1A (188,190) G1A (180,180) G1A (192,200)
G10B (150,162) G10B (142,166) G10B (148,166)
G10C (101,101) G10C (105,117) G10C (111,113)
G10L (165,171) G10L (139,143) G10L (161,161)
G10M (202,220) G10M (196,200) G10M (210,212)
G10P (155,159) G10P (143,143) G10P (141,167)
G10X (145,161) G10X (125,169) G10X (131,131)
G1D (180,188) G1D (176,182) G1D (174,190)

1.2.2 Misidentification

Non-invasive genetic mark–recapture methods solve some of the problems of tra-

ditional mark–recapture, but they also introduce some new problems. One major problem

introduced by non-invasive genetic methods is the misidentification of samples. There are

two forms of misidentification that occur when using DNA to identify samples, resulting in

either a “shadow” individual or a “ghost” individual (see Figure 1.3). A shadow individual

is generated when a sample from an individual is misidentified as belonging to a different

individual (Mills et al. 2000). This occurs when the genetic markers do not have enough
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power to distinguish between individuals (Paetkau 2003; Petit and Valiere 2006). A ghost

individual is generated when a sample from an individual is misidentified as belonging to a

non-existent individual (Paetkau 2003). This occurs due to genotyping errors. A genotyp-

ing error almost always results in new genotype, rather than matching an already existing

genotype. While misidentifications due to shadows and ghosts both have important im-

pacts on population size estimates, I will focus on ghosts because shadows can be reduced

by proper marker selection.

The DNA from non-invasive samples is often low in quantity, which results in low

amounts of template DNA in the extracts. In addition, non-invasive samples are often

low in quality, which decreases the amount of template DNA available for the genotyping

process (Taberlet and Luikart 1999; Ladd et al. 2001). The lower the amount of template

DNA, the higher the probability of genotyping errors (Taberlet and Luikart 1999; Gill 2001;

Whitaker et al. 2001; Miller et al. 2002; Paetkau 2003; Buchan et al. 2005). There are

two types of genotyping errors of concern—allelic drop out and false alleles (see Figure

1.4). False alleles are caused by two different mechanisms—stuttering and contamination

(Taberlet et al. 1996; Miller et al. 2002).

misidentification

genotyping errorsloci lack power genotyping errorsloci lack power

ghostsshadows

underestimate 
population size

overestimate 
population size

Figure 1.3: Types of misidentification that occurs in non-invasive genetic mark recapture
studies and the resulting biases.
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Figure 1.4: Types of genotyping errors

Genotyping low quantity and/or low quality DNA may result in allelic drop out,

which is when an allele fails to amplify due to a stochastic sampling error (Taberlet and

Luikart 1999; Taberlet et al. 1999; Miller et al. 2002; Butler 2005). The lower the quantity of

template DNA, the higher the probability of drop out (Taberlet et al. 1996; Ladd et al. 2001).

Estimates of the rate of allelic drop out vary between studies. Rates have been recorded as

high as 48% (baboon scat, Smith et al. (2000)) and 31% (chimpanzee shed hair, Gagneux

et al. (1997)) per PCR replicate of heterozygous genotypes. Simulation studies show that

when at least one allele successfully amplifies from low quantity DNA, the probability of

drop out can reach 50% per PCR replicate (Taberlet et al. 1996). Different loci have different

PCR amplification success rates due to a number of factors including the size of the alleles

present and the efficiency of the primers. As amplification success rate decreases, the rate

of allelic drop out increases (Buchan et al. 2005). There is also a tendency for preferential

amplification of smaller alleles (Gill et al. 1997; Clayton et al. 1998; Whitaker et al. 2001;

Buchan et al. 2005), resulting in higher rates of allelic drop out for larger alleles (Tully 1993;

Whitaker et al. 2001). This may be a result degradation having a larger effect on alleles

with higher molecular weights (Taberlet et al. 1999; Ladd et al. 2001; Gill et al. 2006).

Genotyping low quantity and/or low quality DNA may result in false alleles. Es-

timates of the rate of false alleles vary between studies. False allele rates as high as 8%

(badger scat, Frantz et al. (2003)) and 5.6% (chimpanzee shed hair, Gagneux et al. (1997))

per PCR replicate have been recorded. False alleles are caused by stuttering or contamina-

tion. A stutter peak is a false allele that appears to amplify due to a copy error during PCR

amplification. The copy error is believed to be caused by a slipped–strand mispairing of the
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Taq polymerase enzyme and the template strand during PCR amplification (Taberlet et al.

1996; Gill et al. 1997; Clayton et al. 1998; Gill et al. 1998; Butler 2005). The copy error

results in molecules in the PCR product that are a different size than the template molecule,

usually by multiples of the repeat length (Shinde et al. 2003). Stutter products that are

smaller than the original molecule (contractions) are much more likely to occur than stutter

products that are larger than the original molecule (expansions). For dinucleotide repeat

loci, stutter contractions are 14 times more likely than stutter expansions (Shinde et al.

2003).

In addition to the smaller size of the molecules, stutter peaks are often identified

by their peak heights relative to the parent allele. When there is a sufficient quantity of

DNA at a tetranucleotide repeat locus, peak heights of stutters are usually less than 15%

of the parent allele (Gill et al. 2000; Butler 2005). When a dinucleotide locus is examined,

or there is a low quantity of DNA, the peak heights of stutters can be sufficiently large

that interpretation of the electropherogram can be difficult (Taberlet and Luikart 1999; Gill

et al. 2000; Butler 2005; Gill et al. 2006). Rates of stutter likely vary between loci (Clayton

et al. 1998; Gill et al. 1998; Buchan et al. 2005). Different loci have alleles with differing

number of repeats and stutter rates increase with an increase in the number of repeats (Lai

and Sun 2004; Butler 2005).

Using low quantities of DNA may result in extra alleles on the electropherogram

due to contamination. When attempting to amplify low quantities of DNA, additional

PCR cycles are needed to ensure there is a sufficient signal to call alleles (Navidi et al.

1992; Gill et al. 2000; Butler 2005). Increasing the number of PCR cycles allows an allele

from a single template molecule to be visualized (Taberlet and Luikart 1999; Gill et al.

2005). The additional PCR cycles increase the risk of amplifying DNA from contamination

(Taberlet and Luikart 1999; Gill et al. 2000; Gill 2001). Sources of contamination include

the environment where the sample was collected, other samples, and previously amplified

DNA (Butler 2005). Contamination from other species or other populations can be inferred

by the presence of alleles not known to occur in the study population. Contamination from

within the study population is more difficult to detect and has been estimated at 0.8%

(elephant scat) and 0.5% (baboon scat) (Buchan et al. 2005).

Another issue that makes analysis of electropherograms difficult is the presence

of null alleles. Null alleles are alleles that fail to amplify due to a mutation at the primer
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binding site (Butler 2005). An individual that is heterozygous with one null allele, will

always appear as homozygous for the other allele, unless a different primer is used. Null

alleles consistently fail to amplify, so an individual with a null allele still can be identified

by its unique genotype. However, the presence of null alleles in a population will make

analysis of electropherograms difficult because the intensity of the fluorescent signal will be

lower than expected when a null allele is present. Null alleles also reduce the power of a

locus to distinguish between individuals (Eggert et al. 2003).

1.2.3 Reducing Misidentification of Samples

Different methods can be used to reduce the rate of misidentification. A pilot

study is necessary to test if non-invasive genotyping is feasible for the population of interest

(Taberlet and Luikart 1999). The quantity and quality of DNA varies between studies due

to a number of factors including variation between species (Taberlet and Luikart 1999) and

variation between samples types. A pilot study allows researchers to determine if there

will be enough template DNA to accurately genotype samples (Taberlet and Luikart 1999).

Careful marker selection, rigorous field and lab protocols, careful analysis of allele calls and

genotypes, and replication of PCR amplifications are important steps to reduce the rate of

misidentification.

Misidentification leading to a “shadow”, which is when two unique individuals

share a genotype, can be reduced by careful marker selection (Paetkau 2003; Waits and

Paetkau 2005). A pilot study can help researchers select enough highly polymorphic markers

to ensure enough power to distinguish between closely related individuals (Taberlet and

Luikart 1999). When determining how many markers to use, researchers need to bear in

mind that the occurrence of genotyping errors increases as more markers are examined

(Waits and Paetkau 2005).

Genotyping errors can be reduced by implementing rigorous field and lab protocols.

The freshest possible samples should be collected from the field because DNA from fresh

samples will be less degraded than DNA from older samples (Taberlet et al. 1999). Careful

collection of samples from the field can help reduce the rate of contamination. When

using additional PCR cycles to analyze low quantity and/or low quality DNA, separate

labs should be designated for pre-PCR procedures and post-PCR procedures to reduce the

risk of contamination. Positive controls should be PCR amplified and analyzed to ensure
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that appropriate procedures are being used to amplify samples and call alleles. Extract

blanks and PCR blanks should be PCR amplified and analyzed to see if any erroneous

DNA amplified, indicating possible contamination from reagents or other sources. (Navidi

et al. 1992; Taberlet and Luikart 1999; Taberlet et al. 1999; Gill 2001; Paetkau 2003; Wasser

et al. 2004; Butler 2005).

Early detection and culling of poor samples is important to efficiently obtaining

accurate genotypes (Paetkau 2003). Species identification of samples, using mitochondrial

DNA (mtDNA), should be done before genotyping to help detect poor samples. The mtDNA

has more copies per cell than nuclear DNA, so mtDNA amplifies more readily than nuclear

DNA (Waits and Paetkau 2005). Any sample not showing good amplification with mtDNA

markers should be culled (Paetkau 2003; Wasser et al. 2004). Once amplification with

microsatellite markers begins, any sample that fails to amplify at a large number of loci

should be culled (Paetkau 2003).

Careful analysis of allele calls and genotypes can also help detect genotyping errors.

Samples with three or more alleles at any locus should be scrutinized and possibly culled,

since the sample may have DNA from more than one individual (Paetkau 2003). The

presence of an allele outside the expected range for a locus may indicate a contaminated

sample. A sample that has a very similar genotype to another sample should be reamplified

to verify that the true genotypes are actually different (Paetkau 2003). Any locus showing

deviations from Hardy–Weinberg proportions should be examined for the presence of null

alleles (Butler 2005) or genotyping errors.

Lower genotyping error rates are obtained by performing PCR replications at each

locus, for each sample. For each sample, a consensus genotype is determined from these

multiple amplifications by calling alleles at each locus of each PCR replicate and comparing

the allele calls to a preselected consensus threshold value. The consensus threshold value is

the number of replications in which an allele needs to be called before the allele is considered

part of the consensus genotype (Valiere et al. 2002).

The multiple–tubes approach uses extensive PCR replications to reduce genotyping

error rates (Navidi et al. 1992; Taberlet et al. 1996). This method requires a minimum of

2 PCR replications for each heterozygote and a minimum of 7 PCR replications for each

homozygote. The multiple–tubes approach does not completely eliminate genotyping errors,

but it usually reduces the sample misidentification rate to below 1% (Waits 2004; Petit and
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Valiere 2006). The multiple–tubes approach is widely accepted, but it is rarely adhered to

because it is expensive, time consuming, and requires more DNA since the DNA must be

spread across more PCR replicates (Morin et al. 2001; Miller et al. 2002; Valiere et al. 2002;

Paetkau 2003). Reducing misidentification rates is an important step towards improving

population size estimates, but complete elimination of misidentification is rarely achieved

in non-invasive genetic mark–recapture studies.

1.3 Model Biases Resulting from Non-Invasive Genetic Sam-

pling

When analyzing any mark–recapture data, it is important to understand whether

the data collected meets the assumptions of the model, otherwise estimates may be bi-

ased. In addition to the violations of model assumptions that often occur in traditional

mark–recapture, the use of non-invasive genetic mark–recapture introduces some additional

sources of violations, which can result in significant biases in population size estimates.

Using models that allow for heterogeneous capture probabilities is often necessary

in traditional mark–recapture. In non-invasive genetic mark–recapture it is often even

more important to use heterogeneity models because an animal’s capture probability has

two components: the probability of collecting a sample from the animal and the probability

of successfully amplifying DNA from the sample (Waits 2004; Lukacs and Burnham 2005).

However, heterogeneity may be reduced because the data used to estimate population sizes

relies on whether or not an animal was captured during a sampling occasion, not how many

times it was captured during that sampling occasion. Since each animal can be captured

multiple times during a given sampling occasion, the record for an animal captured multiple

times in that occasion would be the same as the record for an animal that was captured

only one time in that occasion (Boulanger et al. 2004).

The traditional mark–recapture models assume that individuals are correctly iden-

tified. Violations of this assumption result in biases in population size estimates (see Figure

1.3). If the genetic markers used in non-invasive mark–recapture do not have the power

necessary to distinguish between individuals, the population size estimate will be negatively

biased due to the “shadow” effect (Mills et al. 2000; Waits and Leberg 2000; Waits 2004).

When individuals are misidentified due to genotyping errors, caused by allelic drop out, false
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alleles, and contamination, the population size estimate will be positively biased due to the

excess “ghosts” created (Waits and Leberg 2000; Creel et al. 2003; Waits 2004; Yoshizaki

2007). Simulations show that non-invasive genetic mark–recapture methods can overesti-

mate population sizes by 200% when amplifying 7–10 loci with an error rate of 5% per locus

(Waits and Leberg 2000). A scat study estimated the population size of wolves in Yellow-

stone National Park to be 550% greater than the known size of the population (Creel et al.

2003). Researchers try and reduce misidentification error rates in order to decrease the bias

in population size estimates. The methods used to reduce misidentification rates usually

do not completely eliminate misidentification, so the resulting population size estimates are

still biased. Even with sample misidentification rates as low as 5%, simulation studies show

that the population size estimates are still biased when data are analyzed under traditional

mark–recapture models (Yoshizaki 2007).

In addition to reducing the rate of misidentification, researchers also attempt to

model misidentification in order to reduce the bias in population size estimates. These

misidentification models may reduce some of the bias in population size estimates (Yoshizaki

2007), but these models are not ideal. Misidentification models often assume that the

misidentification rate is constant between individuals and between samples and that the

errors that occur are independent of each other. The rate of genotyping errors can vary

between individuals (Gagneux et al. 1997). The rate of misidentification due to undetected

allelic drop out probably also varies between individuals. Individuals with higher levels of

heterozygosity have more loci where undetected allelic drop out could occur. Individuals

with larger alleles may be more prone to genotyping errors since larger alleles are more prone

to allelic drop out (Tully 1993; Whitaker et al. 2001) and the rate of stutter increases with

the number of tandem repeats in the allele (Shinde et al. 2003). In addition to variation

between individuals, misidentification rates vary between samples. The amount of template

DNA varies considerably between samples (Taberlet and Luikart 1999), which results in

a large variation in error rates between samples (Gagneux et al. 1997; Creel et al. 2003;

Paetkau 2003). For scat samples, the rate of genotyping error decreases with fresher samples

(Ruell and Crooks 2007). For hair samples, the rate of genotyping error decreases with an

increase in the number of hairs from an individual (Gagneux et al. 1997; Waits and Paetkau

2005). Errors that occur in different samples from a single individual are not independent

(Paetkau 2003). These repeated errors can be caused by undetected technical errors that
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affect all the samples in a run (Paetkau 2003). In addition, larger alleles are more prone

to stutter and allelic drop out which may result in a lack of independence between errors

in different samples from a single individual. Many attempts are made to reduce the bias

in population size estimates; however, the bias is not completely eliminated in most non-

invasive genetic mark–recapture studies.

1.4 The New Probabilistic Allele Calling Method

To achieve better population size estimates from non-invasive genetic mark–recapt-

ure analysis, I propose a new allele calling method that assigns probabilities to possible allele

calls rather than declaring a definitive allele call. In the traditional allele calling method,

definitive allele calls are made independently for each PCR replicate of a sample. Then

the collection of definitive allele calls is examined to determine the sample’s genotype.

By independently calling alleles at each PCR replicate, the traditional method does not

utilize all of the information available in the collection of PCR replicates for a sample.

Genotyping errors can be reduced by examining the peak heights and/or peak areas on the

electropherograms for each PCR replicate to determine the confidence in the allele calls.

Then, for any PCR replicate with low confidence, information from the other PCR replicates

for that sample can be used to determine the allele call at that PCR replicate.

In human criminal forensics, mixtures of DNA from multiple sources are often an-

alyzed by assigning probabilities to possible genotypes; however, peak intensities are rarely

formally considered. Probabilistic examination using peak intensities to assess allelic drop

out and stutter can improve forensic analysis of mixtures when allele calls are ambiguous

(Evett et al. 1998; Gill et al. 2006). In addition, when attempting to match a sample from

a suspect to a sample from a crime scene, these single contributor samples can be analyzed

probabilistically using peak heights to determine likelihood ratios or match probabilities

when allelic drop out is likely (Buckleton and Triggs 2006).

When assessing stutter probabilistically, the ratio of the height of the possible

stutter peak to the peak height of the parent allele indicates whether the peak is a stutter

peak or a true allele—the smaller the ratio, the more likely it is that the peak is a stutter

peak. When assessing allelic drop out probabilistically, the height of the remaining allele

indicates the probability of drop out of its partner allele—the smaller the height of the
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remaining allele, the more likely it is that allelic drop out has occurred (Gill et al. 2000;

Whitaker et al. 2001; Gill et al. 2006).

Figure 1.5 shows two examples of why assigning probabilities, rather than using

definitive allele calls, is beneficial. It shows four example electropherograms, where (A) and

(C) both show allele calls with no ambiguity, and (B) and (D) are both ambiguous. Using the

traditional allele calling method (A) would be called identical to (B) and given equal weight,

as would (C) and (D). Using a probabilistic method, the allele calls of electropherograms

(B) and (D) would be allowed to remain uncertain until the other PCR replicates of that

sample were examined.

I propose using probabilistic analysis of genotypes for non-invasive genetic mark–

recapture data. The probabilistic analysis assigns probabilities to allele calls based on

electropherogram peak heights, rather than using definitive allele calls. For each PCR

replicate, probabilities are assigned to possible allele calls based on electropherogram peak

heights. For cases of possible allelic drop out, a portion of the probability distribution for the

PCR replicate is assigned to a heterozygous allele call with one undesignated allele. Using

this probabilistic method, uncertainty remains in allele calls until all the PCR replicates of

a sample are examined. At each locus, the probabilities for possible allele calls of a sample,

including allele calls with undesignated alleles, are averaged from the PCR replicates. Then,

possible allele calls with undesignated alleles are assigned based on the frequency of the

alleles in the averaged probabilities. The sample’s genotype is assigned as the genotype

with the highest probability. The probabilistic method is a quantitative way to take into

account all of the information from the PCR replicates for a sample to determine the

sample’s genotype.

To examine the effectiveness of the proposed probabilistic allele calling method,

I coded computer simulations to compare population size estimates using the new proba-

bilistic allele calling method to estimates using a traditional allele calling method. For each

simulation scenario, a population was generated and sampled using non-invasive genetic

mark–recapture methods. Each sample, which contained low quality and quantity DNA,

was genotyped at multiple microsatellite loci, with multiple PCR replicates for each locus.

Genotypes were determined for samples using the probabilistic method and the traditional

method. The resulting genotypes were matched and the capture history data was analyzed

using four traditional closed mark–recapture models.
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Figure 1.5: Example electropherograms. (A) shows a probable homozygote. (B) shows
an ambiguous allele call—a possible homozygote or a possible case of allelic drop out. (C)
shows a probable homozygote with a stutter peak. (D) shows an ambiguous allele call—a
possible heterozygote or a possible homozygote with a large stutter peak.
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Chapter 2

Methods

To simulate non-invasive genetic mark–recapture studies, I coded simulations in

R (R Development Core Team 2005) (see Appendix A for code). The simulation code

automatically reads an input file containing values specifying population parameters, details

for the sampling procedures, and details for the analysis of the simulated data (see Appendix

B for parameter input file). The code automatically reads in a separate file containing the

sizes and frequencies of alleles in the population at each locus, including any null alleles

(see Appendix C for allele input file). Based on these input files, non-invasive genetic

mark–recapture data are simulated. The simulated data are analyzed using a traditional

allele calling method and the new probabilistic allele calling method (see Figure 2.1 for an

overview).

2.1 Data Simulation

Non-invasive genetic mark–recapture data are simulated in three sequential mod-

ules—the Population Generation Module, the Sampling Module, and the Genotyping Mod-

ule. The Population Generation Module generates a closed population exhibiting hetero-

geneity in capture probabilities. Each individual is assigned a genotype and a capture

probability. The Sampling Module selects samples based on non-invasive genetic mark–

recapture methods. The Genotyping Module generates electropherograms for each PCR

replicate based on a simulation of the biochemical processes of DNA extraction and PCR

amplification modified from Gill et al. (2005).
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Figure 2.1: Overview of the modules used to generate and analyze data. The “S” denotes
a non-invasive genetic sample, such as a single scat or hair sample, indexed by occasion
number and sample number within the occasion. “ID” denotes identification by genotyping.
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2.1.1 Population Generation Module

A closed population of a specified number of individuals (N) is generated. For

each individual in the population a true genotype is randomly assigned based on input

allele frequencies. For each individual, at each locus, two alleles are randomly sampled,

with replacement, from the frequency distribution of alleles at that locus. Assigning alleles

using this method generates a population with Hardy–Weinberg proportions.

To simulate a population with heterogeneous capture probabilities, a capture prob-

ability (p) is randomly assigned to each individual in the population. This is the probability

of capture per attempt that is tested against during each capture attempt in the Sampling

Module to see if the animal is captured. The probabilities of capture per attempt are as-

signed to achieve a specified mean and variance of the probability of being captured at least

one time during a sampling occasion. The mean and variance of the probability of capture

per attempt are calculated by first determining the 2.5 percentile and 97.5 percentile for

the probability of being captured at least once in a sampling occasion. These percentiles

are then transformed to the 2.5 percentile and 97.5 percentile for the probability of be-

ing captured during a single capture attempt, from which the mean and variance for the

probability of being captured at a single capture attempt are calculated. Each individual’s

capture probability is randomly assigned from a beta distribution with shape parameters

calculated to achieve the calculated mean and variance of the probability of capture per

attempt. The capture probabilities vary only by individual; the capture probabilities do

not vary in time, nor do they vary in response to previous captures.

2.1.2 Sampling Module

For a specified number of sampling occasions (k), each individual generated in the

Population Module is tested for capture for a specified number of possible capture attempts

(s) (see Figure 2.2). Multiple capture attempts are used because, unlike traditional mark–

recapture sampling where an individual can only be captured once, non-invasive sampling

allows multiple captures within each sampling occasion. Each test is performed by sampling

from a uniform (0,1) distribution and testing the resulting number to see if it is less than

the individual’s capture probability, which would result in a capture. For each capture that

occurs, a single sample is collected.
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2.1.3 Genotyping Module

For each sample collected in the Sampling Module, an electropherogram is gen-

erated for each PCR replicate, at each locus, based on a simulation of the biochemical

processes of DNA extraction and PCR amplification modified from Gill et al. (2005). For

each sample collected in the Sampling Module, the Genotyping Module simulates sample

collection, DNA extraction, PCR amplification, and capillary electrophoresis (see Figure

2.3).

sampling     

occasion 1 occasion 2 occasion k

Individual
1

Individual
N

Individual
2

Individual
N

Individual
1

Individual
2

Individual
1

Individual
2

Individual
N

01001 00000 11001 00000 01111 00000 00000 11010 11101

00 001 1 1 1 1

sampling occasion

individual 1 2 . . . k

1 1 0 . . . 0

2 0 1 . . . 1
. . . . . . . . . . . . . . .

N 1 0 . . . 1

capture history matrix

•

•

•

••• •

•

•

•• •

•

• •••

Figure 2.2: Diagram of the sampling process for N individuals, with k sampling occasions
and five capture attempts per individual per occasion.
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Figure 2.3: Diagram of the genotyping process for a single sample. L loci are examined, with
m PCR replicates at each locus. “PCR rep” denotes a replication of the PCR amplification
process, “CE” denotes visualization by capillary electrophoresis, and “call” denotes allele
calling.

The quantity of DNA in each sample is simulated by assigning the number of cells

present in the sample. The number of cells in a sample is randomly determined from a

uniform distribution, with specified minimum and maximum number of cells possible. For

each sample, at each locus, the number of double stranded DNA molecules of each allele

type is calculated based on the number of cells present and the number of alleles of each

type in the true genotype.

To simulate DNA degradation, a quality score is randomly assigned to each sample

by sampling from a uniform (0,1) distribution. Degradation decreases the number of DNA



25

molecules remaining in a sample. Lower quality samples will lose more DNA molecules than

higher quality samples, and longer alleles will lose more DNA molecules than shorter alleles.

The number of molecules available for the genotyping process depends on the degradation

efficiency (the probability that a single molecule will not be affected by degradation and

will thus be available for extraction).

I determined the degradation efficiency by assuming that any break in the DNA

molecule results in the molecule not amplifying. Assuming that the probability of a break

at any specific nucleotide is constant for a sample, then the probability of being unable to

amplify a single DNA molecule is a function of the number of nucleotides in the molecule.

I assumed that the probability of x number of breaks in the DNA follows a binomial distri-

bution

P (X = x|seq, pbreak) =
(
seq

x

)
(pbreak)x(1− pbreak)seq−x (2.1)

where seq is the number of nucleotides in the DNA molecule, and pbreak is the probability

of degradation causing a break in the DNA at a specific nucleotide. The probability of

successfully amplifying a DNA molecule is equal to the probability of no breaks in the DNA

molecule, which is given by

P (X = 0|seq, pbreak) = (1− pbreak)seq (2.2)

where pbreak is again the probability of degradation causing a break in the DNA at a specific

nucleotide. I assume pbreak is proportional to one minus the quality score for the sample.

This results in a probability of successful amplification of a DNA molecule equal to

P (X = 0|seq, pbreak) = (1− α(1− qual))seq (2.3)

where α is a constant of proportionality. To determine α, I solved equation 2.3 for pbreak

so that an average quality sample (qual = 0.5) showed the expected 12–15% difference in

amplification success for allele lengths differing by 100 base pairs (bp) (Buchan et al. 2005).

From the possible solutions, I chose a pbreak so that small alleles from high quality samples

(size = 100, qual = .9) would have amplification success rates greater than 90% and large

alleles from low quality samples (size = 300, qual = .1) would have amplification success

rates less than 50%. Based on these constraints, I chose the constant of proportionality to

be α = 0.0035. This resulted in a degradation efficiency of

degeff = (1− (0.0035)(1− qual))size (2.4)
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where degeff is the degradation efficiency, qual is the quality score, and size is the length of

the allele. The number of DNA molecules of each allele remaining in a sample is simulated

by a random binomial distribution, where the number of trials is the number of DNA

molecules of that allele, and the probability of success is the degradation efficiency.

Once the amount of usable DNA in each sample is determined, DNA extraction is

simulated. Extraction is simulated for each allele of each PCR replicate. DNA extraction is

simulated by randomly sampling from a binomial distribution, where the number of trials

is the number of DNA molecules of that allele in the sample, and the probability of success

is the specified extraction efficiency (the probability that a single molecule will be included

in the extract). A portion of each simulated DNA extract is aliquoted for processing. The

number of extracted DNA molecules of each allele in the aliquot is determined by randomly

sampling from a binomial distribution, where the number of trials is the number of DNA

molecules of that allele in the extract, and the probability of success is the specified aliquot

efficiency (the probability that a single molecule will be included in the aliquot).

Undetected contamination is simulated by randomly generating a value from a

uniform (0,1) for each PCR replicate and comparing it to the specified probability of unde-

tected contamination. Undetected contamination occurs in the simulation when the random

number is less than the probability of undetected contamination. If undetected contam-

ination occurs, a single double stranded DNA molecule is added to the DNA aliquot at

a random allele chosen from alleles present at that locus in the population. Contamina-

tion from detectable sources, such as contamination from lab materials or from unrelated

species, is not simulated since it can be detected by standard laboratory procedures. Null

alleles, which are alleles that do not amplify, are simulated by setting the number of DNA

molecules present in the aliquot to zero for all null alleles.

To simulate PCR amplification of small quantities of DNA, 34 PCR cycles, includ-

ing stutter, are simulated for each PCR replicate. Ten PCR replicates are simulated for

each locus of each sample. PCR success rates vary between loci (Buchan et al. 2005), so for

each locus a PCR efficiency (the probability that a molecule will be copied during a single

PCR cycle) is randomly generated from a beta distribution with shape parameters set to

achieve a specified mean and variance. Stutter rates vary between loci (Gill et al. 2005),

so for each locus a stutter efficiency (the probability that a newly created molecule will be

one repeat shorter than the molecule it was created from) is randomly generated from a
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uniform distribution with specified minimum and maximum possible stutter efficiencies.

For each PCR cycle, amplification of each allele present in the aliquot is simulated

by a random binomial, where the number of trials is the number of DNA molecules of

that allele, and the probability of success is the locus specific PCR efficiency. Some of the

newly amplified DNA molecules will be in a stutter position, one repeat shorter than the

actual allele. Stutter is simulated for each allele by randomly sampling from a binomial

distribution, where the number of trials is the number of new DNA molecules of that allele

amplified during that PCR cycle, and the probability of success is the locus specific stutter

efficiency. Stutter molecules are available for PCR amplification during subsequent PCR

cycles. Stutter expansions are not simulated because they are relatively rare (Shinde et al.

2003).

The simulation of the biochemical processes of DNA extraction and PCR ampli-

fication results in a simulated electropherogram for each PCR replicate. Genotypes are

determined from the simulated data using a traditional allele calling method and the new

probabilistic allele calling method.

2.1.4 Assumptions of Data Simulations

The simulation of non-invasive genetic mark–recapture data assumes that all indi-

viduals have a genotype and individuals can, by chance, have the same genotype. Random

binomials were used to simulate the PCR process, so assumptions of the binomial dis-

tribution must be met. This includes constant efficiency parameters for each trial and

independence of DNA molecules (Gill et al. 2005). It is assumed that degradation results

in a decrease in the amount of template DNA. The number of DNA molecules in the PCR

product is assumed to be a good indicator of peak height on an electropherogram.

Misidentification can occur on initial capture or recapture. Misidentification does

not need to result in a new individual, although it is much more likely that it will. The same

misidentification can occur more than once and two different individuals can be misidenti-

fied as the same non-existent ghost. Multiple ghosts can be produced by the same single

individual at a single sampling occasion.
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2.2 Analysis of Simulated Data

The simulated data are inputted into the analysis modules, which automatically

analyze the data. The analysis consists of three sequential modules—the Allele Calling

and Genotyping Module, the Sample Matching and Capture Histories Module, and the

Population Size Estimation Module. The Allele Calling and Genotyping Module uses both

a definitive allele calling method and a probabilistic allele calling method. The Sample

Matching and Capture Histories Module matches samples and generates capture histories.

The Population Size Estimation Module inputs the capture histories into four traditional

mark–recapture models, each one yielding a population size estimate.

2.2.1 Allele Calling and Genotyping Module

Traditional and probabilistic allele calling both begin by assigning probabilities to

allele calls for each PCR replicate based on electropherogram peak heights. Small stutters

and noise are removed. Heterozygote balance, which is the ratio of the height of the potential

stutter peak to the height of the parent peak, is calculated for potential stutter peaks. Any

peak that is one repeat shorter than another peak, and whose heterozygote balance is less

than a specified minimum value, is assumed to be a stutter peak, and the stutter peak

height is reset to zero. Any peak below the specified noise threshold value is also reset to

zero.

Next, the heterozygous and homozygous threshold values, which help control the

amount of variability in the allele calls, need to be determined. The heterozygous threshold

is the peak height above which an allele is assumed to be a true allele. The heterozygous

threshold value of allele i is a linear function of the size of allele i with specified slope and

intercept values. The homozygous threshold is the peak height above which an allele is

assumed not to be associated with another allele that has dropped out. The heterozygous

threshold value of allele i is a linear function of the size of allele i with specified slope and

intercept values.

If no peaks are present for a PCR replicate, the allele call is assigned to (Z,Z) with

a probability of one, where Z indicates an undesignated allele. If one or more peaks are

present for a PCR replicate, the probabilities of potential allele calls are determined by the

peak heights on the electropherogram. Calculating the probability of potential allele calls
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begins by calculating the probabilities of true alleles and allelic drop out. The probability

that allele i is a true allele is calculated by

p(ti) =

 hti
hrti

if hti < hrti

1 if hti ≥ hrti

where hti is the peak height for allele i, and hrti is the heterozygous threshold value for

allele i. The probability that an unknown allele dropped out is a function of the height of

allele i remaining in the electropherogram, and is calculated by

p(di) =

 1− hti
hmti

if hti < hmti

0 if hti ≥ hmti

where hti is the peak height for allele i, and hmti is the homozygous threshold value for

allele i.

The following two equations (2.5–2.6) are used to calculate the probabilities of

potential allele calls when only one peak is present in the electropherogram. The probability

of a homozygous genotype, with allele i, is given by

p(i, i) = 1− p(di) (2.5)

and the probability of a heterozygous genotype, with allele i and an undesignated allele Z,

is given by

p(i, Z) = p(di). (2.6)

The following four equations (2.7–2.10) are used to calculate the probabilities of potential

allele calls when more than one peak is present on the electropherogram. The probability

of a homozygous genotype, with allele i, is given by

p(i, i) = (1− p(di))p(ti)
∏
j 6=i

(1− p(tj)) (2.7)

where j is any allele other than i. The probability of a heterozygous genotype, with allele

i and an undesignated allele Z, is given by

p(i, Z) = p(di)p(ti)
∏
j 6=i

(1− p(tj)) (2.8)
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where j is any allele other than i. The probability of a heterozygote, with known alleles a

and b, is initially set to

p0(a, b) =
hta
hrta

htb
hrtb

. (2.9)

The sum of the probabilities of all heterozygotes with known alleles (any combination of a

and b except a 6= b) is given by∑
a6=b

∑
b 6=a

p(a, b) = 1−
∑

i

p(i, i)−
∑

i

p(i, Z) (2.10)

where i, a, b are any alleles. This summation value is used to normalize the initial proba-

bilities for heterozygotes (p0(a, b)), which were calculated using equation 2.9.

After the initial probabilities are assigned to potential allele calls, the probabilities

are altered to take into account potential stutter peaks. A peak is determined to be a

potential stutter peak, rather than a true allele, if the peak is at an allele position one

repeat smaller than a taller peak. If allele i is a possible stutter peak, then each time the

stutter allele occurs in a potential allele call, the probability of that allele call is multiplied

by
hti
hti+1

where hti is the peak height for the possible stutter peak at allele i, and hti+1 is the peak

height for the allele i+1, which is the parent allele associated with the possible stutter

peak. The probability removed from allele calls due to possible stutter peaks is reassigned

to allele calls without potential stutter peaks in proportion to the probabilities of the allele

calls without potential stutter peaks.

Traditional Allele Calling

To simulate traditional allele calling, a definitive allele call is made for each PCR

replicate, at each locus, for each sample, based on the probabilities determined for that

single PCR replicate. Undesignated alleles (Z ) are assigned to known alleles by adding

the probability of an allele call of (i,Z ) to the probability of an allele call of (i,i). The

probability of an allele call of (Z,Z ) is not reassigned to known alleles.

The definitive allele call for a PCR replicate is determined by the allele call with

the highest probability for that PCR replicate after undesignated alleles are assigned. When

each PCR replicate has a definitive allele call, a consensus genotype is determined for each
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sample for the range of PCR replicates. For one PCR replicate, the consensus genotype

for each sample will simply be the alleles called for the first PCR replicate. For two PCR

replicates, a consensus genotype will be determined from the first and the second PCR

replicates. For three or more PCR replicates a consensus genotype will be determined by

that PCR replicate and all the previous replicates. I used an allele acceptance threshold,

which indicates how many times an allele must be seen before the allele is called as part

of the genotype (Valiere et al. 2002). The allele acceptance threshold was set to two-thirds

the number of PCR replicates, rounded to the nearest integer.

Samples with exactly one allele, i, above the acceptance threshold will be assigned

to a genotype of (i,i). Samples with exactly two alleles, i and j, above the acceptance

threshold will be assigned to a genotype of (i,j ). Samples with more than two alleles above

the acceptance threshold will be assigned to a genotype of a heterozygote for the two alleles

that were called most often for that sample during that round of PCR replications. If this

results in the selection of more than two alleles, due to alleles being called an equal number

of times, then the two largest size alleles are assigned as the genotype. Samples with no

alleles above the acceptance threshold will be assigned based on the alleles that were called

most often, but that did not make it to the acceptance threshold. If one allele was called

most often, the genotype is assigned as a homozygote for that allele. If two alleles were

called most often, the genotype is assigned as a heterozygote for those two alleles. If more

than two alleles were called most often, then the two largest size alleles are assigned as the

genotype. If no alleles were called, the genotype is assigned as a homozygote for the most

common allele in the population.

Each sample’s overall consensus genotype is the collection of consensus genotypes

determined at each locus for that sample. From the overall consensus genotypes for all

samples, a single capture history matrix is generated and inputted into four mark–recapture

models, yielding four population size estimates.

Probabilistic Allele Calling

For each sample, the genotype probabilities are determined from the probabilities

assigned to allele calls for all PCR replicates at each locus. The probabilities of allele

calls are averaged for varying numbers of PCR replicates. For one PCR replicate, the

genotype probabilities for each sample will simply be the allele call probabilities for the
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first PCR replicate. For two PCR replicates, the genotype probabilities will be determined

by averaging the first and the second PCR replicates. For three or more PCR replicates,

the genotype probabilities will be determined by averaging that PCR replicate and all the

previous replicates. These genotype probabilities include probabilities for genotypes with

undesignated alleles. The undesignated alleles are assigned to known alleles based on the

allele frequencies calculated from the genotype probabilities of known alleles for that sample.

Each sample’s probabilistically determined genotype is the genotype that is most

probable based on the averaged allele call probabilities after undesignated alleles are as-

signed. From the probabilistically determined genotypes for all samples, a single capture

history matrix is generated and inputted into four mark–recapture models, yielding four

population size estimates.

2.2.2 Sample Matching and Capture Histories Module

Once each sample has been assigned two genotypes, one for each allele calling

method, the samples are matched to generate a capture history matrix for each allele calling

method. Two samples match when the samples have identical genotypes. Once samples are

matched, two capture histories are determined for each individual, one history for each allele

calling method. An individual is considered “captured” at a sampling occasion if at least

one sample from that occasion belongs to the individual; if no samples from that occasion

belong to the individual, the individual is considered “not captured” for that occasion. The

capture histories of all individuals are then collected into two capture history matrices,

one for each allele calling method. These two capture history matrices are inputted into

four mark–recapture models, yielding four population size estimates for each allele calling

method.

2.2.3 Population Size Estimation Module

The capture history matrices from the two methods are each inputted into four

closed mark–recapture models—modelM0 (Williams et al. 2002), a two-point mixture model

(Pledger 2000), model Mh first order jackknife (Burnham and Overton 1978), and model Mh

modified first order Chao (Chao 2006). I do not consider models where capture probabilities

varied in time or in response to previous capture.
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Model M0 has two parameters: the population size (N) and the probability of

capture (p). Population size estimates from model M0 (Williams et al. 2002) are obtained

by maximizing the likelihood function given the data (xω). The likelihood function of model

M0 is given by

L(N, p | xω) =
N !

(
∏
ω

xω!)(N −
∑

xω)!
pn(1− p)(kN−n) (2.11)

where
∑
xω is the number of unique individuals captured, n is the total number of captures

(not including repeat captures of a single individual at a sampling occasion), and k is the

number of sampling occasions (Williams et al. 2002). The likelihood is maximized when

p̂ =
n

kN
(2.12)

(Williams et al. 2002). Plugging this equation for p̂ (equation 2.12) into the likelihood

function (equation 2.11), yields a likelihood function with a single parameter N . Removing

factors that are functions of the data only, which are therefore constant, yields

L(N | xω) ∝ N !
(N −

∑
xω)!

( n

kN

)n (
1− n

kN

)(kN−n)
. (2.13)

The estimate of the population size is constrained to being greater than or equal to the

number of unique individuals captured by using a natural log transformation, which maps

to the real line. In order to avoid boundary problems the population size is transformed

using

Ntransformed = ln(N − (
∑

xω − 1)) (2.14)

where
∑
xω is the number of unique individuals capture. The maximum likelihood estimator

of N is obtained by minimizing the negative log likelihood of the transformation of equation

2.13 using the “nlm” function in R, with
∑
xω (the number of unique individuals captured)

as the initial estimate of N .

Estimates are obtained from the three models with individual heterogeneity by first

calculating the capture frequencies. The capture frequencies are represented by a vector

where the ith coordinate is the number of individual animals that were captured exactly i

times. which are the number of individuals captured exactly i times. The vector of capture

frequencies is a sufficient statistic for the population size estimators from the heterogeneity

models (Norris and Pollock 1996). The two point mixture model has four parameters: the
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population size (N), the probability of capture of group one (p1), the probability of capture

of group two (p2), and the proportion of individuals in group one (π). Population size

estimates from the two point mixture model (Pledger 2000) are obtained by maximizing

the likelihood function given the data (xω). The likelihood function of the two point mixture

model is given by

L(N, p1, p2, π | xω) =
N !

(
∏
ω

xω!)(N −
∑

xω)!

(
π(1− p1)k + (1− π)(1− p2)k

)(N−
∑

xω)
(2.15)

k∏
i=1

(
πp1

i(1− p1)(k−i) + (1− π)p2
i(1− p2)(k−i)

)fi

where k is the number of sampling occasions and fi is the number of individuals captured

exactly i times. Removing factors which are functions of the data only, which are therefore

constant, yields

L(N, p1, p2, π | xω) =
N !

(N −
∑
xω)!(

π(1− p1)k + (1− π)(1− p2)k
)(N−

∑
xω)

(2.16)

k∏
i=1

(
πp1

i(1− p1)(k−i) + (1− π)p2
i(1− p2)(k−i)

)fi

.

The estimate of the population size is constrained to being greater than or equal to the

number of unique individuals captured by using the same natural log transformation as for

model M0 (see equation 2.14). The two capture probabilities and the proportion of animals

in each group are constrained to be between 0 and 1 by using a logit transformation, which

maps probabilities to the real line. The probabilities were transformed using

p̂transformed = ln

(
p̂

1− p̂

)
(2.17)

where p̂ is the probability estimate. The maximum likelihood estimator of N is obtained

by minimizing the negative log likelihood of the transformation of equation 2.16 using the

“nlm” function in R, with initial estimates of N̂ =
∑
xω, p̂1 = 0.4, p̂2 = 0.6, and π̂ = 0.5.

The population size estimate for model Mh first order jackknife (Burnham and

Overton 1978) is given by

N̂ =
∑

xω +
k − 1
k

f1 (2.18)
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where
∑
xω is the number of unique individuals captured, k is the number of sampling

occasions, and f1 is the number of individuals captured exactly one time (Burnham and

Overton 1978).

The population size estimate for model Mh modified first order Chao (Chao 2006)

is given by

N̂ =
∑

xω +
f1(f1 − 1)
2(f2 + 1)

(2.19)

where
∑
xω is the number of unique individuals captured, and fi is the number of individuals

captured i times.

The simulations are run multiple times, resulting in multiple population size es-

timates for each allele calling method under each model. Any population size estimate

greater than three times the true population size is considered unreasonable and is removed

from further analysis. The number of simulations that did not converge on an estimate,

or produced an unreasonable estimate, were recorded for each scenario, for each number

of PCR replicates, under each model. For each allele calling method, under each model,

a mean population size estimate and standard deviation are determined from the multiple

simulations.

2.2.4 Assumptions of Data Analysis

The analysis of data assumes that the peak height is linearly proportional to the

number of DNA molecules. It assumes that if an individual is a heterozygote, the two

copies of the allele are independent and the contribution of the alleles is additive. The

relationship between the probability of drop out and the height of the remaining peak is

assumed to decline linearly until it reaches the threshold where the probability equals zero.

The relationship between the probability of a true allele and the height of the peak is

assumed to increase linearly until it reaches the threshold where the probability equals one.

Peak heights are assumed to decrease in a linear fashion as the length of the allele increases.

The analysis assumes that the assumptions of the mark–recapture models are met and that

the genetic makers used have enough power to distinguish between individuals.
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2.3 Simulation Scenarios

2.3.1 Simulation Inputs

To investigate how well the probabilistic allele calling method performs, I ran

the simulation code under a number of different scenarios. The population size, capture

probability (and its variance), and the number of sampling occasions varied. I used two

sets of allele frequencies—one without null alleles and one with null alleles. All other input

values did not change between scenarios (Table 2.1).

I ran the simulations with small and large population sizes, 200 or 500 individuals,

respectively. I ran the simulations with low and high mean capture probabilities, 0.2 or 0.5,

respectively. The low mean capture probability of p = 0.2 is similar to the mean capture

probability estimate from a non-invasive genetic mark recapture study of bears using hair

traps (Boulanger et al. 2004). I set the variance for the low capture probabilities to 0.002. I

set the variance for the high capture probabilities to 0.020. Figure 2.4 shows the probability

distribution functions from which the capture probabilities are sampled.

Samples were collected during 5 or 10 sampling occasions. To achieve good pop-

ulation size estimates using traditional closed mark–recapture models, it is recommended

that at least 5 sampling occasions are used, preferably 7–10 sampling occasions (Otis et al.

1978). There were 5 capture attempts for each animal at each sampling occasion. The

minimum and the maximum number of cells possible in the samples were set to 30 and

150 cells, respectively. This ensured that almost all of the samples had pre-PCR templates

of less than 17 cells, which corresponds to 100 pg of DNA, which is considered low copy

number and prone to allelic drop out (Gagneux et al. 1997; Morin et al. 2001; Whitaker

et al. 2001; Butler 2005; Gill et al. 2005). I set the probability of undetected contamination

to 0.008, which matches the probability of within population contamination found in a scat

study of noninvasive genotyping errors in elephants (Buchan et al. 2005). I set the extrac-

tion efficiency to 0.46 and the aliquot efficiency to 0.30 (Gill et al. 2005). I used a PCR

efficiency of 0.82 (Shinde et al. 2003; Gill et al. 2005), with a standard deviation of 0.06 to

ensure that no locus had a PCR efficiency so low that it consistently failed to amplify. I set

the stutter efficiencies to be between 0 and 0.4, which is the range found for dinucleotide

repeat loci (Shinde et al. 2003).

I set the minimum heterozygote balance for a stutter peak to 32% (Ewen et al.
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Table 2.1: Simulation input values.
parameter description input module

value(s)
population size* 200, 500 population
mean probability of at least one capture per occasion* 0.2, 0.5 population
variance of probability of at least one capture per occasion* 0.002, 0.02 population
number of sampling occasions* 5, 10 sampling
number of capture attempts per sampling occasion* 5 sampling
minimum number of cells possible in the sample 30 genotyping
maximum number of cells possible in the sample 150 genotyping
probability of undetected contamination per PCR replicate 0.008 genotyping
extraction efficiency 0.46 genotyping
aliquot efficiency 0.30 genotyping
mean PCR efficiency 0.82 genotyping
standard deviation of PCR efficiency 0.06 genotyping
minimum possible stutter efficiency 0.0 genotyping
maximum possible stutter efficiency 0.04 genotyping
minimum heterozygote balance for a stutter peak 0.32 allele calling
noise threshold 2x107 allele calling
heterozygous threshold slope −1.1x107 allele calling
heterozygous threshold intercept 8.7x109 allele calling
homozygous threshold slope −7.3x107 allele calling
homozygous threshold intercept 1.7x1010 allele calling

* indicates a parameter that varied between scenarios.

2000). I set the noise threshold to 2x107 (Gill et al. 2005). I determined the heterozygous

and homozygous threshold intercepts by starting with an input of 17 cells, which is at

the high end of low copy number DNA. For both heterozygotes and homozygotes, I then

calculated the expected number of amplified DNA molecules remaining after 34 PCR cycles

when there was no degradation, the efficiency of the PCR cycle was 0.82, and 0.02 of

new molecules were lost to stutter each cycle. The threshold intercepts were set to equal

the expected number of DNA molecules (heterozygote: 8.7x109, homozygote:1.7x1010). I

determined the heterozygous and homozygous threshold slopes using a similar method, but

accounting for the increased effect of degradation on larger alleles. For both heterozygotes

and homozygotes, the slopes were determined by calculating the number of amplified DNA

molecules for a sample with a quality score of 0.5 and allele sizes of 100 bp and 300 bp. The

difference between the the number of amplified molecules for the two different allele sizes
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Figure 2.4: Probability distribution functions of beta distributions with shape parame-
ters for (a) low capture probabilities (mean=0.2, variance=0.002) and (b) high capture
probabilities (mean=0.5, variance=0.020).

was divided by the difference in allele sizes, which was 200, yielding the slopes (heterozygote:

−1.1x107, homozygote: −7.3x107).

I used two sets of input allele frequencies (Appendix 2.2). I based both sets on a

suite of 8 black bear nuclear microsatellite loci (G1A, G10B, G10C, G10L, G10M, G10P,

G10X, G1D) (Paetkau et al. 1998), which are all dinucleotide repeat loci. For the first set,

the allele frequencies were set to match data from a study of the “West Slope” population

of Canadian black bears (Paetkau et al. 1998)(Table 2.2). The second set of input allele

frequencies was modified from the first set to contain null alleles. I altered two alleles, at

2 different loci, to be null alleles. At locus G10B, allele 164 with frequency of 18% was

modified to a null allele. At locus G1A, allele 198 with frequency of 8% was also modified

to a null allele. Both sets of input allele frequencies have a high number of polymorphic

loci, so each individual should have a unique genotype.
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Table 2.2: Input allele frequencies.
locus number of positive frequency alleles range of alleles (bp)
G1A 7 180–200
G10B 5 140–166
G10C 8 99–117
G10L 12 135–171
G10M 10 196–222
G10P 7 139–167
G10X 12 125–163
G1D 9 172–190

2.3.2 Scenarios

I examined 16 different scenarios (Table 2.3), with each scenario simulated 100

times. For each scenario, I examined the mean population size estimate and the standard

deviation, in the absence of genotyping errors, under the four models. For each scenario,

under each model, I determined the number of PCR replicates required to achieve a mean

population size estimate within 20% of the true population size estimate. For each sce-

nario, under each model, I examined the mean population size estimates and the standard

deviations for varying numbers of PCR replicates. I examined bias, calculated by

bias = ¯̂
N −N, (2.20)

where ¯̂
N is the mean of the population size estimates and N is the true population size. I

also examined the root mean squared error (RMSE), calculated by

RMSE =
√

( ¯̂
N −N)2 + var(N̂) (2.21)

where ¯̂
N is the mean of the population size estimates, N is the true population size, and

var(N̂) is the variance of the population size estimates.

I evaluated the performance of the four mark–recapture models by examining the

bias, variance, and RMSE of the population size estimates under the models. I examined

the effect that changing input parameters had on population size estimates. I examined

changes in bias, variance, and RMSE for pairs of scenarios that had identical input value

except for one varying parameter. For comparisons between simulations with large and
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Table 2.3: Simulation scenarios.
simulation population mean variance sampling presence
number size capture of capture occasions of null

probability probabilities alleles
1 200 0.2 0.002 5 no
2 200 0.2 0.002 5 yes
3 200 0.2 0.002 10 no
4 200 0.2 0.002 10 yes
5 200 0.5 0.020 5 no
6 200 0.5 0.020 5 yes
7 200 0.5 0.020 10 no
8 200 0.5 0.020 10 yes
9 500 0.2 0.002 5 no
10 500 0.2 0.002 5 yes
11 500 0.2 0.002 10 no
12 500 0.2 0.002 10 yes
13 500 0.5 0.020 5 no
14 500 0.5 0.020 5 yes
15 500 0.5 0.020 10 no
16 500 0.5 0.020 10 yes

small population sizes, I examined the relative bias, relative variance, and relative mean

squared error (relative MSE), calculated by

relativeBIAS = ( ¯̂
N −N)/N (2.22)

relativeV AR = var(N̂)/N2 (2.23)

relativeMSE = RMSE2/N2 (2.24)

where ¯̂
N is the mean of the population size estimates, N is the true population size, var(N̂)

is the variance of the population size estimates, and RMSE is the root mean squared error

calculated from equation 2.21.
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Chapter 3

Results

To compare the new probabilistic allele calling method to the traditional method,

I ran simulations under different scenarios and the resulting capture history matrices were

inputted into four closed mark–recapture models. To illustrate the inherent behavior of the

traditional models, Table 3.1 shows the population size estimates in the absence of genotyp-

ing errors. As expected, model M0 underestimated the true population size for all scenarios;

however, the bias was small for many scenarios. The heterogeneity models performed well

in most cases. The two point mixture model tended to have larger variances than the other

two heterogeneity models. The performance of all the models varied somewhat with changes

in the various parameters.

3.1 Comparison of Allele Calling Methods

The examination of the number of PCR replicates required to achieve a mean pop-

ulation size estimate within 20% of the true population size revealed that the probabilistic

method always performed at least as well, and often times better, than the traditional

method (Table 3.2). Examination of mean population size estimates, and the standard

deviations of the estimates, for both allele calling methods under the four mark–recapture

models at 5 and 10 PCR replicates show that the probabilistic method resulted in lower

biases and lower variances than the traditional method in almost all situations (Tables 3.3

and 3.4). Even after extensive PCR replication, both methods, for almost all scenarios

under all four models, had a considerable amount of residual bias.



42

Figures 3.1–3.2 show root mean squared errors (RMSEs) and mean population size

estimates (±1 standard deviation) versus the number of PCR replicates examined for one

simulation scenario under the four mark–recapture models. The qualitative results of most

of the other scenarios were identical (see results for all simulation scenarios in Appendix

D). The probabilistic method most often had lower biases, variances, and RMSEs than the

traditional method when more than two PCR replicates were examined. The biases and the

RMSEs of the probabilistic method usually exhibited a monotonic decrease as the number

of PCR replicates increased. The traditional method usually showed an overall decline in

biases and RMSEs as the number of PCR replicates increased; however, the decreases were

not monotonic, rather they showed small increases when the consensus threshold value was

increased.

There were some exceptions to the qualitative behavior exhibited by most of the

scenarios. Figure 3.3 shows examples of some of the irregular results. For both allele calling

methods, the estimates under model M0 did not always show a decline as the number of

PCR replicates increased (see top-right graph of Figure 3.3). Under model M0 and the

two point mixture model, the variances of the estimates showed no pattern with increasing

number of PCR replicates, resulting in irregular RMSEs with respect to the number of

PCR replicates (Figure 3.3). Under models Mh jackknife and Mh Chao, the RMSEs of

the probabilistic method did not always exhibit a monotonic decrease. Instead, the RMSE

occasionally increased slightly when the number of PCR replicates was increased by one

(see bottom-left graph of Figure D.26 for an example).
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Table 3.1: Mean population size estimates and standard deviations with no genotyping errors.
simulation population capture sampling presence of M0 mixture jackknife Chao
number size probability occasions null alleles est sd est sd est sd est sd
true small 200 200 200 200
1 small small small no 191.6 14.1 214.5 52.1 195.8 10.4 210.2 22.8
2 small small small yes 192.3 14.3 210.0 44.5 195.4 9.9 209.8 23.1
3 small small large no 194.1 6.9 200.5 12.7 222.4 8.9 199.3 9.3
4 small small large yes 195.0 5.8 205.1 19.8 224.4 7.7 201.5 8.8
5 small large small no 190.4 3.9 198.2 9.0 215.2 5.7 198.4 5.3
6 small large small yes 191.5 4.1 197.5 7.2 216.1 6.3 198.8 6.0
7 small large large no 197.1 1.6 198.5 1.9 205.7 3.0 199.8 2.2
8 small large large yes 196.9 1.4 198.2 1.8 205.2 3.0 199.3 2.1
true large 500 500 500 500
9 large small small no 354.3 178.2 512.2 58.8 490.6 17.5 528.3 34.5
10 large small small yes 305.4 205.9 525.8 95.6 492.3 21.1 532.5 38.8
11 large small large no 436.1 6.5 503.7 27.8 557.3 12.0 500.2 14.0
12 large small large yes 437.3 7.7 509.0 33.1 559.5 13.8 502.3 16.0
13 large large small no 464.3 5.6 494.3 10.4 539.5 7.8 497.0 7.5
14 large large small yes 466.7 5.7 499.3 13.7 543.6 10.1 500.7 10.2
15 large large large no 493.5 2.8 496.5 2.9 514.0 5.3 499.2 3.8
16 large large large yes 493.6 2.4 496.5 2.5 513.6 5.1 499.2 3.7
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Table 3.2: Number of PCR replications required to achieve a mean population size estimate within 20% of the true population
size for various simulation scenarios. “trad” refers to the traditional method. “prob” refers to the probabilistic method.

number of number of PCR replications required
simulation population capture sampling null alleles M0 mixture jackknife Chao
number size probability occasions present trad prob trad prob trad prob trad prob
1 small small small no 3 3 X 5* 2 2 8* 5
2 small small small yes 3* 3 8* 6 2 2 8* 5
3 small small large no 1 1 X 5 X X X 5
4 small small large yes 1 1 X 10 X X 8* 5
5 small large small no 5 3 X 6 X X 8* 5
6 small large small yes 5* 4 X 6 X X X 6
7 small large large no 8* 5 X 7 X 10 X 8
8 small large large yes X 5 X 8 X X X 9
9 large small small no X X 8* 5 2 2 X 5
10 large small small yes X X X 9 2 2 X 9
11 large small large no 1 1 X 6 X X 5* 4
12 large small large yes 2 1 X 7 X X 8* 5
13 large large small no 3 3 8* 5 X 8 8* 4
14 large large small yes 3 3 X 8 X X X 7
15 large large large no 8 5 X 6 X 9 X 7
16 large large large yes X 6 X 9 X X X X

X indicates that the estimate was never within 20% of the true population size.
* indicates that the estimate reached below 20% of the true population size and then increased to above 20%.
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Table 3.3: Mean population size estimates (“est”) and standard deviations (“sd”) at 5 PCR replicates for two allele calling
methods.

M0 mixture jackknife Chao
sim traditional probabilistic traditional probabilistic traditional probabilistic traditional probabilistic
# est sd est sd est sd est sd est sd est sd est sd est sd
true 200 200 200 200 200 200 200 200
1 216 31.4 213 25.0 242 61.5 240 62.8 210 17.0 209 14.3 243 44.8 238 36.5
2 219 31.4 214 28.3 246 66.3 241 68.1 211 18.0 208 17.0 246 45.9 240 40.2
3 212 53.4 212 42.0 248 42.5 238 40.1 267 38.6 256 27.9 251 51.8 236 34.7
4 207 61.6 210 48.3 255 51.3 257 77.9 267 49.8 260 45.4 243 37.0 236 32.3
5 224 32.7 218 27.2 255 67.1 248 65.3 262 43.6 254 36.5 249 50.9 238 40.8
6 232 40.5 222 31.6 265 70.3 244 46.2 272 50.6 259 39.6 259 59.9 243 43.8
7 248 38.1 233 24.6 284 74.9 253 41.1 291 64.7 266 39.7 293 77.9 261 43.2
8 251 42.0 236 40.2 284 70.8 260 50.7 296 68.2 274 49.7 295 76.6 268 50.5
true 500 500 500 500 500 500 500 500
9 324 198.1 328 195.3 606 126.2 587 124.8 529 35.3 521 27.4 618 90.0 596 67.1
10 323 197.4 309 203.6 638 169.2 617 133.5 536 43.5 530 41.7 638 116.4 624 105.7
11 477 35.3 470 26.9 643 177.6 610 114.1 643 74.2 628 55.8 599 92.3 579 66.6
12 487 38.9 476 29.3 670 160.8 627 129.1 662 79.0 640 58.7 619 95.5 590 68.3
13 523 59.2 512 49.8 613 118.7 585 77.4 647 107.6 626 89.8 602 99.8 577 62.4
14 541 64.3 529 52.2 648 147.4 632 138.2 677 115.8 655 91.7 642 133.9 614 98.7
15 601 81.2 583 64.0 657 133.4 620 89.8 695 134.1 663 100.2 685 149.7 646 101.9
16 629 106.5 605 78.2 701 173.7 651 111.8 739 171.7 696 119.3 732 186.0 680 119.6
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Table 3.4: Mean population size estimates (“est”) and standard deviations (“sd”) at 10 PCR replicates for two allele calling
methods.

M0 mixture jackknife Chao
sim traditional probabilistic traditional probabilistic traditional probabilistic traditional probabilistic
# est sd est sd est sd est sd est sd est sd est sd est sd
true 200 200 200 200 200 200 200 200
1 214 28.3 204 20.5 248 70.6 233 64.5 209 16.2 204 13.1 241 43.0 226 29.1
2 218 30.2 207 26.5 243 57.8 227 59.6 210 16.5 204 15.7 244 42.9 229 38.5
3 193 74.2 209 27.4 252 47.3 228 39.6 266 40.4 244 22.9 250 50.7 223 27.2
4 211 58.8 212 20.8 263 67.7 235 55.4 270 50.7 250 41.9 247 41.0 227 41.6
5 221 29.4 208 21.1 252 56.9 229 48.0 259 39.8 241 29.1 245 46.6 223 29.7
6 231 41.2 213 28.7 264 76.8 227 36.8 271 55.0 246 36.2 256 59.6 228 37.7
7 251 42.3 218 18.7 284 79.7 225 24.2 295 70.7 238 28.9 297 85.0 230 27.6
8 250 38.3 223 29.1 282 66.4 232 36.7 295 62.9 247 42.8 294 71.6 238 39.2
true 500 500 500 500 500 500 500 500
9 288 212.6 332 192.6 604 131.4 556 87.4 529 36.9 510 25.9 618 95.9 572 60.3
10 322 197.2 314 201.5 634 172.2 591 114.7 534 40.3 521 38.2 632 97.8 599 92.1
11 476 36.5 458 23.7 630 150.2 568 89.6 640 76.3 603 48.7 594 94.7 549 54.8
12 484 40.5 465 27.0 658 164.7 581 84.6 657 81.4 616 54.1 614 97.5 563 60.0
13 526 62.0 495 50.7 620 130.1 539 50.6 651 112.5 593 91.2 606 103.9 541 50.7
14 540 60.7 509 45.7 659 155.8 579 89.0 676 109.4 619 80.2 642 129.8 577 83.2
15 594 82.3 545 48.9 644 129.8 560 60.0 682 133.8 595 72.2 670 143.6 571 65.9
16 625 106.6 568 66.7 691 161.5 592 87.1 734 175.0 631 99.5 721 173.7 608 93.6
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Figure 3.1: Results for simulation 15: N=500, capture probability=.5, sampling occa-
sions=10, no null alleles. Root mean squared error of the population size estimator (RMSE
of N̂), or mean population size estimate (mean N̂), versus the number of PCR replicates.
Vertical lines on mean estimate graphs indicate ±1 standard deviation of the estimates.
Results for model M0 and the two point mixture model for two methods—the traditional
consensus method (“traditional”) and the probabilistic method (“probabilistic”).
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Figure 3.2: Results for simulation 15: N=500, capture probability=.5, sampling occa-
sions=10, no null alleles. Root mean squared error of the population size estimator (RMSE
of N̂), or mean population size estimate (mean N̂), versus the number of PCR replicates.
Vertical lines on mean estimate graphs indicate ±1 standard deviation of the estimates.
Results for model Mh jackknife and model Mh Chao for two methods—the traditional
consensus method (“traditional”) and the probabilistic method (“probabilistic”).
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Figure 3.3: Results for simulation 4: N=200, capture probability=.2, sampling occa-
sions=10, null alleles present. Root mean squared error of the population size estimator
(RMSE of N̂), or mean population size estimate (mean N̂), versus the number of PCR
replicates. Vertical lines on mean estimate graphs indicate ±1 standard deviation of the
estimates. Results for model M0 and the two point mixture model for two methods—the
traditional consensus method (“traditional”) and the probabilistic method (“probabilistic”).
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3.2 Performance of Mark–Recapture Models

3.2.1 Model M0

Under model M0, the probabilistic method performed better than the traditional

method for almost all scenarios when more than two PCR replicates were examined (see top

graphs of Figure 3.1 for an example). For these scenarios, the probabilistic method almost

always had lower biases, variances, and RMSEs than the traditional method. A maximum

likelihood estimate (MLE) of population size was obtained for almost all simulations for

these scenarios.

For some of the simulations for scenarios 3 and 4 (small population sizes, small

mean capture probabilities, and large numbers of sampling occasions), an MLE was not

obtained under model M0. This most often occurred at one or two PCR replicates and

tended to occur less often with increasing number of PCR replicates for the probabilistic

method. When more than two PCR replicates were examined, no estimate was obtained

more often for the traditional method (mean=7.1% of attempted estimates, standard devi-

ation=3.4%) than the probabilistic method (mean=2.1% of attempted estimates, standard

deviation=2.1%). When genotyping errors were absent, an MLE was always obtained for

these scenarios.

Model M0 performed extremely poorly for simulation scenarios 9 and 10 (large

population sizes, small mean capture probabilities, and small numbers of sampling occa-

sions). The probabilistic method did not consistently perform better than the traditional

method (see top graphs of Figures D.17 and D.19). For these scenarios, biases and variances

were large for all estimates, including the estimates with no genotyping error. The biases

did not show much difference between the two methods and did not decline with increasing

number of PCR replicates. The variances did not change systematically with respect to the

number of PCR replicates. This resulted in RMSEs that varied erratically as the number of

PCR replicates increased. An MLE was not always obtained for all simulations for these sce-

narios. The probabilistic and the traditional method showed similar rates of not obtaining

MLEs (traditional: mean=28.9% of attempted estimates, standard deviation=3.3%; proba-

bilistic: mean=29.1% of attempted estimates, standard deviation=4.1%). When genotyping

errors were absent, no MLE was obtained in 20% of simulations in scenario 9 and 31% of

simulations in scenario 10.
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3.2.2 Two Point Mixture Model

Under the two point mixture model, when more than two PCR replicates were

examined, the probabilistic method performed better than the traditional method in al-

most all situations (see bottom graphs of Figure 3.1 for an example). The biases of the

probabilistic method were most often less than, but occasionally equal to, the biases of the

traditional method when more than two PCR replicates were examined. The biases tended

to decrease monotonically with increasing numbers of PCR replicates for the probabilistic

method and the biases showed an overall decrease for the traditional method; however, the

decrease was not monotonic. The variances were usually lower for the probabilistic method

than for the traditional method. The variances tended to decrease with increasing numbers

of PCR replicates. The RMSEs of the probabilistic method tended to decline with increas-

ing numbers of PCR replicates, but the decrease was not always monotonic. The RMSEs

of the probabilistic method were lower than the RMSEs of the traditional method, with the

exception of a couple situations. In scenarios 1 and 10, there were a couple of data points at

different numbers of PCR replicates where the RMSE of the traditional method was lower

than the RMSE of the probabilistic method (see bottom graphs of Figures D.1 and D.19).

A maximum likelihood estimate (MLE) of population size was obtained for all sim-

ulations; however, all scenarios had some estimates that were unreasonably large. The num-

ber of unreasonably large estimates tended to decline with the number of PCR replicates.

Estimates were frequently unreasonably large at one or two PCR replicates (mean=23.8%

of estimates, standard deviation=21.8%). When more than two PCR replicates were ex-

amined, unreasonably large estimates were obtained more often for the traditional method

(mean=2.3% of estimates, standard deviation=2.5%) than the probabilistic method (mean=

1.2% of estimates, standard deviation=1.9%). Simulations 1 and 2 (small population sizes,

small mean capture probabilities, and small numbers of sampling occasions) had the high-

est rates of estimates that were unreasonably large. Scenarios 1 and 2 were the only two

scenarios to have any estimates that were unreasonably large when genotyping errors were

absent (scenario 1: 1% of estimates, scenario 2: 2% of estimates).
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3.2.3 Model Mh Jackknife

Under model Mh jackknife, when more than two PCR replicates were examined,

the probabilistic method always performed better than the traditional method. It exhib-

ited lower biases, variances, and RMSEs (see top graphs of Figure 3.2 for an example).

All scenarios showed the same qualitative behavior: biases and RMSEs decreased with in-

creasing numbers of PCR replicates. The decreases were monotonic for the probabilistic

method and not monotonic for the traditional method. This model occasionally produced

estimates that were unreasonably large. This most often occurred at one PCR replicate for

simulations 7,8,15, and 16 (large mean capture probabilities and large numbers of sampling

occasions). The probabilistic method had less unreasonably large estimates than the tra-

ditional method. Using the probabilistic method, no scenario had any unreasonably large

estimates at more than two PCR replicates. The traditional method rarely had unreason-

ably large estimates at more than two PCR replicates. For both methods, a reasonable

estimate was always obtained when genotyping errors were absent.

3.2.4 Model Mh Chao

Under model Mh Chao, when more than two PCR replicates were examined, the

probabilistic method always performed better than the traditional method. It exhibited

lower biases, variances, and RMSEs (see bottom graphs of Figure 3.2 for an example).

Most scenarios showed the same qualitative behavior: biases and RMSEs decreased with

increasing numbers of PCR replicates. The decreases were monotonic for the probabilistic

method and not monotonic for the traditional method. In a few scenarios, the probabilis-

tic method showed an occasional increase in RMSE when the number of PCR replicates

increased by one (see bottom-left graph of Figure D.26 for an example). This model occa-

sionally produced estimates that were unreasonably large. This occurred more often under

model Mh Chao than it did under model Mh jackknife. Unreasonably large estimates usu-

ally occurred at one or two PCR replicates. The probabilistic method had less unreasonably

large estimates than the traditional method. For both methods, a reasonable estimate was

always obtained when genotyping errors were absent.
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3.3 Comparisons of Estimators for Varying Parameters

3.3.1 Population Size

To examine the effect of population size, I examined changes in relative mean

biases, relative variances, and relative MSEs of the population size estimates for pairs of

simulations that had identical input values, except for whether the population size was 200 or

500. For all four models, there was no clear trend in response to changes in population size.

The changes in relative biases and relative MSEs due to changes in population size depended

on other simulation parameters. The relative variances tended to decrease in response to

increasing population size in most situations, but this also depended on other parameters.

The probabilistic method performed better than the traditional method, regardless of the

population size.

3.3.2 Capture Probabilities

To examine the effect of capture probabilities, I examined changes in mean bi-

ases, variances, and RMSEs of the population size estimates for pairs of simulations that

had identical input values, except for whether the mean capture probability was 0.2 (vari-

ance=0.002) or 0.5 (variance=0.020). Biases, variances, and RMSEs most often increased

with increasing capture probabilities. Overall, the increase in capture probabilities tended

to result in poorer estimates, especially at low numbers of PCR replicates. While increasing

capture probabilities resulted in poorer estimates for both the traditional and probabilis-

tic method, the effect was greater on the traditional method. The probabilistic method

performed better than the traditional method, regardless of the mean capture probability.

Under model M0, there were no clear trends in changes in biases, variances, nor

RMSEs for changes in capture probabilities. Under the two point mixture model, biases

and RMSEs tended to either increase or stay the same with increasing capture probabilities.

The magnitude of these differences in RMSEs tended to be larger for the traditional method

and at low numbers of PCR replicates. The variances showed no clear trend in response to

changes in capture probabilities under model M0.

The biases, variances, and RMSEs tended to increase with increasing capture

probabilities under model Mh jackknife (Figure 3.4). The magnitude of these differences

tended to be larger for the traditional method, as compared to the probabilistic method.
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The magnitude of these differences in biases and RMSEs tended to be larger for low numbers

of PCR replicates. The magnitude of these differences in variances tended to be slightly

larger for low numbers of PCR replicates.

Under model Mh Chao, biases and RMSEs tended to either increase or stay the

same with increasing capture probabilities. The magnitude of these differences tended to

be larger for the traditional method and for lower numbers of PCR replicates. Under model

Mh Chao, the variances tended to increase for increasing capture probabilities when more

than one PCR replicate was examined. The magnitude of these differences in variances

tended to be larger for the traditional method, as compared to the probabilistic method.

3.3.3 Sampling Occasions

To examine the effect of the number of sampling occasions, I examined changes

in mean biases, variances, and RMSEs of the population size estimates for pairs of sim-

ulations that had identical input values, except for whether there were 5 or 10 sampling

occasions. The effect that changing the number of sampling occasions had on the biases,

variances, and RMSEs of population size estimates varied with the model used and other

input parameters. Biases and RMSEs most often increased with increasing number of sam-

pling occasions. Overall, an increase in the number of sampling occasions usually resulted in

poorer estimates, especially at low numbers of PCR replicates. While increasing the number

of sampling occasions resulted in poorer estimates for both the traditional and probabilistic

method, the effect was greater for the traditional method than the probabilistic method.

The probabilistic method performed better than the traditional method, regardless of the

number of sampling occasions.

Under model M0, the changes in biases, variances, and RMSEs in response to

increasing the number of sampling occasions varied between comparisons. For most com-

parisons, these changes in bias showed an increase in magnitude for the traditional method

and as the number of PCR replicates decreased. Under the two point mixture model, biases

and RMSEs tended to either increase or stay the same for increasing number of sampling

occasions. The magnitude of these differences tended to be larger for the traditional method

and at low numbers of PCR replicates. The variances showed no clear trend in response to

changes in the number of sampling occasions under the two point mixture model. Under

model Mh jackknife, the biases, variances, and RMSEs tended to increase for increasing
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numbers of sampling occasions. The magnitude of these differences tended to be larger for

the traditional method and at low numbers of PCR replicates. Under model Mh Chao,

the biases and RMSEs tended to either increase or stay the same for increasing numbers of

sampling occasions. The magnitude of these differences tended to be larger for the tradi-

tional method and at low numbers of PCR replicates. The variances showed no clear trend

in response to changes in the number of sampling occasions under model Mh Chao.

3.3.4 Null Alleles

To examine the effect of null alleles, I examined changes in mean biases, variances,

and RMSEs of the population size estimates for pairs of simulations that had identical

input values, except for whether or not null alleles were present. The probabilistic method

performed better than the traditional method, even in the presence of null alleles. The two

methods showed very similar changes in response to the presence of null alleles. In many

situations, the presence of null alleles caused increases in biases, variances, and RMSEs of

estimates, regardless of the model used. These increases in biases and variances occurred

less often under model Mh Chao than the other models. There was not much change in

RMSEs under model M0. The magnitudes of the changes in RMSEs under the heterogeneity

models tended to be larger for lower numbers of PCR replicates.
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Chapter 4

Discussion

4.1 Comparison of Allele Calling Methods

Overall, the probabilistic method performed better than the traditional method.

Population size estimates showed less bias and more precision when more than two PCR

replicates were examined. Using the probabilistic method, good population size estimates

can be achieved using fewer PCR replicates. The probabilistic method resulted in better es-

timates because uncertainty was allowed to remain in allele calls until all the PCR replicates

were examined. This allowed utilization of more information from the electropherograms

than is traditionally used.

I did not examine the performance of the two allele calling methods when only one

or two PCR replicates were examined. The low quality of the samples in the simulations

requires more extensive PCR replication to reduce the rate of misidentification and achieve

good population size estimates. While the probabilistic method accounts for genotyping

errors due to allelic drop out and stutter, it does not account for contamination. Both allele

calling methods require PCR replication to detect contamination. I did note that when only

one PCR replication was examined, the probabilistic method tended to do slightly better.

This is most likely due to the fact that undesignated alleles are assigned differently for the

two allele calling methods. Both methods of assigning undesignated alleles were designed

to be used with multiple PCR replications, not for single PCR replications.

The probabilistic allele calling method relies on electropherogram peak heights

to assign probabilities; however, electropherogram peak areas are often a better metric for
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interpreting electropherograms because peak areas include information on peak morphology

(Clayton et al. 1998; Gill et al. 1998; Butler 2005). When using the probabilistic method,

peak areas can be substituted for peak heights. In addition, relying solely on measures of

signal intensity may not be sufficient (Paetkau 2003). Allele calling is very subjective and

relies on the judgment and experience of the technician to examine all of the information in

the electropherogram. The objective probabilistic method can be used in conjunction with

subjective allele calling by allowing the technician to manually alter allele call probabilities

based on other information in the electropherogram.

Using the probabilistic method resulted in better estimates than the traditional

method; however, the neither method completely eliminated the biases that result from

genotyping errors. Simulations with more than 10 PCR replications reveal that as the

number of PCR replicates continues to increase, an asymptotic estimate is reached that

retains a residual bias (results not shown). Simulations with higher efficiency parameters,

and therefore lower error rates, reveal that this residual bias is most likely due to the high

genotyping error rates (results not shown). As the efficiency parameters increased, the

asymptotic estimate approached the value of the estimate in the absence of genotyping

errors. In the presence of genotyping errors, the additional information gained from further

PCR replication is balanced by the probability of having genotyping errors in the new PCR

replicates.

Residual genotyping errors are also seen with the multiple-tubes approach (Waits

2004; Petit and Valiere 2006), which relies on extensive PCR replication to reduce genotyp-

ing errors. Residual genotyping errors, even if small, can still cause biased population size

estimates (Yoshizaki 2007). In the presence of high genotyping error rates, I would expect

that the residual genotyping error would be large enough to substantially bias population

size estimates, even with extensive PCR replication.

The residual genotyping error rates in the simulations are possibly higher than

the actual rates because poor samples were not culled and all samples were PCR amplified

the same number of times at each locus. In practice, samples that consistently amplify

poorly are completely removed from analysis. Removing poor samples increases the overall

probability of obtaining correct genotypes. In addition, all samples are not usually PCR

amplified the same number of times at each locus. Samples with uncertain genotypes

at specific loci are typically selected for additional PCR replications at those loci. This
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ensures that any additional PCR replications elucidate ambiguous genotypes, rather than

introducing uncertainty to samples with unequivocal genotypes.

The residual bias also could have been caused by undue influence of outlier allele

call probabilities caused by very poor PCR replicates. To address this possibility, I examined

simulations where the final allele call probabilities were determined by using the median,

rather than the mean, of the probabilities from the PCR replicates. The results did not

change (results not shown), indicating that outlier allele call probabilities are not a likely

cause of the residual bias.

4.2 Comparison of Estimators for Various Models and Pa-

rameters

In the absence of genotyping errors, model M0 did not substantially underestimate

the population size for many scenarios, even though there was individual variation in capture

probabilities, which causes underestimation under model M0. While there was heterogeneity

in capture probabilities, the amount of heterogeneity may not have been high enough to

cause substantial biases under model M0. In addition, the lack of substantial bias may be

due to the reduction in variation between individuals that occurs because the analysis is

based on whether or not an animal was capture during a sampling occasion, not how many

times it was capture during that occasion. Since each animal can be captured multiple

times during a given sampling occasion, an animal captured multiple times during that

occasion would be recorded the same as an animal that was captured only one time during

that occasion.

In the presence of genotyping errors, model M0 usually resulted in overestimation

of population size and the three heterogeneity models always resulted in overestimation.

The only time the population size was underestimated was when the population size was

considerably underestimated in the absence of genotyping errors. All simulations were run

with eight highly variable loci, with genotypes assigned so the populations were in Hardy–

Weinberg proportions. This ensured that the loci had the power to distinguish between

individuals, preventing the shadow effect as a source of underestimation of population size.

On some occasions, model M0 seemed to perform extremely well in the presence of high

levels of genotyping errors. It is unlikely that it is a better estimator in these cases; rather,
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in the absence of genotyping errors, the model underestimates the population size. The

model’s inherent underestimation of the population size cancels out the overestimation of

population size caused by genotyping errors.

An increase in the number of samples analyzed—due to larger capture probabili-

ties or more sampling occasions—often resulted in poorer population size estimates. This

is likely due to additional samples allowing more chances for errors to occur. Each sam-

ple analyzed has the potential to produce multiple ghosts, which cause overestimation of

population size. The increased potential for ghosts is balanced against the increased in-

formation gained by collecting more samples. As the number of PCR replicates increased,

the genotyping error rate decreased, and the increase in the number of samples no longer

resulted in poorer estimates. The poorer estimates for simulations with high mean capture

probabilities could also be due to the higher input capture probability variances used in

those scenarios.

Both methods showed similar changes in response to the presence of null alleles.

I expected that the probabilistic method would be more negatively affected by null alleles

because peak heights are lower when null alleles are present. An individual that is het-

erozygous for a null allele and a regular allele would consistently appear as homozygous

for the regular allele with a lower peak height than expected. This should not affect the

traditional allele calling method. The probabilistic method will be affected by the lower

peak height because it gives the appearance of possible allelic drop out. The fact that the

two methods showed similar responses to null alleles is most likely an artifact of using the

assigned probability of a single PCR replicate to determine the definitive allele call for that

PCR replicate.

4.3 Future Work

Simulation results show that the probabilistic allele calling method performed

better than the traditional method. The simulated traditional method examines the same

number of PCR replicates for all samples at each locus. In addition to this traditional

method, the probabilistic method should be tested against a traditional method that uti-

lizes sequential stopping rules. Sequential stopping rules are commonly used in practice

where, for example, a heterozygote would be confirmed with agreement between two PCR
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replicates and a homozygote would be confirmed with agreement between seven PCR repli-

cates. Sequential stopping rules utilize limited resources more efficiently and may reduce

misidentification rates by targeting ambiguous genotypes. In addition to adding sequential

stopping rules, the simulations should be modified to include in the culling of poor samples.

Culling of poor samples is an important procedure that helps reduce misidentification rates.

The simulation performance of the probabilistic allele calling method shows that

the method may improve population size estimates from non-invasive genetic mark–recapture

studies. In order to validate the probabilistic method, it will need to be tested on actual

non-invasive genetic mark–recapture data. This data should come from a population of

known size or from a study that estimated the population size using a previously validated

estimation method.

While the probabilistic allele calling method did reduce overestimation of popu-

lation size due to genotyping errors, it did not eliminate the overestimation. Continued

examination of this method is needed, as well as continued examination of methods to fur-

ther reduce genotyping errors and the development of models that account for them. The

probabilistic allele calling method can be used in conjunction with new laboratory methods

and new mark–recapture models. Researchers are continuing to investigate new models

specific to non-invasive genetic mark–recapture data. These new models include models

that allow multiple captures from a single individual per sampling occasion and continuous

sampling models.
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Appendix A

Simulation Code

#function to run full simulation
sims=function(param_file, allele_file)
{
#read parameter file
params=readin_params(param_file)
#read allele file
alleles=read.table(allele_file)
rm(param_file,allele_file)
#designate scenario
simulation=params["simid"]
#set seed
seed=as.numeric(params["seed"])
set.seed(seed)

loci=length(alleles[,1])
num_alleles=.5*length(alleles[1,])

#record params values as proper structure
num_sims=as.numeric(params["num_sims"])
num_models=as.numeric(params["num_models"])
PCR_reps=as.numeric(params["PCR_reps"])
occasions=as.numeric(params["occasions"])

num_samples=vector(length=num_sims)
estimates=array(0,dim=c(num_models,PCR_reps+1,num_sims))
likely_estimates=array(0,dim=c(num_models,PCR_reps+1,num_sims))
trad_estimates=array(0,dim=c(num_models,PCR_reps+1,num_sims))
results=array(0,dim=c((num_models+1),(PCR_reps+1),6))
quants=array(0,dim=c(num_models,PCR_reps+1,9))
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for (i in 1:num_sims)
{

true_genos=gen_pop(params,alleles)
capt_probs=gen_capt_probs(params)
true_capt_hx=gen_sample(params, capt_probs)
samples=sum(true_capt_hx)
num_samples[i]=samples
samp_occ=vector(length=samples)#tracks which sample from which occassion
samp=1

for (a in 1:(length(true_capt_hx[,1])))
{
for (b in 1:(length(true_capt_hx[1,])))
{

x=(true_capt_hx[a,b])
while (x>0)
{
samp_occ[samp]=b
x=x-1
samp=samp+1
}

}
}

rm(capt_probs,a,b,x)
genotypes=genotype(params,alleles,true_genos, true_capt_hx, num_alleles,
loci,samples)

rm(true_genos)
geno_rep_probs=assign_probs(params,genotypes,num_alleles,loci,samples,
PCR_reps)

rm(genotypes)
av_geno_probs=average_geno_probs(alleles,num_alleles,loci,geno_rep_probs,

samples,PCR_reps)
likely_genos=most_likely_genos(num_alleles,loci,av_geno_probs,samples,
PCR_reps)

rm(av_geno_probs)
likely_capture_hx=gen_capt_hx(num_alleles,loci,likely_genos,samples,
samp_occ,PCR_reps,occasions)

likely_freqs=calc_freqs(params,likely_capture_hx,true_capt_hx)
rm(likely_genos,likely_capture_hx)

print("likely")
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likely_estimates[1,,i]=jackknife(params,likely_freqs)
likely_estimates[2,,i]=chao(params,likely_freqs)
likely_estimates[3,,i]=m0(params,likely_freqs)
likely_estimates[4,,i]=twopt(params,likely_freqs)

trad_genos=consensus(loci, num_alleles, geno_rep_probs,samples,PCR_reps,
alleles)

rm(geno_rep_probs)
trad_capture_hx=gen_capt_hx(num_alleles,loci,trad_genos,samples,samp_occ,
PCR_reps,occasions)

trad_freqs=calc_freqs(params,trad_capture_hx,true_capt_hx)
rm(trad_genos,trad_capture_hx)

print("trad")
trad_estimates[1,,i]=jackknife(params,trad_freqs)
trad_estimates[2,,i]=chao(params,trad_freqs)
trad_estimates[3,,i]=m0(params,trad_freqs)
trad_estimates[4,,i]=twopt(params,trad_freqs)
rm(likely_freqs,trad_freqs)

}

print("average number of samples")
print(mean(num_samples))
print(sd(num_samples))
rm(true_capt_hx,params,alleles,loci,samp,samp_occ,num_alleles,samples,i,
occasions,num_sims,num_samples)

for (m in 1:num_models)
{
for (r in 1:(PCR_reps+1))
{

results[m,r,1]=mean(estimates[m,r,],na.rm=TRUE)
results[m,r,2]=sd(estimates[m,r,],na.rm=TRUE)
quants[m,r,1:3]=quantile(estimates[m,r,],p=c(.025,.5,.975),
na.rm=TRUE)
results[m,r,3]=mean(likely_estimates[m,r,],na.rm=TRUE)
results[m,r,4]=sd(likely_estimates[m,r,],na.rm=TRUE)
quants[m,r,4:6]=quantile(likely_estimates[m,r,],
p=c(.025,.5,.975),na.rm=TRUE)

results[m,r,5]=mean(trad_estimates[m,r,],na.rm=TRUE)
results[m,r,6]=sd(trad_estimates[m,r,],na.rm=TRUE)
quants[m,r,7:9]=quantile(trad_estimates[m,r,],
p=c(.025,.5,.975),na.rm=TRUE)
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}
}

#keep track of median of two pt for likely and trad models
results[(m+1),,]=quants[4,,4:9]
rm(estimates, likely_estimates, trad_estimates,PCR_reps,r)
print("results")
print(results[1,,])
print(results[2,,])
print(results[3,,])
print(results[4,,])
print(results[5,,])

for (m in 1:(num_models+1))
{

filename=paste(simulation,"output",m,".txt",sep="")
write.table(results[m,,],filename)

}
rm(simulation,quants,num_models,filename,m)
return(results)

}

##############################################################
#function to read parameter file
readin_params=function(param_file)
{
params=scan(param_file, what=list("",""), comment.char="#")
rm(param_file)
names(params[[2]])=params[[1]]
params[[2]]

}

##############################################################
#function to generate true population genotypes
gen_pop=function(params,alleles)
{
N=as.numeric(params["N"])
loci=length(alleles[,1])
num_alleles=.5*length(alleles[1,])

allele_sizes=matrix(0,nrow=loci, ncol=num_alleles)
allele_freqs=matrix(0,nrow=loci, ncol=num_alleles)

true_genos=array(data=0, dim=c(N, loci, num_alleles,2))
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#format allele sizes and frequencies
for (k in 1:loci)

{
for (m in 1:num_alleles)

{
allele_sizes[k,m]=alleles[k,((2*m)-1)]
allele_freqs[k,m]=alleles[k,(2*m)]

}
}

#generate genotype based on allele frequencies
for (i in 1:N)

{
for (j in 1:loci)

{
allele1=sample(allele_sizes[j,], 1, prob=allele_freqs[j,])
allele2=sample(allele_sizes[j,], 1, prob=allele_freqs[j,])
for (r in 1:num_alleles)

{
true_genos[i,j,r,1]=allele_sizes[j,r]
if (allele1==allele_sizes[j,r])

true_genos[i,j,r,2]=true_genos[i,j,r,2]+1
if (allele2==allele_sizes[j,r])

true_genos[i,j,r,2]=true_genos[i,j,r,2]+1
}
}
}
rm(N,loci,num_alleles,allele_sizes,allele_freqs,k,m,i,j,allele1,allele2,
r,params,alleles)

return(true_genos)
}

##############################################################
#function to generate capture probabilities
gen_capt_probs=function(params)
{
N=as.numeric(params["N"])
capt_dist=params["capt_dist"]
capt_mean=as.numeric(params["capt_mean"])
capt_var=as.numeric(params["capt_var"])
capt_attempts=as.numeric(params["capt_attempts"])
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#calculate probability of capture per attempt
#from probability of capture at least once in occasion
high=capt_mean+2*(capt_var^(1/2))
low=capt_mean-2*(capt_var^(1/2))
per_high=1-((1-high)^(1/capt_attempts))
per_mean=1-((1-capt_mean)^(1/capt_attempts))
per_low=1-((1-low)^(1/capt_attempts))
high_se=(per_high-per_mean)/2
low_se=(per_mean-per_low)/2
per_var=((high_se+low_se)/2)^2

#generate capt probs from beta
if (capt_dist=="beta")
{
alpha=per_mean*((per_mean*(1-per_mean)/per_var)-1)

beta=(1-per_mean)*((per_mean*(1-per_mean)/per_var)-1)
capt_probs=rbeta(N, alpha, beta)

}
else

{
#generate capt probs from uniform
if (capt_dist=="uniform") print("uniform")

else print("error: unknown capture probability distribution")
}

rm(N,capt_dist,capt_mean,capt_var,capt_attempts,high,low,per_high,
per_mean,per_low,high_se,low_se,per_var,alpha,beta,params)

return(capt_probs)
}

##############################################################
#function to generate sample
gen_sample=function(params,capt_probs)
{
N=as.numeric(params["N"])
occasions=as.numeric(params["occasions"])
capt_attempts=as.numeric(params["capt_attempts"])

true_capt_hx=matrix(0,nrow=N, ncol=occasions)

#generate capture histories
for (i in 1:occasions)

{
for (j in 1:N)
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{
n=0
for (k in 1:capt_attempts)

{
test=runif(1,0,1)

if (test<capt_probs[j]) n=n+1
}
true_capt_hx[j,i]=n

}
}
rm(N, occasions,capt_attempts,i,j,k,n,test,params,capt_probs)
return(true_capt_hx)

}

##############################################################
#function to prep and call genotype function
genotype=function(params,alleles,true_genos, true_capt_hx, num_alleles,
loci,samples)
{
N=as.numeric(params["N"])
occasions=as.numeric(params["occasions"])
capt_attempts=as.numeric(params["capt_attempts"])
PCR_reps=as.numeric(params["PCR_reps"])
PCR_eff_mean=as.numeric(params["PCR_eff_mean"])
PCR_eff_sd=as.numeric(params["PCR_eff_sd"])
stutter_min=as.numeric(params["stutter_min"])
stutter_max=as.numeric(params["stutter_max"])
cells_min=as.numeric(params["cells_min"])
cells_max=as.numeric(params["cells_max"])
qual_max=as.numeric(params["qual_max"])
qual_min=as.numeric(params["qual_min"])

genotypes=array(0,dim=c(samples, PCR_reps, loci, num_alleles,2))

#generate PCR efficiencies
alpha=PCR_eff_mean*((PCR_eff_mean*(1-PCR_eff_mean)/(PCR_eff_sd^2))-1)
beta=(1-PCR_eff_mean)*((PCR_eff_mean*(1-PCR_eff_mean)/(PCR_eff_sd^2))-1)
PCR_effs=rbeta(n=loci, alpha, beta)

#generate stutter efficiencies
stutter_effs=runif(n=loci,stutter_min,stutter_max)

#count of samples genotyped



76

n=1
for (i in 1:N)

{
for (j in 2:(occasions+1))

{
k=true_capt_hx[i,(j-1)]
while (k>0)

{
num_cells=sample(c(cells_min:cells_max),size=1)

quality=runif(n=1,qual_min,qual_max)
for (l in 1:PCR_reps)

{
for (m in 1:loci)

{
genotypes[n,l,m,,]=gen_geno(params,alleles[m,],true_genos[i,m,,],
loci,num_alleles, num_cells,quality,PCR_effs[m],stutter_effs[m])

}
}
k=k-1
n=n+1

}
}
}
rm(N,occasions,capt_attempts,PCR_reps,PCR_eff_mean,PCR_eff_sd,
stutter_min,stutter_max,cells_min,cells_max,qual_max,qual_min,
alpha,beta,PCR_effs,stutter_effs,i,j,k,num_cells,quality,l,m,
params,alleles,true_genos,true_capt_hx, num_alleles,loci,samples,n)

return(genotypes)
}

##############################################################
#function to generate genotypes
gen_geno=function(params,locus_alleles,geno,loci,num_alleles,num_cells,
quality,PCR_eff,stutter_eff)
{
extract_eff=as.numeric(params["extract_eff"])
aliquot_eff=as.numeric(params["aliquot_eff"])
PCR_cycles=as.numeric(params["PCR_cycles"])
prob_contam=as.numeric(params["prob_contam"])

alls=vector("numeric",length=num_alleles)

geno[,2]=geno[,2]*num_cells
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#extraction
geno[,2]=rbinom(n=num_alleles, size=geno[,2], prob=extract_eff)
#aliquot
geno[,2]=rbinom(n=num_alleles, size=geno[,2], prob=aliquot_eff)
#degredation
geno[,2]=rbinom(n=num_alleles, size=geno[,2],
prob=(1-(1-quality)*.0035)^geno[,1])

#contamination
test_contam=runif(1,0,1)
if (test_contam<prob_contam)

{
for (a in 1:num_alleles)
{

if (locus_alleles[(2*a)]>0) alls[a]=1
}
y=sample(c(1:num_alleles), size=1,prob=alls)
geno[y,2]=geno[y,2]+1
rm(a,y)

}

#zero out null
for (i in 1:num_alleles)
{

if (geno[i,1]==999) geno[i,2]=0
}

#PCR with sutter
for (j in 1:PCR_cycles)

{
new=rbinom(n=num_alleles, size=geno[,2], prob=PCR_eff)
stutter=rbinom(n=num_alleles, size=new[], prob=stutter_eff)
x=new-stutter
final=x[1:(num_alleles-1)]+stutter[2:num_alleles]

final[num_alleles]=x[num_alleles]
geno[,2]=geno[,2]+final[]

}

rm(params,locus_alleles,loci,num_alleles,num_cells,quality,PCR_eff,
stutter_eff,extract_eff,aliquot_eff,PCR_cycles,prob_contam,alls,
test_contam,i,j,new,stutter,x,final)

return(geno)
}
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###############################################################
#function to prep and call function to assign probs
assign_probs=function(params,genotypes, num_alleles,loci,samples,PCR_reps)
{
rep_probs=array(0,dim=c(samples, PCR_reps, loci, num_alleles+1,
num_alleles+1))

#call fn to assign probs
for (i in 1:samples)

{
for (l in 1:PCR_reps)

{
for (m in 1:loci)

{
rep_probs[i,l,m,,]=probs(params,genotypes[i,l,m,,],num_alleles)

}
}
}

rm(params,genotypes, num_alleles,loci, PCR_reps,i,l,m,samples)
return(rep_probs)

}

##############################################################
#function to assign probs
probs=function(params,genotype_rep,num_alleles)
{
noise_thresh=as.numeric(params["noise_thresh"])
homoz_thresh_int=as.numeric(params["homoz_thresh_int"])
homoz_thresh_slope=as.numeric(params["homoz_thresh_slope"])
heteroz_thresh_int=as.numeric(params["heteroz_thresh_int"])
heteroz_thresh_slope=as.numeric(params["heteroz_thresh_slope"])
hb_thresh=as.numeric(params["hb_thresh"])
p_stut=as.numeric(params["p_stut"])
stut_size_diff=as.numeric(params["stut_size_diff"])

prob=array(0, dim=c(num_alleles+1,num_alleles+1))
hmt=vector(length=num_alleles)
hrt=vector(length=num_alleles)
pd=vector(length=num_alleles)
pt=vector(length=num_alleles)

het_prob=array(data=0,dim=c(num_alleles,num_alleles))
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stut=vector(mode="numeric",length=(num_alleles+1))

#remove small stutters
for (f in 2:num_alleles)

{
if (genotype_rep[f,2]>0)

{
if ((genotype_rep[(f-1),2]/genotype_rep[f,2])<hb_thresh)
genotype_rep[(f-1),2]=0

}
}

#homoz thresh
hmt[]=homoz_thresh_slope*genotype_rep[,1]+homoz_thresh_int-noise_thresh
#hetero thresh
hrt[]=heteroz_thresh_slope*genotype_rep[,1]
+heteroz_thresh_int-noise_thresh

#subtract noise
genotype_rep[,2]=genotype_rep[,2]-noise_thresh

bands=0
for (i in 1:num_alleles)

{
#count bands, zero noise
if (genotype_rep[i,2]<=0) genotype_rep[i,2]=0
else bands=bands+1

#p of drop out
if (genotype_rep[i,2]<hmt[i]) pd[i]=1-(genotype_rep[i,2]/hmt[i])
else pd[i]=0

#p of true allele
if (genotype_rep[i,2]<hrt[i]) pt[i]=genotype_rep[i,2]/hrt[i]
else pt[i]=1

}

#assign probabilites if no bands amplified--geno NN
if (bands==0) prob[(num_alleles+1), (num_alleles+1)]=1

#assign probabilites if 1 band amplified--genos ii,iN
if (bands==1)

{
for (i in 1:num_alleles)
{
if (genotype_rep[i,2]>0)



80

{
prob[i,i]=1-pd[i]
prob[i,(num_alleles+1)]=pd[i]

break
}

}
}

#assign probabilites if more than one band amplified
if (bands>1)
{
#genos ii,iN
for (i in 1:num_alleles)
{

if (genotype_rep[i,2]>0)
{
prob[i,i]=(1-pd[i])*pt[i]

prob[i,(num_alleles+1)]=pd[i]*pt[i]
for (j in 1:num_alleles)
{

if (i!=j)
{
prob[i,i]=prob[i,i]*(1-pt[j])
prob[i,(num_alleles+1)]=prob[i,(num_alleles+1)]*(1-pt[j])

}
}

}
}
#genos ij
heteros=1-sum(prob)
for (i in 1:(num_alleles-1))
{

for (j in (i+1):num_alleles)
{
#relative heteroz proportion
het_prob[i,j]=genotype_rep[i,2]*genotype_rep[j,2]
/(hrt[i]*hrt[j])

}
}
sum_het=sum(het_prob)

#normalize heteroz to sum all genos to one
for (i in 1:(num_alleles-1))
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{
for (j in (i+1):num_alleles)
{
prob[i,j]=heteros*het_prob[i,j]/sum_het

}
}

#reassign probabilites if stutter positioning
for (i in 1:(num_alleles-1))

{
if (genotype_rep[i,2]>0)
{
if (genotype_rep[i,2]<genotype_rep[(i+1),2])

{
#track stutter alleles
stut[i]=1
for (j in 1:(num_alleles+1))
{

#decrease probabilities of genos with possible stutter alleles
prob[i,j]=prob[i,j]*genotype_rep[i,2]/genotype_rep[(i+1),2]
prob[j,i]=prob[j,i]*genotype_rep[i,2]/genotype_rep[(i+1),2]

}
}
}

}

#redistribute probs from stutter to non-stutter
redistr_prob=1-sum(prob)
non_stut_sum=0
#calc total prob of genos with no stutter
for (i in 1:(num_alleles+1))
{
if (stut[i]==0)
{

for (j in 1:(num_alleles+1))
{
if (stut[j]==0)
{

non_stut_sum=non_stut_sum+prob[i,j]
}

}
}

}
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#reassign probabilites to non-stutter positioning
for (i in 1:(num_alleles+1))
{
if (stut[i]==0)
{

for (j in 1:(num_alleles+1))
{
if (stut[j]==0)
{

if (non_stut_sum!=0)
{
prob[i,j]=prob[i,j]+prob[i,j]*redistr_prob/non_stut_sum
}

}
}

}
}

rm(heteros,sum_het,redistr_prob,non_stut_sum)
}

#normalize if not sum to 1
x=round(sum(prob),digits=2)
if (x!=1)
{
prob=prob/sum(prob)

}

#diagonalize matrix so geno j,i is added to geno i,j
for (i in 1:num_alleles)
{
for (j in (i+1):(num_alleles+1))
{

prob[i,j]=prob[i,j]+prob[j,i]
prob[j,i]=0

}
}

rm(params,genotype_rep,num_alleles,noise_thresh,homoz_thresh_int,
homoz_thresh_slope,heteroz_thresh_int,heteroz_thresh_slope,
hb_thresh,p_stut,stut_size_diff,hmt,hrt,pd,pt,het_prob,stut,f,
bands,i,j,x)

return(prob)
}
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###############################################################
#calls function to average reps
average_geno_probs=function(alleles,num_alleles,loci, geno_rep_probs,
samples,PCR_reps)
{
av_geno_probs=array(0, dim=c(samples,loci,num_alleles,num_alleles,
PCR_reps))

#call fn to average geno probs
for (i in 1:samples)
{

for (m in 1:loci)
{
for (l in 1:PCR_reps)
{
av_geno_probs[i,m,,,l]=av_genos(alleles,num_alleles,
loci,geno_rep_probs[i,1:l,m,,],l,m)
}

}
}

rm(alleles,num_alleles,loci, geno_rep_probs,PCR_reps,i,m,l,samples)
return(av_geno_probs)

}

###############################################################
#function to average genotype probs from reps
av_genos=function(alleles,num_alleles,loci,rep_probs,num_reps,locus)
{
pre_genos_av=array(0, dim=c((num_alleles+1),(num_alleles+1)))
al_freq=vector(mode="numeric",length=(num_alleles+1))
norm_al_freq=vector(mode="numeric",length=num_alleles)
genos_av=array(0,dim=c(num_alleles,num_alleles))

#if one rep--just use those calls
if (num_reps==1)
{
pre_genos_av=rep_probs

}

#if more than one rep--average
if (num_reps>1)
{
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for (i in 1:num_reps)
{
pre_genos_av=pre_genos_av+rep_probs[i,,]

}
pre_genos_av=pre_genos_av/num_reps

}

#calculate allele frequency for a sample’s reps from genotype frequency
for (i in 1:(num_alleles+1))
{
for (j in i:(num_alleles+1))
{

al_freq[i]=al_freq[i]+(.5*pre_genos_av[i,j])
al_freq[j]=al_freq[j]+(.5*pre_genos_av[i,j])

}
}

#recalculate allele frequencies without N alleles
al_freq_total=1-al_freq[(num_alleles+1)]
for (i in 1:num_alleles)
{
if (al_freq_total>0)
{
norm_al_freq[i]=al_freq[i]/al_freq_total
}
#use population allele freqs if no alleles amplified
if (al_freq_total==0)
{

a=1
b=1
while(a<(2*num_alleles))
{
norm_al_freq[b]=alleles[locus,(a+1)]
if (alleles[locus,a]==999) norm_al_freq[b]=0
a=a+2
b=b+1

}
norm_al_freq=norm_al_freq/sum(norm_al_freq)
rm(a,b)

}
}

#redistribute probs from N alleles based on sample allele freqs
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for (i in 1:num_alleles)
{
for (j in i:num_alleles)
{
pre_genos_av[i,j]=pre_genos_av[i,j]
+pre_genos_av[i,(num_alleles+1)]*norm_al_freq[j]

}
pre_genos_av[i,(num_alleles+1)]=0
}

#redistribute probs from NN genos
if (pre_genos_av[(num_alleles+1),(num_alleles+1)]>0)
{
for (i in 1:num_alleles)
{

#redistribute prob to homozygotes
pre_genos_av[i,i]=pre_genos_av[i,i]
+pre_genos_av[(num_alleles+1),(num_alleles+1)]
*norm_al_freq[i]*norm_al_freq[i]

if ((i+1)<=num_alleles)
{
for (j in (i+1):num_alleles)
{
#redistribute prob to heterozygotes
pre_genos_av[i,j]=pre_genos_av[i,j]
+pre_genos_av[(num_alleles+1),(num_alleles+1)]
*2*norm_al_freq[i]*norm_al_freq[j]

}
}
}
pre_genos_av[(num_alleles+1),(num_alleles+1)]=0

}

genos_av=pre_genos_av[1:num_alleles,1:num_alleles]

rm(alleles,num_alleles,loci,rep_probs,num_reps,locus,pre_genos_av,
al_freq,norm_al_freq,i,j,al_freq_total)

return(genos_av)
}

###############################################################
#function to sample from geno probs
geno_sample=function(num_alleles,loci,av_geno_probs,samples,PCR_reps)
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{
sample_genos=array(0, dim=c(samples,PCR_reps,loci))
#matrix of 2 digit genos
genotypes=matrix(nrow=num_alleles,ncol=num_alleles)

#make matrix of possible genos
for (a in 1:num_alleles)
{
for (b in 1:num_alleles)
{

genotypes[a,b]=100*a+b
}

}

for (i in 1:samples)
{

for (l in 1:PCR_reps)
{
for (m in 1:loci)
{

sample_genos[i,l,m]=sample(genotypes,size=1,p=av_geno_probs[i,m,,,l])
}
}

}

rm(num_alleles,loci,av_geno_probs,PCR_reps,genotypes,a,b,i,l,m,samples)
return(sample_genos)

}

###############################################################
#function to create capture hx
gen_capt_hx=function(num_alleles,loci,sample_genos,samples,samp_occ,
PCR_reps,occasions)
{
unique_genos=vector("numeric",length=PCR_reps)
#array tracking which samples matched
matched=array(1,dim=c(PCR_reps,samples))
capture_hx=array(0,dim=c(PCR_reps,samples,occasions))

for (e in 1:PCR_reps)
{
#choose sample

for (i in 1:samples)
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{
if (matched[e,i]==1)

{
matched[e,i]=0
unique_genos[e]=unique_genos[e]+1
capture_hx[e,unique_genos[e],samp_occ[i]]
=capture_hx[e,unique_genos[e],samp_occ[i]]+1
#compare to all other samples

for (a in 1:samples)
{
if (matched[e,a]==1)

{
if(identical(sample_genos[i,e,],sample_genos[a,e,])==TRUE)

{
capture_hx[e,unique_genos[e],samp_occ[a]]
=capture_hx[e,unique_genos[e],samp_occ[a]]+1
matched[e,a]=0

}
}

}
}

}
}

#remove multiple captures in an occasion
for (i in 1:PCR_reps)
{
for (j in 1:samples)
{

for (k in 1:occasions)
{
if (capture_hx[i,j,k]>1) capture_hx[i,j,k]=1

}
}

}

rm(num_alleles,loci,sample_genos,occasions,PCR_reps,unique_genos,
samples,matched,i,j,k,e,a,samp_occ)

return(capture_hx)
}

###############################################################
#function to calculate capture frequencies
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calc_freqs=function(params,capture_hx,true_capt_hx)
{
occasions=as.numeric(params["occasions"])
PCR_reps=as.numeric(params["PCR_reps"])
N=as.numeric(params["N"])
#number of unique genotypes identified

samples=nrow(capture_hx[1,,])

captures=matrix(0,nrow=PCR_reps+1,ncol=max(samples,N))
freqs=matrix(0,nrow=PCR_reps+1,ncol=occasions)

#calculate number of occasions in which a unique geno captured
for (i in 1:PCR_reps)
{
for (j in 1:samples)
{

captures[i,j]=sum(capture_hx[i,j,])
}

}

#calc for true capt hx, store in at end of matrix
for (i in 1:N)
{
for (j in 1:occasions)
{

if (true_capt_hx[i,j]>=1)
captures[PCR_reps+1,i]=captures[PCR_reps+1,i]+1

}
}

#calculate frequencies
for (i in 1:(PCR_reps+1))
{
for (j in 1:max(samples,N))
{

k=captures[i,j]
if (k>0) freqs[i,k]=freqs[i,k]+1

}
}

rm(params,capture_hx,true_capt_hx,occasions,PCR_reps,N,samples,
captures,i,j,k)

return(freqs)
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}

###############################################################
#function to calculate first order jackknife est
jackknife=function(params,freqs)
{
occasions=as.numeric(params["occasions"])
PCR_reps=as.numeric(params["PCR_reps"])
N=as.numeric(params["N"])

ests=vector("numeric",length=PCR_reps+1)

for (i in 1:(PCR_reps+1))
{
ests[i]=sum(freqs[i,])+((occasions-1)/occasions)*freqs[i,1]
if (ests[i]>(3*N))
{

ests[i]=NA
print(paste("jack too big PCR rep",i))

}
}

rm(params,occasions,PCR_reps,freqs,i)
return (ests)

}

##############################################################
#function to calculate first order chao est
chao=function(params,freqs)
{
occasions=as.numeric(params["occasions"])
PCR_reps=as.numeric(params["PCR_reps"])
N=as.numeric(params["N"])

ests=vector("numeric",length=PCR_reps+1)

for (i in 1:(PCR_reps+1))
{
ests[i]=sum(freqs[i,])+(freqs[i,1]*(freqs[i,1]-1))/(2*(freqs[i,2]+1))
if (ests[i]>(3*N))
{

ests[i]=NA
print(paste("chao too big PCR rep",i))
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}
}

rm(params,occasions,PCR_reps,freqs,i)
return (ests)

}

##############################################################
#function to calculate m0
m0=function(params,freqs)
{
occasions=as.numeric(params["occasions"])
PCR_reps=as.numeric(params["PCR_reps"])
N=as.numeric(params["N"])

ests=vector("numeric",length=PCR_reps+1)

for (i in 1:(PCR_reps+1))
{

n=0
for (j in 1:occasions)

{
n=n+j*freqs[i,j]

}
M=sum(freqs[i,])
likelihood=function(NN)

{
-(lfactorial(exp(NN)+M-1)-lfactorial(exp(NN)+M-1-M)
+log((n/(occasions*(exp(NN)+M-1)))^n)
+log((1-(n/(occasions*(exp(NN)+M-1))))^(occasions*(exp(NN)+M-1)-n)))

}
ln_ests_temp=try(nlm(likelihood,p=log(1))$estimate)
if (is.numeric(ln_ests_temp)==FALSE)
{
print(paste("no estimate for mo PCR rep",i))

}
else
{

ests[i]=exp(ln_ests_temp)+M-1
if (ests[i]>(3*N))

{
ests[i]=NA

print(paste("mo too big PCR rep",i))
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}
}

}
ests=as.numeric(ests)

rm(params,occasions,PCR_reps,freqs,i,j,n,M,likelihood,ln_ests_temp)
return (ests)

}

##############################################################
#function to calculate two point mixture
twopt=function(params,freqs)
{
occasions=as.numeric(params["occasions"])

PCR_reps=as.numeric(params["PCR_reps"])
N=as.numeric(params["N"])

ests=vector("numeric",length=PCR_reps+1)

for (i in 1:(PCR_reps+1))
{
M=sum(freqs[i,])
likelihood=function(p)

{
f=0
f=lfactorial(exp(p[4])+M-1)-lfactorial(exp(p[4])+M-1-M)
+(exp(p[4])+M-1-M)*log((exp(p[3])/(1+exp(p[3])))
*((1-(exp(p[1])/(1+exp(p[1]))))^occasions)+(1-(exp(p[3])/(1+exp(p[3]))))
*((1-(exp(p[2])/(1+exp(p[2]))))^occasions))
for (j in 1:occasions)
{
f=f+freqs[i,j]*log((exp(p[3])/(1+exp(p[3])))
*((exp(p[1])/(1+exp(p[1])))^j)
*((1-(exp(p[1])/(1+exp(p[1]))))^(occasions-j))
+(1-(exp(p[3])/(1+exp(p[3]))))*((exp(p[2])/(1+exp(p[2])))^j)
*((1-(exp(p[2])/(1+exp(p[2]))))^(occasions-j)))

}
f=-f

return(f)
}

ln_ests_temp=try(nlm(likelihood,p=c(-.4,.4,0,log(1)))$estimate[4])
if (is.numeric(ln_ests_temp)==FALSE)
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{
print("no estimate for two pt")
print("PCR rep")
print(i)

}
else
{
ests[i]=exp(ln_ests_temp)+M-1

if (ests[i]>(3*N))
{

ests[i]=NA
print(paste("2pt too big PCR rep",i))

}
}

}
ests=as.numeric(ests)

rm(params,occasions,PCR_reps,freqs,i,M,likelihood,ln_ests_temp)
return (ests)
}

##############################################################
#find most likely geno
most_likely_genos=function(num_alleles,loci,av_geno_probs,samples,PCR_reps)
{
likely_genos=array(0,dim=c(samples,PCR_reps,loci))

for (i in 1:PCR_reps)
{
for (j in 1:samples)
{

for (m in 1:loci)
{

p=0
for (a in 1:num_alleles)
{

for (b in a:num_alleles)
{

if (av_geno_probs[j,m,a,b,i]>p)
{
p=av_geno_probs[j,m,a,b,i]
z=a
y=b
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}
}

}
likely_genos[j,i,m]=100*z+y

}
}

}

rm(num_alleles,loci,av_geno_probs,PCR_reps,i,j,m,p,a,b,z,y,samples)
return(likely_genos)

}

##############################################################
#function to determine consensus genotype
consensus=function(loci, num_alleles, geno_rep_probs,samples,
PCR_reps,alleles)
{
trad_alleles=array(0,dim=c(samples,PCR_reps,loci,2))
trad_genos=array(0,dim=c(samples,PCR_reps,loci))
count=array(0,dim=c(samples,loci,PCR_reps,num_alleles))
thresh=vector(length=PCR_reps)
call=array(0,dim=c(samples,loci,PCR_reps,num_alleles))

#calculate consensus thresholds
thresh=c(1:PCR_reps)*2/3
thresh=round(thresh, digits=0)

for (i in 1:samples)
{
for (l in 1:PCR_reps)

{
for (m in 1:loci)

{
#reassign i,N genos to i,i

for (n in 1:num_alleles)
{

geno_rep_probs[i,l,m,n,n]=geno_rep_probs[i,l,m,n,n]
+geno_rep_probs[i,l,m,n,(num_alleles+1)]

}
#find most likely geno
p=0
z=0
y=0
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for (a in 1:num_alleles)
{

for (b in a:num_alleles)
{

if (geno_rep_probs[i,l,m,a,b]>p)
{
p=geno_rep_probs[i,l,m,a,b]
z=a

y=b
}

}
}
trad_alleles[i,l,m,1]=z
trad_alleles[i,l,m,2]=y

}
}
}

for (i in 1:samples)
{
for (m in 1:loci)

{
for (l in 1:PCR_reps)

{
#count number of times an allele called at each rep and the previous
for (f in 1:l)
{
if (trad_alleles[i,f,m,1]>0)
count[i,m,l,trad_alleles[i,f,m,1]]
=count[i,m,l,trad_alleles[i,f,m,1]]+1
if (trad_alleles[i,f,m,2]>0)
count[i,m,l,trad_alleles[i,f,m,2]]
=count[i,m,l,trad_alleles[i,f,m,2]]+1

}
}

#compare counts to consensus
for (g in 1:PCR_reps)
{
for (h in 1:num_alleles)
{

if (count[i,m,g,h]>=thresh[g])
call[i,m,g,h]=1
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else
call[i,m,g,h]=0

}
}

#determine geno
for (d in 1:PCR_reps)
{
called=sum(call[i,m,d,])
if (called==0)
{

#count how many alleles amplified
amp=0
for (j in 1:num_alleles)
{

if (count[i,m,d,j]>0)
amp=amp+1

}
#if no alleles amplified
#assign to homozygote of most common allele in population
if (amp==0)
{

even=c(1:num_alleles)*2
als=as.numeric(alleles[m,even])
z=which.max(als)
trad_genos[i,d,m]=100*z+z
rm(even,als)
}

#if one allele amplified assign to homozygote of that allele
if (amp==1)
{
z=which.max(count[i,m,d,])
trad_genos[i,d,m]=100*z+z

}
#if more than one allele amplified assign geno
if (amp>1)
{

for (aa in 1:num_alleles)
{

counts=count[i,m,d,]
counts[aa]=count[i,m,d,(num_alleles-aa+1)]

}
z=num_alleles-which.max(counts)+1
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counts[num_alleles-z+1]=0
y=num_alleles-which.max(counts)+1
if (count[i,m,d,z]==count[i,m,d,y])
{

if (z<y)
trad_genos[i,d,m]=100*z+y
else
trad_genos[i,d,m]=100*y+z

}
else

trad_genos[i,d,m]=100*z+z
}

rm(amp,j,aa)
}

if (called==1)
{

z=which.max(call[i,m,d,])
trad_genos[i,d,m]=100*z+z

}

if (called==2)
{

counts=call[i,m,d,]
z=which.max(counts)
counts[z]=0
y=which.max(counts)
if (z>y) trad_genos[i,d,m]=100*y+z
else trad_genos[i,d,m]=100*z+y

}

if (called>2)
{
counts=count[i,m,d,]

z=which.max(counts)
counts[z]=0

y=which.max(counts)
twomax=counts[y]
counts[y]=0

if (z>y) trad_genos[i,d,m]=100*y+z
else trad_genos[i,d,m]=100*z+y

for (a in 1:num_alleles)
{
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if (counts[a]==twomax)
{

for (aa in 1:num_alleles)
counts[aa]=count[i,m,d,(num_alleles-aa+1)]

z=num_alleles-which.max(counts)+1
counts[num_alleles-z+1]=0

y=num_alleles-which.max(counts)+1
if (z>y) trad_genos[i,d,m]=100*y+z

else trad_genos[i,d,m]=100*z+y
break

}
}

rm(twomax)
}

}
}
}

rm(alleles,loci, num_alleles,geno_rep_probs,PCR_reps,trad_alleles,
count,thresh,call,z,y,i,l,m,p,a,b,f,g,h,d,called,counts,n,samples)

return(trad_genos)
}

#####################################################################
#run full simulation
x=sims("params.txt", "allele.txt") #run full simulation
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Appendix B

Parameter Input File

simid 1D # simulation identification number (1A-4D)

seed 719034 # simulation seed

N 200 # true population size (200,500)

occasions 5 # number of sampling occasions (5,10)

capt mean 0.2 # mean probability of at least one capture per occasion (0.2,0.5)

capt var 0.002 # variance of probabilities of at least one capture per occasion (0.002,0.02)

capt dist beta # distribution to generate capture probabilities

capt attempts 5 # number of capture attempts per sampling occasion

PCR reps 10 # maximum number of PCR reps

cells min 30 # minimum number of cells possible in the sample

cells max 150 # maximum number of cells possible in the sample

PCR cycles 34 # number of PCR cycles

extract eff 0.46 # extraction efficiency

qual min 0 # minimum quality score

qual max 1 # maximum quality score

aliquot eff 0.3 # aliquot efficiency

PCR eff mean 0.82 # mean PCR efficiency

PCR eff sd 0.06 # standard deviation of PCR efficiencies

stutter min 0 # minimum possible stutter efficiency

stutter max 0.04 # maximum possible stutter efficiency

prob contam 0.008 # probability of undetected contamination per locus per PCR replicate
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noise thresh 20000000 # noise threshold

homoz thresh int 17000000000 # homozygous threshold intercept

homoz thresh slope -75000000 # homozygous threshold slope

heteroz thresh int 8700000000 # heterozygous threshold intercept

heteroz thresh slope -11000000 # heterozygous threshold slope

hb thresh 0.32 # value relative to parent allele below which assumed to be stutter

stut size diff 1 # number of array positions over to stutter peak

num sims 100 # number of simulations

num models 4 # number of mark-recapture models used to analyze data



Appendix C

Allele Input Files

# Allele sizes and frequencies for populations with no null alleles
156 .15 158 .19 160 .26 162 .22 164 .18 166 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 #G10B

99 .31 101 0.0 103 .25 105 .13 107 .09 109 .02 111 .14 113 .04 115 .03 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 #G10C

135 .08 137 .15 139 .01 141 .05 143 0.0 145 .09 147 0.0 149 .15 151 0.0 153 0.0 155 .02 157 .05 159 .32 161 0.0 163 .02 165 .03 167 0.0 169 .03 998 0.0 998 0.0 #G10L

200 .01 202 0.0 204 .02 206 .04 208 .11 210 .14 212 .24 214 .10 216 .23 218 .06 220 .03 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 #G10M

149 0.0 151 .05 153 .18 155 .18 157 .15 159 .27 161 .10 163 0.0 165 0.0 167 .06 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 #G10P

125 .03 127 .12 129 .01 131 .01 133 .07 135 0.0 137 0.0 139 .06 141 0.0 143 0.0 145 .16 147 .25 149 .19 151 .03 153 .01 155 0.0 157 0.0 159 0.0 161 0.0 163 .04 #G10X

184 .16 186 0.0 188 .04 190 .03 192 .25 194 .41 196 .03 198 .08 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 #G1A

172 .14 174 .10 176 .47 178 .11 180 .01 182 .06 184 0.0 186 .03 188 .05 190 .01 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 #G1D
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# Allele sizes and frequencies for populations with null alleles
156 .15 158 .19 160 .26 162 .22 999 .18 166 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 #G10B

99 .31 101 0.0 103 .25 105 .13 107 .09 109 .02 111 .14 113 .04 115 .03 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 #G10C

135 .08 137 .15 139 .01 141 .05 143 0.0 145 .09 147 0.0 149 .15 151 0.0 153 0.0 155 .02 157 .05 159 .32 161 0.0 163 .02 165 .03 167 0.0 169 .03 998 0.0 998 0.0 #G10L

200 .01 202 0.0 204 .02 206 .04 208 .11 210 .14 212 .24 214 .10 216 .23 218 .06 220 .03 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 #G10M

149 0.0 151 .05 153 .18 155 .18 157 .15 159 .27 161 .10 163 0.0 165 0.0 167 .06 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 #G10P

125 .03 127 .12 129 .01 131 .01 133 .07 135 0.0 137 0.0 139 .06 141 0.0 143 0.0 145 .16 147 .25 149 .19 151 .03 153 .01 155 0.0 157 0.0 159 0.0 161 0.0 163 .04 #G10X

184 .16 186 0.0 188 .04 190 .03 192 .25 194 .41 196 .03 999 .08 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 #G1A

172 .14 174 .10 176 .47 178 .11 180 .01 182 .06 184 0.0 186 .03 188 .05 190 .01 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 998 0.0 #G1D

# alleles ordered in increasing size

# size 998 are zero frequency alleles

# size 999 indicates a null allele

# all loci need to have same number of entries; if different, add zero frequency alleles at end of list

# first allele set is from West Slope black bears from Paetkau et al. (1998)

# second allele set is modified from West Slope black bears in Paetkau et al. (1998) to include null alleles
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Appendix D

Results for All Simulation

Scenarios
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Figure D.1: Results for simulation 1: N=200, capture probability=.2, sampling occa-
sions=5, no null alleles. Root mean squared error of the population size estimator (RMSE
of N̂), or mean population size estimate (mean N̂), versus the number of PCR replicates.
Vertical lines on mean estimate graphs indicate ±1 standard deviation of the estimates.
Results for model M0 and the two point mixture model for two methods—the traditional
consensus method (“traditional”) and the probabilistic method (“probabilistic”).
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Figure D.2: Results for simulation 1: N=200, capture probability=.2, sampling occa-
sions=5, no null alleles. Root mean squared error of the population size estimator (RMSE
of N̂), or mean population size estimate (mean N̂), versus the number of PCR replicates.
Vertical lines on mean estimate graphs indicate ±1 standard deviation of the estimates.
Results for model Mh jackknife and model Mh Chao for two methods—the traditional
consensus method (“traditional”) and the probabilistic method (“probabilistic”).
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Figure D.3: Results for simulation 2: N=200, capture probability=.2, sampling occa-
sions=5, null alleles present. Root mean squared error of the population size estimator
(RMSE of N̂), or mean population size estimate (mean N̂), versus the number of PCR
replicates. Vertical lines on mean estimate graphs indicate ±1 standard deviation of the
estimates. Results for model M0 and the two point mixture model for two methods—the
traditional consensus method (“traditional”) and the probabilistic method (“probabilistic”).
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Figure D.4: Results for simulation 2: N=200, capture probability=.2, sampling occa-
sions=5, null alleles present. Root mean squared error of the population size estimator
(RMSE of N̂), or mean population size estimate (mean N̂), versus the number of PCR
replicates. Vertical lines on mean estimate graphs indicate ±1 standard deviation of the
estimates. Results for model Mh jackknife and model Mh Chao for two methods—the tra-
ditional consensus method (“traditional”) and the probabilistic method (“probabilistic”).
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Figure D.5: Results for simulation 3: N=200, capture probability=.2, sampling occa-
sions=10, no null alleles. Root mean squared error of the population size estimator (RMSE
of N̂), or mean population size estimate (mean N̂), versus the number of PCR replicates.
Vertical lines on mean estimate graphs indicate ±1 standard deviation of the estimates.
Results for model M0 and the two point mixture model for two methods—the traditional
consensus method (“traditional”) and the probabilistic method (“probabilistic”).
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Figure D.6: Results for simulation 3: N=200, capture probability=.2, sampling occa-
sions=10, no null alleles. Root mean squared error of the population size estimator (RMSE
of N̂), or mean population size estimate (mean N̂), versus the number of PCR replicates.
Vertical lines on mean estimate graphs indicate ±1 standard deviation of the estimates.
Results for model Mh jackknife and model Mh Chao for two methods—the traditional
consensus method (“traditional”) and the probabilistic method (“probabilistic”).
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Figure D.7: Results for simulation 4: N=200, capture probability=.2, sampling occa-
sions=10, null alleles present. Root mean squared error of the population size estimator
(RMSE of N̂), or mean population size estimate (mean N̂), versus the number of PCR
replicates. Vertical lines on mean estimate graphs indicate ±1 standard deviation of the
estimates. Results for model M0 and the two point mixture model for two methods—the
traditional consensus method (“traditional”) and the probabilistic method (“probabilistic”).
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Figure D.8: Results for simulation 4: N=200, capture probability=.2, sampling occa-
sions=10, null alleles present. Root mean squared error of the population size estimator
(RMSE of N̂), or mean population size estimate (mean N̂), versus the number of PCR
replicates. Vertical lines on mean estimate graphs indicate ±1 standard deviation of the
estimates. Results for model Mh jackknife and model Mh Chao for two methods—the tra-
ditional consensus method (“traditional”) and the probabilistic method (“probabilistic”).
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Figure D.9: Results for simulation 5: N=200, capture probability=.5, sampling occa-
sions=5, no null alleles. Root mean squared error of the population size estimator (RMSE
of N̂), or mean population size estimate (mean N̂), versus the number of PCR replicates.
Vertical lines on mean estimate graphs indicate ±1 standard deviation of the estimates.
Results for model M0 and the two point mixture model for two methods—the traditional
consensus method (“traditional”) and the probabilistic method (“probabilistic”).
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Figure D.10: Results for simulation 5: N=200, capture probability=.5, sampling occa-
sions=5, no null alleles. Root mean squared error of the population size estimator (RMSE
of N̂), or mean population size estimate (mean N̂), versus the number of PCR replicates.
Vertical lines on mean estimate graphs indicate ±1 standard deviation of the estimates.
Results for model Mh jackknife and model Mh Chao for two methods—the traditional
consensus method (“traditional”) and the probabilistic method (“probabilistic”).
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Figure D.11: Results for simulation 6: N=200, capture probability=.5, sampling occa-
sions=5, null alleles present. Root mean squared error of the population size estimator
(RMSE of N̂), or mean population size estimate (mean N̂), versus the number of PCR
replicates. Vertical lines on mean estimate graphs indicate ±1 standard deviation of the
estimates. Results for model M0 and the two point mixture model for two methods—the
traditional consensus method (“traditional”) and the probabilistic method (“probabilistic”).
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Figure D.12: Results for simulation 6: N=200, capture probability=.5, sampling occa-
sions=5, null alleles present. Root mean squared error of the population size estimator
(RMSE of N̂), or mean population size estimate (mean N̂), versus the number of PCR
replicates. Vertical lines on mean estimate graphs indicate ±1 standard deviation of the
estimates. Results for model Mh jackknife and model Mh Chao for two methods—the tra-
ditional consensus method (“traditional”) and the probabilistic method (“probabilistic”).
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Figure D.13: Results for simulation 7: N=200, capture probability=.5, sampling occa-
sions=10, no null alleles. Root mean squared error of the population size estimator (RMSE
of N̂), or mean population size estimate (mean N̂), versus the number of PCR replicates.
Vertical lines on mean estimate graphs indicate ±1 standard deviation of the estimates.
Results for model M0 and the two point mixture model for two methods—the traditional
consensus method (“traditional”) and the probabilistic method (“probabilistic”).
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Figure D.14: Results for simulation 7: N=200, capture probability=.5, sampling occa-
sions=10, no null alleles. Root mean squared error of the population size estimator (RMSE
of N̂), or mean population size estimate (mean N̂), versus the number of PCR replicates.
Vertical lines on mean estimate graphs indicate ±1 standard deviation of the estimates.
Results for model Mh jackknife and model Mh Chao for two methods—the traditional
consensus method (“traditional”) and the probabilistic method (“probabilistic”).
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Figure D.15: Results for simulation 8: N=200, capture probability=.5, sampling occa-
sions=10, null alleles present. Root mean squared error of the population size estimator
(RMSE of N̂), or mean population size estimate (mean N̂), versus the number of PCR
replicates. Vertical lines on mean estimate graphs indicate ±1 standard deviation of the
estimates. Results for model M0 and the two point mixture model for two methods—the
traditional consensus method (“traditional”) and the probabilistic method (“probabilistic”).
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Figure D.16: Results for simulation 8: N=200, capture probability=.5, sampling occa-
sions=10, null alleles present. Root mean squared error of the population size estimator
(RMSE of N̂), or mean population size estimate (mean N̂), versus the number of PCR
replicates. Vertical lines on mean estimate graphs indicate ±1 standard deviation of the
estimates. Results for model Mh jackknife and model Mh Chao for two methods—the tra-
ditional consensus method (“traditional”) and the probabilistic method (“probabilistic”).
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Figure D.17: Results for simulation 9: N=500, capture probability=.2, sampling occa-
sions=5, no null alleles. Root mean squared error of the population size estimator (RMSE
of N̂), or mean population size estimate (mean N̂), versus the number of PCR replicates.
Vertical lines on mean estimate graphs indicate ±1 standard deviation of the estimates.
Results for model M0 and the two point mixture model for two methods—the traditional
consensus method (“traditional”) and the probabilistic method (“probabilistic”).
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Figure D.18: Results for simulation 9: N=500, capture probability=.2, sampling occa-
sions=5, no null alleles. Root mean squared error of the population size estimator (RMSE
of N̂), or mean population size estimate (mean N̂), versus the number of PCR replicates.
Vertical lines on mean estimate graphs indicate ±1 standard deviation of the estimates.
Results for model Mh jackknife and model Mh Chao for two methods—the traditional
consensus method (“traditional”) and the probabilistic method (“probabilistic”).
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Figure D.19: Results for simulation 10: N=500, capture probability=.2, sampling occa-
sions=5, null alleles present. Root mean squared error of the population size estimator
(RMSE of N̂), or mean population size estimate (mean N̂), versus the number of PCR
replicates. Vertical lines on mean estimate graphs indicate ±1 standard deviation of the
estimates. Results for model M0 and the two point mixture model for two methods—the
traditional consensus method (“traditional”) and the probabilistic method (“probabilistic”).
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Figure D.20: Results for simulation 10: N=500, capture probability=.2, sampling occa-
sions=5, null alleles present. Root mean squared error of the population size estimator
(RMSE of N̂), or mean population size estimate (mean N̂), versus the number of PCR
replicates. Vertical lines on mean estimate graphs indicate ±1 standard deviation of the
estimates. Results for model Mh jackknife and model Mh Chao for two methods—the tra-
ditional consensus method (“traditional”) and the probabilistic method (“probabilistic”).
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Figure D.21: Results for simulation 11: N=500, capture probability=.2, sampling occa-
sions=10, no null alleles. Root mean squared error of the population size estimator (RMSE
of N̂), or mean population size estimate (mean N̂), versus the number of PCR replicates.
Vertical lines on mean estimate graphs indicate ±1 standard deviation of the estimates.
Results for model M0 and the two point mixture model for two methods—the traditional
consensus method (“traditional”) and the probabilistic method (“probabilistic”).
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Figure D.22: Results for simulation 11: N=500, capture probability=.2, sampling occa-
sions=10, no null alleles. Root mean squared error of the population size estimator (RMSE
of N̂), or mean population size estimate (mean N̂), versus the number of PCR replicates.
Vertical lines on mean estimate graphs indicate ±1 standard deviation of the estimates.
Results for model Mh jackknife and model Mh Chao for two methods—the traditional
consensus method (“traditional”) and the probabilistic method (“probabilistic”).
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Figure D.23: Results for simulation 12: N=500, capture probability=.2, sampling occa-
sions=10, null alleles present. Root mean squared error of the population size estimator
(RMSE of N̂), or mean population size estimate (mean N̂), versus the number of PCR
replicates. Vertical lines on mean estimate graphs indicate ±1 standard deviation of the
estimates. Results for model M0 and the two point mixture model for two methods—the
traditional consensus method (“traditional”) and the probabilistic method (“probabilistic”).
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Figure D.24: Results for simulation 12: N=500, capture probability=.2, sampling occa-
sions=10, null alleles present. Root mean squared error of the population size estimator
(RMSE of N̂), or mean population size estimate (mean N̂), versus the number of PCR
replicates. Vertical lines on mean estimate graphs indicate ±1 standard deviation of the
estimates. Results for model Mh jackknife and model Mh Chao for two methods—the tra-
ditional consensus method (“traditional”) and the probabilistic method (“probabilistic”).
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Figure D.25: Results for simulation 13: N=500, capture probability=.5, sampling occa-
sions=5, no null alleles. Root mean squared error of the population size estimator (RMSE
of N̂), or mean population size estimate (mean N̂), versus the number of PCR replicates.
Vertical lines on mean estimate graphs indicate ±1 standard deviation of the estimates.
Results for model M0 and the two point mixture model for two methods—the traditional
consensus method (“traditional”) and the probabilistic method (“probabilistic”).
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Figure D.26: Results for simulation 13: N=500, capture probability=.5, sampling occa-
sions=5, no null alleles. Root mean squared error of the population size estimator (RMSE of
N̂), or mean population size estimate (mean N̂), versus the number of PCR replicates. Ver-
tical lines on mean estimate graphs indicate ±1 standard deviation of the estimates. Results
for model Mh jackknife and model Mh Chao for two methods—the traditional consensus
method (“traditional”) and the probabilistic method (“probabilistic”).



129

2 4 6 8 10

50
10

0
15

0
20

0
25

0

RMSE of N̂−−model M0

number of PCR replicates

R
M

S
E

 o
f N̂

●

●

●

●

●
●

●

● ● ●

●

method

traditional
probabilistic

2 4 6 8 10
50

0
60

0
70

0
80

0

mean N̂ ±± 1 sd−−model M0

number of PCR replicates

m
ea

n 
N̂

●

●

●
●

● ●
●

● ● ●

●

method

traditional
probabilistic

2 4 6 8 10

10
0

20
0

30
0

40
0

50
0

60
0

RMSE of N̂−−mixture model

number of PCR replicates

R
M

S
E

 o
f N̂

●

●

●
●

●
●

●

●
●

●

●

method

traditional
probabilistic

2 4 6 8 10

60
0

80
0

10
00

12
00

mean N̂ ±± 1 sd−−mixture model

number of PCR replicates

m
ea

n 
N̂

●

●

●
●

●
●

●

● ●
●

●

method

traditional
probabilistic

Figure D.27: Results for simulation 14: N=500, capture probability=.5, sampling occa-
sions=5, null alleles present. Root mean squared error of the population size estimator
(RMSE of N̂), or mean population size estimate (mean N̂), versus the number of PCR
replicates. Vertical lines on mean estimate graphs indicate ±1 standard deviation of the
estimates. Results for model M0 and the two point mixture model for two methods—the
traditional consensus method (“traditional”) and the probabilistic method (“probabilistic”).
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Figure D.28: Results for simulation 14: N=500, capture probability=.5, sampling occa-
sions=5, null alleles present. Root mean squared error of the population size estimator
(RMSE of N̂), or mean population size estimate (mean N̂), versus the number of PCR
replicates. Vertical lines on mean estimate graphs indicate ±1 standard deviation of the
estimates. Results for model Mh jackknife and model Mh Chao for two methods—the tra-
ditional consensus method (“traditional”) and the probabilistic method (“probabilistic”).
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Figure D.29: Results for simulation 15: N=500, capture probability=.5, sampling occa-
sions=10, no null alleles. Root mean squared error of the population size estimator (RMSE
of N̂), or mean population size estimate (mean N̂), versus the number of PCR replicates.
Vertical lines on mean estimate graphs indicate ±1 standard deviation of the estimates.
Results for model M0 and the two point mixture model for two methods—the traditional
consensus method (“traditional”) and the probabilistic method (“probabilistic”).
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Figure D.30: Results for simulation 15: N=500, capture probability=.5, sampling occa-
sions=10, no null alleles. Root mean squared error of the population size estimator (RMSE
of N̂), or mean population size estimate (mean N̂), versus the number of PCR replicates.
Vertical lines on mean estimate graphs indicate ±1 standard deviation of the estimates.
Results for model Mh jackknife and model Mh Chao for two methods—the traditional
consensus method (“traditional”) and the probabilistic method (“probabilistic”).
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Figure D.31: Results for simulation 16: N=500, capture probability=.5, sampling occa-
sions=10, null alleles present. Root mean squared error of the population size estimator
(RMSE of N̂), or mean population size estimate (mean N̂), versus the number of PCR
replicates. Vertical lines on mean estimate graphs indicate ±1 standard deviation of the
estimates. Results for model M0 and the two point mixture model for two methods—the
traditional consensus method (“traditional”) and the probabilistic method (“probabilistic”).
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Figure D.32: Results for simulation 16: N=500, capture probability=.5, sampling occa-
sions=10, null alleles present. Root mean squared error of the population size estimator
(RMSE of N̂), or mean population size estimate (mean N̂), versus the number of PCR
replicates. Vertical lines on mean estimate graphs indicate ±1 standard deviation of the
estimates. Results for model Mh jackknife and model Mh Chao for two methods—the tra-
ditional consensus method (“traditional”) and the probabilistic method (“probabilistic”).




