

ABSTRACT

 KUMAR, NAGENDRA J

STI Concepts for Bit – Bang Communication Protocols

(Under the direction of Dr. Alexander Dean)
In the modern times, embedded communication networks are being used in increased number of embedded

systems to provide more reliability and cost effectiveness. Designers are forced to limit and minimize the

size, weight, power consumption, costs and also the design time of their products. However, network

controller chips are also expensive and hence moving functionality from hardware to software cuts down

the costs and also makes custom fit protocols easier to implement.

Traditional methods of sharing a processor are not adequate for implementing communication protocol

controllers in software because of the processing required during each bit. The available idle time is fine

grain compared to the bit time and is usually small for even the fast context switching techniques (e.g. co-

routines) to run any other thread. Without some scheme to recover this fine-grain idle time, no other work

in the system would make any progress.

Software Thread Integration (STI) provides low cost concurrency on general-purpose microprocessors by

interleaving multiple threads of control (having real-time constraints) into one. This thesis introduces new

methods for implementing communication protocols in software using statically scheduled co-routines and

software thread integration. With co-routines, switching from primary to secondary threads and vice versa

can be done without incurring a penalty as severe as “context – switching”. This technique will be been

demonstrated on the SAE J1850 communication standard used in off- and on-road land-based vehicles.

These methods also minimize the number of co-routine calls needed to share the processor thereby enabling

finer-grain idle time to be recovered for use by the secondary thread. Increased number of compute cycles

implies

¾ Improved performance of the secondary thread and

¾ Reduced minimum clock speed for the microprocessor.

Thus, now more secondary thread work can be done and also the minimum clock speed required of the

processor is reduced. These factors enable the embedded system designers to use processors more

efficiently and also with less development effort.

STI Concepts for Bit-Bang Communication Protocols

by

 Nagendra J. Kumar

A thesis submitted to the Graduate Faculty of

North Carolina State University
 in partial fulfillment of the
requirements for the Degree of

Master of Science

COMPUTER ENGINEERING

Raleigh

 May 2003

Approved by

____________________________ ___________________________

Dr. Eric Rotenberg Dr. Thomas M. Conte

 Dr. Alexander G. Dean, Chair of Advisory Committee

 ii

BIOGRAPHY

Nagendra J Kumar was born on July 4, 1976 in Bangalore, India. He graduated with a B.E degree in

Electronics and Communication Engineering from University Visvesvaraya College of Engineering,

Bangalore, India, in July 1997. After graduation, he worked first as a software design engineer at Tektronix

Engineering Development India in Bangalore for 2 years and then as a Member Technical Staff –

Developer in Sharp Software Development India for a year.

He then joined the masters program in computer engineering at North Carolina State University, Raleigh,

NC. There he was a part of the STI for Bit Bang Communication protocols project and worked on his thesis

under the direction of Dr Alexander Dean.

 iii

ACKNOWLEDGEMENTS

 Graduate studies at North Carolina State University has been a truly gratifying experience and I would

like to use this opportunity to thank one and all who made this possible.

 First and foremost, I would like to thank my advisor, Dr Alexander G. Dean for giving me the opportunity

to work on this project. Dr Dean envisaged the idea of software thread integration and has been the

motivating factor behind my work. He provided valuable guidance and insights, resulting in this research. I

got an opportunity to develop wonderful insights in the field of embedded systems under his guidance.

Apart from being my guide, he has always encouraged independent thinking and helped me in all my

endeavors. I thank him for that.

 I thank the committee members, Dr Thomas Conte, Dr Greg Byrd and Dr Eric Rotenberg, for reviewing

my thesis and providing valuable comments. I would also like to thank my other instructors at NCSU for

their guidance in technical subjects.

 I express my sincere thanks to all my friends and colleagues at NC State, who made my stay here at

NCSU, a memorable one. My special thanks to my roommates, Raghavendra and Rajesh, and to my friends

Mohit, Drubha and Saurabh, for their endless help and motivation.

 Finally I thank my parents, Dr J. B. Subramaniam and Mrs Hemalatha, for their constant support and

encouragement, to further my studies. They have played an active role in shaping my career and were

always there when I needed them.

This material is based upon work supported by the National Science Foundation under Grant No. 0133690.

 I conclude, by thanking one and all for making this happen.

 iv

TABLE OF CONTENTS

LIST OF FIGURES...…………………………………………………………………..vi

1 Background : ... 1

1.1 Why Thread Integration... 1
1.2 Typical Hardware Environment.. 1
1.3 Software Program Structure.. 2
1.4 BBCP Thread Code Structure... 4
1.5 Timeline and Timing Constraints ... 5
1.6 Idle Time Allocation:.. 6
1.7 Fine Grain Scheduling: ... 7
1.8 Code Structure: ... 9
1.9 Contributions... 11
1.10 Thesis Organization .. 11

2 Co-Call Technique For Integration... 12
2.1 Goals for Code Transformation: ... 12
2.2 Co-calls and Co-routines: ... 12

2.2.1 Definition .. 12
2.2.2 Program States affected during switching .. 13

2.3 Primary thread preparation: .. 14
2.3.1 Definitions... 14
2.3.2 Idle time analysis .. 15
2.3.3 Idle Time in Bit Level Functions .. 17
2.3.4 Message Level Functions.. 17
2.3.5 Transformations .. 18

2.4 Secondary thread... 19
2.4.1 Structure.. 19
2.4.2 Do’s and Don’ts .. 20
2.4.3 Preparation .. 21
2.4.4 Transformations .. 28

3 J1850 Protocol ... 39
3.1 Introduction... 39
3.2 Signaling scheme .. 39
3.3 Arbitration:.. 40
3.4 Frame Format.. 41

4 Demonstration of Integration techniques on J1850... 44
4.1 Overview... 44
4.2 System Architecture.. 44

4.2.1 Hardware Architecture.. 44
4.2.2 Program Structure ... 46
4.2.3 Bus Interface Thread... 49

4.3 Program Analysis.. 51
4.3.1 Primary Code – Idle Time... 51
4.3.2 Secondary Thread – Determinism .. 53

4.4 Integration ... 53

 v

4.4.1 Preparations... 53
4.4.2 Transformations .. 55
4.4.3 Transformation Methodology ... 61

5 Results & Analysis .. 62
5.1 Simulation Environment: .. 62
5.2 Results:.. 63

5.2.1 Timing Evaluation: ... 63
5.2.2 Code Expansion: ... 65
5.2.3 Performance Improvement compared to Interrupt Based approach: 67

6 Summary & Future Work ... 70
6.1 Summary:.. 70
6.2 Future Work:... 71

Bibliography.……………………………………………………………………………72
Appendix I………………………………………………………………………………73
Appendix II……………………………………………………………………………...88

 vi

List Of Figures

Figure 1-1 Typical communication system block diagram…………………………1
Figure 1-2 Modified Block diagram………………………………………………...2
Figure 1-3 Typical Implementation………………………………………………....2
Figure 1-4 Host Interface Thread structure…………………………………………3
Figure 1-5 BBCP thread structure…………………………………………………..3
Figure 1-6 Typical send bit operation timeline…....………………………………..5
Figure 1-7 Idle Time distribution - case 1………………………………………….6
Figure 1-8 Idle Time distribution - case 2………………………………………….6
Figure 1-9 Idle Time distribution - case 3………………………………………….7
Figure 1-10 CFG of primary and secondary threads…..……………………………10
Figure 1-11 Context switching using interrupts…..………………………………...10
Figure 1-12 Context switching using STI……..……………………………………11
Figure 2-1 Context switching through co-calls……………………………………13
Figure 2-2 Processor Idle Time……………………………………………………15
Figure 2-3 Cocall Insertion...……………………………………………………...16
Figure 2-4 Idle Time in bit-level functions…...…………………………………..17
Figure 2-5 Removing Intervening guest code……...……………………………...18
Figure 2-6 Integration Process……………………………………………………..19
Figure 2-7 Primary and secondary thread switching………………………………20
Figure 2-8 Subroutines in Secondary thread………………………………………21
Figure 2-9 CFG for code having blocking I/O calls……………………………….23
Figure 2-10 CDG for the modified blocking I/O loop code………………………...25
Figure 2-11 Predicate Padding in secondary………………………………………..26
Figure 2-12 Padded Secondary Thread……………………………………………..27
Figure 2-13 CFG for Blocking I/O loop code………..……………………………..29
Figure 2-14 Modified CDG…………………………………..……………………..30
Figure 2-15 Switching between Primary threads..………………………………….32
Figure 2-16 Synchronization..………………………………………………………33
Figure 2-17 Guarded Cocalls.……………………………………………………....34
Figure 2-18 PLBF Code.……………………………………………………………35
Figure 2-19 Secondary Code..………………………………………………………35
Figure 2-20 "Raw" Secondary code..………………………………………………..36
Figure 2-21 Secondary thread with Intervening code..……………………………...37
Figure 2-22 Guarded Intervening Code..…………………………………………....37
Figure 2-23 Register For Synchronization..………………………………………...38
Figure 3-1 J1850 bit symbol timings………………………………………………40
Figure 3-2 J1850 Frame format……………………………………………………41
Figure 4-1 J1850 Node Setup……………………………………………………...44
Figure 4-2 J1850 Hardware Setup…………………………………………………45
Figure 4-3 Overall Simulation setup……………………………………………….46
Figure 4-4 Communication Interface……………………………………………....46
Figure 4-5 TX. & RX. Message Queue Data Structure……………………………47
Figure 4-6 IFR Queue Data Structure……………………………………………...47
Figure 4-7 Host Interface Thread State Diagram…………………………………..48

 vii

Figure 4-8 BBCP thread code structure……………………………………………49
Figure 4-9 Timeline for Send function…………………………………………….50
Figure 4-10 Complete Timeline for send bit………………………………………..51
Figure 4-11 Intervening Guest Code Removal……………………………………..55
Figure 4-12 Cocall Based switching between Primary and Secondary………….…58
Figure 5-1 Test Setup..………………………………………………………….…62
Figure 5-2 Processor Timeline..…………………………………………………...67
Figure 5-3 Comparison between approaches for Send..…………………………..69
Figure 5-4 Comparison between approached for receive..………………………..69

 1

1 Background :

1.1 Why Thread Integration
Thread integration is useful in embedded system design when multiple threads of control flow are to be run

on a single micro-controller. Design constraints in embedded system design are highly restrictive.

Designers are forced to limit and minimize the size, weight, power consumption, costs and also the design

time of their products. These design constraints could still be met by moving functionality from hardware

to software (known as Hardware to Software Migration). HSM involves writing “Guest” functions to

replace the hardware and use some means to ensure that the functions execute on time. Thread integration

involves interleaving these multiple time critical “real – time” threads into a single thread.

In the modern times, embedded communication networks are being used in an increased number of

embedded systems to provide more reliability and cost effectiveness. Since protocol controller chips are

expensive, HSM for these applications helps in reducing system costs.

1.2 Typical Hardware Environment
In most of the current embedded communication systems, dedicated hardware is used to implement any

protocol of choice. A typical setup is illustrated by the block diagram shown in figure 1.1.

In the above diagram, the main micro-controller issues commands instructing the protocol controller the

commands to perform. The commands may be in the form of sending a message, receiving a message,

reporting the status or any other customized command. The protocol controller is a piece of hardware

acting as an interface between the main micro-controller and the physical bus. Its main functionality is to

interpret the commands being issued by the micro-controller and complete the operations requested by

initiating a sequence of actions according to the protocol being supported. The physical layer translates the

bits being sent according to the specifications of the protocol.

Since the protocol controller is implemented in hardware, its design is highly customized to the protocol

being implemented. In addition, these components tend to be mature designs. Hence this prevents the

Main
Micro -
controller

Protocol
Controller

Physical
Layer

Physical
Bus

Figure 1-1 Typical communication system block diagram

 2

designers from benefiting from the recent advances in the specific technology. Also most of the network

controller chips available in the market today are expensive. For many applications, low production

volumes of these chips lead to high prices due to lack of economies of scale. Hence moving these functions

from dedicated hardware to software(HSM), running on a micro-controller, allows a variety of processing

to be performed limited only by the speed of the micro-controller and hence the performance requirements

of the protocol. But assuming the processor is fast enough to meet the demands of the protocol, there are

direct benefits to HSM. The unit cost is lower, system is small and weighs less, reliability increases and

new and proprietary functions could be easily added even after the design is mature. Now with the micro-

controller replacing the dedicated hardware based protocol controller, the block diagram changes as

follows:

In the above diagram, a generic micro-controller is chosen that is fast enough to meet all the deadlines of

the protocol being implemented.

1.3 Software Program Structure
In order to implement a protocol controller in software, two threads need to be implemented. One thread

(known as the “host”) interacts with the main micro-controller and the other is responsible for putting bits

on the bus according to the specific protocol being implemented. The communication between the two

threads is by means of a message queue, one implemented in each direction. This is illustrated in figure 1.3.

Main
Micro -
controller

Generic
Micro-
Controller

Physical
Layer

Message Queues

BBCP thread Host Interface thread

Communication link
to the host

 Bus

Figure 1-2 Modified Block diagram

Figure 1-3 Typical Implementation

 3

The thread that interfaces with the host, also called the host interface thread, is responsible for receiving

commands from the host and if necessary communicating them to the other thread, also known as the

BBCP (Bit Bang Communication Protocol) thread, by putting the command on to the message queue. The

BBCP threads monitors the queue at periodic intervals and performs the functions requested by the host

interface. It also receives any messages sent on the bus and puts it on the queue for the host interface thread

to receive it.

A typical structure of the host interface thread is as shown in figure 1.4

A host interface thread is usually implemented as a state machine with the state transition being triggered

by the commands sent by the host. The thread starts out in the idle state. Based on the command sent by the

host, it switches to one of the states shown in the figure. For example, when the host sends a command

instructing the thread to send a message, the thread first reads the message to be sent and then

communicates the message on to the BBCP thread by putting it on to the queue. The states shown in the

figure are not necessarily present for all protocols. Based on the protocol being implemented, the states

may increase or decrease.

Similarly, the structure of a typical BBCP thread is as shown in figure 1.5

 Idle

Load
Message

Unload
Message

Get Status Flush
Queues

Protocol
Specific
function

 Idle

Receive Send

 Error

Figure 1-4 Host Interface Thread structure

Figure 1-5 BBCP thread structure

 4

The BBCP thread is also implemented as a state machine. The number of states present depends on the

specific protocol being implemented. But in most of the protocol implementations, the basic states present

are as shown in the figure 1.5. The transition between states is triggered by a flag that is set either

¾ By a function that polls the message queue for any messages to be sent or

¾ By a function that is called when a bit is to be received or

¾ By a function that is called to implement some protocol specific feature.

1.4 BBCP Thread Code Structure
The basic functionality of the BBCP thread is implemented as a state diagram shown in figure 1.5. To

implement this state machine, the code is structured in form of layers. These layers interact with each other

in order to transmit or receive a bit. This interaction can be depicted by means of a timeline as shown in the

figure 1.6 for transmitting a message.

Executive or Manager Function: This is the top-level function that runs a finite state machine to monitor

an idle bus, send a message or receive a message. As shown in the figure, when a request to transmit is

received, the manager layer uses a subroutine call to pass on the request to its lower layer viz. the

messaging layer.

Message Level Function: This is the middle layer that is called by the executive or manager function. This

contains all the message oriented functions e.g. send_message, receive_message. These functions are

responsible for encoding/decoding the message as per the protocol and then pass them to the corresponding

layers. As shown in the figure, when sending a message, the send_message function forms the frame to be

sent as per the protocol specifications and sends the frame to the lower layer bit by bit. Similarly, when

receiving a message, the receive_message function puts the decoded message into the message queue to be

picked up by the host interface thread. In addition to these, depending on the protocol, the messaging layer

may also be responsible for calculating the CRC (when sufficient time to do that does not exist in bit level

layer) and checking whether the received CRC is same as the calculated CRC.

Bit Level Function: This is the bottom layer that is responsible for putting bits on the bus. This contains

functions like send_bit and receive_bit. These functions are called by the message level functions when a

message is to be sent or received. The bit level functions may do additional tasks like bit stuffing,

calculating and appending CRC / Parity depending on the protocol being implemented, multiple sampling

of the bus and voting on the received samples (while receiving a bit) and checking whether the bus matches

the bit being transmitted (while transmitting a bit). The timeline in figure1.6 shows some of the actions

performed by a send bit function.

 5

1.5 Timeline and Timing Constraints
All protocols specify the rate at which the bits are to be sent or received on the bus. Hence when the

protocol controllers are written in software, care has to be taken to ensure that the message or the bit level

functions do not put/receive a bit from the bus at a rate different from the specified rate. This introduces

tight deadlines/tolerances for the BBCP thread. Since the BBCP thread has rigorous real-time constraints, it

is also known as the “primary” thread. The tolerance specified is usually ¼ of the bit time or less. As a

result of this timing deadline, idle time is introduced into the primary thread. This can also be seen in the

timeline shown in figure1.6. When transmitting a bit, the send bit function has to perform activities like

putting the bit on the bus and then checking whether the bus matches the bit being sent. The bus can be

checked only after a time corresponding to twice the time taken by the bit to propagate along the length of

the bus. Hence these are activities that need to be performed at two separate and fixed instants of time. This

timing constraint introduces an idle time as seen in the figure. Idle time can also be introduced by several

other factors like forcing the bit level functions to last for a fixed duration of time in order to remove any

variability in the bit rate of the protocol. The idle time present may be highly fragmented and hence

available in only small pieces. This is due to the fact that the message level/bit level functions may have to

perform activities at different instants and thus fragmenting the idle time.

The host interface thread, on the other hand, has looser real-time constraints than the BBCP thread. The

only real-time constraints it may have would be to poll the communication link to the host at periodic

intervals. For example, if the communication link happens to be an UART, then the host interface threads

polls the UART for any incoming message activity. Now when a byte is received, it must be unloaded

before the next one comes in to prevent the UART receive buffer from being overrun. With a 9600 baud

link, the host interface thread must be called enough to service the UART at least every1.04 ms. This

implies that the idle time present here is in much larger chunks than that present in the primary thread and

hence is worth reclaiming.

Manager

Send Message

Send Bit

Subroutine call

Prepare message
and extract first
bit

Put bit on
the bus

Do CRC
computation

Verify if the bus matches the
bit to be sent.

Idle Time

Check for any errors during tx.
and extract the next bit.

Figure 1-6 Typical send bit operation timeline

 6

1.6 Idle Time Allocation:
While meeting the real-time constraints of the protocol being implemented, idle time is introduced in the

primary thread. The constraint that a real-time primary thread has to satisfy for sending / receiving a bit is:

 Tbit_after + Tmessage + Tbit_before = Tbit (Equation 1)

Where

Tbit_after = Time between a bit is put/received from the bus and the bit-level function returns.

Tmessage = Time taken by the message layer to execute between bit layer function calls.

Tbit_before = Time between the bit-level function starts executing and a bit is put/received from the bus.

Tbit = Bit time (1/Bit rate of the protocol).

In order for the above equation to be satisfied, idle time could be introduced at a number of places. The

figure1.7 shows one such distribution of the idle time.

 Here the idle time is present only in the bit-level functions. This is the case when the idle time gets added

to Tbit_after. Now equation1 1 changes as follows: indent

Tbit_after + Tidle + Tmessage + Tbit_before = Tbit (Equation 2)

Where

Tidle = Idle time inserted into the thread to meet the equation 2

If the bit-level functions are made to return immediately after sending/receiving a bit, then the idle time is

pushed up into the message layer functions. Now Tidle is introduced as follows:

Tbit_after + Tmessage + Tidle + Tbit_before = Tbit (Equation 3)

This is shown in figure 1.8.

Control

Send Message

Send Bit

Subroutine call

Prepare message
and extract first
bit

Put bit on
the bus

Do CRC
computation

Verify if the bus matches the
bit to be sent.

Idle Time pushed into
the message layer.

Check for any errors during tx.
and extract the next bit.

Control

Send Message

Send Bit

Subroutine call

Prepare message
and extract first
bit

Put bit on
the bus

Do CRC
computation

Verify if the bus matches the
bit to be sent.

Idle Time pushed into
the message layer.

Check for any errors during tx.
and extract the next bit.

Figure 1-7 Idle Time distribution - case 1

Figure 1-8 Idle Time distribution - case 2

 7

Idle time could also be introduced as shown:

Tbit_after + Tidle + Tmessage + Tidle + Tbit_before = Tbit

Here the idle time is divided between the bit-level and message-level functions. This again can be seen in

the figure 1.9.

In order to reclaim the idle time most efficiently, the first two options are more desirable. The third option

scatters the idle time and hence retrieving it becomes highly cumbersome and non-elegant. Also for the

sake of simplicity, the first option is more desirable. Hence, in order to simplify the code structure, the idle

time is confined to the bit-level functions. Thus the bit-level functions are padded in order to meet

equation 1.

1.7 Fine Grain Scheduling:
Since the primary thread ends up with idle time in the bit level functions due to the real-time constraints,

the host interface thread could be scheduled to execute during this idle time. Since the idle time is highly

fragmented and hence is fine grain, the scheduling scheme chosen has to ensure that the instructions are

executed at the right times even after integration. This scheduling scheme is responsible for switching

control from the primary thread to the host interface thread when an idle time slot is encountered. During

the idle time slot, the host interface thread executes before switching control back to the primary at the end

of the idle slot. Thus the switching overhead introduced by the scheduling mechanism should be kept to a

minimum in order to maximize the execution length of the host interface thread segment and to ensure that

the real time instructions in the primary thread are executed at the correct time (within the prescribed

tolerances).

 There are several techniques currently being used to schedule the real time threads, once they are moved

from hardware to software. Some of these techniques are listed:

Control

Send Message

Send Bit

Subroutine call

Prepare message
and extract first
bit

Put bit on
the bus

Do CRC
computation

Verify if the bus matches
the bit to be sent.

Idle Time partly in
message and partly in
bit layer.

Check for any errors during tx.
and extract the next bit.

Figure 1-9 Idle Time distribution - case 3

 8

Interrupts: This is the most common method used to schedule real time events. Interrupts are scheduled

to happen when the guest threads are supposed to run. One common application where HSM is currently

being used is in implementing protocol controllers and I/O interfaces in software rather than in hardware.

This provides serious advantages in the form of cost effectiveness and the robustness of software while

suffers from the drawback that the baud rates supported are limited. In these applications, the real – time

requirement is when a bit is to be sent or received. Hence to ensure this, interrupts have to be issued at

periodic intervals corresponding to the bit rate of the protocol being supported. Setting a timer that

generates interrupts at each of its count could do this. During the interrupt service routine of the timer

interrupt, instructions are executed that put/sample bits from the bus. Generally the processor runs at a

frequency much greater than the bit rate. Sometimes, in order to support full – duplex operation, the bit

time is divided into multiple (say N) sub-bit times. Now the timer is made to run at N times the bit rate for

the supported baud rate. In all these cases, the maximum baud rate that can be supported is essentially

determined by the amount of time it might take the micro-controller to complete all operations associated

with transmitting and receiving a bit.

Using interrupts however, limits the bit rates than can be supported. This is because the number of cycles

available for the processor to execute the send/receive functionality between two timer interrupts is now

reduced. Also interrupts incur the penalty of having some context switching time at the time of entering and

leaving the interrupt service routine. This time is fixed irrespective of the frequency at which the processor

is operating. However, if the processor frequency is reduced or the bit rate of the protocol being executed is

increased, the number of cycles available to do useful work is again reduced.

Busy Waiting : When the guest does not require all of the processor’s throughput, there is plenty of idle

time scattered throughout. When the chunks of idle time slices are large, interrupts could be used to

schedule other events (to execute other work). But, on the other hand, when the chunks of idle time become

finer, there is not sufficient time to do context switching. Now Busy waiting or padding can be used. Busy

waiting or padding can also be used to schedule events whose occurrence is predictable and some amount

of latency can be tolerated in its detection. One application where busy waiting is used is in implementing a

bus interface. Here all the events occur at a specific time and hence padding could be used to schedule their

occurrence. For example, for a particular bit rate being supported, the bus interface knows when to send a

bit or receive a bit. Hence, after sending/receiving a bit, a NOP instruction loop could be used to wait

before the next bit is sent/received. Busy waiting can be very tedious to implement due to the multiple

iterations of the count cycles/pad/verify/adjust process required. Also since NOP’s are being to fill up the

time between two events, the processors efficiency is being wasted. NOP’s also increase the code size,

though using delay loops make this code expansion negligible.

Using software polling to detect the trigger event is also less expensive than using interrupts in terms of the

resources used and the processing time taken. But on the other hand, there are cases where using interrupts

makes a certain design possible whereas using polling could cause unacceptable delays. For example,

 9

taking actions on human inputs could be done using polling because humans would not notice a 5-

millisecond delay, but the same would prove dangerous when trying to control an antilock braking system

1.8 Code Structure:
The different multi-tasking schemes currently being used to invoke the real-time thread can be categorized

into two broad categories – Preemptive and cooperative.

Preemptive: The preemptive schemes for scheduling the threads cause the thread being executed to stall in

order to facilitate the execution of the real-time thread. Using interrupts is one way of doing this. In

inherently multithreaded approaches, an operating system could be used to schedule different threads. An

OS, in turn, uses interrupts to preempt the executing threads and schedule different ones. Interrupts can be

scheduled to occur either by means of a timer or activity on the bus. If a timer is used, then it is made to

generate interrupts at periodic intervals corresponding to the bit rate of the protocol. On the other hand, a

certain activity on the bus can also be used to generate the interrupt. This is commonly used when receiving

a bit. In any of these cases, when an interrupt occurs, the interrupt service routine saves the information

required to resume the stalled thread and then calls the next thread.

Cooperative: In this scheme for scheduling, the threads are structured as segments with each segment

executing before relinquishing control to a segment of the other thread. The division of threads into

segments can be achieved by means of a finite state machine that advances with each call. Hence each state

corresponds to the execution of one segment. The duration of each state depends on whether the scheduling

is static or dynamic.

In static scheduling, each segment is structured to execute for a fixed time. Hence during each state of the

FSM, a segment of fixed duration executes before relinquishing control. On the other hand, in dynamic

scheduling, the duration of each segment is not fixed. There are a number of checkpoints inserted in each

segment that determines whether the segment should relinquish control or not. Hence during each state, a

segment is executed that has a number of “yield” points where a check is performed on a condition. For

example the condition may be to see if a bit is available on the bus. Only if the condition is true, the

segment executes a return and facilitates the execution of the next state. Cooperative scheduling could be

implemented either by subroutines or coroutines.

In bit bang communication protocols, the primary thread (i.e. the send and receive bit functions) has fine

grain idle time that could be utilized. These idle time slots could be utilized by calling the host interface

thread. Calling the host interface or the secondary thread could be done by either of the scheduling schemes

described above. In each of the schemes, the transition between the primary and secondary threads requires

a context switch that consumes valuable processor time. In order to execute the secondary thread in the idle

time slots of the primary, the secondary thread needs to be divided into segments. The communication

between the primary and secondary can be seen in the figure 1-10.

 10

Figure 1-10. shows the control flow graphs of the primary and secondary threads. The control flow graph

for the secondary thread shows a number of entry/yield points. These are the points where the secondary

thread starts/yields control back to the primary thread. As seen from the figure, when the primary thread

finishes executing until point P1, it encounters an idle time slot. Now control is passed to the nearest entry

point in the secondary thread (point S1 in the figure). When the secondary now finishes executing until

point S2, it yields control back to the primary thread.

The placement of the yield points depends on the time taken for each context switch and the idle time

duration. If the context switch takes a large number of cycles, then sufficient time may not exist for the

secondary thread to proceed, especially for fine grain idle time. If the idle time slot is short enough, then

the entire slot may be used up for just switching from the primary to the secondary and then back to the

primary.

 The timeline when an interrupt is used to perform a context switch to the secondary thread is shown in

figure 1-11.

Control

Send Message

Send Bit

Subroutine call

Figure 1-11 Context switching using interrupts

P1
S1

S2

Cocalls

Figure 1-10 CFG of primary and secondary threads

 11

As seen from the timeline, for fine grain idle time, most of the idle time is consumed by the context switch

instructions in the interrupt service routine.

Using STI, the number of context switches can be reduced by grouping the primary instructions into

multiple locations in the secondary thread. Now the timeline with this approach can be seen in figure 1-12.

1.9 Contributions
This thesis introduces new methods for implementing communication protocols in software using statically

scheduled co-routines and software thread integration. With co-routines, switching from primary to

secondary threads and vice versa can be done without incurring a penalty as severe as “context –

switching”. This technique will be been demonstrated on the SAE J1850 communication standard used in

off- and on-road land-based vehicles. These methods also minimize the number of co-routine calls needed

to share the processor thereby enabling finer-grain idle time to be recovered for use by the secondary

thread. An increased number of compute cycles implies

¾ Improved performance of the secondary thread and

¾ Reduced minimum clock speed for the microprocessor.

Thus, now more secondary thread work can be done and also the minimum clock speed required of the

processor is reduced. These factors enable the embedded system designers to use processors more

efficiently and also with less development effort.

1.10 Thesis Organization

Chapter 2 gives an overview of current protocol controller implementations in hardware and software and

as to how co-calls could be used for integration. Chapter 3 gives a brief introduction of the J1850 protocol.

The proposed theory and techniques for integration are discusses in chapter 4. Chapter 5 discusses how the

proposed technique for integration could be used for the J1850 protocol. Chapter 6 presents the

experimental results. Chapter 7 summarizes the thesis and proposes future work

Control

Send Message

Send Bit

Subroutine call

Figure 1-12 Context switching using STI

 12

2 Co-Call Technique For Integration

2.1 Goals for Code Transformation:
Code transformations are required for both the primary and secondary threads before any integration can be

done. For the primary threads, most of the transformation is in the bit level functions and some in the

message level functions.

The bit level functions are modified to ensure that each function takes a constant amount of time. Thus two

versions of the primary thread are created, one with dedicated padding and the other with coroutine calls.

The version with coroutine calls is used when a secondary thread needs to be called during the idle time

slots. This version also may contain padding to remove timing jitter introduced by conditional or looping

instructions. The secondary thread’s functions also have coroutine calls embedded within them to ensure

that control is returned to the primary at the correct instant. Primary threads having dedicated padding are

used when there is no suitable secondary thread to be called during the idle time slots.

The message level functions are modified with padding or code motion to ensure that the bit level function

is called at periodic intervals (the duration of the bit on the bus). The timing variation between the calls is

removed this way as well.

The secondary thread functions also undergo some amount of code transformation to make integration

easier. Just as with primary thread functions, the secondary thread functions are padded to remove any

timing jitter. Once the timing information is known accurately, co-calls are inserted at periodic intervals

within the secondary thread to yield control back to the primary.

2.2 Co-calls and Co-routines:

2.2.1 Definition

A co-call operation is used to transfer control between two processes. A co-call is effectively a call and

return instruction combined into one operation. From the point of view of the process executing the co-call,

the operation is equivalent to a procedure call and from the point of view of the process being called, the

co-call operation is equivalent to a return operation. Thus, unlike subroutines, when the second process co-

calls the first, control resumes not at the beginning of the first process, but immediately after the co-call

operation. If the two processes execute a sequence of mutual co-calls, control will transfer between the two

processes in the following fashion:

 13

`

As seen from fig 2.1, co-calls decouple the progress of the two threads. Due to the nature of thread

integration, co-calls are more suitable for thread integration than subroutines.

2.2.2 Program States affected during switching

Each thread in a program has some data associated with it. When using a context switch to jump from one

thread to another, this data needs to be saved to be restored later. In most of the cases, the data associated

with a thread typically includes:

Current Program Counter (PC) value

State information stored in Status register (SREG)

Stack Pointer value

Register values

Global values

In order to do a context switch, not all the data associated with a thread needs to be saved. If data locations

of the two threads overlap, then the corresponding data needs to be saved.

Figure 2-1 Context switching through co-calls

 Thread 1 Thread 2

 Cocall Cocall

 Cocall Cocall

 14

When using co-calls for context switch, the threads need to save enough information to start executing from

the location the threads had left off before. The thread being executed does not run to completion, but

executes for a fixed amount of time before relinquishing control to the other. To allow each thread to keep

its call stack intact, multiple stacks are implemented, one for each thread. For simplicity, the registers can

be partitioned, with each thread being allotted a fixed number of registers. With this approach, the only data

that needs to be saved include:

Program Counter – to enable jumping back and forth between threads

Stack Pointer – To enable each thread having its own stack

Status Register – To keep state information intact for each thread.

Thus a typical co-call implementation for AVR 8-bit micro-controllers would be:

in __T1SREG__, __SREG__

in __T1SPL__, __SPL__

in __T1SPH__, __SPH__

ldi __T1PCL__,lo8(PC)

ldi __T1PCH__,hi8(PC)

out __SREG__, __T2SREG__

out __SPL__, __T2SPL__

out __SPH__, __T2SPH__

mov r29, __T2PCL__

mov r30, __T2PCH__

ijmp

The above code represents a co-call implementation for switching between two threads T1 and T2.

Registers having __T1 prefix correspond to thread T1 and with __T2 correspond to T2. Also as seen from

the code, fixed registers are allotted statically to the threads T1 and T2 so that the threads register data do

not overlap. For the above implementation, the context switch takes 20 cycles. Thus for integration, the

primary thread must have a idle time period greater than 2*20 = 40 cycles.

2.3 Primary thread preparation:

2.3.1 Definitions

¾ TBit is defined to be the duration of a bit on the bus. This value depends on the bit rate specified by

a protocol and may be different for different protocols. For some protocols like J1850, the bit

duration on the bus is variable depending on the bit to be sent and is a multiple of a minimum

duration. Here we use the minimum bit duration as TBit.

 15

¾ TCS is defined as the time taken for a context switch as implemented with a co-routine call.

2.3.2 Idle time analysis

Idle time is introduced in the primary threads due to the real-time constraints imposed on them. For

example, in bit bang communication protocols, for a given bit-rate and clock frequency, instructions that

sample or control the bus impose explicit timing requirements based on the protocol. These instructions

serve as timing anchors. Instructions have the implicit timing requirement of executing in order. These

explicit and implicit timing constraints introduce idle time into the primary thread.

The idle time introduced in the primary thread is often highly fragmented as shown in the processor

timeline given in figure 2.2.

The shaded blocks in the figure indicate the period of activity. The non-shaded regions indicate the idle

time slots. An idle time bubble is characterized by three parameters:

TBubbleStart(i) = Start of the idle time bubble “i”.

TBubbleEnd(i) = End of the idle time bubble “i”.

TBubble(i) = Duration of the idle time bubble “i”.

 = TBubbleEnd(i) - TBubbleStart(i)

In order to be able to integrate secondary thread with the primary (during the idle time slots of the primary),

the idle time fragments have to be of some minimum length. This “minimum length” depends on the time

taken to execute a co-call to transfer control to a secondary thread. Not all fragments need to satisfy this

minimum length criterion. If the primary thread has several idle time fragments then at least two of the

fragments have to be longer than the minimum length and the other fragments can be of any arbitrary

length. In the first fragment satisfying the minimum length, a co-call is executed transferring control to the

secondary thread and in the last such fragment, a co-call transferring control back to the primary is

executed. On the other hand, if the primary thread has just one idle time chunk, then it should be long

enough to execute two co-calls. As seen in figure 2.3, the PLBF has three idle time chunks. The first idle

time chunk TIdle1 is not long enough to execute a co-call. The second and third idle time chunks, TIdle2 and

Figure 2-2 Processor Idle Time

TBubbleEnd(i)

Initial processing in the send
bit function

Explicit timing constraint on
send bit instruction

TBubbleStart(i) Send
Message TBubble

TIdle1 TIdle2

 16

TIdle3, are however long enough for a co-call. Hence co-calls, transferring control back and forth between

the primary and secondary threads, are inserted in these time slots as shown in figure 2.3. For example, for

the co-call code shown before, the idle time fragments have to be 20 cycles long for the case

when the primary thread has several idle time chunks and 40 cycles when there is just one idle time slot in

the primary.

The fragmented idle time can be best described mathematically by the “Segment time” or TSegment. The

segment time is defined as the difference between the end of the last idle time slot long enough to do a co-

call (denoted by b) and the start of the first idle slot long enough for a context switch (denoted by a). The

segment idle time is the sum of idle time durations, from a to b, within a bit level function minus two times

the overhead incurred to execute a context switch (co-call). This time is useful when calculating the actual

time available for executing a secondary thread segment. In other words, if

a = min(i) TBubble(i) > TCS (First Piece of idle time large enough for a co-call)

and

b = max(i) TBubble(i) > TCS (Last piece of idle time long enough for a co-call)

then

 TSegment = TBubbleEnd(b) – TBubbleStart(a)

Within TSegment, TSegmentIdle is the amount of idle time that is actually available for useful secondary thread

work. It can defined as

 b

TSegmentIdle = (Σ TBubble(i)) – 2* TCS

 i=a

 Send Message

Co-call

 Send Bit

TIdle1 -> Idle time slot not large enough to perform
a co-call.

TIdle2 -> First Idle time slot large
enough for a co-call.

TIdle3 -> Last idle time chunk
large enough for co-call.

 Figure 2-3 Cocall Insertion

 17

2.3.3 Idle Time in Bit Level Functions

The idle time is distributed among the layers comprising the primary thread viz. the messaging and the bit

layer functions. For simplicity, the functions are modified so as to place as much idle time as possible in the

bit level functions. This is accomplished by padding the bit level functions so as to execute a “return” as

late as possible. This is as shown in the figure below.

Due to the idle time introduced, the bit level functions are now made to execute for a worst-case duration.

Ideally the bit level functions are modified so that they take a constant amount of time to execute.

However, this condition is not always satisfied. For example in J1850 protocol, variable pulse width

modulation is used to send each bit. Hence there are two bit durations, 64 us and 128 us, used to encode “1”

and “0”. The bit level function consists of conditional code that checks the duration and level of the

previous bit sent and correspondingly transmits the current bit according to VPW encoding. Thus based on

the path taken while sending a bit, the function can have varying execution times. Correspondingly the idle

time introduced in the bit level functions also varies with the encoding used to transmit the bit.

2.3.4 Message Level Functions

Message level functions need to be modified to ensure that the calls to the bit level functions occur at

multiples of the bit time of the protocol i.e. multiple of TBit. The transformation comprises either padding or

code motion. This removes any timing jitter between the calls to the send bit functions.

Padding can be used to equalize the times to the worst case time between calls to the bit level functions.

Alternatively, code motion can be used to speculatively execute certain instructions early, thereby

spreading out work between bit-level function calls to minimize the worst case. Code motion is desirable

when worst case padding causes the time between two calls to bit level functions to exceed TBit.

The receive message functions also need to be modified with padding at the start of the function to ensure

that the receive bit function starts sampling the bus at the correct instant.

Figure 2-4 Idle Time in bit-level functions

Control

Send Message
Send Bit

Subroutine call

Prepare
message and
extract first bit

Put bit on
the bus

Do CRC
computation

Verify if the bus matches
the bit to be sent.

Check for any errors during
tx. and extract the n ext bit.

Introduce idle
time to delay the
return

 18

2.3.5 Transformations

The bit level functions need to undergo some code transformations to allow integration of the secondary

thread code. The transformations can be best described by diagrams shown in figures 2.5 and 2.6.

As explained before, the idle time in the bit level functions is highly fragmented and the idle time chunks

are too small to be utilized for any other work. Hence to recover more idle time, the functions are modified

by removing the intervening guest code and saving it for later replication into the secondary thread. This is

depicted in figure 2.5.

Next co-calls are inserted during the idle time slots to yield control to the secondary. The secondary thread

is also modified by inserting co-calls to return control back to the primary at the end of the idle time slot.

The entire process is depicted in figure 2.6.

In most communication protocols, there are multiple bit level functions (BLF) that make up the primary

thread. These functions may have the same or different idle time periods. If the idle time periods are the

same, then the same secondary thread can be integrated with all the PLBFs. In the typical case, however,

the idle time slots of the PLBFs are of different durations. Hence separate versions of the secondary thread

are needed. Each version is integrated with a PLBF. For example, most of the communication protocols

have at-least two PLBFs – send bit and receive bit. Hence in this case two versions of secondary thread are

created. One will be integrated with the send-bit function and the other with the receive-bit function. In

each case the transformations are the same; differences result from varying segment time durations and the

amount of primary thread work.

Idle time chunks Intervening
guest code

Intervening code
removed to
expose a larger
chunk of idle
time

Figure 2-5 Removing Intervening guest code

 19

2.4 Secondary thread

2.4.1 Structure

The secondary thread has to be structured appropriately to be able to run during the idle time slots of the

primary thread. In communication protocols, the secondary thread acts as an interface between the main

host controller and the Bus interface. Hence it is also known as the “host interface” thread. This thread

constantly monitors the interface to the host controller to check for commands. Thus, the secondary thread

is implemented as an infinite loop. The commands sent by the host controller may be to send a message,

receive a message or to report the status. Depending on the protocol being implemented, these commands

may vary.

Since the secondary thread constantly monitors the host controller interface, real time requirements exist in

the form of servicing the communication link to the host controller at regular intervals. For example when

an UART is used as the communication link and a byte is received on the link, the host controller thread

has to unload the byte before the next arrives to eliminate the possibility of receive buffer overrun. With a

Co-call txing control to secondary thread

Original Primary thread with fragmented idle time slots

 Primary thread modified by removing intervening guest code and saving them for later replication.

Co-call txing control back to
the primary thread

 Secondary thread implementation

Figure 2-6 Integration Process

 20

9600-baud link, the controller interface thread must be called enough to service the UART at least every

1.04ms.

In order to meet the real-time requirements and also to run the secondary thread in the idle time slots of the

primary, the secondary thread is divided into segments. Each segment is bounded by co-calls that transfer

control back and forth between the primary and secondary threads. The interaction between the primary

and secondary threads can be shown by the timeline in figure2.7.

As shown in the figure, the actual amount of time that the secondary thread executes during the idle time

slots is

Tsec = Tidle – 2 * Tcs

Where

 Tsec = Secondary thread execution duration

 Tidle = Duration of the idle time slot

Tcs = Time taken for a context switch through co-calls.

The division of the secondary thread into segments starts from the infinite loop. Before the integrated

thread is run, the secondary thread has to be initialized by executing until the infinite loop.

2.4.2 Do’s and Don’ts

In order to be able to integrate the two threads, there are some restrictions on the way the secondary thread

is written. These are:

a) The code should not have any sub-routine calls. Given the control flow graph of the secondary

thread, it should be easy to predict the start and end of the thread through each of it branches. Sub-

routine calls introduce timing variability in the code since:

¾ if the duration of sub-routine is not known beforehand, then actual execution time cannot

be predicted in advance.

Idle Time slot

Primary Thread

Co-Routine call Secondary code

Figure 2-7 Primary and secondary thread switching

 21

¾ If a subroutine is called multiple times, finding a proper location for a co-call or

integrated code becomes more complicated. This is shown in figure 2.8.

As seen from the figure, the secondary thread, when invoked during an idle time slot A of

the PLBF, calls a subroutine. After executing for certain time, the subroutine executes a

co-call to return control to the PLBF. During idle time slot C, the secondary thread calls

the subroutine for the second time. A co-call is again executed to return control to the

PLBF. As seen from the figure, the placement of co-calls in the subroutine to return

control to the primary thread is at different instants of time. This may be true for future

invocations of the subroutine by the secondary thread. Hence the process of inserting co-

calls in the secondary thread becomes cumbersome. A simpler method would be to pad

the secondary thread so that the subroutine always executes a co-call at the same time.

But this is left for future work.

Thus all sub-routines should be in-lined within main program.

b) The code can contain blocking I/O loops even though they produce timing uncertainty. Blocking

loops occur when the secondary thread monitors the host controllers interface for any new

commands. By padding, the uncertainty produced by blocking I/O loops can be removed.

2.4.3 Preparation

Before the secondary thread can the integrated with the primary, the actual secondary thread structure must

be modified. These modifications are necessary to make the secondary thread ready to be split into

segments. The modifications are:

a) Pad Jitter: All timing variability in the code has to be removed. This enables an accurate

estimation of the execution of each instruction within the secondary thread. Once the execution of

Subroutine (Case 2)

Idle Time Slot A Idle Slot B

Primary Thread

Co-call

Sub-routine call
by secondary
thread.

Subroutine

Co-call txing
control back to
the primary
thread.

Co-call txing
control back to
the primary
thread

Placement of co-call when called
for the first time by the primary
thread

Placement of the co-call when called for
the 2nd time.

Subroutine (Case 1)

Figure 2-8 Subroutines in Secondary thread

 22

the execution schedule of the thread is known, context switch instructions can be added at the

correct places to switch back and forth between the secondary and primary threads. Padding is

usually done when the branches of a conditional instruction are not of equal length or when an

instruction is required to be executed only at a certain time. Padding is accomplished by inserting

NOP instructions.

b) Pad Blocking Loops: Blocking Loops produce timing uncertainty within the secondary thread.

This uncertainty can again be removed by padding. A blocking loop occurs when a loops exit

condition is not affected by the loop’s code, but instead an external process or hardware. For

example, when the secondary thread is waiting for a command to be issued by the host interface, a

blocking I/O loop is introduced.

To implement this a loop waits for a flag, indicating data reception, to be set in an I/O control

register of the communication link between the micro-controller and the host interface. For

example, in an Atmega103 8- bit micro-controller, when receiving a byte through an UART, the

loop checks on the RXC bit of the USR register. The data is read from the UDR register only after

the bit is set. An example of this loop is:

main:
 ldi r28,lo8(__stack - 1)
 ldi r29,hi8(__stack - 1)
 out __SP_H__,r29
 out __SP_L__,r28
 mov r8,r28
 mov r9,r29
 sec
 adc r8,__zero_reg__
 adc r9,__zero_reg__
 mov r11,r9
 mov r10,r8
 ldi r27,lo8(-1)
 mov r4,r27
 clr r5

/* Blocking I/O Loop */

.L32:

sbis 11,7 /* Checks to see if the “data available (RXC)” bit in the status register (USR) is set */
rjmp .L32 /* If no data is received, wait for it */
in r24,12 /* If data is received, read it from UDR and store it in register 24 */

.L33
 nop
 nop
 nop
 ret

 23

As shown in the sample code, the loop exit criterion checks for the bit 7 in register USR. If bit is

cleared, control is passed back to label .L32. If the bit is set, the control advances to the next

instruction. The problem with this structure is when the secondary thread is integrated with the

primary thread. Using a context switch, control is passed to the secondary thread from the primary.

After executing for a fixed amount of time, control is to be passed back to the primary. During

integration, the context switch instructions need to be placed at certain periodic intervals within

the secondary thread. This requires precise timing information on the control flow of the program.

The control flow graph of the code given above is as shown in figure 2.9

Figure 2-9 CFG for code having blocking I/O calls

Path A Path B

 24

As seen from the CFG, when the path A is taken, the time taken to execute the instruction stream

is 3 cycles. But for the path B, the time taken to execute the stream is indeterminate. This poses a

problem when inserting co-calls into the secondary thread to return control to the primary thread.

To remove this timing variability, padding code needs to be inserted in path B. The padding

inserted is just enough to ensure that the host interface executes for duration equal to the cocall

period before returning control to the BLPF. After the cocall code, some padding is necessary to

ensure that the number of cycles after the cocall and before the blocking I/O loop remain the same.

This is required to ensure that the blocking I/O loop and the subsequent code executes at the same

instant no matter what path the program takes while execution. The final modification carried out

on the blocking I/O loop code is on the “skip” instruction. This instruction determines the path to

take depending on a bit of an I/O register. The range of this instruction is one instruction. Thus, if

the skip condition evaluates to true, the next instruction is skipped. Usually for a blocking I/O

loop, when data in the interface register is valid, the skip condition evaluates to true. Hence, a

blocking I/O loop comes in when the condition evaluates to false. Since the padding needs to be

inserted when the condition is false and the range of the skip instruction being just one instruction,

the skip condition is inverted. The modified code and its corresponding CDG is as shown in

figure 2.10

.global main
 .type main,@function
main:
/* prologue: frame size=1 */
 ldi r28,lo8(__stack - 1)
 ldi r29,hi8(__stack - 1)
 out __SP_H__,r29
 out __SP_L__,r28
/* prologue end (size=4) */
 mov r8,r28
 mov r9,r29
 sec
 adc r8,__zero_reg__
 adc r9,__zero_reg__
 mov r11,r9
 mov r10,r8
 ldi r27,lo8(-1)
 mov r4,r27
 clr r5
.L32:
 sbis 11,7
 rjmp .L32
 in r24,12
.L33
 nop
 nop
 nop
 ret

 25

Figure 2-10 CDG for the modified blocking I/O loop code

 The above code has a cocall duration of 10 cycles. Since the true condition of the skip instruction

terminates the loop, the skip instruction is inverted. Thus “sbis 11,7” is now converted to “sbic

11,7”. Now the true condition causes the loop to be executed and the false condition terminates the

loop. When the blocking I/O loop code is entered, 4 cycles have been executed after “Cocall 1”

and before the loop. Hence 6 cycles need to be executed before a cocall can be executed. This

padding is inserted in the “true” path of the skip condition as seen in the figure. After the cocall, 2

cycles are inserted so that the code node .L32_1 starts at the same instant irrespective of the path

taken during execution.

The padding code in a blocking I/O loop insures that control is returned back to the primary thread

when the exit criterion for the loop fails. Hence only a single iteration of the loop is executed in

each idle time slot of the primary thread. Also, each secondary thread segment being executed in

an idle time slot can have no more than one blocking I/O loop. Now as seen in figure 2.10, co-

calls could be placed in at periodic intervals within the secondary without having to worry about

the timing jitter brought about by the indeterminate duration of the blocking I/O loops.

 26

c) Predicate Node Padding: In order to switch between the primary thread and secondary thread,

cocalls have to be inserted within the secondary thread at regular intervals. The periodicity of this

insertion depends on the actual idle time available in the primary thread to do useful work. In other

words,

Tsec = Tidle – 2 * Tcs

Where

 Tsec = Secondary thread execution duration

 Tidle = Duration of the idle time slot

Tcs = Time taken for a context switch through co-calls.

Tsec is the periodicity of cocall insertion. In order to be able to insert cocalls within the secondary,

precise timing information is required on the control flow of the program. Since predicate nodes

generate timing variability, padding has to be done to remove this uncertainty.

Figure 2-11 Predicate Padding in secondary

Cocall
Location

Possible
Cocall Location

Secondary Thread with cocalls

True path

False Path

X
cycles

Raw Secondary Thread

0
Cycles

1

2

3

4

 5

 6

7

1

2

3

4

5

6

7

 27

However since padding is required to ensure that cocalls are executed at the right places, the two

branches of the predicate node causing the jitter need not be padded to the same amount.

The amount of padding inserted should ensure that the time left after the last cocall insertion

within both the nodes are the same. This is illustrated in the figure 2.11.

Figure 2-12 Padded Secondary Thread

As seen from the figure, the “raw” secondary thread code has timing variability due to the

predicate node. When the True node of the predicate node is taken, there is no time left after cocall

insertion. However when the False path is taken then time left after cocall insertion is X. To

remove this timing variability, a padding node of duration X is inserted as shown in figure 2.12.

This ensures that no matter which path is taken the cocalls are always inserted at the right places.

This is of course true only when the predicate node duration is greater than the time to go for

1

5

6

7

End

1

5

6

7

End

Padding
 Node

Raw Secondary
Thread

Padded Secondary
Thread

2

3

4

2

3

4

 28

inserting a cocall. If not, the predicate node is padded to make the two branches last for the same

duration.

d) Loop Padding: If the secondary thread has any loops, then the cocall insertion becomes slightly

complicated. To insert cocalls within a loop, the loop iteration in which the cocalls have to be

inserted is to be determined. This requires a thorough data flow analysis of the code. An

alternative would be to pad the loop so that a single iteration of the loop lasts for atleast a cocall

duration. This eliminates the need for any data flow analysis, but results in code expansion.

Padding is also inserted to ensure that time after the last cocall within the loop is same as the time

left for a cocall insertion before the start of the loop.

2.4.4 Transformations

2.4.4.1 Basics

Integration is achieved by placing co-calls in both the primary and secondary threads so as to enable

context switching between them. For the primary thread, co-calls are placed in the idle time slots to switch

to a secondary thread. For the secondary thread, co-calls are placed at periodic intervals within it. This,

again, depends on the actual idle time available in the primary thread to do useful work.

2.4.4.2 Segments

Segment denotes the length of the secondary thread that can be executed in an idle time slot of the primary

thread.

As described before, for the sake of simplicity, most of the idle time in the primary thread is made to occur

in the bit level functions (for communication protocols). The idle time present in these functions is also

highly fragmented. Hence a better measure of the amount of idle time present in the primary thread to be

utilized for secondary thread execution is the segment idle time (TSegmentIdle).

As described before ,TSegment was defined as

TSegment = TBubbleEnd(i) – TBubbleStart(j)

Where

TBubbleStart(i) = Start of the first idle time bubble “i” whose duration is greater than the cocall length and

TBubbleEnd(j) = End of the last idle time bubble “j” whose duration is greater than the cocall length.

Also, within TSegment, TSegmentIdle is the amount of idle time that is actually available for useful secondary

thread work. It is defined as

 j

TSegmentIdle = (Σ TBubble(i)) – 2* TCS

 i

 29

For the purpose of integration, co-calls are inserted into secondary thread every TSegmentIdle .

2.4.4.3 Effect of Blocking I/O Loops

When the secondary thread contains blocking I/O loops, then the timing estimates on the placement of co-

calls within the secondary thread requires some consideration. The CFG of a typical blocking I/O loop is as

shown in figure 2.9 that is copied here again for convenience shown in fig 2-13. As explained before, there

can be two paths through the loop. When execution follows path A, then the time taken to execute from

Point A to B is known accurately. On the other hand, when path B is

Figure 2-13 CFG for Blocking I/O loop code

B

A

Path B Path A

 30

followed, the execution time from point A to B is not known. But as explained before, breaking up the loop

back path rectifies this. The Loop-back path is padded to last for at least TSegmentIdle and then a co-call is

executed to return to the primary thread. Some additional padding is also added as explained before. Thus

once the blocking I/O loop code is modified as explained before, cocalls can be inserted at the appropriate

instants of time.

This approach of inserting padding and co-calls in the feedback loop simplifies the calculation of timing

estimates for the placement of co-calls. The modified CDG with cocalls inserted, is as shown in figure2-14.

Figure 2-14 Modified CDG

 Now as seen in figure 2-14, if the time between “Location A” and “Location C” is same as the time

between “Location B” and “Location C”, then the only thing to consider while placing co-calls is the time

taken to execute the code segment between point A and point B. In most blocking loops, this code segment

contains just two instructions, a skip instruction and a rjmp instruction, to transfer control out of the loop.

Thus, for the purpose of calculating cocall duration, the blocking I/O loop can be thought of as executing

for a duration of 1(skip evaluating false) + 2 (rjmp instruction) = 3 cycles.

Location A Location C

Location B

 31

2.4.4.4 Co-Call Insertion:

Co-calls are inserted into the primary and secondary threads to perform context switching during the idle

time slots of the primary thread. For the primary thread, the co-calls are inserted during the idle time slots.

For the secondary thread, co-calls are inserted periodically at TSegmentIdle intervals.

In communication protocols, there is usually more than one PLBF implemented. For example, in most of

the communication protocols, the send_bit and the receive_bit functions are called by the primary thread.

Also, in some protocols, control may jump from one PLBF to another without the earlier thread executing

to completion. For example, in the J1850 protocol, an IFR response request causes the receiving node to

temporarily abort its reception and transmit a response to the transmitting node. After the transmission is

complete, the node goes back to the receiving mode. This switching between the PLBF’s poses a problem

when they have to be integrated with a single secondary thread. The PLBF’s may have the same or

different idle time periods. In the simplest case, when the PLBF’s have same idle time periods, the single

secondary thread could be called to execute at the idle time slots. On the other hand, when the idle time

slots are of different duration, a single secondary thread cannot be called without some modifications. This

is mainly because of two reasons:

a) The amount of secondary thread executed during the idle slots of each primary thread is different.

Each segment of the secondary thread lasts for TSegmentIdle. Hence, co-calls are inserted in the

secondary thread at a periodicity equal to TSegmentIdle. For two different primary threads, this value

may be different. This is as shown in figure 2.15

In the figure, T1(P1), T2(P1) and T3(P1) represent the fragmented idle time slots of PLBF P1

while T1(P2), T2(P2) and T3(P2) represent the idle time slots of the PLBF P2. In order to extract

more idle time, the intervening code in the PLBF is removed. Thus, the actual time available to do

useful secondary thread work, or TSegmentIdle is equal to the sum of the idle time slots. This is shown

in the figure 2-13. Here, an assumption is made that all the idle time slots are longer than the

minimum idle time period. (A minimum idle time slot is defined as one whose duration is long

enough to execute at least one cocall). Hence when a switch is to be made from one PLBF to the

other, the secondary thread segments now need to execute for TSegmentIdle corresponding to the new

primary thread.

b) Since the TSegmentIdle for PLBF’s may be different, the cocalls do not coincide, complicating a

switch from one to another. Consider figure 2.16 that depicts the secondary thread

implementations for different primary threads.

 32

The first is the normal secondary thread without any co-calls inserted. The next two versions

denote secondary threads with co-call placements corresponding to the idle time slots of PLBF’s

P1 and P2. In the first one, PLBF has an idle time slot of duration T1 whereas in the second, the

idle time slot is of duration T2. Suppose initially, PLBF P1 executes which in turn calls secondary

thread S1. Each segment of the secondary runs for duration T1 before returning control back to P1.

When point “A” is reached within the secondary, it becomes known that PLBF P2 has to start

executing. When P2 executes, it calls secondary thread S2 during its idle time slot. Now as seen in

the figure

T2(P2) > T1(P1)

Hence the co-call placements in S1 and S2 are different as seen in the figure. When P2 calls S2 for

the first time, either S2 can start executing from point “B” or from point “C” for the secondary

thread to get synchronized. If execution starts from point “B”, then a small portion of the

secondary (Node 1) is re-executed incorrectly, potentially corrupting the program. On the other

hand, if we choose to start the execution from “C” then a small portion of the code has to be

executed(Node 2) before the control is passed to S2 at “C”.

From the above discussion, an obvious solution to simplify the switching between primary threads is to use

three separate secondary thread implementations. Two secondary thread implementations have co-call

placements corresponding to TSegmentIdle1 and TSegmentIdle2 while the third implementation is for

synchronization. Now before switching from one version of the secondary thread to the other, the

Primary Thread

Send Bit Secondary code

Primary Thread

Co-Routine call Secondary code

 T1(P1) T2(P1) T3(P1))

T1(P2) T2(P2) T3(P2)

Switch To

T1(P1) + T2(P1) + T3(P1) = TSegmentIdle1

T1(P2) + T2(P2) + T3(P3) = TSegmentIdle2

Figure 2-15 Switching between Primary threads

 33

synchronizing thread is called to execute until the nearest sync point. Then control is passed over to the

relevant secondary thread.

Figure 2-16 Synchronization

 1

 2

 3

1

2

3

T1

A

1

2

3 T2

B

C

 34

 This scheme of having separate secondary threads for each PLBF (having different idle times) has the

obvious disadvantage of code explosion. Each version of the secondary thread may execute for only a short

duration before switching to the other version. To overcome this, a single secondary thread could be used

with “guarded” co-calls. Thus portions of the secondary thread code are executed conditionally.

To use a single secondary thread for all the primary threads, the secondary thread must contain co-calls

corresponding to TSegmentIdle of all the PLBF’s. Since the PLBF’s can have different idle time durations, the

secondary thread requires co-call placement at different locations for different PLBF’s. Thus, for the

secondary,

 N(co-calls) = N(P1) + N(P2) + …….+N(Pn)

 Where

 N(co-calls) = Number of co-calls in secondary.

 N(Pi) = Number of co-calls due to primary thread i.

This is of-course true only when none of the co-calls coincide. When come co-calls due to different

primary threads coincide, then the above relation does not necessarily hold.

For a given primary thread, not all the co-calls in the secondary have to be executed. This requires the co-

calls to be guarded. Hence now a portion of the idle time is spent executing conditional code, which

determines whether the next co-call is for the current primary thread, or not. The secondary thread is

structured now as follows:

Cocalls for PLBF P1

Cocalls for PLBF P2

Figure 2-17 Guarded Cocalls

 35

As seen in the above figure, the secondary thread has interleaved co-calls to the various PLBF’s. Each co-

call is guarded by some conditional code so that the co-call executes only when called by the appropriate

primary thread.

2.4.4.5 Intervening guest Code insertion

When the idle time in primary thread is fragmented and many of these chunks have idle time durations

greater than the cocall period, then the guest code between the first and last such idle chunks is removed.

This is now inserted at several places within the secondary thread such that they would execute at almost

the same time as they would have executed in the primary thread. Consider the PLBF code given in figure

2-18. that has be to integrated with the secondary thread code given in figure 2-19

Figure 2-18 PLBF Code

Figure 2-19 Secondary Code

.global receive_bit
 .type receive_bit,@function
receive_bit:
 in __tmp_reg__,__SREG__
 cli
 out __SREG__,__tmp_reg__

_AVR_First_Sample:
 in r20,0x16
 out 0x1B,r20

_AVR_Second_Sample:
 in r2,0x16
 out 0x1B,r2
 sts sample_value1,r2

.global main
 .type main,@function
main:
 ldi r28,lo8(__stack - 0)
 ldi r29,hi8(__stack - 0)
 out __SP_H__,r29
 out __SP_L__,r28
 in r18,12
 in r24,12
 tst r18
 breq .L55
 mov r24,r25
 subi r24,lo8(-(4))
 cpi r24,lo8(3)
 breq .L56
 out 12,r18
 mov r25,r24
 subi r25,lo8(-(60))
.L24:
 cp __zero_reg__,r25
 brge .L54
 ldi r18,lo8(100)
.L40:
 in r24,12
 subi r24,lo8(-(10))
 cpi r24,lo8(100)

_AVR_Third_Sample:
 in r2,0x16
 out 0x1B,r2
 sts sample_value2,r2
_AVR_End_Pad:
 mov r24,r20
 lds r18,sample_value1
 lds r19,sample_value2
 and r24,r18
 and r18,r19
 or r24,r19
 and r20,r19
 or r24,r20
 clr r25
 ret

brge .L50
 out 12,r24
.L39:
 subi r25,lo8(-(-1))
 brne .L40
 rjmp .L54
.L50:
 out 12,r18
 rjmp .L39
.L56:
 out 12,r25
 ldi r25,lo8(2)
 rjmp .L24
.L55:
 tst r24
 breq .L57
 out 12,__zero_reg__
 mov r25,r18
 subi r25,lo8(-(10))
 rjmp .L24
.L57:
 out 12,__zero_reg__
 mov r25,r18
 rjmp .L24
.L54:
 nop
 nop

 36

Let us assume that the following parameters have to be observed during integration.

Parameter Number of cycles Description

TSec = 10 cycles 10 Duration of the secondary

thread segment execution

TCocallExec 5 Execution time for a single

cocall

TLenIdle 12 Length of the first idle time slot

greater than TcocallExec

TIG (_AVR_Second_Sample) 12 Start of the Intervening Guest

(IG) “_AVR_Second_Sample”

w.r.t the previous implicit guest

TIG(_AVR_Third_Sample) 2 Start of the Intervening Guest

“_AVR_Third_Sample” w.r.t

“_AVR_Second_Sample”

The node _AVR_First_Sample in the PLBF is an implicit node and serves as the timing anchor while

calculating the idle time. From the above values we see that the Intervening Guest

“_AVR_Second_Sample” should execute (TLenIdle – TCocallExec) = 7cycles after the start of the each

secondary thread segment.

Before integration, the CDG of the secondary thread is as shown in figure 2-20. Once the secondary is

integrate with the PLBF, the intervening guest codes “_AVR_Second_Sample” and

“_AVR_Third_Sample” are inserted at the appropriate locations within the secondary (yellow boxes) as

shown in figure 2-21

Figure 2-20 "Raw" Secondary code

 37

Figure 2-21 Secondary thread with Intervening code

In order to use a single secondary thread for all the PLBF’s, the intervening code of all the PLBF’s also has

to be integrated within the secondary thread at the appropriate instants. As with the cocalls, to prevent the

wrong code from being executed, the interleaved code has to be guarded. Thus, conditional code is put in

before the primary code to check whether the code is for the PLBF being executed or not. This is shown in

figure 2-22.

Interleaved code for PLBF P1

Interleaved code for PLBF P2

Figure 2-22 Guarded Intervening Code

 38

Resynchronization is still required when the control is switched from one PLBF to another while the

execution of the secondary is still incomplete. This can be accomplished by using a dedicated set of flags

whose value determines the type of action to perform. The number of flags used in the register depends on

the number of PLBF’s being run. In this work STI is being demonstrated on a protocol PLBF’s,. send_bit

and receive_bit. Hence, only 4 flags are required for this purpose. Embedded processors typically feature

bit-test instructions. This allows the use of a single variable (memory location or a register) to hold many or

all of the flags and also allows quick flag testing. The flags are held in a register shown below:

The first 2 flags determine which co-calls are to be executed. The number of bits used is equal to the

number of PLBF’s being run. In this case, we are in the process of executing 2 PLBF’s. These are

a) send_bit and

b) receive_bit.

 Thus a “0 1” combination implies that next a receive_bit co-call must be executed. Note that the

combination “1 1” is invalid.

The next 2 bits in the register determine whether or not to run the integrated secondary thread code. Thus, a

“0 0” value would suggest executing no integrated code. Instead it would simply execute until reaching an

enabled cocall based on the value of the first 2 bits. This enables resynchronization among segments for

different PLBF’s. If the first 2 bits read “1 0”, then this would imply running through the secondary thread

code until the synchronization point for the send_bit thread is found. Obviously this resynchronization code

cannot be called from the idle time of any primary thread since the time between any two successive resync

points of the primary threads may be greater than the available idle time of the primary thread from where

it may be called. Hence this resync code is called by the higher-level functions (e.g the FSM or send_msg).

A ”1 0” value for the Intg bits would suggest running the send_bit integrated code from one of the resync

points. As in the case of the previous 2 bits, a value of “1 1” for Intg bits is illegal since one cannot execute

both the send_bit and the receive_bit integrated code at the same time.

Integrated
code.

Cocall

B0 B1 B2 B3

Send Bit

Receive Bit

Figure 2-23 Register For Synchronization

 39

3 J1850 Protocol

3.1 Introduction
SAE J1850 protocol is a communications standard used in off- and on- road land-based vehicles. Attributes

of the J1850 protocol include an open architecture, low cost, master-less, single level bus topology. The

SAE J1850 standard is a Class B protocol. Class B supports data rates as high as 100 Kb/s and typically

supports intermodule, non-real time control and communications. SAE J1850 supports two main

alternatives, a 41.6 Kb/s PWM approach and a 10.4 Kb/s VPW approach.

J1850 is an intermodule data communication network for the sharing of parametric information passed in

frames between vehicle electronic modules connected to the Class B bus.

3.2 Signaling scheme
There are two different alternatives for implementing the SAE J1850 protocol. One is a high speed 41.6

Kb/s Pulse Width Modulation (PWM), two wire differential approach. The other is a 10.4 Kb/s Variable

Pulse Width (VPW) single wire approach. Since the 10.4 kb/s approach is more prevalent, this scheme is

used for demonstrating the coroutine based STI.

VPW is the encoding scheme of choice for all 10.4 kb/s J1850 applications. VPW offers one of the lowest

radiated emissions encoding schemes possible due to the minimization of bus transitions per data bit. Some

other key attributes of VPW are its ability to compensate for clock mismatch and ground offsets, fixed

transition and sample points, the low number of transitions per bit and the fact that it is well suited for

arbitration.

VPW communicates via time dependent symbols. Each logic 1 or logic 0 contains a single transition, can be

either at the ACTIVE or PASSIVE level and have one of the two lengths, either 64us or 128us(tNOM at 10.4

Kb/s baud rate), depending on the encoding of the previous bit. The bus can transition from a low potential

to a high potential, or vice versa; but it the amount of time that the bus stays in its high or low potential that

determines what a particular symbol is.

All the VPW bit lengths stated below are typical values at a 10.4 kb/s bit rate.

A logic 0 is defined as either:

– An active-to-passive transition followed by a passive period 64 µs in length, or

– A passive-to-active transition followed by an active period 128 µs in length.

This is shown in the figure 3.1

A logic 1 is defined as either:

– An active-to-passive transition followed by a passive period 128 µs in length, or

– A passive-to-active transition followed by an active period 64 µs in length

This is shown in figure 3.1

 40

Figure 3-1 J1850 bit symbol timings

3.3 Arbitration:
SAE J1850 standard gives network allocation to each user node based upon the concept of arbitration.

Arbitration is a process of determining which of the two or more of the nodes can continue to transmit

when both or all the network nodes begin transmission simultaneously. Since all J1850 messages are

asynchronous in nature, the message sending devices have to determine when a message transmission can

begin and this has to be done with no pre-defined timing between messages.

The J1850 protocol supports CSMA/CR arbitration. CSMA/CR arbitration is a “non-colliding” scheme that

supports master-less links. Before any node attempts a transmission, it first “listens” to the J1850 bus for a

pre-set amount of time (“Carrier Sense”). If the J1850 bus is busy, then the “listening” node waits until the

current message is complete before trying again. Because the J1850 protocol is peer-to-peer, offering equal

network access to every node, “Multiple Access” (MA) capability is supported. “Multiple Access” means

more than one node may begin transmission at the same time. “Collision Resolution” (CR) allows multiple

transmitting nodes to all talk at the same time, and resolves the issue of who ultimately controls the bus

through the utilization of message prioritization. Message prioritization is accomplished by allowing an

active symbol to win over a passive symbol.

When a transmitting node(s) transmits a passive symbol but sees an active symbol, the transmitting node(s)

knows that some other node of higher prioritization is transmitting too, (the node driving the active

symbol). Any node that transmits a passive symbol on the J1850 bus but sees an active symbol has “lost

arbitration”. Once arbitration is lost, the losing node(s) then stops transmitting and continues to function as

a receiver. The node(s) that “won arbitration” continue to transmit, checking each bit of the current

message and dropping out when necessary until just one node is left. Checking is done for every bit. This

process is referred to as bit-wise arbitration.

 41

All the nodes that have lost arbitration for this message can try again after the complete transmission of the

current message, arbitrating again for the control of the bus.

3.4 Frame Format
All messages transmitted on the J1850 bus are structured according to the format shown in the figure 3.2

Figure 3-2 J1850 Frame format

The J1850 standard specifies that each message has a maximum length of 101 PWM (Pulse Width

Modulation) bit times or 12 VPW (Variable Pulse Width) bytes, excluding SOF,EOD,NB and EOF with

each byte transmitted most significant byte (MSB) first. The dynamic VPW J1850 message frame can

contain one to eleven bytes of data. Both the header field and the data field must be contained within the

one to eleven byte limit of a VPW J1850 message frame.

In the following descriptions, all VPW symbol lengths are typical values at a 10.4 kbps bit rate.

SOF — Start-of-Frame Symbol

All messages transmitted onto the J1850 bus must begin with a long-active 200-us period SOF symbol.

This indicates the start of a new message transmission. The SOF symbol is not used in the CRC calculation.

HEADER FIELD

The first byte is designated as the header field. However, the header field can be modified to be either one

or three bytes in length. The header field contains crucial information about what a receiving node should

expect in the proceeding message frame. The entire byte is utilized as a message identifier with a single

byte header field.

The first three most significant bits of the header field are priority bits. These three bits are capable of

designating eight levels of priority with a binary 000 being highest and a binary 111 being the lowest in

priority. These first three bits readily serve the arbitration process without having to influence any other

header bit designations.

Following the priority bits is the header bit, or H-bit. This bit conveys whether or not this particular

message is going to have a single byte header, or a three byte header. If the H-bit is set to “zero”, then a

three byte header should be expected. If the H-bit is set to a “one”, then only a single byte header should be

expected.

The next header bit designates whether an In-Frame Response, (IFR), is requested or not. This bit is known

as the K-bit. If the K-bit is set to “zero”, then an IFR is requested. If the K-bit is set to a “one”, then no IFR

 42

is requested. Following the K-bit is a bit utilized to designate an addressing type. This bit is called the Y-

bit. Two types of addressing are accommodated with this J1850 protocol. One is a functional type of

addressing, the other is a physical type of addressing. How the rest of the message is interpreted is

dependent upon how this bit is set. If the Y-bit is set to “zero”, then functional addressing is to be used. If

the Y-bit is set to a “one”, then physical addressing is to be used. Functional addressing has a higher

priority than does physical addressing, providing all preceding bits are the same. Functional addressing is

an addressing scheme that labels messages based upon their operation code or content. Physical addressing

is an addressing scheme that labels messages based upon the physical address location of their source

and/or destination(s).

The last two bits of the single byte header are the message type bits, or ZZ-bits.

These two bits tell any receiving node(s) what format the rest of the message is going to take. These two

bits, combined with the Y-bit and the K-bit, offer up to sixteen different message types that can be

transmitted via the single byte header. The Z1-bit helps to designate whether or not this message uses

extended addressing. If the Z1-bit is set to a “one”, then a receiving node(s) knows that the fifth byte of this

message is the extended address of this function. The Z0-bit indicates whether or not data is contained in

this message. If the Z0-bit is set to a “zero”, then data should be expected with this message. If the Z0-bit is

set to a “one”, then no data is contained within this message. A three byte header is similar. With a three

byte header, the H-bit is set to a “zero” to indicate that this is a three byte header. All other bits within the

first byte operate essentially the same. The second byte of a three byte header contains a target address. The

target address can be either functionally addressed or physically addressed. The third and last byte of a

three byte header contains the physical address of the source of this message. Because the source address

must always be unique, arbitration is always resolved by the end of the third byte whenever three byte

headers are utilized.

Data — In-Message Data Bytes
The data bytes contained in the message include the message priority/type, message ID byte (typically the

physical address of the responder), and any actual data being transmitted to the receiving node. Messages

transmitted onto the J1850 bus must contain at least one data byte, and, therefore, can be as short as one

data byte and one CRC byte. Each data byte in the message is eight bits in length and is transmitted MSB to

LSB (least significant bit).

CRC — Cyclical Redundancy Check Byte
This byte is used by the receiver(s) of each message to determine if any errors have occurred during the

transmission of the message. During transmission, the CRC is calculated and the CRC byte is appended to

the message transmitted onto the J1850 bus. The receiver performs CRC detection on any messages it

receives from the J1850 bus. CRC generation uses the divisor polynomial X 8 + X 4 + X 3 + X 2 + 1. The

remainder polynomial initially is set to all 1s. Each byte in the message after the start-of-frame (SOF)

symbol is processed serially through the CRC generation circuitry. The one’s complement of the remainder

then becomes the 8-bit CRC byte, which is appended to the message after the data bytes, in MSB-to-LSB

 43

order. When receiving a message, the receiver uses the same divisor polynomial. All data bytes, excluding

the SOF and end of data symbols (EOD) but including the CRC byte, are used to check the CRC. If the

message is error free, the remainder polynomial will equal X 7+X 6 +X 2 = $C4, regardless of the data

contained in the message.

EOD — End-of-Data Symbol

Immediately after the CRC byte has been transmitted, an End Of Data (EOD) symbol is transmitted. The

EOD symbol is a long 200-µs passive period on the J1850 bus used to signify to any recipients of a

message that the transmission by the originator has completed.

IFR — In-Frame Response Bytes

Directly after the EOD symbol, receiving node(s) can opt to immediately respond to the message. This

response is called an In-Frame Response (IFR) and contributes to the suite of error handling options that

the J1850 protocol supports.

An IFR provides a platform for remote receiving nodes to actively acknowledge a transmission. Receiving

node(s) append a reply to the end of the transmitting nodes original message frame. IFRs allow for

increased efficiency in transmitting messages since a receiving node may respond within the same message

frame that the request originated. A transmitting node request for an IFR is denoted by the K-bit in the

transmitting nodes header field. All receiving nodes are required to check the K-bit and respond

accordingly. This response must come within the elapse time between an EOD symbol and an EOF symbol,

which is approximately 80ms. The beginning of an IFR response is denoted by the receiving node(s)

transmission of a Normalization Bit (NB). The NB provides an active separation between the passive EOD

symbol and the first data bit of the IFR response.

EOF — End-of-Frame Symbol

This symbol is a long 280-µs passive period on the J1850 bus and is longer than an end-of-data (EOD)

symbol, which signifies the end of a message. Since an EOF symbol is longer than a 200-µs EOD symbol,

if no response is transmitted after an EOD symbol, it becomes an EOF, and the message is assumed to be

completed. The EOF flag is set upon receiving the EOF symbol.
IDLE — Idle Bus

An idle condition exists on the bus during any passive period after expiration of the IFS period (for

example, >300 µs). Any node sensing an idle bus condition can begin transmission immediately.

 44

4 Demonstration of Integration techniques on J1850

4.1 Overview
The techniques suggested for integrating primary and secondary threads (using cocalls) have been

demonstrated on the J1850 automotive protocol. The protocol is implemented in software and is

simulated on an Atmel AVR Atmega103 microcontroller. The software implementation consists of

two threads, host interface thread (talking to the main host receiving commands and sending

information) and the bus interface thread (responsible for framing/decoding message frames and

sending/receiving bits from the bus). The host interface thread uses an UART built in the

Microcontroller for communicating with the main controller and the bus interface thread uses

general purpose I/O ports for sending/ receiving bits from the J1850 bus. Since the Microcontroller

runs at a faster speed compared to the bit rate of the protocol, idle time is introduced in the PLBF’s

of the bus interface thread. To utilize this idle time, cocalls are used to switch between the bus

interface thread and the host interface thread. In some cases, the idle time is fragmented. In such

cases, the interleaved code in the PLBF (causing the idle time to be fragmented) is removed, thereby

exposing more idle time and integrated with the host interface thread so as to execute at the same

instant.

4.2 System Architecture

4.2.1 Hardware Architecture

J1850 data communication network uses a master-less, single-level bus topology. The nodes

involved in the network share a common bus and use a bit-by-bit arbitration scheme to transmit

messages on the bus.

4.2.1.1 J1850 Node Design:

The block diagram of a J1850 node is as follows:

Main
Micro -
controller

J1850
Protocol
Controller

Physical
Layer

Figure 4-1 J1850 Node Setup

 45

As seen in figure 4.1, the J1850 protocol controller is a piece of hardware acting as the interface

between the main controller and the J1850 bus. It is responsible for receiving commands from the

main controller and translating these commands into appropriate actions. These may be to send a

message, receive a message, send status back to the controller or other protocol specific features.

If the protocol controller is implemented as a dedicated hardware, then the design is highly

customized to the protocol being implemented. For more flexibility, the protocol controller is

implemented in software and run on a generic microcontroller. With this approach, a variety of

processing could be carried out limited only by the speed of the microcontroller. Thus any

microcontroller that is fast enough to meet the real time deadlines of the protocol and providing

means to communicate with the main controller and the J1850 bus could be used for running the

protocol. For the purpose of simulation, an Atmel Atmega103 8-bit microcontroller was used.

Thus the block diagram of the hardware used for simulation is as shown:

4.2.1.2 MCU Details

The Atmega103 is a low-power 8-bit microcontroller based on the AVR RISC architecture. It is

capable of executing most instructions in a single clock cycle thereby achieving throughputs

approaching 1MIPS per MHz. The microcontroller provides the following features:

- 128K bytes of in-system programmable flash.

- 4K bytes EEPROM

- 4K bytes SRAM

- 32 general purpose I/O lines

- 8 input lines,8 output lines

- Real-time counter

- 4 flexible timers/counters with compare modes and PWM

- UART, programmable watchdog timer with internal oscillator and a SPI serial

port.

Main
Micro -
controller

AVR
Atmega103
µcontroller

Physical
Layer

Figure 4-2 J1850 Hardware Setup

 46

A full suite of program and system development tools including C compilers, macro assemblers,

program debugger/simulators, in-circuit emulators and evaluation kits also supports the

Atmega103 AVR.

For simulation, the UART is used to communicate with the main controller and a general purpose

I/O port is used to transmit/receive bits. Thus the complete model used for simulation is as shown

Figure 4-3 Overall Simulation setup

4.2.2 Program Structure

4.2.2.1 Overall Software Architecture

In order to implement the J1850 protocol controller in software, two threads are written. The first thread,

called the host interface thread, interacts with the main controller through the UART. This thread is

responsible for receiving commands from the host and if necessary communicating them to the other

thread, also known as the BBCP (Bit Bang Communication Protocol) thread. The communication between

the two threads is by means of message queues. This is as shown in figure 4.4

Message Queues

BBCP thread Host Interface thread

Communication link
to the host

 Bus

 µ Controller

Main
Micro -controller

Physical
Layer

U
A
R
T

I/O
P
O
R
T

Figure 4-4 Communication Interface

 47

The BBCP threads monitors the queue at periodic intervals and performs the functions requested by the

host interface. It also receives any message sent on the bus and puts it on the queue for the host interface

thread to receive it.

4.2.2.2 Message Queues

 The message queues are used as the data interface between the host interface thread and the BBCP

thread. As seen in figure 4.4, three message queues are implemented.

The TX Message queue is used to transfer the data from the host interface thread to the BBCP thread. It

can hold upto a maximum of 16 J1850 data frames.

The RX Message queue is used to transfer the data from the BBCP thread to the host interface thread. This

too can hold up to a maximum of 16 J1850 data frames. The data structure of the J1850 TX and RX queues

is as shown in figure 4.5.

Figure 4-5 TX. & RX. Message Queue Data Structure

The IFR data queue is used to hold the IFR response sent by the main controller to the host interface thread.

This data needs to be sent when the message being received by the BBCP threads requests for it. This

queue can hold a maximum of one IFR data response. The data structure of this queue is as follows:

Figure 4-6 IFR Queue Data Structure

4.2.2.3 Host Interface thread

The typical structure of a host interface thread is as shown in figure4.7.

typedef struct J1850_Data_Buffer {
 BYTE_t Valid; // Entry is valid or not
 BYTE_t ProtocolID; // Protocol ID. For J1850, the ID is 1
 BYTE_t MessageID; // The message index within the queue
 BYTE_t IFR; // Used to indicate that an IFR response is desired for this frame.
 BYTE_t Length; // Length of the frame
 BYTE_t Data[20]; // Actual data to be sent or received.
}J1850_Transmit_Q,J1850_Receive_Q;

typedef struct J1850_IFR_Buffer {
 BYTE_t Valid; // IFR Data validity
 BYTE_t Length; // Length of the message
 BYTE_t Data[10]; // The actual IFR Data
}J1850_IFR_Buffer;

 48

The host interface thread is implemented by means of a state machine. The transition between the

states is triggered by the commands received by the host. The thread starts out in the idle state and

based on the command received by the main controller, switches to an appropriate state. The host

interface thread uses an UART running at 9600 baud to communicate with the main controller.

This requires that the host interface thread be called once at least every 1.04 ms to service the

UART. As shown in figure4.7, the J1850 host interface thread implements five states. These are :

Load Message: The host interface thread switches to this state when a “load message” command

is received from the main controller. Here the thread receives the length and the data to be sent

from the main controller and puts it on the TX message queue to be picked up by the BBCP

thread.

Unload Message: In this state, the thread checks to see if any data is present in the RX message

queue. This is done by checking the “Valid” bit. If data is available, then it initiates transfer of this

data to the main controller though the UART.

Load IFR Data : This state is usually entered when a frame requesting IFR is received by the

BBCP thread. In this state, the host interface thread expects IFR data to be sent by the main

controller. First the length of the data is sent and then the data itself.

Flush TX Queue : In this state, the thread squashes all the entries of the TX queue by setting the

Valid bit to 0.

Flush RX. Queue : In this state, all the entries of the RX Queue are squashed by setting the valid

bit to 0.

 Idle

Load
Message

Unload
Message

Load IFR
Data

Flush Tx. Q Flush Rx.
Q

Figure 4-7 Host Interface Thread State Diagram

 49

4.2.3 Bus Interface Thread

The main functionality of the BBCP thread is to send/receive messages. Hence the thread contains

code to send a frame and also receive a frame. But at an instant of time, only one of these two

activities can occur. Hence, the send and receive functionalities of the BBCP thread are

implemented as separate routines. The send and receive routines have real-time constraints and

hence must be scheduled to occur at the correct instants. Thus a scheduling function is required to

decide which functionality to call and when. In order to be able to switch between these routines,

the BBCP thread is structured as a finite state machine shown below.

The transition between states is decided by events that occur either on the J1850 bus or the

message queue between the BBCP thread and the host interface thread. To manage the transition

between states and to maximize idle time, the send and receive functionalities are structured in

form of layers. Each layer communicates with its upper and lower layer to realize its task. The

layers comprising the send / receive functionalities are:

a) Executive or Manager Function: This is the top-level function that runs a finite state machine

to monitor an idle bus, send a message or receive a message. As shown in the figure 4.9, when a

request to transmit is received, the manager layer uses a subroutine call to pass on the request to its

lower layer viz. the messaging layer. This function is different for send and receive units of J1850.

For the send functionality, the manager function executes a polling loop that monitors the message

queues for any frames to be sent. The manager function for the receive functionality is executed

as an Interrupt service routine (ISR). The ISR is called when the J1850 bus makes a low-high

transition signaling the beginning of SOF for a new J1850 frame. Some specific characteristics of

the manager functions pertaining to J1850 are:

Send Manager Function:

� Keeps polling on the “Valid” bit of the message queue to check whether any messages

are there to be sent.

� When data arrives, passes the data on to the message function.

 Idle

Receive Send

 Figure 4-8 BBCP thread code structure

 50

Receive Manager Function:

� An ISR, called when the SOF is sent on the bus.

� Calls the Receive message to begin sampling the bus at the right instant.

b) Message Level Function: This is the middle layer that is called by the executive or manager

function. This contains all the message oriented functions e.g. send_message, receive_message.

These functions are responsible of encoding/decoding the message as per the protocol and then

pass them to the corresponding layers. As shown in the figure 4.9, when sending a message, the

send_message function forms the frame to be sent as per the protocol specifications and sends the

frame to the lower layer bit by bit. Similarly, when receiving a message, the receive_message

function puts the decoded message into the message queue to be picked up by the host interface

thread. Some other characteristics of the message level functions with respect to J1850 are:

Send Message:

� Handles sending IFR data when called during message reception.

� Handle errors during transmission.

Receive Message:

� Calculates and checks CRC after the bits comprising the frame have been received.

� Executes a tight polling loop at the start of the function to determine the first falling edge.

This determines the start of the data reception.

� Executes a padding loop to wait for 31 us after the first falling edge.

� Calls the receive bit function every 64us after the first sample. This ensures correct

sampling since the bit durations on the bus can be either 64us or 128us.

c) Bit Level Function: This is the bottom layer that is responsible for putting/receiving bits from

the bus. This contains functions like send_bit and receive_bit. These functions are called by the

Control

 Message

 Bit

Subroutine call

Prepare message
and extract first
bit

Put bit on
the bus

Do CRC
computation

Verify if the bus matches the
bit to be sent.

Idle Time

Check for any errors during tx.
and extract the next bit.

Figure 4-9 Timeline for Send function

 51

message level functions when a message is to be sent or received. In addition to just sending /

receiving bits, the bit level functions also do some additional tasks in J1850.

Send bit :

� Calculates the CRC while transmitting a bit.

� Samples the bus to determine whether it is free to transmit a bit (arbitration)

before actually transmitting it.

� Switches between the pulse widths of 64us and 128us while sending alternate

bits. This is required since J1850 uses VPW modulation for signaling.

Receive Bit:

� Samples the bus multiple times (3 times) while receiving a bit. The receive bit

function “votes” on the bits received and decides on the value having the

maximum “votes” i.e. 2.

4.3 Program Analysis

4.3.1 Primary Code – Idle Time

Since the Microcontroller is run at a speed (8MHz) much faster than the bit rate of

J1850 (10.4kbps), idle time is introduced into the send and receive functions. The amount of idle

time introduced is dependent on the bit rate of the protocol and the time taken for the send /

receive function to execute. Figure 4.10 shows a timeline for a send bit functionality.

As seen from the figure 4.10, there are strict timing constraints on the bit timing as to when they

have to be put on the bus. This results in periods of processor inactivity or idle time introduced. In

J1850, the duration of a signal on the bus is variable. For example the SOF lasts for 200us, “1”

Control

Send Message

Send Bit

Subroutine call

Prepare message and
extract first bit

Put bit on
the bus

Do CRC
computation

Bit Duration

Verify if the bus matches
the bit to be sent.

Check for any errors during
tx. and extract the n ext bit.

Figure 4-10 Complete Timeline for send bit

 52

and “0” can be represented either by 128us or 64us and EOD –EOF separation can be 100us. As a

result the idle time introduced is variable depending on the signal being sent. The idle time

introduced varies from 328 cycles for a 64us signal to 1533 cycles for a 200us signal. These

values are true for the send functionality and a clock speed of 8MHz. For the receive functionality,

the idle time is for 433 cycles. The idle time does not vary for the receive functionality since the

bus is sampled every 64us. A complete breakdown of the idle time values for the send and receive

functionalities is given below:

Send :

Signal Value(in us) Idle Time(in cycles)

200 1533

128 839

100 733

64 328

Receive:

Signal Value (in us) Idle Time (in cycles)

64 433

As seen from the above values, there is a difference between the idle time values for the send and

receive functionalities even for the same signal values. This can be explained by means of the

following equation

 Tbit_after + Tidle + Tmessage + Tmessage = Tbit

Where

Tbit_after = Time between a bit is put/received from the bus and the bit-level function returns.

Tmessage = Time taken by the message layer to execute between bit layer function calls.

Tbit_before = Time between the bit-level function starts executing and a bit is put/received from the

bus.

Tbit = Bit time (1/Bit rate of the protocol).

For the send and receive functions, even though Tbit may be the same, Tbit_after, Tmessage and Tmessage

are different. This results in different idle time values.

 53

4.3.2 Secondary Thread – Determinism

The secondary or the host interface thread needs to be predictable in its timing for the insertion of

cocalls at periodic time intervals. However, timing jitter is introduced in the secondary due to two

main factors:

Blocking I/O loops:

 Blocking I/O loops are used in the secondary thread to wait for data on the UART. The

exact duration of these loops are not known beforehand and hence effectively produces an infinite

amount of jitter. This jitter is removed by padding the blocking I/O loops so to execute only for

one iteration before returning control to the PLBF. In our J1850 implementation, there are total of

9 blocking I/O loops. The amount of padding inserted varied from one PLBF to the other. When

the host is integrated with send PLBF, the host executes for 24 cycles before returning back

control. Hence the total padding introduced is 162 cycles. On the other hand, when integrated with

receive PLBF, the host executes for 100 cycles before returning control. Hence in this case, the

total padding introduced is 846 cycles.

Predicate Nodes:

 The presence of predicate nodes introduces timing jitter within the host thread especially

when the “true” and “false” branches are not of the same length. The jitter introduced increases

with the cocall duration. In order to eliminate this jitter, the true and false paths of the secondary

are padded to last for the same time. This simplifies the process of inserting cocalls. Again the

amount of padding required to eliminate the jitter varies for the send and receive PLBF. When

integrated with the send PLBF, the padding required to eliminate jitter is 176 cycles whereas with

the receive PLBF, the padding required to eliminate jitter is 772 cycles.

4.4 Integration

4.4.1 Preparations

Before the primary and secondary threads can be integrated, they have to be modified to prepare

them for integration. The modifications required are somewhat similar for the two threads.

4.4.1.1 Primary thread Modifications

The modification of the primary thread is generally in the form of padding. Padding is required in

the message and bit level functions to eliminate timing jitter resulting from predicate nodes and to

ensure correct timing of the bits. The type of padding done is different for message and bit level

padding.

 54

Message Level Padding: Padding is required in the message level functions to ensure that the

calls to the bit level functions occur at multiples of the bit time of the protocol i.e. multiple of TBit.

This removes any timing jitter between the calls to the send bit functions. This equalizes the time

between send bit calls to the worst-case time between calls to the bit level functions. In J1850, the

worst-case time between send bit calls is 45 cycles. Hence all code between send bit calls is made

to last for 45 cycles by padding. Similarly, for receive message function, the worst-case time

between receive bit calls is 44 cycles.

Bit Level Padding: Padding is required in bit level functions again to remove jitter. Jitter may be

introduced in bit level functions due to the presence of predicate nodes. The timing invariability

introduced by these nodes is removed by padding. In J1850, jitter is introduced in send bit calls

due to CRC computation. This is removed by padding.

4.4.1.2 Secondary Thread:

Before integrating, the host interface thread also needs to be modified to make it ready for

integration. The modification carried out again is in the form of padding. This is explained in more

detail in section 2.4.3. Padding inserted in the secondary thread if of three types:

Predicate Node Padding:

Predicate node padding is required to ensure that the time left after the last cocall insertion within

both the branches of the predicate node are the same. This ensures that no matter which path is

taken the cocalls are always inserted at the right places. This is of course true only when the

predicate node duration is greater than the time to go for inserting a cocall. If not, the predicate

node is padded to make the two branches last for the same duration, as explained in section 2.4.3.

For J1850, the total predicate padding inserted is 311 cycles for the receive functionality and 69

cycles for send.

Loop Padding:

In order to ensure that each of the loops within the secondary thread has at least once cocall

inserted within it, loop padding has to be inserted. The total loop padding inserted is 413 cycles for

the receive functionality and 112 cycles for send.

Blocking I/O loop Padding:

 Blocking I/O loops are used to continuously wait on a port (by looping) until data arrives

on that port. Since the wait time is not known beforehand, this produces effectively infinite jitter.

To remove this jitter the blocking I/O loop is padded to execute for just one iteration and return

control back to the PLBF. Padding is required both before and after the cocall. The padding before

the cocall is required to wait until a cocall period before returning control back to the PLBF while

the padding after the cocall is required to equalize the time (after the cocall) to be the same as the

number of cycles executed before entering the blocking I/O loop.

 55

For J1850 send bit PLBF, the padding added due to blocking I/O loops is 162 cycles while for the

J1850 receive bit the padding added due to blocking I/O loops is 846 cycles.

4.4.2 Transformations

4.4.2.1 Control Flow Reconciliation

After the primary and secondary thread have been prepared for integration, some control flow

changes may be required to be done on both the threads for actual integration. The types of

changes required are different for both the threads.

4.4.2.1.1 Primary Thread:
The primary thread may be transformed depending on how the idle time is fragmented. The idle

time in the bit level functions is highly fragmented and the idle time chunks are too small to be

utilized for any other work. Hence to recover more idle time, the functions are modified by

removing the intervening guest code and saving it for later replication into the secondary thread.

This is depicted in figure 4.13.

In J1850 send bit function, though the idle time is fragmented, all idle time chunks except one are

too small to be used. There are two idle time chunks lasting for 74 cycles and 328 cycles. For an

idle time slot to be useful, it should be at least as long as one cocall duration and the cocall

duration for J1850 lasts for 153 cycles. Since the 74 cycle idle time chunk is not long enough to

execute a cocall, it is not used for integration. Hence intervening guest code removal is not

possible for the send bit functionality of J1850. In receive bit function however, the idle time is

again fragmented due to multiple sampling of the bus. But in contrast to the send bit function,

there are several idle time chunks whose durations are greater than the cocall length. These idle

Idle time chunks Intervening
guest code

Intervening code
removed to
expose a larger
chunk of idle
time

Figure 4-11 Intervening Guest Code Removal

 56

time chunks last for 158 cycles, 36 cycles and 239 cycles respectively. Since the 158 cycle and

239 cycle idle time chunks are greater than the cocall length of 153 cycles, they can be used for

inserting cocalls. The guest code between these two idle time slots could be removed, exposing a

larger idle time period.

4.4.2.1.2 Secondary Thread:
There are two types of control flow transformations required on the secondary thread for J1850.

These are node replication and loop splitting.

Node Replication:

Node replication is required when there is some intervening guest code that has to be inserted

within the secondary thread. As described in the transformations for the primary thread, when the

idle time in primary thread is fragmented and many of these chunks have idle time durations

greater than the cocall period, then the guest code between the first and last such idle chunks is

removed. This is now inserted at several places within the secondary thread such that they would

execute at almost the same time as they would have executed in the primary thread. In J1850

intervening guest code insertion is required only for the receive functionality since there is none

for the send functionality. The intervening guest nodes are the bus sampling instruction (second

and third samples) code nodes. The number of times these have to be inserted within the

secondary depends on the number of cocalls being inserted into the secondary.

Note 1 :

 During Intervening guest code insertion, the guest code is put at the nearest instant possible to its

desired location. Sometimes the intervening guest cannot be put at the exact location where it

needs to be. This is when:

a) The intervening guest code location coincide with a control flow changing

instruction e.g branch. Consider the following code snippet:

 brne _PC_ + 2

 rjmp .Lcodelabel

In the above code if the intervening guest is inserted in the location shown, the

control flow of the program is disturbed. Hence the guest is inserted before the code.

b) The guest location is in the middle of an instruction whose execution time is more

than a cycle. Suppose the guest needs to be inserted after a cycle but the next

instruction happens to be a store which executes for 2 cycles. In this case, the guest is

inserted before the multi-cycle instruction

4.4.2.1.3 Loop Splitting:
Loop splitting is required for Blocking I/O loops in the secondary thread. Blocking I/O loops are

used to continuously poll on a port until data arrives at that port. Since this causes timing

variability with respect to insertion of cocalls, the loops are modified such that they execute just

Intervening code
insertion location

 57

one iteration before executing a cocall back to the PLBF. Since the blocking I/O loops do nothing

but wait for data, padding has to be inserted to extend its duration until a cocall period.

4.4.2.2 Data Flow Reconciliation

Since integration results in the primary and secondary threads co executing, strict data flow

independence has to be maintained between the two threads. The easiest and less costly approach

(with respect to no of cycles required) is to partition the register file and assign dedicated registers

to the primary and secondary thread. However this is not possible when the threads use almost all

the registers for their work. This can be rectified by either of the two following approaches:

a) Push/ Pop strategy : This is the most simple strategy that could be employed to maintain data

flow independence. The primary and the secondary threads can have their own stacks and

when switching from one thread to the other, all the registers are saved and loaded with the

values of the other thread. However the main disadvantage with this approach is the number

of cycles required to perform the save/restore operation.

b) Register Reallocation: This is slightly more involved than the previous one. The strategy

involves determining the registers being used at the time of switching in one thread and

reallocating the same registers with unused ones in the other thread.

For J1850, the Push / Pop strategy is used for data – flow independence. 28 registers of the AVR

Atmega03 are saved before switching to the other and restored upon receiving control back.

4.4.2.3 Cocall Insertion

This is the final step in the integration process. Cocalls are used to switch control back and forth

between the PLBF of the primary thread and the secondary thread. This is illustrated as shown in

the figure 4-14.

As seen from the figure, during an idle time slot of the PLBF two cocalls are inserted : one at the

start of the idle time slot in the PLBF and the other at the end of the idle time slot in the secondary.

For efficient utilization of the idle time, the cocalls have to be short so as to maximize the

secondary thread execution time. In the J1850 implementation, the cocalls last for 153 cycles and

its implementation is as shown :

 58

push r4

 push r5
 push r6
 push r7
 push r8
 push r9
 push r10
 push r11
 push r12
 push r13
 push r14
 push r15
 push r16
 push r17
 push r18
 push r19
 push r20
 push r21
 push r22
 push r23
 push r24
 push r25
 push r26
 push r27
 push r28
 push r29
 push r30
 push r31

Figure 4-12 Cocall Based switching between Primary and Secondary

Possible
Intervening
Guest insertion

 Secondary thread implementation

PLBF
Cocall
switching
control to the

Cocall
switching
control back to
PLBF

 59

Since switching between the two threads involves save/restore operation of all the registers, the

execution time of the cocalls is significantly high. By register reallocation this duration can be

decreased.

When the idle time of a PLBF is too high, then multiple cocall switchings are made to jump back

and forth between the PLBF and the secondary thread. This is required especially for the send

functionality since the idle time varies from 328 cycles to 1533 cycles for different signal

durations on the bus. The distribution of the idle time in the send bit function is shown below:

in r2,__SREG__

 sts _T2_SREG_,r2
 in r2,__SP_L__
 sts _T2_SPL_,r2
 in r2,__SP_H__
 sts _T2_SPH_,r2
 lsr r31
 ror r30
 sts _T2_PCL_,r30

sts _T2_PCH_,r31
lds r2,_T1_SPL_

 out __SP_L__,r2
 lds r2,_T1_SPH_
 out __SP_H__,r2
 lds r2,_T1_SREG_
 out __SREG__,r2
 pop r31
 pop r30
 pop r29
 pop r28
 pop r27
 pop r26
 pop r25
 pop r25
 pop r23
 pop r22
 pop r21
 pop r20
 pop r19
 pop r18
 pop r17
 pop r16
 pop r15
 pop r14
 pop r13
 pop r12
 pop r11
 pop r10
 pop r9
 pop r8
 pop r7
 pop r6
 pop r5
 pop r4
 lds r30,_T1_PCL_
 lds r31,_T1_PCH_
 ijmp

 60

Idle time in cycles

0
200
400
600
800

1000
1200
1400
1600
1800

64 100 128 200

Signal Duration in us

Id
le

 T
im

e
in

 c
yc

le
s

Idle time in cycles

In order to have a single host thread segment execution between two cocalls, cocalls are inserted

within the secondary thread corresponding to the lowest idle time available. For J1850 send, this

value is 328 cycles. Since cocalls themselves take 152 cycles to execute, (328 – 2*152) = 24

cycles are available for doing secondary thread work between cocalls. This effectively implies that

the host interface thread is called every 64us. Hence the condition for servicing the UART (once

every 1.04 ms) is satisfied. For other idle time durations within the PLBF, the secondary thread is

called multiple times. If any time remains after doing multiple calls to the secondary, the

remaining time is filled up with padding. For example, in J1850 send, for the idle time

corresponding to 1533 cycles, the secondary thread is called 4 times. The time remaining after

calling the secondary thread i.e 1533 – (328 * 4) = 221 cycles is filled up with padding.

For the J1850 receive functionality, the idle time is constant is equal to 433 cycles. Thus the actual

time to do secondary thread work is (433 – 2*152) = 129 cycles. Here 100 cycles are chosen to

execute the secondary thread in each segment the remaining time i.e 29 cycles is filled up by

padding.

Note 2:

 While inserting cocalls within the secondary thread, sometimes the cocalls cannot be inserted at

the exact location where it needs to be. This is when:

a) Registers r30 and r31 are being used in the secondary thread. The cocall code uses registers

r30 and r31 to perform a switch to the other thread. Since these registers cannot be

saved/restored, cocalls are inserted either before or after the code block using r30 and r31.

This introduces some timing jitter.

b) Code before the start of a loop and the code at the end of a bounded loop cannot be made

equal. This usually results in a jitter of a single cycle.

 61

c) Code at the beginning and end of Blocking I/O loop cannot be made equal. This again results

in a jitter of single cycle.

4.4.3 Transformation Methodology

The transformations, described above, are carried out on the primary and secondary threads part

by automation and part manually.

4.4.3.1 Automated tasks

A post pass compiler “Thrint” is used to automatically perform the following tasks:

b) Parse the assembly files for the primary and secondary threads and generate their CDG’s.

c) Get the timing information on the threads and analyze them.

d) Analyze the primary thread and pad away any timing jitter.

e) If the idle time is fragmented and many of the fragments have duration greater than a cocall

duration, the intervening guest code is extracted and saved for later replication into the

secondary thread.

f) Analyze the secondary thread and do the transformations. This involves proper padding of the

predicate nodes, loop nodes and split nodes where cocalls have to be inserted.

g) Insert the cocalls and the intervening guest code at the proper locations. Thrint does not,

however, automatically handle most of the cases mentioned in Note 1 and Note2. It however

handles case (b) in Note 1. The algorithm for cocall and intervening guest code analysis and

insertion is given in appendix 1.

4.4.3.2 Manual Transformations

The manual transformations required for integration are:

a) Change the cocall and intervening guest location, if necessary, to satisfy conditions mentioned

in Note 1 and Note 2.

b) Pad the blocking I/O loops to the correct amount and insert Intervening Guest code in the case

of receive functionality.

c) Generate the final integrated assembly file. Though thrint generates the CDG of the final

integrated output, it does not generate the corresponding assembly file. This assembly file

needs to be generated manually.

 62

5 Results & Analysis

5.1 Simulation Environment:
To simulate the effect of thread integration on J1850 protocol, Atmel’s AVR toolkit was used.

This toolkit mainly comprises of the AVR studio that is used for simulating the discrete and

integrated code. AVR-GCC compiler was used to compile the “C” programs to AVR assembly

code. The AVR Studio supports all AVR microcontrollers including Atmega103. It simulates not

only the CPU but nearly all the on-chip I/O modules and memory as well as the I/O ports. The

J1850 protocol is compiled using AVR-GCC and the resultant assembly code is run through the

simulator.

In order to observe the effects of Integration, 3 J850 frames were generated and run through the

simulator. The 3 Frames had the following parameters:

a) Maximum Length Frame: Header Length = 3 Data Length = 8 CRC length = 1. This

is the longest message that could be sent.

b) Typical Frame: Header Length = 1, Data Length = 7, CRC Length = 1.

c) Minimum Length Frame: Header Length = 1, Data Length = 0, CRC Length = 1.

This is the smallest frame that can be sent using the J1850 protocol.

The send routines (discrete and integrate versions) are used encode the messages into frames and put

them on the bus and the receive routines (discrete and integrated versions) are used to decode these

values put by the send routines. This setup is as shown in figure 5.1.

Discrete Send
(Reference)

Integrated Send
(Test)

Message Log File
(Reference)

Message Log File
(Test)

Comparison A:
Send Message

Integrated
Receive (Test)

Discrete Receive
(Reference)

Comparison B:
Receive

Reference Msg.

Comparison C:
Receive Test

Msg.

Figure 5-1 Test Setup

 63

The comparisons are used to determine the timing variation or jitter between the samples put out by

the discrete padded or “Gold” routines and the integrated routines. . In each of the cases, the messages

were correctly recovered and the timing jitter was within tolerable limits.

5.2 Results:

5.2.1 Timing Evaluation:

5.2.1.1 Discrete Vs. Integrated Send Routines:

Jitter Distribution

0
5

10
15
20
25
30
35
40
45

0-19 20-39 40-59 60-79 80-99 100-
119

120-
130

Cycles Range

N
o.

 O
f I

ns
ta

nc
es

8-Byte
7-Byte
0-Byte

For the messages sent, the jitter introduced is as tabulated as shown:

 8- Byte 7- Byte 0- Byte

Maximum Jitter (in

cycles)

125 25 39

Minimum Jitter (in

cycles)

5 1 1

As seen from the table, the maximum jitter introduced is around 125 cycles for the 8-byte

message. This translates to around 15 µs for 8MHz Microcontroller and is a 25% variation for a 64us

signal. But this variation is within J1850 specifications. The amount of jitter introduced is also a function of

TSegmentIdle or the periodicity of cocall insertion within the host interface thread. The smaller the TSegmentIdle,

the greater the jitter introduced. Jitter is also dependent on the path of execution within the secondary

thread. Some paths produce more jitter while others may not produce any.

 64

5.2.1.2 Discrete Vs. Integrated Receive for Discrete Send Input:

Jitter Distribution

0
10
20
30
40
50
60
70
80
90

100

0-1 cy 2-3 cy 4-5 cy

Cycles Range

N
o.

 O
f I

ns
ta

nc
es

8-Byte
7-Byte
0-Byte

The timing variations between the discrete and integrated versions of the receive routines for discrete send

input are tabulated as shown:

 8- Byte 7- Byte 0- Byte

Maximum Jitter (in

cycles)

5 4 3

Minimum Jitter (in

cycles)

1 1 1

The above values indicate the difference between the sampling instants for the discrete and the integrated

receive routines. As seen from the values, jitter between the two versions of the receive routine is quite

small. The maximum jitter is around 5 cycles that translates to less than a microsecond variation. This is

mainly because the TSegmentIdle is quite large (100) when the host interface thread is integrated with the

receive routine.

 65

5.2.1.3 Discrete Vs. Integrated Receive for Integrated Send Input:

Jitter Distribution

0
10
20
30
40
50
60
70
80

0-9 cy 10-19 cy 20-29 cy

Cycles Range

N
o.

 O
f I

ns
ta

nc
es

8-Byte
7-Byte
0-Byte

The timing variations between the discrete and integrated versions of the receive routines for integrated

send input are tabulated as shown:

 8- Byte 7- Byte 0- Byte

Maximum Jitter (in

cycles)

28 3 3

Minimum Jitter (in

cycles)

2 1 1

The maximum jitter is around 28 cycles for the 8-byte message. This is just a 4 microsecond variation

between the discrete and integrated versions of the receive routine.

5.2.2 Code Expansion:

Code expansion is mainly due to the insertion of padding in the threads to regularize the timing. Padding

can be done either using Nops or using padding loops.

 66

5.2.2.1 Code Expansion due to Nops:

As seen from the histogram, the code size increases by more than 4 times when the host interface thread is

integrated with the receive routine and by around 2 times when integrated with the send routine. Most of

the code expansion is due to the padding. When padding is done using Nop’s, it accounts for more than

50% of the code expansion.

5.2.2.2 Code Expansion due to Padding Loops:

Code Expansion with nops

0

500

1000

1500

2000

2500

3000

3500

Receive Send

C
od

e
si

ze
 in

 b
yt

es

Guest Code
Intervening Guests
Padding
Cocalls

Code expansion with padding loops

0
200
400
600
800

1000
1200
1400
1600
1800

Receive Send

C
od

e
si

ze
 in

 b
yt

es

Guest Code
Intervening Guests
Padding
Cocalls

 67

When padding loops are used for padding rather than Nop’s, there is a smaller code size expansion as seen

from the histogram. Now the integrated code size increases by less than 50% and within this, padding

accounts for less than 50% of the code expansion.

5.2.3 Performance Improvement compared to Interrupt Based approach:

When interrupts are used for context switching, the progress through the secondary or the host interface

thread is not as much compared to the “intervening guest code removal” approach due to the following

reasons:

a) Context switching needs to be done during each idle time slot

b) Idle time slots smaller than the context switching times cannot be used

c) The secondary threads needs to be structured as a FSM. This introduces extra overhead due to the

initial “state determining” code.

For the two approaches, the secondary thread code executed during the idle time slots of the PLBF’s can be

expressed quantitatively, based on the following terms:

TBubbleStart(i) = Start of the idle time bubble “i”.

TBubbleEnd(i) = End of the idle time bubble “i”.

TBubble(i) = Duration of the idle time bubble “i”.

 = TBubbleEnd(i) - TBubbleStart(i)

TCSIGR = Time taken for a context switch when cocalls are used for context switching.

TCSInt = Time taken for a context switch when interrupts are used for context switching.

TSegmentIdle = Amount of idle time that is actually available for useful secondary thread work between

transmission / reception of two bits.

 = For the intervening guest code removal approach,

TBubbleEnd(i)

Initial processing in the send
bit function

Explicit timing constraint
on send bit instruction

TBubbleStart(i) Send
Message TBubbl

e

TIdle1 TIdle2

Figure 5-2 Processor Timeline

 68

 b

TSegmentIdle = (Σ TBubble(i)) – 2* TCSIGR

 i=a

 where

a = min(i) TBubble(i) > TCS (First Piece of idle time large enough for a co-call)

and

b = max(i) TBubble(i) > TCS (Last piece of idle time long enough for a co-call)

For the interrupt based switching approach

 b

TSegmentIdle = Σ (TBubble(i) – 2* TCSInt) (2 * TCSInt) > TBubble(i)

 i=a

 0 (2 * TCSInt) <= TBubble(i)

a = first idle time bubble (for fragmented idle time) between transmission and reception of two

bits.

b = last idle time bubble between the transmission and reception of two bits.

NBytes = Total number of bytes sent/ received by the PLBF’s.

NCocalls = Number of cocalls executed between transmission / reception of two bits.

TSec = Total cycles of secondary thread executed

 = { 8 * (NCocalls * TSegmentIdle) } * NBytes

 Secondary thread executed

 in 1 byte transmission / reception

For J1850 protocol,

 NCocalls = 1 for send bit (64µs) and receive bit

 = 2 for send bit (128µs).

 TCSIGR = 146 cycles (refer to section 4.4.2.3)

 TCSInt = 151 cycles (refer appendix II)

Based on these values, the progress through the secondary thread or TSec for the two approaches is as shown

in the graphs in figs. 5.1 and 5.2 for the send and receive functionalities. As seen from the graphs, the

progress through the secondary thread is much faster using the “Intervening Guest Removal” approach

compared to the “Interrupt-based” approach. Within the “Intervening Guest Removal” approach, the

progress is much quicker when NCocalls is higher.

 69

HI thread progress

0
500

1000
1500
2000
2500
3000
3500
4000
4500

2 3 4 5 6 7 8 9 10 11 12

No of Bytes sent

C
yc

le
s

A
va

ila
bl

e
fo

r H
I t

hr
ea

d Integrated Send
(64us)
Integrated Send
(128us)
Integrated Send (Avg)

Interrupt Send (64us)

Interrupt Send
(128us)
Interrupt Send (Avg)

Figure 5-3 Comparison between approaches for Send

HI thread progress while Receive

0

200

400

600

800

1000

1200

1400

2 3 4 5 6 7 8 9 10 11 12

Bytes Received

C
yc

le
s

A
va

ila
bl

e
fo

r H
I t

hr
ea

d

Integrated Receive
Interrupt Receive

Figure 5-4 Comparison between approached for receive

 70

6 Summary & Future Work

6.1 Summary:
Since hardware implementations of protocol controllers are highly customized to the protocol being

implemented, moving functionalities from hardware to software provides a variety of processing options,

limited only by the speed of the microcontroller on which the protocol is run. But assuming the processor is

fast enough to meet the demands of the protocol, there are direct benefits to moving functionality to

software. The unit cost is lower, system is small and weighs less and new and proprietary functions could

be easily added even after the design is mature.

Software implementation of protocol controllers usually consists of implementing two threads : a Bus

Interface thread responsible for putting bits on the bus and a Host interface thread, responsible for receiving

commands from a main controller and communicating them to the bus interface thread. Since the bit rates

of the protocols are fixed, there are strict timing constraints on the Bus Interface thread as to when it can

put/ receive bits from the bus. This introduces periods of processor inactivity or idle time to be introduced

within the thread. Since there may be several such timing constraints while sending or receiving a bit, the

idle time is fragmented. The idle time can be better utilized by having the host interface thread execute

within this idle time period. This necessitates a context switching mechanism that is responsible for

switching between the threads. However in order to meet the real time deadlines and to efficiently utilize

the idle time for host interface thread work, the switching overhead of the context switching scheme needs

to be minimal. This is especially true if the idle time is fragmented since number of switches per bit is high.

Using interrupts does not help since it not only introduces a substantial switching overhead but also

requires switching to be done during each of the idle time fragments. Thus the switching overhead is not

minimized.

This thesis introduces a scheme for efficiently utilizing the idle time by minimizing the number of context

switches required per bit. Cocalls are used to perform the context switching, introducing lesser context-

switching overhead compared to interrupts. By using cocalls the host interface thread need not be

structured as an FSM that is required when using interrupts. The key idea introduced is the removal of

intervening guest code that not only exposes more idle time for secondary thread work but also requires

that only two context switches be performed between transmission/ reception of bits. The intervening guest

code is inserted at the appropriate instants within the host interface thread. Thus the scheme could be used

even to extract fine grain idle time and use it for host interface thread work.

To verify the performance using this approach, a J1850 protocol controller was implemented using both the

scheme suggested and the scheme using dedicated padding. The dedicated padding scheme insures that the

bits are always sent/received at the correct instants. A comparison between the two schemes showed that

the “intervening guest code removal” approach always transmits/ receives bits correctly and introduces a

timing jitter that is less than 25 % for transmit and less than 1% for receive. These values occur when the

protocol is run on a 8MHz Microcontroller and for certain values for cocall periods, as explained in

 71

section 4.4.2.3. This scheme was also compared to the interrupt-based scheme for implementing the

protocol, as explained in section 5.2.3. Results showed that the secondary thread advances 45% faster for

send compared to the interrupt based scheme. The interrupt-based scheme makes no progress in the

secondary thread, while the integrated scheme makes progress.

6.2 Future Work:
Currently the “intervening guest code” removal approach requires separate copies of the host interface

thread when integrated with the send and receive functionalities. This introduces considerable code

expansion. This could be improved by using a single host interface thread and using “guards” to determine

if an intervening guest code or cocalls need to be executed for that particular implementation or not. This is

explained in more detail in sections 2.4.4.4 and 2.4.4.5.

The switching mechanism currently requires that all the registers be saved/ restored before a switch is

made. This causes the number of cycles required for switching to be high (~153). Improvements could be

made in this end by using register reallocation rather than direct save/ restore. The post pass compiler

“thrint” could be modified to handle this.

The intervening guest code and the cocalls cannot always be placed at the appropriate timing instants

within the host interface thread due to code constraints explained in sections 4.4.2.1.2 and 4.4.2.3. This

introduces jitter which manifests itself while sending / receiving bits. A tool could be written that

automatically estimates the jitter introduced when a certain path of execution is taken through the host

interface thread. This tool could also provide information as to the cocall duration that would minimize the

jitter introduced within the host interface thread.

 72

BIBLIOGRAPHY

[1] Oliver, John D. “Implementing the J1850 Protocol”, Intel Corporation.

[2] Dean, A. "Compiling for Concurrency: Planning and Performing Software Thread

Integration," 23rd IEEE Real-Time Systems Symposium, December 3-5, 2002, Austin, TX.

[3] Dean, A., Shen, J.P. "System-Level Issues for Software Thread Integration: Guest Triggering

and Host Selection," 20th IEEE Real-Time Systems Symposium, December 1-3, 1999, Phoenix,

Arizona.

[4] Embacher, Martin. “Replacing Dedicated Protocol Controllers with Code Efficient and

Configurable Microcontrollers —Low Speed CAN Network Applications”, Application Note

1048, National Semiconductor, May 1997.

[5] Glenewinkel, Mark. “Interfacing the MC68HC705J1A to 9356/9366 EEPROMs”, Application

Note 1241, Motorola semiconductors, 1996.

[6] Goodhue, Greg. “A software Duplex UART for the 751/752”, Application Note 446, Philips

Semiconductors, June 1993.

[7] Dean, A., Grzybowski, R.R. "A High-Temperature Embedded Network Interface Using

Software Thread Integration," Second International Workshop on Compiler and Architecture

Support for Embedded Systems (CASES'99) October 1-3, 1999, Washington, D.C.

[8] Dean, A., Shen, J. P. "Techniques for Software Thread Integration in Real-Time Embedded

Systems," 19th Real-Time Systems Symposium, Madrid, Spain, December 2-4, 1998.

[9] Dean, A., Shen, J. P. "Hardware to Software Migration with Real-Time Thread Integration,"

EuroMicro Workshop on Digital System Design, Vasteras, Sweden, August 25-27, 1998.

[10] Dean, A., Shen, J. P. "Thread Integration for Error Detection and Performance," 3rd IEEE

International On-Line Testing Workshop, Crete, Greece, 1997, pp. 7-11.

 73

APPENDIX I

Following is the algorithm for inserting cocalls and intervening guest code within the host interface thread.

The variable CocallStepping gives the number of cycles left before the cocall code could be inserted.

Initially is set to Cocall Duration.

The Do_Host_Analysis_And_Insert_Cocall is called twice. First, it is called to perform an analysis of the

code and perform padding, if necessary. The second call inserts cocalls at the appropriate instants in the

code.

Variable Analysis is set to 1 when analysis on the code needs to be done. When set to 0, Cocalls and

Intervening guest code are inserted.

Intervening Guest Code insertion is determined by a set of variables, most important of which are the

Guests_Duration array and Guest_Index variable. Guests_Index array contains the number of cycles left

before an intervening guest code is inserted. Guest_Index keeps track of the Intervening guests. When all

the intervening guests are inserted within a cocall period, Guest_Index is reset to zero and the

Guests_Comp_For_CocallPeriod is set to One. This is again reset to zero when a cocall is executed,

implying the end of a cocall period.

Variables Repeat_Node_For_InterGuest and Repeat_Node_For_HostNode are used to determine whether

a particular node needs to be visited more than once. A particular node needs to be visited more than once

when during the first visit, the CocallStepping or Guests_Duration[Guest_Index] turns out to be zero.

Hence after inserting the cocall, the node needs to be analyzed again for possible cocall insertion or

intervening guest code insertion within it.

PROCEDURE Do_Host_Analysis_And_Insert_Cocall (int CocallStepping, int Guest_Index)

Begin

 Child = Get Children of Procedure

 Switch(Type of child)

 Begin

 Case Code :

 If(!Analysis)

 Begin

 If(!Not_Exec_InterGuest_Code)

 Begin

 74

 If(!Guest_Durations[Guest_Index])

 Begin

 If(!Guests_Comp_For_CocallPeriod)

 Begin

 Insert Intervening Guest code before the current child

 Repeat_Node_For_InterGuest = 1

 Reset Guest Info structures

 If (last guest node)

 Begin

 Guests_Comp_For_CocallPeriod = 1

 End

 End

 End

 Else if(Code Duration > Guest_Durations[Guest_Index])

 Begin

 If (!Guest_Comp_For_CocallPeriod)

 Begin

 Split Code Node at the Guest Duration

 Insert Intervening Guest Code in front of split node

 Reset Guest Info structures

 If (last guest node)

 Begin

 Guests_Comp_For_CocallPeriod = 1

 End

 End

 Else // If Guests_Duration[] is > Code Duration

 Begin

 If (!Guests_Comp_For_Cocall_Period)

 Begin

 Guests_Duration[Guest_Index] -= Code Duration

 End

 End

 End

 End

 // Analysis for inserting Cocalls

 If (!Not_Exec_HostNode_Code)

 Begin

 75

 If(!CocallStepping)

 Begin

 If(!analysis)

 Begin

 Insert Cocall

 End

 Repeat_Node_For_HostNode = 1

 Repeat_Node_For_InterGuest = 1

 Guests_Comp_For_CocallPeriod = 0

 CocallStepping = CocallDuration

 End

 Else if ((CocallStepping < Node Duration))

 Begin

 Split the node at CocallStepping

 CocallStepping = CocallDuration

 End

 End

 Else

 Begin

 CocallStepping -= Node Duration

 End

 Break

 Case Loop:

 If(Analysis)

 Begin

 If(BlockingIOLoop)

 Begin

// A Blocking IO loop is considered as an atomic code of duration 4 cycles.

//Hence if CocallStepping or //Guests_Duration[] is less than 4, then the

//cocalls or the intervening guests are inserted before the code.

// The Blocking IO loop lasts for a duration of 3 cycles, for the case when the

 //loop condition is not satisfied.

 If((CocallStepping – 4) < 0)

 Begin

 76

 Insert Padding equal to CocallStepping

 CocallStepping = CocallDuration – 3;

 End

 Else

 Begin

 CocallStepping -= 3;

 End

 End

 Else

 Temp_Cocall_Hold = CocallStepping;

 Cycles_Start_Of_Loop_Before_Cocall = CocallStepping

Cycles_End_Of_Loop_Before_Cocall =

Do_Host_Loop_Analysis(CocallStepping)

Cycles_To_Pad = Cycles_End_Of_Loop_Before_Cocall –

Cycles_Start_Of_Loop_Before_Cocall

// Cycles at the end of loop < Cycles at the beginning. Hence padding added

//to the end of the loop to make the timing same.

 If(Cycles_To_Pad > 0)

 Begin

 Insert (padding = Cycles_To_Pad) at the end of loop

 Cycles_End_Of_Loop_Before_Cocall = Cycles_To_Pad

 End

// if Cycles_To_Pad is negative, then cycles at the end of the loop is greater than

//those at the beginning. Hence padding is inserted so as to add cocalls and then

//again padding is put in to make the cycles at the end of the loop same as those

//at the beginning.

 Else if (Cycles_To_Pad < 0)

 Begin

Pad for (duration = Cycles_End_Of_Loop_Before_Cocall + 2) at the

end of loop.

Cycles_To_Pad = CocallDuration -

Cycles_End_Of_Loop_Before_Cocall + 2

If (Cycles_To_Pad < 0)

 77

Begin

 Cycles_To_Pad =0

 Cycles_End_Of_Loop_Before_Cocall = Cycles_To_Pad

 Insert (padding = Cycles_To_Pad) at the end of loop

 End

 Else

 Begin

Cycles_End_Of_Loop_Before_Cocall = CocallDuration –

(Cycles_End_Of_Loop_Before_Cocall + 2)

 End

CocallStepping = CocallDuration –

(Cycles_End_Of_Loop_Before_Cocall + 1)

 End // End of If(Analysis)

 Else

 Begin // Start of (!Analysis).

 If (Blocking IO Loop)

 Begin

 If(!Not_Exec_InterGuest_Code)

 Begin

/*

Since the Blocking IO loop code has to be executed atomically, cocalls or

intervening guest code cannot be inserted in between the code. If the intervening

guest code needs to be inserted in between, it is put before the start of the code

thereby inducing a jitter or at most 4 cycles.

*/

If((!Guests_Duration[Guest_Index]) OR

(Guests_Durations[Guest_Index] < 4))

Begin

 If(!Guests_Comp_For_CocallPeriod)

 Begin

 Insert Intervening Guest Code before this node

 Reset Guest Info structures

 If (last guest node)

 Begin

 Guests_Comp_For_CocallPeriod = 1

 78

 End

 End

Else

Begin

 If(!Guests_Comp_For_Cocall_Period)

 Begin

 Guests_Duration[Guest_Index] -= 3

 End

End

 End

 Else

 Begin

 If(!Not_Exec_HostNode_Code)

 Begin

 If(!CocallStepping)

 Begin

 Insert Cocall Before this node

 Repeat_Node_For_HostNode = 1

 Repeat_Node_For_InterGuest = 1

 Guests_Comp_For_CocallPeriod = 0

 CocallStepping = CocallDuration

 End

 Else

 Begin

 CocallStepping -= 3

 End

 End

 End

 End // End of If(Blocking IO loop)

 Else // If (other node types)

 Begin

 CocallStepping = Do_Host_Loop_Analysis (CocallStepping)

 CocallStepping += 1 // Loop back criteria is not satisfied.

 // Hence branch takes one cycle to jump

 // out

 If (!Guests_Comp_For_Cocall_Period)

 79

 Begin

 Guests_Durations[Guest_Index] += 1;

 End

 End // End of If(!Analysis)

Break // End of Loop Node handling code

 Case Proc:

 For each Child

 Begin

 Repeat_Node_Visit = FALSE;

CocallStepping =

Do_Host_Analysis_And_Insert_Cocall(CocallStepping)

If((!Repeat_Node_For_InterGuest) AND

(Repeat_Node_For_HostNode))

Begin

 Not_Exec_InterGuest_Code = 1

End

Else

Begin

 Not_Exec_InterGuest_Code =0

End

If((Repeat_Node_For_InterGuest) AND

(!Repeat_Node_For_HostNode))

Begin

 Not_Exec_HostNode_Code = 1

End

Else

Begin

 Not_Exec_HostNode_Code =0

End

If((!Repeat_Node_For_InterGuest) AND

(!Repeat_Node_For_HostNode))

Begin

 Advance child pointer

End

Break

Case Pred:

 80

 If((!Analysis) AND (!Guests_Duration[Guest_Index]))

 Begin

 If(!Guests_Comp_For_CocallPeriod)

 Begin

 Insert the Intervening Guest Code before this node

 Reset Guest Info structures

 If (last guest node)

 Begin

 Guests_Comp_For_CocallPeriod = 1

 End

 Repeat_Node_For_InterGuest = 1

 Repeat_Node_For_HostNode = 1

 End

 End // End of (!Guests_Durations[Guest_Index]

 If((!Analysis) AND (Guests_Duration[Guest_Index] < 2))

 Begin

 /*

Since the predicate node takes a maximum of 2 cycles to jump

to the appropriate node, the intervening code is put ahead of

the predicate node introducing a maximum jitter of 2 cycles.

 */

 if(!Guests_Comp_For_Cocall_Period)

 Begin

 Insert the Intervening Guest Code before this node

 Reset Guest Info structures

 If (last guest node)

 Begin

 Guests_Comp_For_CocallPeriod = 1

 End

 Repeat_Node_For_InterGuest = 1

 Repeat_Node_For_HostNode = 1

 End

End

Else if(!CocallStepping)

Begin

 If(!Analysis)

 Begin

 81

 Insert Cocall

 End

 Repeat_Node_For_InterGuest = 1

 Repeat_Node_For_HostNode = 1

 Guests_Comp_For_CocallPeriod = 0

 CocallStepping = CocallDuration

End

// If CocallStepping is less than 2 cycles, then the cocall is inserted

//before the predicate node introducing a maximum jitter of 1 cycle.

Else if((CocallStepping < Node Duration)

 If(CocallStepping – 2 < 0)

 Begin

 Insert Padding to get CocallStepping = 0

 CocallStepping = CocallDuration

 Repeat_Node_For_HostNode = 1

 Repeat_Node_For_InterGuest = 1

 End

 Else if(! Loop closing predicate)

 Begin

 Temp_CocallStepping = CocallStepping

 Save the Intervening Guest Code State

// If CocallStepping is greater than the true path duration of predicate

//node, then cocalls have to be inserted with the true path.

 If((CocallStepping – 2) > True Path Duration)

 Begin

 CocallStepping -= 2

 If((!Analysis) AND (Guests_Duration[Guest_Index))

 Begin

 Guest_Duration[Guest_Index] -=2

 End

 True_remain = Do_Host_Pred_Analysis(TV_T,CocallStepping)

 End

 Else

 82

// If the CocallStepping is less than True path duration, then, a test is

//done on the Intervening guest variables to check whether they need to

//be inserted within the true path.

 Begin

True_remain = CocallStepping – 2 – True Node Duration

If((!Analysis) AND (Guests_Duration[Guest_Index] > True

Path Duration))

Begin

 If(!Guests_Comp_For_CocallPeriod)

 Begin

 Guests_Duration[Guest_Index] -= 2

 Do_Host_Pred_Analysis(TV_T,CocallStepping)

 End

 End

 End

 CocallStepping = Temp_CocallStepping

 Restore Intervening Guest Code State

// If CocallStepping is greater than the false path duration of predicate

//node, then cocalls have to be inserted with the false path.

 If((CocallStepping – 1) > False Path Duration)

 Begin

 CocallStepping -= 1

 If((!Analysis) AND (Guests_Duration[Guest_Index]))

 Begin

 If(!Guests_Comp_For_CocallPeriod)

 Begin

 Guests_Duration[Guest_Index] -= 1

 End

 End

False_remain =

Do_Host_Pred_Analysis(TV_F,Temp_CocallStepping – 1)

 End

 Else

 Begin

 83

// If the CocallStepping is less than false path duration, then, a test is

//done on the Intervening guest variables to check whether they need to

//be inserted within the false path.

False_remain = Temp_CocallStepping – 1 – False Node

Duration

If((!Analysis) AND (Guests_Duration[Guest_Index] > False

Path Duration))

Begin

 If(!Guests_Comp_For_CocallPeriod)

 Begin

 Guests_Duration[Guest_Index] -= 2

 Do_Host_Pred_Analysis(TV_F,CocallStepping)

 End

 End

 End

 If (True_remain > False_remain)

 Begin

 Pad = True_remain – False_remain

 Make List of leaf nodes for the True child

 For each leaf node

 Insert padding = pad

 End

 Else

 Pad = False_remain – True_remain

 Make List of leaf nodes for the False child

 For each leaf node

 Insert padding = pad

 End

 CocallStepping = Min(True_remain,False_remain)

 End

 Else

 Begin // If the predicate is a loop closing predicate

 CocallStepping -= Node Duration

 End

 End

 Else

 84

 Begin // If CocallStepping exceeds the node duration

 If(Analysis And !Loop Closing Predicate)

 Begin

 Pad the Jitter in the predicate node

 End

 CocallStepping -= Node Duration

 Temp_CocallStepping = CocallStepping

// Though CocallStepping is greater than the predicate node duration,

//Guests_Duration[] may be less. Hence a check is done and if

//Guests_Duration[] is less, then a further check is made as to whether it is less

//than the true and false path durations. If so, the true and/or false paths are

//traversed and intervening guest code is inserted.

 If(!Analysis)

 Begin

If (Predicate Node Duration > Guests_Duration[Guest_Index])

Begin

 Save Intervening Guest State

 If(Guests_Duration[Guest_Index] < True Path Duration)

 Begin

 If(!Guests_Comp_For_CocallPeriod)

 Begin

 Guests_Durations[Guest_Index] -= 2

Do_Host_Pred_Analysis_For_Guest(TV_T, CocallStepping)

 End

 End

 Restore Intervening Guest Code

 If(Guests_Duration[Guest_Index] < False Path Duration)

Begin

 If(!Guests_Comp_For_CocallPeriod)

 Begin

 Guests_Durations[Guest_Index] -= 2

 Do_Host_Pred_Analysis_For_Guest(TV_F, CocallStepping)

 End

 End

 CocallStepping = Temp_CocallStepping

 85

End // End of If(Predicate Node Duration >

//Guests_Duration[Guest_Index])

Else

Begin

 Guests_Duration[Guest_Index] -= Predicate Node Duration

End

 End

 Break

 Return CocallStepping

 END PROCEDURE

// Following are supporting functions required for the loop and predicate nodes. These functions in turn call

//Do_Host_Analysis_And_Insert_Cocall for further analysis of the loop or predicate nodes.

 PROCEDURE Do_Host_Loop_Analysis (CocallStepping)

 Begin

 For each child of the node

 Begin

 Repeat_Node_For_InterGuest = FALSE

 Repeat_Node_For_HostNode = FALSE

CocallStepping = Do_Host_Analysis_And_Insert_Cocall(CocallStepping)

If((!Repeat_Node_For_InterGuest) AND (Repeat_Node_For_HostNode))

Begin

 Not_Exec_InterGuest_Code = 1

End

Else

Begin

 Not_Exec_InterGuest_Code =0

End

If((Repeat_Node_For_InterGuest) AND (!Repeat_Node_For_HostNode))

Begin

 Not_Exec_HostNode_Code = 1

End

Else

Begin

 Not_Exec_HostNode_Code =0

 86

End

If((!Repeat_Node_For_InterGuest) AND (!Repeat_Node_For_HostNode))

Begin

 Advance child pointer

End

 End

 END PROCEDURE

 PROCEDURE Do_Host_Pred_Analysis(Truth Value tv, CocallStepping)

 Begin

 For each child of node with TV = tv

 Begin

 Repeat_Node_For_InterGuest = FALSE

 Repeat_Node_For_HostNode = FALSE

CocallStepping = Do_Host_Analysis_And_Insert_Cocall(CocallStepping)

If((!Repeat_Node_For_InterGuest) AND (Repeat_Node_For_HostNode))

Begin

 Not_Exec_InterGuest_Code = 1

End

Else

Begin

 Not_Exec_InterGuest_Code =0

End

If((Repeat_Node_For_InterGuest) AND (!Repeat_Node_For_HostNode))

Begin

 Not_Exec_HostNode_Code = 1

End

Else

Begin

 Not_Exec_HostNode_Code =0

End

If((!Repeat_Node_For_InterGuest) AND (!Repeat_Node_For_HostNode))

Begin

 Advance child pointer

End

 87

 End

 END PROCEDURE

PROCEDURE Do_Host_Pred_Analysis_For_Guest(Truth Value tv, CocallStepping)

 Begin

 Not_Exec_HostNode_Code = 1

 For each child of node with TV = tv

 Begin

 Repeat_Node_For_InterGuest = FALSE

 Do_Host_Analysis_And_Insert_Cocall(CocallStepping)

 If(!Repeat_Node_For_InterGuest)

 Begin

 Advance Child Pointer

 End

 End

 END PROCEDURE

 88

APPENDIX II

Following is the assembly code used for using interrupts as the context switching mechanism. Timer 2 of

Atmega103 generates interrupts. The interrupts are caused during the idle time slots of the bus interface

thread.

< 10 cycles to get into ISR >

/* Save all the registers of the Bus Interface thread */

 push r4
 push r5
 push r6
 push r7
 push r8
 push r9
 push r10
 push r11
 push r12
 push r13
 push r14
 push r15
 push r16
 push r17
 push r18
 push r19
 push r20
 push r21
 push r22
 push r23
 push r24
 push r25
 push r26
 push r27
 push r28
 push r29
 push r30
 push r31

 /* Save the status register and Stack Pointer */

 in r2,__SREG__
 sts _T1_SREG_,r2
 in r2,__SP_L__
 sts _T1_SPL_,r2
 in r2,__SP_H__
 sts _T1_SPH_,r2

 /* Load the values for the other context */

 lds r2,_T2_SPL_
 out __SP_L__,r2

 89

 lds r2,_T2_SPH_
 out __SP_H__,r2
 lds r2,_T2_SREG_
 out __SREG__,r2

 pop r31
 pop r30
 pop r29
 pop r28
 pop r27
 pop r26
 pop r25
 pop r25
 pop r23
 pop r22
 pop r21
 pop r20
 pop r19
 pop r18
 pop r17
 pop r16
 pop r15
 pop r14
 pop r13
 pop r12
 pop r11
 pop r10
 pop r9
 pop r8
 pop r7
 pop r6
 pop r5
 pop r4

 /*
 Host Interface thread is structured as a FSM. Switching code is required to decide on the state to jump to
 */
Switching:
 lds r30, state
 clr r31
 mov r16, r30
 inc r16
 sts state, r16
 subi r30, lo8(-(jmp_table))
 subi r31, hi8(-(jmp_table))
 lpm

 < Host Interface code here >

return_path:
 ldi r16,(1<<CTC2)|(1<<CS22)|(1<<CS21)|(1<<CS20)
 out TCCR2,r16 ; // Timer clock = system clock/1024
 ldi r16,1<<OCF2
 out TIFR,r16 ; Clear OCF2 //clear pending interrupts

 90

 ldi r16,1<<OCIE2
 out TIMSK,r16 ; //Enable timer output compare interrupt
 ldi r16,X
 out OCR2,r16 ; // Set output compare value to X
/* Following code restores context before switching control back to the bus interface thread */

 push r4
 push r5
 push r6
 push r7
 push r8
 push r9
 push r10
 push r11
 push r12
 push r13
 push r14
 push r15
 push r16
 push r17
 push r18
 push r19
 push r20
 push r21
 push r22
 push r23
 push r24
 push r25
 push r26
 push r27
 push r28
 push r29
 push r30
 push r31
 in r2,__SREG__
 sts _T1_SREG_,r2
 in r2,__SP_L__
 sts _T1_SPL_,r2
 in r2,__SP_H__
 sts _T1_SPH_,r2

 lds r2,_T2_SPL_
 out __SP_L__,r2
 lds r2,_T2_SPH_
 out __SP_H__,r2
 lds r2,_T2_SREG_
 out __SREG__,r2

 pop r31
 pop r30
 pop r29
 pop r28
 pop r27
 pop r26
 pop r25

 91

 pop r25
 pop r23
 pop r22
 pop r21
 pop r20
 pop r19
 pop r18
 pop r17
 pop r16
 pop r15
 pop r14
 pop r13
 pop r12
 pop r11
 pop r10
 pop r9
 pop r8
 pop r7
 pop r6
 pop r5
 pop r4
 reti

