
ABSTRACT

FRAUTSCHI, JASON PAUL. Finite Element Simulations of Shape Memory Alloy Actuators in
Adaptive Structures. (Under the direction of Stefan Seelecke.)

Shape memory alloys possess an inherent actuation capability that makes them

attractive as actuators in adaptive structures, especially in applications in which their large

strains, high specific work output and potential for structural integration are beneficial. However,

the requisite extensive physical testing has slowed development of potential applications and

highlighted the need for a simulation tool for feasibility studies. In this study, such a tool has been

developed by implementing the Müller-Achenbach-Seelecke shape memory alloy model into a

commercial finite element code. The material model is described with particular emphasis on its

ability to predict actuatoric performance and suitability for use in the context of a displacement-

based finite element framework. The interaction between the material model and the solution

algorithm for the global finite element equations is thoroughly investigated with respect to the

effect of solution parameters on convergence, computational cost and accuracy. Finally,

simulations of several flexible structures actuated by shape memory alloys are presented as

examples of the potential of the implementation to analyze practical applications. The

implementation represents a versatile and novel tool for the simulation of adaptive structural

components using shape memory alloy actuators.
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1. INTRODUCTION

The properties of shape memory alloys (SMA) make them viable as actuators in many

applications, particularly those that are weight critical, that are used in ‘clean-room’ environments,

or that require a high force and high stroke under severe space restrictions. The so-called ‘shape

memory’ effect, resulting from solid-solid phase transformations in the crystal lattice structure,

lends these materials an inherent actuation capability combining high strains with an exceptional

specific work output. Figure 1 compares SMA actuator performance with a selection of other

actuation methods and materials. Shape memory alloys lead the list in maximum actuation stress

and rival even hydraulics in specific work output, approaching 108 J/m3. This is the highest

specific work output amongst all known smart materials.

Figure 1: Comparison of actuation performance [1]

Their inherent actuation capability translates into yet another attribute, the ability to be

directly integrated into a structure. This introduces the possibility of reducing or eliminating force

transmission mechanisms or the piping and pumping infrastructure typically associated with the

more common actuation methods, such as hydraulic or pneumatic systems. This distinction hints
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at a number of potential fields of application for SMA actuators. For example, eliminating gear

systems also obviates the need for lubricating oils that may not be compatible with ‘clean room’

environments, as well as removing the effects of gear lash and the resulting positioning

inconsistency associated with these transmission devices. Similarly, reduction of the

infrastructure needed for actuation mechanisms generates obvious benefits in weight- or space-

restricted applications. For example, not only does eliminating the piping and pumping systems

typical of more traditional actuation systems benefit performance through weight savings, but it

also potentially liberates space in a structure, allowing modification to the structure’s configuration

or providing extra housing space for additional systems. Further, the loss of piping systems

precludes the need for routing cutouts in the structure, permitting structural optimization without

the stress concentrations caused by these cutouts.

As a result of these attributes, potential applications for shape memory alloy actuators

span the range from micro-scale positioning devices to large-scale structural actuators, in

concepts as far-reaching as NASA’s ‘morphing airplane’ (Figure 2) to those already under

experimental evaluation, such as the flexible wing trailing edge shown in Figure 3.

Figure 2: ‘Morphing Airplane' [2]
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Figure 3: Flexible trailing edge of a wing actuated by SMA wires [3]

In fact, much of the development in the field of adaptive structures has been motivated by

applications in aerospace engineering, where the properties of SMA actuators are particularly

well-suited. These applications involve quasi-static shape control, such as the in-flight

optimization of aircraft wings for improved fuel consumption and performance. Within this arena,

the aircraft industry has pursued several research projects under so-called smart wing programs

organized by the Defense Advanced Research Projects Agency (DARPA), resulting in

breakthroughs in the technology that show promise for further development [4,5,6].

The fact that most of the concepts involving SMA actuators have been developed

experimentally highlights the absence of a useful simulation tool for feasibility studies.

Performance simulations offer a number of well known benefits as a first step in concept

development. Namely, they have the potential to illuminate shortcomings in actuator design at a

point in concept development where changes are easily and inexpensively accommodated, which

can greatly reduce both the amount of time needed for performance testing and the number of
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built design iterations needed to realize an effective mechanism. Additionally, the simulations can

yield insight into the behavior of a structure that may be overlooked in physical experimentation,

for example where comprehensive instrumentation is cost-prohibitive or otherwise unfeasible.

For structural simulations, the most widely used tool is the finite element (FE) method.

This numerical method makes analysis of arbitrary structures possible, even those having

irregular shapes, known material inhomogeneities, or other features that preclude the use of

classical, analytical methods. Of course, for useful, physically representative simulations,

developing a characteristic material model and correctly integrating the chosen simulation

solution algorithm yields the greatest possibility for meaningful simulation results. This is

particularly true for shape memory alloys, which show highly nonlinear and hysteretic behavior.

Though many models for the behavior of SMAs have been developed over the past two

decades, the number of implementations into a finite element framework is very small, see, e.g.,

[7,8]. When it comes to actuator applications, the number of suitable SMA models further

diminishes since most require direct prescription of the temperature. However, realistically, from a

controls perspective the actuator temperature per se is a quantity that is both difficult to measure

and impossible to instantaneously control.

More suitable would be a model that includes an energy balance for determining

temperature and material behavior following from a prescribed electric current through the

actuator, since the electric current is the essential control quantity for most SMA actuators. An

example of such a model is Seelecke’s improved Müller-Achenbach SMA model [9]. To the best

of the author’s knowledge, there has been only one publication of a SMA actuator model

including an energy balance implemented into a FE code [10]. However this was an

implementation based on a dimensionless SMA model using a research FE code. Consequently,

it reproduced the material behavior only qualitatively and had only very basic structural elements

available to which to couple the SMA actuator element.

The objective of this work is to implement a SMA actuator model capable of reproducing

material behavior both qualitatively and quantitatively into the commercial FE code ANSYS for

use in a wide range of feasibility studies [11]. For this it is necessary to fully understand both the
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SMA material model and the FE solution process in order to guarantee that the relevant

information is processed by the model and correctly translated to the global FE level. Further, in

order to ensure that the material behavior characterized by the SMA model is accurately

reproduced, the implementation requires substantiation through a comparison of simulation

results with a reference solution generated by a SMA model version outside the FE framework.

Additionally, the influence of the FE solution parameters must be studied with particular attention

to their impact on the simulation behavior. Finally, to illustrate the potential of the implementation

to simulate practical examples of adaptive structures with SMA actuators, several potential

applications for SMA actuators are presented.
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2. SHAPE MEMORY ALLOY BEHAVIOR

Shape memory alloys possess highly nonlinear and hysteretic constitutive behaviors

showing a strong dependence on strain, temperature, and strain rate. These distinguishing

features lend these materials an inherent actuation capability, coupling high strains with a very

high work output. In this chapter, the characteristic behavior of shape memory alloy is detailed

and correlated to a description of the material’s Gibbs free energy, followed by an introduction to

the model used in the FE implementation.

The macroscopic behavior of SMA is caused by solid-solid phase transitions in the

material’s crystal lattice structure, also referred to as martensitic transformations. In the uni-

dimensional case, material behavior follows free energy minimization through diffusionless

transitions between the cubic austenite phase (A) and/or two martensite variants (M+ , M-), which

may be viewed as sheared lattice cells. These phase changes may result from either mechanical

or thermal loading, or both, and lead to the dominant behavioral features of SMAs, including the

so-called ‘shape memory’ effect. There are two characteristic states in which SMAs are found:

‘quasi-plastic’ and ‘pseudo-elastic.’ Interaction between these two conditions leads to the shape

memory effect, and also lends SMA its actuation capability.

Shape memory alloys exhibit ‘quasi-plastic’ behavior when the martensite variants are

the stable phases under no load, typically at low temperatures. In such a condition, stress

application initially produces a linear elastic response, up to a characteristic, temperature-

dependent phase transition stress. Loading above the transition stress causes substantial

deformation coinciding with a phase transformation from one variant to the other (e.g. M-  M+).

However, unlike a purely plastic material, after the phase change is completed, further loading

results in a resumption of the linear elastic behavior. Because the phase transition is not a

spontaneous process, subsequent unloading leaves remnant deformation. Combining this

remnant deformation with the distinctive elastic-yielding-elastic behavior explains the term ‘quasi-
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plastic,’ since the material does not behave plastically in the pure sense, instead regaining its

elastic nature after yielding.

SMAs behave in a ‘pseudo-elastic’ or super-elastic manner at higher temperatures, at

which austenite is the stable phase under no load.  Like the quasi-plastic case, initial loading

produces a linear elastic response, up to a characteristic, temperature-dependent austenite-to-

martensite (A  M) phase transition stress.  Exceeding this critical stress causes a phase

transformation from austenite to a martensite variant, accompanied by substantial straining. Like

the quasi-plastic case, after the phase change is completed, further loading results in a

resumption of the linear elastic behavior. When the stress is reduced below a lower, martensite-

to-austenite (M  A) transition stress, the material transforms back to austenite, i.e. the M  A

process occurs spontaneously. Complete unloading returns the sample to its original shape as in

an elastic material, tracing a hysteretic path. Total strains may be on the order of 10 %. The very

high strains achievable, combined with the complete recovery to the original configuration along a

hysteretic path, explains the terms ‘pseudo-elastic’ and super-elastic.

The ‘shape memory effect’ results from the interplay of these two material behaviors, as

illustrated in Figure 4. Starting in a quasi-plastic state (a twinned-martensite phase composition),

with variants shown in green (representing M+) and blue (representing M-), initial loading causes

existing M+ layers to stretch along their original orientation, but begins to deform the M- layers

through shearing. Loading over the transition stress causes the M- layers to lose stability and ‘flip’

into the M+ orientation. Once this has occurred, unloading leaves the material in a state of

remnant deformation since the reverse transformation does not occur spontaneously. After this

plastic-like deformation in the quasi-plastic regime, the original shape may be recovered by

heating the material up to the transition temperature, causing a phase transformation, whereupon

the lattice cell structure shifts from the sheared martensite variant (M+ in this case) into body

centered cubic austenite cells, causing the sample to return to its original shape, as if by

‘memory.’ Loading at this elevated temperature would result in a pseudo-elastic behavior. Upon

cessation of heating, as the material returns to ambient temperature, austenite becomes unstable

and transforms to twinned martensite with no macroscopic shearing occurring. This is due to the
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simultaneous formation of the two variants of martensite, which mutually cancel their strain

contributions.

Figure 4: Shape memory effect [12]

Because of the difference in stress levels that induce transformation from one phase to

another (or from one martensite variant to the other), there is a very pronounced hysteresis loop

during cyclical loading where phase changes occur.  Such hysteresis loops dissipate energy,

producing a damping effect in vibration [13].  Thus shape memory alloys used as passive

elements in a structure act as both non-linear springs and passive dampers, provided strain

levels are sufficiently high to induce phase transformations. In applications where the SMA is

used as an active component in an adaptive structure, and where the driving frequency is

significantly smaller that the structural natural frequency, the hysteresis acts as an impediment in

the ability of conventional control methods to follow a set track and necessitates the use of a

model-based control scheme for optimal operation, particularly at higher frequencies.

An introduction to the shape memory effect can be found in, among others, [14,15].
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2.1. SMA model

For this implementation the model representing the constitutive stress-strain relation of

the SMA actuator is Seelecke’s extension of the Müller-Achenbach model [16]. This model

describes phase transformations as thermally activated processes governed by principles from

statistical thermodynamics, and employs an ansatz free energy density function. A system of first-

order, ordinary differential equations (ODEs) representing evolution laws for the phase fractions

and temperature constitute the model.

Phase changes resulting from mechanical or thermal loading are predicted according to

the fundamental quantity of interest, the Gibbs free energy, which is assumed to be described by

a multi-parabolic function dependent on strain, temperature, and applied stress. Local minimum

energy locations, or “wells,” for each phase are provided, as well as energy barriers between

wells. Phase transitions occur when the barriers between phase-specific free energy minimums

are eliminated by either mechanical or thermal loading.

In the following, after the Gibbs free energy is described, the model is introduced through

a brief summary of its equations and an examination of representative plots characterizing its

behavior.

2.1.1. Free energy description

Since the Gibbs free energy is the fundamental quantity in the model, it is useful to

understand its form in order to comprehend the machinations of the model. Characterization of

SMA behavior is attained by means of a free energy description having a hypothesized multi-

parabolic shape representing the free energy density as a function of strain and temperature. At

equilibrium under no load, the micro-structural phase composition may be predicted at a

temperature via the Helmholtz free energy density function; phase changes resulting from

mechanical loading may be predicted by the Gibbs free energy density function.
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This Helmholtz free energy density function, ψ, is assumed to be composed of five

parabolas, one for each of the three material phases (A, M+ , M- ) and two for the energy barriers

between austenite and the two martensite phases (shown as C+ , C- in Figure 5) .
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Figure 5: Helmholtz free energy density curve

Identification of some particular points of interest in the ψ - strain curve facilitates generation

of the Helmholtz free energy density function.  These points include the phase minimum energy

locations and the intersections of the phase and barrier parabolae as follows (refer to Figure 5):

• εT  and -εT  are defined to be the strains corresponding to locations of the local minimum

energy wells for the sheared M+ and M- phases, respectively.  The austenitic minimum energy

well occurs at zero strain.

• strains corresponding to inflection points between the austenite phase and its energy barriers

are defined as wa and –wa.

• strains corresponding to inflection points between the two martensitic phases and their

respective energy barriers are defined as wm and –wm.



11

Note that the strain εT is constant for a material, whereas wA and wM depend on the relative

positions of the austenite and martensite energy minima, as well as the curvature of the

parabolae.

With the supposition that each phase and energy barrier may be depicted by a parabola, then

each individual parabola could be described by the standard quadratic formulation:

ψi = ai (T) * ε2 + bi (T) * ε + ci (T)

where i = {1:5} corresponding to {A, M+ , M- , C+ , C- }, respectively, the three phases and two

connecting parabolae.  For generality, the coefficients are permitted to vary with temperature T.

Coefficient Determination

By assigning arbitrary nominal values to the minima of the three phases, i.e. β1(T) for

austenite, β2(T) and β3(T) for martensites M+ and M- , equations for the individual phase

parabolae and barrier parabolae can be determined.  These nominal values, combined with

assumed continuity and smoothness between the parabolae, dictate the following required

conditions:

)(),0( 11 TT β=Ψ (2.1.1.1)

0
),0(

1 =
∂
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Tε
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Ψ∂

εε
(2.1.1.14)

Evaluation of the above requirements yields equations for the coefficients of the parabolae, as

follows:

     From 2.1.1.1: c1(T)  =  β1(T)

     From 2.1.1.2: b1(T)  =  0

     From 2.1.1.3: a2(T) εT 2 + b2(T) εT + c2(T)  =  β2(T)

     From 2.1.1.4: 2 a2(T) εT + b2(T)  =  0

     From 2.1.1.5: a3(T) (-εT)2 + b3(T) (-εT) + c3(T)  =  β3(T)

     From 2.1.1.6: 2 a3(T) (-εT) + b3(T)  =  0

     From 2.1.1.7: a4(T) wA
2 + b4(T) wA + c4(T)  =  a1(T) wA

2 + b1(T) wA + c1(T)

     From 2.1.1.8: 2 a4(T) wA + b4(T)  =  2 a1(T) wA + b1(T)

     From 2.1.1.9: a4(T) wM
2 + b4(T) wM + c4(T)  =  a2(T) wM

2 + b2(T) wM + c2(T)

     From 2.1.1.10: 2 a4(T) wM + b4(T)  =  2 a2(T) wM + b2(T)

     From 2.1.1.11: a5(T) (-wA)2 + b5(T) (-wA) + c5(T)  =  a1(T) (-wA)2 + b1(T) (-wA) + c1(T)

     From 2.1.1.12: 2 a5(T) (-wA) + b5(T)  =  2 a1(T) (-wA) + b1(T)

     From 2.1.1.13: a5(T) (-wM)2 + b5(T) (-wM) + c5(T)  =  a3(T) (-wM)2 + b3(T) (-wM) + c3(T)

     From 2.1.1.14: 2 a5(T) (-wM) + b5(T)  =  2a3(T) (-wM) + b3(T)
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Since there are only fourteen equations available for the solution of the fifteen parabola

coefficients, not all of the coefficients can be explicitly determined. Moreover, introduction of the

strain values εT, wA, and wM, and the phase minima β1, β2, and β3 adds to the list of unknowns.

Consequently, other equations or relationships are required for a full description of the free

energy curve. However, the coefficients may be solved as functions of a1(T), a2(T), a3(T), εT, wA,

wM, β1, β2, and β3, as shown below:

 a4(T) = (a1(T) wA + a2(T) (εT – wM)) / (wA – wM)

a5(T) = (a1(T) wA + a3(T) (εT – wM)) / (wA – wM)

 b1(T) = 0

b2(T) = - 2 a2(T) εT

 b3(T) =   2 a3(T) εT

b4(T) = - 2 wA (a1(T) wM + a2(T) (εT – wM)) / (wA – wM)

 b5(T) =   2 wA (a1(T) wM + a2(T) (εT – wM)) / (wA – wM)

c1(T) = β1(T)

 c2(T) = a2(T) εT
2 + β2(T)

c3(T) = a3(T) εT
2 + β3(T)

 c4(T) = wA
2  (a1(T) wM + a2(T) (εT – wM)) / (wA – wM) + β1(T)

c5(T) = wA
2 (a1(T) wM + a3(T) (εT – wM)) / (wA – wM) + β1(T)

c4(T)  = wM
2 (a1(T) wA + a2(T) (εT – wA)) / (wA – wM) + a2(T) εT

2 + β2(T)

c5(T) = wM
2 (a1(T) wA + a3(T) (εT – wA)) / (wA – wM) + a3(T) εT

2 + β3(T)

Correlation Between Coefficients and Material Properties

Further relationships must be established for physically meaningful expressions for the

remaining coefficients and unknown values. Certain thermodynamic considerations indicate that

most of these variables can be found from experimental data. For example, the Gibbs Equation

for a 1-D solid is as follows:
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duTdsd
ordduTds

=+
−=

εσ
εσ ,

(2.1.1.15)

where s is entropy, u is internal energy. By subtracting ( )Tsd  from both sides of the equation, a

slightly modified form results, noting that ( ) sdTTdsTsd += :

( ) ( )
( )TsudsdTd

orTsdduTsdTdsd
−=−

−=−+
εσ
εσ ,

(2.1.1.16)

Then, since by definition, Tsu −=Ψ , the differential of the Helmholtz free energy equation

emerges:

sdTdd −=Ψ εσ (2.1.1.17)

From this, since ε
εε

ddT
T

d
T∂

Ψ∂
+

∂
Ψ∂

=Ψ , then

 s
T constantε

−=
∂
Ψ∂

=

, and (2.1.1.18)

σ
ε

=
∂
Ψ∂

=constantT

(2.1.1.19)

The latter equation above motivates the use of an experimentally obtained stress-strain

diagram to aid in the development of the free energy description. The stress-strain diagram yields

the following useful information:

• EA = 2 a1(T) = modulus of the austenite phase (by noting that 
A

A
A

E 2

2

εε
σ

∂
Ψ∂

==
∂
∂

)

• similarly, EM = 2 a2(T) = 2 a3(T) = modulus of the martensite phases

• εT = the strain level of a hypothetical, purely martensitic (M+) material at vanishing stress,

which occurs at the minimum of the M+ parabola

• wA = the strain at which the phase transition from austenite to martensite begins

• wM = the strain at which the phase transition from martensite to austenite begins
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• there is a loading stress at which a phase transition from austenite to martensite (+) begins

(say, ‘σA’), corresponding to wA, where the material strains at a constant stress

• there is an unloading stress at which a phase transition from martensite (M+) to austenite

begins (say, ‘σM’), corresponding to wM, where the material strains at a constant stress

• the diagram is symmetric

All coefficients previously developed can be written in terms of these material properties

and constants. Further, stress-strain diagrams from experiments conducted at various

temperatures reveal that the difference between σA and σM remains constant (independent of

temperature), i.e.

MA σσ −  = some constant ≡ σ∆ (2.1.1.20)

As defined, wA and wM are intrinsically related to σA and σM; wA is the strain at which

phase transition (A  M+) begins and thus the point at which the stress σA is achieved, and

similarly wM marks the onset of the M+  A transition at σM.  Consequently, wA and wM can be

represented by σA and ∆σ as follows:

( ) ( )

( ) ( )
T

M

A
M

A

A
A

E
TTw

E
TTw

ε
σσ

σ

+






 ∆−
=

=

(2.1.1.21)

Relative Minimum Energies of the Phases

The two redundant expressions for c4(T) and c5(T) render relationships between β1(T)

and both β2(T) and β3(T).  For example,

β1 + wA(T)2 (a1(T) wM(T) + a2(T) (εT – wM(T))) / (wA(T) – wM(T))  =

 β2 + a2(T) εT
2 + wM(T)2 (a1(T) wA(T) + a2(T) (εT – wA(T))) / (wA(T) – wM(T))

From the above, the magnitude of the difference in minimum energies of the austenite (A) and

martensite (M+ or M-) emerges.
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The crystallographic symmetry of the material implies a symmetric stress-strain diagram.

This in turn suggests that the martensitic phase minimum energies β2 and β3 are equal and might

justifiably be denoted as martensitic, i.e. “βM.”  Similarly, β1 might be justifiably denoted with an

austenite subscript, “βA.”  Hence, considering the austenite and martensite (+) phases and

introducing ∆β ≡ βA - βM :

 ∆β = βA - βM  =  - a1(T) wA(T) wM(T) + a2(T) (εT – wA(T)) (εT – wM(T)) (2.1.1.22)

∆β can also be expressed in terms of the material properties and constants found from the stress-

strain diagram as follows:

∆β =   1/2 (σA
2 (1/EA - 1/EM) - σA (2εT + ∆σ (1/EA - 1/EM)) + ∆σ εT) (2.1.1.23)

Moreover, thermodynamic considerations motivate yet another expression for the βi, which are

sometimes also referred to as chemical free energies:











+−+−=

reference
referenceiii T

TcTTTcTsu ln)(β ,   i = 1,2,3 (2.1.1.24)

where 

s1 = s(austenite) = sA, 

s2,3 = s(martensite) = sM,

u1 = u(austenite) =  uA, and

u2,3 = u(martensite) = uM

With the above relation and the assumption that the specific heat constant c is the same for both

the austenite and martensite phases, ∆β can be rewritten as

∆β = (uA – uM) - (sA – sM)  T

or, introducing ∆u ≡ uA – uM and ∆s ≡ sA – sM, simply

∆β = ∆u  -  ∆s  T (2.1.1.25)

Internal Energy, Entropy, Loading Phase Transformation Stress, σA(T)

The above expression denotes a linear dependence on temperature in the relative

minimum energies of austenite and martensite; thus by determining ∆β at two distinct
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temperatures (i.e. some upper temperature, TU, and some lower temperature, TL) through

measurement of σA and σM (from the stress-strain diagram), ∆u and ∆s can be determined, i.e.

( )

( )( ) ( )
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11211
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and
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Then,
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(2.1.1.28)

 and (from either of the temperatures at which ∆β is determined),
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Interjecting these ∆s and ∆u values into the ∆β equation, σA(T) can be found for any

temperature by using the standard quadratic formula, i.e. from
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)(

2

σεσεσε

σ (2.1.1.30)

The choice of the negative radical is justified by the fact that the positive radical yields a negative

yield stress value for all temperatures, a result that is physically meaningless.
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From the above equations and any stress-strain diagram, individual phase values of

entropy and internal energy cannot be determined, and consequently values for βA and βM cannot

be determined. However, since in the assessment of relative equilibrium energy minima, the

absolute values of βA and βM are irrelevant vis-a-vis the difference between them, arbitrarily

prescribing some value of entropy and internal energy for martensite and finding an offset from

this in austenite is sufficient. For example, by setting sM and uM equal to zero, then

sA = ∆s and

uA = ∆u

Following from above,

βA = ∆u - ∆sT - c(T-TReference) – cTln(T/TReference) (2.1.1.31)

and

βM = - c(T-TReference) – cTln(T/TReference) (2.1.1.32)

Resulting Free Energy Descriptions

With the coefficients and material parameters developed above, a variation of the

Helmholtz free energy, defined as

Ψ̂  ≡ ψ - c(T-TReference) – cTln(T/TReference) (2.1.1.33)

can be plotted as a function of strain and temperature.  The definition of Ψ̂  effectively locks the

minima of the martensitic phase parabolas to the abscissa and permits the austenitic energy

minimum to float in relation to the zero position. The plot of Ψ̂ shows both the relative magnitude

of the austenitic energy minimum and the magnitude of the energy barrier(s) between phases.

Similarly, a modified form of the Gibbs free energy can be plotted as follows:

Ĝ (σ, ε, T) = G( Ψ̂ , σ) = Ψ̂ (ε, T) - σε (2.1.1.34)

where σ is the applied mechanical stress.  Examination of the Ĝ  function presents a rough

means of predicting the onset of phase transition under loading.
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Qualitatively, phase transitions can be understood by examination of the Gibbs free

energy function. A plot representing a typical NiTi material in the unloaded state at 293 K, at

which all phases are stable, appears in Figure 6. The austenite phase sits in the zero strain well,

while the martensite variants M- and M+ occupy the left- and right-side wells, respectively. No

phase transitions would occur under the shown condition since the barriers separating the three

phase wells obstruct the free exchange of particles.

Figure 6 : Gibbs free energy density function @ 293 K, no load

Figure 7 shows the same material at a lower temperature, at which austenite is not a

phase present in equilibrium.  In lowering the temperature from that of the first plot to that of the

second, the austenitic minimum energy well disappears, rendering austenite unstable and

causing it to transform to either of the martensite variants, without preference.
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Figure 7 : Gibbs free energy density function @ 273 K, no load

The above plots show qualitatively how phase changes result from thermal loading.

Under mechanical loading, the Gibbs free energy function inclines with the product of

stress and strain, as shown in Figure 8.  The lack of a barrier at the M - phase minimum, indicated

by the arrow, indicates a phase instability due to the accessibility of the preferable, lower energy

value at the M + well.  In this case, the applied stress is sufficient to cause a phase change from

one martensite variant to the other (M-  M+).

Figure 8 : Gibbs free energy density function @ 273 K, loaded
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The next plot, Figure 9, shows the same material at a higher temperature under the same

load. This temperature corresponds to that used to obtain Figure 6. Because of the absence of an

energy barrier at the M+ well, all martensite previously formed under loading will transform into

austenite.

Figure 9 : Gibbs free energy density function @ 343 K, loaded

The last two figures demonstrate how phase changes result from the combination of both

thermal and mechanical loading.

2.1.2. Model equations

However, a description of phase transformations based purely on the shape of the free

energy function is physically inadequate to describe the material behavior. According to the

theory of thermally activated processes, lattice layers in a particular phase within a shape

memory alloy material are assumed to fluctuate around their minimum energy positions because

of their intrinsic thermal activity. Such fluctuations may trigger phase transformations at a lower

stress level than that predicted by the Gibbs energy density function. Consequently the Müller-
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Achenbach-Seelecke SMA model instead ascertains the probability that a material particle will be

within a certain range of an energy well in order to predict the onset of a phase transformation

according to principles from statistical thermodynamics.  The transition probability for M +  A, for

example, is as follows:

∫ 





−







−

=+

ε
σε

σε

π d
kT

TG
kT

TG

m
kTp A

),,(exp

),,ˆ(exp

~2
(2.1.2.1)

where,

),,( TG εσ is the Gibbs Free Energy function;

k is the Boltzmann constant

ε̂ is the strain that marks the onset of instability from Austenite to M+ ;

2~ lmm ⋅= ; where

m is the mass of a lattice layer;

3
LVl = ; where

LV is a representative volume.

Limits of integration follow the stable strain range for austenite. These transition probabilities are

used in defining evolution laws for phase fractions, as follows:

−−−−

++++

+−=

+−=
AAA

AAA

pxpxx
pxpxx

&

&
(2.1.2.2)

where

+x& is the time rate of change of the fraction of the material in the M+ phase;

+x is the fraction of the material in the M+ phase;

Ap + is the transition probability for a phase transformation from M+ A (as previously

defined); and so on.
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The right hand sides of the ordinary differential equations (ODE) are the weighted sums

of loss- and gain-probabilities, where weighting is determined by the respective extant phase

fractions. The third phase, austenite, is not represented in the phase evolution equations since

there is the additional constraint that the sum of the phase fractions must be unity:

1=++ −+ Axxx (2.1.2.3)

Similarly, the strain in a shape memory alloy may be written as the weighted sum of the strains in

the individual phases present, as follows:

−−++ ++= εεεε xxx AA (2.1.2.4)

where

ε is strain;

Ax is the percent of the material in the austenite phase;

Aε is the average strain of the austenite phase particles;

+x is the percent of the material in the martensite (+) phase; and so on.

The above average strain values are determined using a standard, statistical formulation as

follows:

εεεε dfphase )(∫ ⋅= (2.1.2.5)

where )(εf marks the probability of finding a layer with a strain ‘ε ’. In fact this is a probability

density. Limits of integration for the above equation follow the range of stable states for the

particular phase, i.e. the regions of strain where the second derivative of the Helmholtz free

energy density function is positive.

The Boltzmann approach to the probability density function is used. This approach forms

a probability based on the ratio of the material’s potential energy with its mean kinetic energy

from thermal excitation in the following way:
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
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where

),,( TG εσ is the Gibbs free energy function;

k is the Boltzmann constant; and

C is a constant determined from the requirement that the integral of

(2.1.2.6) be unity, i.e.

∫ =1)( εε df (2.1.2.7)

From this, then,
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Limits of integration again follow the range of stable strains.  Thus, the probability )(εf  may be

written as
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And, similarly, the appropriate value for the average strain of a phase phaseε  may be written as

∫
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Reiterating, for each phase, the average strain involves a ratio of integrals evaluated over

the stable strain range for that phase. For example, the average strain of the austenitic phase is:
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The result of the above formulation is that, given an applied stress, overall strain can be

calculated provided that the material phase fractions are known. The Gibbs free energy, itself a

function of strain, temperature, and applied stress, is the fundamental quantity of these integral

expressions.  Thus, implicit in (2.1.2.4) is the material stress-strain relationship.

Finally, the model contains a balance of energy equation for determination of temperature

changes in the alloy (see Equation (2.1.2.12)). Such changes may result from heat transfer with

the environment, through direct joule heating, and through latent heats absorbed and released

during the phase transformations:

( )( ) ( ) ( ) ( )σσ −−++ −−+−= HxHxtjtTTkTmc E &&& (2.1.2.12)

This equation makes this model uniquely suitable for actuator simulation, since it draws a direct

link between joule heating, which is the control quantity for most SMA actuators, and the material

strain in (2.1.2.4), which is representative of the actuator stroke.

Equations (2.1.2.2) and (2.1.2.12) embody the system of ordinary differential equations

that constitute the SMA model. Because this ODE system exhibits a numerically stiff behavior, an

unconditionally stable implicit Runge-Kutta scheme with an adaptive time step size is used for

integration. The subroutine RADAU5 was chosen for its efficiency and robustness. More details of

the model can be found in [9,17].

This model forms the basis of the FE element. For the implementation, the material data

are those of a typical NiTi wire, the most widely used actuator material.
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2.1.3. Model behavior

Results of displacement controlled simulations of the SMA model at various temperatures

appear in the figures below. Displacement is prescribed in the manner shown in Figure 10, except

in the quasi-plastic case. Starting from an un-stretched condition, the simulated material is drawn

out to some maximum extent and then permitted to return to a zero load condition. To effectively

remove the self-heating and self-cooling phenomena associated with the release and absorption

of latent heats, the simulation strain rate is very low, allowing ample time for temperature

equilibration. This produces a nearly isothermal response. Further, the maximum displacement is

chosen to guarantee a full phase transition to M+ at full extension for the temperatures chosen.

t

d 

Figure 10: Prescribed displacement vs. time for model behavior description

At a low temperature, the quasi-plastic material behavior is intrinsically captured by the

model. Figure 11 shows the simulated load-deformation result in the tensile quadrant only. The

initial phase composition is assumed to be equal proportions of the two martensite variants.
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Clearly, there is a remnant deformation as the material returns to a zero load condition, which

dictates an early termination of the displacement curve of Figure 10. As shown in the figure, the

initially linearly elastic material response is followed by a large displacement coinciding with a

single load value, and then regains its elastic behavior on further displacement. The zero slope

region of the plot corresponds to the phase transition where M- lattice layers flip to the M+

orientation. Upon unloading, these newly formed M+ layers do not retransform to their original

orientation, but instead find equilibrium in this configuration, leading to the remnant deformation.

That the slope of the curve starting from the origin is the same as the slope along which the

material returns to a zero load condition indicates that the initial phase composition was purely

martensitic.

d

P 

Figure 11: SMA model stress-strain curve, 273 K

Figure 12 shows the load-deformation curve at a higher temperature, where the material

shows a pseudo-elastic response. Austenite is the stable phase under no load. Here again the

initial response is linearly elastic, though the slope of the elastic region is much steeper than that

observed at the lower temperature. This reproduces experimentally observed behavior and
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indicates that a purely austenitic phase composition is significantly stiffer than a purely martensitic

composition. Note that the load at which the A  M transformation occurs is higher than that

shown for the quasi-plastic case. This demonstrates the model’s ability to capture the

temperature dependence of the transition stress. Once the A  M phase transition is complete,

further deformation traces the same linear path as the lower temperature. However, as the

deformation returns to zero, the material spontaneously undergoes a retransformation to

austenite at a low load level. At the end of the simulation, the material has returned to its original,

un-stretched and unloaded condition, at the same time regaining a purely austenitic phase

composition. The hysteresis loop circumscribed by the prescribed deformation is quite clear.

d

P 

Figure 12: SMA model stress-strain curve, 313 K

The next plot shows the load-deformation curve of a simulation at yet a higher

temperature. The salient differences in this case are the increases in the transition stresses. Both

the A  M and the M  A phase transitions occur at substantially higher load levels than either

of the two previous cases. However, the width of the hysteresis loop remains the same as the

lower temperature, reproducing the experimentally observed behavior.
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d

P 

Figure 13: SMA model stress-strain curve, 353 K

These three simulations clearly demonstrate that the model is capable of reproducing the

temperature-dependent nature of the material behavior, as well as the hysteresis loops produced

during cyclic loading where phase transformations occur. It is the model’s intrinsic ability to

capture the temperature dependence of the material response, as well as its ability to calculate

that response from a prescription of deformation, that makes it particularly suitable for use in

representing a SMA actuator in a deformation-based finite element environment.
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3. FINITE ELEMENT METHOD

By reducing the structural continuum into a finite number of discrete material elements for

evaluation, the finite element method permits analysis of arbitrary structures, even those having

irregular shapes, known material inhomogeneities, or other features that preclude the use of

classical, analytical methods. The versatility of the method makes it the most widely used

structural analysis tool.

After discretization, the approximate displacement of the structure at specific points

(nodes) is calculated and translated by appropriate differentiation into a strain field within each

element. From the strain, a stress distribution over each element is found, which, when integrated

over the element, yields nodal forces. At each node, externally applied forces and nodal forces

must satisfy equilibrium for a converged solution.

Because stress and stiffness of shape memory alloys depend on strain state and

temperature, the global FE equations are nonlinear.  Moreover, the hysteretic character of the

material requires the loading to be applied incrementally through a series of time steps ∆t.

In this chapter, after the global finite element solution equation is presented, the process

by which ANSYS solves this equation is outlined with particular emphasis on both the interaction

with the SMA model and the method by which convergence is established.
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3.1. Governing equations

The global finite element equation serves as the means by which the response of any

arbitrary structure can be analyzed. The weak form of the balance of momentum for the quasi-

static case at time tn+1= (tn+∆t) is given by (see [18] for the derivation):

∫ ++ = )()( 11 n
ext

n
T dv aPaσB (3.1.1)

where

B is the divergence or strain-displacement matrix,

σ is the Cauchy stress tensor,

Pext is the external loading vector, and

a is displacement.

Clearly, both the stress and potentially the external loading are functions of displacement

a, making this a nonlinear equation that cannot be explicitly solved, but instead requires an

iterative solution method.

The Newton-Raphson iteration scheme represents the customary means of solving

nonlinear equations. This scheme can be viewed as a linearization of the Taylor expansion of the

equation. Let R be defined in the following way:

)()( 11 ++ −= ∫ n
ext

n
T dv aPaσBR (3.1.2)

Here, R is commonly called the ‘residual’ or ‘unbalanced’ load vector [19]. With the above

definition, equation (3.1.1) becomes a homogeneous equation of the form:

0=R (3.1.3)

A Taylor expansion of equation (3.1.3) at time tn+1= (tn+∆t) for iteration (i+1) yields:
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and h.o.t. are higher order terms.
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The integral term in the above equation is defined as the tangent stiffness:
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This tangent stiffness refers to the slope of the stress-strain curve at a particular strain value. For

shape memory alloys, this slope ranges from values as high as the modulus of austenite (the

stiffer of the phases) to near zero during stress-induced isothermal phase transitions.

Generally, then, linearizing the Taylor expansion by neglecting the higher order terms, for

the i-th iteration of the time-discretized problem, the balance of momentum equation reads [20]:
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where ( )dvi
n

Ti
n ∫ ++ ≡ )(

1
)(
1 aσBI  is the internal load vector corresponding to the internal stress state .

Equation (3.1.8) reproduces the well-known Newton-Raphson iteration scheme. The

equation is iterated until some convergence criterion is achieved, typically based either on a

measure of the residual force vector R or on the size of the displacement increment )1(
1
+
+
i
naδ .

To aid in convergence behavior, a line search is used in determining the updated

displacement. This method reduces the iteration increment )1(
1
+
+
i
naδ  in cases where the full

increment may cause solution instability. The updated displacement is given by:
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where 0.05 ≤ s ≤ 1 is the line search parameter.

The line search parameter s is determined by finding the solution of the equation given in

[11] as:
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Once the line search parameter is determined, the modified iteration increment )1(
1
+
+
i
ns aδ  is used in

the FE solution equation (3.1.8).

From this global FE equation, it is apparent that extensive communication between the

global FE code and the SMA actuator model is necessary for solution. In particular, the SMA

model must supply both the tangent stiffness K and the internal stress state σ for each iteration

required at time tn+1 to the global FE solution algorithm, and for each iteration, the global FE code

must supply all the necessary data to the model, such as time and strain increments and state

variables. To ensure that this communication occurs smoothly and correctly, the performance of

the implementation has been extensively investigated through comparison to a reference

solution.
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3.2. ANSYS solution process

The general solution process used by ANSYS in the simulation of SMA actuators in

adaptive structures is outlined below. In order to solve the global FE equation, ANSYS performs

an iterative process, calling the SMA model several times per iteration for updating solution

information until convergence is achieved.

For the first sub-step of every load step, ANSYS determines the stress state and tangent

stiffness of the SMA actuators using the converged displacement solution from the final sub-step

of the previous load step and a zero displacement increment:
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where nnn aaa δ+=+
)0(
1 . In the case of the first sub-step of the first load step, zero displacement

and increment are assumed:

  0a =)0(
0 (3.2.2)

The stress and stiffness values are used to assemble the stiffness matrices and to calculate the

internal restoring force vector I.

In subsequent sub-steps, stress and stiffness values corresponding to the converged

solution from the previous sub-step are retained in memory, so that the initial call to the model is

not required.

Together with the boundary conditions, the stiffness matrix and restoring force vector are

used for determining the first iteration for the displacement increment:
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The model is called again to update the stresses based on the new strain increment, from which

the residual force vector is calculated:
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ext
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If the convergence criteria are met, ANSYS again calls the SMA model with the

converged strain and strain increment for updated values of the stress state and tangent stiffness,

and proceeds to the next sub-step. If the convergence criteria are not satisfied, then the updated

stiffness and stress values are used to calculate the second displacement increment iteration,

2
1+naδ , and so on, until the convergence criteria are satisfied, or until the user-specified maximum

number of iterations is reached. In the event that this maximum iteration number is met, then

ANSYS exits the analysis with the error that the solution did not converge.

Determination of convergence depends on the criteria specified by the user for each load

step. Choices include force convergence criterion, displacement convergence criterion, or a

combination of the two. Within each criterion, a convergence tolerance must be prescribed to

define the extent to which the solution must meet its criteria.

The force-based convergence method compares the residual force vector with a force

criterion value. Specifically, for each iteration, a reference value is calculated from the square root

sum of the squares of the applied force vector and the components of the residual force vector

that correspond to constrained nodes:
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ext
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i
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where j encompasses all nodes and k denotes constrained nodes only. The product of this

reference value and the specified convergence tolerance marks the force convergence criterion:

cnvtolFF i
ref

i
criterion

)()( = (3.2.6)

To this, ANSYS compares a force convergence value, which is determined from the square root

sum of the squares of the components of the residual force vector corresponding to degrees of

freedom:
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l

i
l

i
val RF (3.2.7)

where l denotes nodes corresponding to degrees of freedom. Convergence is achieved when the

force convergence value is less than the criterion.



36

The force convergence method is suited to instances where the slope of the load-

deformation curve is steep near the strain increment in question. In this case, small changes in

the displacement correspond to relatively large changes in the force, as illustrated by the red

dashed curve in Figure 14; in this way the force provides a more sensitive measure of

convergence than displacement.

d

P 

Figure 14: Convergence criteria selection: force - displacement curves

The blue curve in the figure represents an instance where the displacement based

convergence method may be more suitable. Here a relatively small change in the force

corresponds to a large change in the displacement, indicating a poor sensitivity in the force.

Using the force convergence method in this case introduces the possibility for a potentially large

error, since the range of force values satisfying convergence may permit an unacceptably large

range of corresponding displacements.

The displacement-based method compares the computed displacement increment to a

measure of the current displacement to determine convergence. Here, the reference value is

found from the smallest of the infinitive, L1 and L2 norms of the displacement vector, and the
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convergence criterion is the product of the reference value and the specified convergence

tolerance:
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The displacement convergence value is determined from the L2 norm of the displacement

increment:
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When the displacement convergence value is less than the convergence criterion, then the

solution is considered converged.

A combination of both force and displacement convergence criteria results in the

requirement that both criteria be met for convergence, i.e.
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i
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i
val uuFF ≤≤ (3.2.10)

The solution process is illustrated in detail for a model problem in Appendices D and E,

for both force driven and displacement driven cases, respectively.

To validate its performance, the implementation has been investigated with respect to the

influence of user-specified solution parameters. For this, the simulation results are compared to a

reference solution provided by the local-level version of the model, outside the finite element

framework.
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4. MODEL IMPLEMENTATION

As previously noted, it is evident from the global FE equation that solution data must be

communicated back and forth between the FE level and the model or element level. In particular,

element stiffness and stresses must be available to the FE code from the SMA model, which in

turn requires updated values of time and strain increments, as well as current phase composition

and temperature. The commercial finite element code ANSYS was chosen for the implementation

of the SMA model largely for the flexibility it provides in defining the necessary links between the

FE level equation and the local material constitutive law.

Specifically, this preprocessing, solution, and post-processing software package includes

a family of elements, the 18x series, that are readily modified for user-defined subroutines

through an element option called ‘usermat.’  ANSYS is also attractive because of its extensive

element library, nearly two hundred element types, which permits analysis of a wide array of

systems ranging from structural, thermal, electromagnetic, and coupled-field systems. This

coupled-field capability is especially attractive since it has the ability to handle multi-physics

problems, like coupled heat transfer and mechanics. Both of these fields play an integral role in

the behavior of SMA, as indicated by the nature of the ODE system that constitutes the SMA

model. For the current implementation, however, ANSYS provides only structural results. Since

heat transfer and temperature evolution are calculated at the model level, outside the FE

framework, this implementation should be regarded as a preliminary step towards a multi-physics

implementation.

To represent a SMA actuator, a three-dimensional link element (type LINK180) was

modified via the usermat option to reproduce the material behavior defined in the Müller-

Achenbach-Seelecke SMA model. This modification involved altering an ANSYS-supplied Fortran

code, the usermat subroutine, that in this case serves as the intermediary between the FE level

and the SMA model equations, translating the relevant input and output data into a format that

can be understood at both levels. The SMA model itself required some minor revisions to
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reformulate it from a program to a subroutine and to correctly interpret input from the usermat

subroutine. Also, a macro was written that, in addition to all the modeling, solution, and post-

processing steps needed in any typical analysis, specifies SMA material parameters and joule

heating prescription. Details of the subroutines are discussed below.

usermat subroutine

In an effort to use the material model as a separate, self-contained core subroutine, the

usermat subroutine functions primarily as the communication link between ANSYS and the SMA

model. This practice is intended to facilitate updating the model with incremental improvements

as they evolve without imposing the need to completely dissect the implementation.

Input and output data delivered to usermat and expected by the global FE code are listed

and briefly explained in Appendix A. The primary data include the material parameters, state

variables, strain and strain increment, and time and time increment.

A second function of the usermat subroutine is to explicitly calculate the material tangent

stiffness. This can be accomplished analytically by finding the full derivative of the stress. The

expression for stress is:
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where

σ is stress,

ε is strain,

εT is the zero stress strain associated with a purely M+ phase composition

Em is the martensitic elastic modulus

EA is the austenitic elastic modulus

xi indicates the composition fraction of phase (i).
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Noting that the stress is a function of strain and phase fractions, and that the phases

themselves depend on strain through their dependence on the Gibbs free energy, then the

differential stress is as follows:

2
,2

1
,1,

1221

dx
x

dx
x

dd
xxxx εε

σσε
ε
σσ

∂
∂

+
∂
∂

+
∂
∂

= (4.2)

From this, it becomes apparent that the full derivative of stress with respect to strain at

time t+∆t  is given by:
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As it is, equation (4.3) is not very useful since, although the stress can easily be differentiated

with respect to strain or either phase fraction, the quantities 
εd
dx1 and 

εd
dx2 are not known.

However, it is possible to formulate a more useful expression by introducing differential

time, in the following manner:
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Or, in a more recognizable form:
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The quantities 1x&  and 2x& are the familiar phase evolution equations of the SMA model

which can be easily calculated knowing current phase fractions and transition probabilities. The

quantity 
εd
dt

 can be recognized as the inverse of the strain rate. This value can be approximated

through a linearization using the time and strain increments of the current iteration.

The stress partial differentials are calculated explicitly, with the following results:
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with variables as previously defined. A pseudo-code of a typical usermat subroutine is given in

Appendix B.

SMA subroutine

Changes to the core material model were held to the minimum in order to facilitate

introduction of improvements without rewriting the code altogether. The primary modification

involved changing the code from a program to a subroutine that can be called from the usermat

subroutine. The following changes were incorporated for this purpose:

1. The appropriate argument list is included in the subroutine statement.

2. The material properties, joule heating magnitude and duration, and tolerance for

integration of the model’s ODE system are correlated with those defined in the macro, via

ANSYS.

3. The change in strain over the time increment is assumed to vary linearly. Roughly, the

strain at any time between the starting and ending time of a particular call to the SMA

model is defined as:
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where:

ε is strain,
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ε0 is the strain at the start of the time increment,

∆ε is the strain increment,

∆t is the time increment,

t is time, and

t0 is the time at the start of the time increment.

4. Since only stepped joule heating was applied for the examples in this study, the joule

heating is activated by ‘heating start’ and ‘heating end’ times specified in the macro and

included in the list of material properties, i.e.:
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where:

j(t) is the joule heating as a function of time t,

j0 is the magnitude of the heat pulse,

htstart indicates the start time of the heating pulse, and

htend  indicates the end time of the heating pulse.

5. The calculation of stress is redefined to account for the difference in initial strain between

the ANSYS implementation and the local-level Fortran version. In ANSYS, the initial

length denotes the length of the prestretched, fully martensitic (M+) actuator, which is

assumed to be in an unstrained state; in the local-level version, the prescription of a fully

M+ phase composition has the effect of introducing a prestrain equal to εT. Consequently,

the strains may be compared by the following relation:

( ) ( )FortranTANSYS εεε += (4.9)

With this in mind, the stress must be calculated by the following equation:
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with variables as previously defined. Compare to equation (4.1).

The rest of the model code is left unaltered. Modified versions of the material model can

easily be implemented by making the above modifications to the local-level version and

recompiling the ANSYS executable file.

MACRO

Finally, the macro read by ANSYS for the simulations plays a multifaceted role. Tables

defining material parameters and initial conditions are created. More importantly, the user-defined

element type is specified in this file. Additionally, the file includes all the modeling, solution, and

post-processing steps needed in any typical analysis.

The material property table is constructed using the ‘TB,USER’ and ‘TB,DATA’

commands. TB,USER indicates that the table contains material parameters for the element

having a user-defined material behavior. ‘TB,DATA’ provides a means to locate data sequentially

in the table. The material parameters specified in the macro appear below:

1. Austenitic modulus of elasticity.

2. Martensitic modulus of elasticity.

3. Remnant strain in a pure phase quasi-plastic condition.

4. Volume of a material lattice layer.

5. Relaxation parameter.

6. Lower temperature, for determination of the transition stress.

7. Upper temperature, for determination of the transition stress.

8. Measured A  M transformation stress at lower temperature.

9. Measured A  M transformation stress at upper temperature.

10. Difference in stress levels for the A  M and M  A transformations.
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11. Heat transfer coefficient.

12. Material specific heat.

13. Environmental temperature.

14. Material density.

15. Actuator radius.

16. Actuator initial length.

17. Tolerances for RADAU5, the integration scheme used for solving the model’s system of

ODEs.

18. Heat pulse starting time.

19. Heat pulse ending time.

20. Heat pulse amplitude.

The table for initial conditions is constructed using the ‘TB,STATE’ and ‘TB,DATA’

commands. The initial conditions include the starting martensitic phase fractions (the fraction of

austenite is implicit) and actuator temperature, which need not be the same as the environmental

temperature. However, the phase composition should be compatible with the initial temperature,

e.g. the material should not be prescribed in a fully austenitic condition when the temperature is

below that at which austenite is stable under no load. A pseudo-code for the macro file appears in

Appendix C.

For actual use, these Fortran files must be compiled into an executable file through a

compatible compiler, e.g., Compaq Visual Fortran. This is achieved by running the ANSYS-

supplied file ‘ANSCUST.bat,’ which finds all files in the directory with either a ‘.C’ or ‘.F’ extension,

and then links them dynamically through the compilation. Running ANSCUST.bat from a

command window allows viewing of errors in the compilation, critical knowledge in ensuring an

operational executable. Once compiled, ANSYS must be opened through this executable in order

to be able to call the user-defined material.
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4.1. Implementation performance evaluation

A primary goal in this study is to scrutinize the interaction of the SMA model with the

global finite element equation in order to verify the implementation. Results obtained from a

simulation using a local-level model, which requires direct prescription of stresses or strains,

provide a reference solution to which to compare the FE simulation results.

The system selected for comparison consists of a SMA wire actuator coupled to a linearly

elastic spring (see Figure 15). This combination is a basic, yet very typical case of an actuator

working against a structure that is mainly characterized by its stiffness. As such, it represents

many of the qualities emblematic of an adaptive structure.

      SMA                                    Spring

Figure 15: SMA - spring system

Actuation occurs through joule heating and convective cooling. Heating beyond the

transformation temperature induces a phase transformation in the pre-stretched SMA from the

initial martensite phase (M+) to the austenite phase (A), a process accompanied by substantial

contraction. While a SMA under a constant load exhibits a rather sharp transformation behavior,

the increasing stress level provided by the force from the stretching spring, accompanied by a

rise in the transformation temperature, extends the phase transformation over a larger range of

temperatures, as shown in the temperature-strain plot Figure 16. Conversely, cooling renders the

austenite phase unstable, leading to a re-transformation to martensite along a temperature path

that also changes with loading. In contrast to unloaded cooling, during which self-accommodating

martensite twins are likely to form, the tensile loading leads to the formation of only one variant as
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the restoring force of the spring draws the actuator out to its starting length. For the simulations,

the wire and spring are pre-tensioned.
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Figure 16: Typical strain-temperature plot in SMA-spring system

For the cycle, a hysteretic path is circumscribed. In the cases where the phase

transformation in either direction is incomplete, partial loops within the outer loop are formed, so

that the choice of paths within the strain range indicated in Figure 16 may result in any strain

value. It is notable that temperature is not unique for a particular strain. As previously mentioned,

this feature poses a unique challenge to conventional control schemes.

Actuation is controlled via the simple stepped joule heating application shown in Figure

17. The heating amplitude and duration are chosen to effect a complete transformation from

martensite (M+) to austenite for maximum actuator end-displacement. On the other hand, the wire

temperature is closely monitored during the simulation so that heating amplitude and duration

may be apportioned to ensure that it remains below a safe maximum level. Exceeding this level in

a physical application can lead to degradation of performance as the material loses its shape

recovery capability. The ability of the model to determine actuator temperature from the
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prescribed joule heating, interaction with the environment, and latent heats absorbed or released

during phase transformations makes this model particularly well-suited for representing the

actuatoric qualities of SMAs in feasibility studies.
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Figure 17: Heat pulse applied to the SMA actuator

Temperature, material phase, and displacement histories obtained from a simulation

using the standalone implementation appear in the following figures and serve as the reference

solution for the FE implementation.

Figure 18 shows the temperature history of the SMA wire over the single heating cycle

shown above. Naturally, the wire temperature rises in response to the applied heating, up to a

maximum approaching 380 K at the end of the heat pulse, and then returns to ambient

temperature over time through heat transfer with the environment. These temperature changes

have the effect of inducing phase transitions in the material, causing contraction of the actuator.

Note, however, that the rates of heating and cooling differ from the conventional exponential

behavior.
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Figure 18: Resulting temperature history

The regions of reduced rates in warming and cooling correspond to the phase transitions,

processes in which latent heats are absorbed or released (the phase evolution of the process is

shown in Figure 19). During heating, for example, as the material transforms from martensite to

austenite, latent heat is absorbed, effectively slowing the rate at which the wire temperature

climbs. Once the phase composition becomes fully austenitic, the material ceases to absorb heat

and the rise in wire temperature regains its exponential behavior. Similarly, during the austenite to

martensite transformation in cooling, latent heat is released by the SMA, leading to the slowed

rate of cooling. Clearly, the temperature intervals over which the phase transitions depend on

whether the transition is M  A or A  M. These temperature ranges parallel those shown in the

strain-temperature plot (Figure 16).

The displacement evolution depends entirely on the phase composition of the SMA,

which is shown over time in Figure 19, below. Since the actuator is in tension throughout the

simulation, only the M+ variant and austenite interact. The times over which the transformations

occur can be correlated with the intervals of slowed heating and cooling rates in Figure 18.
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Figure 19: Phase evolution

The change in crystallographic shape that accompanies the phase transformation causes

straining in the SMA wire, and consequently motion at the connection point between the wire and

the spring, a convenient point of reference. This displacement is shown in Figure 20. Maximum

stroke is achieved exactly at the time when the phase transition to austenite is completed.

Similarly, the return of the wire to its original length signals the completion of the A  M

transformation.

In the figure, zero displacement denotes the unstressed length of the purely M+ wire. The

level of pre-tension determines the offset from this zero value The high range of stroke possible

with the 75 mm length of wire prescribed for the simulation is evident in the figure. At just over 3

mm, this stroke corresponds to a 4% strain, which is typical of SMA actuators.
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Figure 20: SMA actuator stroke vs. time

Results of a parametric study on the influence of user-prescribed solution variables

appear below. This study is intended to validate the SMA model implementation into the finite

element by comparing FE simulation results with the local-level model results described above.

Specifically, the impact of the choice of convergence criterion, convergence tolerances, and time

step size, on both the solution accuracy and computational cost are shown, as is the effect of

tolerances in the implicit Runge-Kutta numerical integration scheme for the SMA model on global

convergence.

A series of simulations varying the time increment establish that the number of iterations

per time step tends towards unity with an increasing number of sub-steps under both

displacement and force convergence criteria over a wide range of convergence tolerances.

Figure 21 shows results for the case of displacement convergence criterion, Figure 22 for force

convergence criterion. This trend is to be expected since, as the time step size is decreased, so

too is the resulting equilibrium strain increment, with the result that the changes in the tangent

stiffness and element stresses are smaller than they would be with a larger time step, all other

things being equal. This in turn leads to a reduction in the number of required iterations to
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achieve convergence. Comparing Figure 21 to Figure 22, The force convergence method holds a

slight advantage in number of iteration per time step for a given tolerance.
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Figure 21: Iterations per time step, displacement convergence criterion
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Figure 22: Iterations per time step, force convergence criterion
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From one perspective, a small time step may be preferred for reducing the number of

iterations per time step, which would seem to offer the possibility to reduce computational cost.

However, increasing the number of time steps necessarily increases the total number of sub-

steps. Though the number of iterations per time increment decreases, the product of the

iterations per time step and the total number of time increments indicates an overall increase in

the total number of iterations required for a simulation.

This total iteration number is closely related to computational cost, which may be

measured by CPU time. Figure 23 and Figure 24 show how the computational cost varies with

the same choices of time steps and convergence tolerances used in the determination of number

of iterations per time increment, for displacement and force convergence criteria, respectively. In

every case, a reduction in  time step corresponds to an increase in CPU time. However, it should

be noted that halving the time increment does not double the CPU time for the range of time

steps chosen, except for the smallest time increment using the force convergence criterion.

The chosen convergence tolerance level also heavily influences the computational cost.

Without exception, tightening the convergence tolerance increases the CPU time. This trend can

be attributed to the reduction in the acceptable displacement or force imbalance.
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Figure 23: CPU time, displacement convergence criterion
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Figure 24: CPU time, force convergence criterion
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Ultimately, however, in evaluating the performance of an actuator, the error in

displacement is the primary quantity of interest since this gives a measure of the accuracy or

exactness of the simulation.  Defining a root mean square error as

( )∑ −=
n

referencenn aa
N

e 2
,

1   (4.1.1)

where a  is the displacement at the node connecting the SMA wire and the spring, referencea  is the

reference solution calculated with the local-level model version, n indicates the solution time, and

N is the number of data points, the results show that the error is more sensitive to time step size

than convergence tolerance. This is shown in Figure 25 and Figure 26 for both displacement and

force convergence criteria, respectively. In both cases, initial tightening of the convergence

tolerance reduces the error of the simulation, as does decreasing the time increment, except for

the two spurious data points in Figure 25. However, tightening convergence tolerances beyond

10-4 does not notably improve the accuracy of the results, though, recalling the trends in

computational cost, the tighter tolerances increase computational cost.

For a better interpretation of the results, the error values shown in the figures may be

compared to the maximum end displacement of the SMA actuator, 3.05 mm. Normalizing the

error by this displacement, an averaged error of 10-4 mm represents a 3.28% deviation from the

reference solution, and an averaged error of 10-6 represents a 0.0328% deviation. Of course, the

acceptable error is dictated by the specific application under investigation.
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Figure 25: Averaged displacement error, displacement convergence criterion
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Figure 26: Averaged displacement error, force convergence criterion
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The importance of the time increment may be understood by recognizing that path

dependent behavior is resolved only as fine as the time step. In a material exhibiting strongly non-

linear and hysteretic behavior, such as shape memory alloy, too large a time step exposes the

possibility of skipping over important path dependencies. This is because global FE equilibrium is

only required at the end of the time step, not throughout the increment. Due to the material path

dependencies, the solution at the end of a time increment is directly linked to the straining

process throughout the increment. As previously mentioned, for this implementation, strain is

assumed to vary linearly through a time increment at the model or element level. A large time

step size introduces a possibly large error resulting from this assumption. On the other hand, a

very high number of sub-steps increases accuracy, at the cost of computational time. A

compromise between CPU time and displacement error is desirable for this reason.

Figure 27 and Figure 28 show the displacement error curves superimposed on the CPU

time curves for the two convergence criteria. These plots permit an assessment of the

relationship between accuracy and cost; as such they might justifiably be called efficiency plots.

For a particular acceptable level of error, the combination of solution parameters that minimizes

computational cost can be determined from the plots. For example, if a 3.28% deviation is

acceptable, then an average error of 10-4 is required. A glance at the efficiency plots indicates

that CPU time can be minimized by choosing the force convergence criterion with a tolerance of

10-3, using a time step of 0.25 seconds. If, however, an average error of 2x10-5 is required, then

the plots show that a force convergence tolerance of 10-4  and a 0.125 second time step minimize

the computational cost.
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Figure 27: Efficiency plot, displacement convergence criterion
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Figure 28: Efficiency plot, force convergence criterion
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As a final comment it is worthwhile noting the effect of changing the tolerance levels in

the implicit numerical integrator called by the SMA model. Figure 29, which shows results for a

time increment of 0.25 seconds and a force convergence tolerance of 10-4, illustrates the nearly

‘on-off switch’ influence that this tolerance has on global convergence behavior. Though the onset

of instability at the FE level is very sudden, once below this level convergence occurs with little or

no variation in the number of iterations required at the FE level. Similar behavior is seen with

other time increments and convergence tolerances, though the critical tolerance value becomes

smaller with the time increment and tighter convergence tolerance. Consequently, the tolerance

for the implicit integral solver was set at a suitably low figure.  For the simulations this tolerance

was set at 10-8 for all time increments.

10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2
300

320

340

360

380

400

420

440

460

480

500

SMA Implicit Integrator Tolerance

N
um

be
r o

f I
te

ra
tio

ns
 a

t F
E

 L
ev

el

Figure 29: Influence of tolerance on Runge-Kutta integration scheme
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5. OTHER APPLICATIONS

5.1. Adaptive beam

To attempt to simulate an adaptive structure with more than one SMA actuator, an

adaptive beam actuated by two SMA actuators was modeled. This simulation approximately

replicates a lab experiment carried out in [21], though exact material properties and dimensions

are unknown. The system is comprised of two SMA wires mounted to stiff rectangular standoff

stubs, which are in turn mounted to the flexible beam (see Figure 30).

Figure 30: Beam discretization

Material properties and dimensions are shown in the table, below. Here, the flexible

beam is represented by a typical thermoplastic material, and the SMA stubs are composed of

aluminum. The SMA actuators, at 50 micrometers diameter, represent nearly the thinnest

commercially available wire size.
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Table 1: Adaptive beam material properties and dimensions

Units
Youngs modulus 2.756 GPa
Length 168.75 mm
Width 20 mm
Height 1 mm

Youngs modulus 70 GPa
Length 10 mm
Width 2.5 mm
Height 2.5 mm

Length 75 mm
Diameter 0.05 mm

Flexible Beam

Standoff Stubs

SMA Actuators

Joule heating is applied asynchronously, in the manner depicted in Figure 31. As shown,

the right-hand actuator is heated at a relatively low power over a seven second interval, while the

left wire is heated at a significantly higher magnitude during the interval over which the right wire

is heated, but for only one and a quarter seconds.
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Figure 31: Beam simulation, joule heating prescription
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In the simulations, the beam endpoints are constrained to horizontal movement, and the

left endpoint is additionally prohibited from moving up or down. Convergence was based on the

force criterion, with a tolerance of 10-4, and a time increment of 0.25 seconds was used.

The resulting displacement at key times is shown in the following series of plots.

Figure 32 shows the deformed shape after the right hand wire has been heated for four and a half

seconds. As shown, it has partially transformed from martensite to austenite, but continues to

contract with additional heating. Only the right half of the beam has been bent, since the left-hand

wire has not yet been heated.
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Figure 32: Beam deflection, right wire heated

Figure 33 shows the deformed beam while both actuators are being heated. At this point,

the beam is bent into an ‘S’ shape approximating its second mode. As the left wire cools, the

restoring force in the beam draws the actuator out to its original length, as shown in Figure 34 at

13.25 seconds into the simulation.
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Figure 33: Beam deflection, both wires heated
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Figure 34: Beam displacement, left wire cooled
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The right-hand wire is similarly draw out to its original length as it cools, so that, at the

end of the simulation, the beam has returned to its original shape.

This relatively simple, two-actuator system confirms that the implementation is capable of

analyzing several SMA actuators with differing heat applications, which is vital for many potential

applications.
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5.2. Aerospace application

From the validation of the SMA model implementation into the FE framework through a

basic system, to a two-SMA actuator adaptive beam, consider now an illustration of the potential

of the implementation in a more practical example of an adaptive structure. An aerospace

application was chosen because of the preponderance of applications of adaptive structures in

this field. Specifically, a flexible trailing edge of an airplane wing along the lines of a concept

proposed by the Defense Advanced Research Projects Agency (DARPA), shown in the center of

Figure 35, formed the basis of the simulation. Although the “Distributed Stack Concept” specifies

piezoceramic actuation, for this study shape memory alloy actuators were used for actuation in

this concept.

Figure 35: “Smart Wing” concepts [22]
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The trailing edge section contains twelve SMA wires, six each above and below the

center laminate, oriented in a manner similar to that shown in the “Distributed Stack Concept.”

Material constants and dimensions used for the simulations appear in Table 2. The elastic

modulus of the center beam and outer skins describes a typical polyimide thermoplastic. The total

length of the trailing edge is prescribed at 420 mm, each of the SMA actuators having a length of

30 mm and diameter of half a millimeter.

Table 2: Trailing edge section material constants

The section is modeled with shell elements (SHELL63) and represents one of possibly

many such sections continuously spanning the trailing edge of a wing.  The model mesh and

element types appear in Figure 36.
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Figure 36: Trailing edge discretization

Elastic Modulus [GPa] Thickness [mm] Width [mm]
Center Beam 2.756 2.5 10.0
Skins 2.756 0.75 10.0
SMA Mounts 3.00E+04 25 10.0
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The black elements attached to the red beam elements represent the SMA actuators.

Upper wires and lower wires are assigned unique element type numbers to allow different heating

inputs to be applied to each set of wires. For the simulations, the left-hand node of the centerline

beam is constrained in all directions, and the left-hand node of each of the wing skins is

constrained to move only left or right.

The simulations use a time increment of 0.25 seconds and a displacement convergence

tolerance of 10-4. Heating is applied in an asymmetric manner as shown in Figure 37. All upper

wires are heated at a relatively low power over a relatively long duration. As the upper wires are

cooling, the lower wires are heated with a much higher power but for a shorter duration. Wire

temperature in both cases never exceeds 380 K, preserving the performance characteristics of

the wires.
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Figure 37: Trailing edge joule heating input

A convenient reference point to track the motion of the trailing edge is the centerline end

node. The tip deflection history of this node appears in Figure 38. The maximum deflection is
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nearly 13 cm, which, at over a quarter the overall length of the section, represents a sizeable

amount.

Note that the heat pulse magnitude and duration influence the rate at which the section

deflects. The first pulse, with a low magnitude and long duration, causes a deflection that

increases over several seconds to its maximum. In contrast, the second, powerful but brief heat

pulse results in a faster response, maximum displacement being attained within a second. These

details indicate that the implementation permits calculation of the time-dependent reaction of an

adaptive structure in response to a prescribed electric power input.
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Figure 38: Wing tip deflection

Another interesting feature of the displacement plot is that the amplitude of the

displacement on the downward side is less than the high side. This can be explained by the

asymmetric fixation of the wires within the structure, which produces asymmetric displacement
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behavior. Consider only the two SMA elements closest to the origin; the left-hand lower wire

alone cannot produce the same end displacement that the left-hand upper wire alone can

produce simply because the arm upon which it works is shorter. The same holds for each upper

wire and its lower complement down the length of the section.

The deformed shapes corresponding to maximum deflections are shown below.
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Figure 39: Trailing edge deformed shape, upper wires heated



69

1

X

Y

Z

DISPLACEMENT

STEP=1
SUB =64
TIME=16
DMX =.105831

Figure 40: Trailing edge deformed shape, lower wires heated

This simulation demonstrates the ability of the implementation to simulate a relatively

complex structure having multiple SMA actuator elements.
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5.3. Micro-actuator

Shape memory alloys are not only attractive in aerospace applications, where their light

weight and potential for structural integration are well-suited, but also potentially in micro-

actuation devices. In these applications, their infinite resolution and clean-room compatibility

present notable attributes. An added benefit in SMA micro-actuators is that, as the ratio of surface

area to volume becomes smaller, the actuation driving frequencies can be much higher than in

macro-scale applications. This is due to increase in the rate at which heat can be transferred to

the environment; with a small surface area to volume ratio, the material cools with almost no

gradient through the thickness. In contrast, macro-scale applications require longer cooling times

since heat must not only be transferred from the surface, but also conducted from the interior

volume.

The task for this simulation was to design a device to be fabricated of silicon with a thin

SMA film deposited for actuation. The required total stroke of the interrogation region was set at

100-150 µm. The recommended configuration appears below, in Figure 41.

Figure 41: Micro-actuator dimensions (in mm)
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The dimensions shown are in millimeters. The proposed thickness of the SMA film is about 2 µm.

To obtain this configuration, the device was simulated over a series of design iterations,

where dimensions were minimized while maintaining the operational displacement requirement

and not exceeding a critical stress level in the brittle silicon.

Although silicon is anisotropic in nature, for simplicity the material was approximated by

an isotropic one with averaged material properties representing a crystal in the <100> plane, as

given in [23]. The Youngs modulus was set at 150 GPa, and Poisson’s ratio at 0.17. The silicon is

modeled with solid elements, ANSYS type SOLID45.

Figure 42 shows the maximum displacement. At 125 µm, this falls within the specified

requirement, though the figure could be increased with either a larger actuator, increasing

actuation force, or larger device dimensions, increasing the leverage of the actuator.

Figure 42: Micro-actuator, maximum displacement

However, since silicon is a brittle material, the stress level in the silicon plays an

important role in this device. A second goal in the design of the device was to maintain the

maximum stress level in the same order of magnitude as the failure stress nominated in [23]. The



72

von Mises stress is shown in Figure 43. The maximum stress, occurring at the flexing radius

indicated by ‘mx’ in the figure, is about 530 MPa, which is less than twice the conservative 300

MPa failure stress promoted in [23]. A less conservative failure stress figure is about 7000 MPa

[24]. With this in mind, for a first approach, the calculated maximum stress seems acceptable.

Figure 43: Micro-actuator, von Mises stress under maximum deformation
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6. CONCLUSION

This thesis has presented the implementation of the Müller-Achenbach-Seelecke shape

memory alloy actuator model into the commercial finite element code ANSYS. Finite element

simulations of a SMA-spring system show that the implementation functions as intended. The

parametric study of solution parameters suggest that accuracy and convergence depend not only

on the chosen tolerance values both at the FE level and at the element level, but also on the time

increment. Along with accuracy comes increased computational cost, which, in the manner

presented in this study, may be minimized for a desired accuracy. The example simulations

demonstrate the potential of performing feasibility studies of potential applications on multiple

scales. The implementation represents a versatile and novel tool for the simulation of adaptive

structural components using SMA actuators.

For future work, a more thorough study of convergence behavior for the more complex

cases may provide additional insight into the relationship between the solution parameters. As

mentioned previously, any improvements in the SMA model may be easily incorporated into the

implementation. Use of the improved, multi-crystal SMA model will increase the ability of the

implementation to simulate the experimentally observed behavior of SMA actuators. Finally,

widening the scope of the implementation to a multi-physics environment, where both the

structural response and heat transfer are analyzed at the finite element level may further increase

the capabilities of the simulations.
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APPENDIX A: ANSYS / element data exchange

The data passed between ANSYS and the modified element type link180 are listed

below, along with a brief explanation of each item [25]:

Inputs to usermat.F:

1. matId: material number (integer variable)

2. elemId: element number (integer variable)

3. kDomIntPt: material integration point number (integer variable)

4. kLayer *: layer number (integer variable)

5. kSectPt *: section point number (integer variable)

6. ldstep: load step number (integer variable)

7. isubst: sub-step number (integer variable)

8. nDirect: number of direct stress components (integer)

9. nShear: number of shear components (integer)

10. ncomp: sum of nDirect and nShear (integer)

11. nstatev: number of state variables (integer) (defined by macro command

TB,STATE)

12. nProp: number of properties defined in the macro (integer) (defined by

command TB,USER)

13. Temp: temperature at the incremental start time (double precision variable)

14. dTemp: temperature increment (double precision variable)

15. Time: time at the start of the increment (double precision variable)

16. dTime: time increment length (double precision variable)

17. Strain: initial strain of time increment (double precision array)

18. dStrain: strain increment (double precision array)

19. prop: property values defined in the macro (double precision array)
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20. coords: coordinates of integration points (double precision 3x3 matrix)

21. rotateM *: incremental rotation matrix (double precision 3x3 matrix)

22. defGrad_t *: initial deformation gradient (double precision 3x3 matrix)

23. defGrad *: final deformation gradient (double precision 3x3 matrix)

24. stress: stress state at Time (double precision array)

25. statev: state variables at Time (double precision array)

26. sedEl *: elastic work

27. sedPl *: plastic work

28. epseq *: = 0

29. tsstif *: transverse shear stiffness  (double precision array)

30. epsPl *: plastic strains (double precision array)

31. variables *: other variables (up to 10) passed to the element from the macro (feature

does not work)

Outputs from usermat.F:

1. stress: updated stress state at Time + dTime (double precision array)

2. statev: updated state variables at Time + dTime (double precision array)

3. sedEl *: see above

4. sedPl *: see above

5. epsPl *: see above

6. tsstif *: see above

7. keycut *: key for loading bisection control

8. dsdePl: Jacobian, tangent stiffness (double precision array)

9. epsZZ *: out of plane strain in plane stress problems only

Items marked with an asterisk play no role in the link180 element. The flow of data is shown

in Figure 44, below.
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Figure 44: ANSYS data flow chart
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APPENDIX B: usermat.F subroutine

The usermat subroutine in this implementation serves as a medium through which data is

passed from the global FE level to the SMA material model, which remains essentially unchanged

from its local form. As such, its primary function is to call the SMA model subroutine, passing all

relevant data, and to translate the model’s output into a form useful at the global FE level. This

includes calculating the stress at the end of the time increment and determining the tangent

stiffness. Initial conditions are specified in the macro through the ‘TB,STATE’ command.

A pseudo-code for the usermat subroutine appears below:

Usermat pseudocode:

subroutine usermat(

     &                   matId, elemId,kDomIntPt, kLayer, kSectPt,

     &                   ldstep,isubst,keycut,

     &                   nDirect,nShear,ncomp,nStatev,nProp,

     &                   Time,dTime,Temp,dTemp,

     &                   stress,statev,dsdePl,sedEl,sedPl,epseq,

     &                   Strain,dStrain, epsPl, prop, coords,

     &                   rotateM, defGrad_t, defGrad,

     &                   var1, var2, var3, var4, var5,

     &                   var6, var7, var8, var9, var10)

      implicit none

      INTEGER

     &                 matId, elemId,

     &                 kDomIntPt, kLayer, kSectPt,

     &                 ldstep,isubst,keycut,

     &                 nDirect,nShear,ncomp,nStatev,nProp
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      DOUBLE PRECISION

     &                 Time,    dTime,   Temp,    dTemp,

     &                 sedEl,   sedPl,   epseq

      DOUBLE PRECISION

     &                 stress  (ncomp  ), statev  (nStatev),

     &                 dsdePl  (ncomp,ncomp),

     &                 Strain  (ncomp  ), dStrain (ncomp  ),

     &                 epsPl   (ncomp  ), prop    (nProp  ),

     &                 coords  (3),       rotateM (3,3),

     &                 defGrad_t(3,3),    defGrad(3,3),

     &                 var1, var2, var3, var4, var5,

     &                 var6, var7, var8, var9, var10

c***************** User defined part *************************************

      real*8 ea,ux,dux

      real*8 em,gamt,gam, y(3)

      real*8 pap,pam,pma,ppa

      real*8 nume,deno,dsde,dsdx1,dsdx2

      real*8 x1dot,x2dot,edot,xaus

      real*8 emea,test1,test2,test3

      real*8 yold(3),dx1de,dx2de

      real*8 part(3),dy(3),tst(2)

      real*8 endstrain,siga,sigm

      real*8 disp,ddisp

      integer numprop,numstatev,first,ii

      data first /0/

      data (yold(ii),ii=1,3) /3*0.0d0/

      if (first .eq. 0) then

      call opfile
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      endif

      if (elemid .eq. 1) then

      first = first + 1

      endif

  ea = prop(1)

  em = prop(2)

  gamt = prop(3)

      do ii = 1,nStatev

          yold(ii) = statev(ii)

      end

      numprop   = nProp

      numstatev = nStatev

      keycut    = 0

      disp = Strain(1)*prop(19)

      ddisp = dStrain(1)*prop(19)

c******************************************************

  call sma(statev,Strain,dStrain,ncomp,

     % Time,dTime,prop,numprop)

c******************************************************

c CALCULATE Stress:

      y(1) = statev(1)

      y(2) = statev(2)

      y(3) = statev(3)

      endstrain = Strain(1) + dStrain(1)

      call stressstrain(stress,endstrain,y,numstatev)

      temp = y(3)

      call transstress(siga,sigm,temp)



82

      call pplsa (ppa,stress,sigm,temp)

      call papls (pap,stress,siga,temp)

      call pmnsa (pma,stress,sigm,temp)

      call pamns (pam,stress,siga,temp)

c CALCULATE Jacobi-Matrix:

      xaus  = 1.0d0-y(1)-y(2)

      emea  = em/ea

      nume  = Strain(1) + dStrain(1) - (y(1) - y(2))*gamt

      deno  = y(1) + y(2) + em/ea*(xaus)

      dsde  =  em/deno

      dsdx1 = -em*((1.0d0-em/ea)*nume/deno/deno + gamt/deno)

      dsdx2 = -em*((1.0d0-em/ea)*nume/deno/deno - gamt/deno)

      dx1de = (y(1)-yold(1)) / dStrain(1)

      dx2de = (y(2)-yold(2)) / dStrain(1)

      x1dot = -y(1)*ppa + (xaus)*pap

      x2dot = -y(2)*pma + (xaus)*pam

      edot  = dStrain(1)/dTime

c 'exact' Jacobi matrix

      if (dTime .eq. 0.0d0 .or. dStrain(1) .le. 1.0d-20) then

         dsdePl(1,1) = dsde

      else

      dsdePl(1,1)= max(dsde+dsdx1*x1dot/edot+dsdx2*x2dot/edot,5.0d8)       c   (1)

      endif

      return

      end

(1) This minimum bound is introduced for numerical stability.
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APPENDIX C: macro pseudo-code

The macro serves several purposes. First, it indicates that a user defined element will be

used. Second, it defines at table listing all the necessary material properties the SMA model

requires. Third, it defines the solution parameters, i.e. analysis type, convergence criteria,

convergence tolerances, iteration scheme, time step, and load steps. Also, the system under

inquiry is modeled at the macro level, and all necessary boundary conditions are defined.

A pseudo-code for a typical macro appears below.

Macro pseudo-code:

/PREP7

ET,1,link180

R,1,1e-6 

!

! define SMA material parameters, put them into a table, and define initial state variables:

!

ea = 71.1e9

em = 30.9e9

gamt = 0.044

vs = 5e-23

taux = 1e-2

tl = 323

tu = 353

tauatl = 431.58e6

tauatu = 663.16e6

delta = 295e6

htcoeff  = 2.3e1
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cv = 0.45e3

extemp = 273

xp0 = 0

xm0 = 0

t0 = 273

rho = 6.4e3

radius = 9e-7

length0  = 6.35e-2

atol = 1e-6

rtol = 1e-6

!

mat,1

tb,user, 1 , 1, 21

tbdata , 1  , ea   , em , gamt , vs , taux  , tl

tbdata , 7  , tu   , tauatl  , tauatu  , delta, htcoeff  , cv

tbdata , 13, extemp, xp0, xm0 , t0 , rho  , radius

tbdata , 19, length0, atol, rtol

tb,state,1,,3

tbdata , 1  , xp0    , xm0 , t0

tblist,user

!

! create the model and mesh it

!

K,1,0,0,0, 

K,2,1,0,0,  

LSTR,1,2

LESIZE,ALL, , ,1, ,1, , ,0, 
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LMESH,1  

!

! define solution parameters, boundary conditions, and applied forces / displacements for

! load steps

!

ANTYPE,0  

AUTOTS,Off

NROPT,AUTO, ,OFF

cnvtol,f,,1e-3

!

dk,1,all,0.0d0,,1

dk,2, uy,0.0d0,,1

dk,2, uz,0.0d0,,1

!

time,20.0

dk,2,ux,0.06

KBC,0

NSUBST,50,0,0,0

OUTRES,ALL,ALL,

lswrite,1

!

time,60.0

dk,2,ux,-0.06

KBC,0

NSUBST,100,0,0,0

OUTRES,ALL,ALL,

lswrite,2

!
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time,80.0

dk,2,ux,0.00

KBC,0

NSUBST,50,0,0,0

OUTRES,ALL,ALL,

lswrite,3

!

FINISH

!

! solve

!

/SOLU

outeq,on

/STATUS,SOLU

LSSOLVE,1,3,1

FINISH
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APPENDIX D: ANSYS solution process, force control example

Shape memory alloys exhibit a strongly nonlinear behavior that, in the perfect single

crystal, quasi-static (isothermal) case, can be approximated by a multi-linear stress-strain curve.

In order to elucidate the solution process used by ANSYS with such materials, the simplest

related example is chosen, a bi-linear material with a three node, two element system.

Consider the model system, shown below:

Figure 45: Model system, 2 links, 3 nodes, for example solution process

Let the material behavior be defined as in Figure 46:
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Figure 46: Bi-linear material behavior used in example solution process
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Let a tensile force be prescribed at node 3.  From
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For the model problem, with L0 = A = 5, and an initial load step of Pext
3,1 = 0.375 (3/8), the

iteration scheme works as follows:

Force convergence criterion:

The tangent stiffness and element stresses are calculated from an assumed initial

displacement increment of zero; hence element stress and restoring force are zero, as are nodal

forces I(0)
all,1.  Then, for the first iteration: (note: kall,1

(0) = 1 and δa(all)
1,1=0)
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Checking for convergence:
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where Fen is force corresponding to element stresses.
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The reference force used in setting the convergence criterion is found from the

magnitude of the applied force vector and the components of the residual force vector

corresponding to constrained nodes. In this case, the reference force is:

5303.0375.0375.0 22)1( =+=refR

With a convergence tolerance of 10-6, the convergence criterion is 0.5303 x 10-6.

The force convergence value is calculated from the magnitude of the components of the

residual force vector corresponding to degrees of freedom (nodes 2 and 3), in this case zero.

Since the force convergence value is less than the criterion, solution is converged after only one

iteration, which is to be expected in a linear regime.

Consider a second load step, with a force application of 0.625 (5/8) on node 3.  Note that

a0 comes from the converged solution of the previous load step.
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Corresponding nodal displacements are (initial values correspond to the previous load step

converged solution):
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Checking for convergence:
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The reference force is:

8409.05625.0625.0 22)1( =+=refR

The convergence criterion is 0.8409 x 10-6.

The force convergence value here is 0.0625, which is greater than the criterion. Hence,

the solution is not converged and another iteration is needed.

For the next iteration:

16/98/52/2/

02/
)2(
2,3

)2(
2,2

)2(
2,3

)2(
2,2

−=+−

=−

aa

aa

δδ

δδ
(A4.8)

2/)2(
2,3

)2(
2,2 aa δδ =

8/1

4/1
)2(
2,2

)2(
2,3

=

=

a

aδ
(A4.9)

Corresponding nodal displacements are:
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Now check again for convergence:
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The reference force is:

8839.0625.0625.0 22)1( =+=refR

The convergence criterion is 0.8839 x 10-6.

The force convergence value here is 0.0, which is less than the criterion. Hence, the

solution is converged after two iterations. Because of the change in the tangent stiffness, some

iterations should be expected for solution convergence.

To sum up, in the case of a bi-linear material under the force convergence criterion, the

solution in a force-driven simulation converges in one iteration in a linear regime and in two

iterations over a slope discontinuity in the stress-strain curve.

Displacement convergence criterion:

Under displacement convergence criterion, the process is identical up to equation A4.4.

From this displacement, a convergence criterion is determined based on the tightest of the

infinitive, L1, and L2 norms of the displacement vector. In this case,
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If the convergence tolerance is 10-6, then the chosen convergence criterion is 0.75 x 10-6. The

displacement convergence value is determined from the L2 norm of the displacement increment,

which for the first iteration of the first sub-step is the same as the L2 norm of the displacement,

here 0.8385. Since this value is greater than the convergence criterion, a second iteration is

required.

However, the second iteration, using the updated values shown in equation A4.5,

produces no incremental change in the displacements, so that the L2 norm of the second iteration

increment is zero:
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This leads to a converged solution after the second iteration.

This process repeats in the second load step, so that convergence is achieved after three

iterations. According to this case, then, displacement convergence requires one extra iteration

per load step over the force convergence criterion.
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APPENDIX E: ANSYS solution process, displacement control example

Shape memory alloys exhibit a strongly nonlinear behavior that, in the perfect single

crystal, quasi-static (isothermal) case, can be approximated by a multi-linear stress-strain curve.

In order to elucidate the solution process used by ANSYS with such materials, the simplest

related example is chosen, a bi-linear material with a three node, two element system.

Consider the model problem, shown below:

Figure 47: Model system, 2 links, 3 nodes, for example solution process

Let the material behavior be defined as in Figure 48:
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Figure 48: Bi-linear material behavior used in example solution process
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Let a positive displacement be prescribed at node 3. Then the conditions
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The expanded matrix equation is:
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To reiterate, for iterations other than the first, both the first and third equations, where

displacement is prescribed, should not be used for solution. In the first iteration,

δa(1)
3,1 = the prescribed displacement increment.

For the model problem, with L0 = A = 5, and an initial load step of a3,1 = 0.75 (3/4), the iteration

scheme works as follows:

Force convergence criterion:

The tangent stiffness and element stresses are calculated from an assumed initial

displacement increment of {δa(0)
all,1} = 0 (hence element stress and restoring force are zero, as

are nodal forces I(0)
all,1).  Then, for the first iteration (note: kall,1

(0) = 1 and δa(all)
1,1=0), all known
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quantities in the system of equations are moved to the right-hand-side of the equation for solving

for the incremental displacement of node 2:
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Then, for the first iteration:
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Checking for convergence:
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The residual force vector is:
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The reference force used in setting the convergence criterion is found from the

magnitude of the applied force vector, which is zero, and the components of the residual force

vector corresponding to constrained nodes. In this case, the reference force is:

5303.0375.0375.0 22)1( =+=refR
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With a convergence tolerance of 10-6, the convergence criterion is 0.5303 x 10-6.

The force convergence value, calculated from the magnitude of the components of the

residual force vector corresponding to degrees of freedom (node 2 only, in this case), is zero.

Since the convergence value is less than the criterion, the solution is converged after only one

iteration, which is to be expected in a linear regime.

Consider a second load step, with a displacement prescription of 1.5 (3/2) on node 3.
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So, the first iteration is:

75.02 )1(
2,2 =aδ

or,

375.0)1(
2,2 =aδ (A5.7)

The corresponding nodal displacement is:
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2,2 =+=+= aaa δ

Checking for convergence:
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The residual force vector is
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In this case, the reference force is:

8839.0625.0625.0 22)1( =+=refR

With a convergence tolerance of 10-6, the convergence criterion is 0.8839 x 10-6.

The force convergence value is again zero. Since the convergence value is less than the

criterion, the solution is converged after only one iteration. This unexpected outcome results from

the fact that the ratio of stiffnesses between the elements remains constant, even though the

actual stiffness value changes.

Displacement convergence criterion:

Under displacement convergence criterion, the process is identical up to equation (A5.5).

From this displacement, a convergence criterion is determined based on the tightest of the

infinitive, L1, and L2 norms of the displacement vector. In this case,
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If the convergence tolerance is 10-6, then the chosen convergence criterion is 0.75 x 10-6.

The displacement convergence value is determined from the L2 norm of the displacement

increment, which for the first iteration of the first sub-step is the same as the L2 norm of the

displacement, here 0.8385. Since this value is greater than the convergence criterion, a second

iteration is required.

However, the second iteration, using the updated values shown in equation A5.5,

produces no incremental change in the displacements, so that the L2 norm of the second iteration

increment is zero:

( )( ) 0)1(
1,21,2

)2(
1,2

)1(
1,2

)1(
1,1 =−=+ IPakk extδ (A5.8)

This leads to a converged solution after the second iteration.

This process repeats in the second load step, so that convergence is achieved after two

iterations. According to this case, then, displacement convergence requires one extra iteration

per load step over the force convergence criterion.


