
ABSTRACT

Hacıömeroğlu, Fatih. On-line Measurement-based Capacity Allocation Schemes (Under the

direction of Dr. Michael Devetsikiotis).

Today’s high-speed packet-switched networks are faced with the task of handling

an increasing amount and variety of services, requiring different QoS constraints. To cope

with this demand, the networks need dynamic and measurement-based resource allocation

algorithms. For this task, the choice of appropriately accurate but also practically imple-

mentable algorithms is crucial.

In this thesis, we perform a comparative study of alternative on-line algorithms,

we analyze their complexity, and perform comparisons via simulation experiments. Our

motivation is to use these algorithms in the data plane of “self-sizing” frameworks, and

make use of their output in taking control plane decisions either locally or globally, in an

on-line fashion.

Due to the dynamic characteristics of the algorithms, we encounter the choice of

time resolution, namely the setting of measurement time scale and window. After numerous

simulations, we gain insight on the critical effect of these choices on the performance of the

algorithms. We deduce that the time scale parameter itself is to be determined dynami-

cally so that measurement-based algorithms can perform successfully independent from the

varying traffic conditions. Finally, we demonstrate the effectiveness of this new approach

over the static one, in our measurement-based capacity allocation algorithms.
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Chapter 1

Introduction

The demand on high-speed networks is becoming higher and tougher to satisfy

everyday, with the invention and commercialization of new bandwidth-hungry applications.

Network resources need to be increased accordingly, to sustain an acceptable level of service.

However, it is not always feasible to increase resources at the same pace of the increase in

the traffic demand. In this regard, the bandwidth allocation in high-speed QoS-oriented

networks is critical and needs to be made dynamic, adaptive and measurement-based, rather

than static, to attain a more efficient use of resources. Especially for network links shared

through statistical multiplexing, adaptive bandwidth allocation algorithms based on traffic

measurements can achieve important gains.

In this context, it is very important to choose measurement methods that sat-

isfy stringent constraints in terms of both accuracy and complexity. In this thesis, first,

we identified practically-implementable dynamic capacity allocation algorithms, which are

based only on measurements instead of unreasonable assumptions about the incoming traf-

fic. Then, after performing their analytical comparisons, we selected promising ones for

further simulation-based performance comparisons. We also tested the algorithms in a real

network experiment and show the applicability of the algorithms into practical world. In

the light of the simulation results, we deduced the critical effect of measurement time scales

on the performance. Finally, we proposed an approach overcoming this dependency by

adjusting the measurement time scale dynamically.
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1.1 Motivation

The algorithms in this thesis have the potential to be used in the data plane of

self-sizing network frameworks such as [26, 10, 27] and in which every node in the network

runs a measurement-based bandwidth allocation algorithm for every traffic class or “band”.

Periodically, the output of the algorithms, which give the required capacity demands of the

traffic types, are collected, and either locally or globally, a control plane action is taken (i.e.,

the virtual links or scheduling allocations are re-calculated) so as to minimize a predefined

objective such as bandwidth cost or maximize revenue.

Our purpose is to obtain a feasible algorithm which is able to use bandwidth

optimally while still obtaining a performance close to the QoS target. The ideal algorithm

should not require any knowledge or unreasonable assumptions on the traffic, and be based

completely on measurements.

1.2 Background

Most of the algorithms in this thesis naturally originated from the effective band-

width concept, since effective bandwidth is the amount of the required bandwidth to be

allocated for the satisfaction of a QoS constraint. Furthermore, in the literature, we iden-

tified two research areas which are related to our aim. These are network traffic prediction

[17, 19, 12, 7] and measurement-based admission control (MBAC) [1, 4, 20].

MBAC algorithms are composed of separate measurement procedure and admis-

sion criterion. We investigated the applicability of these separable measurement procedures

for our purposes. However, other than the trivial Gaussian Approximation bandwidth esti-

mator, such methods are not suitable for on-line re-sizing due to the fact that either they

rely on unreasonable information (i.e., they presume that a priori traffic descriptors, such

as present number of connections are known) or they have unacceptable computational

complexity.

These incompatibilities stem from the different design considerations between

measurement-based estimators in MBAC and self-sizing frameworks. First, MBACs are

designed to operate only in the ingress nodes, where admission decisions are taken. Second,

the period of execution of MBAC algorithms is at the connection level time scales. Our

aim is to obtain on-line algorithms, working on every node in the network. Therefore their
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timescale and computational complexity are smaller than connection level timescales. Simi-

lar to MBAC algorithms, traffic predictors do not suit our consideration either. The reason

this time is not because they are centralized and computationally complex as in MBAC

algorithms, but that they do not target a QoS constraint.

1.3 Contribution

First, despite several specific techniques, such a comprehensive comparison study,

under the aim of on-line resource allocation, has not been carried out previously. And more

important than comparison, this thesis addresses the measurement time scale problem,

which is present in any measurement-based algorithm.

To illustrate, we observed that the performance of the algorithms change drasti-

cally, when measurements are taken every 0.01s. instead of every 1s. Moreover, the specific

measurement time values are relative to the input traffic, i.e. 0.01s. can be a good sam-

pling interval for traffic A, but 1s. can be a good sampling interval for another traffic

B. However, our aim was to obtain an independent algorithm, not based on a priori traf-

fic knowledge. Therefore, instead of taking a static sampling interval, we calculated and

adjusted the sampling interval based on traffic measurements themselves.

In short, besides comparing on-line capacity allocation algorithms to be imple-

mented in real-switches, this thesis points out the weakness of using static measurement

time scale, and shows the robustness of using dynamic measurement time scale under vary-

ing traffic conditions.

1.4 Outline

The remainder of the thesis is structured as follows. Chapter 2 defines several

measurement-based on-line capacity allocation algorithms and discuss their practical im-

plementation issues such as computational complexities, accuracies and performance re-

sponses against different network conditions. Table 2.1 summarizes the main outcomes of

this comparison study. We select three promising algorithms. Under the simulation sce-

nario of Figure 3.1, we investigate and evaluate their performances in chapter 3. In addition

to performance evaluation, we aim to observe the response of the algorithms against the
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measurement time scale choices. Chapter 4 exhibits a practical implementation, in which

our algorithms are programmed in an edge router and dimensions the ingress traffic coming

into the network by performing on-line link sizing. Chapter 5 proposes a dynamic (i.e.

measurement-based) measurement time scale, instead of a static one. Section 5.2 discusses

the relevance of this approach. Table 5.1 demonstrates the resulting performance robust-

ness. Finally, we conclude with a discussion of the results and outline prospects for further

enhancements.
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Chapter 2

Measurement-Based On-line

Capacity Allocation Algorithms

2.1 Introduction

Our literature survey of on-line measurement-based on-line capacity allocation al-

gorithms resulted in the algorithms we present in this chapter. Each algorithm is introduced

in its separate section in the following organizational order. First the references and the

capacity allocation formula are provided. Then the issues regarding the estimation of the

formula parameters are discussed, including their computation and memory complexity.

After presenting the algorithms, their comparison is performed in section 2.3, where the

promising ones are selected to be analyzed further in chapter 3.

2.2 Algorithms

The algorithms in this thesis take a window of traffic measurements as input,

estimate the parameters they need in a bandwidth allocation calculation formula and output

the required amount of capacity to be reallocated.

The measurements correspond to the amount of the incoming traffic during a slot
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duration, tslot. Consequently, the algorithm is called periodically every N ∗tslot seconds (the

reallocation period), where N is the window size. The effects of the choices of tslot and N

on the algorithm’s performance are investigated later in the thesis, through the simulation

study given in chapter 3.

2.2.1 Direct EB Allocation (DEB)

When the subject is resource allocation, the first notion that comes to mind is

the effective bandwidth concept [13]. The Direct Effective Bandwidth Allocation algorithm

relies on the direct analytical evaluation of the effective bandwidth formula.

eb(s, t) =
ln(E(esX(0,t)))

st
(2.1)

X(0, t) is the amount of incoming work during a duration of t. The (s, t) param-

eters are the so-called space and time parameters. They characterize the link’s operating

point and depend on the context of the stream, i.e, link resources and the characteristics

of the multiplexed traffic. The space parameter s shows the degree of multiplexing of the

link and the degree of QoS requirement. If QoS requirements become looser, or if the

degree of multiplexing increases, s tends to zero and the effective bandwidth approaches

the mean rate. If QoS requirements becomes tighter, or if the degree of multiplexing de-

creases, s tends to infinity and effective bandwidth of the source approaches maximum rate

of max(X(0, t))/t, measured over an interval t. The time parameter t corresponds to the

most probable duration of buffer busy period prior to overflow.

The effective bandwidth concept is related to the Large Deviation Theory in the

following way. QoS goals are usually loss probability and delay requirements. The delay

requirement is usually satisfied by properly adjusting buffer sizes, and the loss probability

is assumed to be equal to buffer overflow probability. This assumption is widely accepted

to be valid. Although a counter example can be given as follows, if traffic is composed

of periodic spikes of batch arrivals (where a batch load is much more than buffer size),

loss probability is close to 1, whereas buffer overflow probability is close to 0. But this is

an extreme condition, and almost always, buffer overflow probability is taken as equal to

loss probability. Therefore, to satisfy a loss probability constraint, statistical calculation

of buffer overflow probability is analyzed. The analysis turns out to be the calculation of
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the tail probability of the queue distribution. As the loss probability values are very small,

the Large Deviation Theory (LDT), which deals with rare event probabilities, is suitably

applied in this effective bandwidth problem.

Unlike the estimation of observable parameters such as the mean and variance, the

s parameter can not be directly estimated from the measurements. The space parameter is

calculated by using Large Deviations Theory (LDT) and by making a large buffer assump-

tion (LBA). LDT deals with rare event probabilities and is suitably applied to the effective

bandwidth problem since loss probability constraints to be satisfied are very small. The

loss probability in a buffer of size B is approximated by the probability that queue content

exceeds threshold B in an infinite (or large) buffer (LBA). In large deviations analysis, the

overflow probability is calculated from an asymptotically exponential decrease assumption

(2.2), where s is the space parameter, being a function of the server capacity, C.

P (B < Q) = e−s(C)B (2.2)

The space parameter s is found from (2.2), and defined as the working point of

the buffer. Having calculated s, the time parameter t and the expectation remains to be

calculated from measurements. The t parameter is actually the slot duration, the period

with which the measurements are taken, and it is a set parameter, and does not need

estimation. Time parameter is related to time scales, which are responsible for buffer

overflow. It should be chosen small enough so that traffic is observed for buffer overflow

analysis. Finally, the expectation in (2.1) is approximated by a time average, as suggested

in [14].

The empirical evaluation of (2.1) is simulated and compared with analytical ef-

fective bandwidth of known Poisson and On-Off source types in [24]. It is shown that the

empirical effective bandwidth estimation is quite accurate for On-Off traffic, whereas ac-

curacy in Poisson traffic depends on the space parameter. However, it is also shown that

for the interested, realistic region of the space parameter, empirical estimation using the

direct estimator is accurate. Moreover, this method, relying on direct evaluation of the

effective bandwidth formula has computational and memory complexity of O(N). That is

they are directly proportional to the size of the measurement window (N). But note that,

this method is not robust against long range dependent traffic and amplitude of traffic,

since they may cause convergence and numerical overflow problems, respectively.
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2.2.2 Courcoubetis EB Allocation (CEB)

[3] provides another effective bandwidth formula (2.3) based on Large Deviation

Theory and large buffer assumption, similar to the assumptions in the Direct Effective

Bandwidth Allocation algorithm.

eb = m +
ID s

2B
(2.3)

The parameters m, B, s and ID are the mean rate, buffer size, space parameter

and index of dispersion of X[0, t]. The space parameter s is calculated as in the first

algorithm, using (2.2).

The index of dispersion parameter shows the variability of a process over different

time scales. Ideally, complete characterization of the underlying traffic arrival process is

needed for its exact calculation. We estimate it from (2.4), using the meaningful autocor-

relation values falling into the measurement window N (note that only autocorrelations

with lags less than N/4 are used, to eliminate statistical insignificancy). Due to the mea-

surements of autocorrelations in the measurement window, the computational complexity

is proportional to N2.

ID = Var(X(0, t))

1 + 2
1/4 N∑
k=1

(
1− 4

k − 1
N

)
AC (k)

( N∑
k=1

X(0, t)
N

)−1

(2.4)

2.2.3 Many Sources Asymptotic EB Allocation (MSAEB)

This approach is also based on the effective bandwidth approach similar to the

first two algorithms, but unlike them, this algorithm uses a different way of estimating the

time and space parameters in (2.1) as described in [2]. Many Sources Assumption is made,

instead of Large Buffer Assumption, while using Large Deviations Theory (LDT) to solve

the problem of estimation of the space and time parameters (s, t).

If M sources are multiplexed in buffer B, rj is the percentage of streams of type j,

and maximum allowed buffer overflow probability to be guaranteed is e−a, then minimum

required bandwidth can be calculated by solving (2.5), which requires two optimization

procedures.
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C = sup
s

(inf
s

(R(s, t))) (2.5)

where

R(s, t) =
stM

∑
j rjeb(s, t) + a

st
− B

t
(2.6)

In (2.6), eb(s, t) term is found from (2.1).

For a given t, the R(s, t) is a unimodal function of s, having a unique minimizer.

Then, R(s, t) = Rt(s) can be solved by using a golden section search method as follows.

1. Given the interval [ sa , sb], two trial points sl , sr are selected such that sr − sa =

sb − sl = g(sb − sa), where g is the golden ratio, which is equal to 0.618 roughly.

2. Evaluate Rt(sl) and Rt(sr):

if Rt(sl) > Rt(sr) the interval becomes [sl, sb]

if Rt(sl) < Rt(sr) the interval becomes [sa, sr]

if Rt(sl) = Rt(sr) the interval becomes [sl, sr]

3. Steps 1 and 2 are repeated until the uncertainty interval has length less than some

small value.

The expectation of eb(s, t) can be approximated by an empirical average. Time

parameter t is the most probable busy period of the queue before buffer overflow. Using

the measurement data, taken at every epoch time interval τ , t parameter is estimated from

(2.5) by calculating infs(R(s, t)) values for a range of t values for t = τ, 2τ, 3τ, , mτ and by

choosing the t value for which infs(R(s, t)) is maximum. Upper bound for the t candidates,

mτ , can be set from buffer limitation. m is bigger for larger buffers. Measurement time

window can be used as an upper bound of t. In short, the effective bandwidth optimization

procedure is repeated for a range of t values smaller than the measurement window time,

and the maximum among them is taken as the required capacity to be allocated.

The run-time of the above procedure depends on the size of the measurement

window (i.e. number of epochs of trace window, N), the number of values of t that are

processed, and the number of different stream types. For a time parameter of k , empirical

calculation of eb(s, k) for any s has O(N/k) computational complexity. The complexity of
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the golden section search also scales to O(N/k) when epoch time interval is k. The number

of trials in the golden search before finding the optimum s for time parameter k depends on

the initial uncertainty interval [sa, sb]. So overall, the computational complexity scales as

O(N). In [2], it is mentioned that algorithm runs satisfactorily in moderate workstations.

As for the memory requirement, this method requires holding only N arrival process sample

data.

2.2.4 ON-OFF EB Allocation (OOEB)

In the previous algorithms, effective bandwidth is calculated analytically from

(2.1). As a second way of using the effective bandwidth concept in resource allocation,

we propose a parametric method as this fourth method. The idea is to obtain estimation

values of an equivalent On-Off traffic model from measurements, and substitute them in

the specific analytical effective bandwidth formula (2.7) for On-Off sources [6].

eb(s, t) =
−sr + a + b− 1/2 (−sr + a− b)2 − 2 ba

2s
(2.7)

Parameters a, b and r denote On-Off traffic model where ON and OFF periods

are exponentially distributed with parameters a and b respectively, and r is the constant

traffic generation rate in the ON state.

The On-Off parameters can be estimated by matching the first three moments of N

data measurements falling into the window. But first, this matching is difficult to compute,

because moment formulas for On-Off traffic are complex formulas of On-Off parameters.

Solution for On-Off parameters can only be done by search algorithms, i.e. computing

different values almost arbitrarily to satisfy all three equations at the same time. And

second, most of the time, there will not be a match, or fitting On-Off traffic model, since On-

Off model has a limited spectrum of traffic types for fitting. There are statistical matching

tools, such as [15], where traffic is matched by M state MMPP models. It is shown that

M is usually a large number, showing that On-Off model matching is not accurate most of

the time.
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2.2.5 Norros EB Allocation (NEB)

The Effective Bandwidth formulas mentioned before are based on the assumption

that loss probability in a single server queue decreases exponentially as buffer size increases

(2.2). However, measurements showed that Internet traffic has self-similar behavior. For

self-similar traffic, the decrease in loss probability with increase in the buffer size is slower,

due to the self-similar traffic characteristics. This method and the next one are designed

with long-range dependent nature of traffic in mind.

In [18], besides introducing modeling of real traffic by fractional Brownian motion

(FBM), an effective bandwidth formula for FBM is also given by Norros. FBM model is

composed of three parameters, mean rate m, self-similarity parameter H and coefficient of

variation a. H and a characterize the quality of the traffic in contrast to the long run mean

rate m, which characterizes its quantity alone.

Queuing analysis of an FBM arrival storage system reveals that the buffer overflow

probability decreases hyperbolically with increasing buffer size. The buffer occupancy dis-

tribution is approximated by a Weibull distribution. This approximation yields an effective

bandwidth formula (2.8).

eb = m +
K(H)

√
−2 ln(Ploss)
H

∗ a

2H
∗B − 1−H

H
∗ m

2H
(2.8)

where K(H) = HH (1−H)1−H and m, H, Ploss, x and a are mean, Hurst parameter,

buffer overflow probability, buffer size and coefficient of variation respectively. The co-

efficient of variance parameter a, is approximated by the index of dispersion. Although,

actually this is a valid assumption only when the traffic is short range dependent.

The Hurst parameter can be set from a priori measurements, for example using long

series analysis taking into account diurnal characteristics. However, to react to unexpected

traffic changes, a measurement-based on-line algorithm is favored. The H parameter can

be estimated from the plot of log(V ar(X(0, t)) vs. t, but it is shown that this method

is unbiased, and needs too many data samples to result in correct estimation. Difficulties

of H estimation methods are analyzed in [16]. The comparison of several H estimation

algorithms revealed that Abry-Veitch estimator (AV estimator) based on Wavelet theory is

shown to be the best way of H estimation [25].

AV estimator takes Discrete Wavelet Transform (DWT), which transforms arrival

rate process X into the time-scale wavelet domain. The transform gives observation about
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the frequency of data in different time scales, unlike Fourier transform, which gives the

frequency of data for the entire time domain. Computation of DWT was not feasible before

Multiresolution Analysis Theory appeared and showed that no information is lost if contin-

uous wavelet coefficients are sampled in a dyadic grid in time-frequency plane. As a result,

DWT is calculated using a filter bank as in Figure 2.1. The DWT yields a representation

of data by means of “details”.

Figure 2.1: Recursive Filter Bank scheme used in DWT calculation.

The detail at octave j is dx(j, .), where j represents the time scale of observation.

If the length of data is N , the number of available octave j is approximately log2(N) and

the number of detail coefficients approximately halves with each increase of octave due to

down-sampling operations in the filter-bank algorithm.

The main feature of the wavelet approach which makes it so effective for the statis-

tical analysis of scaling phenomenon such as LRD is the fact that the wavelet basis functions

themselves possess a scaling property, and therefore constitute an optimal coordinate sys-

tem from which to view such phenomena. The main practical outcome is that the LRD in

the time domain representation is reduced to residual short-range correlation in the wavelet

time-frequency domain, thus removing entirely the spectral estimation difficulties. Thus for

each fixed j, the series dx(j, .) can be regarded as a stationary process with weak short-

range dependence, and these series can be regarded as independent of each other. The



13

transfer functions of the filters in the filter bank algorithm are formed from continuous time

wavelet basis functions. The filters have lag K, and choosing a high value of K protects H

estimation from non-stationary effects, such as daily trends.

The complexity analysis of the algorithm relies heavily on the complexity analysis

of parameter estimation methods, because once the parameters are estimated, the time of

calculation of (2.8) is independent of the number of data samples.

The on-line H estimation algorithm is composed of two parts. First part is the

on-line data collection during measurement window of time T . Then, a fast algorithm is

run to estimate H when needed, since there is no need to compute H at every data arrival.

When a data sample is available, it is taken as input to the filter bank algorithm.

If filters have lag K, (usually K = 6 is enough to suppress sufficient non-stationarities.),

there passes (2K +1) operations time, which is independent of the number of samples. Due

to down-samplings in filter-bank structure, every two data samples will produce a detail

sample at octave j = 1, every 4 data samples will produce a detail sample at octave j = 2,

etc. So if N data samples are taken, approximately N/2 samples would be collected as

details at octave j = 1, approximately N/4 samples would be collected as details at octave

j = 2, etc. In a like manner, maximum available octave would be approximately log2(N).

Due to the nature of the details, the details at any octave j have zero mean

value. In an on-line fashion, variances of details at octave j, dx(j, .), can be computed as

follows. Each time a detail value results from filter-banks, its square is taken and added

to the previous sum. So the sum of squares at octave j are calculated. At the end of a

time window T , i.e at the final stage of the AV estimator, the estimates of V ar(dx(j, .))

is obtained by dividing the sum by number of detail values at octave j. The rest is to

estimate H from the variation of V ar(dx(j, .)) vs j, which can be done by linear regression

fitting in the linear part of the plot. The number of available octaves j is log2(N), and

at the end of the windows, all required is a linear fit to the log2(N) numbers, (which is a

linear operation). Consequently, the computational complexity of the algorithm scales to

O(log2(N)).

AV estimator has small memory requirement, since maximum octave j is log2(N),

keeping sum of squares and number of values available at each octave results in a memory

requirement of 2 log2(N) numbers. And also note that variance estimates at octaves close

to log2(N) comes from a small number of V ar((dx(j, .)) values (due to down-samplings).

Therefore they are not reliable and should be discarded. Typically, if data arrivals are
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sampled in 10ms. intervals, and a window of 10s. is used for the time between H estimations,

there would be 1000 data samples. About 9 octaves would be available, with about 500

samples of dx(j, .)2 at octave 1, about 250 samples at octave 2, etc.

2.2.6 DRDMW (Improved Empirical EB Allocation)

This method [23] is an improved version of DEB method in two ways. First, a

unified phenomenological framework to estimate overflow probability of both long range

dependence (LRD) and short-range dependence (SRD) is put forward by including the

Hurst parameter in traditional analytical effective bandwidth methods, as in (2.9).

P (B < Q) = e−s(C)B2−2 H
(2.9)

Second, the difficulty of measuring the effective bandwidth of real-time traffic on-

line by using direct estimator [23] is alleviated by using an approach based on dual recursive

algorithm with double moving windows (DRDMW), which is introduced in empirical cal-

culation of analytical effective bandwidth formula instead of using direct estimator.

This algorithm requires the mean source rate to calculate the sliding window in-

terval in the measurement window. The algorithm uses this a priori traffic information

to reduce overflow risk by decreasing the frequency of the analytical effective bandwidth

formula recalculation.

Similar to DEB, DRDMW has a computational complexity of O(N), assuming H

is estimated in real-time as described in NEB.

2.2.7 Gaussian Approximation Allocation (GA)

All the algorithms mentioned so far have implementation difficulties. We test their

computational complexities with respect to the simplest resource allocation method existing

in literature, Gaussian approximation method [9]. Although this method is expected to have

the poorest performance, our aim is to investigate whether or not the loss of performance

would be acceptable compared to computational simplicity, comparing to other proposed

algorithms.

Incoming traffic arrival rate distribution can be assumed to be Gaussian if there is

a sufficient degree of aggregation of sources. In Gaussian Approximation, buffer is ignored
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and server capacity is set according to gaussian arrival rate distribution as in (2.10) so that

the loss probability requirement is satisfied, since tail probability (probability that arrival

rate is greater than server rate) gives the desired loss probability.

C = m + σ ∗
√
−2 ∗ ln (Ploss)− ln (2 ∗ π) (2.10)

where m , σ are the mean and standard deviation of the arrival rate distribution.

2.3 Comparison of the Algorithms

The first algorithm, namely Direct Effective Bandwidth Allocation algorithm, re-

lies on the effective bandwidth formula, and possesses the problem of finding appropriate

values for s and t, which depend on QoS requirements and the system parameters. The

space parameter is estimated using the Large Buffer Assumption. The time parameter

estimation is left somewhat arbitrary, for the time being.

The second algorithm uses (2.3), which is an alternative generic effective band-

width definition in terms of the mean rate, index of dispersion, QoS parameter and buffer

size. It is simpler, but it still does not address long range dependent traffic.

The Many Sources Asymptotic Effective Bandwidth algorithm relies on the ef-

fective bandwidth formula (2.1) and encounters the problem of estimation of (s, t). This

method accomplishes it by solving a functional optimization problem. Although it is a very

innovative approach, this may be too slow for our motivational self-sizing scenario where

every node takes on-line measurements of every traffic type.

The On-Off Effective Bandwidth formula (2.7) for our fourth method is obtained by

substituting an On-Off arrival process instead of X(0, t) in the analytical effective formula.

With regard to a practical usage of such expressions, we encountered other problems than

estimation of (s, t) parameters, such as model parameter estimation, and goodness of fit of

the model.

The Norros Effective Bandwidth Allocation and Gaussian Approximation methods

are alternatives which do not include non-trivial (s, t) parameter estimations. They are ap-

proximate expressions, which are derived independently of the effective bandwidth formula.

The Gaussian Approximation algorithm assumes a bufferless link. This will overestimate

required capacity. Moreover, the gaussian assumption is not valid for traffic formed by small
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number of sources. This places a constraint on the source type, however our aim is to have

an algorithm capable of functioning without unreasonable assumptions.

The self-similarity is addressed only in the NEB and in the DRDMW method.

Others do not discriminate between short range dependence and long range dependence.

Although the index of dispersion in the Courcoubetis formula of the second algorithm

stands for burstiness of the source, the formula is not for long range dependent traffic.

Thus the effective bandwidth approximation on which Courcoubetis formula is based, (i.e.,

exponential decay of buffer overflow probability with increasing buffer size) is not valid

for self-similar traffic (the decay is hyperbolic and slower than exponential). We provide

a summary of our performance comparisons with respect to various network scenarios in

Table 2.1.

Table 2.1: Performance Comparisons

MSAEB DEB OOEB CEB NEB DRDMW GA
Small Very Poor Poor Poor Good Poor Perfect
Buffer Good
Large Very Very Very Very Very Very Poor
Buffer Good Good Good Good Good Good
SRD Good Very Good Very Good Very Good

Traffic Good Good Good
LRD Good Poor Poor Poor Perfect Poor Poor

Traffic
Many Perfect Very Poor Very Very Very Perfect

Sources Good Good Good Good
Single Poor Very Good Very Good Very Poor
Source Good Good Good

Computational Poor Poor Poor Very Good Good Perfect
Complexity Good

Memory Good Good Perfect Good Good Perfect Perfect
Requirement

The Gaussian Approximation algorithm is the easiest to implement, and suitable

to be used as an algorithm setting an upper bound, since it does not consider buffer size.

The Courcoubetis Effective Bandwidth Allocation is also another easy, and promising one,

since this one takes into account buffer also. But neither of the previous two algorithms

is designed with long range dependent traffic in mind. Norros effective bandwidth and

DRDWM algorithms are the only ones incorporating the Hurst parameter, therefore ad-
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dressing to long range dependent traffic. Although DRDMW is designed to alleviate the

numerical overflows in the direct effective bandwidth allocation, that problem can not be

completely alleviated due to the structure of (2.1). Therefore, we selected the following

three algorithms for further simulation analysis:

• Gaussian Approximation (GA)

• Courcoubetis Effective Bandwidth Allocation (CEB)

• Norros Effective Bandwidth Allocation (NEB)

2.4 Summary

In this chapter, the results of our literature survey seeking for suitable methods for

our on-line capacity allocation purpose are presented. The analytical predicted performance

comparisons are summarized in Table 2.1. In the following chapter, three selected algorithms

are analyzed through further simulation study.
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Chapter 3

Comparison of Methodologies via

Simulation

3.1 Introduction

In this chapter, we present the simulation results of the algorithms selected in the

previous chapter. First, we explain our simulation methodology. Then, the results are given

in section 3.3 under 3 subsections. Section 3.3.1 exhibits performance results. Section 3.3.2

shows how much price is paid while obtaining these results. Finally, section 3.3.3 provides

the computation complexities of the algorithms as a function of the measurement window

size.

3.2 Simulation Methodology

The selected on-line measurement-based resource allocation algorithms are imple-

mented and tested in a simulation scenario as shown in Figure 3.1. This is a single server

queue simulation where the service rate is changed, in an on-line fashion, periodically based

on recent traffic measurements. The simulations are replicated with different values of the

measurement slot and window sizes.
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We used the Sup-FRP traffic model [22], to generate the incoming traffic. The

simulation flow slides packet by packet, emulating a real case scenario as in an Ethernet

card passing packets to upper network layers.

. . .

t slot

[ X1, X2, ... , XN ]

Number of Arrivals

time

Buffer

Dimensioning

Algorithm

C

Figure 3.1: Simulation scenario.

Figure 3.2 gives a visual representation of how algorithms adjust service rates,

tracking fluctuations in the incoming traffic rates, so as not to waste resources.

In our simulations, the performance metric is related to a QoS constraint, in our

case packet loss probability. To quantify the amount of expanded resources, we use two

cost metrics:

• Allocation Ratio (Average Capacity Allocation divided by Average Traffic Rate)

• Average Queue Occupancy

We performed simulations with 5 different tslot values (0.01, 0.05, 0.1, 0.5, 1s)

and 5 window size (N) values (3, 6, 30, 60, 300slots) in every method. Therefore, we had

25 simulations per method. As a total, we present here results of 75 simulations. Also

note that the measured statistics resulted after 30 simulation replications and confidence

intervals are insignificant.

In all of the simulations in this section, we generated traffic with the same mean

value of 20 Kbytes/s, the same Hurst parameter of 0.7 and the same buffer size of 5 Kbytes.
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Figure 3.2: A visual example view of dynamic capacity allocation.

We set the QoS target to packet loss probability of 10−3, so as to have a common ground

for the performance comparisons of algorithms in the simulation scenario (Figure 3.1).

Note that the average traffic rate of 20 Kbytes/s is the product of an average

packet size of 200 bytes and average packet arrival rate of 100 packets/s. Therefore, the

average time between two consecutive packets is 0.01 seconds and the tslot values chosen

in the simulations, which are (0.01, 0.05, 0.1, 0.5, 1 s), correspond to cases where 1, 5,

10, 50 and 100 packet arrivals take place on average in a slot time duration, respectively.

Also note that the choices for tslot and N are made deliberately to have simulations where

reallocation takes place in every 3 seconds, but with different measurement resolution in the

recent history of the measurement data. For example, a simulation with (0.01 s, 300 slots)

includes 300 measurements, whereas the one with (1 s, 3 slots) includes three measurements

in the same recent 3 seconds history.

We did not implement an on-line H estimation [21]. We provided the value of

H (i.e., 0.7) to the algorithms beforehand, so that we can examine the performance of the

bandwidth allocator, independent from the performance of the H estimator. The combined,

on-line Hurst parameter and EB estimation is beyond the scope of this thesis and is left as

future work.
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3.3 Simulation Results

In this section, we present performance analysis and demonstrate the importance

of the time scale choice in measurement-based algorithms.

The plots in this section are in the form of three dimensional graphs. The xy

plane is composed of slot duration and window size pair, i.e., (tslot, N). There are 25 z

coordinate points coming from the convolution of 5 values of tslot and 5 values of N , which

are (0.01, 0.05, 0.1, 0.5, 1 s) and (3, 6, 30, 60, 300 slots), respectively. We chose to present

simulation results in this form, rather than listing the numbers in a table form, because it

would be difficult in the table form to observe the trends of the data when the time slot

length increases while the window size is kept constant and vice a versa. At the end of this

section, we provide the processing time plots with respect to the window sizes.

3.3.1 Performance Plots

The following three plots show the performance results for different tslot and N

values in the simulation scenario given in Figure 3.1. Figure 3.3 shows the loss probability

results when GA is used for link dimensioning.

Figure 3.3: Loss probability against different time slot length and window size values, when
GA is used for dynamic resource allocation.
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As seen from Figure 3.3, the loss probability increases when tslot is increased while

N is kept constant. Furthermore, it can be deduced that the loss probability decreases

when N is increased while tslot is kept constant.

The QoS target, which is 10−3, is satisfied in every (tslot, N) combination with

the exception of (tslot = 1 s, N = 3 slots). Note that GA is used as an upper band of

resource allocation for comparison purposes. It does not consider buffer size. In fact, it

assumes there is no buffer. This is why, it is expected to be more generous than other

algorithms. The fact that a violation of QoS took place in this method implies trouble for

other methods.

Figure 3.4: Loss probability against different time slot length and window size values, when
CEB is used for dynamic resource allocation.

Figure 3.4 tells us that the CEB’s performance changes similar to GA against tslot

and N variations, but Ploss values are relatively about an order of magnitude higher. The

QoS target is violated for the following (tslot, N) pairs: (0.5 s, 3 slots), (1 s, 3 slots), (0.5 s,

6 slots) and (1 s, 6 slots). This algorithm, considering the presence of buffer, theoretically

permits lesser resource usage than GA.

The loss probability results of NEB are provided in Figure 3.5. For N values of 3

and 6, the Ploss values are between the ones of GA and CEB. However, when N is either

30, 60 or 300, Ploss is smaller than other algorithms, which implies an over-allocation of
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Figure 3.5: Loss probability against different time slot length and window size values, when
NEB is used for dynamic resource allocation.

bandwidth.

3.3.2 Cost Plots

The plots in this section show how much resources are used while obtaining the

performance results introduced in the previous section.

The following two plots are cost plots for GA. Figure 3.6 agrees with Figure 3.3 and

shows that as tslot is increased for a constant N , the allocation ratio decreases towards 1.

We also observe that for constant tslot, increasing N results in a larger capacity allocation.

But this rate of increase in capacity allocation depends on the tslot value. For instance,

when tslot length is fixed to 1s, the allocation ratios for N =3, 6, 30, 60 and 300 are 1.34,

1.40, 1.46, 1.47 and 1.51, respectively. However, when tslot is set to 0.01 s, the corresponding

ratio values are 4.21, 5.02, 5.89, 6.23 and 9.28. So, once tslot is properly chosen, choosing N

looses its importance, since the change in the ratio values are much smaller.

Figure 3.7 is in accordance with Figure 3.6 and Figure 3.3, and gives an idea about

how much buffer is occupied. Figures 3.3, 3.7 and 3.6 show the importance of time scale

choice. We observe that even if GA does not consider buffer, it can still be an acceptably
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Figure 3.6: Ratio of the average capacity allocation to the average traffic rate against
different time slot length and window size values, when GA is used for dynamic resource
allocation.

good resource allocator, given that tslot and N values are chosen properly.

Figure 3.7: Average Queue Occupancy against different time slot length and window size
values, when GA is used for dynamic resource allocation algorithm.
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Figures 3.8 and 3.9 are cost plots when CEB is used as the dynamic resource

allocation method. Figure 3.9 shows that the buffer occupancy changes drastically with the

choice of N . For small N , the occupancy is bigger than the one for GA, but for big window

size values (60 and 300), the buffer is less occupied than when GA is used as resource

allocator. These implications are justified in Figure 3.8. As a result, this shows that if N

is chosen poorly, the resource allocation can be even worse than GA’s allocation.

Figure 3.8: Ratio of the average capacity allocation to the average traffic rate against
different time slot length and window size values, when CEB is used for dynamic resource
allocation.

Compared to GA, we observe that bigger tslot values lead to better allocation

ratios (i.e., ratios closer to 1) and the choice of N has a greater effect on CEB. With proper

choice of tslot and N , the same performance can be achieved with lesser resource usage. To

illustrate, when tslot is fixed to 1s, the allocation ratios for N 3, 6, 30, 60 and 300 are 1.04,

1.08, 1.29, 1.54 and 3.88 respectively, and when tslot is set to 0.01s, the corresponding ratio

values are 4.86, 8.45, 30.66, 58.25 and 540.13. Here, similar to GA, we see the importance

of choosing tslot properly. But unlike for GA, here choosing N is also important. This is

because the rate of increase of ratio values when N is increased is much more significant.

Choosing a large N leads to serious over-allocation. Also note that in the above cases where

allocation ratios are 1.04 and 1.08, the Ploss values are 0.0134 and 0.0087 respectively, and
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the QoS criterion of 10−3 is not satisfied by one order of magnitude.

Figure 3.9: Average Queue Occupancy against different time slot length and window size
values, when the CEB is used for dynamic resource allocation.

Figures 3.10 and 3.11 are cost metrics plots when NEB is used as the dynamic

resource allocation method. Figure 3.10 shows that there exists over-allocation of resources

when the window size is 30, 60 and 300, similar to the behavior observed in CEB.

When it comes to the choice of tslot, as in the previous methods, a bigger tslot

resulted in better resource allocation. This method is the only one which allocates more

capacity to the traffic possessing higher long-range dependence. Overall, it can be said that

NEB includes similar performance and cost changes as the ones of CEB, but performance

values are around one order of magnitude better, and consequently, cost values are higher.

For example, for tslot and N pairs of (1 s, 3 slots) and (1 s, 6 slots), the Ploss and allocation

ratio values were 0.0134, 0.0087 and 1.04, 1.08, respectively, for CEB, but the corresponding

values for NEB are 0.0022, 0.0003 and 1.38, 1.61 respectively. This shows that NEB has

a tendency of allocating more resources than CEB, and results in better QoS constraint

satisfaction.
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Figure 3.10: Ratio of the average capacity allocation to the average traffic rate against
different time slot length and window size values, when NEB is used for dynamic resource
allocation.

Figure 3.11: Average Queue Occupancy against different time slot length and window size
values, when NEB is used for dynamic resource allocation.
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3.3.3 Complexity

Figure 3.12 shows the processing times of the algorithms as a function of the win-

dow size. The processing time is the time required for the algorithm to re-calculate capacity.

The processing time is seen to be related to N for CEB and NEB, with a complexity of

O(N2). This result is in parallel with our expectations. CEB and NEB calculate autocor-

relations of measurements falling into the measurement window of size N , and this requires

a processing time proportional to N2. Whereas, GA uses only the mean and variance of

the measurements, whose calculations are fully on-line. As a result, GA has complexity

of O(1) and regardless of N , its execution time remains much smaller compared to other

algorithms.

Figure 3.12: Processing times of algorithms vs. window size.

3.4 Summary

In this chapter, the simulation methodology and results are given. The algorithms

performed as expected after the analytical analysis. The plots indicate the importance of

the measurement time scale and the measurement window size, which is investigated further
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in detail in chapter 5. The results of this chapter encouraged us to perform the practical

implementation given in the next chapter.
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Chapter 4

On-line Bandwidth Estimation and

Link Sizing Experiment

This chapter shows the applicability of the on-line measurement based capacity

allocation algorithms in a practical scenario.

4.1 Overview of the Experiment

The network emulation environment is shown in Figure 4.1.

We implement our on-line capacity allocation algorithms (i.e., Gaussian Approx-

imation Effective Bandwidth (GA), Courcoubetis Effective Bandwidth (CEB) and Norros

Effective Bandwidth (NEB)) into a computer running Linux operating system (the ingress

in Figure 4.1). We emulate a network environment where ingress is an edge computer of

a core1 network, which accepts connections from carolina, ncstate and wolfpack. Each of

these latter three emulate a “network” communicating with core1 “network” whose edge

router is ingress. The node ingress reads and classifies packets incoming to the network

core1 from these three “networks”. At the same time, ingress also measures the traffics by

means of the NeTraMet software (Network Traffic Measurement Architecture, described by

RFC’s 2720-2724).
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Figure 4.1: Experiment network diagram.

The logical experimental setup diagram is as follows.

Figure 4.2: Logical diagram of the experimental setup.
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NeTraMet architecture has a traffic meter and traffic reader which can commu-

nicate through SNMP. Therefore a meter and a reader can be in separate computers in

different networks. But note that we have them at the same computer, namely ingress.

NeTraMet is designed to be a standard as a network measurement architecture. We use

NeTraMet in the classification and measurement of streams coming from the carolina, nc-

state and wolfpack “networks”. Basically, NeTraMet gives the total number and the source

“network” of the incoming packets every tslot interval. Having the window size N , N of such

information is used in the estimation of the effective bandwidths for each stream. Finally,

ingress uses these effective bandwidth estimations to change the bandwidths allocated in

the core1 link. This is performed by means of Linux Traffic Control utility, TC [11]. This

allocation takes place every tslot ∗N time interval. We use tslot = 1s and N = 10.

In short, ingress not only estimates three effective capacities based on measure-

ments in an on-line fashion, but it also changes the actual capacities allocated to each stream

between ingress and core1 every 10s. We also measure the traffic incoming to core1. By

comparing the sequence numbers, we measure the actual loss probability, and compare it

with the target loss probability value used in our effective bandwidth estimation algorithms,

which is 0.001.

4.2 Experiment Results

We present capacity allocation and packet loss probability plot pairs of three ex-

periments, in which different effective bandwidth estimation algorithms are tested (namely

GA, CEB and NEB). The capacity allocation plots shows the total traffic incoming to

ingress and the capacity allocations of the three streams based on the effective bandwidth

estimations. Total capacity allocation is also plotted, so that a pictorial comparison of the

total bandwidth allocation vs. total incoming traffic can be made. Different than capacity

plots, the packet loss probability plots are obtained from the comparison of the original

traffic data with the measurements taken in core1.

Note that the effective bandwidth curves in Figures 4.3, 4.5 and 4.7 are shorter

than the traffic length (which is 1000 seconds). We appended zeros at their ends. The

cause for this was that when an enquiry is made from NeTraMet software, it takes on

average 1.08225 seconds to return the measurements along with mean/variance/capacity
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calculations. Having called this process every slot, i.e. 1000 times, means 82.225 seconds

are lost due to computing time, giving a value of around 920 measurement points instead

of 1000. One can increase the tslot time, this will decrease but not prevent the amount of

loss packets. In a real application such as this one, this was a difficulty not encountered in

our simulation studies. However, this problem can be alleviated mostly by bypassing the

NeTraMet software, and writing a network sniffer software, specialized in measurements.

As mentioned previously, NeTraMet is designed with different considerations and it includes

unnecessary parts for our purpose. For instance, SNMP causes much of the overhead in the

meter reading, which is not needed in our case, since we have the meter and reader at the

same computer.

Figure 4.3 gives the capacity allocation of individual streams, as well as the total

allocated capacity (i.e. sum of allocated capacities for all of the streams between the ingress

and core1 node), when the link bandwidth is dynamically adjusted using the GA algorithm.

We observe that the total capacity allocation is between the mean and peak of total incoming

traffic rate. The trajectory of the packet loss probability measurements of the 3 streams in

the core1 node is given in Figure 4.4.

Figure 4.3: A view of total traffic rate and individual capacity allocations of the 3 streams
in the Ingress node, where Gaussian EB is used in capacity estimation.

Figures 4.5, 4.6 and 4.7, 4.8 are similar to Figures 4.3, 4.4 respectively, but different
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Figure 4.4: Loss Probability of 3 streams measured at core1 (when Gaussian EB is used as
capacity allocator in ingress).

capacity allocators are used in ingress. The CEB algorithm case is given in Figures 4.5

and 4.6. Whereas Figures 4.7 and 4.8 are for the NEB algorithm case.

Figure 4.5: A view of total traffic rate and individual capacity allocations of the 3 streams
in the Ingress node, where Courcoubetis EB is used in capacity estimation.
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Figure 4.6: Loss Probability of 3 streams measured at core1 (when Courcoubetis EB is used
as capacity allocator in ingress).

Figure 4.7: A view of total traffic rate and individual capacity allocations of the 3 streams
in the Ingress node, where Norros EB is used in capacity estimation.

From the figures, we observe that the total capacity allocation is between the

mean and peak of the total incoming traffic rate for all of the algorithms. Table 4.1 gives
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Figure 4.8: Loss Probability of 3 streams measured at core1 (when Norros EB is used as
capacity allocator in ingress).

the percentages of the saved bandwidth compared to a Maximum (Peak) Rate Allocation

algorithm. As for the cost paid in obtaining this performance improvement, we observe

that the loss probability trajectory plots are kept below the target loss probability value

of 0.001. These values agree with simulation results in chapter 3 when tslot is 1s and N is

10slots.

Table 4.1: Saved Bandwidth Compared to a Maximum Rate Allocation Algorithm

Gaussian EB Norros EB Courcoubetis EB
Percentage Decrease
in the Bandwidth

Usage Compared to %43.10 %67.14 %68.45
Maximum Rate

Allocation
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4.3 Summary

We implemented our on-line bandwidth allocation algorithms in a real network

node where link sizing is performed based on the measurements. Algorithms saved substan-

tial amount of bandwidth compared to a Maximum Rate Allocation algorithm, while still

satisfying the QoS constraint. Although we faced a practical implementation problem, we

obtained successful results in general and this real implementation inspired us for further

practical use of our effective bandwidth algorithms. Actually, more important than the

practical problem we faced, we believe the main obstacle in front of porting this implemen-

tation into a real implementation is the “constant” time scale choices. The experiments

are performed with specific tslot and N values of 1s and 10slots. In the next chapter, we

explain the disadvantage of using static time scale, and propose an algorithm to resolve this

problem.
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Chapter 5

Dynamic Time Scale

5.1 Introduction

Chapter 3 emphasized the importance of the measurement time scale choice. In

this chapter, we introduce the dynamic measurement time scale approach.

This chapter is organized in the following outline. Section 5.2 interprets the re-

sponse of the algorithms to the time scale changes, in the light of chapter 3, where we observe

that a satisfactorily performing algorithm can experience a performance degradation when

only the measurement time scale is changed. Then, we reason that the measurement time

scale is dependent on the input traffic. That is, we claim that an algorithm working good

with a measurement time scale for an input traffic can work poorly after changing only

the input traffic. This observation yields us to deduce that the measurement time scale

is relative to the input traffic. Accordingly, we propose to change the measurement time

scale dynamically, based on measurements themselves. Section 5.3 defines the dynamic time

scale. Finally, simulation results showing the robustness of this approach over the static

time scale methods are presented in section 5.4.
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5.2 Relevance of Dynamic Time Scale

Sections 3.3.1 and 3.3.2 show how drastically the performances of the measurement-

based capacity allocation algorithms change depending on the time scale choice, as pointed

out in [8].

Mainly, we observed that increasing the measurement slot, tslot, results in a de-

crease in the capacity allocation and consequently an increase in Ploss in all of the algorithms.

This can be explained intuitively from the structure of the formulas used in the capacity

allocation algorithms. To illustrate, consider the Gaussian Approximation Algorithm’s for-

mula (2.10), where m and σ are the mean and standard deviation of the most recent N

measurements, [X1, X2, ..., XN ]. Each Xi represents incoming traffic load in consecutive

tslot durations. By the law of large numbers, as tslot increases, say tslot → A, where A is a

time parameter, which is large (dependent on the traffic characteristic), then Xi approaches

m∗A for all i. This causes σ in (2.10) to go to zero, and the capacity value, eb to approach

to the mean rate, m. A similar reasoning can be given for other methods, in which not only

standard deviation, but also autocorrelations of measurements, [X1, X2, ..., XN ] are used.

On the other hand, we also observe that taking tslot arbitrarily small ends up in

over-allocation of resources. As tslot decreases, the measurement history (tslot∗N) decreases

too. This decreases the confidence and increases the randomness in the formula parameter

estimations, yielding over-allocations.

We could obtain empirical tslot values from the performance and cost metrics plots,

so that the QoS is satisfied with minimum resource allocation. However this particular tslot

value would be useful only for the traffic that we used in our simulations. Consider using a

traffic whose mean is m ∗K (that is K times bigger). This time, on average K times more

traffic load will fall on average into the slots. Relatively, this is the same experiment as

using K times bigger tslot measurement slots, with mean traffic rate m. In other words, the

measurement time scale is relative to the traffic characteristics. A static tslot may correspond

to cases where we described previously as small or large, depending on the incoming traffic.

As a result, we believe that the measurement time scale tslot should also change

dynamically based on measurements [X1, X2, ..., XN ], in order to keep the algorithms always

working close to their best.
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5.3 Definition of Dynamic Time Scale

In [5], the Maximum Time-Scale (MaxTS = t∗) is used as the time scale of interest

for queueing systems fed by a fractal Brownian motion (fBm) process:

t∗ =
kσH

(C −m)

1
1−H

(5.1)

where k =
√
−2 ∗ ln (Ploss), m is the mean traffic rate, σ is the standard deviation of the

traffic rate and C is the capacity of the server.

The value of t∗ is derived from (5.2), where ÂH(t) is the probabilistic envelope

process of the fBm cumulative arrival process AH(t) (AH(0) = 0), such that P (AH(t) >

ÂH(t)) ≈ Ploss:
dÂH(t∗)

dt
= C (5.2)

The fBm envelope process is defined in [5] as

ÂH(t) = mt + kσtH (5.3)

On the basis of the law of large numbers, as t →∞, dÂH(t)
dt converges to the mean

arrival rate. ÂH(t) increases with a decreasing rate after t∗. This means that the probability

that the average arrival rate exceeds the link capacity decreases for t > t∗. Consequently,

there is no need to worry about anything other than the time scale for which the source

rate still exceeds the link capacity. In other words, after a period of time, the probability

that the average arrival rate exceeds the link capacity is negligible, hence the arrival model

needs no longer to reproduce the source behavior for these time scales.

5.4 Simulation Analysis of Dynamic Time Scale

To test the effects of the dynamic time scale approach, a simulation scenario similar

to the one in Figure 3.1 is used. However, this time, besides effective capacity, tslot is

also recalculated after every N measurements. In other words, t∗, dynamic time scale is

estimated using the recent N measurements and tslot = t∗ is taken as the measurement slot

duration for the next N measurements.

t∗ is estimated directly from (5.1). However, instead of the (C −m) term in (5.1),

we used L ∗m, where L is taken as a constant L = (AllocationRatio) − 1. The reason is
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that we allocate capacity dynamically and do not have a constant C. Actually, we tried

using the moving average capacity allocation instead of C, but this caused a multiplicative

effect, such that, when capacity allocation increases, C −m term in (5.1) decreases. But

decreasing tslot results in increased capacity allocation measurement in the next window,

and this loop ends up having t∗ ≈ 0.

Table 5.1 shows the improvement of using a dynamic tslot = t∗ against static tslot

choices (GA is used as the capacity allocation algorithm, and the Ploss target is set to 10−3

as in the previous simulations). As the mean rate increases, the performance of the static

tslot cases changes (the ratio decreases and Ploss increases), whereas the performance of

the dynamic tslot = t∗ case remains the same. This shows that on-line measurement-based

algorithms with constant measurement intervals are heavily dependent on the incoming

traffic’s mean rate, whereas the ones with dynamic measurement intervals are more robust.

Also, note that the particular performance figures for dynamic tslot case in Table 5.1 are

dependent on the value of L (we used L = 1.5). However, we confirmed that the choice of

L does not affect the robustness of the algorithm, which makes the algorithm desirable by

making the performance independent from the input traffic.

Table 5.1: Performance Metrics vs. Time Scale

Mean tslot tslot tslot tslot

(Kbytes/s) 0.08s 0.4s 2s t∗

4 Ratio 4.751 2.657 1.745 1.915
Ploss 0 0 0.000003 0.000391

20 Ratio 2.952 1.739 1.353 1.914
Ploss 0 0.000009 0.000382 0.000696

100 Ratio 1.742 1.334 1.183 1.913
Ploss 0.000010 0.000332 0.002649 0.000910

To illustrate the benefits visually, we generated a traffic trace of 1000 s, where the

mean rate of arrival traffic between 200 and 800 s is 5 times the mean rate at the remaining

intervals. Figure 5.1 shows the dynamic capacity allocations. Note that the allocation

ratios in the static tslot cases change in the region of traffic with high mean rate. But the

allocation ratio remains roughly the same in the dynamic time scale case. This is achieved

by adjusting tslot as shown in Figure 5.3.

The number of packets dropped increases when the mean is increased gradually in
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Figure 5.1: Capacity allocations vs. traffic mean rate.

Figure 5.2: Cumulative number of dropped packets.
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Figure 5.3: The plot of dynamic time scale parameter t∗.

Figure 5.2 (for tslot = 0.01 s, no loss occurred, due to over-allocation). The t∗ case performs

again in between the static tslot cases. But note that when tslot = t∗, the algorithm can

self-adjust and perform similarly against traffic mean changes, whereas the performance of

an algorithm with static tslot is dependent on the traffic. To illustrate, a method with static

tslot = 0.01 s case will over-allocate significantly when the mean rate decreases much below

of 4 Kbytes/s, and a method with static tslot = 2 s case will suffer significant degradation

of the QoS target when the mean rate increases much above 100 Kbytes/s.

We left the the real implementation of this dynamic time scale approach as future

work. As a final remark, note that in a real-world scenario, the measurement time scale

has a lower threshold bound which comes from the computation complexity of the used

algorithm. Other than that, we believe that this approach can easily be put into practical

world, similar to the emulation experiment given in chapter 4.
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5.5 Summary

In this chapter, we reason the need for dynamically changing the measurement

time scale. We start with investigating how the measurement-based algorithm depends on

the measurement time scale. Then, we argue that the measurement time scale is related

to the arrival traffic. To illustrate, we show that when the traffic mean rate changes, one

needs to change the measurement time scale accordingly, in order to keep the performance

constant. At this point, we present our dynamic time scale. Finally, we provide simulation

results and the benefits of this dynamic time scale approach.
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Chapter 6

Conclusion

This thesis presented and compared measurement-based on-line capacity allocation

algorithms and proposed a way to improve their robustness.

We distinguished such algorithms from MBAC and traffic predictors due to their

smaller time scales and QoS-oriented use. We observed that their performance is directly

dependent on the involved measurement time scales. Mainly, we saw that when the time

slot length is increased while the window size is kept constant, due to increasing aggregation

of packets in the slot interval, the variations between the measurements in the measurement

window decrease and the allocated capacity approaches the mean traffic rate. This causes

the loss probability to increase.

Since the measurement time scale is directly related to the measured traffic, the

result of a measurement-based algorithm using constant time scale is open to the perfor-

mance degradations due to the changes in traffic trends. However, our aim was to obtain an

algorithm which does not require any a priori traffic knowledge, and which is based fully on

the measurements. Therefore we incorporated the Maximum Time-Scale (MaxTS) param-

eter and tested successfully adapting the measurement time scales based on measurements

themselves.

We performed a practical multiple stream effective bandwidth estimation and on-

line link sizing experiment. The algorithms performed as suggested by the simulation re-

sults, giving us confidence in the feasibility of the algorithms. The real implementation can

be improved by omitting the NeTraMet software which causes overhead in taking measure-
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ments. Instead, a core application using packet matching library in an operating system

would be much faster. Moreover, the application works for a constant measurement time

scale and window size values. The implementation of the dynamic time scale presented in

chapter 5 would make the real implementation robust against different traffic sources than

the one used in chapter 4.

The outcomes of this study can be used for choosing algorithms to be implemented

in real switches, taking into account trade-offs of complexity, accuracy and robustness.

To sum up, in this thesis, we

• identified on-line measurement-based capacity allocation algorithms,

• compared their performances analytically,

• simulated promising ones,

• observed significant affects of the choice of measurement time scale,

• proposed to vary measurement time scale adaptively,

• through an example, showed the performance robustness of measurement-based algo-

rithms, in which measurement time scale is adaptive (measurement-based).

This thesis suggests the following future work:

• Addition of on-line Hurst parameter estimation as described in section 2.2.5.

• Analysis of the effects of different long-range dependent traffic on the algorithm’s

performance (we only used traffic with H = 0.7).

• Addition of the dynamic time scale approach (chapter 5) into the practical implemen-

tation (chapter 4).

• Decreasing the overhead in the time complexity of the real implementation by bypass-

ing the NeTraMet software and using specialized packet sniffers based on core packet

matching library in an operating system.
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