
ABSTRACT

CORNEL, REUBEN FRANCIS. Coglaborate - An Environment For Collaborative
Cognitive Modeling. (Under the direction of Dr. Robert St. Amant).

Cognitive scientists who build computational models of their work, as exemplified

by the ACT-R and Soar research communities, have limited means of sharing knowledge:

annual conferences and workshops, summer schools, and model code distributed via Web

sites. The consequence is that results obtained by different groups are scattered across

the Internet, making it difficult for researchers to obtain a comprehensive view of cognitive

modeling research. The goal of my project is to develop a collaborative modeling envi-

ronment for cognitive scientists in which they can develop and share models. The current

system supports collaboration by providing a structured representation for ACT-R cognitive

models using frames. The rationale for providing a structured representation for cognitive

models is two-fold: it not only provides a mechanism for sharing models (i.e. via consistent

APIs); it also enables the application of analytical techniques to cognitive models. As a

proof of concept for the approach, a medium-scale modeling application has been devel-

oped, integrating an extension of ACT-R developed elsewhere, to solve synonym crossword

puzzles.
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Chapter 1

Introduction

1.1 Cognitive Architectures

The study of the human mind has been one of the largest and most laborious enter-

prises undertaken by man. This study has encompassed many centuries and has attracted

interest from some of the most brilliant philosophers and scientists human kind has had

to offer, from Aristotle, Plato, and Descartes to modern researchers in cognitive science,

including Allen Newell, John Anderson, and Marvin Minksy.

The development of computers was an important step for theories of mind, in

that it allowed researchers to begin to simulate the structure of thought. Approaches vary.

Some researchers, such as McClelland and Rumelhart [1, 2], have worked with abstractions

of low-level biological components of the brain—artificial neurons—to produce connectionist

models of the mind. Others, such as Newell and Anderson, have worked at a higher level,

focusing on the manipulation of symbols as a foundation for thinking. Beyond this broad

division there have been many other approaches over the past half-century.

Despite large advances made towards understanding the workings of the human

mind in the field of psychology during the 70s, general principles were mainly to be found

in micro theories, such as Fitts’ law and the Power law of Practice. In his influential book,

Unified Theories of Cognition [3], Newell argues that the aim of psychology is to provide

a framework that would help explain and predict the behavior of the human mind, and

although micro theories are useful in explaining certain phenomena they do not provide an

adequate framework for explaining and predicting human thinking in more general terms.



2

He advocates the need for a comprehensive theory that would fill in this void.

One such theory has been under development by Anderson since the 1970s. It

takes the form of a cognitive architecture, a computational simulation of problem solving

constrained by empirical findings concerning human cognition. Anderson began with a

framework that tried to provide a working model of the human memory, called ACT*.

As this work progressed, new modules to represent motor and visual faculties were added

to this framework. This came to be known as ACT-PM and eventually ACT-R. ACT-R

provides the conceptual focus for this thesis.

1.2 Collaboration

A thriving research community has grown up around the core group of ACT-R

researchers at Carnegie Mellon University. There are annual workshops, a “summer school”

to introduce new researchers to the framework, an active mailing list, and any number of

small interdisciplinary groups of collaborators distributed throughout the world. The result

has been a continuous stream of refinements to ACT-R, both the theory and the software,

as well as models, experiments, development tools, and the like.

This provides an opportunity, one identified in a different area of computer science,

computer-supported collaborative work. J. C. R. Licklider described his vision of what he

called online communities in 1968 [4]:

There are at present perhaps only as few as half a dozen interactive multi-
access computer communities. These communities are socio-technical pioneers,
in several ways out ahead of the rest of the computer world: What makes
them so? First, some of their members are computer scientists and engineers
who understand the concept of man-computer interaction and the technology
of interactive multiaccess systems. Second, others of their members are creative
people in other fields and disciplines who recognize the usefulness and who sense
the impact of interactive multiaccess computing upon their work. Third, the
communities have large multiaccess computers and have learned to use them.
And, fourth, their efforts are regenerative. . .

What will on-line interactive communities be like? In most fields they will
consist of geographically separated members, sometimes grouped in small clus-
ters and sometimes working individually. They will be communities not of com-
mon location, but of common interest. In each field, the overall community of
interest will be large enough to support a comprehensive system of field-oriented
programs and data.
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A wide range of tools to support online collaboration has been developed over the

intervening years. The objective of my research is to provide a collaborative environment

where cognitive scientists can share models, to explore the potential benefits of this approach

to cognitive modeling. I describe this further in the following section and chapters.

1.3 Contributions

The aim of this project is to provide a collaborative environment for researchers

who develop computational representations of their research on cognition, specifically in the

ACT-R architecture. This is achieved by allowing researchers to access ACT-R on top of a

web-based framework where they can create and share models. The benefits of this project

are as follows:

• We provide a software environment completely set up and ready for use. As a re-

sult, researchers can get to work without being concerned about software dependency

issues, a traditional barrier in collaboration as well as in ACT-R modeling.

• We attempt to foster collaboration in the cognitive modeling community. Researchers

can build models and these can be accessed by other individuals and groups, and can

be modified and shared in return.

• By providing a centralized system, hardware resources can be shared across a large

number of users. This should in principle make it inexpensive to run and be of use

to research groups that cannot invest in the resources necessary for some cognitive

modeling efforts.

• Since users store their models on a centralized system, it acts as a repository for

models that can be used to learn about cognitive modeling.

Frames [5] are used as the central representation to support collaboration, at the

software level. A frame is a data structure consisting of slots, where each slot can either

be another frame or an instance of data. Apart from a means to support collaboration,

this data structure lets us represent models in a structured manner, something that has not

been possible before with ACT-R. This opens up a number of further avenues for research,
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such as the ability to mine models to find patterns in different models and hence build up

a more complete picture of human cognition.

1.4 Thesis Organization

In Chapter 2 I discuss cognitive architectures and the features of various cognitive

modeling architectures. Chapter 3 gives a brief overview of the field of computer-supported

collaborative work, concentrating on research relevant to this thesis. Chapter 4 discusses

the design and implementation of the Coglaborate system. I conclude this thesis with a

discussion of the limitations of Coglaborate and future work for the system.
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Chapter 2

A survey of Cognitive

Architectures

The quest to understand the working of the human mind has spanned many cen-

turies starting with Plato when he asked, “How is it that human beings, whose con-

tacts with the world are brief, personal and limited, are nevertheless able to

know as much as they do?” [6]

Cognitive science brings together the varied disciplines of psychology, neuroscience,

computer science, linguistics and philosophy in an attempt to answer the above question,

using information processing as a means to emulate the human mind. Psychology, especially

cognitive psychology, contributes theories on cognitive capacities, information processing

capabilities, sensory and motor performance, and so forth. Perhaps most importantly, it

theorizes about the overall picture of the human mind. Neuroscience, the study of the

brain and nervous system, provides a frame of reference against which theories developed in

cognitive science can be validated since it deals with the brain at the lowest level. Computer

science contributes knowledge representation, which is used to develop theories to represent

the way knowledge is stored, artificial intelligence, which is used to analyze and create

methods for problem solving, and the theory of computation, which is used as a means to

understand foundational limits on cognition as information processing.

The objective of this chapter is three-fold. Firstly it aims to provide a very brief

introduction to human cognitive architectures from both the cognitivist and emergent per-

spectives [7]. Secondly it discusses cognitive architectures in general. Finally it goes on to
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compare some currently and widely used cognitive architectures.

2.1 The nature of cognition

Any attempt to deal with the architecture of cognition has to answer the following

questions.

• What is knowledge and how can it be categorized? Since the aim of cognitive science is

to understand the working of the human mind it is essential the nature of knowledge

be understood because human beings function by processing information. Therefore

it is imperative that we understand what knowledge is and the different forms of

knowledge that are available.

Although the nature of knowledge has been studied over many millennia we are still

not certain of its characteristics. For example, Brachman and Levesque [8] describe

knowledge as a function that maps a “knower” to a proposition. A proposition is a

statement that determines the truth-value of the belief of the knower. But they also

acknowledge that not all knowledge is of this form, for example, “how to” knowledge

that enables someone to ride a bicycle.

• How is knowledge acquired, represented and utilized? When solving problems the

human mind has the ability to retrieve and apply previously stored knowledge to the

problem; for example, consider solving a calculus-based integration problem. We are

able to retrieve standard representations of the forms of equations and apply them to

the problem to simplify it and solve it. Issues of knowledge retrieval and application

are central to understanding cognition.

• How do various processes act on this knowledge and how do they achieve the effect

they intend to achieve? These two areas are significant because of their relationship

to the techniques of deduction and inference that we use to solve problems on an

everyday basis, inferences as simple and routine as when we diagnose a faulty light,

or the more complex techniques we use when solving a crossword puzzle.

• How can these processes and structures be manifested in the real world? Purely the-

oretical accounts of cognition are important, but they must be validated by evidence
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that they can be realized by physical systems. For scientists who study human cog-

nition, this means ensuring that explanations of cognitive processing do not overstep

the known limitations of the human brain and its processing.

These questions provide us with a very general framework for understanding results

produced in cognitive science. Newell [9] describes the study of the working of the mind as

a problem of satisfying the “conjunction of constraints on the nature of mind-like systems.”

He describes the characteristics of what is to be expected of any theory that claims to

propose a model of human cognition. Newell mentions that this list is not comprehensive,

but in the view of Anderson and Lebiere [10] it can used to provide a broad framework

against which all theories that claim to explain the human mind can be tested.

The criteria listed below have been discussed in the literature [10, 3]. The purpose

of listing them here is to explain as to what the study of the mind would require. A cognitive

system must

• Behave flexibly as a function of the environment: At first glance this statement may

seem frivolous, as it seems to imply that human cognition functions in a haphazard

manner. But Newell makes it clear that he is referring to the view that a cognitive

system can be viewed as an instance of a universal computer, specifically a Turing

machine, despite its occasional failings and lack of infinite memory. He further ex-

plains that this view does not indicate the inability to perform special operations,

for example, vision. He explains that, like computers with special processing units,

the cognitive system can be made up of special purpose systems that specialize in a

certain task. As an example consider a chemist who can perform cognitive tasks in

the laboratory—and who can also drive a car.

• Operate in real time: A system that models cognition should be able to provide a

plausible explanation for how humans are able to perform cognitive tasks at the rate

they do. This criterion is important because otherwise a system could lead us to

wrong assumptions about how humans think.

• Exhibit rational adaptive behavior: It must be able to explain this because humans

perform computations, in the words of Newell[3], are for “the service of goals and

rationally related to obtaining things that let the organism survive and propagate.”
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• Display dynamic behavior: Humans operate in an environment that is ever changing.

They draw in this information from their environment and act on it appropriately.

For example, if you are driving a car and at some moment a deer decides to sprint in

front of the car, you would hit the brakes.

• Integrate diverse knowledge: Humans acquire knowledge from diverse sources and are

able to integrate them. For example consider a computer programmer working in the

banking industry. He can go to school to obtain knowledge of the working of the

finance industry. He can use this knowledge along with his knowledge of computers

science to write programs for the industry. Here we see that our fictitious programmer

integrating knowledge, unlike expert systems where knowledge is vertical and cannot

be integrated as easily.

• Exhibits a sense of consciousness: Newell does not point out the direct relation be-

tween consciousness and human cognition, but he mentions it as a criterion in his

tests of human cognition. One interpretation [10] is that Newell is simply asking for

the identification of cognitive properties that could support consciousness [11]

• Learning from the environment: This point should be self-evident, we gain new knowl-

edge from the world around us. But then the type of learning itself should be based

on whether it can learn based on semantic memory, skill, priming and conditioning.

• Arise through evolution: It is understood that the algorithms implicitly embodied by

our cognitive processing are those that have arisen naturally over a period of time.

Hence any cognitive architecture should be able to learn and improve the algorithms

through a process of improvement.

• Use of natural language: Any theory that claims to decipher human cognition must be

able to explain as to how we are able to comprehend what we listen to and understand

what we say, because this is a function that is core to the way we communicate with

each other.

• Be realizable with in the brain: This point is critical because it serves as proof that a

given theory is congruous with actual computations in the brain.
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2.2 Approaches towards explaining cognition

There are many theories on the nature of cognition, each taking a position on

what constitutes cognitive functions and how they are carried out. But these approaches

can be bifurcated into approaches that adhere to the cognitivist approach [7], theories that

view cognition as information processes manipulating symbols, and those that adhere to

the emergent approach, theories that treat cognition as a process where models reflect the

processes of cognition by reorganization over time.

The goal of this section is to explore these disparate points of view and to bring

out differences between them. We will then examine a number of cognitive architectures in

detail.

2.2.1 The Cognitivist view

The cognitivist perspective views human cognition as a set of information processes

working over a set of representations that point to the actual knowledge which may be stored

elsewhere, vis-á-vis as symbols. These information processes are said to be purposeful,

contentful, representational, and can be described formally[12]. Knowledge derived from

these computations can be stored and used later to improve the reasoning of the system. The

cognitivist view of perception is that it functions to generate an appropriate representation

of the world around the system, which the system can then reason about [7].

The task of building models in cognitivist systems is generally done by a pro-

grammer. This has advantages, in that that these representations and structures can be

viewed and interpreted by humans. But it may also bias the system, constraining it to an

idealized cognitive environment. This causes problems when the system has to stray away

from its original requirements. This gap between perception, which is in interpretation of

reality, and actual reality begins to widen. This would then have to be filled in with more

programmer knowledge to close this “semantic gap”[7].

2.2.2 The Connectionist approach

Until the 1980s the cognitivist viewpoint was the primary means of explaining the

nature of human cognition. Interest in self-organizing systems led to an area of research

that advocated the view that human cognition is made up of smaller units that rearrange
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themselves as the system acquires a skill or recognizes a change in its environment. This

approach to understanding is known as the emergent approach [7].

Although there are multiple methods are used to in the area of emergent systems,

I will describe only connectionist view point. Connectionism is defined by Medler [13]

as “a theory of information that uses parallel processing of sub-symbols, using statistical

properties instead of logical rules to transform information,” rather than rules as used in

classical cognitivist systems.

The basic feature in a connectionist system is a network. A connectionist network

is made up of a number of simple computational units that communicate with each other

with via connections. These connections are capable of carrying only simple information.

The computational units in a connectionist system are arranged in a number of

hierarchical layers. Conventional systems include three types of layers: the input layer,

at which input signals are set; the hidden layer or layers, which allow for combination of

inputs; and the output layer. These networks can be arranged into two basic configurations,

namely feed forward networks and recurrent networks.

Feed forward networks(Fig 2.1) are those networks in which information flows in

one direction only, that is, from the input layer to hidden layers (if they exist) and then

to the output layer. Recurrent networks are those networks that have loops and hence

backward connections.

Connectionist models learn by adjusting the weights on the individual computa-

tional units. This implies that learning in connectionist models can be viewed more as a

skill-building exercise, rather than an exercise in knowledge acquisition as in the case of the

cognitivist approaches [7].

The main attraction of connectionism is that it provides neural plausibility[12] to

theories of cognitive science in its ability to simulate the massively parallel processing in the

brain and in its ability to learn by adjusting weights. It is also attractive because it provides

cognitive plausibility by allowing problems to be studied using simpler mechanisms. This

can help in studying the processes underlying pattern-recognition and memory retrieval, as

well as soft constraints for representing schematic knowledge.

Despite these attractions, connectionist modelers find it difficult to explain the

ability of the human mind to integrate diverse knowledge from various sources, the ability

to use pre-existing knowledge, and the ability to respond in the time constraints that humans
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Figure 2.1: A feed forward network

do.

2.3 Cognitive Architectures

Early work in psychology focused on producing micro theories, accounts of highly

constrained cognitive phenomena. Although each of these micro theories explained its

individual specialization well, there were few attempts to integrate these in a complete

picture of human cognition [14]. Newell’s work can be seen as a call for cognitive scientists

to provide a complete framework of human cognition and to test theories of cognition within

it [3, 14]. Based on this we can define a cognitive architecture as

A framework that provides an interpretation of the working of human cognition
within which theories related to various aspects of cognition can be validated
based on that interpretation.

A basic view of human cognition is that of solving a constraint satisfaction prob-

lem [3]. Cognitive science is still a developing field and there can be numerous ways as to
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how these constraints can be interpreted and solved by researchers. Based on this view,

cognitive scientists are providing us with interpretations of factors they believe constrain

the way the mind works. A cognitive architecture provides us with an invariant environ-

ment where we can perform detailed modeling that helps us in understanding the processes,

structures and the organization between these structures in the brain[15].

Sun [15] describes the significance of the study of cognitive architectures as follows.

• They provide a means of understanding cognition.

• They provide a foundation to build intelligent systems that are cognitively realistic.

We will now discuss criteria for comparing cognitive architecture and we will also

look at some sample cognitive architectures.

2.4 Survey of cognitive architectures

In this section I will describe a number of popular cognitive architectures that are

currently in use. I will later compare them based on a number of criteria that reflect the

functions that a cognitive architecture is supposed to perform.

2.4.1 ACT-R

ACT-R was developed by Anderson et al. [16] at Carnegie Mellon University to

validate results performed by in the area of cognitive psychology. ACT-R ’s origins lie in an

attempt by Anderson and Bower to describe a theory that explained the working of memory

called Human Associative Memory(HAM)[17]. HAM eventually grew into ACT[18] which

in due course evolved into ACT-R [19].

ACT-R consists of a set of core modules. These modules aim to represent con-

stituent functions of the brain. The operation of these modules is coordinated by a central

production system. This system can identify patterns and make changes to the contents

of buffers. The organization of these modules can be seen in figure 2.2. I describe each of

these modules below.

• Visual Module: This module provides ACT-R with the capability of identifying

objects visually.
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Figure 2.2: The architecture of ACT-R 5.0[16]

• Manual Module: This module provides ACT-R with the ability to perform motor

actions.

• Intentional Module: This module helps ACT-R simulate the ability to keep track

of current goals.

• Retrieval Module: This module implements the mechanism to retrieve chunks of

information from the declarative memory.

In ACT-R information stored in human memory such as phone numbers and words

are stored in chunks. Chunks can either be declared at the start of the model or are created

during the execution of the model. Chunks represent information in the declarative memory

of the architecture. The probability and the speed with which a chunk might be retrieved

is controlled by its activation. This is defined by the equation

Ai = Bi +
�

j

WjSij , (2.1)

where Ai is the activation level of the chunk, Bi is the base level activation of the chunk,

Wj is the attentional weighting of the elements of the current goal, and Sij represents the
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strengths of associations from elements j to chunk i.

The production system controls the coordination between various modules. This

is done through selecting the appropriate production and firing it. Though there may be a

number of competing productions, the single production with the highest utility is selected.

The utility of a production is defined by

Ui = PiG− Ci, (2.2)

where Pi is the probability that the production i will achieve the goal G. Ci defines the

cost of completing the goal. This is estimated by the amount of time left to complete the

goal.

ACT-R learns through a process of production compilation [20]. It attempts to

teach successive pairs of productions and tries to unify them into a single production. But

this is not a complete explanation; it breaks down when the productions consist directives

to the visual-motor modules.

The ACT-R motor-perceptual system is modeled after EPIC (executive-process /

interactive-control) [21]. The perception of vision is provided by the visual module, which

itself consists of two modules, the visual-location module and visual-object module. The

visual-location module helps the visual module to focus its attention to a location in the

visual field specified by the buffer. The visual-object module holds information about the

object in the visual field. Motor control is provided by the manual module. ACT-R also

has rudimentary auditory and vocal modules[16].

2.4.2 Soar

Soar is a general cognitive architecture proposed originally by Allen Newell [3, 22],

when he argued for the need for psychology to deal with human cognition as a whole, rather

than in form of micro strategies. The major ideas[23, 22] that define the characteristics of

Soar are these:

• Physical symbol system hypothesis: General intelligence can be realized with a sym-

bolic system[9].

• Goal structure hypothesis: Control of general intelligence is maintained by a symbolic

goal system.
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• Uniform elementary-representation hypothesis: There is a single representation for

declarative knowledge.

• Problem space hypothesis: problem spaces are the fundamental organizational unit of

all goal directed behavior.

• Production system hypothesis: Production systems are the appropriate encoding for

long-term knowledge.

• Universal sub-goaling hypothesis: Any decision can be an object of goal-oriented at-

tention.

• Automatic sub-goaling hypothesis: All goals arise dynamically in response to impasses

and are generated automatically by the architecture.

• Control-knowledge hypothesis: Any decision can be controlled by indefinite amounts

of knowledge that can be either domain- dependent or independent.

• Weak-method hypothesis: Weak methods form the basic methods of intelligence.

• Weak-method emergence hypothesis: Weak methods arise directly from the system

responding to its environment based on its knowledge of the task.

• Uniform learning hypothesis: Goal-based chunking is the general learning mechanism.

According to the Soar theory, human memory is composed to two separate memories: long

term memories stores information for a long period of time, and working memory stores

information required for the task currently at hand.

Long term memory (LTM) stores information that can be applied a number of

instances of tasks. LTM is composed of three memories: procedural memory, semantic

memory, and episodic memory. Procedural memory stores information about how a task

is supposed to be carried out, for example it would store information about tasks such as

changing a light bulb, looking up a word in the dictionary, even eating breakfast. Semantic

memory is used to store information related to facts about the environment in which the

agent operates. For example, an agent tried to decide what to eat for breakfast knows

the kinds of food that are generally eaten at that time of day. Episodic memory stores

information about specific incidents along with contextual information. For example, the
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breakfast-choosing agent might recall information from episodic memory about what it had

for breakfast yesterday. Information stored in the procedural memory is accessed more

frequently than information from either the semantic or episodic memories, because this

information directly controls the behavior of the agent.

All information in the LTM is stored in the form of productions. A production con-

sists of a set of conditions and a set of corresponding actions. Productions provide control

information for the application of operators on a candidate state in working memory. Pro-

ductions perform four different roles: three knowledge retrieval problem solving functions

and a state elaboration function. The knowledge retrieval functions are operator proposal,

operator comparison, and operator application [24]. Productions in Soar are fired in parallel

without conflict resolution (unlike ACT-R , which has a conflict resolution mechanism to

select between competing productions).

Preference Memory is used to decide which operator is the best in the given cir-

cumstance. Preferences in the memory are used to compare a selected set of operators with

one another in an attempt to pick the best operator. Actions in productions are instru-

mental in creating productions. These remain active as long as the production is deemed

suitable for the situation and are removed once the production is no longer valid.

Working Memory (WM) describes memory that hold information related to the

task that is currently being executed. This includes states and sub-states created to solve the

problem, operators that are applicable to the current states and Working Memory Elements

(WME) that hold specific information about a specific identifier. Elements in working

memory are created by the action of productions, a state created as a result of an impasse,

or because of the action of external I/O systems. Information from the working memory

is removed only when it becomes irrelevant to the existing situation. This architecture can

be seen in figure 2.3.

The Soar theory maintains that cognition is flexible and goal-driven, that learning

is a continuous process that arises from experience. This assumption is realized as a search

in a problem space supported by a recognize-decide-act control structure[23]. The recognize

phase consists of firing all productions that are relevant to the phase, which results in

addition of new content to the working memory. The decide phase makes a decision about

what the system should do next. If all the processes of the decide step converge to a decision,

then that decision is placed in the working memory with the assertion that this decision
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Figure 2.3: Soar Architecture[25]

would be the next step. The act phase involves actually realizing the step.

During the decision phase it is possible that the preferences might be incomplete

or inconsistent. Such a situation is called an impasse. In the event that an impasse is

detected, a substate of the current state is created whose goal is to resolve the inconsistency.

New productions are produced as a result of this problem-solving activity. The conditions

of the new productions consist of information about the state of working memory before

the impasse; the actions consist of new information obtained from resolving the impasse.

If a similar situation is encountered in the future, the conditions are matched and the

corresponding actions are executed. This process is called chunking. This is how Soar

obtains knowledge when solving a specific problem.

2.4.3 EPIC

The Executive-Process/Interactive-Control(EPIC ) system [21] attempts to take on

the challenge of developing a theory for cognition from a different perspective. The EPIC

architecture maintains that human cognition is constrained by the physiological aspects

of the human rather than its cognitive machinery. The motivations for developing this

architecture are
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• To analyze a cognitive system that is tied closely to its perceptual-motor faculties:

Most cognitive architectures around the time when EPIC was developed represented

human cognition as being disembodied. They represented cognition as a system that

perceived the environment and directly acted on it without considering the limitation

and interactions between of intermediate perceptual-motor systems and the cognitive

systems.

• Study models that simulated both performance and cognition: Kieras and Meyer were

interested in studying the field of human attention and performance from the com-

putational modeling paradigm and hence to further the state of this psychological

theory.

• Study the role of executive processes and performance in environment that require

execution of multiple tasks: From the cognitive modeling perspective, an executive

process is one that controls all other cognitive processes. Kieras and Meyer intended

to study this aspect of cognition. They assert that the best way to do so is to study

human performance in an environment that entails execution of multiple tasks, and

that human cognitive capability is constrained only by the physical limitations.

The architecture of EPIC is shown in figure 2.4. The EPIC architecture uses sep-

arate memories to store procedural information, such as production rules and separate

memory to store formal knowledge. The working memory consists of two ’amodal’ types

of information. One stores control information such as information pertaining to goals and

steps with in the current procedure. The second memory is called general WM and is used

to store miscellaneous task information. The EPIC architecture does not make any assump-

tions about decay, capacities, or representational properties of the working memory[26].

Like Soar , the EPIC architecture executes its productions in the form of a decision

cycle, where each cycle lasts for a period of 50 milliseconds. The cycle starts with obtaining

inputs from its perceptual processors. The production system then fires all productions

whose conditions match the contents of working memory. All their corresponding actions

are executed. The actions of the action items are restricted to adding and removing items

from the working memory and to send commands to the motor processor.

The EPIC architecture models perceptual and motor facilities with good accuracy.

The perceptual and motor modules that interface with the world are known as processors.
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Figure 2.4: The architecture of EPIC[26]

Both the perceptual and the motor processors can function in parallel. Perceptual processors

simulate the working of human perceptual facilities: these include visual processors and

auditory processors. The motor processors deal with performing actions that affect the

environment: some examples of motor processors are the manual motor processor, the

vocal motor processor, and the oculomotor processor.

The visual processor is used to identify visual objects in the environment. The

visual processor maintains information which objects are visible and what their properties

are. The auditory processor accepts auditory input and outputs a representation of audi-

tory events. These events fade away after a period of time (4 seconds). To represent the

sequential order of speech, the auditory processor adds tags to the inputs in sequence to

indicate temporal relationships between words.

The motor processors require two distinct phases to execute a motor command,

the preparation phase and the execution phase. The preparation phase involves compiling

the commands from the cognitive processor into a set of features that characterize the

movement. The execution phase begins after the preparation phase has completed. The

movement features remain in the processor’s memory. As a result future movements that
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perform the same action are performed faster. The manual processor represents physical

movements like pressing keys, moving fingers and hands to another location, and so forth.

The vocal motor processor is used to create utterances of speech. The oculomotor processor

controls the movement of the eyes.

2.4.4 CLARION

CLARION (Connectionist Learning with Adaptive Rule Induction ON-line) [27]

was developed with two major motivations.

• Study of low-level skill acquisition: Sun et al. [27] concentrate on low-level cognitive

skills in CLARION . They cite reactive sequential decision making as an instance of

low-level cognitive skill. In such a task the agent would have to pick an action to

achieve an objective based on the information available at a given point in time.

• Model learning that does not require a large amount of priori knowledge: Sun et al.

state that the process of learning in situations where agents are given the required

amount of knowledge which they convert into procedural skill is considerably different

from a situation where the agent is not provided with enough a priori knowledge. The

authors suggest that in such cases the learning that occurs is of “bottom-up” nature.

Research with CLARION advocates that cognitive systems are two-level architec-

tures. A top level encodes explicit knowledge such as production rules, explicitly specified

prior knowledge. The lower level is used to store implicit knowledge, such as memory as-

sociations, in the form of neural networks. CLARION consists of four major subsystems.

These are described below; the schematic of the same can be seen in Figure 2.5.

The action-centered subsystem is perhaps the most important component of the

system. Its functions include calculating the quality of various actions given the current

scenario, choosing an appropriate action for the situation, performing the action, and ob-

serving the change in the state. Updates are made to the internal representation during

this process, including changes to the rule network (shown in the upper level of the action

centered subsystem) using a rule extraction and refinement algorithm. The lower level of

the action-centered subsystem also holds sensory information, working memory items, and

information from the goal structure [28].
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Figure 2.5: The architecture of CLARION [26]

The Non-Action-Centered subsystem is used to represent general information about

the real world. A back propagation algorithm is used to establish relationships between

various pairs of inputs and outputs. The Non-Action-Centered subsystem can also apply

similarity-based reasoning in addition to associative rules.

Real-world cognition is driven by the environment around an agent, but it also

depends on the underlying motivation of the agent. With CLARION , Sun et al. also study

the underlying motivations that drive the actions an agent intends to achieve. This area

of cognition is modeled and studied using the Motivational and Meta-Cognitive subsys-

tems. These subsystems explain, for example, what makes one course of action or cognitive

processing more attractive than another.

2.4.5 Criteria for comparison

This section provides a comparison of various integrated cognitive architectures

on various parameters, shown in Table 2.4.5. The parameters have been selected based on

the work of Anderson and Lebiere [10].



Table 2.1: Comparison of various cognitive architectures
Parameters ACT-R EPIC SOAR CLARION

Representation
of knowledge
in memory

Knowledge repre-
sented as chunks.
Memory consists of a
working memory and
long-term memory.

Long-term and short-
term memory where
information was
stored as productions
in long-term memory

Knowledge in both
the short term and
long term mem-
ory represented as
production rules

Procedural at the bot-
tom level and declara-
tive at the top

Goals Maintained by the
goal buffer

Priority based task
deferment [29]

Represented as states Goal stack or list

Problem Solv-
ing

Based on selection
and execution of
production and the
underlying neural
network.

Problem solving based
on

Search of the solution
space

Combination of cal-
culated Q-Values and
rules

Planning Creation of sub-goals General planning Selection of pro-
ductions that leads
the system closer to
achieving its goals.

Search through the Q-
Value space

Learning Production compila-
tion

No learning Learning through
chunking

Reinforcement learn-
ing and rule extrac-
tion

22



Table 2.1: Comparison of various cognitive architectures
Parameters ACT-R EPIC SOAR CLARION

Perception Provides vision and
auditory faculties
through the relevant
buffers

Perceptual processors
for auditory, visual
and tactile faculties

(No explicit commit-
ments.)

Input in terms of di-
mension/value pairs

Motor Provides motor con-
trol through the man-
ual and vocal modules

manual, vocal and
oculo-motor proces-
sors

(No explicit commit-
ments.)

Mapping to
neuro-biology

Study currently on
that maps regions of
the brain to specific
modules

No mapping No mapping based on neural net-
work but no refer-
ence to the brain
anatomy[30]

23
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2.5 Challenges facing cognitive architectures

This section provides a brief, general summary of limitations of attempts to model

human cognition. Despite the tremendous amount of effort that has gone into this area,

we are nowhere near the end. There are a number of research questions that are open for

curious minds to explore. These areas are spelled out clearly by Langley et al. [31]:

• Architectures need to explore categorization and understanding : Currently cognitive

architectures have not paid significant attention to the means by which we understand

concepts and ideas. This is also the case with categorization, the ability of humans

to categorize object that may seem dissimilar at first.

• Accurately reflecting perceptive abilities of physical agents: Most architectures tend to

ignore the fact that a human has limited abilities to gather information relevant to a

given task. Architectures need to replicate this behavior if we are to acquire a greater

understanding of human cognition.

• Further emphasis on episodic memory : Episodic memory is a form of declarative

memory that requires context and personal participation[32]; for example, the memory

associations of one person’s eighteenth birthday may be completely different from

those of another. The focus on problem solving and skills has distracted cognitive

architecture researchers from studying the complete nature of episodic memory.

• Further study of knowledge representation: Humans rely on a number of ways of rep-

resenting knowledge using visual or auditory representations. This stands in contrast

to most cognitive architectures, which have essentially been tied down to representing

knowledge in the form of production rules or similar forms. There must be further

study of different representational schemes that can be used (e.g., a more flexible

frames-based approach [5] or description logics [33]).

• Study of body-mind interaction: Despite the large number of topics addressed in cog-

nitive architecture research, the area of body-mind interaction has not been explored

in detail.

• Study of emotion: Emotions are arguably what define humans and in quite a few cases

determine their choices. Cognitive science and cognitive architecture research needs
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to explore this area to get a more complete picture of human cognition.

The challenges described above are conceptual, but they also have an engineering

component. From an engineering standpoint, a cognitive modeler essentially builds intelli-

gent agents by writing programs within a framework that postulates a theory of cognition.

There are situations where a similar task may be modeled by one or more researchers. In

the current state of affairs, collaboration happens by a variety of informal and opportunistic

ways. This results in duplication of effort and, in some cases, work that might be improved

if tighter collaboration had been possible. The aim of this project is to take a step toward

improving this situation.
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Chapter 3

Computer Supported Collaborative

Work Systems

This chapter introduces the system Coglaborate. The objective of Coglaborate is

to provide a collaborative modeling environment for the cognitive science community. It

does so by mounting ACT-R on the Biobike infrastructure. The system currently supports

collaboration asynchronously. This means that one researcher can develop a model and

share it with his colleague, who can work on that model separately and share it with other

individuals.

This chapter starts off with a discussion of collaborative systems. This is followed

by a discussion of biobike, its objectives, and which part of the spectrum of collaborative

systems it fits into.

3.1 Collaboration

Collaboration is the key to building large structures in almost all human endeavors

be it in the fields of either the arts or sciences. Collaboration permits breaking down large

unwieldy tasks into more manageable chunks of work. It permits sharing of knowledge and

resources. Computer networks have provided us with a means of communication between

users of computers. This as a result has led to an area of research that studies how computers

can help users communicate their ideas through computers and therefore use computers as a

means of collaboration. This field is commonly known as Computer Supported Collaborative



27

Work (CSCW).

3.1.1 Advantages of collaboration using computers

Using networks of computers to support collaboration leads to three outcomes.

Computers assist in sharing knowledge, for example as with a wiki, freely and easily. Com-

puters enhance communication by allowing us to share richer content like video with each

other. Finally networked computers allow us to share resources such as processing power

and storage capacity. Each of these outcomes has its advantages, discussed in more detail

below.

The ability to share knowledge through computers helps us save time. For example,

if a researcher develops a model of some phenomenon on a computer, that model can

be shared with a larger community. Some other person working on an extension of the

project would save the time taken to build this model in the first place. And because

it is knowledge being shared, collaboration through computers lends itself to pedagogy.

For instance, consider an author of a textbook. He can easily create content, such as

presentations; he can write programs to demonstrate concepts; he can share his work on a

Web site. This information can later be used by other student and teachers to learn more

effectively and to improve the way they teach respectively. Sharing knowledge also implies

sharing data. Running experiments can be time consuming and costly. For example, a

researcher studying weather in one lab could simulate a scenario and make the data for

the same available for others; this saves time and cost over the entire community of people

interested in the phenomena under study.

Collaboration through the means of computers provides us with richer forms of

communication unavailable to us before, such as audio-based and video-based communi-

cation. As a result we can communicate with each other more comprehensibly; this in

turn avoids transfer of ambiguous information. For example, we have systems currently

that help us share display screen information. Such systems can be used by a customer to

clearly communicate his requirements unambiguously to a vendor, who may be in a different

geographical area.

The ability to tie computers together allows us to share resources. This can be in

the form of hardware, where a power server or servers are shared by many people, or in the

form of human resources, where people from different geographical locations can collaborate
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effectively.

3.2 Classification of CSCW systems

According to Rodden [34], there are two characteristics of all CSCW systems,

namely, the form of interaction and the geographical nature of the users, as shown in

Figure 3.2.

The form of interaction can be described as the method by which users of a groups

working together interact. This could either be synchronously, where every member of a

group contributes in real time, as in a brain storming process, or asynchronously, where

the members of the group interact with one another over time, not necessarily contributing

simultaneously. An example of this might be a group of students collaborating with each

other on a homework problem via a message board.

The geographical nature of the users describes whether the users interact with each

other remotely or locally. For example, consider the case of developing the linux kernel:

developers and testers worked with each other on the kernel in geographically disparate

locations, remotely. Alternatively, users may be co-located, as with the users of a meeting

room system like Colab [35].

3.2.1 Message Systems

Message systems derive their origins from email-based systems. What differenti-

ates message systems for CSCW from email-based systems is that such message systems try

to attach more semantic data to the messages they process. Most of these systems use an

object model to represent messages. To instantiate messages the user fills context-specific

data into slots; this data is used by the system to carry out further processing by the system.

Examples of message systems for CSCW include COSMOS [36] and Information Lens [37].

COSMOS represented research being carried out in the European CSCW com-

munity. COSMOS was a project in the UK to design and develop a configurable message

system that supported structured group work. The system was developed with a focus

on specifying the users’ communicative work in the form of participants actions. Group

activity tasks are represented in the system using the concept of communication structures

(CS) [36]. Communication structures are further described using a structure definition lan-
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Figure 3.1: Classification of CSCW systems[34]

guage (SDL). The tasks a COSMOS system is capable of carrying out are defined by the

communication structures in the system. The COSMOS system also defines roles for users

(or agents), message objects, actions, rules, and actions in context of the work being car-

ried out. Any communication activity by the user is instantiated when the user creates an

instance of a communication structure. The user does this by filling in the data required by

the communication structure. Further communication occurs by an exchange of messages

between users, who compose a specific role specified in the communication structure.

The Information Lens takes a less formal approach [34]. The aim is to develop

information systems that minimize information overload on the users of the system caused

by the amount of incoming messages. The key ideas that defined Information lens are

• Use of semi-structured messages to represent data: Messages are represented as a set

of semi-structured data called frames. A frame is a template that includes informa-

tion for date, time, place, organizer, and any other unstructured data. This idea plays

an important role because semi-structured messages make it easier for the computer

to parse messages, according to informal studies conducted by the developers of the

system [37]. People do most of their processing on a set of unstructured information
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and thus the use of semi-structured fields, rather than more formal structures, en-

ables authors to include more context-related information than would otherwise be

practical.

• Use of production rules: The system uses sets of production rules, each of which might

contain multiple levels of reasoning that specify how to process messages.

• Use of specialized editors for creating and editing message templates and productions:

The Information Lens is made more usable with multiple editors to create and edit

message templates and productions.

• Use of frame inheritance: Using frame inheritance in messages allows messages to be

specialized very easily.

• Introduction of the system slowly to the users: The developers believed that the

introduction and evolution of a group work system is more useful if it is introduced

slowly to users. Users are encouraged to switch to the system by incremental rewards.

The message templates consist of forms having fields where information could be

filled in. Messages are edited using a display-oriented editor. The users construct the IF

part of a rule by specifying the conditions that are required to satisfy specific conditions,

using logical operators like and, or, and not. The users rely on message-handling primitives

like move, delete, save, etc. to specify the action to be taken for that message.

3.2.2 Conferencing systems

Conferencing systems were first developed in the 1970s when the US government

was looking for a way to deal with emergencies. EMISARI [38] (Emergency Management

Information System and Reference Index) was one result of this effort. It consists of two

main ideas that even today form the backbone of current conferencing systems, as illustrated

in Figure 3.2.2. This model of communication allows users to interact through a shared

information space, and at the same time it allows users to interact individually with one

another.
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Figure 3.2: Communication in a conference system[34]

Traditional conferencing systems

Traditional conference systems are also extensions of email systems. The users of a

system can subscribe to various conferences and the system sends messages as comments are

posted. These are different from mailing lists in that they allow discussions to be moderated

by users. They also provide flexibility in the way conferences are created. Examples of

traditional conference systems include NOTEPAD, by InfoMEDIA Corp, and Confer, a

conferencing system developed at the university of Michigan.

Real-time conferencing systems

Real-time conferencing enables an instantaneous transfer of ideas and flow of in-

formation between participants of the conference. Real-time conferencing is important in

situations that require real-time group participation. RTCAL [39] was a system developed

at the MIT Laboratory for Computer Science. It supported scheduling meetings by building

a shared workspace of information from the participants’ calendars. Although it did not



32

provide a tool that automatically selects times for meetings, it provides a set of decision

support tools to help schedule meetings. RTCAL demonstrated a number of features that

are still relevant and applicable to most real time conferencing systems today, most notable

Microsoft Live Meeting.

Real-time conferencing systems may sometime also provide the user with the fa-

cility to share screens. These are called shared screen systems. Much of the work on shared

screen systems are developed on the work of Colab [35]. Yuuguu is a modern example of

an instant screen sharing system.

3.2.3 Meeting Rooms Systems

Meeting room systems find their roots in work on Group Decision Support Systems

(GDSS). Kraemer [40] cites DeSanctis and Gallupe[41] in a definition of a Group Decision

Support System as “an interactive computer-based system that facilitates the solution of

unstructured problems by a set of decision makers working together as a group.” The

eventual aim of such systems is to help groups improve their decision making process, by

providing structure for the process and a set of tools that help groups to make better

decisions.

More modern meeting room support systems are designed to enable collaboration

between co-located groups of participants. This is typically arranged in a meeting room

that contains a large projector along with a number of individual terminals. Figure 3.3

illustrates this arrangement.

CoLab [35] is one of the earliest and most influential examples of a meeting room

system. It aimed to explore the idea of using computers in meeting rooms to carry out tasks

that generally required media, such as chalkboards. Although the use of chalkboards and

similar media generally helps with group focus, these media have limitations. For example,

the contents of a standard chalkboard cannot be reproduced once erased, and rearranging

items on a chalk board is inconvenient.

CoLab attempted to provide a way around these drawbacks by having a shared

information space where participants of a conference interacted with one another. This led

to investigation of multi-user interfaces, where users can interact with one another using

a computer. One concept that resulted from this work was What You See Is What I See

(WYSIWIS): every user sees exactly the same information. Work on this concept produced
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Figure 3.3: Arrangement of a meeting room system[34]

the finding that strict WYSIWIS interfaces are too limiting. The designers of CoLab thus

opted for a more relaxed interpretation of WYSIWIS, where every user had private windows

in addition to a display shared with everyone else for interaction.

Since CoLab allowed a number of collaborators to interact with one another, its

basic design led conflicts between individual users trying to modify the same object at the

same time. As a result the team experimented with a number of mechanisms to maintain

concurrency [35].

3.2.4 Co-authoring Systems

A number of projects can be accomplished only by the effort of a number of

authors. Co-authoring systems help support such activity. A wiki can be considered an

example of such a system. Any user can read an article and, when required, they modify the

content of the article. A wiki also provides space for authors to discuss posted information

via a separate space for comments. A wiki provides version and configuration control when

saving the updates made to a given document.
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3.3 Coglaborate

Coglaborate, the system developed for this thesis, aims to support collaboration

between cognitive scientists who build computational models of their work. Currently these

users are restricted to sharing knowledge through the informal means of annual conferences,

workshops, summer school and model code distributed via web sites. Coglaborate is a

collaborative modeling environment in which cognitive modeling researchers can develop

and share models.

Coglaborate currently provides the following features, which are described in detail

in Chapter 4:

• A live lisp listener in a web browser where code can be evaluated.

• A structured representation for models using frames.

• A method for sharing and examining models at any level of detail.

Coglaborate provides support for collaboration by compiling the user’s models into

a frame-based representation. These representations are stored in a common area of the

memory of the system. Any user who is familiar with the name of the model can search for

the model and convert the model to code. This code can then be edited and recompiled, as

a result of this process the original representation is modified to reflect the change.

Coglaborate can be classified as a co-authoring system. The rationale behind

choosing this classification is that different users can build the same models incrementally

by adding productions or editing existing models. The following chapter will examine in

detail the design and implementation of the system.
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Chapter 4

Design and Implementation

The purpose of this chapter is threefold: it discusses the motivations that govern

the design of the Coglaborate system, such as using the BioBike chassis [42] and using

frames as a data structure to represent ACT-R based cognitive models; it describes the

work flow of the system that enables users to build and share models; finally it discusses in

detail a medium-scale model that was built as a proof of concept, a demonstration of how

Coglaborate would be used in practice.

4.1 Problem Definition for Coglaborate

The primary goal of the Coglaborate system is to provide a collaborative tool-

based environment for the computational cognitive modeling community. Currently there

are no such environments that provide this facility. Apart from supporting collaboration,

Coglaborate also targets a number of secondary goals:

• A sandbox environment : Currently there are number of interesting ACT-R extensions

available to modelers. But occasionally it might be difficult to set up these extensions.

With a sandbox environment, modelers can connect to it and use the module with

out any setup cost. This has a number of advantages. The users do not have to keep

track of the version of the extension and they can focus on completing their tasks

rather than having to tinker with their environment. Further, developers can work to

improve existing extensions without as much concern for deployment issues.
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• Resource Sharing : When we refer to resource sharing we mean sharing hardware.

With a Web-based platform that runs on a powerful computer, researchers can simu-

late models that require excessive computational power and time.

• Tool Integration: If there are computational tools that a model requires they can

be hooked in once, as a shared software resource. For example, the R statistical

environment can be accessed as a library. Once loaded, the facilities can be accessed

by many users, who do not need to modify their local environments.

• Knowledge Agglomeration: As modelers explore various aspects of cognition, they can

contribute their results to a general repository that reflects the state of the art.

4.2 Design Decisions

Two major decisions influenced the design of the project: firstly the use of the Bio-

Bike chassis as a platform to mount the ACT-R framework, and secondly the use of frames

as means to represent ACT-R based cognitive models in the shared memory. This section

discusses the alternatives that were analyzed and the reasons we made these decisions.

4.2.1 Choice of platform

We chose the BioBike framework as the platform for the system. This section

examines the basis of that decision by analyzing the capabilities of BioBike. BioBike is an

instantiation of KnowOS [43], a concept based on knowledge being treated on par with other

elements that make up a computer system. Operating systems provide useful abstractions

for users to work with the elements of a system. A simple example is a file, an abstraction

over regions of hardware storage. An operating system provides functions by which this file

can be renamed, copied, deleted, and so forth. It also provides further abstractions that

allow significant modifications to raw data. The KnowOS vision extends this analogy to the

realm of knowledge. An implementation of the KnowOS consists of the following layers [43]:

• A knowledge base centered on the frame system.

• An efficient and extensible programming language that provides abstractions for users

to work with the system.
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• A Web-based interface to the programming language and to other KnowOS services.

BioBike (originally known as BioLingua) provides biologists with the ability to per-

form computational biology operations on large data sets using a simple language. BioBike

ties a number of knowledge bases together transparently, using a frame-based representation

to represent organisms. As an implementation of the KnowOS vision, it provides features

customized for molecular biologists. These include [42]

• A common framework to access genomic, metabolic and experimental data.

• A general-purpose programming language (Lisp) customized for transparent access to

the underlying knowledge bases.

• A highly interactive environment where code can be evaluated and its results displayed

immediately.

• A number of general-purpose tools that help in analyzing interactions.

• A wiki through which scientists can collaborate and announce results.

The BioBike language is built on top of Common Lisp. Users interact with the

system using a Lisp listener. This results in a Unix style of interaction between the system

and the user, where the user types in a command and can see the results of that action

immediately. All Lisp listeners of the system share the same workspace, which means that

they can also share code.

BioBike provides biologists, in principle, with an environment in which they in-

teract with the computer in the same terms as they would interact with their peers; with

a uniform framework for accessing knowledge from a number of different knowledge bases;

and with a common work area where data and results can be shared and external tools

can be integrated. BioBike has been in place over a number years and has demonstrated

benefits to collaborating teams of biologists and computer scientists during that time[42].

Design Choices

When making the decision about the platform of the system, another option we had

was to implement a similar system from scratch. But when we considered the capabilities
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(p name ‘‘optional documentation string’’
buffer tests
==>
buffer changes and requests)

Figure 4.1: General form of a production[44]

provided by BioBike (such as a live Lisp listener, a system for integrating third-party tools,

support for collaboration, and a robust code base) this made the decision of choosing a

platform a trivial one. Further benefits of this decision are related to software engineering

concerns. The code for the system is open sourced under the MIT license and is actively

maintained. As a result we will be able to download updates to the code and apply those

changes in a way we see fit to the system.

4.2.2 Choice of structure for representation

The anatomy of an ACT-R model

An ACT-R model is a representation of a hypothesis of how a specific aspect of

human functions. As described in Chapter 2 the ACT-R theory postulates the existence

of two types of knowledge namely: declarative knowledge[44], is the type of knowledge

that a person is supposed to know when solving a problem and procedural memory, is the

knowledge that governs our behavior.

Declarative memory in ACT-R is represented by chunks[44]. Every chunk is com-

posed of slots and values; it is these slots and values that define the characteristics of chunks.

Chunk types are entities that define the slots for chunks. They serve the purpose of catego-

rizing chunks[44]. A chunk type is defined using the chunk-type macro. Chunks are added

to the declarative memory using the add-dm macro.

Productions are generally of the form as shown in figure 4.2.2. They consist

of condition-action pair. The conditions tests the values in buffers, buffers are interface

between ACT-R’s procedural module and other components, if the buffer tests are satisfied

the production applies and the actions in the productions are executed.

Consider an example ACT-R model, this example has been taken from[44], shown

in figure 4.2.2. This is a model that simulates how to count. As described earlier we
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(define-model count
(chunk-type count-order first second)
(chunk-type count-from start end count)

(add-dm
(b ISA count-order first 1 second 2)
(c ISA count-order first 2 second 3)
(d ISA count-order first 3 second 4)
(e ISA count-order first 4 second 5)
(f ISA count-order first 5 second 6)
(first-goal ISA count-from start 2 end 4))

(p start
=goal>
ISA count-from
start =num1
count nil

==>
=goal>
count =num1

+retrieval>
ISA count-order
first =num1)

.

.

.
)

Figure 4.2: Example of a simple ACT-R model
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define chunk types using the chunk-type command. In this model we use two chunk type

definitions: a count order chunk type that declares the order in which numbers are meant

to appear and a count-from chunk type that helps us define the numbers from and to we are

counting. The definition of chunk-type for count-from defines the number we are supposed

to start counting at indicated by the slot start. The number we are supposed to stop

counting at is defined by the slot end. The slot count helps us maintain state in the model

by storing the number we are currently at.

The call to add-dm adds chunks into the declarative memory. The chunk definitions

define the type of chunk and specify slots and their values.

A production called start is defined. This production has one condition and two

actions separated by ==>. We deal with two buffers in this production namely: the goal

buffer, that helps up maintain the state of model and the retrieval buffer that helps

us retrieve chunks from the declarative memory. In any production test, the start of a

condition is identified by the symbol = followed by the name of the buffer and ends with

the symbol >. The condition must always test the type of chunk in the buffer that is done

using the ISA test. In the tests terms starting with an = sign are variables, the scope of

these variables extend only to the current production. Anything else in the terms is a hard

value against which we test the production.

The actions section the production can define three types of actions that can be

performed on the buffers: buffer modification, where we modify the contents of a slot of

a chunk in the buffer; buffer retrieval request, where we request the buffer to pick up a

chunk from the declarative memory and a buffer clear, where we clear the chunk from a

buffer. These operations are indicated by the symbols: =, for buffer modification; + for

buffer retrieval and - for clearing a buffer. These symbols are followed by the name of

the buffer on which these operations will be performed followed by the > symbol. Specific

actions or values are defined in the lines the follow this line. These definitions can be seen

in figure 4.2.2.

Representation of the model

A structured representation of an ACT-R model is intended to provide an abstrac-

tion above the level of modeling code An abstraction should give a number of benefits: the

ability to share models more conveniently than by exchanging Lisp code; the potential for
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an “ecosystem” of tools for to support ACT-R modeling, in construction and analysis; and

the ability to maintain revisions of models1 and the ability to extend ACT-R models in

ways explicitly planned for.

We had to decide between three main choices of structures for representing an

ACT-R model: a direct representation of models in the ACT-R modeling language, a se-

mantic network, and frames.

ACT-R models are essentially Lisp data structures. Therefore the direct rep-

resentation of the model would store the code for the model as is. The benefit of this

approach lies in the simplicity of the implementation, which would have involved storing

the code as symbols, and the ease with which modeling researchers can understand a fa-

miliar representation. But this approach has a number of disadvantages. Building tools for

this representation would be exceptionally hard because the tools would have to parse the

model before being able to perform any operations. The representation does not allow us

to store meta data. It does not allow us to easily add capabilities for reuse of the model.

Finally it would be cumbersome to implement a system of revision control for this data

structure.

An alternative to the direct representation is using semantic networks to represent

ACT-R models. Semantic networks are a notation for representing knowledge, using nodes

to represent objects, concepts or situations in a domain, and using arcs to represent relations

between them [45, 46]. This would mean representing the internal components of ACT-R

models as node: the productions, and the conditions and actions they contain, as well as

models themselves. The advantages of using this representation are that tools written for

ACT-R could act directly on the nodes representing productions and models; the represen-

tation would make it easy to implement facilities for reuse of productions; queries could

be constructed to determine the type of objects and their relationships. The deficiencies

of this representation are that implementing a system of revision control would be difficult

because we would not be able to represent version information in a straightforward way. It

would also be difficult to add capabilities of model reuse.

The frame data structure was introduced by Marvin Minsky [5] in 1975, in one
1This is a continuing concern in ACT-R modeling research. The ACT-R architecture has gone through

several major revisions over the years (the current version is ACT-R 6.0, but modeling researchers rarely
return to models based on earlier versions to test whether changes in the implicit architectural dependencies
have rendered their past work invalid. Improved modeling abstractions may make this process easier.
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the seminal papers in the area of knowledge representation. Frames are structures that can

represent objects, situations and concepts. Frames are arranged in a hierarchical taxonomy

where every frame is linked with its parent frame. The parent frame represents a more

general concept than its child[47]. A frame is made up of a number of slots. Slots define the

properties of the object being represented by the frame. Slots are sometimes also used to

represent relationships between two frames. This representation provides us with a number

of advantages. Unlike semantic networks we have all related data stored in a single frame;

frames are dynamic and allow slots and their values to be updated very easily. Since frames

are structured, it is easy to write tools to help perform various forms of analysis. Finally, in

the future frames might help in analyzing more complex forms of reuse of cognitive models.

In knowledge representation research it is common to find integrations of frames

and semantic networks; for example, a semantic network might include frames rather than

atomic symbolic concepts in its nodes. The distinctions made in the above discussion are

between their “core” properties.

4.3 System Design

Application Server

ACT-RThird party 
tools

Translation 
Layer

Lisp

User

Operating System

Figure 4.3: System Design

This section aims to explain how various components of the system work together

to have the desired effect. Figure 4.3 provides a high level overview of the system. This
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section will examine each component in detail. The system currently runs on a server

running GNU/Linux. As a result we have a secure, robust, and stable platform on which

to base our system.

The User

The user of this system would be a researcher who uses ACT-R for modeling

cognitive tasks. He typically would use a text editor to create his models and a graphical

user interface provided by ACT-R to run his model. His tasks essentially consist of defining

knowledge structures that define the model like chunk-types, chunks and productions that

define the cognitive task.

The user interacts with the coglaborate system through a web browser. When a

user logs in he is put into the ACT-R package. This is done because it was not possible to

export all the required variables and functions into the user package. This is because ACT-R

either lets us export all its symbols into to the cl-user package or the act-r package.

The only thing different about the models being written to run on their own system

and those that are run on the Coglaborate system is that the users have to wrap their code

with a call to the with-user-meta-process macro. This macro creates new meta process

for the user and lets them run the model in that ACT-R meta process so as to avoid conflicts

with other users running their models in ACT-R.

Application Server

We use the AllegroServe Web Application server to serve the front end that the

user sees. The AllegroServe[48] application server provides us with: a HTTP/1.1 compliant

web server capable of serving static and dynamic pages; a HTML generation facility that

allows us to merge static and dynamic content; secure socket layer for the server and clients;

a comprehensive test suite to verify the functionality of the client, server, proxy and SSL.

It is licensed under the Lisp Lesser GNU Public License.

ACT-R

When a user evaluates a model it is compiled by the ACT-R model into a thunk.

My code is plugged into the parser of the ACT-R compiler so that we can access the data
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structure that is generated as the model is parsed. This data structure is then converted

into frames. A detailed description of the structure of the frames can be found in the

following sections.

Translation Layer

This is a conceptual layer that represents the implementation of the ideas suggested

in this project. This layer consists of two main sections: a section that converts ACT-R

model data structures into frames and a section that converts frames back into ACT-R

models. Since the code in this section is trivial, this section aims to explain the structure

of the frames that are created. Every frame has a few elements in common that describe:

the type of object that the current frame represents and the name of the object that the

frame represents. The structure of all the frames created by the code is described below.

• The model frame: A model frame represents an ACT-R model. It consists of a code

slot that holds all the code that is required by the model: this includes code for

initialization of the model; chunk definitions for the model and miscellaneous utility

functions that may be required by the model. It has a slot for productions that are a

part of the model.

• The production frame: A production frame consists of a conditions slot, which defines

the conditions that are required for the condition to fire, and a actions slot which lists

all the actions that will be executed if that production is fired.

• The buffer test frames: Every production in ACT-R consists of a number of conditions.

Each condition consists of a number of tests. Each buffer test frame represents one

such test. This frame has a slot to represent individual clauses within the test.

• The conditions frames: The conditions frames represent an individual clause it con-

sists of a test field that represents the buffer variable it is testing and a value field that

represents a value against which we are testing it. This field can also hold variable as

in ACT-R productions.

• The buffer actions frames: ACT-R productions can perform a number of actions that

can either modify, clear or retrieve a chunk in a buffer. These actions are represented

by these frames.
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• The action frames: Individual clauses that represent the modifications that are re-

quired to be made to the buffer are represented by these frames.

The names of the all frames except the name of the frame that represents the

model are appended with a random symbol so as to avoid name clashes.

When a user clicks a link representing the frame a function named html-for-browse-

frame is called. This function searches for the frame and then converts it to code that is

then returned to the browser.

4.4 Work Flow

This section illustrates a scenario where a user creates a model and evaluates it.

Another user comes in searches for the model created by the first user, navigates around its

productions and obtains the code for it.

A user creates a frame representation by evaluating the code that he types into

his lisp listener as shown in figure 4.4. The lisp listener has two text boxes, the large text

area is used to type in complete models and the smaller text box is used to type in one off

commands.

Once a frame representation of the model has been created any other user can

search for the model if he knows the name of the model. Clicking the “Find frames” link

does this. The result of the search is shown in figure 4.5.

Figure 4.6 shows the frame representation of what the model that the user was

searching for. Once the user finds the model that he was searching for, he can navigate the

model by clicking on the links inside the frame table.

Figure 4.7 shows us the frame representation of a production; this is obtained by

clicking any link in the slot value column of the model frame for the slot name “productions”.

The user can investigate a production further by clicking on the links in the slot value

section.

If a user wants to obtain code for the model he can click the Frame→Listener link

on the index page of the model. Figure 4.8 shows the resulting code generated as a result

of clicking the said link.
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Figure 4.4: A user creates and evaluates a model

Figure 4.5: Search results after searching for a model
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Figure 4.6: Navigating a model represented as a frame

Figure 4.7: Navigating a production represented as a frame
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Figure 4.8: The resultant code after clicking the Frame → Listener link

4.5 Proof of concept

To evaluate the capabilities of the system we built a simple but a medium scale

models. The essence of this exercise are two fold: firstly we show that the system is capable

of performing a non-trivial cognitive modeling exercise and secondly to demonstrate the level

of maturity of the system. This section discusses the problem description, the approaches

that we have chosen and what we can deduce from this.

4.5.1 Problem description

A crossword is a puzzle in which words or phrases are entered into an interlocking

grid either horizontally or vertically. The words are determined by a series of clues that

define the word or the phrase. Two or more words are synonyms if they can be exchanged in

the same context while maintaining the meaning of the context. Our proof of concept prob-

lem is a crossword puzzle where the clues and the solutions are defined as being synonyms

of each other.

This problem is appropriate for the following reasons: it demonstrates that this

system is a practical and is ready for the outside world, albeit the code needs little bit of

polishing; it demonstrates that users can use this system to write and test sand boxed act-r

modules and finally it places considerable demands on the hardware of the computer, in

terms of memory and CPU. As a consequence we can demonstrate that we have achieved
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most of the objectives we had in mind for the system.

4.5.2 Implementation

The data that helps us determine the solution to our clues is provided by WordNet[49].

Miller defines WordNet in the following terms:

WordNet is an online lexical database designed for use under program con-
trol. English nouns, verbs, adjectives, and adverbs are organized into sets of
synonyms, each representing a lexicalized concept. Semantic relations link the
synonym sets.

We use a module(WNLexical[50]) that enables ACT-R to make use of the WordNet

lexical database. The module does so by converting the WordNet database into set of s-

expressions that can be read in by the WNLexical module and stored as ACT-R chunks.

The WNLexical module exposes its functionality through the means of an ACT-R buffer,

aptly named wn-lexical. This buffer can query the WordNet database for synonyms,

antonyms, hyponyms, meronyms, glossaries of words etc. The results of these queries are

available from accessing the slots of the buffer.

The data structure for the clues is exceedingly simple. The data structure is a

list of clues(which are represented as chunks), where every clue is a list that consists of the

starting co-ordinates of the word, the direction(either across or down), the clue string, a

location to put in a solution and the actual solution itself. The data structure is manipulated

using the Crossword module. The crossword module has the ability: to set words in the

specified location; to verify if the crossword still maintains constraints and to query various

parameters of a specific clue.

When the model(the source code of the model is available in appendix A) is eval-

uated it initializes three chunk definitions: a chunk type to maintain the state of the goal

buffer initially; a chunk type that defines the clue and a chunk type that maintains the

state of the goal buffer as we actually get into the process of solving the crossword. It sets

up a few parameters so as to prevent the decay of crossword chunks in the memory. We

then check the memory to see if we can find any clues that have not been added to the data

structure. If we find a chunk that has not been added to the crossword we add it in. Once

added in we update the goal to find all the synsets of the word. This is done by querying the

WordNet module. For every synset found we create a chunk using the imaginal module. If
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we cannot find the word we display an error message. For every chunk that we had created

earlier, we query WordNet to obtain all the words in the synset if the word we have found

matches the solution we set it in the clue and mark the clue as solved. This process repeats

till all the clues have been solved or have been marked as being unsolvable.

The output trace of this model is available in Appendix B. It shows the trace for

two words: one where we are able to solve the clue the other being unsolvable. The trace

clearly shows the working of the algorithm in explicit detail.

4.5.3 Conclusions

The proof of concept demonstrates that we have a system that can be used in the

real world. We can assert this claim with some confidence because we have been able to

write and run a medium-scale model on the system.

We can further assert that we have met most of the objectives that we had set for

ourselves through this model. We set up an environment where any other researcher can

work with the WordNet module, we also wrote up a module that was required for the data

structure.

We can demonstrate the capability of resource sharing. Running the model on my

personal computer brought my computer to a crawl because the WordNet module loads all

the chunks into memory, whereas the model runs fine when executed on the server.

We have demonstrated that we can share software resources. As a result we gain

a saving in the amount of effort spent. For example, it took me a while to figure out that

there was a bug in the version of the WN-Lexical module, and I had to upgrade the module.

Now consider the amount of effort wasted by numerous other researchers working with the

same module. With a system like Coglaborate we would require to expend that amount of

effort only once and the entire community would be benefited.

Although the model did not make use of any third party tools the system has a

regular expression library and a package management, Another System Definition Facil-

ity(ASDF), system integrated into it.

The project added about one thousand lines of code to the existing code base of

ACT-R and BioBike. That figure does not include the lines of code of the model. The

challenges faced during the development of the project involved
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• Deciding on the structure of the frames so that we have the right level of granularity

and at the same time we don’t lose any information related to the productions;

• Developing an interface and workflow consistent with existing practices within the

cognitive modeling community;

• Figuring out a way to support collaboration using frames;

• Analyzing the ACT-R compiler to identify locations where the translation layer would

hook in;

• Identifying and fixing two existing bugs in the system.

The model consists of sixteen productions with a total of about four hundred and

sixty lines of code.

An evaluation of the collaborative aspects of the use of Coglaborate are unfortu-

nately beyond the scope of this thesis. Evidence for this capability is provided by experience

with BioBike; some similarities in the benefits can be expected. Nevertheless an illustration

of the use of Coglaborate to solve a medium-sized problem should give us insight into some

of the strengths and weaknesses of the approach.
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Chapter 5

Conclusion

This project began with very ambitious goals, but in the end most of the original

objectives were achieved. This chapter discusses the utility of the project, the challenges

that were faced, and a way to move forward on this work.

5.1 Discussion

Readers may wonder about the utility of this undertaking. We have some confi-

dence that this project will add value to the cognitive modeling community. It provides

a central location where students and researchers can learn from one another; it improves

support and resources available for ambitious cognitive modeling projects that in some cases

might not be possible otherwise, due to constraints on hardware or software infrastructure;

finally it has the potential to foster a stronger culture of collaboration among community

members.

5.1.1 Challenges and future work

Coglaborate has limitations, both from an engineering and a conceptual viewpoint.

To begin with the engineering limitations, there exists a graphical user interface to

ACT-R, which we have mentioned only briefly. Coglaborate, in its current state, does not

provide all of the same functionality of this interface. For example, Coglaborate does not

enable the user to step through productions or view the contents of buffers as a model is

being executed. The existing graphical user interface may thus make it easier to build and
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debug models. However, Coglaborate offers compensating advantages, and it could easily

be extended to incorporate existing development aids.

Like BioBike, Coglaborate provides persistence that is only apparent; objects per-

sist over the lifetime of the active Lisp environment. The practical limitation here is the

lack of standardization between database systems that support persistence and Lisp envi-

ronments in common use. Recently Allegro has introduced an object persistence library

called Allegro Cache as part of its platform; adding persistence in the future should be a

simple matter of programming.

The current version of the system uses an abstraction of ACT-R called meta pro-

cesses to provide isolation between models, although as of now it serves its purpose, true

isolation could be achieved by permitting the application server let every user spawn a new

Lisp process if required. This facility would make the system more robust and might help

if load balancing is needed in the future.

There are two main conceptual limitations to the work. First, Coglaborate re-

lies on BioBike as a platform to support collaboration, but there are many other possible

approaches that have not been explored in this research. For example, because ACT-R

models are software, some level of collaboration could be supported by systems for collab-

orative software development and management, beginning with something as simple as a

configuration management tool. We believe that BioBike and Coglaborate gain power from

the KnowOS concept, but this project has not directly explored the relative advantages

compared with more conventional techniques in software engineering. Second, Coglabo-

rate’s support for collaboration, in the current state of its implementation, operates at a

relatively granular level. Models, tools, and architecture extensions can be added to the

system by individual users, so that they can be more easily used by others. There is no

support for multi-user model development or integration of multiple smaller models into

larger ones, however. Even though we are confident that analysis tools (made possible

by Coglaborate’s model representation) could contribute to such collaboration, these tools

remain to be written.

Other limitations remain to be discovered. We believe that the system can best

be tested for effectiveness by opening it up the community, obtaining the feedback and

improving it. This way we can test the effectiveness of collaboration in cognitive modeling

in the real world.
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5.1.2 Implications of this work

On creating a frame-based abstraction for ACT-R models it quickly became clear

that this representation could be used to explore a number of other possibilities. This

section discusses these possibilities.

As observed by Langley et al. [31], an important issue facing cognitive modeling

is support for software reuse. This project promotes reuse of models in the sense that the

representation allows for models to be represented, analyzed, and distributed in a much more

transparent fashion than in their current representation as Lisp code. Today, it is impossible

to determine the similarity between two ACT-R models except through code inspection and

ad hoc judgments. The frame-based representation introduced in this research makes more

sophisticated analysis possible: comparison of the use of buffers across productions, for

example. Such analyses remain for future work.

Another interesting research direction would be to investigate software reuse as

provided by object-oriented programming environments. That is, we can develop features

such that models can inherit behavior from other more general models. This way we should

be able identify general patterns that emerge from human cognition.

Yet another area of interest for this system is the investigation of user interfaces

that allow cognitive scientists to create models without actually having to learn Lisp. This

could lead to a gentler learning curve for people working with ACT-R.
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Appendix A

Appendix

A.1 ACT-R model

(clear-all)

(define-model test-model

(defun my-string-not-equal(a b)
(not (string= a b)))

(sgp :wnl-chunks wnl :imaginal-delay 0
:bll 0 :er nil :esc nil
:declarative-finst-span 1000 :declarative-num-finsts 1000
:do-not-harvest wn-lexical )

(chunk-type goal state number)
(chunk-type clue clue-id hint solution model-solution position state type )
(chunk-type syn-goal word-str synset-id state clue-id solution model-solution)

(add-dm
;;Module chunks
(in-crossword isa chunk)
;;model chunks
(g1 isa goal state find-clue number 1)
(solve-puzzle isa chunk)
(fill-horizontal-clues isa chunk)
(number-of-horizontal-solutions isa chunk)

(find-word-definition isa chunk)
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(find-word-gloss isa chunk)
(find-synonyms isa chunk)
(say-definition isa chunk)

(clue-1 isa clue clue-id 1 hint "gold"
solution "gilded" position ’(0 . 1)
state not-in-crossword type cross)

(clue-4 isa clue clue-id 4 hint "ljad;"
solution "vomit" position ’(0 . 1)
state not-in-crossword type cross))

(p find-clue
=goal>
isa goal
state find-clue

?crossword>
state insertion-not-complete

==>

+retrieval>
isa clue
state not-in-crossword

!output! (picking up a new clue)

+goal>
isa syn-goal
state add-word
)

(p update-goal-to-get-synonyms

=retrieval>
isa clue
state not-in-crossword
hint =word
clue-id =id
solution =soln

=goal>
isa syn-goal
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state add-word

?wn-lexical>
state free

==>

=goal>
state find-word-definition
word-str =word
clue-id =id
solution =soln

+wn-lexical>
isa wnl-clear-context

=retrieval>
state in-crossword)

(p find-word-definition
=goal>
isa syn-goal
state find-word-definition
word-str =word

?wn-lexical>
state free

?wn-lexical>
state success

==>

+wn-lexical>
isa wnl-request
wn-operator s
word =word
context-criterion set-difference

!output! (Looking for sense of =word)

=goal>
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state find-word-gloss
)

(p find-word-gloss
=goal>
isa syn-goal
state find-word-gloss
word-str =word

?wn-lexical>
state free

?wn-lexical>
state success

=wn-lexical>
isa s
word =word
synset-id =synset-id

==>

+wn-lexical>
isa wnl-request
wn-operator g
synset-id =synset-id

!output! (Looking for definition of =word)

=goal>
state say-definition
)

(p say-definition
=goal>
isa syn-goal
state say-definition
word-str =word

?wn-lexical>
state free

?wn-lexical>
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state success

=wn-lexical>
isa g
gloss =gloss
synset-id =synset-id

==>

!output! (the definition of =word is =gloss)
=goal>
state find-synonyms
synset-id =synset-id

+wn-lexical>
isa wnl-request
wn-operator s
synset-id =synset-id

)

(p find-synonyms
=goal>
isa syn-goal
state find-synonyms
synset-id =synset-id

?wn-lexical>
state free

?wn-lexical>
state success

=wn-lexical>
isa s
word =word
synset-id =synset-id

==>

!output! (=word is a synonyms)



66

+imaginal>
isa syn-goal
state not-examined
synset-id =synset-id
word-str =word

=goal>
state find-word-definition
)

(p do-not-know-word
=goal>
isa syn-goal
state find-word-gloss
word-str =word

?wn-lexical>
state free

?wn-lexical>
state error

?retrieval>
state free

==>

!output! (I know nothing about =word)

+retrieval>
isa syn-goal
state not-examined
:recently-retrieved nil

=goal>
state not-examined

-imaginal>

-wn-lexical>
)

(p start-exploring-word
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=goal>
isa syn-goal
state not-examined

=retrieval>
isa syn-goal
state not-examined
synset-id =synset-id

?wn-lexical>
state free

==>

=retrieval>
state examined

=goal>
state explore-word
synset-id =synset-id

+wn-lexical>
isa wnl-clear-context)

(p explore-word

=goal>
isa syn-goal
state explore-word
synset-id =synset-id

?wn-lexical>
state free

==>

+wn-lexical>
isa wnl-request
wn-operator s
synset-id =synset-id
context-criterion set-difference
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=goal>
state say-word)

(p no-more-words-in-this-sense

=goal>
isa syn-goal
state say-word
clue-id =id

?wn-lexical>
state error

?wn-lexical>
state free

?retrieval>
state free
==>

;;use retrieval pick next word
+retrieval>
isa syn-goal
state not-examined
:recently-retrieved nil

!output! (picking up next word)

=goal>
state examined)

(p temp-prod

=goal>
isa syn-goal
state examined

==>

=goal>
state not-examined)
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(p explored-all-senses

=goal>
isa syn-goal
state not-examined
clue-id =id

?retrieval>
state error

?wn-lexical>
state free
==>

+goal>
isa syn-goal
state add-word

!output! (could not solve clue =id)

+retrieval>
isa clue
state not-in-crossword
:recently-retrieved nil

-wn-lexical>

!output! (explored all senses))

(p say-word

=wn-lexical>
isa s
word =word
synset-id =synset-id

=goal>
isa syn-goal
state say-word
solution =soln
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clue-id =id

?retrieval>
state free

!safe-eval! (string-equal =word =soln)

==>

!output! (selected word =word)
!output! (solution =soln)

=goal>
state update-clue
model-solution =soln

+retrieval>
isa clue
clue-id =id
state in-crossword
:recently-retrieved nil
)

(p update-clue

=goal>
isa syn-goal
state update-clue
model-solution =soln
clue-id =id

=retrieval>
isa clue
clue-id =id
==>

=retrieval>
model-solution =soln
state solved

!output! (solved clue =id)

=goal>
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state clear-buffer-and-pick-up-next-clue

)

(p clear-buffer-and-pick-up-next-clue

=goal>
isa syn-goal
state clear-buffer-and-pick-up-next-clue

?retrieval>
state free

?wn-lexical>
state free

==>

+goal>
isa syn-goal
state add-word

+retrieval>
isa clue
state not-in-crossword
:recently-retrieved nil

-wn-lexical>
)

(p say-word-1

=wn-lexical>
isa s
word =word
synset-id =synset-id

=goal>
isa syn-goal
solution =soln
state say-word

!safe-eval! (my-string-not-equal =word =soln)
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==>

!output! (word =word)

=goal>
state explore-word)

)

(goal-focus g1)
(run 40)
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A.2 Sample run of the model

I have provided a sample run of the act-r synonym crossword model. In this run

it solves a clue with the hint “gold” and identifies that a clue with the hint “ljad” cannot

be solved.

0.000 GOAL SET-BUFFER-CHUNK GOAL G1 REQUESTED NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.050 PROCEDURAL PRODUCTION-FIRED FIND-CLUE

PICKING UP A NEW CLUE
0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
0.050 PROCEDURAL CLEAR-BUFFER GOAL
0.050 GOAL SET-BUFFER-CHUNK GOAL SYN-GOAL0
0.050 DECLARATIVE START-RETRIEVAL
0.050 DECLARATIVE RETRIEVED-CHUNK CLUE-1
0.050 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL CLUE-1
0.050 PROCEDURAL CONFLICT-RESOLUTION
0.100 PROCEDURAL PRODUCTION-FIRED

UPDATE-GOAL-TO-GET-SYNONYMS
0.100 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
0.100 WN-LEXICAL CLEAR-WN-LEXICAL-SYNSET-CONTEXT
0.100 PROCEDURAL CONFLICT-RESOLUTION
0.150 PROCEDURAL PRODUCTION-FIRED FIND-WORD-DEFINITION

LOOKING FOR SENSE OF "gold"
0.150 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
0.150 WN-LEXICAL RETRIEVE-WN-CHUNKS
0.150 WN-LEXICAL SELECT-FROM-RETRIEVED-WN-CHUNKS SET OF

SIZE 7
0.150 WN-LEXICAL SET-BUFFER-CHUNK WN-LEXICAL

S-300369941-4
0.150 PROCEDURAL CONFLICT-RESOLUTION
0.200 PROCEDURAL PRODUCTION-FIRED FIND-WORD-GLOSS

LOOKING FOR DEFINITION OF "gold"
0.200 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
0.200 WN-LEXICAL RETRIEVE-WN-CHUNKS
0.200 WN-LEXICAL SELECT-FROM-RETRIEVED-WN-CHUNKS SET OF

SIZE 1
0.200 WN-LEXICAL SET-BUFFER-CHUNK WN-LEXICAL

G-300369941-1
0.200 PROCEDURAL CONFLICT-RESOLUTION
0.250 PROCEDURAL PRODUCTION-FIRED SAY-DEFINITION

THE DEFINITION OF "gold" IS "having the deep slightly
brownish color of gold; \"long aureate (or golden) hair\";
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\"a gold carpet\""
0.250 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
0.250 WN-LEXICAL RETRIEVE-WN-CHUNKS
0.250 WN-LEXICAL SELECT-FROM-RETRIEVED-WN-CHUNKS SET OF

SIZE 5
0.250 WN-LEXICAL SET-BUFFER-CHUNK WN-LEXICAL

S-300369941-5
0.250 PROCEDURAL CONFLICT-RESOLUTION
0.300 PROCEDURAL PRODUCTION-FIRED FIND-SYNONYMS

"golden" IS A SYNONYMS
0.300 PROCEDURAL CLEAR-BUFFER IMAGINAL
0.300 IMAGINAL SET-BUFFER-CHUNK IMAGINAL SYN-GOAL1
0.300 PROCEDURAL CONFLICT-RESOLUTION
0.350 PROCEDURAL PRODUCTION-FIRED FIND-WORD-DEFINITION

LOOKING FOR SENSE OF "gold"
0.350 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
0.350 WN-LEXICAL RETRIEVE-WN-CHUNKS
0.350 WN-LEXICAL SELECT-FROM-RETRIEVED-WN-CHUNKS SET OF

SIZE 7
0.350 WN-LEXICAL SET-BUFFER-CHUNK WN-LEXICAL

S-114638799-1
0.350 PROCEDURAL CONFLICT-RESOLUTION
0.400 PROCEDURAL PRODUCTION-FIRED FIND-WORD-GLOSS

LOOKING FOR DEFINITION OF "gold"
0.400 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
0.400 WN-LEXICAL RETRIEVE-WN-CHUNKS
0.400 WN-LEXICAL SELECT-FROM-RETRIEVED-WN-CHUNKS SET OF

SIZE 1
0.400 WN-LEXICAL SET-BUFFER-CHUNK WN-LEXICAL

G-114638799-1
0.400 PROCEDURAL CONFLICT-RESOLUTION
0.450 PROCEDURAL PRODUCTION-FIRED SAY-DEFINITION

THE DEFINITION OF "gold" IS "a soft yellow malleable ductile
(trivalent and univalent) metallic element; occurs mainly as
nuggets in rocks and alluvial deposits; does not react with
most chemicals but is attacked by chlorine and aqua regia"

0.450 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
0.450 WN-LEXICAL RETRIEVE-WN-CHUNKS
0.450 WN-LEXICAL SELECT-FROM-RETRIEVED-WN-CHUNKS SET OF

SIZE 3
0.450 WN-LEXICAL SET-BUFFER-CHUNK WN-LEXICAL

S-114638799-2
0.450 PROCEDURAL CONFLICT-RESOLUTION
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0.500 PROCEDURAL PRODUCTION-FIRED FIND-SYNONYMS
"Au" IS A SYNONYMS

0.500 PROCEDURAL CLEAR-BUFFER IMAGINAL
0.500 IMAGINAL SET-BUFFER-CHUNK IMAGINAL SYN-GOAL2
0.500 PROCEDURAL CONFLICT-RESOLUTION
0.550 PROCEDURAL PRODUCTION-FIRED FIND-WORD-DEFINITION

LOOKING FOR SENSE OF "gold"
0.550 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
0.550 WN-LEXICAL RETRIEVE-WN-CHUNKS
0.550 WN-LEXICAL SELECT-FROM-RETRIEVED-WN-CHUNKS SET OF

SIZE 7
0.550 WN-LEXICAL SET-BUFFER-CHUNK WN-LEXICAL

S-113371760-1
0.550 PROCEDURAL CONFLICT-RESOLUTION
0.600 PROCEDURAL PRODUCTION-FIRED FIND-WORD-GLOSS

LOOKING FOR DEFINITION OF "gold"
0.600 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
0.600 WN-LEXICAL RETRIEVE-WN-CHUNKS
0.600 WN-LEXICAL SELECT-FROM-RETRIEVED-WN-CHUNKS SET OF

SIZE 1
0.600 WN-LEXICAL SET-BUFFER-CHUNK WN-LEXICAL

G-113371760-1
0.600 PROCEDURAL CONFLICT-RESOLUTION
0.650 PROCEDURAL PRODUCTION-FIRED SAY-DEFINITION

THE DEFINITION OF "gold" IS "coins made of gold"
0.650 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
0.650 WN-LEXICAL RETRIEVE-WN-CHUNKS
0.650 WN-LEXICAL SELECT-FROM-RETRIEVED-WN-CHUNKS SET OF

SIZE 1
0.650 WN-LEXICAL SET-BUFFER-CHUNK WN-LEXICAL

S-113371760-1
0.650 PROCEDURAL CONFLICT-RESOLUTION
0.700 PROCEDURAL PRODUCTION-FIRED FIND-SYNONYMS

"gold" IS A SYNONYMS
0.700 PROCEDURAL CLEAR-BUFFER IMAGINAL
0.700 IMAGINAL SET-BUFFER-CHUNK IMAGINAL SYN-GOAL3
0.700 PROCEDURAL CONFLICT-RESOLUTION
0.750 PROCEDURAL PRODUCTION-FIRED FIND-WORD-DEFINITION

LOOKING FOR SENSE OF "gold"
0.750 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
0.750 WN-LEXICAL RETRIEVE-WN-CHUNKS
0.750 WN-LEXICAL SELECT-FROM-RETRIEVED-WN-CHUNKS SET OF

SIZE 7
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0.750 WN-LEXICAL SET-BUFFER-CHUNK WN-LEXICAL
S-113353446-1

0.750 PROCEDURAL CONFLICT-RESOLUTION
0.800 PROCEDURAL PRODUCTION-FIRED FIND-WORD-GLOSS

LOOKING FOR DEFINITION OF "gold"
0.800 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
0.800 WN-LEXICAL RETRIEVE-WN-CHUNKS
0.800 WN-LEXICAL SELECT-FROM-RETRIEVED-WN-CHUNKS SET OF

SIZE 1
0.800 WN-LEXICAL SET-BUFFER-CHUNK WN-LEXICAL

G-113353446-1
0.800 PROCEDURAL CONFLICT-RESOLUTION
0.850 PROCEDURAL PRODUCTION-FIRED SAY-DEFINITION

THE DEFINITION OF "gold" IS "great wealth;
\"Whilst that for which all virtue now is sold, and almost
every vice--almighty gold\"--Ben Jonson"

0.850 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
0.850 WN-LEXICAL RETRIEVE-WN-CHUNKS
0.850 WN-LEXICAL SELECT-FROM-RETRIEVED-WN-CHUNKS SET OF

SIZE 1
0.850 WN-LEXICAL SET-BUFFER-CHUNK WN-LEXICAL

S-113353446-1
0.850 PROCEDURAL CONFLICT-RESOLUTION
0.900 PROCEDURAL PRODUCTION-FIRED FIND-SYNONYMS

"gold" IS A SYNONYMS
0.900 PROCEDURAL CLEAR-BUFFER IMAGINAL
0.900 IMAGINAL SET-BUFFER-CHUNK IMAGINAL SYN-GOAL4
0.900 PROCEDURAL CONFLICT-RESOLUTION
0.950 PROCEDURAL PRODUCTION-FIRED FIND-WORD-DEFINITION

LOOKING FOR SENSE OF "gold"
0.950 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
0.950 WN-LEXICAL RETRIEVE-WN-CHUNKS
0.950 WN-LEXICAL SELECT-FROM-RETRIEVED-WN-CHUNKS SET OF

SIZE 7
0.950 WN-LEXICAL SET-BUFFER-CHUNK WN-LEXICAL

S-104966240-2
0.950 PROCEDURAL CONFLICT-RESOLUTION
1.000 PROCEDURAL PRODUCTION-FIRED FIND-WORD-GLOSS

LOOKING FOR DEFINITION OF "gold"
1.000 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
1.000 WN-LEXICAL RETRIEVE-WN-CHUNKS
1.000 WN-LEXICAL SELECT-FROM-RETRIEVED-WN-CHUNKS SET OF

SIZE 1
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1.000 WN-LEXICAL SET-BUFFER-CHUNK WN-LEXICAL
G-104966240-1

1.000 PROCEDURAL CONFLICT-RESOLUTION
1.050 PROCEDURAL PRODUCTION-FIRED SAY-DEFINITION

THE DEFINITION OF "gold" IS "a deep yellow color;
\"an amber light illuminated the room\";
\"he admired the gold of her hair\""
1.050 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
1.050 WN-LEXICAL RETRIEVE-WN-CHUNKS
1.050 WN-LEXICAL SELECT-FROM-RETRIEVED-WN-CHUNKS SET OF

SIZE 2
1.050 WN-LEXICAL SET-BUFFER-CHUNK WN-LEXICAL

S-104966240-1
1.050 PROCEDURAL CONFLICT-RESOLUTION
1.100 PROCEDURAL PRODUCTION-FIRED FIND-SYNONYMS

"amber" IS A SYNONYMS
1.100 PROCEDURAL CLEAR-BUFFER IMAGINAL
1.100 IMAGINAL SET-BUFFER-CHUNK IMAGINAL SYN-GOAL5
1.100 PROCEDURAL CONFLICT-RESOLUTION
1.150 PROCEDURAL PRODUCTION-FIRED FIND-WORD-DEFINITION

LOOKING FOR SENSE OF "gold"
1.150 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
1.150 WN-LEXICAL RETRIEVE-WN-CHUNKS
1.150 WN-LEXICAL SELECT-FROM-RETRIEVED-WN-CHUNKS SET OF

SIZE 7
1.150 WN-LEXICAL SET-BUFFER-CHUNK WN-LEXICAL

S-301528730-1
1.150 PROCEDURAL CONFLICT-RESOLUTION
1.200 PROCEDURAL PRODUCTION-FIRED FIND-WORD-GLOSS

LOOKING FOR DEFINITION OF "gold"
1.200 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
1.200 WN-LEXICAL RETRIEVE-WN-CHUNKS
1.200 WN-LEXICAL SELECT-FROM-RETRIEVED-WN-CHUNKS SET OF

SIZE 1
1.200 WN-LEXICAL SET-BUFFER-CHUNK WN-LEXICAL

G-301528730-1
1.200 PROCEDURAL CONFLICT-RESOLUTION
1.250 PROCEDURAL PRODUCTION-FIRED SAY-DEFINITION

THE DEFINITION OF "gold" IS "made from or covered with gold;
\"gold coins\";
\"the gold dome of the Capitol\";
\"the golden calf\"; \"gilded icons\""

1.250 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
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1.250 WN-LEXICAL RETRIEVE-WN-CHUNKS
1.250 WN-LEXICAL SELECT-FROM-RETRIEVED-WN-CHUNKS SET OF

SIZE 3
1.250 WN-LEXICAL SET-BUFFER-CHUNK WN-LEXICAL

S-301528730-2
1.250 PROCEDURAL CONFLICT-RESOLUTION
1.300 PROCEDURAL PRODUCTION-FIRED FIND-SYNONYMS

"golden" IS A SYNONYMS
1.300 PROCEDURAL CLEAR-BUFFER IMAGINAL
1.300 IMAGINAL SET-BUFFER-CHUNK IMAGINAL SYN-GOAL6
1.300 PROCEDURAL CONFLICT-RESOLUTION
1.350 PROCEDURAL PRODUCTION-FIRED FIND-WORD-DEFINITION

LOOKING FOR SENSE OF "gold"
1.350 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
1.350 WN-LEXICAL RETRIEVE-WN-CHUNKS
1.350 WN-LEXICAL SELECT-FROM-RETRIEVED-WN-CHUNKS SET OF

SIZE 7
1.350 WN-LEXICAL SET-BUFFER-CHUNK WN-LEXICAL

S-105141492-1
1.350 PROCEDURAL CONFLICT-RESOLUTION
1.400 PROCEDURAL PRODUCTION-FIRED FIND-WORD-GLOSS

LOOKING FOR DEFINITION OF "gold"
1.400 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
1.400 WN-LEXICAL RETRIEVE-WN-CHUNKS
1.400 WN-LEXICAL SELECT-FROM-RETRIEVED-WN-CHUNKS SET OF

SIZE 1
1.400 WN-LEXICAL SET-BUFFER-CHUNK WN-LEXICAL

G-105141492-1
1.400 PROCEDURAL CONFLICT-RESOLUTION
1.450 PROCEDURAL PRODUCTION-FIRED SAY-DEFINITION

THE DEFINITION OF "gold" IS "something likened to the metal
in brightness or preciousness or superiority etc.;
\"the child was as good as gold\"; \"she has a heart of gold\""
1.450 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
1.450 WN-LEXICAL RETRIEVE-WN-CHUNKS
1.450 WN-LEXICAL SELECT-FROM-RETRIEVED-WN-CHUNKS SET OF

SIZE 1
1.450 WN-LEXICAL SET-BUFFER-CHUNK WN-LEXICAL

S-105141492-1
1.450 PROCEDURAL CONFLICT-RESOLUTION
1.500 PROCEDURAL PRODUCTION-FIRED FIND-SYNONYMS

"gold" IS A SYNONYMS
1.500 PROCEDURAL CLEAR-BUFFER IMAGINAL
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1.500 IMAGINAL SET-BUFFER-CHUNK IMAGINAL SYN-GOAL7
1.500 PROCEDURAL CONFLICT-RESOLUTION
1.550 PROCEDURAL PRODUCTION-FIRED FIND-WORD-DEFINITION

LOOKING FOR SENSE OF "gold"
1.550 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
1.550 WN-LEXICAL RETRIEVE-WN-CHUNKS
1.550 WN-LEXICAL SELECT-FROM-RETRIEVED-WN-CHUNKS SET OF

SIZE 7
1.550 PROCEDURAL CONFLICT-RESOLUTION
1.600 PROCEDURAL PRODUCTION-FIRED DO-NOT-KNOW-WORD

I KNOW NOTHING ABOUT "gold"
1.600 PROCEDURAL CLEAR-BUFFER IMAGINAL
1.600 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
1.600 PROCEDURAL CLEAR-BUFFER RETRIEVAL
1.600 DECLARATIVE START-RETRIEVAL
1.600 DECLARATIVE RETRIEVED-CHUNK SYN-GOAL1-0
1.600 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL SYN-GOAL1-0
1.600 PROCEDURAL CONFLICT-RESOLUTION
1.650 PROCEDURAL PRODUCTION-FIRED START-EXPLORING-WORD
1.650 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
1.650 WN-LEXICAL CLEAR-WN-LEXICAL-SYNSET-CONTEXT
1.650 PROCEDURAL CONFLICT-RESOLUTION
1.700 PROCEDURAL PRODUCTION-FIRED EXPLORE-WORD
1.700 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
1.700 WN-LEXICAL RETRIEVE-WN-CHUNKS
1.700 WN-LEXICAL SELECT-FROM-RETRIEVED-WN-CHUNKS SET OF

SIZE 5
1.700 WN-LEXICAL SET-BUFFER-CHUNK WN-LEXICAL

S-300369941-2
1.700 PROCEDURAL CONFLICT-RESOLUTION
1.750 PROCEDURAL PRODUCTION-FIRED SAY-WORD

SELECTED WORD "gilded"
SOLUTION "gilded"

1.750 PROCEDURAL CLEAR-BUFFER RETRIEVAL
1.750 DECLARATIVE START-RETRIEVAL
1.750 DECLARATIVE RETRIEVED-CHUNK CLUE-1-0
1.750 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL CLUE-1-0
1.750 PROCEDURAL CONFLICT-RESOLUTION
1.800 PROCEDURAL PRODUCTION-FIRED UPDATE-CLUE

SOLVED CLUE 1
1.800 PROCEDURAL CONFLICT-RESOLUTION
1.850 PROCEDURAL PRODUCTION-FIRED

CLEAR-BUFFER-AND-PICK-UP-NEXT-CLUE
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1.850 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
1.850 PROCEDURAL CLEAR-BUFFER GOAL
1.850 PROCEDURAL CLEAR-BUFFER RETRIEVAL
1.850 GOAL SET-BUFFER-CHUNK GOAL SYN-GOAL8
1.850 DECLARATIVE START-RETRIEVAL
1.850 DECLARATIVE RETRIEVED-CHUNK CLUE-4
1.850 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL CLUE-4
1.850 PROCEDURAL CONFLICT-RESOLUTION
1.900 PROCEDURAL PRODUCTION-FIRED

UPDATE-GOAL-TO-GET-SYNONYMS
1.900 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
1.900 WN-LEXICAL CLEAR-WN-LEXICAL-SYNSET-CONTEXT
1.900 PROCEDURAL CONFLICT-RESOLUTION
1.950 PROCEDURAL PRODUCTION-FIRED FIND-WORD-DEFINITION

LOOKING FOR SENSE OF "ljad;"
1.950 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
1.950 WN-LEXICAL RETRIEVE-WN-CHUNKS
1.950 PROCEDURAL CONFLICT-RESOLUTION
2.000 PROCEDURAL PRODUCTION-FIRED DO-NOT-KNOW-WORD

I KNOW NOTHING ABOUT "ljad;"
2.000 PROCEDURAL CLEAR-BUFFER IMAGINAL
2.000 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
2.000 PROCEDURAL CLEAR-BUFFER RETRIEVAL
2.000 DECLARATIVE START-RETRIEVAL
2.000 DECLARATIVE RETRIEVED-CHUNK SYN-GOAL2-0
2.000 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL SYN-GOAL2-0
2.000 PROCEDURAL CONFLICT-RESOLUTION
2.050 PROCEDURAL PRODUCTION-FIRED START-EXPLORING-WORD
2.050 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
2.050 WN-LEXICAL CLEAR-WN-LEXICAL-SYNSET-CONTEXT
2.050 PROCEDURAL CONFLICT-RESOLUTION
2.100 PROCEDURAL PRODUCTION-FIRED EXPLORE-WORD
2.100 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
2.100 WN-LEXICAL RETRIEVE-WN-CHUNKS
2.100 WN-LEXICAL SELECT-FROM-RETRIEVED-WN-CHUNKS SET OF

SIZE 3
2.100 WN-LEXICAL SET-BUFFER-CHUNK WN-LEXICAL

S-114638799-3
2.100 PROCEDURAL CONFLICT-RESOLUTION
2.150 PROCEDURAL PRODUCTION-FIRED SAY-WORD-1

WORD "atomic number 79"
2.150 PROCEDURAL CONFLICT-RESOLUTION
2.200 PROCEDURAL PRODUCTION-FIRED EXPLORE-WORD
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2.200 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
2.200 WN-LEXICAL RETRIEVE-WN-CHUNKS
2.200 WN-LEXICAL SELECT-FROM-RETRIEVED-WN-CHUNKS SET OF

SIZE 3
2.200 WN-LEXICAL SET-BUFFER-CHUNK WN-LEXICAL

S-114638799-2
2.200 PROCEDURAL CONFLICT-RESOLUTION
2.250 PROCEDURAL PRODUCTION-FIRED SAY-WORD-1

WORD "Au"
2.250 PROCEDURAL CONFLICT-RESOLUTION
2.300 PROCEDURAL PRODUCTION-FIRED EXPLORE-WORD
2.300 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
2.300 WN-LEXICAL RETRIEVE-WN-CHUNKS
2.300 WN-LEXICAL SELECT-FROM-RETRIEVED-WN-CHUNKS SET OF

SIZE 3
2.300 WN-LEXICAL SET-BUFFER-CHUNK WN-LEXICAL

S-114638799-1
2.300 PROCEDURAL CONFLICT-RESOLUTION
2.350 PROCEDURAL PRODUCTION-FIRED SAY-WORD-1

WORD "gold"
2.350 PROCEDURAL CONFLICT-RESOLUTION
2.400 PROCEDURAL PRODUCTION-FIRED EXPLORE-WORD
2.400 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
2.400 WN-LEXICAL RETRIEVE-WN-CHUNKS
2.400 WN-LEXICAL SELECT-FROM-RETRIEVED-WN-CHUNKS SET OF

SIZE 3
2.400 PROCEDURAL CONFLICT-RESOLUTION
2.450 PROCEDURAL PRODUCTION-FIRED

NO-MORE-WORDS-IN-THIS-SENSE
PICKING UP NEXT WORD

2.450 PROCEDURAL CLEAR-BUFFER RETRIEVAL
2.450 DECLARATIVE START-RETRIEVAL
2.450 DECLARATIVE RETRIEVED-CHUNK SYN-GOAL3-0
2.450 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL SYN-GOAL3-0
2.450 PROCEDURAL CONFLICT-RESOLUTION
2.500 PROCEDURAL PRODUCTION-FIRED TEMP-PROD
2.500 PROCEDURAL CONFLICT-RESOLUTION
2.550 PROCEDURAL PRODUCTION-FIRED START-EXPLORING-WORD
2.550 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
2.550 WN-LEXICAL CLEAR-WN-LEXICAL-SYNSET-CONTEXT
2.550 PROCEDURAL CONFLICT-RESOLUTION
2.600 PROCEDURAL PRODUCTION-FIRED EXPLORE-WORD
2.600 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
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2.600 WN-LEXICAL RETRIEVE-WN-CHUNKS
2.600 WN-LEXICAL SELECT-FROM-RETRIEVED-WN-CHUNKS SET OF

SIZE 1
2.600 WN-LEXICAL SET-BUFFER-CHUNK WN-LEXICAL

S-113371760-1
2.600 PROCEDURAL CONFLICT-RESOLUTION
2.650 PROCEDURAL PRODUCTION-FIRED SAY-WORD-1

WORD "gold"
2.650 PROCEDURAL CONFLICT-RESOLUTION
2.700 PROCEDURAL PRODUCTION-FIRED EXPLORE-WORD
2.700 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
2.700 WN-LEXICAL RETRIEVE-WN-CHUNKS
2.700 WN-LEXICAL SELECT-FROM-RETRIEVED-WN-CHUNKS SET OF

SIZE 1
2.700 PROCEDURAL CONFLICT-RESOLUTION
2.750 PROCEDURAL PRODUCTION-FIRED

NO-MORE-WORDS-IN-THIS-SENSE
PICKING UP NEXT WORD

2.750 PROCEDURAL CLEAR-BUFFER RETRIEVAL
2.750 DECLARATIVE START-RETRIEVAL
2.750 DECLARATIVE RETRIEVED-CHUNK SYN-GOAL4-0
2.750 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL SYN-GOAL4-0
2.750 PROCEDURAL CONFLICT-RESOLUTION
2.800 PROCEDURAL PRODUCTION-FIRED TEMP-PROD
2.800 PROCEDURAL CONFLICT-RESOLUTION
2.850 PROCEDURAL PRODUCTION-FIRED START-EXPLORING-WORD
2.850 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
2.850 WN-LEXICAL CLEAR-WN-LEXICAL-SYNSET-CONTEXT
2.850 PROCEDURAL CONFLICT-RESOLUTION
2.900 PROCEDURAL PRODUCTION-FIRED EXPLORE-WORD
2.900 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
2.900 WN-LEXICAL RETRIEVE-WN-CHUNKS
2.900 WN-LEXICAL SELECT-FROM-RETRIEVED-WN-CHUNKS SET OF

SIZE 1
2.900 WN-LEXICAL SET-BUFFER-CHUNK WN-LEXICAL

S-113353446-1
2.900 PROCEDURAL CONFLICT-RESOLUTION
2.950 PROCEDURAL PRODUCTION-FIRED SAY-WORD-1

WORD "gold"
2.950 PROCEDURAL CONFLICT-RESOLUTION
3.000 PROCEDURAL PRODUCTION-FIRED EXPLORE-WORD
3.000 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
3.000 WN-LEXICAL RETRIEVE-WN-CHUNKS
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3.000 WN-LEXICAL SELECT-FROM-RETRIEVED-WN-CHUNKS SET OF
SIZE 1

3.000 PROCEDURAL CONFLICT-RESOLUTION
3.050 PROCEDURAL PRODUCTION-FIRED

NO-MORE-WORDS-IN-THIS-SENSE
PICKING UP NEXT WORD

3.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
3.050 DECLARATIVE START-RETRIEVAL
3.050 DECLARATIVE RETRIEVED-CHUNK SYN-GOAL5-0
3.050 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL SYN-GOAL5-0
3.050 PROCEDURAL CONFLICT-RESOLUTION
3.100 PROCEDURAL PRODUCTION-FIRED TEMP-PROD
3.100 PROCEDURAL CONFLICT-RESOLUTION
3.150 PROCEDURAL PRODUCTION-FIRED START-EXPLORING-WORD
3.150 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
3.150 WN-LEXICAL CLEAR-WN-LEXICAL-SYNSET-CONTEXT
3.150 PROCEDURAL CONFLICT-RESOLUTION
3.200 PROCEDURAL PRODUCTION-FIRED EXPLORE-WORD
3.200 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
3.200 WN-LEXICAL RETRIEVE-WN-CHUNKS
3.200 WN-LEXICAL SELECT-FROM-RETRIEVED-WN-CHUNKS SET OF

SIZE 2
3.200 WN-LEXICAL SET-BUFFER-CHUNK WN-LEXICAL

S-104966240-2
3.200 PROCEDURAL CONFLICT-RESOLUTION
3.250 PROCEDURAL PRODUCTION-FIRED SAY-WORD-1

WORD "gold"
3.250 PROCEDURAL CONFLICT-RESOLUTION
3.300 PROCEDURAL PRODUCTION-FIRED EXPLORE-WORD
3.300 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
3.300 WN-LEXICAL RETRIEVE-WN-CHUNKS
3.300 WN-LEXICAL SELECT-FROM-RETRIEVED-WN-CHUNKS SET OF

SIZE 2
3.300 WN-LEXICAL SET-BUFFER-CHUNK WN-LEXICAL

S-104966240-1
3.300 PROCEDURAL CONFLICT-RESOLUTION
3.350 PROCEDURAL PRODUCTION-FIRED SAY-WORD-1

WORD "amber"
3.350 PROCEDURAL CONFLICT-RESOLUTION
3.400 PROCEDURAL PRODUCTION-FIRED EXPLORE-WORD
3.400 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
3.400 WN-LEXICAL RETRIEVE-WN-CHUNKS
3.400 WN-LEXICAL SELECT-FROM-RETRIEVED-WN-CHUNKS SET OF
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SIZE 2
3.400 PROCEDURAL CONFLICT-RESOLUTION
3.450 PROCEDURAL PRODUCTION-FIRED

NO-MORE-WORDS-IN-THIS-SENSE
PICKING UP NEXT WORD

3.450 PROCEDURAL CLEAR-BUFFER RETRIEVAL
3.450 DECLARATIVE START-RETRIEVAL
3.450 DECLARATIVE RETRIEVED-CHUNK SYN-GOAL6-0
3.450 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL SYN-GOAL6-0
3.450 PROCEDURAL CONFLICT-RESOLUTION
3.500 PROCEDURAL PRODUCTION-FIRED TEMP-PROD
3.500 PROCEDURAL CONFLICT-RESOLUTION
3.550 PROCEDURAL PRODUCTION-FIRED START-EXPLORING-WORD
3.550 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
3.550 WN-LEXICAL CLEAR-WN-LEXICAL-SYNSET-CONTEXT
3.550 PROCEDURAL CONFLICT-RESOLUTION
3.600 PROCEDURAL PRODUCTION-FIRED EXPLORE-WORD
3.600 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
3.600 WN-LEXICAL RETRIEVE-WN-CHUNKS
3.600 WN-LEXICAL SELECT-FROM-RETRIEVED-WN-CHUNKS SET OF

SIZE 3
3.600 WN-LEXICAL SET-BUFFER-CHUNK WN-LEXICAL

S-301528730-3
3.600 PROCEDURAL CONFLICT-RESOLUTION
3.650 PROCEDURAL PRODUCTION-FIRED SAY-WORD-1

WORD "gilded"
3.650 PROCEDURAL CONFLICT-RESOLUTION
3.700 PROCEDURAL PRODUCTION-FIRED EXPLORE-WORD
3.700 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
3.700 WN-LEXICAL RETRIEVE-WN-CHUNKS
3.700 WN-LEXICAL SELECT-FROM-RETRIEVED-WN-CHUNKS SET OF

SIZE 3
3.700 WN-LEXICAL SET-BUFFER-CHUNK WN-LEXICAL

S-301528730-2
3.700 PROCEDURAL CONFLICT-RESOLUTION
3.750 PROCEDURAL PRODUCTION-FIRED SAY-WORD-1

WORD "golden"
3.750 PROCEDURAL CONFLICT-RESOLUTION
3.800 PROCEDURAL PRODUCTION-FIRED EXPLORE-WORD
3.800 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
3.800 WN-LEXICAL RETRIEVE-WN-CHUNKS
3.800 WN-LEXICAL SELECT-FROM-RETRIEVED-WN-CHUNKS SET OF

SIZE 3
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3.800 WN-LEXICAL SET-BUFFER-CHUNK WN-LEXICAL
S-301528730-1

3.800 PROCEDURAL CONFLICT-RESOLUTION
3.850 PROCEDURAL PRODUCTION-FIRED SAY-WORD-1

WORD "gold"
3.850 PROCEDURAL CONFLICT-RESOLUTION
3.900 PROCEDURAL PRODUCTION-FIRED EXPLORE-WORD
3.900 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
3.900 WN-LEXICAL RETRIEVE-WN-CHUNKS
3.900 WN-LEXICAL SELECT-FROM-RETRIEVED-WN-CHUNKS SET OF

SIZE 3
3.900 PROCEDURAL CONFLICT-RESOLUTION
3.950 PROCEDURAL PRODUCTION-FIRED

NO-MORE-WORDS-IN-THIS-SENSE
PICKING UP NEXT WORD

3.950 PROCEDURAL CLEAR-BUFFER RETRIEVAL
3.950 DECLARATIVE START-RETRIEVAL
3.950 DECLARATIVE RETRIEVED-CHUNK SYN-GOAL7-0
3.950 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL SYN-GOAL7-0
3.950 PROCEDURAL CONFLICT-RESOLUTION
4.000 PROCEDURAL PRODUCTION-FIRED TEMP-PROD
4.000 PROCEDURAL CONFLICT-RESOLUTION
4.050 PROCEDURAL PRODUCTION-FIRED START-EXPLORING-WORD
4.050 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
4.050 WN-LEXICAL CLEAR-WN-LEXICAL-SYNSET-CONTEXT
4.050 PROCEDURAL CONFLICT-RESOLUTION
4.100 PROCEDURAL PRODUCTION-FIRED EXPLORE-WORD
4.100 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
4.100 WN-LEXICAL RETRIEVE-WN-CHUNKS
4.100 WN-LEXICAL SELECT-FROM-RETRIEVED-WN-CHUNKS SET OF

SIZE 1
4.100 WN-LEXICAL SET-BUFFER-CHUNK WN-LEXICAL

S-105141492-1
4.100 PROCEDURAL CONFLICT-RESOLUTION
4.150 PROCEDURAL PRODUCTION-FIRED SAY-WORD-1

WORD "gold"
4.150 PROCEDURAL CONFLICT-RESOLUTION
4.200 PROCEDURAL PRODUCTION-FIRED EXPLORE-WORD
4.200 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
4.200 WN-LEXICAL RETRIEVE-WN-CHUNKS
4.200 WN-LEXICAL SELECT-FROM-RETRIEVED-WN-CHUNKS SET OF

SIZE 1
4.200 PROCEDURAL CONFLICT-RESOLUTION
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4.250 PROCEDURAL PRODUCTION-FIRED
NO-MORE-WORDS-IN-THIS-SENSE
PICKING UP NEXT WORD

4.250 PROCEDURAL CLEAR-BUFFER RETRIEVAL
4.250 DECLARATIVE START-RETRIEVAL
4.250 DECLARATIVE RETRIEVAL-FAILURE
4.250 PROCEDURAL CONFLICT-RESOLUTION
4.300 PROCEDURAL PRODUCTION-FIRED TEMP-PROD
4.300 PROCEDURAL CONFLICT-RESOLUTION
4.350 PROCEDURAL PRODUCTION-FIRED EXPLORED-ALL-SENSES

COULD NOT SOLVE CLUE 4
EXPLORED ALL SENSES

4.350 PROCEDURAL CLEAR-BUFFER WN-LEXICAL
4.350 PROCEDURAL CLEAR-BUFFER GOAL
4.350 PROCEDURAL CLEAR-BUFFER RETRIEVAL
4.350 GOAL SET-BUFFER-CHUNK GOAL SYN-GOAL9
4.350 DECLARATIVE START-RETRIEVAL
4.350 DECLARATIVE RETRIEVAL-FAILURE
4.350 PROCEDURAL CONFLICT-RESOLUTION
4.350 ------ Stopped because no events left to

process


