
ABSTRACT

SHETTY, SANKETH V. A Biologically Plausible Architecture for Shape Recogni-

tion. (Under the direction of Professor Wesley E. Snyder).

This thesis develops an algorithm for shape representation and matching. The al-

gorithm is an object centered, boundary-based method for shape recognition. Global

features of the shape are utilized to define a frame of reference relative to which local

shape features are characterized. The curvature of the boundary at a point is the lo-

cal feature used. Curvature is computed by the Digital Straight Segments algorithm.

Matching is done using the process of evidence accumulation similar in approach to

the Generalized Hough Transform. The algorithm is tested for invariance to simi-

larity transforms. Its robustness to noise and blurring is also tested. A multi-layer,

feed-forward neural network architecture that implements the algorithm is proposed.

A Biologically Plausible Architecture for Shape Recognition

by

Sanketh V. Shetty

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Electrical Engineering

Raleigh

2006

Approved By:

Dr. Griff Bilbro Dr. David S Lalush

Dr. Wesley E. Snyder Dr. H Joel Trussell
Chair of Advisory Committee

ii

To Mom and Dad . . .

iii

Biography

Sanketh Shetty was born in the south Indian port city of Mangalore on the 24th of

August 1982. He did his primary schooling at Bishop Cottons Boys School, Bangalore

and St.Dominics Savio College, Lucknow. He attended middle school at La Martiniere

Boys Junior College, Lucknow. He completed his higher secondary education at DAV

Boys Senior Secondary School in Chennai.

In 2000, he enrolled into the Bachelor of Engineering program at Birla Institute

of Technology and Science (BITS), Pilani, India. There he majored in Electrical and

Electronics Engineering with an emphasis in Robotics. In his senior year he com-

pleted a six month internship at Hewlett Packard Laboratories in Bangalore, working

in Speech Recognition. In Spring 2004 he graduated with distinction and the Fall of

the same year he joined the Master’s program in Electrical and Computer Engineer-

ing at North Carolina State University, Raleigh. Since the summer of 2005 he has

been a member of the Image Analysis Laboratory and worked under the guidance of

Dr.Wesley Snyder. He has been accepted into the PhD program at the Department

of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign.

He plans to enroll there in the fall semester of 2006.

Sanketh’s interests are in Computer Vision, Visual Neuroscience, Cognitive Sci-

ence and Artificial Intelligence.

iv

Acknowledgements

As a novice to research in the field of Image Analysis it was a matter of tremendous

honor and privilege for me to be associated with Dr. Wesley Snyder. As my advisor

he helped me formulate and tackle the problem addressed in this thesis. At every

juncture he was readily available with critiques of the ideas that my research associate

and I threw at him. I can not thank him enough for the belief he showed in me and

for educating me in the process of research. I express my sincerest gratitude to Dr.

Joel Trussell, Dr. David Lalush and Dr. Griff Bilbro for agreeing to serve on my

thesis committee and for providing valuable feedback on my work.

Over the last year I have worked closely with Karthik Krish at the Image Analysis

Laboratory in developing ideas and testing them through elaborate experiments. In

him I found a valuable research associate with whom I could discuss ideas for the

algorithm and engage in passionate debate over the merits of various approaches.

I have gained immensely from his programming practices and I thank him for the

experience. To Geoff Chang, our fellow research associate, I extended gratitude for

all the help and support over the year. I wish to acknowledge Dr.Mark White, Dr.

Ronald Endicott and Dr. James Lester for helping me develop my interest in Artificial

Intelligence and Cognitive Science. They have, in their own ways, through teaching

and discussions, helped me understand and define my research. I thank them for

that.

My parents have always been the strongest source of support and inspiration

to me. I wish to acknowledge and thank them for never letting anything affect my

education. To my friends Nilesh, Gopal, Ravi, Coma and Ranjith I express my thanks

for all the good times.

v

Contents

List of Figures vii

List of Tables ix

1 Introduction 1

2 Background 5
2.1 2D Shape Representation Paradigms 6
2.2 Computational Models of Object Recognition 7
2.3 The Generalized Hough Transform 9

3 The Computational Algorithm 12
3.1 Model of Shape Representation . 13

3.1.1 Description of the Algorithm 14
3.2 Shape Matching . 19

3.2.1 Preprocessing of Shape Contour 20
3.2.2 Description of Matching Algorithm 21

3.3 Examples of Model Building and Matching 27
3.4 Strategies to Reduce Computational Cost 32

4 Experiments and Results 34
4.1 The Data Set . 35
4.2 Robustness to Similarity Transforms 38

4.2.1 Experiment on Rotational Invariance 38
4.2.2 Experiment on Scale Invariance 38

4.3 Effect of Noise and Blur on Performance 41
4.4 Effect of the Increment Function on Performance 45

4.4.1 Effect on Rotational Invariance 45
4.4.2 Effect on Scale Invariance . 45
4.4.3 Effect of Contour Noise and Blur on Performance 47

vi

4.5 Similarity Detection . 48

5 Neural Network Architecture for Shape Recognition 55
5.1 The Visual Pathway . 56

5.1.1 V1 . 58
5.1.2 Extra-striate Processing of Shape Information 59

5.2 VisNet and the Standard Model . 60
5.2.1 VisNet . 61
5.2.2 The Standard Model . 61

5.3 The SKS Neural Network Architecture 63
5.3.1 Description of the Architecture 63
5.3.2 Equivalence to the SKS algorithm 67

6 Conclusion and Future Directions 71
6.1 Future Work . 73

Bibliography 75

A Estimation of Curvature using Digital Straight Segments 81
A.1 Discrete Curvature Estimation . 81
A.2 Digital Straight Segments . 82

A.2.1 Algorithm for Recognition of Standard Lines 83
A.3 Estimation of Curvature and Tangents Using DSS 84
A.4 Experiments and Results . 84

vii

List of Figures

3.1 Geometric Center and the principal axis of the rotated image. 14
3.2 Plot of the function that remaps the curvature calculated by the DSS

algorithm to values between 0 and 1. 18
3.3 As the principal axis by nature is not directed we have to select one of

the two possible directions. This results in ambiguity in angle descrip-
tions. The two possibilities are shown in (a) and (b). It is clear that
the angles calculated for the same point is dependent on how the rhs
system is set up. 24

3.4 Contours of the tanks Chaff (top) and Chief (bottom) 28
3.5 The two tank contours after transformation to their new coordinate

systems defined by their principal axes. 29
3.6 Model of the tank Chaff . 30
3.7 Model of the tank Chief . 30
3.8 Target:Chaff, Model:Chaff(left),Chief(right) 31
3.9 Target:Chief, Model:Chaff(left),Chief(right) 31

4.1 The data set of tanks. 36
4.2 The 31 contours sample from the SQUID Data Set. 37
4.3 Variation of Accumulator Peaks for tanks contours, matched against

their own models, with orientation. 39
4.4 Variation of Accumulator Peaks for tanks contours, matched against

their own models, with size. 40
4.5 A tank contour with jitter added to the boundaries. 42
4.6 A fish contour (right) shown on the left after 2000 iterations of blurring. 42
4.7 Variation of Accumulator Peaks for tanks contours, matched against

their own models, with noise. 43
4.8 Variation of Accumulator Peaks for tanks contours, matched against

their own models, with increasing blurring. 43
4.9 Variation of classification accuracy with increasing blur (tested on the

SQUID data set). 44

viii

4.10 Variation of Accumulator Peak for Chaff with standard deviation of
increment function for different angles of rotation. 46

4.11 Variation of Accumulator Peak for Chaff with standard deviation of
increment function for different scales. 46

4.12 Variation of Accumulator Peak for Chaff with standard deviation of
increment function for different levels of contour noise. 48

4.13 Variation of Accumulator Peak for Chaff with standard deviation of
increment function for different levels of contour blur. 49

4.14 Top 5 matches (black contours) from the SQUID data base for the
model (white contour) of contour kk87. 52

4.15 Top 5 matches (black contours) from the SQUID data base for the
model (white contour) of contour kk732. 53

4.16 Top 5 matches (black contours) from the SQUID data base for the
model (white contour) of contour kk942. 53

4.17 Top 3 matches (black contours) from the SQUID data base for the
model (white contour) of contour kk779. Other matches were below
the threshold of 60. 54

5.1 A block diagram of the Visual Pathway. 57
5.2 The SKS Neural Network Architecture. Alternating layers of Simple

and Complex cells produce cells that are sensitive to low order combi-
nations of features and at the same time a degree of translational and
scale invariance. Additional layers can be added after C2 in order to
arrive at more complicated features and larger receptive field sizes. . . 64

5.3 Sigma Pi connections gate the connections between the C2 layer and
the M-Layer. Each cell in the M-layer is connected to equivalent cells
in the C2 layers. When an afferent cell fires the input is communicated
to the cell in the M-Layer that is consistent with that assignment of
principal axis. 65

5.4 The architecture of the F-Layer for determination of the principal axis.
The red connections are in a mutually inhibitory connections. The
neurons in the hidden layer pool inputs from a similarly tuned neurons
in the C1 layer. They are connected to the output layer to produce an
estimate of the principal axis. The output layer is what produces the
gated sigma-pi connections between the C2 layer and the M-layer. . . 68

A.1 Average Curvature Estimation Error 85

ix

List of Tables

3.1 Max accumulator values for matching of the two contours in figure 3.4
against their own models and that of the other contour. 28

4.1 Percentage match for rotation through 135,225 and 315 degrees. . . . 39
4.2 Table shows number of matches above the threshold (columns) for

different models (rows) when the 1100 contours of the SQUID data
base were matched against the models. 51

1

Chapter 1

Introduction

“Nothing can be believed but what one sees, or has from an eye witness.” This

quote by Thomas Jefferson underlines the significance of our ability to process visual

information. Yet for something that humans rely on so explicitly to navigate and

function in their environment, research is still far from a comprehensive (and consis-

tent) explanation of how people see. An activity considered as trivial by people, has

been notoriously difficult to implement on digital computers. The field of Computer

Vision has been constantly inspired by human (and animal) vision. From the work of

David Hubel and Torsten Wiesel [23] to more recent advances in the understanding

of the functioning of higher visual areas, human vision has contributed to the design

of better algorithms for analysis of digital images. Object recognition is still by far

an unsolved problem, and shape is only one of the features of an object. It however

is a feature that contributes significantly to our perception of the object. An algo-

rithm that performs well in recognizing shapes is expected to perform equally well in

recognizing and categorizing objects [15].

The objective of this thesis is to develop an algorithm for shape representation

and matching. This algorithm is inspired from the working of the higher visual areas

of primates. The algorithm in its original form was proposed by Dr.Welsey Snyder

2

and later developed by Karthik Krish and the author of this thesis (S). The shape

modeling and matching process developed in this thesis is consequently referred to

as the SKS algorithm. Significant insights into human visual processing were gained

through a survey of the latest neuroscience literature. This understanding of the

functioning of the visual cortex was applied in the development of a neural network

architecture to implement the SKS algorithm.

This thesis is organized in five chapters.

In the second chapter, a background for this thesis is established. This enables a

presentation of this work in the context of previous efforts in shape recognition. Re-

search in shape recognition in general is first reviewed. A discussion of the structural

and view based approaches to shape representation is then presented. This is followed

by a discussion of the Hough Transform [20] and its application to encoding shape

[1]. The Generalized Hough Transform is similar in philosophy to the SKS algorithm

and hence merits discussion.

In chapter 3, the SKS algorithm is discussed. The SKS algorithm is a boundary

based, object centered shape representation method. It utilizes global characteristics

of a shape to describe its local characteristics in an invariant fashion. In particular

two global characteristics, the geometric center of a shape and the principal axis are

utilized. These two shape characteristics are functions of the boundary points of the

shape. The principal axis defines the abscissa of the reference frame attached to the

object and the geometric center defines the origin of this frame. Once these have

been defined a feature vector is computed for each point on the object boundary.

The feature vector, v, contains the distance of the point from the origin, the angular

position relative to the reference frame and the curvature of the local object boundary.

Curvature is a good feature to characterize local shape because it is invariant to

translation and rotation (at least in the absence of noise). There are several techniques

for estimating curvature of a digital contour [41]. Most methods in literature are

derivative based. However, in this algorithm, Digital Straight Segments (DSS) are

3

used to determine curvature[8]. The computed feature vectors populate the model

space (κ(curvature) × d(distance) × θ(angular position)). The representation of

different shapes in model space is expected to be unique. As the shapes become more

different their representations vary. However, the model still captures similarities

between shapes.

For the process of matching a Hough Transform [1] like technique, of evidence

accumulation, is used. The feature vectors for a target shape are computed and com-

pared with that of the models. An accumulator is utilized to determine the similarity

between two shapes. A match is determined by presence or absence of a peak in the

accumulator. It was observed that a shape that is nearly identical to another shape

produces a sharp peak in the accumulator (at or close to the geometric center). The

value of the peak is used as a measure of similarity. The more dissimilar the shapes,

the more diffused the accumulator looks.

Claims of invariance to similarity transforms and robustness to noise made in

Chapter 3 are verified in a series of experiments in Chapter 4. Two data sets are

utilized for the experiments. The first is a data set of twelve tank contours and the

second is a data set of contours of marine animals (SQUID). Robustness to simi-

larity transforms is verified on the tank data set. The sensitivity of the algorithm

to boundary jitter and smoothing is determined in the subsequent section. Both the

tank and SQUID data sets are used in these experiments. Some of the parameters

that affect the performance of the algorithm (invariance and robustness) are validated

with experiment. These parameters affect the ability of the algorithm to generalize.

This ability to generalize between shapes is tested in the final section. The algorithm

is used to identify similar shapes in the 1100 shape SQUID database.

One of the primary objectives of the larger research project undertaken at the

Image Analysis Laboratories is to explain how humans recognize shapes. In Chapter

5, a neural network architecture that implements the SKS algorithm is proposed. The

network draws from the work of Poggio et al. [32][33][36][7][35]and Rolls and Deco[34].

This neural network is designed to implement a hierarchical feature matching system

4

as suggested by Connor in [10]. The network maps a contour onto a model space.

The model space is used to index a shape by its parts in a framework similar in prin-

ciple to the Generalized Hough Transform [1]. Scale and translational invariance are

properties of the architecture proposed in [32][33][36][7][35] and [34]. The SKS neural

network is designed to incorporate invariance to rotation in the plane similar to the

SKS algorithm. For this purpose a layer that computes the principal axis of a shape

is introduced. This layer gates the outputs of the model space (layer) to bring about

a representation invariant to the angular position of a feature. This chapter addresses

only the design of the neural network. Additionally, an overview of shape processing

in the visual cortex and the summary of the standard model [32][33][36][7][35] and

VisNet [34] is presented.

The thesis concludes with a summary of the algorithm and a discussion in the

context of the criteria for shape representation as recommended by Marr [28]. Addi-

tionally, some suggested directions of future research are discussed.

5

Chapter 2

Background

The crux of any computational algorithm for shape recognition is the represen-

tation it adopts. This is where various computational theories of shape recognition

differ. Representation may be comprehensive where the entire object is utilized to

represent shape or landmark based where only certain prominent features of the shape

are utilized. A shape may be represented as a vector of numbers computed from its

characteristics. Alternatively, features of the shape can be estimated and their spatial

relationships can be encoded [42]. What is important though is that the representa-

tion be compact and unique. Representation also brings with it a trade off between

specificity and invariance [35]. A representation of shape must be unique enough to

distinguish between dissimilar shapes, while simultaneously retaining the ability to

identify similar ones. The ability to generalize between shapes aids in categoriza-

tion. Marr in [28] identifies the following essential criteria of a shape representation

paradigm:

• accessibility: This criterion reflects on how much computation is required to

compute the description, and if any added computation is required, to interpret

it. That is, it signifies how readily available shape information is from its

representation.

6

• scope: A good paradigm should be able to represent a large variety of shapes.

• uniqueness: The representation for a shape should be unique enough for it to

be able to distinguished from other shapes. Two shapes with identical charac-

teristics should map to the same shape model.

• stability: The representation should not change drastically with small changes

to shape. In other words the change in representation should be related to the

degree of shape deformation.

• sensitivity: The representation should be able to distinguish between similar

shapes. It should be sensitive to small variations in shape.

These criteria will be utilized later in the thesis to evaluate the SKS algorithm.

2.1 2D Shape Representation Paradigms

Various paradigms of shape recognition are described and compared in a recent

paper by Zhang and Lu in [42]. In this paper the authors identify two distinct ap-

proaches to shape representation. The first is by the shape contour and the second

by the region described by the shape. Both cases are further divided into struc-

tural and global approaches. In global methods of shape representation, the shape

as a whole is considered to generate a vector or feature that is then utilized to dis-

tinguish between shapes. Structural methods utilize parts of the shape to compute

features and index these features to arrive at a shape representation. There is a

significant difference between the boundary-based and region-based paradigms. In

boundary-based methods boundary primitives like curvature or tangent angle are uti-

lized. Other properties, such as the direction of the principal axis, or ratio of the major

and minor axes, can also be computed. Some of the boundary-based shape recog-

nition methods include: correspondence-based methods (like Hausdorff distance[5]),

boundary signatures, boundary moments, spectral transforms, chain code, curve de-

composition and syntactic analysis [42]. Region-based methods include: geomet-

7

ric/algebraic/orthogonal moments [21], generic Fourier descriptors, medial axis and

shape matrix methods [42]. In theirpaper, Zhang and Lu recommend region-based

methods over boundary-based methods since they appear to be more robust to noise.

Additionally, they also recommend moments- based descriptors and general Fourier

descriptors as good shape representations. However, no quantitative tests that mea-

sure performance of all these methods on a standard database are done.

The SKS algorithm is a boundary-based shape representation algorithm. In the

chapters ahead the robustness to contour jitter and blurring will be established. Low

computational complexity and compactness were cited in [42] as important character-

istics of a shape representation scheme. Though no quantitative measures of the two

are given, the SKS algorithm, in general, after the speed-ups (section 3.4) performed

equivalently to the implementation of the Hu moments [21] classifier and faster than

the Hausdorff distance [5] classifier.

2.2 Computational Models of Object Recognition

There are two major approaches to explaining object recognition in humans. The

first approach draws from the work of Marr [28] and was further developed by Bieder-

man in his paper [6]. This approach is the structural description [6][15][24] approach

to shape representation. The structural description theory proposes a parts-based

representation of an object. An object is described in terms of a set of shape primi-

tives (called geons) which are derived from the 2D projection of the object onto the

retina. These geons coupled with information about their spatial relationships form

the crux of the representation. These geons are identified by their non-accidental

properties (NAP) [6] and these properties do not vary with translation, scale, left-

right inversion and depth rotation to a certain degree [24]. Kayaert, Biederman and

Vogel in [25] study the importance of non-accidental properties in representing shapes.

They show that cells in the inferotemporal cortex of monkeys are more sensitive (on

an average) to changes in NAP than to changes in metric properties (e.g. size, degree

8

of curvature). They argue that this neurological evidence supports Biederman’s Geon

Structural Description theory [6]. The invariance in representation is largely brought

about by the fact that the description is simplified by the limited alphabet and that

spatial relationships do not vary with the above mentioned transforms. However,

structural descriptions as such have been shown to be sensitive to how image segmen-

tation is done[24]. Using the same alphabet, it is possible to describe an object in

different ways. Additionally, generating structural descriptions from 2D images has

been found to be difficult [24].

An alternative approach arose in terms of the view-based description of objects

[39][32][15][24]. The key idea in this approach is that “object representations encode

visual information as it appears to the observer from a specific vantage point.”[39]

The representation of shape arises from the features that are apparent to the observer

from a particular viewpoint. The features adopted are simple when compared to the

geons in the structural description approach. Since it is computationally prohibitive

to store each and every view of an object, matching is done by interpolating between

stored viewpoints [39][24]. The idea is to represent the spatial arrangement of shape

features relative to a reference (relative to the view) coordinate frame. View-based

theories offer a strong explanation of how object recognition is done. They however

have their shortcomings. Going from view based representations of single objects to

representation of categories is difficult [39]. Additionally, view based representations

speak very little about how two objects are similar or how they differ. The represen-

tation is holistic, therefore it fails to identify spatial relationships between individual

features [24].

Hummel in [24] summarizes the differences between these approaches as being that

of the complexity of representation vs. the complexity of matching. Representation

is simpler in the view-based approach and the matching process compensates for this

simplicity through interpolations and operations like alignment to match two shapes.

In structural descriptions the representation in terms of geons is complex. Inferring

three-dimensional volumetric primitives out of two-dimensional retinal-projections in-

9

volves complicated computation. However, the process of matching is simplified by

the fact that once the geons are presented in a relational structure. The comparison

between two structures is straightforward and can be implemented computationally

[24].

The neural network architecture for the SKS algorithm is developed in chapter 5

keeping the context of this debate in mind. The SKS algorithm leans towards being

a view-based theory. Though it is object-centered, it does not qualify as a struc-

tural description method. The SKS algorithm incorporates a simple representation

in terms of the boundary position (angular and radial) and the feature computed

at the boundary. The relative spatial arrangement between features is of prime im-

portance in identifying similar shapes. It also employs techniques to realign a shape

to obtain consistent descriptions. The neural architecture developed is also influ-

enced by architectures developed to support view-based theories, like the standard

model [32][33][36][7][35].

2.3 The Generalized Hough Transform

The approach to shape representation and matching adopted in the SKS algo-

rithm is similar to that of the Generalized Hough Transform (GHT) [1] proposed

by Ballard. The Hough Transform (HT)[20][38] was first introduced for the purpose

of identifying straight lines. It was extended to match circles and other parametric

shapes like ellipses. Ballard identified the possibility of extending evidence accumu-

lation, as proposed by the HT, to representing and matching arbitrary shapes. For

each point on the object boundary its vector position relative to the center of gravity

is computed. Furthermore, the angle (θt) between this vector and the tangent to that

point is computed. The angle is quantized into a set of bins. For each angle the

position vectors of all the points at which that particular angle was calculated, are

stored. This forms the shape representation. In the matching process an accumulator

is used. The angle θt is computed for all points on the object boundary. For each θt

10

the corresponding position vectors from the model are retrieved. Points in the accu-

mulator, corresponding to these position vectors relative to the point on the object

boundary, are incremented. In case the object being matched is similar to the model

shape a peak is expected in the accumulator.

Translational invariance is achieved by referencing all points relative to the geo-

metric center of the shape. Rotational and scale invariance are achieved by utilizing a

accumulator that compensates for similarity transforms. In other words computation

is done across a fixed number of scales and rotations by assigning accumulators for

each of these. It is a straightforward observation that the computational complexity

of this algorithm is high. The accumulation of evidence across different orientations

and scale further compound this complexity. The SKS algorithm is philosophically

similar. However, scale and orientation invariance are achieved in a different manner.

The possibility of graded tuning to features enables greater invariance and robustness

to noise and blurring. However, the principle of evidence accumulation still holds.

The computational complexity of the SKS algorithm is also significantly lower than

the GHT.

Basak and Das in [3] discuss a neural network implementation of the Hough Trans-

form to detect parametric shapes in images. In an earlier paper, Basak and Pal [4]

describe a neural network architecture to detect arbitrary shapes utilizing a Hough

like approach. They incorporate two streams of information processing for feature

detection and pose estimation. Their implementation was however, restricted to us-

ing a limited set of features (corner detectors) and polygonal shapes.

In this chapter a summary of the literature related to shape and object recognition

was presented. The different approaches to 2D shape representation and matching

were discussed. The SKS algorithm was compared against some of these algorithms.

The results obtained show promise in this approach. A review of the theories in

human object recognition was also presented. The neural architecture described in

11

chapter 5 is developed in the context of this debate. Next, a description of the SKS

computational algorithm is presented.

12

Chapter 3

The Computational Algorithm

The shape recognition algorithm discussed in this thesis adopts an object cen-

tered, boundary-based representation of the object contour. The algorithm involves

describing the shape in terms of object primitives encoded in terms of their angu-

lar position and distance, relative to a reference frame. Global and local features

are used to characterize the shape. In this approach, global features are utilized to

overcome the variation in shape description due to translation, rotation in the plane

and scale. Local features describe the geometric properties of the shape contour in

the neighborhood of the point being characterized. In this implementation of the

algorithm, the local feature used is curvature. Feldman and Singh in [16] discuss the

significance of curvature in conveying information regarding shape. They show that

a significant amount of shape information is stored at points of high curvature (con-

vex and concave). This algorithm, however, utilizes the entire range of curvatures to

encode shape. Curvature is not necessarily the only feature that can be used with the

algorithm. For all practical purposes, any other suitable local feature (for example the

tangent angle as described in [1]) can also be utilized. The proposed algorithm is for

2D contours, which are Jordan curves, i.e. they are simple (do not cross themselves)

and closed. With minor modifications, it can also be extended to open contours. One

of the primary assumptions made in this algorithm is that segmentation of the object

13

contour has already been completed. No assumptions are made regarding the quality

of segmentation. The input to the algorithm is a set of 8-connected points that de-

scribe the object of interest. The algorithm proposed has two distinct modules. One

for shape representation (model generation) and the second for shape matching.

3.1 Model of Shape Representation

Before we arrive at a model for representing the object contour, some concepts

essential to the implementation of the algorithm are discussed. As mentioned above,

global characteristics of the shape are utilized to attain invariance to translation,

rotation and scale. Translation invariance is attained by defining all object primitives

relative to the geometric center of the contour. The geometric center is the mean of

the (x,y) coordinates of the shape. From here on the geometric center will be denoted

by (x̄,ȳ). This choice of the geometric center makes our representation object-centric

as opposed to the view-centric approach (object primitives are described relative to

a fixed frame).

The object center does not in itself define a frame of reference. It determines only

the origin of this frame. A frame of reference is essential in order to represent angular

positions of features on the object boundary. It is also desirable that the angular

ordering of features does not change with the rotation of the object contour (in the

plane).

Having a fixed frame (e.g. parallel to the scene coordinates) results in very lit-

tle rotational invariance. Therefore another characteristic of the object contour that

would make the representation independent of rotation in plane is sought. The princi-

pal axis of the object is one such feature. Using principal components analysis(PCA)

[38][14] the major axis of the object is determined. Using the major axis, a right

handed coordinate system is set up (as shown in the figure 3.1). Setting up a right

handed coordinate system is important as this makes the shape representation con-

sistent. This description of the object contour relative to the right handed system

derived from the principal axis makes the representation invariant to rotation in the

14

Figure 3.1: Geometric Center and the principal axis of the rotated image.

plane (up to a symmetry).

Shape representation is also sensitive to object size. To make this representation

invariant to scale, the object is resized to a predetermined size. In the model building

and matching process all contours are scaled so that the distance of the most distant

point from the geometric center of the object is uniform across all objects. The con-

vex hull of the object can also be used in re-scaling. However, here the maximum

distance is used.

These global transforms (and features) ensure our representation is invariant to

any geometric transform in the plane. The shape model is built on the object contour,

once all these transforms have been accounted for.

3.1.1 Description of the Algorithm

The input to the algorithm is a set of 8-connected contour points. The first step

in the algorithm is to make the contour size invariant and fix a reference coordinate

system. These operations involve the global features of the object and are significant

15

because they ensure consistent object descriptions. The operations can be listed as:

1. Calculate the geometric center (x̄,ȳ), the mean of the x and y coordinates of

the points on the contour.

2. Shift the contour such that the geometric center is at (0,0).

3. Determine the principal axis by PCA. (Since the principal axis is not directed,

one direction is randomly chosen.)

4. Setup a right handed coordinate system using the principal axis as the abscissa.

5. Transform contour points to this frame of reference.

6. Determine the most distant point on the contour and re-scale all contour points

so that their new distance from the origin is (
distanceoriginal

distancemax
) ∗ scalemodel

Here scalemodel is a global parameter that determines the uniform size (in pixels)

to which all objects are scaled.

With the global characteristics ensuring invariance to similarity transforms, local

features are encoded with respect to their position vector and their feature values.

Shape Characterization

The approach adopted to shape characterization is comprehensive. Shape in-

formation at all contour points is utilized to determine the shape characteristics.

Fundamentally, the algorithm characterizes a contour point by its distance from the

origin (dpoint), the angle (θpoint) with respect to the abscissa of the reference frame

and curvature at that point(κpoint). In essence, the direction vector and the curvature

at a point encode shape. This can be viewed as encoding “what” is the feature (the

curvature value) and “where” it is. Such processing is analogous to the functioning of

the visual cortex in which there are two distinct pathways for “what” (ventral) and

16

“where” (dorsal) information [22][34]. It is also noteworthy that research [29][30][31]

in visual neuroscience shows this approach to shape representation is adopted by pri-

mate cortices (in the higher visual areas, V4-IT). Connor in [10] discusses a parts

based representation of boundary fragments and documents that response of neurons

in the visual cortex of a macaque. These neurons in the V4 show sensitivity to the

curvature, the radial position and the context (connectivity to other parts).

Model Space and Quantization

The model of a contour can be viewed as a scatter of points (κ, d, θ) in a 3-

dimensional space defined by the curvature, distance, and angular position. A con-

tinuous representation of all possible values of (κ, d, θ) is computationally prohibitive.

This is overcome by quantizing each “feature” in Nfeature bins. This not only ensures

computation is tractable, it also ensures the model is not sensitive to small variations

in measurement. In experiments conducted, quantizing the model space into 100 dis-

crete values for distance, 180 values for angular position and 100 values for curvature,

were found to generalize well. The Euclidian distance of a contour point is rescaled

to account for object size and then quantized. The angular position is invariant to

size and is estimated after the points have been transformed to the new coordinate

system.

Connor and Pasupathy in [30][31] have shown that there are cells in the V4 area of

the visual cortex that are sensitive to the curvature of a contour. Curvature is a good

feature to characterize shapes because it is invariant to translation and rotation. It

is sensitive to object size but this can be accounted for by scaling it by distancemax.

A formal definition of continuous curvature is presented. Curvature a of curve at

a point is defined as the directional change of the tangent with arc length at that

point. Worring and Smeulders in [41] and Coeurjolly in [8] give some ways to think

of curvature as shown below:

Definition 1 Consider a curve (x(s)) parameterized by arc length s. One way of

defining curvature is as a second derivative:

17

k(s) = x′′(s) (3.1)

where x′′(s) is the second derivative of x(s).

Definition 2 Curvature can also be defined as the rate of change of tangent angle:

k(s) = θ′(s) (3.2)

where θ(s) is the angle made by the tangent at x(s) with a given axis.

Definition 3 And finally, the curvature at a point can be estimated by fitting a

(osculating) circle to its neighborhood and utilizing the inverse of the radius as

an estimate:

k(s) =
1

r(s)
(3.3)

where r(s) is the radius of the osculating circle at x(s).

These definitions of curvature in equations 3.1-3.3 are equivalent.

In [8], a method is proposed where the curvature estimation is done in a purely

discrete way using osculating circles ,which avoids any parameters based on the nature

of the data. In this implementation, the Digital Straight Segments (DSS) algorithm

[8][27][12][13] was used to estimate curvature. The DSS algorithm was tested with

other curvature estimation algorithms by a colleague in the Image Analysis Labora-

tory. DSS is independent of the data set and is very robust to noise (as opposed to

derivative based methods). It is also highly parallel. Analysis of this algorithm is

present in the Appendix.

The output of the curvature estimation algorithm varies from −∞ to ∞. These

values do not have biological analogues. Additionally, research [30] has shown that it

is reasonable to map the outputs of the algorithm to values between -1 and 1. The

18

Figure 3.2: Plot of the function that remaps the curvature calculated by the DSS
algorithm to values between 0 and 1.

assumption made here is that beyond a particular absolute value (in our experiments

4) all high curvatures are the same to the system. However, in the range -4 to 4 the

curvature is mapped between 0 and 1 (since the actual value does not matter it is

not necessary to map it to -1 to 1). A sigmoid is used to implement the (non-linear)

remapping as suggested by [30]. The idea is to emphasize finer curvature differences

as the absolute values get smaller and to treat larger absolute (concave and convex)

curvatures less rigorously.

The function for rescaling is given by:

κr =
1

1 + e−ακ
(3.4)

After mapping the curvatures to values between 0 and 1, the curvatures are quan-

tized it into Ncurvature bins. The curvature values are rescaled to with object size.

Quantization is done after rescaling.

19

Model Generation

The model is generated by populating the feature space by estimating the (κ, d, θ)

tuple at each point. The three features are scaled and quantized. The bin represented

by the quantized values is then incremented. This is repeated for all the points in

the shape. Owing to the fact that the model determined by each and every point,

we normalize the accumulated model by the number of points to obtain a percentage

representation. The model can now be viewed as a density function. It represents

the fraction of points that satisfy a particular combination of features.

The density function thus can be represented as:

M(κ, d, θ) =
1

P

∫
S

δ(|κ− κ(s)|, |d− d(s)|, |θ − θ(s)|)dS (3.5)

Here, δ(x, y, z) is the Dirac (delta) function and the integral is over the contour

S. P is the length of the contour. However, our representation is a discrete version.

Owing to this there is a possibility of multiple points on the contour incrementing

the same bin in the model space. This is a disadvantage of quantization. Some of

the shape information maybe lost and the representation may not be truly invertible.

Quantization is a parameter in the algorithm and the resolution of the model space

can be set to make the representation as unique as possible. The resolution of the

model space determines the ability of the algorithm to generalize and also discriminate

between similar shapes. At small resolutions the generalization will be good but

this comes at the cost of discrimination. On the other hand, at high resolutions

the generalization gets progressively poorer, but discrimination improves drastically.

Higher resolutions also imply larger computational complexity (both space and time).

The resolution (100 x 100 x 180) was arrived at after experimenting.

3.2 Shape Matching

The matching philosophy is similar to that of the Generalized Hough Transform[1].

An accumulator is used to calculate increments in the matching process. The model

20

discussed in section 3.1 can be viewed as a look up table (similar to the r-table in

[1]) . The basic principle is the same. However, some of the strategies adopted in

the matching process reduce the computational complexity when compared with the

Generalized Hough Transform. Additionally, speed-ups for the matching process are

also discussed in Section 3.4. In this section, the matching algorithm is discussed.

First the basic algorithm is described in Section 3.2.2. There some of the parame-

ters key to the implementation of the matching algorithm are also analyzed. One of

the major problems associated with the Generalized Hough Transform is the com-

putational complexity [1]. In Section 3.4, methods to speed-up processing and the

trade-offs involved are discussed.

As in the case of model generation no assumptions are made regarding the quality

of segmentation. In Chapter 4, noise analysis is done to simulate poor segmentation.

The methodology developed involves building models of the shape “classes” first. The

matching process matches the input against the models of each of the shape classes.

The input to the matching process, as in the case of model generation, is a set of 8-

connected points. The DSS algorithm, discussed in section 3.1.1, generates curvatures

of all the points in the shape.

3.2.1 Preprocessing of Shape Contour

As in the case of model generation, the first steps in the matching process involve:

• Determination of the center of gravity.

• Determination of the principal axis and assignment of a right handed coordinate

system.

• Transformation of the shape points to the new coordinate system.

• Normalization of object size (rescaling distances and curvatures)

As mentioned in Section 3.1, the principal axis is not directed. In the process

of model generation, one of the directions is chosen and a right handed coordinate

21

system is set up. This is important because all the angular positions of the contour

points are calculated relative to this coordinate system.

3.2.2 Description of Matching Algorithm

The preprocessing step outputs a set of points that have been normalized for

object size, translation and rotation in the plane (using principal axis description).

The curvatures of the shape are also rescaled to adjust for object size. The principal

approach of the matching algorithm is to calculate the probability that a point in

the accumulator is the geometric center of the object. For this an accumulator A is

set up. The accumulator (A) has 2×
√

2× scalemodel rows and columns (rounded off

to the nearest integer). This is to ensure that the rescaled object is centered in the

accumulator and fits completely in it. The algorithm calculates the total increment

for each position in the accumulator. The logic is that since the shape model is built

using the geometric center as the reference, if a position in the accumulator is such

that the shape description (of the target shape) at that position is consistent with

the description (of the model shape) relative to its geometric center, a large number

of increments would occur at that position. A clear peak would be expected at this

position. This peak indicates a match.

The input to the algorithm is a set of ordered pairs of contour points C(x). Now

for each point in on the contour a feature vector v is calculated. This feature vector

is the (κ, d, θ) tuple estimated at this point. For a given model M the accumulator

increment is calculated as f(v,M), where f is some increment function (it can be

uniform or graded). The function f measures the consistency of the tuple v with

the model M. It is noted that v is estimated relative to (xi, yi) which corresponds

to a row and column of the accumulator. Therefore, the net increment at a position

(xi, yi) in the accumulator is calculated by summing f over all points of the contour:

22

A(xi, yi,M) =
1

N

N∑
n=1

f(vn(xi, yi),M) (3.6)

Here N is the number of points in the contour being matched. The normalization en-

sures all values in the accumulator are between 0 and 1. In addition to this, it brings

about an invariance to perimeter. Since rescaling the object size does not imply fewer

points there is a need to ensure that a contour with a larger number of points does

not imply a better match. This is achieved by the normalization.

In equation 3.6, the clear dependency of the feature vector v on the accumula-

tor position is also shown. Distance and angular position calculations are sensitive

to the reference point whereas curvature is not. Overall, the feature vector, v, is

a function of the accumulator position. Equation 3.6 is a discrete implementation

of the accumulator. As the resolution of the sampling increases, these accumulator

increments can be expressed as integrals. The accumulator increment, in the basic

implementation of the algorithm, is calculated for the entire accumulator. This is an

inefficient practice and alternatives are suggested in section 3.4. The result of the

matching process is the largest value in the accumulator. If the shape being matched

is “similar enough”, there is usually a sharp peak in the accumulator. In case there

is very little similarity, (for example a square shape matched against a circle) the

accumulator is blurred and there is no peak that clearly stands out.

Given a set of models:

M = {M1, M2, ...,MK} (3.7)

and a set of matching scores:

Sk = max{(A(Mk))} (3.8)

23

where k = {1, 2, .., K}.

The best matching class and the best score for the corresponding match are defined

as:

Sbest = max{Sk} (3.9)

Mbest = arg max{Sk} (3.10)

Disambiguation of Object Description

One of the problems that arises from utilizing the principal axis to determine

angular positions of features is that the principal axis is not directed. As mentioned

in the algorithm description, one of the two possible directions is chosen, at random,

as the positive half of the abscissa. Figure 3.3 illustrates the ambiguities that this

method brings. For the given shape, there are two possible right handed coordinate

systems that can be set up (relative to the principal axis). They are shown in 3.3(a)

and (b). It can be clearly seen that for a point the angular position is dependent

on the decision of which direction of the principal axis to choose. Some experiments

were carried out to incorporate a bias so that the algorithm always selects a partic-

ular direction. The choice of a fool-proof characteristic was complicated by the fact

that the decision was being made relative to the center of gravity and the principal

axis. It is possible to use higher order characteristics like third order moments to

determine a particular direction [21]. However, these methods are not known to be

robust to noise. Furthermore, the drastic change in shape descriptions that would

arise on swapping the directions would imply the algorithm does not fit Marr’s [28]

requirement for stability (Chapter 2). A simpler (less efficient) solution is proposed.

Two accumulators A1 and A2 are used for the two possible shape descriptions (figures

3.3 (a) and (b)). The algorithm requires less than twice the amount of computation

previously needed. This is because most of the calculations are the same except one

24

additional look up in the model. Since two accumulator values are present the final

output of the matching process is decided as:

Aout = max(max(A1), max(A2))

The accumulator with the larger peak is chosen as one being consistent with the

object description in the model. This modifies equation 3.8 to:

Sk = max{max(A1(Mk)), max(A2(Mk))} (3.11)

Figure 3.3: As the principal axis by nature is not directed we have to select one of
the two possible directions. This results in ambiguity in angle descriptions. The two
possibilities are shown in (a) and (b). It is clear that the angles calculated for the
same point is dependent on how the rhs system is set up.

Increment Functions

The increment function f needs to be defined. One of the simplest formulations

of this function is as a look up table:

f(v,M) =

{
1 M(v) > 0

0 Otherwise
(3.12)

25

The function described here is similar to a delta function. If a vector v is present

in the model M (indicated by a non-zero value) then the function returns 1. Exper-

iments were performed using this function. This function is expected to generalize

very poorly and it does. The reasoning is straightforward. The function matches only

a shape description that is exactly the same as the model. However, in most cases,

there are some small variations in the estimation of v, especially, the distance d and

curvature κ. Most contours in the experiments are made up of 1000-10000 points.

The model space has 100× 100× 180 (2× 106) bins. Therefore the model is sparse.

Using this increment, even a small offset would imply a very low match score. Shape

“similarity” is not reflected in the scores obtained.

To account for the spare model, the following function is proposed:

f(v,M) =

{
1 M(v ± δ) > 0

0 Otherwise
(3.13)

Here δ defines a neighborhood around v. This function (equation 3.13) does a

better job of generalization. It allows (pre-determined) variations in estimation of

the feature vector. Generalization comes at the cost of discriminability. The ability

of a model to generalize is desirable however the ability to discriminate is also im-

portant. If there are small changes in the shape resulting from digitization noise, it

is important that this be apparent in the matching score. This formulation of the

function does not make these differences apparent. Hence, an increment function is

sought that not only emphasizes the shape information present in the model but also

allows for some variability in matching.

For this purpose an increment function with a graded response is proposed:

f(v,M) = Gσκ,σd,σθ
(v − g(v)) (3.14)

26

where Gσκ,σd,σθ
is a zero mean, three-dimensional Gaussian function (without the

normalization constant). The function g(v) returns the nearest neighbor (measured

using the Mahanalobis distance [14]) of the feature vector v in the model. That is

it returns the nearest (again in the Mahanalobis definition) non-zero point in the

model. The Gaussian function in turn rewards (with outputs closer to 1) target

shapes that are are “more similar” to the model. This formulation of the increment

function allows generalization while not completely compromising on discrimination.

σκ, σd and σθ still need to be determined and these parameters can be set depending

on desired generalizability of the model. The increment function of equation 3.14 is

what is used in experiments and the results documented in chapter 4.

Model Saturation

A problem that arises owing to the quantization of the model space is the mapping

from the contour, C(x, y) to the model M is many-to-one. In the process of matching

this may result in some shapes (especially ones with a greater number of points)

exhibiting a better match than they should. This situation is exacerbated by the

graded increment function used for matching. The problem was more severe in an

earlier approach to shape characterization where only distance and curvature were

used to characterize shapes. A solution to this problem was engineered by keeping

track of the number of times a particular “cell” (a κ, d, θ tuple) in the model is looked

up. The argument is that only a specific fraction (ideally 1
N

, where N is the number

of points) of the target shape should correspond to any “cell” in the model. For

example, suppose the shape from which the model is constructed is made up 1000

points of which 10 points map (or 1%) to a cell of values (κ1, d1, θ1). Take a target

shape that is made up of 10,000 points. This shape may be the same shape at a

larger scale or a totally different shape. In either case, it is desirable that the same

fraction (1%) of the contour points map to the cell with the values (κ1, d1, θ1) and

hence increment their respective accumulators. It is easy to see how in some cases

even though the shapes are different some contour points may enable false increments

of the accumulators. To solve this problem a saturation process is implemented. A

27

copy of the model is maintained and the value at a particular “cell” in the model is

decremented every time that cell is looked up in the matching process. The decrement

is shown below:

M(v) = M(v)− 1

Ntarget

(3.15)

where Ntarget is the number of points in the target.

Thus, the accumulator increment function as defined in equation 3.14 will return

zero as soon as an expected fraction of points have looked up the “cell”. This makes

the matching process thorough, as only the proportion of points consistent with the

model can actually contribute to the match score. However, the computational cost

added is severe and it does not work with some of the speed-ups recommended in

section 3.4.

3.3 Examples of Model Building and Matching

In this section, the theory developed in the sections 3.1 and 3.2 is applied to build

models for the contours in figure 3.4 and then match them against each other. The

aim is to run through step-wise the process of model building and matching. The

data set from which these contours are drawn is shown in Chapter 4.

For the model building process first the preprocessing is done on the tanks. After

being scaled and transformed to a new coordinate system, the contours appear as

shown in figure 3.5.

Next the model of each of these tanks is built. The models are shown in figures

3.6 and 3.7. The difference between the tanks can be seen clearly in their shape

signatures in model space.

28

Figure 3.4: Contours of the tanks Chaff (top) and Chief (bottom)

In the matching process, each of the tanks is matched against a model of itself and

the other tank. First the accumulators of the various matches are shown in figures 3.8

- 3.9. In figures 3.8(left) (target: Chaff, model: Chaff) and 3.9 (right) (target: Chief,

model: Chief) the accumulators show clear peaks around the geometric center where

as in figures 3.9 (left) (target: Chief, model: Chaff) and 3.8 (right) (target: Chaff,

model: Chief) a large number of points are incremented and there is no clear winner.

It should be noted that these accumulators are the “max” accumulators. The other

accumulators corresponding to the “wrong” object descriptions are not shown here.

For the sake of completeness all the accumulator outputs are documented in table 3.1.

Table 3.1: Max accumulator values for matching of the two contours in figure 3.4
against their own models and that of the other contour.

Model Target A1 A2

Chaff Chaff 100 30
Chaff Chief 50 60
Chief Chaff 56 45
Chief Chief 30 100

29

Figure 3.5: The two tank contours after transformation to their new coordinate sys-
tems defined by their principal axes.

30

Figure 3.6: Model of the tank Chaff

Figure 3.7: Model of the tank Chief

31

Figure 3.8: Target:Chaff, Model:Chaff(left),Chief(right)

Figure 3.9: Target:Chief, Model:Chaff(left),Chief(right)

32

3.4 Strategies to Reduce Computational Cost

One of the problems associated with the Generalized Hough Transform and any

look up based techniques is the large computational complexity both in terms of space

and time. In addition, to bring about properties of invariance to scale and rotation the

methods suggested in [1] make the complexity even worse. The algorithm discussed in

this chapter tackles the problem of space and time complexity in the following ways:

Principal Axis Approach: In the original formulation of the Generalized Hough

Transform the accumulator was expanded to add a θ axis and a s (scale) axis to

exhaustively compute all possible configurations of the shape and for all possible

sizes. In this algorithm, the use of PCA narrows down the possible angles to

two. Additionally, the rescaling of the contour by maximum distance forgoes

the use of the scale axis in the accumulator. It is easy to see how this reduces

both space and time complexity of the algorithm.

Reducing Accumulator Size: One way to further speed-up the algorithm is to

reduce the accumulator size. Since shape description is done using the geometric

center, it would be logical to expect the peak of the accumulator to also be

present in the vicinity of the geometric center of the target contour (if not

at exactly the geometric center). Therefore, as a speed-up we reduced the

accumulator size to just a r × r neighborhood of the geometric center of the

target shape. In experiments, r=5 was sufficient.

Precomputation of accumulator increments: During the initial testing of the

algorithm, it was observed that model building overall required much lesser

time than matching. The matching process was loaded with heavy computation

that is largely redundant. Additionally, model building is done once whereas

matching is a more frequent operation. Therefore to make the implementation

33

efficient and to improve speed most of the computational load of the matching

process was shifted over to the model generation phase. The values for the

increment function for different values of (κ, d, θ) for a given model M are

computed and stored in advance. This increases the space requirements for the

entire algorithm. However, the time speed-ups achieved are worth the space

requirements. It should be noted that the dynamic space requirements (during

run time) are minimal. The speed-up in matching is largely because the whole

matching process is reduced to look ups: order O(n).

Saturation Computation: In section 3.2 “model saturation” is discussed. It was

stated that this is an expensive operation both in terms of space and time.

For some sacrifice in correctness speed-ups can be achieved by abandoning this

operation. It was observed in experiments that the lack of saturation only

brought about small changes in the outputs. This operation can be safely

abandoned without any loss in accuracy.

These methods resulted in major speedups when it came to run time of the algo-

rithm. The space requirement is larger than the initial formulation but still signifi-

cantly lesser than that of the Generalized Hough Transform and its variants.

In this chapter an analysis of the SKS algorithm developed in this thesis was

presented. The SKS algorithm is, in theory, robust to rotation, translation and zoom.

It is also expected to be robust to noise and blur. These assertions are verified in the

following chapter.

34

Chapter 4

Experiments and Results

An algorithm that characterizes shapes and matches shapes against models is

described in the previous chapter. It is claimed that the algorithm is invariant to

similarity transforms (translation, rotation in the plane and zoom)1 and robust to

noise and blur. In this chapter these claims are experimentally verified. Addition-

ally, some factors were introduced in Chapter 3 that have an effect on the matching

performance of the algorithm. The most prominent of these factors is the degree of

tolerance of the model (defined in terms of the increment function f). It was pos-

tulated that a more tolerant model (larger variance in the matching process) would

be able to generalize better. It was also postulated that this generalizability would

come at the cost of discrimination. These postulations are verified in this chapter in

a set of experiments where the noise is progressively added to the shape contour. The

output of the shape matching algorithm is a number that represents how similar the

given contour is to the model of a particular shape and in turn to that shape itself.

How this number translates as a “shape metric” merits further investigation. In this

chapter, a summary of some initial experiments in this investigation is also presented.

1A similarity transform corresponds to a rigid body motion in 3-space, a motion which does
not change the length of vectors. That is, translation and rotation, but not zoom. However, the
definition used here includes zoom. This definition of similarity is related to the concept of similar
triangles. Therefore, invariance to zoom is also considered.

35

4.1 The Data Set

Two data sets were used in the experiments documented in this chapter. The

first is a data set of 12 tank contours (figure 4.1). The second data set (SQUID

database from VSSP Surrey)2 is a collection of 1100 contours of marine animals

(fish, eels, sea horse, sting ray, etc.). For the experiments on invariance to similarity

transforms the tank data set was utilized. Though the initial data set was of 12

contours, additional contours were generated from these contours. As the objective

was to test the robustness to similarity transforms the following sets of contours were

generated for each tank:

• 9 contours of the tank rotated by 15o, 30o, 45o, 60o, 75o, 90o, 135o, 225o and 315o.

• 5 object sizes of the tank scaled to 0.25,0.5,0.75,1.25 and 1.5 times its original

size.

A total of 15 contours of each tank at different sizes and rotations constitute the

data set. In all there are 180 contours. All the results presented in sections 4.2-4.4

are for this data set. All tank contours were generated using the public domain NIH

Image program (developed at the U.S. National Institutes of Health and available on

the Internet at http://rsb.info.nih.gov/nih-image/).

The second data set was utilized primarily for the experiments described in section

4.5. It is also used for determining the robustness of the algorithm to contour blur.

The data base contains several shapes of marine animals of the same species (with

some having similar shapes). Of the data set 31 contours (figure 4.2) were sampled

and models were generated. Experiments were conducted to find the contours most

similar to these models. The objective was to get a qualitative measure of how well

the algorithm is able to identify similar shapes.

2http://www.ee.surrey.ac.uk/Research/VSSP/imagedb/demo.html, used with permission.

36

Figure 4.1: The data set of tanks.

37

Figure 4.2: The 31 contours sample from the SQUID Data Set.

38

4.2 Robustness to Similarity Transforms

4.2.1 Experiment on Rotational Invariance

In this experiment, first, the models for each of the 12 tanks were built. Next,

contours oriented at 9 different angles were matched against all 12 tank models. No

mismatches were observed in the matching process. A plot of the variation of the

output of the (max) accumulator with change in orientation (when matched against

a model of the unrotated contour of the same tank) is shown in figure 4.3. This

plot is done for angles 0-90 at 15 degree intervals. The three remaining orientations

(135o, 225o and 315o) are not shown in the figure because intermediate angles were not

evaluated. The data for these angles is presented in table 4.1. This was done primarily

to test if the PCA results in consistent assignment of right handed coordinate systems.

Figure 4.3 shows the model is robust to rotation in the plane. It is observed that

the peak values of the accumulator are not 100%. This however can be attributed to

digitization noise that is associated with rotation. When a contour is rotated, owing

to the digital nature of the data some artifacts are introduced (as the sampling is

in cartesian coordinates and not along arc length). This results in (κ, d, θ) tuples

that have little or no correlation with the model. Consequently, the peak values of

the accumulator are lower than expected. It is interesting to note that the rotation

through 90o produces the highest accumulator values. It was observed that contours

rotated through this angle have, in general, the least number of artifacts because in

essence rotation through 90o involves swapping x and y values of the contour.

4.2.2 Experiment on Scale Invariance

In this experiment the 12 tanks (original silhouettes) were scaled to different

shape sizes. The new silhouettes varied in size from a quarter of the original contour

39

Figure 4.3: Variation of Accumulator Peaks for tanks contours, matched against their
own models, with orientation.

Table 4.1: Percentage match for rotation through 135,225 and 315 degrees.

Target 135 225 315
Chaff 91.47 92.60 91.47
Chief 93.51 95.05 92.59
Grant 94.79 95.18 94.85
M1 94.26 94.17 92.84
M60 85.00 86.27 85.87
PT76 91.66 92.57 91.69
Scorp 88.75 88.22 87.95
Sher1 93.69 93.49 93.60
Stu 69.55 69.84 70.35

T3476 91.90 92.89 92.96
T3485 87.09 88.38 88.53
Tigr1 90.47 90.00 90.26

40

to one and half times that of the original contour. Samples were taken at sizes

0.25,0.5,0.75,1.25 and 1.5 (in addition to the original size). The models of the tanks

built in the previous section were used to evaluate “scale invariance”. A plot of

the peak values of the accumulators of the tanks contours (of different sizes) when

matched against their own model is shown in figure 4.4. The different lines represent

the 12 different tanks in the data set.

Figure 4.4: Variation of Accumulator Peaks for tanks contours, matched against their
own models, with size.

At small object sizes (especially 0.25) many of the features of the tanks were

lost. In particular, the antennae. Additionally, many of the smooth shape features

become sharp and noisy at smaller sizes. This explains the lower match at small

object sizes. At larger sizes the peak values are still not 100%. The introduction

of additional points in larger contours and the fact that the “increment function” f

produces a “graded” response accounts for this reduction in peak values. Overall,

figure 4.4 shows that the algorithm is robust to scale. One of the weaknesses of the

algorithm is the dependence on maximum distance for rescaling (of both curvatures

and distances). However, this experiment shows this does not have a significant

41

impact on performance.

4.3 Effect of Noise and Blur on Performance

In chapter 3 it was stated that no assumptions are made regarding the quality of

segmentation. In terms of the algorithm there are no parameters that need to be set

relative to the noise and blur in an image. Since the algorithm involves characterizing

the shape that is described as a set of 8 connected points, the noise is also added to

these contours. This can be viewed as boundary jitter. A real world process that adds

jitter to contours as shown in figure 4.5 is difficult to conceive. Instead we propose

to demonstrate robustness to bad segmentation. The jitter to simulate this is Gaus-

sian random in nature and is added to the cartesian coordinates of the shape. The

experiments here study the variation of peak values of the accumulator with increas-

ing Gaussian random noise. The standard deviation of this additive was increased

in steps of 0.1 between 0.1 and 1. There on it was increased in steps of 0.5 to 3.

The peak value of the accumulator is expected to degrade gracefully with increasing

noise. The reason for this degradation is the error introduced in the measurement

of curvature. The curvature estimation algorithm also degrades in performance with

increasing noise. Addition of noise does not significantly affect the calculation of θ

and d values. However, the error introduced (both in terms of additional points) and

curvature is significant enough to overcome the use of the graded increment function.

Figure 4.7 shows a plot of the performance of the algorithm with increase in noise in

the contour. The curves for all 12 tanks are plotted to show that they follow similar

trends with increasing noise.

A phenomenon that does occur is contour blurring. The sharp features of the

contour get smoothed over and the contour begins to lose its original shape (figure

4.6). An experiment was set up where the given contours were blurred continuously

and the resulting degradation in performance was recorded. The variation of peak

values of the accumulator with blur is shown in the figure 4.8. As expected there

42

Figure 4.5: A tank contour with jitter added to the boundaries.

Figure 4.6: A fish contour (right) shown on the left after 2000 iterations of blurring.

43

Figure 4.7: Variation of Accumulator Peaks for tanks contours, matched against their
own models, with noise.

Figure 4.8: Variation of Accumulator Peaks for tanks contours, matched against their
own models, with increasing blurring.

44

is a definite degradation in performance with increased blur. This however did not

translate into any significant inaccuracy in classification as far as the tank data set is

concerned. In order to get a more reliable estimate on the effect of blur on classifica-

tion accuracy an experiment was conducted in which the SQUID data set was tested.

In the experiment models were generated for the 31 contours sampled from the data

set (figure 4.2). Next all the sampled contours were classified after the application of

a predetermined number of blur steps. The accuracy of the matching algorithm for

this data set is shown in figure 4.9.

Figure 4.9: Variation of classification accuracy with increasing blur (tested on the
SQUID data set).

45

4.4 Effect of the Increment Function on Perfor-

mance

In chapter 3 a graded increment function was proposed for the matching process.

The nature of the increment function has a significant effect on the ability of the

algorithm to generalize across similar shapes while retaining the ability to discriminate

between them. The increment function (equation 3.14) is Gaussian. The standard

deviation of this function specifies the extent to which the measured feature vector

can deviate from the “true” value, as derived from the representative shape, and

still contribute a reasonable increment to the accumulator. For the purpose of this

experiment the standard deviation of the Gaussian is specified in terms of the cells

in the model (κ× d× θ) space. Accumulator increments were calculated for standard

deviations of 1,2,3,4,5 and 6. The goal is to observe the effect of this variation on the

robustness of the algorithm to similarity transforms and to noise.

4.4.1 Effect on Rotational Invariance

Statistics for rotational invariance were computed on the entire data set in section

4.2.1. This however was at a fixed standard deviation. To study the effect of the

nature of the increment function on rotational invariance, matching was performed

with increment functions of increasing standard deviation. The results for one shape

(tank: Chaff) are shown in figure 4.10. Other tanks follow similar trends.

4.4.2 Effect on Scale Invariance

The statistics for scale invariance were computed on the entire data set in section

4.2.2. The plot in figure 4.11 shows the variation in peak values of the accumulator

with the standard deviation of the increment function. This plot was computed for

one shape (tank: Chaff). Other tanks show similar variation.

46

Figure 4.10: Variation of Accumulator Peak for Chaff with standard deviation of
increment function for different angles of rotation.

Figure 4.11: Variation of Accumulator Peak for Chaff with standard deviation of
increment function for different scales.

47

Figures 4.10 and 4.11 are easy to interpret. As the standard deviation of the

increment function increases, the ability of the algorithm to generalize also increases.

There is a reasonable addition of digitization noise with rotation and scaling of a

digital contour. This results in erroneous estimation of feature vectors at specific

points in the contour and hence smaller accumulator peaks. The graded nature of

the increment function offsets some of this variation in estimation of feature vectors.

The extent of this offset is determined by the standard deviation of the increment

function. For a small standard deviation (1) the offset is significantly smaller and

the performance of the algorithm is poor. The increment function at a standard

deviation of 1 implies if any of the features computed at a point is off by more than

1 “cell” the increment drops to below 0.367. This is indicative of a low tolerance to

variation in estimation of the feature vector. This explains the nature of the plot

for rotational invariance at a standard deviation of 1. As the standard deviation

increases this tolerance (and hence ability to generalize) also increases. The plots

show that for increasing standard deviations the algorithm performs better in terms of

rotational and scale invariance. The plot also documents the diminishing returns with

this increase. The level of improvement in generalization is relatively less between

standard deviations 5 and 6. It is here that the maxim of discriminability becomes

significant. Increasing the standard deviation brings with it a loss in discriminability

between shapes. Therefore, it is prudent not to increase the standard deviation

significantly. In our experiments a standard deviation between 4 and 5 showed good

robustness to similarity transforms and noise.

4.4.3 Effect of Contour Noise and Blur on Performance

To examine the effect of noise and blur on the performance of the algorithm an

experiment similar to those described in sections 4.4.1 and 4.4.2 was set up. In one

experiment the tank contour of Chaff was taken and jitter was added to the cartesian

coordinates. The standard deviation of noise was varied between 0.1 and 3. In

the second, the Chaff contour was blurred continuously and the degradation of the

accumulator peak was studied. Upto ten thousand iterations of blurring was applied

48

to the contours. These experiments were repeated at different standard deviations

of the increment function(1-6, shown in figures). A plot of the noise performance is

shown in figure 4.12 and that of blur is shown in figure 4.13.

Figure 4.12: Variation of Accumulator Peak for Chaff with standard deviation of
increment function for different levels of contour noise.

As expected the performance of the algorithm degrades with noise. However, the

degradation is more gradual in the case of increment functions with larger standard

deviations. This is expected owing to the increasing generalization that comes with

more tolerant increment functions. A similar effect is seen in the case of the blurred

contours.

4.5 Similarity Detection

One of the desirable properties of the algorithm is its ability to detect similarities

between shapes. Since the algorithm involves encoding the structural information

(curvature) of a shape relative to a set of global features (principal axis and geomet-

ric center), it is expected to produce similar models for shapes with similar structure.

In the previous sections the ability of the algorithm to discriminate between some-

49

Figure 4.13: Variation of Accumulator Peak for Chaff with standard deviation of
increment function for different levels of contour blur.

what “similar” shapes (all tanks) has been documented. In this section the ability

of the algorithm to detect similar shapes is investigated. A formal evaluation of the

output of the algorithm as a shape metric is out of the scope of this thesis. However,

preliminary evaluation of the algorithm in this regard is presented here.

The SQUID data set was sampled at random and 31 contours were selected ran-

domly. Models were generated for each of the contours. Next, the entire data set of

1100 contours was matched against the models. The top five matches for each model

were isolated. An artificial threshold of t was set and the number of contours with

peak accumulator value above t for each model was calculated. Some of the matches

are shown in figures 4.14-4.17. Table 4.2 shows the number of contours (of the total

1100) with matches above the threshold t for different values of t.

Table 4.2 shows the number of contours with accumulator peaks higher than a

particular threshold (t) when matched against each of the 31 models. Some of the

models are more “similar” to other shapes in the data base, as can be clearly seen

50

from the table. For example contour kk492 over 100 contours with an accumulator

peak of greater than 60. The same is not true for other contours. The contour kk127

had all peaks below 50 (excluding itself). In order to attain a qualitative feel for how

similar some of the matches are the the top matches for some of the models are shown

in figures 4.14-4.17. In all the figures the shapes that show a high degree of match (in

terms of accumulator peaks) are visually very “similar” to the model. For example,

all the shapes in figure 4.17 are sea-horses. Similarly, all the shapes in figure 4.15

look like “sting rays”. This ascertains the ability of the algorithm to detect similarity

between shapes.

51

Table 4.2: Table shows number of matches above the threshold (columns) for different
models (rows) when the 1100 contours of the SQUID data base were matched against
the models.

Model t = 90 t = 80 t = 70 t = 60 t = 50
kk5 1 1 5 66 289
kk19 1 1 3 28 135
kk30 1 1 2 31 80
kk42 1 1 1 12 22
kk72 1 1 9 48 183
kk83 1 1 5 78 384
kk87 1 5 16 31 48
kk100 1 1 1 12 162
kk127 1 1 1 1 1
kk184 1 1 1 1 1
kk209 1 1 1 3 58
kk250 1 1 1 4 17
kk263 1 1 3 7 34
kk273 1 2 9 38 105
kk310 1 1 1 12 86
kk378 1 1 2 5 19
kk430 1 3 8 36 136
kk464 1 1 1 3 14
kk473 1 1 1 1 5
kk480 1 1 1 7 183
kk495 1 2 8 138 445
kk502 1 3 25 122 359
kk558 1 3 6 50 231
kk676 1 1 1 1 5
kk689 1 1 7 50 210
kk717 1 1 3 22 169
kk732 1 8 11 16 29
kk766 1 4 31 146 370
kk779 1 1 2 3 19
kk810 1 1 5 33 234
kk942 3 5 33 136 366

52

Figure 4.14: Top 5 matches (black contours) from the SQUID data base for the model
(white contour) of contour kk87.

53

Figure 4.15: Top 5 matches (black contours) from the SQUID data base for the model
(white contour) of contour kk732.

Figure 4.16: Top 5 matches (black contours) from the SQUID data base for the model
(white contour) of contour kk942.

54

Figure 4.17: Top 3 matches (black contours) from the SQUID data base for the model
(white contour) of contour kk779. Other matches were below the threshold of 60.

In this chapter experiments have established that the algorithm presented in chap-

ter 3 is invariant to similarity transforms and robust to noise and blur. The algorithm

can also detect similarity between shapes and a combination of the outputs (accu-

mulator peak and peak-offset from the center of the accumulator) may be useful as

a “shape metric”. The algorithm has not been tested for robustness to occlusions

though this is something that needs to be done to establish its effectiveness as a

shape characterization and matching technique. Some experiments with variants of

the algorithm have shown it to be invariant to occlusion also. However, this came at

the cost of scale invariance.

55

Chapter 5

Neural Network Architecture for

Shape Recognition

The philosophy behind the SKS algorithm, developed in the chapter 3, is largely

influenced by the working of the human visual system. In addition to developing

a robust and invariant representation for shapes, this thesis is a first step towards

the larger goal at the Image Analysis Group, developing an understanding of how

humans recognize shapes. One of the significant aspects of the SKS algorithm is

that it is highly parallel. Ballard, Hinton and Sejnowski identified the importance of

parallel architectures to visual processing in [2]. They hypothesized an object cen-

tered frame work that describes shape features relative to a frame attached to the

object. A parallel architecture implementing feature matching like the Generalized

Hough Transform is recommended by them. All the elements of the SKS algorithm

can be implemented on a parallel architecture, like a neural network. The curvature

computation algorithm is local to the object boundary. The feature vector computed

for each point is also independent of the process of calculation of feature vectors at

other locations. In this chapter, a neural network architecture that implements the

algorithm, developed and tested in the previous chapters, is discussed. First, a sum-

56

mary of the visual pathway and the processing of shapes in the human visual cortex

is presented. This is followed by a discussion of some neural network architectures

that are present in literature. The Standard Model [32][33][36][7][35], an architecture

for shape processing developed at the Computer Science and Artificial Intelligence

Laboratory, Massachusetts Institute of Technology and the VisNet proposed by Rolls

and Deco in [34] are discussed here. Both are hierarchical neural network implemen-

tations of the visual pathway. They achieve scale and translational invariance and

closely mimic the behavior of actual cortical recordings of cells in the higher visual

areas (V4 and IT). Finally, an augmented model that ensures invariance to rotation

and brings about an object centered representation of shapes is described.

5.1 The Visual Pathway

The processing of shape information starts very early in the visual pathway (figure

5.1). The receptors (cones) on the retina are packed densely in a region called the

fovea. This region is generally where the focus of attention is. The receptors are

connected to the bipolar cells in the retina either directly (in an excitatory role) or

through horizontal cells (in an inhibitory role)[34]. These generate center surround

ON and OFF center cells. A detailed description of this architecture and the pro-

cessing is presented in [22][34]. The bipolar cells feed into the retinal ganglion cells

and feed through the optic nerve onto the lateral geniculate nuclei(LGN). The LGN

retains the retinotopic mapping that is maintained right through to higher visual

areas. The LGN contains two kinds of cells - Magno-cells (M-LGN) and Parvo-cells

(P-LGN). Of these cells, the P-LGN are primarily responsible for communicating

shape information. Both these layers of the LGN feed into different regions of the

primary visual cortex (V1). The focus of this description is on shape processing and

so only the section of the visual cortex relevant to shape is discussed from here.

57

Figure 5.1: A block diagram of the Visual Pathway.

58

5.1.1 V1

The primary visual cortex constitutes several layers (hence the name striate cor-

tex). There are rich vertical connections between these layers with very little hor-

izontal or diagonal spreading between layers. This would suggest that most of the

processing in the V1 area is local and it clearly is not the seat of perception [22].

There are three types of cells in this visual area. Simple Cells respond best to op-

timally oriented bars or edges. They are tuned to four different orientations with a

tuning window of 45o [34]. They are said to arise out of the spatial summation of

ON and OFF center cells[22][34]. Research by De Valois and De Valois also show

that these cells are sensitive to the spatial frequency of the visual stimuli[34]. These

properties of the Simple Cells are essential to understanding their implementation

using Gabor spatial filters [11] in later sections. Complex Cells are also sensitive to

oriented bars but they show some translational invariance. The bars can be present

anywhere in their receptive field. This response of complex cells was explained to be

due to the integration of the responses of simple cells with similar orientation tuning

but different (adjacent) positions in the visual field[22]. End Stopped Cells are the

third type of cells present in the V1 area. They are sensitive to curves of appropriate

curvatures and properly oriented lines of fixed lengths.

The cells in V1 are arranged in “hypercolums” [34]. These “hypercolumns” are

responsible for the processing of visual information from one specific area in the vi-

sual field. They contain columns of neurons tuned to a particular orientation with

multiple columns representing the four different tunings. This is important because

the retinotopic mapping is still maintained and the different hypercolumns can be

viewed as tiny processors of local shape information. In [34] it is suggested that V1

layer neurons “may function collectively to incorporate contextual information from

outside their classical receptive fields and in turn serve pre-attentive visual segmen-

tation”. This is important to the implementation of the neural network architecture

for the SKS algorithm. This is because global shape information like the principal

axis may require such mechanisms to enable its incorporation to the processing of

59

contours.

5.1.2 Extra-striate Processing of Shape Information

There is very little understood about the behavior of extra-cortical circuits. How-

ever, some studies [35][29][30] have shown that these neurons are sensitive to combina-

tions of features from their afferent layers. The extra-striate areas primarily involved

in handling shape information are regions of the V2, V4 and IT. The cells in the V2

are known to be sensitive to low order combinations of the afferent3 cells from the

striate cortex (the primary visual cortex) [34][35]. These combinations represent the

growing complexity of features along the visual hierarchy. They also represent the

growing invariance of this architecture to small translations. This has been replicated

by architectures like the VisNet [34] and the Standard Model [32][33][36][7][35].

The V4 is known to be sensitive to low order feature combinations [30][10]. There

are cells in the V4 that are tuned to simple features like oriented line segments and

others that are tuned to more complex curvatures. In [10], Connor summarizes his

research into neurons in the V4. He shows that these neurons are sensitive to arrange-

ment of shape features relative to the object center. The V4 neurons are shown to

be sensitive to angular position of a feature, the normal at the feature, the curvature

of the feature and the context (the curvatures of the segments adjacent to features).

These cells also show some invariance to object size and object location (translation).

They also have larger receptive fields when compared to the cells lower in the hier-

archy. These properties are of significance to the SKS algorithm and also the neural

network architecture. Connor [10] hypothesizes an object recognition framework that

is a hierarchical feed forward network with neurons sensitive to feature combinations

of their afferent layers. This network not only encodes what features are present but

also their relative spatial arrangements. This hypothesis along with the research of

Poggio et al. [32][33][36][7][35] and Rolls’ VisNet[34] were essential to the develop-

3conducting or conducted inward or toward something (for nerves or central nervous system).

60

ment of the neural network architecture to implement the SKS algorithm.

The final higher visual area that is significant to shape processing is the Inferior

Temporal cortex (IT). The neurons in this area of the visual pathway are sensitive to

moderately complex features [34]. Neurons that are sensitive to similar features are

clustered together and are involved in competitive inhibition to ensure discrimination.

These neurons also exhibit significant translational invariance [34] in addition to scale

invariance of up to two octaves [35]. Poggio et al., [35], argue that this layer contains

several view-tuned neurons whose responses are pooled to produce view-independent

neurons that identify specific objects. Additionally, Rolls [34] has documented that

this representation of objects in the IT is distributed as this enables the encoding of

a significantly larger number of shapes. This also ensures a graceful degradation of

performance in the presence of noise. A significant finding about the view-independent

cells in the IT [34] is that a set of neurons was shown to fire even when the object

presented was completely inverted. This suggests an object based framework for

recognition in these areas.

5.2 VisNet and the Standard Model

Several architectures for invariant object recognition are present in literature

[35][34] [17][6]. Of these neural network implementations, those of Poggio et al. [35]

and Rolls [34] present a biologically plausible framework for processing shapes (2D

and 3D). In this section, these two models of human vision are presented and dis-

cussed. Both are feature hierarchies and exhibit strong invariance to translation and

scale changes. Both are intent on explaining the processing of shapes in the visual

pathway using biologically plausible circuits. They both are feed forward networks

with absolutely no top-down feedback.

61

5.2.1 VisNet

VisNet is a neural network architecture for shape recognition developed by Rolls

and Deco and described in their book [34]. The general philosophy involves a feature

hierarchy going from simple (oriented lines) to complex (curves and corners) features.

The network has 4 layers of neurons that learn and classify using mutual inhibition

(over short ranges) and competition. The units from one layer converge onto neurons

in the higher layers. In other words, several neurons in the lower layers are afferent

on neurons in the higher layers. This implies an increasing size of receptive fields

as we go higher up in the network. The input to the network is from a set of 2D

spatial filters implemented as Difference of Gaussians. These are intended to mimic

the orientation and spatial frequency sensitivities of simple cells in V1. Rolls and

Deco do not assume any preexisting affinity for any combination of features. The

layers through self-organization learn to represent the entire feature space. Feature

combinations are not replicated at all positions. Instead a representative sample of

images with all possible features is learnt by the lower layers of the network. These

images are presented at all possible positions in the input layer. The higher layers

learn feature associations specific to objects and do not bother with translational

invariance. Rolls and Deco also suggest a trace rule for learning. This is similar

to Hebbian learning except there is a temporal aspect to it. This temporal aspect

to learning brings about some of the invariance to scale and translation. This form

of Hebbian-like learning also makes the network biologically plausible. Additionally,

the competitive nature of learning also brings about the distributed representation

like the neurons in the IT exhibit. Overall, this hierarchical representation exhibits

the ability to differentiate between different spatial arrangements of features and is

similar to the behavior of cells between the V1 and IT layers of the ventral pathway.

5.2.2 The Standard Model

The Standard Model [32][33][36][7][35] is a hierarchical model of shape recognition

developed by Poggio, et al. It is a strictly feed forward architecture and seeks to

62

explain the first 150 ms of vision. It is similar to the hierarchical model proposed

by Fukushima [17] in that there are alternating layers of simple and complex cells

that learn feature associations. In the Standard Model, these two types of cells are

responsible for two distinct tasks. Unlike the VisNet their roles are predefined and do

not emerge out of self-organization. The simple cells (S) are responsible for template

matching. Each cell is active when the features in the object at a particular spatial

location have high correlation with the feature that the S cell is tuned for. At the

very base, the S cells mimic the behavior of the simple cells in V1. They are sensitive

to oriented line segments. The entire space of orientations is covered by cells with a

tuning peaks at 45o intervals. In the Standard Model 2D Gabor filters serve as inputs

to this layer of S-cells. These cells are sensitive to location of the oriented bars and can

be assumed to be part of the “hypercolumns” that are found in V1. The complex cells

(C) are responsible for the invariance characteristics of the network. They achieve

this by pooling in inputs from S-cells that are tuned to the same feature but located at

slightly different positions in the visual field. This operation is achieved by a softmax

of inputs from the S-cells layer.

These layers of C and S cells are alternated to produce features of increasing

complexity while ensuring a small degree of invariance to scale and translation. A

complete discussion of this model is presented in [35]. In the same paper the authors

discuss the biological plausibility of these operations of shape tuning and softmax.

They argue that circuits for these operations are biologically plausible and also offer

evidence for the same. This hierarchy of alternating layers agrees with neurophysi-

ological data in literature. Most significantly, the layers at the top of the hierarchy

(C2) show considerably similar sensitivities as cells in area V4 as reported in [29][30].

The authors state [7] that this hierarchy results in an object centered representation

of features as hypothesized by Connor [10]. The results presented confirm this claim.

63

5.3 The SKS Neural Network Architecture

The neural network architecture proposed in this section is influenced by VisNet

and the Standard Model. The philosophy of the SKS algorithm is to utilize global

characteristics of a shape to overcome rigid similarity transforms and use local fea-

tures to arrive at a shape description. The SKS algorithm brings about significant

invariance to rotation, scale and translation. In addition, it also exhibits robustness

to noise and blur. Translating the serial computations of the algorithm discussed

in chapter 3 to a parallel architecture like a neural network is simplified by the fact

that the modules of the algorithm are inherently parallel. The DSS algorithm for

calculating curvature is also remarkably parallel. In this section the specifics of the

architecture to implement the SKS algorithm in a neural network are discussed. No

experiments were carried out with the proposed architecture.

5.3.1 Description of the Architecture

The SKS architecture inherits some prominent features from the VisNet and the

Standard Model. In addition to the “what” information that is processed, it also

seeks to incorporate an object based frame of reference to arrive at a consistent and

invariant representation of shape. The Standard Model achieved scale and translation

invariance by utilizing tuning functions and the pooling outputs over spatial location

and scale. Rotational invariance is not discussed. Different view-tuned neurons are

present for different views of the object and intermediate views are determined by

graded response of these neurons. In this hypothesis however, it is proposed that

view-tuned neurons exist but they are for depth-rotated analogues. The presence of

different neurons for objects rotated in the plane is inefficient because the same set of

features are “visible” to the shape processors. It is possible to propose a “biologically

plausible” architecture that could implement this kind of processing. The hypothesis

is influenced by the fact that vision involves the perception of “orientation” of an

object (usually in terms of the principal axis or the axis of elongation) in addition to

its spatial location (in terms of its geometric center).

64

Figure 5.2: The SKS Neural Network Architecture. Alternating layers of Simple and
Complex cells produce cells that are sensitive to low order combinations of features
and at the same time a degree of translational and scale invariance. Additional layers
can be added after C2 in order to arrive at more complicated features and larger
receptive field sizes.

The neural network architecture hypothesized has the following features (figure

5.2):

• The architecture is a hierarchical, feed forward, multilayer, competitive neural

network with mutual inhibition within a layer. The alternating simple(S) and

complex(C) layers design of the Standard Model is retained. In essence it is a

65

Figure 5.3: Sigma Pi connections gate the connections between the C2 layer and the
M-Layer. Each cell in the M-layer is connected to equivalent cells in the C2 layers.
When an afferent cell fires the input is communicated to the cell in the M-Layer that
is consistent with that assignment of principal axis.

66

feature hierarchy going from units sensitive to oriented edges to complex stimuli.

• The input to the network is a 2D Gabor filtered image. The filtering of images

using 2D Gabor spatial filters is discussed in [11].

• The architecture presented hypothesizes that the “feature-specific” information

and the “global” information with regard to a shape are processed in parallel.

After one layer of alternating S and C cells, the output of the C layer branches

out into two distinct branches. One branch is for processing the orientation of

the shape(F layer). The second branch continues the process of combining the

outputs of layer C1 to produce low order feature combinations in layer S2.

• The C2 layer is equivalent to cells in the V4. This in turn is equivalent to the

“model” space discussed in section 3.1. The cells are sensitive to angular posi-

tion and curvature (added to distance) relative to the object center. However,

the angular position here is relative to the viewer coordinates.

• The M-Layer, in figure 5.3, is a transform space of the C2 layer. Considering

the C2 layer to be parameterized by distance, angular position and curvature

of a segment [29][30][10], the M-Layer is also parameterized similarly. Each

cell in C2 tuned to a particular feature at particular distance from the object

center is connected to each and every cell tuned to the same feature at the

same distance from the object center (but at different angular positions) in the

M-Layer. These connections are gated by the outputs of the F-layer. For a

particular orientation of an object a combination of the firing of cells in the

F-layer and the C2 layer will produce (related) activity in the M-Layer.

• The M-Layer then communicates by simple feature combination a view (rotation

in depth) dependent representation to the IT.

The F-Layer and the M-Layer

The critical additions to the architecture are the M-layer and the F-layer. Hin-

ton in [18][19] proposes an architecture to enable invariance to similarity transforms

67

by modulating shape descriptions by object based frames of reference. The F-layer

computes an object based frame of reference relative to which the object description

is communicated to the IT (through the M-layer). The significance of the F layer

is shown in figure 5.3. The F-layer outputs gate the neural connections between the

V4 (C2) layer and the M-layer. The gating enables only consistent object descrip-

tions to pass through to the cells in the IT. Object descriptions in which there is

correlation between the principal axis and the arrangement of features (segments of

different curvatures) relative to this framework are considered to be consistent. This

gating is accomplished by “biologically plausible” sigma-pi connections between the

two sets of neural circuits [34]. The M-layer is a transform space where all features

are transformed relative to a reference frame defined by the principal axis. Each

view-dependent neuron is activated by an object description corresponding to com-

binations of features from the M-layer. The outputs of the view dependent neurons

are pooled for the activation of view independent neurons in higher areas of the IT.

5.3.2 Equivalence to the SKS algorithm

There is a considerable level of similarity between the SKS algorithm and the

neural network described in the previous section. There are parallels that can been

drawn between the modules of the SKS algorithm and this neural network. The two

are philosophically equivalent. In model building using the SKS algorithm, the first

steps of processing include determining the geometric center of the contour and the

principal axis. This is accomplished in part by the alternating S and C layers of the

hierarchy, as they achieve a degree of translational and scale invariance.

The determination of the principal axis is done by the F-layer. The inputs to this

layer are the outputs of the C1 layer. So the inputs are the response to orientation

filters that are obtained from the 2D Gabor filtering of the image (with added trans-

lational and scale invariance). The F-layer is composed of two sub layers. They first

layer contains cells tuned to the four directions similar to the S1 layer. They are not

distributed over space however. Instead these cells pool inputs from similarly tuned

68

Figure 5.4: The architecture of the F-Layer for determination of the principal axis.
The red connections are in a mutually inhibitory connections. The neurons in the
hidden layer pool inputs from a similarly tuned neurons in the C1 layer. They are
connected to the output layer to produce an estimate of the principal axis. The
output layer is what produces the gated sigma-pi connections between the C2 layer
and the M-layer.

69

cells (over all spatial locations) in the C1 layer (see figure 5.4)(This architecture can

be adapted to pool inputs over smaller image regions and introduce a hierarchy to

determine the principal axis. However, these two are still similar in philosophy.) This

pooling for each orientation is expected to give a measure of the number of segments

in C1 with the same orientation. Intermediate orientations are expected to contribute

differently to the two orientations that they are closest to. Once this pooling is done

by mutual inhibition, two directions are expected to stand out distinctly (with un-

normalized values). Their values are expected to be small as a proportionally small

percentage of their afferent cells are expected to be active for most images. The values

of the responses of these orientations are fed to the output F-layer which determines a

normalized value so that a proper orientation can be inferred.The F-layer connections

can be assumed to be hard wired as of now. The outputs of these F-layer are used to

gate the connections between the C2 layer and the M-Layer. In the SKS algorithm,

the contour is transformed to the new frame of reference defined by the principal

axis. In the network, the model space equivalent of the contour is transformed in-

stead. These two are equivalent operations. An assumption made here is that the

gating circuits and the F-layer circuits are hard-wired (either genetically or during

development) and are not dependent on visual experience.

In the SKS algorithm, curvature is determined utilizing the digital straight seg-

ments (DSS) algorithm. This algorithm can be implemented in a parallel architecture.

The functioning of the feature hierarchy can be viewed as curvature filtering [36][35].

Along the hierarchy low order combinations of afferent features produces sensitivity

to more complex stimuli (like curves of varying curvature). In the SKS algorithm each

and every point is treated uniquely and technically an infinity of “features” (different

curvatures) is present. In the network however, these combinations are dictated by

visual experience and the statistics of real images. Additionally, graded response of

different features can help represent a virtual infinity of feature space. The model

space in the SKS algorithm is similar to the C2 layer which is parameterized by

curvature of the feature, angular position and distance from the object center. The

significant difference is in the matching process. There is no accumulator present in

70

the network discussed above. However, the accumulator can be viewed as 2D spatial

correlation between the models of two contours. This correlation is what is imple-

mented in the connections between the neurons of the M-Layer and the view-tuned

neurons of the IT. If no depth rotation is assumed, these view tuned cells should be

sufficient to represent and classify the database of shapes presented in the previous

chapter.

In this chapter a neural network architecture for shape recognition is proposed.

It is largely derivative from models developed by Poggio and Riesenhuber , and Rolls

and Deco. The models have been augmented with additional layers (F-layer and

M-layers) that enables a rotationally invariant representation of shapes. There are

distinct representations for depth rotated views as the feature sets that are visible are

not only different but they also have different spatial arrangements. The final neural

network developed is influenced by the SKS algorithm and is philosophically similar

to it. Implementation of this network is beyond the scope of this thesis.

71

Chapter 6

Conclusion and Future Directions

In this thesis an algorithm for shape modeling and matching is developed. The

algorithm was described and discussed in detail in chapter 3. The SKS algorithm is

shown to be invariant to translation, rotation and zoom. Additionally, robustness to

noise and blur is also established. A reasonable implementation of the algorithm as a

multi-layered, hierarchical neural network is also proposed. However, the invariance

to occlusions was not tested as part of the thesis. Human object recognition exhibits

tremendous robustness to occlusion. A reasonable description of human object recog-

nition needs to identify mechanisms to achieve this. One point that is often pointed

out in models of human object recognition is that we are not completely invariant to

rotation in the plane. Humans do exhibit a degree of invariance to rotation in the

plane but not to complete image inversion. The SKS neural network architecture is

for a completely rotationally invariant representation. Shepard and Metzler in their

classic paper [37] show that humans may utilize mental rotation of images to identify

objects in unfamiliar orientations. It is possible to think of the F-layer and M-layer

(chapter 5)as providing the computation required for these alignment operations.

The approach described in this thesis is however is only one variant of the algo-

rithm. The first attempt at the algorithm was done using just the curvature and the

72

distance at a point as features. This formulation of shape representation however

does not satisfy the uniqueness criterion of shape representation as discussed by Marr

[28]. Another version of the algorithm was developed using curvature, distance and

the tangent angle (angle between the position vector and tangent vector) as features.

This showed promise and the performance on data sets was better than the previous

case. However, it is difficult to prove the uniqueness of models in this scheme. It is

possible to conceive of shapes which have the same models. Additionally, the mapping

from the contour space to the model space is many to one. Several points in the point

space can be mapped to the same point in model space. A circle is a case in point.

The tangent angle, curvature and distance are equal (in theory) for all points on the

circle. Describing the position vector (in terms of angular and radial position) of a

boundary point is one way of ensuring uniqueness. No two points on the boundary

map to the same point in model space (especially in the continuous case). The SKS

modeling of shape satisfies all of Marr’s criterion for shape representation:

• accessibility: Once the shape representation is computed, matching is a simple

look up process.

• scope: There is no limitation on the variety of shapes that this algorithm can

represent.

• uniqueness: The utilization of radial and angular position of boundary points

ensures uniqueness of models. Additionally, the models are invertible, i.e. the

original shape can be retrieved from the model.

• stability: The biggest factor that affects stability in the algorithm is the def-

inition of the principal axis. The matching process is designed to ensure de-

scriptions are stable. However, explicit tests need to be done to test the effect

of noise and blurring on the determination of the principal axis.

• sensitivity: Experiments in chapter 4 established this aspect of the represen-

tation.

73

6.1 Future Work

• The SKS algorithm was tested for invariance to similarity transforms and ro-

bustness to noise and blur. However, the performance under occlusion was not

evaluated. This is something that needs to be done.

• Furthermore, the algorithm needs to be compared in quantitative terms with

some popular shape representation algorithms. Initial tests with Hu Moments

[21] and Hausdorff distance [42] have been completed. However, thorough com-

parison against robust implementations of state of the art shape recognition

algorithms is necessary.

• A neural network architecture for the SKS algorithm is discussed in chapter 5.

An implementation of this architecture is essential. In particular the working

of the F-layer and the Sigma-Pi connections in the M-layer needs to be verified.

• The computational complexity of the SKS algorithm can be further reduced

if the curve is broken down into constant curvature segments. The curvature

of the segments and their spatial position will suffice reduce the model size

significantly. In initial experiments with this approach there was a ten fold

reduction in model size utilizing this approach.

• One of the features that the cells in V4 [30] are shown to be sensitive to is shape

context. Cells were found to be sensitive not only to the curvature of to which

they were tuned but also to the curvature of the neighboring segments. This

can be easily appended to the shape models. It will be worthy to see if the

added complexity in representation improves the performance of the algorithm.

• A suggestion made by a member of the thesis committee was to utilize the

product of curvature and distance as a feature. This would forgo the necessity

to resize the object. The feature suggested is theoretically sound. However, its

utility needs to be verified experimentally.

74

• Investigation into extending this work to arriving at shape representations for

three-dimensional shapes should also be considered.

75

Bibliography

[1] D.H Ballard. Generalizing the hough transform to detect arbitrary shapes. Pat-

tern Recognition, 13(2):111–122, 1981.

[2] D.H. Ballard, Geoffrey E. Hinton, and Terrence J. Sejnowski. Parallel visual

computation. Nature, 306(3):21–26, 1983.

[3] Jayanta Basak and Anirban Das. Hough transform network: Learning conoidal

structures in a connectionist framework. IEEE Transactions on Neural Networks,

13(2):381–392, March 2002.

[4] Jayanta Basak and Sankar K. Pal. Psycop - a psychologically motivated connec-

tionist system for object perception. IEEE Transactions on Neural Networks,

6(6):1337–1354, November 1995.

[5] E. Belogay, C. Cabrelli, U. Molter, and R. Shonkwiler. Calculating the hausdorff

distance between curves. Information Processing Letters, 1997.

[6] Irving Biederman. Recognition-by-components: A theory of human image un-

derstanding. Psychological Review, 94(2):115–147, 1987.

[7] C. Cadieu, M. Kouh, M. Riesenhuber, and T. Poggio. Shape representation in

v4: Investigating position-specific tuning for boundary conformation with the

standard model of object recognition. Technical Report CBCL Paper 241/AI

Memo 2004-024, Massachusetts Institute of Technology, 2004.

76

[8] David Coeurjolly, Serge Miguet, and Laure Tougne. Discrete curvature based

on osculating circle estimation. Lecture Notes in Computer Science, 2059:303–,

2001.

[9] David Coeurjolly and Stina Svensson. Estimation of curvature along curves with

application to fibres in 3d images of paper. Lecture Notes in Computer Science,

2749:247–254, 2003.

[10] Charles E. Connor. The Visual Neurosciences, volume 2, chapter Shape Dimen-

sions and Object Primitives, pages 1080–1089. The MIT Press, 2003.

[11] John G. Daugman. Complete discrete 2-d gabor transforms by neural networks

for image analysis and compression. IEEE Transactions on Acoustics, Speech

and Signal Processing, 36(7), July 1988.

[12] Francois de Vieilleville, Jacques-Olivier Lachaud, and Fabien Feschet. Maxi-

mal digital straight segments and convergence of discrete geometric estimators.

Lecture Notes in Computer Science, 3540:988–997, 2005.

[13] J.-P. Debled-Rennesson, I. Reveilles. A linear algorithm for segmentation of

digital curves. International Journal of Pattern Recognition and Artificial Intel-

ligence, 9(4):635–662, 1995.

[14] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification.

Wiley Interscience, 2nd edition, 2000.

[15] Shimon Edelman. Representation and Recognition in Vision. The MIT Press,

Cambridge, Massachusetts, 1999.

[16] Jacob Feldman and Manish Singh. Information along contours and object bound-

aries. Psychological Review, 112(1):243–252, 2005.

[17] K. Fukushima. Neocognitron: A hierarchical neural network capable of visual

pattern recognition. Neural Networks, 1(2):119–130, 1988.

77

[18] G. E. Hinton. A parallel computation that assigns canonical object-based frames

of reference. In Proceedings of Seventh International Joint Conference on Arti-

ficial Intelligence, volume 2, pages 683–685, Vancouver, BC, Canada, 1981.

[19] G. E. Hinton. Shape representation in parallel systems. In Proceedings of Seventh

International Joint Conference on Artificial Intelligence, volume 2, pages 1088–

1096, Vancouver, BC, Canada, 1981.

[20] P. V. C. Hough. Method and means for recognizing complex patterns. U.S.

Patent 3069654, 1962.

[21] M K Hu. Visual pattern recognition by moment invariants. IRE Trans. Infor-

mation Theory, 1962.

[22] David H. Hubel. Eye, Brain and Vision. W.H. Freeman and Company, 1995.

[23] David H. Hubel and Torsten Wiesel. Brain and Visual Perception: The Story of

a 25-Year Collaboration. Oxford University Press, 2004.

[24] John E. Hummel. Cognitive Dynamics: Conceptual Change in Humans and

Machines, chapter Where view-based theories break down: The role of structure

in shape perception and object recognition, pages 157–185. Erlbaum, Hillsdale,

NJ, 2000.

[25] Greet Kayaert, Irving Biederman, and Rufin Vogels. Shape tuning in macaque

inferior temporal cortex. The Journal of Neuroscience, 23(7):3016–3027, April

2003.

[26] Reinhard Klette and Azriel Rosenfeld. Digital Geometry: Geometric Methods

for Digital Picture Analysis. Morgan Kaufmann, 2004.

[27] V.A. Kovalevsky. New definition and fast recognition of digital straight segments

and arcs. Pattern Recognition, 1990. Proceedings., 10th International Conference

on, 2:31–34, 16-21 Jun 1990.

[28] David Marr. Vision. W.H. Freeman and Co., San Francisco, 1982.

78

[29] Anita Pasupathy and Charles E. Connor. Responses to contour features in

macaque area v4. Journal of Neurophysiology, (82):2490–2502, 1999.

[30] Anita Pasupathy and Charles E. Connor. Shape representation in area v4:

Position-specific tuning for boundary conformation. Journal of Neurophysiol-

ogy, (86):2505–2519, 2001.

[31] Anita Pasupathy and Charles E. Connor. Population coding of shape in area v4.

Nature Neuroscience, 5:1332–1338, 2002.

[32] M. Riesenhuber and T. Poggio. Hierarchical models of object recognition in

cortex. Nature Neuroscience, pages 1019–1025, 1999.

[33] M. Riesenhuber and T. Poggio. The Visual Neurosciences, volume 2, chapter

How visual cortex recognizes objects: The tale of the standard model, pages

1640–1653. The MIT Press, 2003.

[34] Edmund Rolls and Gustavo Deco. Computational Neuroscience of Vision. Oxford

University Press, 2001.

[35] T. Serre, M. Kouh, C. Cadieu, U. Knoblich, G. Kreiman, and T. Poggio. A

theory of object recognition: computations and circuits in the feedforward path

of the ventral stream in primate visual cortex. Technical Report CBCL Paper

259/AI Memo 2005-036, Massachusetts Institute of Technology, 2005.

[36] T. Serre, L. Wolf, and T. Poggio. A new biologically motivated framework for

robust object recognition. MIT AIM, 2004.

[37] Roger N. Shepard and Jacqueline Metzler. Mental rotation of three-dimensional

objects. Science, 171(3972):701–703, Feb. 1971.

[38] Wesley E. Snyder and Hairong Qi. Machine Vision. Cambridge University Press,

2003.

[39] Michael J. Tarr and Heinrich H. Bülthoff. Image-based object recognition in

man, monkey, and machine. Cognition, 1998.

79

[40] Anne Vialard. Geometrical parameters extraction from discrete paths. In DCGA

’96: Proceedings of the 6th International Workshop on Discrete Geometry for

Computer Imagery, pages 24–35, London, UK, 1996. Springer-Verlag.

[41] Marcel Worring and Arnold W. M. Smeulders. Digital curvature estimation.

CVGIP: Image Underst., 58(3):366–382, 1993.

[42] Dengsheng Zhang and Goujun Lu. Review of shape representation and descrip-

tion techniques. Pattern Recognition, 37(1):1–19, January 2004.

80

Appendix

81

Appendix A

Estimation of Curvature using

Digital Straight Segments

A.1 Discrete Curvature Estimation

A complete analysis of the various discrete curvature estimation techniques is

available in the paper by Worring and Smeulders [41], which concludes by recom-

mending that the best method to find discrete curvature is by differential filtering of

tangent angle using a Gaussian kernel.

k(i) =
θ(i) ∗G′

σ

1.107
(A.1)

θ(i) = tan−1

[
yres(i + 1)− yres(i)

xres(i + 1)− xres(i)

]
(A.2)

xres and yres are the resampled versions of the points on the curve (x, y). 1.107

is the average distance between two points on a discrete contour and is a multiplica-

tive bias correction. The resampling is done on a straight line joining two adjacent

points on the curve. As [41] states such a procedure will reduce the errors due to

82

non-uniform sampling.

Vialard [40] suggests an improvement to the above method where the tangent is

estimated in a purely discrete way using Digital Straight Segments. However, the

biggest problem with these methods is the estimation of the Gaussian parameter σ

which is the standard deviation. σ has to be determined based on the nature of the

data.

Coeurjolly, Miguet, and Tougne [8] proposed a method where the curvature esti-

mation is done using a purely discrete way using osculating circles which avoids any

parameters based on the nature of the data. This method is explained in detail in

the next few sections.

A.2 Digital Straight Segments

A Digital Straight Segment(DSS) is defined using two support lines as follows:

Da,b,µ,ω = {(i, j) ∈ Z2 : µ ≤ ai + bj < µ + ω} (A.3)

where a/b is the slope. a and b are relatively prime integers. µ is the approximate

intercept and ω is the arithmetic width.

If ω = max(|a|, |b|), then the lines are called naive lines. These lines are 8-

connected lines in Z2. If ω = |a| + |b|, then the lines are called standard lines.

These lines are 4-connected lines. The term connected here implies adjacency. The

connectivity is not absolutely necessary. A set of points are part of a straight segment

as along as they lie within the support lines. Therefore, if two points are not connected

and lie within the support lines then it is possible to find 4 or 8 connected points

joining them.

It is interesting to note that standard lines are a bit more resistant to noisy points

than naive lines because of greater separation between the support lines. Standard

lines are used for curvature estimation in our algorithm.

83

There are two important algorithms found in the literature to find Digital Straight

Segments. For standard lines, the algorithm is defined in [27]. Recognition of naive

lines is discussed in [13]. The next sub section describes the algorithm to find standard

lines as described in [27].

A.2.1 Algorithm for Recognition of Standard Lines

The algorithm was initially proposed in [27]. The description given below is based

on [26]. The algorithm is based on the principle that a set of points (xi, yi) are part

of a DSS if:

0 ≤ bx− ay + c ≤ |a|+ |b| − 1 (A.4)

where a, b and c are integers with a and b being relatively prime. The algorithm

assumes that the points are 4-connected.

1. pN = qP = (x1, y1), qN = pP = (x2, y2), a = x2 − x1, b = y2 − y1

2. n = 3

3. Repeat steps below until (xn, yn) are not DSS.

4. c = b ∗ xn−1 − a ∗ yn−1

5. rn = (xn, yn)

6. h = b ∗ xn − a ∗ yn − c

7. if 0 ≤ h ≤ |a|+ |b| − 1 : (xn, yn) is a part of the DSS.

8. if h = −1 then qN = rn, pP = qP , (a, b) = rn − pN . (xn, yn) are part of the DSS.

9. if h = |a| + |b| then qP = rn, pN = qN , (a, b) = rn − pP . (xn, yn) are part of the

DSS.

10. Otherwise, (xn, yn) are not DSS. Stop at previous vertex (xn−1, yn−1).

84

A.3 Estimation of Curvature and Tangents Using

DSS

Digital Straight Segments can be used to estimate discrete curvature. One of the

easiest and simplest way to do this is defined in [9]. Let v1 = (x1, y1) and v2 = (x2, y2)

be the end points of the maximum length DSS around point v0 on the curve. Note

that v1 and v2 are also points on the curve. Let a be the Euclidean distance between

v0 and v1. Similarly, let b be the distance between v0 and v2 and c be the distance

between v1 and v2.

Then, the radius of the osculating circle at v0 can be approximated by finding the

radius of circumcircle(Rc) of the triangle with vertices v0, v1 and v2.

Rc =
abc

4A
(A.5)

A =

√
(b + c)2 − a2.

√
a2 − (b− c)2

4
(A.6)

A is the area of the triangle. Curvature at v0 is, therefore, approximated by:

κ =
1

Rc

(A.7)

The line joining v1 and v2 is the approximation of the tangent at v0.

A.4 Experiments and Results

In this section, we test the accuracy of the DSS curvature estimator. 11 circles

of radii 5,10,20,30,40,50,60,70,80,90 and 100 were taken and their curvature was es-

timated using the algorithm. A plot of the average estimation error versus radius is

shown in A.1. The plot clearly shows the convergence of the average curvature to the

true continuous curvature with increase in resolution. However, the convergence is

true only for average curvature. The curvature at a point does not have asymptotic

85

Figure A.1: Average Curvature Estimation Error

convergence. According to [12], the asymptotic convergence of a DSS curvature esti-

mator is still an open problem.

However, the advantages of DSS curvature estimators clearly outweigh this disad-

vantage. The biggest advantage of DSS based curvature estimators is that they are

independent of the nature of the data when compared to classical techniques. The al-

gorithm is highly parallel and requires no parameters to set, giving very good accuracy

at the same time.

