
ABSTRACT 

CHOUDHARY, NIKET KUMAR. A Synthesizable HDL Model for Out-of-Order 
Superscalar Processors. (Under the direction of Associate Professor Eric Rotenberg). 
 

Many contemporary servers, personal and laptop computers, and even cell phones are 

powered by high-performance superscalar processors. In the past, conventional 

microarchitecture and technology scaling has afforded leaps in their performance and 

functionality. Today, conventional microarchitecture and technology scaling are both 

yielding lower returns with increasing costs. Therefore, any microarchitecture level decision 

to increase performance needs to be critically analyzed from a technology standpoint. To 

address this critical need, we have developed a register transfer level (RTL) model of a 

superscalar microarchitecture with similar complexity of a current generation processor. The 

RTL model is written in Verilog and is fully synthesizable.  The model can be implemented 

in different technology nodes using a well established ASIC design flow to provide high 

fidelity estimation of propagation delay, power consumption, area, and other technology 

related costs. The RTL model is supplemented with a register file compiler to estimate the 

costs of multi-ported memory structures which are extensively used in a superscalar 

microarchitecture. The RTL model is also tightly integrated with a C++ functional simulator 

to assist and accelerate verification. 
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CHAPTER 1 

Introduction 

1.1 Overview 

Superscalar processors are at the heart of many high-performance computing platforms, 

either in the uniprocessor form or as processing cores in recently evolved chip 

multiprocessors. The superscalar microarchitecture exploits instruction-level parallelism 

(ILP) available in a program, by executing multiple instructions in parallel. To extract ILP, 

the superscalar microarchitecture forms a dynamic instruction window, and its instruction 

scheduler selects independent instructions out of the window for execution in a cycle. The 

dynamic instruction window is a segment of the dynamic instruction stream, that the 

processor can work upon concurrently. For issuing more than one instruction in a cycle, the 

scheduler goes beyond the sequential program order to find independent instructions, 

bringing out-of-order nature into the execution. In the dynamic instruction stream shown in 

Figure 1-1, there are data dependencies among the underlined instructions, and they need to 

be executed serially for a correct program. But the rest of the instructions in the window are 

independent, and can be issued for execution in parallel. The maximum number of issued 

instructions depends on the available functional units. Overlapped execution of multiple 

instructions in parallel leads to higher instructions per cycle (IPC), one key metric for the 

processor performance.  
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Figure 1-1: Out-of-order superscalar processing. 

 

The amount of available ILP varies depending on the application, input set, and more. It is 

evident from Figure 1-1, that a larger window and uninterrupted instruction stream are 

required to achieve higher IPC. Achieving a larger window and an uninterrupted instruction 

stream requires complex hardware techniques leading to increased logic complexity. The 

increased logic complexity has a direct impact on the clock frequency, the second key metric 
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for processor performance. Pipelining, coupled with better circuits, is used to manage 

increased hardware complexity and still achieve a high clock frequency for a given process 

technology. At the same time, deepening the pipeline may negatively impact IPC because of 

higher branch misprediction penalties. In practice, both IPC and clock frequency are strongly 

intertwined, and for a good design, it is important to achieve a good balance between IPC and 

clock frequency boosting mechanisms.  

In the past, processors have experienced exponential growth in performance, owing to 

innovative microarchitecture and technology scaling. Technology scaling has been the 

performance growth enabler, providing abundant transistors to add more hardware for 

complex microarchitectures, and still leaving room to optimize clock frequency because of 

faster transistors. Figure 1-2 shows clock frequency and transistor integration growth over a 

decade of technology scaling for the Pentium family of Intel processors [1]. With easy to 

extract ILP and the bolstering of process technology, designers were able to scale the 

instruction window and pipeline depth to yield more performance, while still remaining 

within desirable area and power budgets.   
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(b) 

Figure 1-2: Impact of technology scaling on the Pentium family of Intel Processors (a) 

Transistor integration growth (b) and clock frequency scaling. Clock frequency scaling also 

owes to the deepening of the pipeline over the generations of Pentium processors. 



 5 

 

But recently, the performance gained by conventional microarchitecture and technology 

scaling has hit a wall. Forming a larger instruction window to extract additional ILP is 

incurring much higher frequency, power, and area costs [2]. Technology scaling trends are 

compounding the problem: transistor and wire speed and/or power are not scaling as well as 

in the past. As a result, any microarchitecture level decision to increase performance needs 

to be critically analyzed from a technology standpoint. Technology constraint-aware design 

necessitates a tool chain that can model all of the design costs of a superscalar 

microarchitecture or can evaluate the cost of any technique added to the baseline 

microarchitecture to enhance performance. These costs are clock frequency, power 

consumption, and die area, but may even include design effort, hard or soft error 

vulnerability, yield, etc. Cycle based simulators, predominantly used in academic research 

currently, fail to capture the detailed costs of the design.  

 

To bridge the gap between high level microarchitecture simulation and the associated low 

level costs to implement the microarchitecture, we have developed a register transfer level 

(RTL) model of a superscalar microarchitecture with similar complexity of a current 

generation processor. The RTL model is designed in Verilog, and is fully synthesizable. The 

model can be implemented in different technology nodes using a well established ASIC 

design flow [7] to provide high fidelity estimation of clock frequency, power consumption, 

area, and other technology related metrics. In its current form, the RTL model captures the 

complexity of canonical stages in a superscalar processor in detail, and it is parameterized by 
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the number of pipeline ways and the sizes of Random Access Memories (RAMs), Content 

Address Memories (CAMs), and other specialized memories within the stage. As part of 

future work, the RTL model needs to be more rigorously verified, and needs to be extended 

for sub-pipelining within canonical stages. The RTL model is supplemented with a register 

file compiler to estimate the cost of multi-ported RAMs and First-In First-Out (FIFO) 

structures which are extensively used in a superscalar microarchitecture. The RTL model is 

also tightly integrated with a high level functional simulator (written in C++) through the 

Verilog Procedural Interface (VPI), providing a Verilog and C++ co-simulation environment. 

VPI allows the RTL model to invoke the functional simulator, and then exchange 

information with it [35] [36]. The RTL model leverages the functional simulator to load a 

compiled binary, giving the Verilog simulator the flexibility to simulate any standard 

application benchmark. Moreover, the co-simulation environment can also be used for 

functional verification by cross-comparing retired instruction results.  

 

The RTL model is the forerunner and basis of a bigger research project, FabScalar [6], which 

our group is currently working on. FabScalar, a novel toolset, can be used to compose 

synthesizable Verilog model of arbitrary superscalar processors. FabScalar is a first step 

toward the practical development of heterogeneous multi-core systems [3] [4] [5] and 

application-specific superscalar processors [33]. It exploits the fact that different superscalar 

processors have in common a canonical pipeline, shown in Figure 1-3, and differ primarily in 

the complexity and sub-pipelining within each canonical pipeline stage.  
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Figure 1-3: Canonical pipeline stages of a superscalar processor. 

 

At the same time, it borrows the notion of a standard cell library for ASIC design where the 

standard cell library provides many flavors of simple gates, MSI components (e.g., MUXes, 

decoders), and even LSI/VLSI components (e.g., microprocessor cores). The FabScalar’s 

standard superscalar library (SSL) will contain different flavors of canonical pipeline stages 

representing different complexity and can be used by an automated tool to assemble a 

superscalar processor based on microarchitecture constraints and low level cost constraints. 

More details about the FabScalar project can be found in [6]. 
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1.2 Contributions 

This thesis makes the following key contributions and co-contributions: 

• Design and implementation of a fully synthesizable and semi-parameterized 

superscalar processor in Verilog RTL. The model provides the foundation from which 

FabScalar’s SSL [6] will ultimately be derived. 

• Design of a register file compiler to estimate the access time, power consumption, 

and area of multi-ported RAMs and FIFO structures. These structures are very 

specialized to the superscalar microarchitecture. The author has initially advised and 

collaborated with fellow student Tanmay Shah on this co-contribution. 

• Design and implementation of a Verilog and C++ co-simulation environment to 

enable running any standard performance evaluation benchmarks on the RTL model 

and accelerate debugging the RTL model.  

 

1.3 Organization 

Chapter 2 describes the design and implementation of a four-wide eleven-stage-deep 

superscalar processor, forming the initial basis of FabScalar. Designs of individual canonical 

pipeline stages are discussed in detail. Chapter 3 summarizes the design of the register file 

compiler specialized to generate multi-ported SRAMs, co-developed with Tanmay Shah. 

Chapter 4 describes the Verilog and C++ co-simulation environment and how it facilitates a 

high fidelity verification of the processor design. Chapter 5 discusses logic synthesis and 

place&route results of different pipeline stages and the processor as a whole.      
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1.4 Related Work 
 
The Illinois Verilog Model (IVM) [12] is closest to our Verilog model. IVM is a superscalar 

out-of-order processor designed in Verilog-95 at the University of Illinois by S.J. Patel’s 

group for fault-tolerance research. IVM has twelve pipeline stages and implements a subset 

of the Alpha ISA. Detailed IVM microarchitecture features and parameters can be found in 

[12]. The Verilog model is not fully synthesizable because some parts of the design contains 

un-synthesizable behavioral code, for instance, while/for loops not evaluating to a constant in 

missqueue.v, shown in Figure 1-4.  

 

Figure 1-4: An un-synthesizable construct from the IVM design 

 

Even after fixing un-synthesizable constructs, the IVM synthesizes at a very low frequency 

attributing to its unoptimized design or coding style. Moreover, if IVM is to be used as a 

cycle-accurate simulator, it does not provide any support to run SPEC [13] or any standard 

benchmark suite, which is necessary to evaluate any new microarchitecture technique.     

  

Sun’s OpenSparc T1 [14] is an open source Verilog model of UltraSparc T1 and it 

implements the 64-bit SPARC V9 architecture. OpenSparc T1 is a CMP and has eight 

homogeneous processors on the same die. Each processor is an in-order, six-stage and scalar 

pipeline, and has hardware support to run four threads.   

i=0; 
 
while ((i<QUEUE_SIZE) && !(q_valid_f[i] && q_done_f[i] && !q_type_f[i])) 
                    i=i+1; 
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OpenRISC 1200 (OR1200) is a freely available Verilog model of processor available from 

OpenCores [15], and it implements the 32-bit ORBIS32 architecture. OR1200 is a five-stage, 

in-order, and scalar pipeline. 

Although, OpenSparc T1 and OR1200 are freely available Verilog model of processors, they 

do not represent the complexity of an out-of-order and superscalar microarchitecture. 

In the past, several analytical methods to estimate design costs have been proposed. 

Palacharla et al. [32] analyzed the complexity of key pipeline stages in a superscalar 

processor, and propose first-order analytical models for estimating their delays. The authors 

use SPICE simulation for quantifying the delay of timing critical paths in each pipeline stage. 

Brooks et al proposed Wattch [40], a framework to analyze and optimize power dissipation at 

the architecture level. Cacti is an analytical tool for modeling the access time, dynamic 

power, leakage power, and area of caches and other memories [41]. Bazeghi et al. [42] 

proposed an analytical approach to measure and estimate processor design effort. Although, 

analytical models or tools based on analytical models might give good early estimation of the 

associated design costs, the purpose of our RTL model and FabScalar is to provide high 

fidelity design costs, which become necessary as performance scaling is increasingly costly 

and technology dependent. 

Kumar, Tullsen, and Jouppi [3] [4] and Strozek and Brooks [43] have done groundbreaking 

research on architectural exploration for heterogeneous CMPs. Strozek and Brooks’ work on 

the high level synthesis of very simple cores for embedded systems [43] is more directly 

related to FabScalar itself. The Program-In-Chip-Out (PICO) framework out of HP labs [44] 

is closely related in that it customizes VLIW cores and non-programmable accelerators for 
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embedded applications. Similarly, Tensilica’s Xtensa processor generator customizes data 

path and VLIW cores for embedded applications [45].  FabScalar is distinct in that it targets 

complex superscalar processors and this is evident in the novel composable SSL. 
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CHAPTER 2 

Design of a Superscalar Out-of-Order Processor  

 

The execution time of an application for a given input set and a given ISA can be defined as: 

Execution Time = (Instruction Count x Cycle Time)/(Instructions Per Cycle)    [39] 

where instruction count is the total number of instructions to be executed for the given 

application and input set, cycle time is the clock period at which the processor can run, and 

instructions per cycle is the average number of instructions executed each cycle. Better 

algorithms at the application level and better compiler optimizations may reduce the 

instruction count. For a technology node, deeper pipelining and better circuits are used to 

reduce cycle time, i.e., increase clock frequency. Complex hardware techniques are 

employed in a processor to increase instruction per cycle (IPC).  

A superscalar microarchitecture attempts to achieve higher IPC by processing more than one 

instruction (also referred to as superscalar width) in each pipeline stage, as opposed to a 

scalar microarchitecture, which processes only a single instruction in each stage. Moreover, 

to exploit concurrency in the program, instructions are executed out-of-order. With out-of-

order execution, the dynamic instruction stream is no longer executed strictly in the original 

program order, but based on the availability of source operands. Increasing the width of each 

stage and executing instructions out-of-order lead to increased logic complexity, which 

directly impacts clock frequency. To accommodate the increased complexity and/or to 
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increase clock frequency further, the microarchitecture employs pipelining. The number of 

pipeline stages from fetching an instruction to retiring it, is referred to as the depth of the 

microarchitecture. All else equal the deeper the pipeline, the less amount of logic there is in a 

pipeline stage. The pipeline structure in a superscalar processor is logically partitioned into a 

front-end and back-end, where the front-end processes the instruction stream in the original 

program order, and the back-end processes instructions in an out-of-order way to extract ILP. 

Although instructions execute out of program order, they update the processor state in the 

original program order, to preserve the sequential execution contract between the program 

binary and hardware [28]. A conventional out-of-order superscalar uses a FIFO-like structure 

to reconstruct the program order, and the completed instructions retire (also referred to as 

graduate or commit) from the FIFO to update the architectural state of the machine. In some 

microarchitectures, the size of this FIFO restricts the maximum number of instructions the 

processor can concurrently work upon, also referred to as the instruction window. To extract 

peak parallelism of the processor, it is necessary to keep the instruction window full all of the 

time. 

 

The design of a superscalar microarchitecture tries to find the right balance between IPC and 

clock frequency to execute the instruction stream as fast as possible. The IPC of a superscalar 

processor is fundamentally limited by control dependencies and data dependencies within the 

instruction stream, and the clock frequency is limited by the underlying technology. Control 

dependencies may force the program to change its course of execution, leading to complete 

or partial flushing of the instruction window [57]. As shown in Figure 2-1, I4 is a branch 
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instruction and based on its outcome (taken or not-taken), either I40 or I5 would be the next 

instruction to execute. The outcome of a branch instruction is unknown until it executes, and 

the deeper the pipeline the longer it takes to resolve a branch instruction. To alleviate the 

impact of control dependencies on performance, the processor employs a dynamic branch 

predictor to speculate on the outcome of the branch very early in the pipeline, and 

speculatively fetch and execute the predicted path accordingly. A dynamic branch predictor 

predicts the outcome of a specific branch based on its own history and possibly its correlation 

with the outcome of previous branches [60] [61] [62].  

 

 

Figure 2-1: Control-flow in a program. 
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Data dependencies among instructions force their serial execution, leading to decreased 

parallelism to exploit [58] [59]. In a dynamic instruction stream, data dependencies among 

instructions occur through either architectural registers or memory, as shown in Figure 2-2. 

The solid arrows show dependencies propagated through architectural registers and the 

dashed arrow shows a dependency propagated through a memory location. A data 

dependency arises from the fact that an instruction’s source operand depends on the outcome 

of another instruction, leading to a producer and consumer relation between the instructions. 

In Figure 2-2, I2 cannot execute until I0 and I1 have executed; similarly, I8 cannot execute 

until I0, I1, I2, and I7 have executed. The dependencies propagated through memory are 

detected late in the pipeline, as the addresses of memory instructions are not known until they 

execute.  

 

Figure 2-2: Data dependence in the dynamic instruction stream. 
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To mitigate the impact of data dependencies on the IPC, a superscalar microarchitecture uses 

complex hardware techniques, for example, speculative wakeup of consumer instructions 

[63] and memory dependence predictors [64].  

 

A superscalar microarchitecture achieves higher clock frequency by pipelining and better 

process technology [65]. Over the past decade, technology scaling drastically increased the 

transistor speed and the number of transistors that can be integrated on a single die, by 

scaling device dimension, threshold voltage, gate oxide thickness, and supply voltage [37] 

[38]. Moreover, better circuits and logic families have evolved to supplement the 

performance growth by technology scaling.   

 

As part of this thesis, we design and implement the canonical pipeline stages of a superscalar 

microarchitecture, found in most of the commercial superscalar based designs [23] [24]. 

Although, the RTL model of the individual pipeline stage is parameterized by the width of 

the stage and the sizes of specialized memory structures within the stage, we choose a 

specific microarchitecture configuration as a starting point to understand the design 

complexity involved. Table 2-1 shows the chosen microarchitecture configuration.  
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Table 2-1: Microarchitectural configuration of the synthesizable-verilog model. 

Stage Description 
Fetch 4-wide, 512-entry BTB, 128-entry bimodal branch predictor, 8-entry 

RAS, 16-instruction fetch buffer 
Decode 4-wide, ISA = SimpleScalar (MIPS-like) 
Rename 4-wide, 32-entry rename map table with 8 read and 4 write ports, 4 

shadow map tables (checkpoints) 
Dispatch 4-wide 
Issue 4-wide issue, 32-entry issue queue 
Register 
Read 

4-wide, 128-entry physical register file with 8 read ports and 4 write ports 

Execute 1 simple ALU, 1 complex ALU, 1 branch ALU, 1 AGEN + 1 port to 
load-store unit 

Load-Store 
Unit 

16-entry load queue, 16-entry store queue 

Writeback 4-wide 
Retire 4-wide, 128-entry active list with 4 read and 4 write ports, arch. map 

table with 4 read and 4 write ports 
 

The rest of the chapter will discuss in detail the design and implementation of a 4-wide out-

of-order superscalar microarchitecture. 

 

2.1 Methodology  

The designed superscalar processor implements the SimpleScalar ISA [21], called PISA (for 

pseudo-ISA), a close derivative of the MIPS architecture [22]. PISA is 32-bit RISC 

architecture, although the instructions are 64 bits wide.  

The designs of individual stages have evolved from reading papers in the literature and by 

using the superscalar knowledge expertise within our research group. Figure 2-3 shows the 

implementation flow used throughout the design process.  
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Design the pipeline 
stage

Develop verilog 
model of the pipeline 

stage

Verify the verilog 
model

Synthesize the 
verilog model

 

Figure 2-3: Implementation flow of the superscalar processor. 

 

A mix of the Verilog-95 and Verilog-2000 hardware description language (HDL) is used for 

designing the hardware of each pipeline stage. The Verilog is synthesizable and we built the 

Verilog model from scratch, instead of using existing models from IVM or OpenRISC. The 

microarchitecture extensively uses specialized multi-ported RAMs, CAMs and FIFOs. The 

Verilog modules containing memory elements are separated from the random logic in a 

modular way, so that they can be replaced by custom macros during logic synthesis or the 

rest of the implementation flow. Memories are modeled in RTL for the functional simulation, 
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however. In the case of a memory structure requiring parallel access to multiple contiguous 

rows in the same cycle, it is implemented using interleaved banks to obviate the need of 

multiple read or write ports, as shown in Figure 2-4. 

 

Figure 2-4: (a) Example of accessing two adjacent rows of a memory and (b) its interleaved 

implementation. 

 

Table 2-2 shows the industry-standard EDA tools used for functional simulation, logic 

synthesis, and placement and routing. During the full cycle of development, we use a 45nm 

standard cell library [25] for the logic synthesis and the basic placement and routing. For this 

standard cell library, we set a target of 1GHz clock frequency for the design with the chosen 

microarchitecture configuration. Individual pipeline stages went through multiple design 

iterations to achieve the target frequency. The iterations primarily involved restructuring the 

logic, or in some cases changing the entire pipeline stage design.  
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Table 2-2: EDA tools used for the design. 

Stage EDA Tool/Tools Used 
Functional Verification  Cadence NC-Verilog version: 06.20-s006 

Logic Synthesis Cadence RTL Compiler version: 07.10-s021_1, Synopsys Design 
Compiler version: X-2005.09-SP3 

Place & Route Cadence SoC Encounter version: 7.1 
 
 

Describing intermediate design iterations is beyond the scope of this thesis, and we primarily 

document the final design employed for each pipeline stage. 

 

2.2 Pipeline Stages of a Superscalar Processor 
 
Figures 2-5 shows the high level block diagram of a superscalar processor. The individual 

pipeline stages are discussed in detail in later sections. The superscalar microarchitecture is 

logically partitioned into a front-end and a back-end (shown with a dashed line in Figure 2-

5). The key features of the microarchitecture are 

• Separate level-one (L1) caches for storing recently and frequently used program 

instructions and data. 

• Dynamic branch predictor to speculate on the next instruction cache line to be 

fetched.  

• Physical register file for register renaming and storing both committed and non-

committed (speculative) instruction results. 

• Out-of-order execution of the instruction stream from the issue queue. 
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Figure 2-5: High level block diagram of a superscalar processor. 
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• Store and load queues for resolving within-window memory dependencies and for 

retiring stores to architectural memory state in program order. 

• Active list for the in-order update of the processor’s architectural state.  

• Checkpoint-based mechanism for fast recovery from branch mispredictions. 

 

2.2.1 Instruction Fetch 

Instruction fetch is responsible for providing a continuous instruction stream to the rest of the 

pipeline. The program counter (PC) (or instruction pointer) in the Fetch-1 stage keeps track 

of the program address of the current or next instruction to be executed. Every cycle, the PC 

is incremented sequentially, until there is a control instruction in the instruction stream. 

Control instructions, for example, a jump direct/indirect, call direct/indirect, return, or 

conditional branch (if the direction of the branch is taken) change the PC non-sequentially. In 

a program, conditional branches tend to occur more frequently than other control 

instructions.  

In our design, the fetch stage achieves a fetch bandwidth of four by employing a small but 

fast L1 instruction cache and a dynamic branch predictor to speculate on the outcome of a 

branch instruction in one cycle. The branch prediction mechanism is composed of three 

major hardware structures, along with random logic: branch target buffer (BTB), branch 

prediction buffer (BPB), and return address stack (RAS). The BTB records the PC of the 

control instruction, its type, and the associated target address. On an access to the BTB, it 

identifies if a PC is a control instruction and what its type is. The BTB is implemented as 4-
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way interleaved SRAM for a fetch width of four, eliminating the need for a multiported 

SRAM. The BPB is a simple bi-modal branch predictor and is accessed using the low order 

bits of the PC. For a branch instruction’s PC, the BPB predicts the direction of the branch 

(taken or not-taken). A call instruction has an associated return address, the sequential 

address after the call, and the RAS is used to predict this return address. The BTB has poor 

target address prediction accuracy for return instructions, due to the same function or 

subroutine being called from multiple call sites in a program.  

 

Figure 2-6: Fetch-1 Stage, highlighting the next-PC logic. 
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The instruction cache module in the RTL model is 2-way interleaved to obviate the need for 

a dual-port SRAM, guaranteeing two contiguous 4-instruction cache lines in a cycle, from 

which 4 sequential instructions can be extracted from any unaligned starting PC. One bank 

contains cache lines with even addresses and the other bank contains cache lines with odd 

addresses. The instruction cache can provide two adjacent aligned instruction blocks every 

cycle, if there is no cache miss. The BTB and BPB are accessed using four consecutive PCs, 

as four instructions are fetched every cycle, to feed the random logic to generate the PC for 

the next cycle (next PC logic in Figure 2-6). If the BTB indentifies a PC as the address of a 

control instruction, the target address for the next PC is obtained from either the BTB itself 

(not return) or RAS (return). Moreover, on every call instruction, the next sequential PC is 

pushed onto the RAS for predicting the target address of the corresponding return instruction 

in the future. In the case of multiple control instructions in the fetch block (composed of four 

instructions in this implementation), the target address of the first taken branch is given 

priority for the next PC. On a misprediction, the next PC logic recovers the correct target 

address by the later pipeline stages. We will discuss control mispredictions in detail, later in 

the chapter.  

From a cycle time standpoint, the Fetch-1 stage has two important timing paths: 

• Accessing the interleaved L1 instruction cache for reading two aligned cache blocks. 

The complexity of accessing the cache would increase with increasing the size and 

the set-associativity of the cache. 

• Generating the next PC using information from the BTB, BPB, and RAS for a group 

of instructions being fetched. The complexity of the next PC logic would increase 



 25 

with a larger BTB, a more complicated or larger branch predictor [27], or wider fetch 

bandwidth. Moreover, it is important to generate the next PC in one cycle to avoid 

losing cycles on every predicted-taken branch, unless a sophisticated and complicated 

fetch mechanism is employed, for example, Seznec’s Multiple-Block Ahead Branch 

Predictors [26]. Figure 2-7 shows the timing critical logic to generate the next PC. 
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Figure 2-7:  Timing critical logic to generate the next PC. In case of return type control 

instruction, the target address (RAS Addr) comes from RAS.  
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The Fetch-2 stage contains the instruction alignment logic and extracts up to four consecutive 

instructions (from among the two consecutive blocks coming from Fetch-1) based on the 

starting PC, or until the first taken branch, whichever comes first. Fetch-2 pre-decodes the 

four instructions to explicitly identify control instruction within the fetch block and calculate 

their target addresses. The PISA ISA has target offsets embedded in the control instruction 

except for returns and jump or call indirects. If the BTB misses for the control instruction in 

the previous cycle, Fetch-2 generates a recovery signal and recovery target address for the 

Fetch-1 stage. If an instruction happens to be a predicted-taken branch in the fetch block, 

subsequent instructions are discarded. Fetch-2 also contains a FIFO buffer, called the control-

transfer instruction queue (CTI queue), to hold all control instructions in their program order. 

After a control instruction at the head of the FIFO retires, the CTI queue updates the BPB 

with the computed direction. This leads to in-order update of the branch prediction structure. 

Instruction alignment, extracting the fetch block, pre-decoding, and generating the recovery 

signal are serialized logic, and fall onto the timing-critical path of Fetch-2. 

 

The Fetch-3 stage is an instruction queue, and decouples instruction fetching and the rest of 

the front-end pipeline stages. It receives up to four instructions from the Fetch-2 stage and 

writes them into a circular buffer at the tail pointer, and always four instructions are read 

from the head pointer to feed further pipeline stages. The instruction queue serves two 

purposes:  
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1. it allows instruction fetching, even though the rest of the front-end is stalled because 

of a hardware resource limitation, and  

2. it simplifies the decode, rename and dispatch logic by always providing a fixed 

number of instructions (four per cycle).  

Reading the circular FIFO for four instructions is the most timing-critical path in Fetch-3. 

 

2.2.2 Instruction Decode 

The instruction decode logic is straightforward to implement, due to implementing a RISC 

ISA. PISA has three instruction formats, as shown in Figure 2-8 (reproduced from [21]). 

Currently, our design only implements integer instructions and we intend to extend the 

design for floating-point instructions, as part of the FabScalar project. More details about 

PISA can be found in [21], some of the important features are: 

• There are 32 architectural integer registers, explicitly addressed by integer 

instructions. 

• An instruction has a maximum of 2 source operands and 1 destination register. 

Each cycle, the decode stage may receive four instructions from the Fetch-3 stage. The 

decode logic extracts the opcode from each instruction, based on the instruction’s format, and 

generates appropriate control signals that flow with the instruction downstream. 
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Figure 2-8: SimpleScalar ISA format [21].  

 

2.2.3 Instruction Renaming 

The rename stage of the superscalar processor renames the architectural source and 

destination registers to physical source and destination registers. The compiler is limited by 

the number of architectural registers for allocating intermediate computation or holding local 

variables, and the compiler reuses registers to overcome this. Register renaming removes the 

false dependencies among instructions which are artifacts of limited architectural registers. 

Fundamentally, a dynamic instruction stream has three types of data dependencies: 

• True dependency, where the source register of a younger instruction depends on the 

outcome of another, older instruction in the dynamic instruction stream. 
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• Output dependency, where the destination register of a younger instruction is the 

same as the destination register of another, older instruction in the dynamic 

instruction stream. 

• Anti-dependency, where the destination register of a younger instruction is the same 

as the source register of another, older instruction in the dynamic instruction stream. 

Output and anti-dependencies arise because of limited architectural registers, and are 

sometimes also referred to as false dependencies. Register renaming eliminates false 

dependencies by mapping the architectural destination register of each in-flight instruction to 

a unique physical register. Our design uses a physical register file to hold committed and 

non-committed (speculative) register values. The physical register file is bigger than the 

architectural register file, and determines the maximum number of un-committed instructions 

that are in-flight in the pipeline.  

Figure 2-9 shows the register renaming logic for 4-way renaming. A circular FIFO, referred 

to as the Free List, contains the unused physical registers, and a physical destination register 

is obtained for an instruction with an architectural destination register by popping a free 

physical register from the Free List. The Rename Map Table (RMT) maintains the physical 

registers to which architectural registers are currently mapped. Accordingly, each 

architectural source register of the instruction is renamed to a physical source register by 

looking up its mapping in the RMT. After renaming an instruction’s source registers, its new 

architectural-to-physical destination register mapping is updated in the RMT for future 

instructions to observe. At the same time, true dependencies between source registers and 
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preceding destination registers must be checked for the group of instructions being renamed 

concurrently. 

 

Figure 2-9: Register renaming logic. LSAn and LSBn are the architectural source registers and 

LDn is the architectural destination register of instruction N. PSAn and PSBn correspond to 

physical source registers, and PDn corresponds to the physical destination register. 

 

For a 4-way rename stage, renaming is performed for eight source registers and four 

destination registers in parallel. Physical names for four destination registers are obtained by 
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popping registers from the Free List and are updated in the RMT in the same cycle. Note 

that, if there are multiple producers of the same architectural registers in the rename group, 

then only the youngest producer updates the RMT (logic not shown in Figure 2.9). The RMT 

is implemented as an SRAM, with 8-read ports and 4-write ports, and the Free List is 

implemented as an interleaved FIFO. True dependencies among source registers and 

preceding destination registers in the same rename group are also resolved using comparator 

and multiplexer logic. The access latency of reading the multi-ported RMT plus the bypass 

MUXes following the RMT makes it the most timing critical logic in the rename stage.  

 

2.2.4 Dispatch 

The Dispatch stage is the boundary between in-order instruction processing and out-of-order 

instruction processing. It is the responsibility of the Dispatch logic to check for available 

space in the back-end pipeline stages, in particular, the Active List, Issue Queue, and the 

Load and Store Queues, for newly renamed instructions. If the space is available, the 

Dispatch stage writes the new instructions in the respective resources (shown in Figure 2-10). 

In case of the unavailability of enough space in these resources, the dispatch stage generates 

a stall signal for the decode and rename stages.  
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Figure 2-10: Dispatched instructions inserted in the back-end resources. 

 

2.2.5 Issue 

The Issue stage is the heart of out-of-order superscalar execution, and is very critical to the 

performance of a superscalar microarchitecture. The Issue stage buffers the renamed 

instructions and selects instructions for execution based on the availability of their source 

operands. The maximum buffer size is referred to as the issue window, and the maximum 

number of instructions selected for parallel execution in a cycle is referred to as the issue 

width. The issue window and issue width are the fundamental characteristics of the issue 

stage, and determine its logic complexity. An instruction in the issue window is ready to 

execute if all of its source operands are ready, and can participate in the selection process. 

Since there is a limited number of functional units, and multiple instructions may be ready in 

the issue window, selection logic is required. The selected instruction is issued for execution, 
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removing the instruction from the issue window. Since an instruction is selected, not in the 

program order, but based on the availability of its source operands, it leads to out-of-order 

execution. The issued instruction broadcasts its physical destination register name or tag to 

the issue window to wakeup its dependent instructions. In case of a match, the dependent 

instruction sets the ready bit associated with its source operand. 

 

In summary, an Issue stage consists of two major operations: wakeup and select. The wakeup 

operation is dependence resolution performed in the issue window, and the select operation is 

arbitrating among ready-to-execute instructions in the issue window.  In our design, the issue 

window is centralized, and the Issue stage is pipelined between wakeup and select logic. A 

maximum of four instructions can be selected for execution on four parallel but distinct 

functional units. Each functional unit executes a different type of integer instruction, and 

instructions are associated with their functional unit type during the decode stage. The 

wakeup logic tracks the availability of source operands based on the tags allocated to the 

operands. In our design, a tag is a physical register allocated to an architectural destination 

register during the rename stage. The Issue stage contains two key memory structures, a 

CAM for holding source operand tags and a RAM holding payload information for an 

instruction, for example, destination tag, program counter, Active List id, etc. Currently, we 

model the CAM as composed of synthesizable registers, although we intend to replace it with 

a custom-designed component as part of future work.  

As shown in Figure 2-11, the result tags of issued instructions are broadcast through as many 

wakeup ports to all the instructions in the issue window, and each entry in the issue window 
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compares its source tags with the broadcasted destination tags. On a match with any of the 

broadcasted tags, an instruction sets the corresponding ready bit for its source operand. The 

complexity of the wakeup operation grows with issue window size and the number of 

wakeup ports. In our design, the number of wakeup ports is the same as the issue width.   

 

 
 

Figure 2-11: Wakeup logic in the Issue stage. 
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To ensure back-to-back execution of a producer instruction and its consumer instructions in 

consecutive cycles, an issued instruction broadcasts its result tag even before its completion, 

and the dependent instructions can read the result data from the bypass network (discussed in 

section 2.2.9). Currently, loads wakeup their consumers late, only when their data is actually 

produced. A load instruction may take a variable number of cycles to execute, depending on 

a data cache miss or memory disambiguation stall (discussed in section 2.2.8). Although the 

pessimistic approach to wake up load-dependent instructions is easier to implement, it will 

lead to significant IPC degradation due to data cache hits being the common case. We plan to 

fix this limitation in the future by speculatively waking up load-dependent instructions and 

replaying them in the case of load stalls. 

 

As shown in Figure 2-12, we implement three-level tree-based selection logic to select ready-

to-execute instructions in a cycle. There is separate selection logic for each function unit 

type. The implementation is very similar to the one discussed in [31]. An L1 request vector is 

formed for each function unit type using the source operand ready bits and other control bits. 

A bit set in the request vector indicates that the corresponding issue window entry is ready to 

execute. The L1 request vector is divided into multiple blocks, and the size of each block is 

four entries. Each block selects one ready entry based on the round-robin policy and passes 

the selection on to the L2 selection logic. Similarly, the L2 request vector is divided into 

blocks of size four, and each block selects one ready entry based on the round-robin policy. 
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Eventually, one ready instruction gets selected in the final level, and the instruction is issued 

after reading the payload information from the payload RAM. 

 

 
 

Figure 2-12: Select Logic in the Issue stage. 
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2.2.6 Register Read 

The register read stage contains the physical register file (PRF), which holds all the 

committed and non-committed instruction results. The source register specifiers of an issued 

instruction index into the PRF to read the corresponding values, as shown in Figure 2-13. At 

the same time, source register specifiers are also compared with the Writeback destination 

register specifiers to detect the scenario whereby a producer instruction’s result needs to be 

directly bypassed to a consumer instruction. In case of a match, the instruction ignores the 

data read from the PRF and uses the data from the bypass network. The bypass network 

updates the PRF with the produced value.   

The PRF is implemented as an SRAM. For an issue width of four, 8-read and 4-write ports 

are required. Reading the PRF coupled with MUXes after the PRF falls on the timing critical 

path for the register read stage. The bypass network is comprised of parallel result buses, 

originating from the Writeback stage. 
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Figure 2-13: Register read stage. PSAn and PSBn correspond to physical source registers of an 

instruction N. WBAn and WBDn correspond to write back address and data respectively. DAn 

and DBn correspond to final source operands’ data. 

 

2.2.7 Execute 

The functional unit in the execute stage performs an arithmetic or logic operation on the 

source operands of an instruction, and the result of the operation is written into the Writeback 

latches. As shown in Figure 2-14, we implement four functional units, where each unit 
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executes a different class of integer instructions. The Simple ALU performs simpler 

arithmetic and logic operations, for example, addition, subtraction, xor, etc. and these 

operations take a single cycle to execute. The Complex ALU performs complicated arithmetic 

operations, for example, multiply, divide, etc. and these operations take multiple cycles to 

execute. In this implementation, the Complex ALU takes three cycles to execute an 

instruction and is fully pipelined. The Control ALU executes control instructions, for 

example, conditional branches, jumps, calls, etc. and these instructions take one cycle. A 

dedicated functional unit for control instructions facilitates early resolving of conditional 

branches.  The AGEN unit performs address computations for memory operations, i.e, loads 

and stores. The output of AGEN goes to the Load/Store Unit, discussed in Section 2.2.8.  

The source operands for the functional units come either from the Register Read stage or 

from the bypass network.  
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Figure 2-14: Execute stage with four functional units. PSAn and PSBn correspond to physical 

source registers of an instruction N. WBAn and WBDn correspond to write back address and 

data, respectively. DAn and DBn correspond to the source operands obtained in the previous 

cycle from the Register Read stage. EDAn and EDBn correspond to final source data feeding 

functional units. 
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2.2.8 Load/Store Unit (LSU) 

Data dependencies propagated through architectural registers are static in nature, i.e., the 

addresses (register specifiers) are embedded within the instruction itself. Dependencies 

propagated through memory are unknown until they execute, as the loads and stores typically 

use register operands to calculate their addresses. A modern microprocessor employs a 

special address dependence check mechanism to support correct out-of-order execution of 

loads and stores. A load compares its address with all the uncommitted stores older in the 

program order, and in case a store’s address matches the load address, the store forwards its 

data to the load. Moreover, all the stores should update the architectural memory state in 

program order.  

 

We implement a separate load queue (LQ) and store queue (SQ) to maintain the uncommitted 

memory operations in their program order. The LQ and SQ insert the loads and stores, 

respectively, when they are dispatched. An issued load takes at least two cycles to execute; in 

the first cycle the load’s address is computed by the AGEN unit and in the following cycle 

the load goes through an address dependency check mechanism in the Load/Store Unit 

(LSU). The LSU logic performs associative searches to resolve address dependencies (also 

referred to as load disambiguation) and employs store-to-load data forwarding logic. A load 

might find its data from the data cache or the store queue depending on the outcome of the 

load disambiguation logic.  The access to the data cache happens in parallel with the load 

disambiguation logic.  
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Figure 2-15: Load hit path in the Load/Store Unit. 
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Figure 2-15 shows the load hit path and different outcomes of the load disambiguation logic:  

1. There are no unknown stores (stores who have not computed address yet) or 

conflicting stores (stores whose addresses match that of the load) prior to the load. In 

this case the load should use the data read from the data cache. 

2. There are conflicting or unknown stores prior to the load.  

a. If the nearest store among these is conflicting, store forward its data to the 

load (load obtains data from SQ data).  

b. If the nearest store among these is unknown, stall the load. 

When a store’s address is computed, it broadcasts its address to any disambiguation-stalled 

loads. A load waiting on this store is re-injected into the load hit path. A store commits its 

value to the memory when it is at the head of the active list. The path shown in Figure 2-15 is 

the most timing critical in the LSU. 

 

2.2.9 Writeback 

The Writeback stage contains the latches holding the results from the execute stage, which 

serve as the source for feeding the bypass network. The bypass network forwards the result 

values from the executed instructions to the dependent instructions, to support optimal 

execution of the producer and its dependent instructions in consecutive cycles. The 

instructions in the Register Read stage and Execute stage compare their source register 

specifiers with all the destination register  specifiers on the bypass network for matches, and 



 45 

in the case of a match, the instruction uses the result value from the bypass network. The 

Writeback stage also acts as the source for branch misprediction signals.   

From an implementation standpoint, the bypass network is essentially parallel buses running 

from the Writeback stage to Register Read and Execute stages (shown in Figure 2-16) with 

each wire observing a load of comparator and MUX logic, and is very critical to the timing 

because of increased wire delays with technology scaling.   

 

WBA0,   WBD0 WBA1,  WBD1 WBA2, WBD2 WBA3,  WBD3

Writeback Registers

Execute 
Stage

Register 
Read Stage

 

Figure 2-16: Writeback registers and bypass network. WBAn and WBDn correspond to write 

back address and data, respectively. 
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2.2.10 Retire  

Although instructions execute out-of-order, they update the architectural processor state in 

the correct program order to maintain the sequential execution model. The in-order commit 

of instructions naturally leads to the implementation of precise interrupts [29]. 

The Retire stage maintains the program order among instructions using a circular FIFO with 

head and tail pointers, referred to as the Active List or Reorder Buffer. The dispatched 

instructions are inserted into the Active List at the tail pointer, giving each instruction a 

unique entry into the Active List. Upon execution of an instruction, the Writeback stage 

updates the completed bit in the Active List entry for this instruction. The Retire stage also 

maintains an Architectural Map Table (AMT), containing mappings between architectural 

registers and physical registers for committed versions of architectural registers. The Active 

List keeps probing the completed bits for the entries starting from the head pointer, and any 

completed instructions at the head are committed and removed from the Active List. When 

an instruction commits, the Active List updates the AMT with the instruction’s physical 

destination register mapping and releases the previously mapped physical register. The 

released physical register gets added to the Free List. In the case of a store instruction, the 

Active List signals the Store Queue to commit the store data to memory. Figure 2-17 shows 

the retirement operation of an instruction. It takes two cycles for the complete retirement 

operation: in the first cycle the head of the Active List is read and in the following cycle, the 

AMT, Free List, and Store Queue are updated with appropriate information.  
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Figure 2-17: Retirement operation of an instruction. 

 

2.2.11 Branch Misprediction Recovery 

Branch mispredictions are a major source of performance degradation in a superscalar 

processor. On every misprediction, clock cycles are wasted to 1) while waiting for the branch 

to execute, 2) while flushing the pipeline, and 3) while refilling the pipeline, deteriorating 

IPC as the processor is doing no useful work during these three phases of recovery. 

Moreover, the deeper the pipeline, the bigger the penalty a misprediction will incur. In fact, 

Sprangle et al. [19] identified branch mispredictions as the single largest contributor to 

performance degradation as pipelines are deepened.  
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For a fast mechanism to restore the processor to a known state after a misprediction, we 

implement checkpointing [30] of the RMT as well as the branch mask logic [31]. A 

checkpoint mechanism makes a copy of the RMT and the Free List head pointer when a 

branch instruction is encountered. A copy of the RMT is also referred to as a Shadow Map 

Table (SMT), and each branch instruction carries the associated SMT id. The branch mask 

logic is similar to that of the MIPS R10000 [31], and it is used to indicate the pending 

branches an instruction depends on. On detecting a branch misprediction, the front-end 

pipelines stages are completely flushed, and the branch mask is used for selective removal of 

instructions in the back-end pipeline stages, i.e., removing only those instructions that are 

after the branch in program order. The PC is set to the correct target address and the RMT is 

quickly restored from the associated SMT of the mispredicted branch. If a branch resolves 

correctly, the associated SMT is released and the branch mask associated with each 

instruction is cleared of that branch.   

Although fast to recover, the checkpoint mechanism is expensive in terms of die area and 

power consumption. Currently, we allow four unresolved branches in the out-of-order 

pipeline stages, requiring four checkpoints and a 4-bit branch mask. Figure 2-18 shows the 

checkpointing logic in the Rename stage. The Branch Vector maintains a list of the occupied 

SMTs, i.e., the branches associated with the occupied SMTs have not executed yet. If all 

SMTs are being used, the processor will keep renaming instructions until it encounters a 

branch instruction, which must stall dispatch until an SMT becomes available. 
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Figure 2-18: Checkpointing logic in the Rename stage. 
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CHAPTER 3 

Register File Compiler 

 

In a modern processor design, small, yet complex, memory structures are implemented as 

custom memories. These specialized memory structures play an important role in 

determining the performance and the power budget of a microprocessor design, as they most 

often contribute to the timing-critical and frequently-exercised paths in a pipeline stage. A 

register file for storing intermediate computation in a processor is a classic example of a 

specialized memory [39]. Furthermore, a superscalar microarchitecture, which processes 

more than one instruction in a pipeline stage per cycle, gives rise to multi-ported memories to 

support multiple parallel reads and writes. For instance, the physical register file (PRF) forms 

an important part of the superscalar processor, and for high IPC, the source operands of all 

the issued instructions must be read simultaneously and all the result values from the bypass 

network should be written simultaneously [46] [47]. Similarly, for a centralized issue queue 

design, the read (Rd) and write (Wr) ports of the payload memory depend upon the issue 

width and the dispatch width, respectively. In general, most of the pipeline stages in a 

superscalar processor require some form of memory structure to buffer instructions or 

instruction related information. The dependence of the number of Rd and Wr ports upon the 

pipeline width makes the memory structures very specialized to the superscalar design. To 

estimate the design cost of a pipeline stage, it is important to estimate the design cost of the 

associated memory structures.  
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Designing custom memories requires significant design effort and time, and analytically 

modeling the cost associated with memories is vulnerable to lower fidelity. We take a hybrid 

approach to develop a multi-ported register file compiler for the 45nm process node [25]. 

The compiler is very specialized to generate the memories required in a superscalar 

microarchitecture, and is capable of estimating timing, area, and energy consumption in 

memories for pipeline widths of one to eight and of different sizes. The memory organization 

considered in our compiler is similar to the well established SRAM (Static Random Access 

Memory) based Cache design [55], and its organization and operation details can be found in 

[53] [54]. Our approach is to 

1. pre-design (including the layout) key circuit components, for instance, bitcells, sense 

amplifiers, decoders, column MUXes, etc., with varying Rd and Wr ports, address 

bits, and transistor sizes, 

2. define composable interfaces of individual components, so that they can be stitched 

together to compose any arbitrary memory structure, 

3. use existing analytical models [56] to estimate intrinsic and coupling capacitances of 

wires connecting different components, and 

4. develop a tool (which we refer to as a register-file compiler) in C++ that can 

automatically compose a memory based on the size and the number of Rd and Wr 

ports, and output the SPICE netlist with annotated intrinsic and coupling 

capacitances, the simulation file with appropriate test vectors, and the estimation of 

area numbers. 
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The netlist can further be simulated using any standard SPICE simulator to estimate timing 

and power consumption. Table 3-1 lists all the pre-designed components used in the register-

file compiler and their different flavors. Table 3-2 shows the industry-standard EDA tools 

used for the layout and the circuit simulation. Figure 3-1 shows layout of four different 

bitcell configurations used in our register-file compiler. 

 Table 3-1: List of the pre-designed components.  

Pre-designed 
Components 

Different Flavors 

Bitcells 2Rd-1Wr, 4Rd-2Wr, 6Rd-3Wr, 8Rd-4Wr, 10Rd-5Wr, 
12Rd-6Wr, 14Rd-7Wr, 16Rd-8Wr, 1Rd-1Wr, 2Rd-
2Wr, 3Rd-3Wr, 4Rd-4Wr, 5Rd-5Wr, 6Rd-6Wr, 7Rd-
7Wr, 8Rd-8Wr 

pre-charge WPMOS=360nm,  WPMOS=720nm 
sense amplifier WPMOS=360nm/ WNMOS=360nm 
word-line driver WPMOS=180nm/ WNMOS=90nm, WPMOS=360nm/ 

WNMOS=180nm, WPMOS=720nm/ WNMOS=360nm, 
WPMOS=1440nm/ WNMOS=720nm 

row decoder Decoder width=1, 2, 3, 4, 5, 6, 7, 8 
Column 
multiplexor 

Multiplexor width=1, 2 

 

Table 3-2: EDA tools used for the design. 

Stage EDA Tool/Tools Used 
Schematic and layout  Cadence Virtuoso version: IC6.1.2.500.13 

SPICE simulation Synopsys HSPICE version: C-2009.03-SP1 
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Figure 3-1: Layouts of four different bitcell configurations. 
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Estimation of propagation delay and energy consumption requires simulation of multiple test 

vectors (testing different cases for worst-case scenario) on the SPICE netlist with annotated 

capacitances. Unfortunately, the SPICE simulation of the complete netlist takes a long time, 

and to alleviate this problem, we generate the netlist of only the critical path (reading or 

writing the farthest bitcell from the row decoder) and perform simulation on it. Although we 

perform only critical-path simulation, the error incurred compared to the full netlist 

simulation is typically within 5%. 

The timing, area, and energy consumption numbers obtained for different memory structures 

are used during the logic synthesis and place & route of canonical pipeline stages. The results 

are discussed in chapter 5. 
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Figure 3-2: Critical path simulation for measuring the read access time and energy 

consumption. 
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CHAPTER 4 

Simulation Methodology  

 

It is necessary to simulate widely accepted benchmarks for architectural evaluation (IPC) of a 

new microarchitecture or a technique added to the baseline microarchitecture to enhance 

performance. SPEC suites [13] and MiBench [34] are some of the standard benchmarks used 

in academia and industry. To support such simulations, we tightly integrate a high-level 

functional simulator (written in the C++ programming language) through the Verilog 

Procedural Interface (VPI) [35] [36], providing a Verilog and C++ co-simulation 

environment (shown in Figure 4-1). The VPI is a software interface for Verilog, and it 

consists of a set of access and utility routines to call C++ functions. These routines can be 

used to exchange information between the instantiated simulation objects contained in the 

Verilog design. We currently use Cadence NC-Verilog for simulation, and the Cadence 

environment allows compiled C++ modules to be called from Verilog modules.  

The RTL model leverages the functional simulator to load a compiled binary and initialize 

the processor state, giving the Verilog simulator the flexibility to simulate any standard 

application benchmark. Moreover, the co-simulation environment can also be exploited for 

assisting and accelerating functional verification of the Verilog design by asserting 

correctness of retired results via comparisons with the functional simulator. The functional 
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simulator fetches and executes one instruction at a time, and its execution result is considered 

golden reference for the verification purpose. The functional simulator always executes 

instructions in the program order.  

  

 
 
Figure 4-1: Verilog and C++ co-simulation. The left-hand side is the RTL of the processor’s 

pipeline. The checker compares the outputs of the Retire stage with the instructions’ results 

from the functional simulator, shown on the right-hand side. 

 

A microprocessor has an immensely large state space, making the validation of logical 

correctness of the design a daunting task [48]. Lungu and Sorin [51] argue that design 

verification, consuming 60-70% of non-recurring engineering (NRE) in the creation of a new 

microprocessor [49] [50], should be considered as a first-class design constraint, like power 

consumption and die area. In this thesis, we try to uncover as many design bugs in the limited 

amount of time and human resources available by running micro-benchmarks on the RTL 

model and verifying the execution result with the functional simulator output. We use the 
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microarchitecture configuration mentioned in Table 2-1 as a baseline design for all 

verification purposes. As shown in Figure 4-1, we extensively use the functional simulator 

for simulation and functional verification. At the beginning of the simulation, the functional 

simulator loads the compiled SimpleScalar binary into the co-simulation environment and 

initializes the processor state. During the Retire stage, the RTL model verifies the PC and 

result of the retiring instruction with the corresponding result of the functional simulator. On 

a mismatch, the source of the design bug is traced manually using the signal viewer in the 

Cadence NC-Verilog. As part of the FabScalar project, we are developing a cycle-accurate 

C++ representation of the RTL model, allowing the C++ and the Verilog implementations of 

each pipeline stage to cross-check their outputs every cycle; this is left for future work. Table 

4-1 shows the major VPIs used in the RTL model. 

Table 4-1: VPIs used in the RTL model. 

VPI Name Functionality 

$initialize_sim() Invokes the functional simulator and loads the program binary. 
$getArchRegValue() Copies the architectural register values from functional simulator to the 

corresponding physical registers in the RTL model.  
$getArchPC() Initializes the PC in the RTL model. 
$getRetireInstPC() Retire stage checks the PC of the retiring instruction with the functional 

simulator output. 
$getRetireInstValue() Retire stage checks the result of the retiring instruction with the functional 

simulator output. 
 

 

To simplify the verification effort, we identify three major high level functional aspects of 

the superscalar microarchitecture (the design) and the logic associated with them:   
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1. Register data-flow: the design includes register renaming, allocation of physical 

registers (popped from the Free List) to a new instruction with a valid destination 

operand, allocation of dispatched instructions in the issue queue and active list 

hardware structures, wake-up and select logic, bypass logic, and functional units.  

2. Control-flow: the design includes next PC logic, checkpointing and branch mask 

logic, and logic for flushing the front-end and selectively removing instructions on 

the wrong control flow path from the hardware structures in the out-of-order stages 

on a branch misprediction.   

3. Memory data-flow: the design includes allocation of dispatched load/store 

instructions in the Load/Store Unit, memory disambiguation logic, and store-to-load 

forwarding logic. 

This breakdown helped us in developing micro-benchmarks stressing one functional aspect at 

a time and allowed us to concentrate our efforts in finding design bugs in a limited state 

space. Figure 4-2 shows an example of the kernel inside a micro-benchmark which stresses 

the register data-flow with no memory operations and very simple control-flow. The kernel 

runs for 10 million cycles on the RTL model with no control misprediction (after initial 

training of the BTB and BPB within 1000 cycles), retiring approximately 12 million 

instructions. Similarly, we developed micro-benchmarks stressing control-flow but keeping 

the data-flow simple, for instance, a toggling branch instruction inside a loop.  
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Figure 4-2: A kernel inside a micro-benchmark, stressing the register data-flow logic.  The left-

hand side is C++ code and the right-hand side is the corresponding SimpleScalar machine code. 

The arrows in the right-hand box indicate the control flow. 

 

Although we did unit-level testing of individual Verilog modules during their development 

phase, we could start full processor-level verification at the beginning of February, 2009. We 

have documented all the design bugs uncovered during full processor-level verification and 

did a classification study to understand how bugs were introduced. We characterize the bugs 

into four categories as shown in Figure 4-3, 1) coding mistake: these bugs were introduced 

by typing mistakes, copy and paste, and careless coding, 2) microarchitecture: these bugs 

were due to wrong or incomplete microarchitectural definition of a particular pipeline stage, 

3) logic changes: these bugs were introduced after performing logic optimization in the 
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design, 4) corner cases: these are special scenarios we failed to foresee during the design 

process. We realize most of the design bugs were introduced due to coding mistakes and 

wrong or incomplete microarchitectural definition. 

 

 

Figure 4-3: Design bug distribution over 4 categories. 

 

We are yet to exhaustively verify the entire processor, or to a level the FabScalar project 

requires. As part of the future effort in the functional verification we would like to fix known 

microarchitectural bugs, for instance, bugs in the logic to wake-up a disambiguation-stalled 

load in the load queue. Eventually, we would like to run the SimPoint [52] associated with 

each SPEC benchmark, consisting of approximately 100 million instructions each, on the 

RTL model.  
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CHAPTER 5 

Results and Discussions 

 

A processor design has an associated cost, where the cost can be quantified in terms of 

propagation delay, power consumption, die area, design effort, manufacturability, or fault 

vulnerability. Until recently, microarchitectural innovations and technology scaling have led 

to exponential growth in performance, with associated design cost within an acceptable 

budget. However, achieving further performance enhancement requires excessively complex 

microarchitecture solutions, and the logic complexity to implement such a design has 

significant impact on costs:  propagation delay, power consumption, and area.  

 

A complex microarchitecture might enhance IPC, but at the same time could increase the 

propagation delay. For instance, increasing the size of the issue window can boost IPC for 

applications with abundant ILP, but at the same time, clock rate may decrease to 

accommodate the larger content addressable memory. Figure 5-1 shows the impact of 

increasing issue window on the delay of the wakeup-select logic for an issue width of two. In 

general, any attempt to increase microarchitectural complexity to get better IPC has a direct 

impact on the propagation delay. 
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Figure 5-1: Delay of wakeup-select logic for different issue window sizes. (Issue width is fixed at 

2 instr/cycle.) 

 

In this chapter, we present the impact of microarchitecture complexity on the propagation 

delay of the superscalar processor’s canonical pipeline stages. By increasing complexity, we 

mean wider pipeline stages (more ways) and larger specialized memories within a stage. We 

derive the Verilog RTL of the pipeline stage for varying complexity, from the baseline four-

wide processor design. To estimate the propagation delay, we synthesized and did basic 

place-and-route of each pipeline stage using 45nm technology standard cell library [25]. For 

memory structures, we use timing numbers from the register file compiler. As part of the 

future work, we would like to estimate the impact of microarchitecture complexity on the 

area and energy consumption for each pipeline stages. 
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5.1 Microarchitectural Complexity Study 

To continuously feed the rest of the pipeline stages, it is necessary to fetch more instructions 

in a cycle. Wider fetch width leads to increased logic complexity and, hence, increased 

propagation delay. In the Fetch-1 stage, logic to generate the next PC is the most critical from 

a cycle time standpoint. The timing critical path of the next PC logic consists of reading the 

BTB and the BPB for each PC, and feeding the read information to the priority logic to select 

the next PC. Figure 5-2 shows the impact of fetch width on the propagation delay of the next 

PC logic.  
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Figure 5-2: The next PC logic delay for varying fetch widths. Sizes of the BTB and the BPB are 

fixed at 64KB and 4KB, respectively. 
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The timing critical path of the Fetch-2 stage consists of instruction alignment, extracting the 

fetch block, pre-decoding the instructions for control instructions, and generating the 

recovery signal for the Fetch-1 stage. All of these steps are serialized, with the fetch block 

extraction logic (which depends on the fetch width) consuming most of the propagation delay 

in this stage.  Figure 5-3 shows the impact of fetch width on the propagation delay of the 

Fetch-2 stage. 
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Figure 5-3: The Fetch-2 stage delay with varying fetch width. 
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The instruction decode logic, like other RISC ISAs, is straightforward to implement. The 

delay is noticeably less than other stages. Figure 5-4 shows the impact of decode width on 

the propagation delay of the instruction decode logic.  
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Figure 5-4: The Decode stage delay with varying decoder width. 

 

The propagation delay of the Rename Stage is dictated by the latency of reading the multi-

ported RMT and the bypass multiplexors following the RMT. The RMT is implemented as 

SRAM, with the number of read and writes ports being multiples of the rename width, shown 

in Table 5-1.  
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Table 5-1: RMT read and write ports for varying rename width. 

Rename 
Width 

RMT read 
ports 

RMT write 
ports 

1 2 1 
2 4 2 
3 6 3 
4 8 4 
5 10 5 
6 12 6 
7 14 7 
8 16 8 

 

With increasing rename width, the complexity of the SRAM and the subsequent bypass 

multiplexors increases, leading to more propagation delay. Figure 5-4 shows the impact of 

the rename width on the register rename logic. Although the bit width of the RMT changes 

with varying physical register file size, its impact on the rename delay is marginal. 
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Figure 5-5: The Rename stage delay with varying rename width. 
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The dispatch logic involves writing the renamed instructions into the Active List, the LQ (for 

loads), the SQ (for stores), and the Issue Queue. The Active List and the LQ/SQ are FIFOs, 

unlike the SRAM in the issue queue. Hence, writing the renamed instructions to the issue 

queue forms the timing critical path in the dispatch stage. Figure 5-6 shows the delay of the 

Dispatch stage for varying issue queue size and for different dispatch width. As evident from 

the figure, increasing the dispatch width has more impact on the delay than increasing the 

issue queue size, attributing to the increasing number of SRAM write ports with the 

increasing dispatch width. 
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Figure 5-6: The Dispatch delay with varying Issue Queue size, and for different dispatch 

widths. 
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Figure 5-7 shows the delay of the wake-up logic for varying the issue queue size and the 

issue width. The delay of the wakeup logic increases more significantly with increasing issue 

width, attributing to two factors. Increasing issue width increases the number of parallel 

comparators and the fan in of the following OR gate. Moreover, increasing issue width 

increases the number of issue queue read ports (implemented as CAM). 
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Figure 5-7: The Wakeup logic delay for varying issue queue size and issue width. 

 

The logic complexity of the select logic increases with increasing issue queue size and issue 

width. Increasing the issue queue size increases either the number of levels in the tree-based 
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selection logic or the sizes of the multiplexors at each level. Increasing the issue width leads 

to delayed generation of the request vector at each level, as the selection of an instruction 

depends upon all the previous selections. Figure 5-8 shows the select logic delay as the issue 

queue size and the issue width are varied. 
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Figure 5-8: The Select logic delay for varying issue queue size and issue width. 

 

The propagation delay of the Register Read stage is dictated by the latency of reading the 

multi-ported PRF and the bypass multiplexors following the PRF. The PRF is implemented 

as an SRAM, with the number of read and writes ports being a multiple of the issue width, as 

shown in Table 5-2.  

 



 71 

Table 5-2: Register File read and write ports for varying issue width. 

Issue 
Width 

PRF read 
ports 

PRF write 
ports 

1 2 1 
2 4 2 
3 6 3 
4 8 4 
5 10 5 
6 12 6 
7 14 7 
8 16 8 

 

With increasing issue width, the complexity of the SRAM and the following bypass 

multiplexors increases, leading to more propagation delay. Figure 5-9 shows the impact of 

the PRF size and the issue width on the register read logic. 
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Figure 5-9: The Register Read stage logic delay for varying PRF size and issue width. 
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Figure 5-10 shows the propagation delay of the LSU with varying LQ and SQ sizes. The LQ 

is implemented as a pair of CAM and RAM, and so is the SQ. The CAM holds the memory 

addresses and the RAM holds the data and other control information. With increasing the 

sizes of the LQ and SQ, the sizes of CAMs and RAMs increase, which fall on the timing 

critical path of the disambiguation logic. 
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Figure 5-10: The Load-Store Queue logic delay for varying load and store queue sizes. 
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Table 5-3 shows the delay of all the four types of functional units used in our design. As 

expected, the complex ALU (implementing multiply and divide operations) has the largest 

latency.   

Table 5-3: Delay of different functional units (un-pipelined). 

ALU Type Data Width 
(bits) 

Total 
Delay (ns) 

Simple ALU 32 0.45 

Complex ALU 32 1.15 

Ctrl ALU 32 0.45 
AGEN 32 0.44 
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5.2 Physical Design 

Figure 5-11 shows the physical design of a 4-way superscalar processor, with the same 

configuration mentioned in Table 2-1. The physical design is very preliminary, and can be 

further improved for better timing. Although cursory, the physical design shows the strength 

of our RTL model. The RTL model can be implemented using a standard ASIC flow for the 

detailed study of low level costs associated with the microprocessor design. Table 5-4 shows 

the physical design data for this specific implementation. 

Table 5-4: Design data for 4-way superscalar processor physical implementation. 

Technology 45nm 
Die area (excluding L1 caches) 2.6 mm2 
Clock frequency  500MHz 
Number of ports 324 
Number of sequential elements 15,585 
Power consumption (only standard cells) 118mW 
The worst timing-critical path Next-PC logic (Fig. 2.7) 
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Figure 5-11. Placed-and-routed 4-way superscalar processor, excluding L1 I- and D-caches.  
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