
ABSTRACT

CHOUDHARY, NIKET KUMAR. A Synthesizable HDL Model for Out-of-Order
Superscalar Processors. (Under the direction of Associate Professor Eric Rotenberg).

Many contemporary servers, personal and laptop computers, and even cell phones are

powered by high-performance superscalar processors. In the past, conventional

microarchitecture and technology scaling has afforded leaps in their performance and

functionality. Today, conventional microarchitecture and technology scaling are both

yielding lower returns with increasing costs. Therefore, any microarchitecture level decision

to increase performance needs to be critically analyzed from a technology standpoint. To

address this critical need, we have developed a register transfer level (RTL) model of a

superscalar microarchitecture with similar complexity of a current generation processor. The

RTL model is written in Verilog and is fully synthesizable. The model can be implemented

in different technology nodes using a well established ASIC design flow to provide high

fidelity estimation of propagation delay, power consumption, area, and other technology

related costs. The RTL model is supplemented with a register file compiler to estimate the

costs of multi-ported memory structures which are extensively used in a superscalar

microarchitecture. The RTL model is also tightly integrated with a C++ functional simulator

to assist and accelerate verification.

 A Synthesizable HDL Model for Out-of-Order Superscalar Processors

by
Niket Kumar Choudhary

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the degree of

Master of Science

Computer Engineering

Raleigh, North Carolina

2009

APPROVED BY:

_______________________________ ______________________________
Dr. Eric Rotenberg Dr. Gregory Byrd
Committee Chair

Dr. W. Rhett Davis

ii

DEDICATION

to my parents…

iii

BIOGRAPHY

Niket Kumar Choudhary was born in November 1982 in Patna, India. He received the

bachelor degree in Information & Communication Technology from Dhirubhai Ambani

Institute of Information and communication Technology (DAIICT), India in May, 2005.

During his undergraduate he worked as an intern at Cadence Design System, Bangalore in

the logic synthesis group. After graduating from DAIICT, he held an engineering position at

ARM Private Ltd, Bangalore (Aug, 2005-Jul, 2007) in the processor division. At ARM, he

worked on low power processor design and characterization of ARM processors for

performance, power and area on different process technologies.

Currently, Niket is a graduate student in Computer Engineering at North Carolina State

University (NCSU), under the guidance of Dr. Eric Rotenberg. His research interests broadly

lie in Computer Architecture and VLSI Design. He is also affiliated with Center for Efficient,

Scalable and Reliable Computing (CESR) at NCSU.

iv

ACKNOWLEDGMENTS

Foremost, I would like to thank my family for supporting me and encouraging me to obtain a

good education throughout my life. I want to express my gratitude to Dr. Amit Bhatt, my

undergraduate advisor, for inspiring me to pursue higher studies. Without his continuous

encouragement, my journey to NCSU would not have been possible.

It has been a privilege to work with Dr. Eric Rotenberg, my advisor and a wonderful

researcher. He has supported me in numerous ways, and has helped me throughout the

masters program. It has been a rich learning experience working with him in the last two

years.

I would like to thank my CESR and NCSU colleagues for giving their input and feedback to

my thesis work: Hashem Hashemi, Abhishek Dhanotia, Shivam Priyadarshi, Muawya Al-

Otoom, Elliott Forbes, Sandeep Navada, Salil Wadhavkar, Mark Dechene, Tanmay Shah,

Jayneel Gandhi, Siddharth Chhabra, and Devesh Tiwari.

At last, I would like to thank my wife, Tulika, who slipped into my life during the last few

months of my MS.

This thesis was supported in part by NSF grant No. CCF-0811707, Intel, and IBM. Any

opinions, findings, and conclusions or recommendations expressed herein are those of the

author and do not necessarily reflect the views of the National Science Foundation.

v

TABLE OF CONTENTS

LIST OF TABLES... vi

LIST OF FIGURES .. vii

CHAPTER 1 ... 1
Introduction... 1

1.1 Overview... 1
1.2 Contributions... 8
1.3 Organization.. 8
1.4 Related Work .. 9

CHAPTER 2 ... 12
Design of a Superscalar Out-of-Order Processor.. 12

2.1 Methodology... 17
2.2 Pipeline Stages of a Superscalar Processor... 20

2.2.1 Instruction Fetch .. 22
2.2.2 Instruction Decode ... 28
2.2.3 Instruction Renaming... 29
2.2.4 Dispatch ... 32
2.2.5 Issue ... 33
2.2.6 Register Read ... 38
2.2.7 Execute... 39
2.2.8 Load/Store Unit (LSU) .. 42
2.2.9 Writeback... 44
2.2.10 Retire.. 46
2.2.11 Branch Misprediction Recovery .. 47

CHAPTER 3 ... 50
Register File Compiler.. 50

CHAPTER 4 ... 56
Simulation Methodology .. 56

CHAPTER 5 ... 62
Results and Discussions.. 62

5.1 Microarchitectural Complexity Study... 64
5.2 Physical Design... 74

References... 76

vi

LIST OF TABLES

Table 2-1: Microarchitectural configuration of the synthesizable-verilog model. 17
Table 2-2: EDA tools used for the design... 20
Table 3-1: List of the pre-designed components... 52
Table 3-2: EDA tools used for the design... 52
Table 4-1: VPIs used in the RTL model. .. 58
Table 5-1: RMT read and write ports for varying rename width.. 67
Table 5-2: Register File read and write ports for varying issue width.................................... 71
Table 5-3: Delay of different functional units (un-pipelined). ... 73
Table 5-4: Design data for 4-way superscalar processor physical implementation................ 74

vii

LIST OF FIGURES

Figure 1-1: Out-of-order superscalar processing. ... 2
Figure 1-2: Impact of technology scaling on the Pentium family of Intel Processors.............. 4
Figure 1-3: Canonical pipeline stages of a superscalar processor. ... 7
Figure 1-4: An un-synthesizable construct from the IVM design .. 9
Figure 2-1: Control-flow in a program. .. 14
Figure 2-2: Data dependence in the dynamic instruction stream.. 15
Figure 2-3: Implementation flow of the superscalar processor. ... 18
Figure 2-4: (a) Example of accessing two adjacent rows of a memory and (b) its interleaved
implementation. .. 19
Figure 2-5: High level block diagram of a superscalar processor .. 21
Figure 2-6: Fetch-1 Stage, highlighting the next-PC logic. .. 23
Figure 2-7: Timing critical logic to generate the next PC.. .. 26
Figure 2-8: SimpleScalar ISA format. .. 29
Figure 2-9: Register renaming logic.. ... 31
Figure 2-10: Dispatched instructions inserted in the back-end resources............................... 33
Figure 2-11: Wakeup logic in the Issue stage... 35
Figure 2-12: Select Logic in the Issue stage. .. 37
Figure 2-13: Register read stage ... 39
Figure 2-14: Execute stage with four functional units.. 41
Figure 2-15: Load hit path in the Load/Store Unit. .. 43
Figure 2-16: Writeback registers and bypass network.. 45
Figure 2-17: Retirement operation of an instruction... 47
Figure 2-18: Checkpointing logic in the Rename stage.. 49
Figure 3-1: Layouts of four different bitcell configurations... 53
Figure 3-2: Critical path simulation for measuring the read access time and energy
consumption.. 55
Figure 4-1: Verilog and C++ co-simulation.. ... 57
Figure 4-2: A kernel inside a micro-benchmark, stressing the register data-flow logic......... 60
Figure 4-3: Design bug distribution over 4 categories.. 61
Figure 5-1: Delay of wakeup-select logic for different issue window sizes........................... 63
Figure 5-2: The next PC logic delay for varying fetch widths.. ... 64
Figure 5-3: The Fetch-2 stage delay with varying fetch width. .. 65
Figure 5-4: The Decode stage delay with varying decoder width. ... 66
Figure 5-5: The Rename stage delay with varying rename width. ... 67
Figure 5-6: The Dispatch delay with varying Issue Queue size, and for different dispatch
widths.. 68
Figure 5-7: The Wakeup logic delay for varying issue queue size and issue width. 69
Figure 5-8: The Select logic delay for varying issue queue size and issue width. 70
Figure 5-9: The Register Read stage logic delay for varying PRF size and issue width. 71
Figure 5-10: The Load-Store Queue logic delay for varying load and store queue sizes....... 72

viii

Figure 5-11. Placed-and-routed 4-way superscalar processor, excluding L1 I- and D-caches.
... 75

 1

CHAPTER 1

Introduction

1.1 Overview

Superscalar processors are at the heart of many high-performance computing platforms,

either in the uniprocessor form or as processing cores in recently evolved chip

multiprocessors. The superscalar microarchitecture exploits instruction-level parallelism

(ILP) available in a program, by executing multiple instructions in parallel. To extract ILP,

the superscalar microarchitecture forms a dynamic instruction window, and its instruction

scheduler selects independent instructions out of the window for execution in a cycle. The

dynamic instruction window is a segment of the dynamic instruction stream, that the

processor can work upon concurrently. For issuing more than one instruction in a cycle, the

scheduler goes beyond the sequential program order to find independent instructions,

bringing out-of-order nature into the execution. In the dynamic instruction stream shown in

Figure 1-1, there are data dependencies among the underlined instructions, and they need to

be executed serially for a correct program. But the rest of the instructions in the window are

independent, and can be issued for execution in parallel. The maximum number of issued

instructions depends on the available functional units. Overlapped execution of multiple

instructions in parallel leads to higher instructions per cycle (IPC), one key metric for the

processor performance.

 2

Figure 1-1: Out-of-order superscalar processing.

The amount of available ILP varies depending on the application, input set, and more. It is

evident from Figure 1-1, that a larger window and uninterrupted instruction stream are

required to achieve higher IPC. Achieving a larger window and an uninterrupted instruction

stream requires complex hardware techniques leading to increased logic complexity. The

increased logic complexity has a direct impact on the clock frequency, the second key metric

 3

for processor performance. Pipelining, coupled with better circuits, is used to manage

increased hardware complexity and still achieve a high clock frequency for a given process

technology. At the same time, deepening the pipeline may negatively impact IPC because of

higher branch misprediction penalties. In practice, both IPC and clock frequency are strongly

intertwined, and for a good design, it is important to achieve a good balance between IPC and

clock frequency boosting mechanisms.

In the past, processors have experienced exponential growth in performance, owing to

innovative microarchitecture and technology scaling. Technology scaling has been the

performance growth enabler, providing abundant transistors to add more hardware for

complex microarchitectures, and still leaving room to optimize clock frequency because of

faster transistors. Figure 1-2 shows clock frequency and transistor integration growth over a

decade of technology scaling for the Pentium family of Intel processors [1]. With easy to

extract ILP and the bolstering of process technology, designers were able to scale the

instruction window and pipeline depth to yield more performance, while still remaining

within desirable area and power budgets.

 4

(Transistor Count) vs (Technology Scaling)

0
20
40
60
80

100
120
140
160
180

1993 (0.8um)

1994 (0.6um)

1996 (0.35um)

1997 (0.25um)

2000 (0.18um)

2002 (0.13um)

2005 (0.09um)

Tr
an

si
st

or
 C

ou
nt

 (M
ill

io
ns

)

(a)

(Transistor Count) vs (Technology Scaling)

0
20
40
60
80

100
120
140
160
180

1993 (0.8um)

1994 (0.6um)

1996 (0.35um)

1997 (0.25um)

2000 (0.18um)

2002 (0.13um)

2005 (0.09um)

Tr
an

si
st

or
 C

ou
nt

 (M
ill

io
ns

)

(b)

Figure 1-2: Impact of technology scaling on the Pentium family of Intel Processors (a)

Transistor integration growth (b) and clock frequency scaling. Clock frequency scaling also

owes to the deepening of the pipeline over the generations of Pentium processors.

 5

But recently, the performance gained by conventional microarchitecture and technology

scaling has hit a wall. Forming a larger instruction window to extract additional ILP is

incurring much higher frequency, power, and area costs [2]. Technology scaling trends are

compounding the problem: transistor and wire speed and/or power are not scaling as well as

in the past. As a result, any microarchitecture level decision to increase performance needs

to be critically analyzed from a technology standpoint. Technology constraint-aware design

necessitates a tool chain that can model all of the design costs of a superscalar

microarchitecture or can evaluate the cost of any technique added to the baseline

microarchitecture to enhance performance. These costs are clock frequency, power

consumption, and die area, but may even include design effort, hard or soft error

vulnerability, yield, etc. Cycle based simulators, predominantly used in academic research

currently, fail to capture the detailed costs of the design.

To bridge the gap between high level microarchitecture simulation and the associated low

level costs to implement the microarchitecture, we have developed a register transfer level

(RTL) model of a superscalar microarchitecture with similar complexity of a current

generation processor. The RTL model is designed in Verilog, and is fully synthesizable. The

model can be implemented in different technology nodes using a well established ASIC

design flow [7] to provide high fidelity estimation of clock frequency, power consumption,

area, and other technology related metrics. In its current form, the RTL model captures the

complexity of canonical stages in a superscalar processor in detail, and it is parameterized by

 6

the number of pipeline ways and the sizes of Random Access Memories (RAMs), Content

Address Memories (CAMs), and other specialized memories within the stage. As part of

future work, the RTL model needs to be more rigorously verified, and needs to be extended

for sub-pipelining within canonical stages. The RTL model is supplemented with a register

file compiler to estimate the cost of multi-ported RAMs and First-In First-Out (FIFO)

structures which are extensively used in a superscalar microarchitecture. The RTL model is

also tightly integrated with a high level functional simulator (written in C++) through the

Verilog Procedural Interface (VPI), providing a Verilog and C++ co-simulation environment.

VPI allows the RTL model to invoke the functional simulator, and then exchange

information with it [35] [36]. The RTL model leverages the functional simulator to load a

compiled binary, giving the Verilog simulator the flexibility to simulate any standard

application benchmark. Moreover, the co-simulation environment can also be used for

functional verification by cross-comparing retired instruction results.

The RTL model is the forerunner and basis of a bigger research project, FabScalar [6], which

our group is currently working on. FabScalar, a novel toolset, can be used to compose

synthesizable Verilog model of arbitrary superscalar processors. FabScalar is a first step

toward the practical development of heterogeneous multi-core systems [3] [4] [5] and

application-specific superscalar processors [33]. It exploits the fact that different superscalar

processors have in common a canonical pipeline, shown in Figure 1-3, and differ primarily in

the complexity and sub-pipelining within each canonical pipeline stage.

 7

Figure 1-3: Canonical pipeline stages of a superscalar processor.

At the same time, it borrows the notion of a standard cell library for ASIC design where the

standard cell library provides many flavors of simple gates, MSI components (e.g., MUXes,

decoders), and even LSI/VLSI components (e.g., microprocessor cores). The FabScalar’s

standard superscalar library (SSL) will contain different flavors of canonical pipeline stages

representing different complexity and can be used by an automated tool to assemble a

superscalar processor based on microarchitecture constraints and low level cost constraints.

More details about the FabScalar project can be found in [6].

 8

1.2 Contributions

This thesis makes the following key contributions and co-contributions:

• Design and implementation of a fully synthesizable and semi-parameterized

superscalar processor in Verilog RTL. The model provides the foundation from which

FabScalar’s SSL [6] will ultimately be derived.

• Design of a register file compiler to estimate the access time, power consumption,

and area of multi-ported RAMs and FIFO structures. These structures are very

specialized to the superscalar microarchitecture. The author has initially advised and

collaborated with fellow student Tanmay Shah on this co-contribution.

• Design and implementation of a Verilog and C++ co-simulation environment to

enable running any standard performance evaluation benchmarks on the RTL model

and accelerate debugging the RTL model.

1.3 Organization

Chapter 2 describes the design and implementation of a four-wide eleven-stage-deep

superscalar processor, forming the initial basis of FabScalar. Designs of individual canonical

pipeline stages are discussed in detail. Chapter 3 summarizes the design of the register file

compiler specialized to generate multi-ported SRAMs, co-developed with Tanmay Shah.

Chapter 4 describes the Verilog and C++ co-simulation environment and how it facilitates a

high fidelity verification of the processor design. Chapter 5 discusses logic synthesis and

place&route results of different pipeline stages and the processor as a whole.

 9

1.4 Related Work

The Illinois Verilog Model (IVM) [12] is closest to our Verilog model. IVM is a superscalar

out-of-order processor designed in Verilog-95 at the University of Illinois by S.J. Patel’s

group for fault-tolerance research. IVM has twelve pipeline stages and implements a subset

of the Alpha ISA. Detailed IVM microarchitecture features and parameters can be found in

[12]. The Verilog model is not fully synthesizable because some parts of the design contains

un-synthesizable behavioral code, for instance, while/for loops not evaluating to a constant in

missqueue.v, shown in Figure 1-4.

Figure 1-4: An un-synthesizable construct from the IVM design

Even after fixing un-synthesizable constructs, the IVM synthesizes at a very low frequency

attributing to its unoptimized design or coding style. Moreover, if IVM is to be used as a

cycle-accurate simulator, it does not provide any support to run SPEC [13] or any standard

benchmark suite, which is necessary to evaluate any new microarchitecture technique.

Sun’s OpenSparc T1 [14] is an open source Verilog model of UltraSparc T1 and it

implements the 64-bit SPARC V9 architecture. OpenSparc T1 is a CMP and has eight

homogeneous processors on the same die. Each processor is an in-order, six-stage and scalar

pipeline, and has hardware support to run four threads.

i=0;

while ((i<QUEUE_SIZE) && !(q_valid_f[i] && q_done_f[i] && !q_type_f[i]))
 i=i+1;

 10

OpenRISC 1200 (OR1200) is a freely available Verilog model of processor available from

OpenCores [15], and it implements the 32-bit ORBIS32 architecture. OR1200 is a five-stage,

in-order, and scalar pipeline.

Although, OpenSparc T1 and OR1200 are freely available Verilog model of processors, they

do not represent the complexity of an out-of-order and superscalar microarchitecture.

In the past, several analytical methods to estimate design costs have been proposed.

Palacharla et al. [32] analyzed the complexity of key pipeline stages in a superscalar

processor, and propose first-order analytical models for estimating their delays. The authors

use SPICE simulation for quantifying the delay of timing critical paths in each pipeline stage.

Brooks et al proposed Wattch [40], a framework to analyze and optimize power dissipation at

the architecture level. Cacti is an analytical tool for modeling the access time, dynamic

power, leakage power, and area of caches and other memories [41]. Bazeghi et al. [42]

proposed an analytical approach to measure and estimate processor design effort. Although,

analytical models or tools based on analytical models might give good early estimation of the

associated design costs, the purpose of our RTL model and FabScalar is to provide high

fidelity design costs, which become necessary as performance scaling is increasingly costly

and technology dependent.

Kumar, Tullsen, and Jouppi [3] [4] and Strozek and Brooks [43] have done groundbreaking

research on architectural exploration for heterogeneous CMPs. Strozek and Brooks’ work on

the high level synthesis of very simple cores for embedded systems [43] is more directly

related to FabScalar itself. The Program-In-Chip-Out (PICO) framework out of HP labs [44]

is closely related in that it customizes VLIW cores and non-programmable accelerators for

 11

embedded applications. Similarly, Tensilica’s Xtensa processor generator customizes data

path and VLIW cores for embedded applications [45]. FabScalar is distinct in that it targets

complex superscalar processors and this is evident in the novel composable SSL.

 12

CHAPTER 2

Design of a Superscalar Out-of-Order Processor

The execution time of an application for a given input set and a given ISA can be defined as:

Execution Time = (Instruction Count x Cycle Time)/(Instructions Per Cycle) [39]

where instruction count is the total number of instructions to be executed for the given

application and input set, cycle time is the clock period at which the processor can run, and

instructions per cycle is the average number of instructions executed each cycle. Better

algorithms at the application level and better compiler optimizations may reduce the

instruction count. For a technology node, deeper pipelining and better circuits are used to

reduce cycle time, i.e., increase clock frequency. Complex hardware techniques are

employed in a processor to increase instruction per cycle (IPC).

A superscalar microarchitecture attempts to achieve higher IPC by processing more than one

instruction (also referred to as superscalar width) in each pipeline stage, as opposed to a

scalar microarchitecture, which processes only a single instruction in each stage. Moreover,

to exploit concurrency in the program, instructions are executed out-of-order. With out-of-

order execution, the dynamic instruction stream is no longer executed strictly in the original

program order, but based on the availability of source operands. Increasing the width of each

stage and executing instructions out-of-order lead to increased logic complexity, which

directly impacts clock frequency. To accommodate the increased complexity and/or to

 13

increase clock frequency further, the microarchitecture employs pipelining. The number of

pipeline stages from fetching an instruction to retiring it, is referred to as the depth of the

microarchitecture. All else equal the deeper the pipeline, the less amount of logic there is in a

pipeline stage. The pipeline structure in a superscalar processor is logically partitioned into a

front-end and back-end, where the front-end processes the instruction stream in the original

program order, and the back-end processes instructions in an out-of-order way to extract ILP.

Although instructions execute out of program order, they update the processor state in the

original program order, to preserve the sequential execution contract between the program

binary and hardware [28]. A conventional out-of-order superscalar uses a FIFO-like structure

to reconstruct the program order, and the completed instructions retire (also referred to as

graduate or commit) from the FIFO to update the architectural state of the machine. In some

microarchitectures, the size of this FIFO restricts the maximum number of instructions the

processor can concurrently work upon, also referred to as the instruction window. To extract

peak parallelism of the processor, it is necessary to keep the instruction window full all of the

time.

The design of a superscalar microarchitecture tries to find the right balance between IPC and

clock frequency to execute the instruction stream as fast as possible. The IPC of a superscalar

processor is fundamentally limited by control dependencies and data dependencies within the

instruction stream, and the clock frequency is limited by the underlying technology. Control

dependencies may force the program to change its course of execution, leading to complete

or partial flushing of the instruction window [57]. As shown in Figure 2-1, I4 is a branch

 14

instruction and based on its outcome (taken or not-taken), either I40 or I5 would be the next

instruction to execute. The outcome of a branch instruction is unknown until it executes, and

the deeper the pipeline the longer it takes to resolve a branch instruction. To alleviate the

impact of control dependencies on performance, the processor employs a dynamic branch

predictor to speculate on the outcome of the branch very early in the pipeline, and

speculatively fetch and execute the predicted path accordingly. A dynamic branch predictor

predicts the outcome of a specific branch based on its own history and possibly its correlation

with the outcome of previous branches [60] [61] [62].

Figure 2-1: Control-flow in a program.

 15

Data dependencies among instructions force their serial execution, leading to decreased

parallelism to exploit [58] [59]. In a dynamic instruction stream, data dependencies among

instructions occur through either architectural registers or memory, as shown in Figure 2-2.

The solid arrows show dependencies propagated through architectural registers and the

dashed arrow shows a dependency propagated through a memory location. A data

dependency arises from the fact that an instruction’s source operand depends on the outcome

of another instruction, leading to a producer and consumer relation between the instructions.

In Figure 2-2, I2 cannot execute until I0 and I1 have executed; similarly, I8 cannot execute

until I0, I1, I2, and I7 have executed. The dependencies propagated through memory are

detected late in the pipeline, as the addresses of memory instructions are not known until they

execute.

Figure 2-2: Data dependence in the dynamic instruction stream.

 16

To mitigate the impact of data dependencies on the IPC, a superscalar microarchitecture uses

complex hardware techniques, for example, speculative wakeup of consumer instructions

[63] and memory dependence predictors [64].

A superscalar microarchitecture achieves higher clock frequency by pipelining and better

process technology [65]. Over the past decade, technology scaling drastically increased the

transistor speed and the number of transistors that can be integrated on a single die, by

scaling device dimension, threshold voltage, gate oxide thickness, and supply voltage [37]

[38]. Moreover, better circuits and logic families have evolved to supplement the

performance growth by technology scaling.

As part of this thesis, we design and implement the canonical pipeline stages of a superscalar

microarchitecture, found in most of the commercial superscalar based designs [23] [24].

Although, the RTL model of the individual pipeline stage is parameterized by the width of

the stage and the sizes of specialized memory structures within the stage, we choose a

specific microarchitecture configuration as a starting point to understand the design

complexity involved. Table 2-1 shows the chosen microarchitecture configuration.

 17

Table 2-1: Microarchitectural configuration of the synthesizable-verilog model.

Stage Description
Fetch 4-wide, 512-entry BTB, 128-entry bimodal branch predictor, 8-entry

RAS, 16-instruction fetch buffer
Decode 4-wide, ISA = SimpleScalar (MIPS-like)
Rename 4-wide, 32-entry rename map table with 8 read and 4 write ports, 4

shadow map tables (checkpoints)
Dispatch 4-wide
Issue 4-wide issue, 32-entry issue queue
Register
Read

4-wide, 128-entry physical register file with 8 read ports and 4 write ports

Execute 1 simple ALU, 1 complex ALU, 1 branch ALU, 1 AGEN + 1 port to
load-store unit

Load-Store
Unit

16-entry load queue, 16-entry store queue

Writeback 4-wide
Retire 4-wide, 128-entry active list with 4 read and 4 write ports, arch. map

table with 4 read and 4 write ports

The rest of the chapter will discuss in detail the design and implementation of a 4-wide out-

of-order superscalar microarchitecture.

2.1 Methodology

The designed superscalar processor implements the SimpleScalar ISA [21], called PISA (for

pseudo-ISA), a close derivative of the MIPS architecture [22]. PISA is 32-bit RISC

architecture, although the instructions are 64 bits wide.

The designs of individual stages have evolved from reading papers in the literature and by

using the superscalar knowledge expertise within our research group. Figure 2-3 shows the

implementation flow used throughout the design process.

 18

Design the pipeline
stage

Develop verilog
model of the pipeline

stage

Verify the verilog
model

Synthesize the
verilog model

Figure 2-3: Implementation flow of the superscalar processor.

A mix of the Verilog-95 and Verilog-2000 hardware description language (HDL) is used for

designing the hardware of each pipeline stage. The Verilog is synthesizable and we built the

Verilog model from scratch, instead of using existing models from IVM or OpenRISC. The

microarchitecture extensively uses specialized multi-ported RAMs, CAMs and FIFOs. The

Verilog modules containing memory elements are separated from the random logic in a

modular way, so that they can be replaced by custom macros during logic synthesis or the

rest of the implementation flow. Memories are modeled in RTL for the functional simulation,

 19

however. In the case of a memory structure requiring parallel access to multiple contiguous

rows in the same cycle, it is implemented using interleaved banks to obviate the need of

multiple read or write ports, as shown in Figure 2-4.

Figure 2-4: (a) Example of accessing two adjacent rows of a memory and (b) its interleaved

implementation.

Table 2-2 shows the industry-standard EDA tools used for functional simulation, logic

synthesis, and placement and routing. During the full cycle of development, we use a 45nm

standard cell library [25] for the logic synthesis and the basic placement and routing. For this

standard cell library, we set a target of 1GHz clock frequency for the design with the chosen

microarchitecture configuration. Individual pipeline stages went through multiple design

iterations to achieve the target frequency. The iterations primarily involved restructuring the

logic, or in some cases changing the entire pipeline stage design.

 20

Table 2-2: EDA tools used for the design.

Stage EDA Tool/Tools Used
Functional Verification Cadence NC-Verilog version: 06.20-s006

Logic Synthesis Cadence RTL Compiler version: 07.10-s021_1, Synopsys Design
Compiler version: X-2005.09-SP3

Place & Route Cadence SoC Encounter version: 7.1

Describing intermediate design iterations is beyond the scope of this thesis, and we primarily

document the final design employed for each pipeline stage.

2.2 Pipeline Stages of a Superscalar Processor

Figures 2-5 shows the high level block diagram of a superscalar processor. The individual

pipeline stages are discussed in detail in later sections. The superscalar microarchitecture is

logically partitioned into a front-end and a back-end (shown with a dashed line in Figure 2-

5). The key features of the microarchitecture are

• Separate level-one (L1) caches for storing recently and frequently used program

instructions and data.

• Dynamic branch predictor to speculate on the next instruction cache line to be

fetched.

• Physical register file for register renaming and storing both committed and non-

committed (speculative) instruction results.

• Out-of-order execution of the instruction stream from the issue queue.

 21

L1 Instruction
Cache BTB BPB RAS

CTI
Queue Pre-Decode Inst

Filtering

Inst Queue

Spec
Freelist

Dependence
Check Logic RMT Check-pointing/Branch

Mask Generation

Active List Issue Queue –
Wakeup/Select

Issue Queue -
Freelist

Load/Store
Queue

L1 Data
Cache

Decode

Dispatch

AMT Register Read

Execute

Write Back

FETCH-1

FETCH-2

FETCH-3

DECODE

RENAME

DISPATCH

ISSUE

REGISTER
READ

EXECUTE

WRITE BACK

LSQ

RETIRE

Figure 2-5: High level block diagram of a superscalar processor.

 22

• Store and load queues for resolving within-window memory dependencies and for

retiring stores to architectural memory state in program order.

• Active list for the in-order update of the processor’s architectural state.

• Checkpoint-based mechanism for fast recovery from branch mispredictions.

2.2.1 Instruction Fetch

Instruction fetch is responsible for providing a continuous instruction stream to the rest of the

pipeline. The program counter (PC) (or instruction pointer) in the Fetch-1 stage keeps track

of the program address of the current or next instruction to be executed. Every cycle, the PC

is incremented sequentially, until there is a control instruction in the instruction stream.

Control instructions, for example, a jump direct/indirect, call direct/indirect, return, or

conditional branch (if the direction of the branch is taken) change the PC non-sequentially. In

a program, conditional branches tend to occur more frequently than other control

instructions.

In our design, the fetch stage achieves a fetch bandwidth of four by employing a small but

fast L1 instruction cache and a dynamic branch predictor to speculate on the outcome of a

branch instruction in one cycle. The branch prediction mechanism is composed of three

major hardware structures, along with random logic: branch target buffer (BTB), branch

prediction buffer (BPB), and return address stack (RAS). The BTB records the PC of the

control instruction, its type, and the associated target address. On an access to the BTB, it

identifies if a PC is a control instruction and what its type is. The BTB is implemented as 4-

 23

way interleaved SRAM for a fetch width of four, eliminating the need for a multiported

SRAM. The BPB is a simple bi-modal branch predictor and is accessed using the low order

bits of the PC. For a branch instruction’s PC, the BPB predicts the direction of the branch

(taken or not-taken). A call instruction has an associated return address, the sequential

address after the call, and the RAS is used to predict this return address. The BTB has poor

target address prediction accuracy for return instructions, due to the same function or

subroutine being called from multiple call sites in a program.

Figure 2-6: Fetch-1 Stage, highlighting the next-PC logic.

 24

The instruction cache module in the RTL model is 2-way interleaved to obviate the need for

a dual-port SRAM, guaranteeing two contiguous 4-instruction cache lines in a cycle, from

which 4 sequential instructions can be extracted from any unaligned starting PC. One bank

contains cache lines with even addresses and the other bank contains cache lines with odd

addresses. The instruction cache can provide two adjacent aligned instruction blocks every

cycle, if there is no cache miss. The BTB and BPB are accessed using four consecutive PCs,

as four instructions are fetched every cycle, to feed the random logic to generate the PC for

the next cycle (next PC logic in Figure 2-6). If the BTB indentifies a PC as the address of a

control instruction, the target address for the next PC is obtained from either the BTB itself

(not return) or RAS (return). Moreover, on every call instruction, the next sequential PC is

pushed onto the RAS for predicting the target address of the corresponding return instruction

in the future. In the case of multiple control instructions in the fetch block (composed of four

instructions in this implementation), the target address of the first taken branch is given

priority for the next PC. On a misprediction, the next PC logic recovers the correct target

address by the later pipeline stages. We will discuss control mispredictions in detail, later in

the chapter.

From a cycle time standpoint, the Fetch-1 stage has two important timing paths:

• Accessing the interleaved L1 instruction cache for reading two aligned cache blocks.

The complexity of accessing the cache would increase with increasing the size and

the set-associativity of the cache.

• Generating the next PC using information from the BTB, BPB, and RAS for a group

of instructions being fetched. The complexity of the next PC logic would increase

 25

with a larger BTB, a more complicated or larger branch predictor [27], or wider fetch

bandwidth. Moreover, it is important to generate the next PC in one cycle to avoid

losing cycles on every predicted-taken branch, unless a sophisticated and complicated

fetch mechanism is employed, for example, Seznec’s Multiple-Block Ahead Branch

Predictors [26]. Figure 2-7 shows the timing critical logic to generate the next PC.

 26

B
TB

-3 H
it

P
rediction-3

B
TB

-3 Target A
ddr

B
TB

-3 C
trl Type

B
TB

-2 H
it

P
rediction-2

B
TB

-2 Target A
ddr

B
TB

-2 C
trl Type

B
TB

-1 H
it

P
rediction-1

B
TB

-1 Target A
ddr

B
TB

-1 C
trl Type

B
TB

-0 H
it

P
rediction-0

B
TB

-0 Target A
ddr

B
TB

-0 C
trl Type

(Fetch-2: R
ecover)

(W
riteback: R

ecover)

B
TB

-0
Target A

ddr

R
A

S
 A

ddr

B
TB

-1
Target A

ddr

R
A

S
 A

ddr

B
TB

-2
Target A

ddr

R
A

S
 A

ddr

B
TB

-3
Target A

ddr

R
A

S
 A

ddr

Fetch-2:
Target A

ddr

W
riteback:

Target A
ddr

P
C

+32

S
election bits

Figure 2-7: Timing critical logic to generate the next PC. In case of return type control

instruction, the target address (RAS Addr) comes from RAS.

 27

The Fetch-2 stage contains the instruction alignment logic and extracts up to four consecutive

instructions (from among the two consecutive blocks coming from Fetch-1) based on the

starting PC, or until the first taken branch, whichever comes first. Fetch-2 pre-decodes the

four instructions to explicitly identify control instruction within the fetch block and calculate

their target addresses. The PISA ISA has target offsets embedded in the control instruction

except for returns and jump or call indirects. If the BTB misses for the control instruction in

the previous cycle, Fetch-2 generates a recovery signal and recovery target address for the

Fetch-1 stage. If an instruction happens to be a predicted-taken branch in the fetch block,

subsequent instructions are discarded. Fetch-2 also contains a FIFO buffer, called the control-

transfer instruction queue (CTI queue), to hold all control instructions in their program order.

After a control instruction at the head of the FIFO retires, the CTI queue updates the BPB

with the computed direction. This leads to in-order update of the branch prediction structure.

Instruction alignment, extracting the fetch block, pre-decoding, and generating the recovery

signal are serialized logic, and fall onto the timing-critical path of Fetch-2.

The Fetch-3 stage is an instruction queue, and decouples instruction fetching and the rest of

the front-end pipeline stages. It receives up to four instructions from the Fetch-2 stage and

writes them into a circular buffer at the tail pointer, and always four instructions are read

from the head pointer to feed further pipeline stages. The instruction queue serves two

purposes:

 28

1. it allows instruction fetching, even though the rest of the front-end is stalled because

of a hardware resource limitation, and

2. it simplifies the decode, rename and dispatch logic by always providing a fixed

number of instructions (four per cycle).

Reading the circular FIFO for four instructions is the most timing-critical path in Fetch-3.

2.2.2 Instruction Decode

The instruction decode logic is straightforward to implement, due to implementing a RISC

ISA. PISA has three instruction formats, as shown in Figure 2-8 (reproduced from [21]).

Currently, our design only implements integer instructions and we intend to extend the

design for floating-point instructions, as part of the FabScalar project. More details about

PISA can be found in [21], some of the important features are:

• There are 32 architectural integer registers, explicitly addressed by integer

instructions.

• An instruction has a maximum of 2 source operands and 1 destination register.

Each cycle, the decode stage may receive four instructions from the Fetch-3 stage. The

decode logic extracts the opcode from each instruction, based on the instruction’s format, and

generates appropriate control signals that flow with the instruction downstream.

 29

Figure 2-8: SimpleScalar ISA format [21].

2.2.3 Instruction Renaming

The rename stage of the superscalar processor renames the architectural source and

destination registers to physical source and destination registers. The compiler is limited by

the number of architectural registers for allocating intermediate computation or holding local

variables, and the compiler reuses registers to overcome this. Register renaming removes the

false dependencies among instructions which are artifacts of limited architectural registers.

Fundamentally, a dynamic instruction stream has three types of data dependencies:

• True dependency, where the source register of a younger instruction depends on the

outcome of another, older instruction in the dynamic instruction stream.

 30

• Output dependency, where the destination register of a younger instruction is the

same as the destination register of another, older instruction in the dynamic

instruction stream.

• Anti-dependency, where the destination register of a younger instruction is the same

as the source register of another, older instruction in the dynamic instruction stream.

Output and anti-dependencies arise because of limited architectural registers, and are

sometimes also referred to as false dependencies. Register renaming eliminates false

dependencies by mapping the architectural destination register of each in-flight instruction to

a unique physical register. Our design uses a physical register file to hold committed and

non-committed (speculative) register values. The physical register file is bigger than the

architectural register file, and determines the maximum number of un-committed instructions

that are in-flight in the pipeline.

Figure 2-9 shows the register renaming logic for 4-way renaming. A circular FIFO, referred

to as the Free List, contains the unused physical registers, and a physical destination register

is obtained for an instruction with an architectural destination register by popping a free

physical register from the Free List. The Rename Map Table (RMT) maintains the physical

registers to which architectural registers are currently mapped. Accordingly, each

architectural source register of the instruction is renamed to a physical source register by

looking up its mapping in the RMT. After renaming an instruction’s source registers, its new

architectural-to-physical destination register mapping is updated in the RMT for future

instructions to observe. At the same time, true dependencies between source registers and

 31

preceding destination registers must be checked for the group of instructions being renamed

concurrently.

Figure 2-9: Register renaming logic. LSAn and LSBn are the architectural source registers and

LDn is the architectural destination register of instruction N. PSAn and PSBn correspond to

physical source registers, and PDn corresponds to the physical destination register.

For a 4-way rename stage, renaming is performed for eight source registers and four

destination registers in parallel. Physical names for four destination registers are obtained by

 32

popping registers from the Free List and are updated in the RMT in the same cycle. Note

that, if there are multiple producers of the same architectural registers in the rename group,

then only the youngest producer updates the RMT (logic not shown in Figure 2.9). The RMT

is implemented as an SRAM, with 8-read ports and 4-write ports, and the Free List is

implemented as an interleaved FIFO. True dependencies among source registers and

preceding destination registers in the same rename group are also resolved using comparator

and multiplexer logic. The access latency of reading the multi-ported RMT plus the bypass

MUXes following the RMT makes it the most timing critical logic in the rename stage.

2.2.4 Dispatch

The Dispatch stage is the boundary between in-order instruction processing and out-of-order

instruction processing. It is the responsibility of the Dispatch logic to check for available

space in the back-end pipeline stages, in particular, the Active List, Issue Queue, and the

Load and Store Queues, for newly renamed instructions. If the space is available, the

Dispatch stage writes the new instructions in the respective resources (shown in Figure 2-10).

In case of the unavailability of enough space in these resources, the dispatch stage generates

a stall signal for the decode and rename stages.

 33

Figure 2-10: Dispatched instructions inserted in the back-end resources.

2.2.5 Issue

The Issue stage is the heart of out-of-order superscalar execution, and is very critical to the

performance of a superscalar microarchitecture. The Issue stage buffers the renamed

instructions and selects instructions for execution based on the availability of their source

operands. The maximum buffer size is referred to as the issue window, and the maximum

number of instructions selected for parallel execution in a cycle is referred to as the issue

width. The issue window and issue width are the fundamental characteristics of the issue

stage, and determine its logic complexity. An instruction in the issue window is ready to

execute if all of its source operands are ready, and can participate in the selection process.

Since there is a limited number of functional units, and multiple instructions may be ready in

the issue window, selection logic is required. The selected instruction is issued for execution,

 34

removing the instruction from the issue window. Since an instruction is selected, not in the

program order, but based on the availability of its source operands, it leads to out-of-order

execution. The issued instruction broadcasts its physical destination register name or tag to

the issue window to wakeup its dependent instructions. In case of a match, the dependent

instruction sets the ready bit associated with its source operand.

In summary, an Issue stage consists of two major operations: wakeup and select. The wakeup

operation is dependence resolution performed in the issue window, and the select operation is

arbitrating among ready-to-execute instructions in the issue window. In our design, the issue

window is centralized, and the Issue stage is pipelined between wakeup and select logic. A

maximum of four instructions can be selected for execution on four parallel but distinct

functional units. Each functional unit executes a different type of integer instruction, and

instructions are associated with their functional unit type during the decode stage. The

wakeup logic tracks the availability of source operands based on the tags allocated to the

operands. In our design, a tag is a physical register allocated to an architectural destination

register during the rename stage. The Issue stage contains two key memory structures, a

CAM for holding source operand tags and a RAM holding payload information for an

instruction, for example, destination tag, program counter, Active List id, etc. Currently, we

model the CAM as composed of synthesizable registers, although we intend to replace it with

a custom-designed component as part of future work.

As shown in Figure 2-11, the result tags of issued instructions are broadcast through as many

wakeup ports to all the instructions in the issue window, and each entry in the issue window

 35

compares its source tags with the broadcasted destination tags. On a match with any of the

broadcasted tags, an instruction sets the corresponding ready bit for its source operand. The

complexity of the wakeup operation grows with issue window size and the number of

wakeup ports. In our design, the number of wakeup ports is the same as the issue width.

Figure 2-11: Wakeup logic in the Issue stage.

 36

To ensure back-to-back execution of a producer instruction and its consumer instructions in

consecutive cycles, an issued instruction broadcasts its result tag even before its completion,

and the dependent instructions can read the result data from the bypass network (discussed in

section 2.2.9). Currently, loads wakeup their consumers late, only when their data is actually

produced. A load instruction may take a variable number of cycles to execute, depending on

a data cache miss or memory disambiguation stall (discussed in section 2.2.8). Although the

pessimistic approach to wake up load-dependent instructions is easier to implement, it will

lead to significant IPC degradation due to data cache hits being the common case. We plan to

fix this limitation in the future by speculatively waking up load-dependent instructions and

replaying them in the case of load stalls.

As shown in Figure 2-12, we implement three-level tree-based selection logic to select ready-

to-execute instructions in a cycle. There is separate selection logic for each function unit

type. The implementation is very similar to the one discussed in [31]. An L1 request vector is

formed for each function unit type using the source operand ready bits and other control bits.

A bit set in the request vector indicates that the corresponding issue window entry is ready to

execute. The L1 request vector is divided into multiple blocks, and the size of each block is

four entries. Each block selects one ready entry based on the round-robin policy and passes

the selection on to the L2 selection logic. Similarly, the L2 request vector is divided into

blocks of size four, and each block selects one ready entry based on the round-robin policy.

 37

Eventually, one ready instruction gets selected in the final level, and the instruction is issued

after reading the payload information from the payload RAM.

Figure 2-12: Select Logic in the Issue stage.

 38

2.2.6 Register Read

The register read stage contains the physical register file (PRF), which holds all the

committed and non-committed instruction results. The source register specifiers of an issued

instruction index into the PRF to read the corresponding values, as shown in Figure 2-13. At

the same time, source register specifiers are also compared with the Writeback destination

register specifiers to detect the scenario whereby a producer instruction’s result needs to be

directly bypassed to a consumer instruction. In case of a match, the instruction ignores the

data read from the PRF and uses the data from the bypass network. The bypass network

updates the PRF with the produced value.

The PRF is implemented as an SRAM. For an issue width of four, 8-read and 4-write ports

are required. Reading the PRF coupled with MUXes after the PRF falls on the timing critical

path for the register read stage. The bypass network is comprised of parallel result buses,

originating from the Writeback stage.

 39

Figure 2-13: Register read stage. PSAn and PSBn correspond to physical source registers of an

instruction N. WBAn and WBDn correspond to write back address and data respectively. DAn

and DBn correspond to final source operands’ data.

2.2.7 Execute

The functional unit in the execute stage performs an arithmetic or logic operation on the

source operands of an instruction, and the result of the operation is written into the Writeback

latches. As shown in Figure 2-14, we implement four functional units, where each unit

 40

executes a different class of integer instructions. The Simple ALU performs simpler

arithmetic and logic operations, for example, addition, subtraction, xor, etc. and these

operations take a single cycle to execute. The Complex ALU performs complicated arithmetic

operations, for example, multiply, divide, etc. and these operations take multiple cycles to

execute. In this implementation, the Complex ALU takes three cycles to execute an

instruction and is fully pipelined. The Control ALU executes control instructions, for

example, conditional branches, jumps, calls, etc. and these instructions take one cycle. A

dedicated functional unit for control instructions facilitates early resolving of conditional

branches. The AGEN unit performs address computations for memory operations, i.e, loads

and stores. The output of AGEN goes to the Load/Store Unit, discussed in Section 2.2.8.

The source operands for the functional units come either from the Register Read stage or

from the bypass network.

 41

Figure 2-14: Execute stage with four functional units. PSAn and PSBn correspond to physical

source registers of an instruction N. WBAn and WBDn correspond to write back address and

data, respectively. DAn and DBn correspond to the source operands obtained in the previous

cycle from the Register Read stage. EDAn and EDBn correspond to final source data feeding

functional units.

 42

2.2.8 Load/Store Unit (LSU)

Data dependencies propagated through architectural registers are static in nature, i.e., the

addresses (register specifiers) are embedded within the instruction itself. Dependencies

propagated through memory are unknown until they execute, as the loads and stores typically

use register operands to calculate their addresses. A modern microprocessor employs a

special address dependence check mechanism to support correct out-of-order execution of

loads and stores. A load compares its address with all the uncommitted stores older in the

program order, and in case a store’s address matches the load address, the store forwards its

data to the load. Moreover, all the stores should update the architectural memory state in

program order.

We implement a separate load queue (LQ) and store queue (SQ) to maintain the uncommitted

memory operations in their program order. The LQ and SQ insert the loads and stores,

respectively, when they are dispatched. An issued load takes at least two cycles to execute; in

the first cycle the load’s address is computed by the AGEN unit and in the following cycle

the load goes through an address dependency check mechanism in the Load/Store Unit

(LSU). The LSU logic performs associative searches to resolve address dependencies (also

referred to as load disambiguation) and employs store-to-load data forwarding logic. A load

might find its data from the data cache or the store queue depending on the outcome of the

load disambiguation logic. The access to the data cache happens in parallel with the load

disambiguation logic.

 43

Data Cache Store Queue
Address

Store Queue
Data

Load Queue
Vector

Load Queue
Address

Load Instruction

Replay Load Address

Initialize Vector

Replay Logic

AGEN

Pipeline Register

Replay Logic

To Writeback

Disambiguation
logic

1. Use data read from the cache

2. Obtain data from SQ

3. Stall the load in the LQ

Figure 2-15: Load hit path in the Load/Store Unit.

 44

Figure 2-15 shows the load hit path and different outcomes of the load disambiguation logic:

1. There are no unknown stores (stores who have not computed address yet) or

conflicting stores (stores whose addresses match that of the load) prior to the load. In

this case the load should use the data read from the data cache.

2. There are conflicting or unknown stores prior to the load.

a. If the nearest store among these is conflicting, store forward its data to the

load (load obtains data from SQ data).

b. If the nearest store among these is unknown, stall the load.

When a store’s address is computed, it broadcasts its address to any disambiguation-stalled

loads. A load waiting on this store is re-injected into the load hit path. A store commits its

value to the memory when it is at the head of the active list. The path shown in Figure 2-15 is

the most timing critical in the LSU.

2.2.9 Writeback

The Writeback stage contains the latches holding the results from the execute stage, which

serve as the source for feeding the bypass network. The bypass network forwards the result

values from the executed instructions to the dependent instructions, to support optimal

execution of the producer and its dependent instructions in consecutive cycles. The

instructions in the Register Read stage and Execute stage compare their source register

specifiers with all the destination register specifiers on the bypass network for matches, and

 45

in the case of a match, the instruction uses the result value from the bypass network. The

Writeback stage also acts as the source for branch misprediction signals.

From an implementation standpoint, the bypass network is essentially parallel buses running

from the Writeback stage to Register Read and Execute stages (shown in Figure 2-16) with

each wire observing a load of comparator and MUX logic, and is very critical to the timing

because of increased wire delays with technology scaling.

WBA0, WBD0 WBA1, WBD1 WBA2, WBD2 WBA3, WBD3

Writeback Registers

Execute
Stage

Register
Read Stage

Figure 2-16: Writeback registers and bypass network. WBAn and WBDn correspond to write

back address and data, respectively.

 46

2.2.10 Retire

Although instructions execute out-of-order, they update the architectural processor state in

the correct program order to maintain the sequential execution model. The in-order commit

of instructions naturally leads to the implementation of precise interrupts [29].

The Retire stage maintains the program order among instructions using a circular FIFO with

head and tail pointers, referred to as the Active List or Reorder Buffer. The dispatched

instructions are inserted into the Active List at the tail pointer, giving each instruction a

unique entry into the Active List. Upon execution of an instruction, the Writeback stage

updates the completed bit in the Active List entry for this instruction. The Retire stage also

maintains an Architectural Map Table (AMT), containing mappings between architectural

registers and physical registers for committed versions of architectural registers. The Active

List keeps probing the completed bits for the entries starting from the head pointer, and any

completed instructions at the head are committed and removed from the Active List. When

an instruction commits, the Active List updates the AMT with the instruction’s physical

destination register mapping and releases the previously mapped physical register. The

released physical register gets added to the Free List. In the case of a store instruction, the

Active List signals the Store Queue to commit the store data to memory. Figure 2-17 shows

the retirement operation of an instruction. It takes two cycles for the complete retirement

operation: in the first cycle the head of the Active List is read and in the following cycle, the

AMT, Free List, and Store Queue are updated with appropriate information.

 47

Figure 2-17: Retirement operation of an instruction.

2.2.11 Branch Misprediction Recovery

Branch mispredictions are a major source of performance degradation in a superscalar

processor. On every misprediction, clock cycles are wasted to 1) while waiting for the branch

to execute, 2) while flushing the pipeline, and 3) while refilling the pipeline, deteriorating

IPC as the processor is doing no useful work during these three phases of recovery.

Moreover, the deeper the pipeline, the bigger the penalty a misprediction will incur. In fact,

Sprangle et al. [19] identified branch mispredictions as the single largest contributor to

performance degradation as pipelines are deepened.

 48

For a fast mechanism to restore the processor to a known state after a misprediction, we

implement checkpointing [30] of the RMT as well as the branch mask logic [31]. A

checkpoint mechanism makes a copy of the RMT and the Free List head pointer when a

branch instruction is encountered. A copy of the RMT is also referred to as a Shadow Map

Table (SMT), and each branch instruction carries the associated SMT id. The branch mask

logic is similar to that of the MIPS R10000 [31], and it is used to indicate the pending

branches an instruction depends on. On detecting a branch misprediction, the front-end

pipelines stages are completely flushed, and the branch mask is used for selective removal of

instructions in the back-end pipeline stages, i.e., removing only those instructions that are

after the branch in program order. The PC is set to the correct target address and the RMT is

quickly restored from the associated SMT of the mispredicted branch. If a branch resolves

correctly, the associated SMT is released and the branch mask associated with each

instruction is cleared of that branch.

Although fast to recover, the checkpoint mechanism is expensive in terms of die area and

power consumption. Currently, we allow four unresolved branches in the out-of-order

pipeline stages, requiring four checkpoints and a 4-bit branch mask. Figure 2-18 shows the

checkpointing logic in the Rename stage. The Branch Vector maintains a list of the occupied

SMTs, i.e., the branches associated with the occupied SMTs have not executed yet. If all

SMTs are being used, the processor will keep renaming instructions until it encounters a

branch instruction, which must stall dispatch until an SMT becomes available.

 49

Figure 2-18: Checkpointing logic in the Rename stage.

 50

CHAPTER 3

Register File Compiler

In a modern processor design, small, yet complex, memory structures are implemented as

custom memories. These specialized memory structures play an important role in

determining the performance and the power budget of a microprocessor design, as they most

often contribute to the timing-critical and frequently-exercised paths in a pipeline stage. A

register file for storing intermediate computation in a processor is a classic example of a

specialized memory [39]. Furthermore, a superscalar microarchitecture, which processes

more than one instruction in a pipeline stage per cycle, gives rise to multi-ported memories to

support multiple parallel reads and writes. For instance, the physical register file (PRF) forms

an important part of the superscalar processor, and for high IPC, the source operands of all

the issued instructions must be read simultaneously and all the result values from the bypass

network should be written simultaneously [46] [47]. Similarly, for a centralized issue queue

design, the read (Rd) and write (Wr) ports of the payload memory depend upon the issue

width and the dispatch width, respectively. In general, most of the pipeline stages in a

superscalar processor require some form of memory structure to buffer instructions or

instruction related information. The dependence of the number of Rd and Wr ports upon the

pipeline width makes the memory structures very specialized to the superscalar design. To

estimate the design cost of a pipeline stage, it is important to estimate the design cost of the

associated memory structures.

 51

Designing custom memories requires significant design effort and time, and analytically

modeling the cost associated with memories is vulnerable to lower fidelity. We take a hybrid

approach to develop a multi-ported register file compiler for the 45nm process node [25].

The compiler is very specialized to generate the memories required in a superscalar

microarchitecture, and is capable of estimating timing, area, and energy consumption in

memories for pipeline widths of one to eight and of different sizes. The memory organization

considered in our compiler is similar to the well established SRAM (Static Random Access

Memory) based Cache design [55], and its organization and operation details can be found in

[53] [54]. Our approach is to

1. pre-design (including the layout) key circuit components, for instance, bitcells, sense

amplifiers, decoders, column MUXes, etc., with varying Rd and Wr ports, address

bits, and transistor sizes,

2. define composable interfaces of individual components, so that they can be stitched

together to compose any arbitrary memory structure,

3. use existing analytical models [56] to estimate intrinsic and coupling capacitances of

wires connecting different components, and

4. develop a tool (which we refer to as a register-file compiler) in C++ that can

automatically compose a memory based on the size and the number of Rd and Wr

ports, and output the SPICE netlist with annotated intrinsic and coupling

capacitances, the simulation file with appropriate test vectors, and the estimation of

area numbers.

 52

The netlist can further be simulated using any standard SPICE simulator to estimate timing

and power consumption. Table 3-1 lists all the pre-designed components used in the register-

file compiler and their different flavors. Table 3-2 shows the industry-standard EDA tools

used for the layout and the circuit simulation. Figure 3-1 shows layout of four different

bitcell configurations used in our register-file compiler.

 Table 3-1: List of the pre-designed components.

Pre-designed
Components

Different Flavors

Bitcells 2Rd-1Wr, 4Rd-2Wr, 6Rd-3Wr, 8Rd-4Wr, 10Rd-5Wr,
12Rd-6Wr, 14Rd-7Wr, 16Rd-8Wr, 1Rd-1Wr, 2Rd-
2Wr, 3Rd-3Wr, 4Rd-4Wr, 5Rd-5Wr, 6Rd-6Wr, 7Rd-
7Wr, 8Rd-8Wr

pre-charge WPMOS=360nm, WPMOS=720nm
sense amplifier WPMOS=360nm/ WNMOS=360nm
word-line driver WPMOS=180nm/ WNMOS=90nm, WPMOS=360nm/

WNMOS=180nm, WPMOS=720nm/ WNMOS=360nm,
WPMOS=1440nm/ WNMOS=720nm

row decoder Decoder width=1, 2, 3, 4, 5, 6, 7, 8
Column
multiplexor

Multiplexor width=1, 2

Table 3-2: EDA tools used for the design.

Stage EDA Tool/Tools Used
Schematic and layout Cadence Virtuoso version: IC6.1.2.500.13

SPICE simulation Synopsys HSPICE version: C-2009.03-SP1

 53

Figure 3-1: Layouts of four different bitcell configurations.

 54

Estimation of propagation delay and energy consumption requires simulation of multiple test

vectors (testing different cases for worst-case scenario) on the SPICE netlist with annotated

capacitances. Unfortunately, the SPICE simulation of the complete netlist takes a long time,

and to alleviate this problem, we generate the netlist of only the critical path (reading or

writing the farthest bitcell from the row decoder) and perform simulation on it. Although we

perform only critical-path simulation, the error incurred compared to the full netlist

simulation is typically within 5%.

The timing, area, and energy consumption numbers obtained for different memory structures

are used during the logic synthesis and place & route of canonical pipeline stages. The results

are discussed in chapter 5.

 55

Figure 3-2: Critical path simulation for measuring the read access time and energy

consumption.

 56

CHAPTER 4

Simulation Methodology

It is necessary to simulate widely accepted benchmarks for architectural evaluation (IPC) of a

new microarchitecture or a technique added to the baseline microarchitecture to enhance

performance. SPEC suites [13] and MiBench [34] are some of the standard benchmarks used

in academia and industry. To support such simulations, we tightly integrate a high-level

functional simulator (written in the C++ programming language) through the Verilog

Procedural Interface (VPI) [35] [36], providing a Verilog and C++ co-simulation

environment (shown in Figure 4-1). The VPI is a software interface for Verilog, and it

consists of a set of access and utility routines to call C++ functions. These routines can be

used to exchange information between the instantiated simulation objects contained in the

Verilog design. We currently use Cadence NC-Verilog for simulation, and the Cadence

environment allows compiled C++ modules to be called from Verilog modules.

The RTL model leverages the functional simulator to load a compiled binary and initialize

the processor state, giving the Verilog simulator the flexibility to simulate any standard

application benchmark. Moreover, the co-simulation environment can also be exploited for

assisting and accelerating functional verification of the Verilog design by asserting

correctness of retired results via comparisons with the functional simulator. The functional

 57

simulator fetches and executes one instruction at a time, and its execution result is considered

golden reference for the verification purpose. The functional simulator always executes

instructions in the program order.

Figure 4-1: Verilog and C++ co-simulation. The left-hand side is the RTL of the processor’s

pipeline. The checker compares the outputs of the Retire stage with the instructions’ results

from the functional simulator, shown on the right-hand side.

A microprocessor has an immensely large state space, making the validation of logical

correctness of the design a daunting task [48]. Lungu and Sorin [51] argue that design

verification, consuming 60-70% of non-recurring engineering (NRE) in the creation of a new

microprocessor [49] [50], should be considered as a first-class design constraint, like power

consumption and die area. In this thesis, we try to uncover as many design bugs in the limited

amount of time and human resources available by running micro-benchmarks on the RTL

model and verifying the execution result with the functional simulator output. We use the

 58

microarchitecture configuration mentioned in Table 2-1 as a baseline design for all

verification purposes. As shown in Figure 4-1, we extensively use the functional simulator

for simulation and functional verification. At the beginning of the simulation, the functional

simulator loads the compiled SimpleScalar binary into the co-simulation environment and

initializes the processor state. During the Retire stage, the RTL model verifies the PC and

result of the retiring instruction with the corresponding result of the functional simulator. On

a mismatch, the source of the design bug is traced manually using the signal viewer in the

Cadence NC-Verilog. As part of the FabScalar project, we are developing a cycle-accurate

C++ representation of the RTL model, allowing the C++ and the Verilog implementations of

each pipeline stage to cross-check their outputs every cycle; this is left for future work. Table

4-1 shows the major VPIs used in the RTL model.

Table 4-1: VPIs used in the RTL model.

VPI Name Functionality

$initialize_sim() Invokes the functional simulator and loads the program binary.
$getArchRegValue() Copies the architectural register values from functional simulator to the

corresponding physical registers in the RTL model.
$getArchPC() Initializes the PC in the RTL model.
$getRetireInstPC() Retire stage checks the PC of the retiring instruction with the functional

simulator output.
$getRetireInstValue() Retire stage checks the result of the retiring instruction with the functional

simulator output.

To simplify the verification effort, we identify three major high level functional aspects of

the superscalar microarchitecture (the design) and the logic associated with them:

 59

1. Register data-flow: the design includes register renaming, allocation of physical

registers (popped from the Free List) to a new instruction with a valid destination

operand, allocation of dispatched instructions in the issue queue and active list

hardware structures, wake-up and select logic, bypass logic, and functional units.

2. Control-flow: the design includes next PC logic, checkpointing and branch mask

logic, and logic for flushing the front-end and selectively removing instructions on

the wrong control flow path from the hardware structures in the out-of-order stages

on a branch misprediction.

3. Memory data-flow: the design includes allocation of dispatched load/store

instructions in the Load/Store Unit, memory disambiguation logic, and store-to-load

forwarding logic.

This breakdown helped us in developing micro-benchmarks stressing one functional aspect at

a time and allowed us to concentrate our efforts in finding design bugs in a limited state

space. Figure 4-2 shows an example of the kernel inside a micro-benchmark which stresses

the register data-flow with no memory operations and very simple control-flow. The kernel

runs for 10 million cycles on the RTL model with no control misprediction (after initial

training of the BTB and BPB within 1000 cycles), retiring approximately 12 million

instructions. Similarly, we developed micro-benchmarks stressing control-flow but keeping

the data-flow simple, for instance, a toggling branch instruction inside a loop.

 60

Figure 4-2: A kernel inside a micro-benchmark, stressing the register data-flow logic. The left-

hand side is C++ code and the right-hand side is the corresponding SimpleScalar machine code.

The arrows in the right-hand box indicate the control flow.

Although we did unit-level testing of individual Verilog modules during their development

phase, we could start full processor-level verification at the beginning of February, 2009. We

have documented all the design bugs uncovered during full processor-level verification and

did a classification study to understand how bugs were introduced. We characterize the bugs

into four categories as shown in Figure 4-3, 1) coding mistake: these bugs were introduced

by typing mistakes, copy and paste, and careless coding, 2) microarchitecture: these bugs

were due to wrong or incomplete microarchitectural definition of a particular pipeline stage,

3) logic changes: these bugs were introduced after performing logic optimization in the

 61

design, 4) corner cases: these are special scenarios we failed to foresee during the design

process. We realize most of the design bugs were introduced due to coding mistakes and

wrong or incomplete microarchitectural definition.

Figure 4-3: Design bug distribution over 4 categories.

We are yet to exhaustively verify the entire processor, or to a level the FabScalar project

requires. As part of the future effort in the functional verification we would like to fix known

microarchitectural bugs, for instance, bugs in the logic to wake-up a disambiguation-stalled

load in the load queue. Eventually, we would like to run the SimPoint [52] associated with

each SPEC benchmark, consisting of approximately 100 million instructions each, on the

RTL model.

 62

CHAPTER 5

Results and Discussions

A processor design has an associated cost, where the cost can be quantified in terms of

propagation delay, power consumption, die area, design effort, manufacturability, or fault

vulnerability. Until recently, microarchitectural innovations and technology scaling have led

to exponential growth in performance, with associated design cost within an acceptable

budget. However, achieving further performance enhancement requires excessively complex

microarchitecture solutions, and the logic complexity to implement such a design has

significant impact on costs: propagation delay, power consumption, and area.

A complex microarchitecture might enhance IPC, but at the same time could increase the

propagation delay. For instance, increasing the size of the issue window can boost IPC for

applications with abundant ILP, but at the same time, clock rate may decrease to

accommodate the larger content addressable memory. Figure 5-1 shows the impact of

increasing issue window on the delay of the wakeup-select logic for an issue width of two. In

general, any attempt to increase microarchitectural complexity to get better IPC has a direct

impact on the propagation delay.

 63

(Delay) vs (Issue Window)

0
0.2

0.4
0.6
0.8

1
1.2

1.4
1.6

0 20 40 60 80 100 120 140

Issue Window

De
la

y
(n

s)

Figure 5-1: Delay of wakeup-select logic for different issue window sizes. (Issue width is fixed at

2 instr/cycle.)

In this chapter, we present the impact of microarchitecture complexity on the propagation

delay of the superscalar processor’s canonical pipeline stages. By increasing complexity, we

mean wider pipeline stages (more ways) and larger specialized memories within a stage. We

derive the Verilog RTL of the pipeline stage for varying complexity, from the baseline four-

wide processor design. To estimate the propagation delay, we synthesized and did basic

place-and-route of each pipeline stage using 45nm technology standard cell library [25]. For

memory structures, we use timing numbers from the register file compiler. As part of the

future work, we would like to estimate the impact of microarchitecture complexity on the

area and energy consumption for each pipeline stages.

 64

5.1 Microarchitectural Complexity Study

To continuously feed the rest of the pipeline stages, it is necessary to fetch more instructions

in a cycle. Wider fetch width leads to increased logic complexity and, hence, increased

propagation delay. In the Fetch-1 stage, logic to generate the next PC is the most critical from

a cycle time standpoint. The timing critical path of the next PC logic consists of reading the

BTB and the BPB for each PC, and feeding the read information to the priority logic to select

the next PC. Figure 5-2 shows the impact of fetch width on the propagation delay of the next

PC logic.

(Fetch-1 Delay) vs (Fetch Width)

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6

Fetch Width

Fe
tc

h-
1

D
el

ay
 (n

s)

Figure 5-2: The next PC logic delay for varying fetch widths. Sizes of the BTB and the BPB are

fixed at 64KB and 4KB, respectively.

 65

The timing critical path of the Fetch-2 stage consists of instruction alignment, extracting the

fetch block, pre-decoding the instructions for control instructions, and generating the

recovery signal for the Fetch-1 stage. All of these steps are serialized, with the fetch block

extraction logic (which depends on the fetch width) consuming most of the propagation delay

in this stage. Figure 5-3 shows the impact of fetch width on the propagation delay of the

Fetch-2 stage.

(Fetch-2 Delay) vs (Fetch Width)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7 8

Fetch Width

Fe
tc

h-
2

D
el

ay
 (n

s)

Figure 5-3: The Fetch-2 stage delay with varying fetch width.

 66

The instruction decode logic, like other RISC ISAs, is straightforward to implement. The

delay is noticeably less than other stages. Figure 5-4 shows the impact of decode width on

the propagation delay of the instruction decode logic.

(Decode Logic Delay) vs (Decode Width)

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8

Decode Width

D
ec

od
e

Lo
gi

c
D

el
ay

 (n
s)

Figure 5-4: The Decode stage delay with varying decoder width.

The propagation delay of the Rename Stage is dictated by the latency of reading the multi-

ported RMT and the bypass multiplexors following the RMT. The RMT is implemented as

SRAM, with the number of read and writes ports being multiples of the rename width, shown

in Table 5-1.

 67

Table 5-1: RMT read and write ports for varying rename width.

Rename
Width

RMT read
ports

RMT write
ports

1 2 1
2 4 2
3 6 3
4 8 4
5 10 5
6 12 6
7 14 7
8 16 8

With increasing rename width, the complexity of the SRAM and the subsequent bypass

multiplexors increases, leading to more propagation delay. Figure 5-4 shows the impact of

the rename width on the register rename logic. Although the bit width of the RMT changes

with varying physical register file size, its impact on the rename delay is marginal.

(Rename Delay) vs (Rename Width)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8

Rename Width

R
en

am
e

De
la

y
(n

s)

Figure 5-5: The Rename stage delay with varying rename width.

 68

The dispatch logic involves writing the renamed instructions into the Active List, the LQ (for

loads), the SQ (for stores), and the Issue Queue. The Active List and the LQ/SQ are FIFOs,

unlike the SRAM in the issue queue. Hence, writing the renamed instructions to the issue

queue forms the timing critical path in the dispatch stage. Figure 5-6 shows the delay of the

Dispatch stage for varying issue queue size and for different dispatch width. As evident from

the figure, increasing the dispatch width has more impact on the delay than increasing the

issue queue size, attributing to the increasing number of SRAM write ports with the

increasing dispatch width.

(Dispatch Delay) vs (Issue Queue Size)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

32 48 96 128

Issue Queue Size

D
is

pa
tc

h
D

el
ay

 (n
s)

Dispatch Width:2
Dispatch Width:4
Dispatch Width:6
Dispatch Width:8

Figure 5-6: The Dispatch delay with varying Issue Queue size, and for different dispatch

widths.

 69

Figure 5-7 shows the delay of the wake-up logic for varying the issue queue size and the

issue width. The delay of the wakeup logic increases more significantly with increasing issue

width, attributing to two factors. Increasing issue width increases the number of parallel

comparators and the fan in of the following OR gate. Moreover, increasing issue width

increases the number of issue queue read ports (implemented as CAM).

(Wakeup Delay) vs (Issue Queue Size)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

16 32 64 128

Issue Queue Size

W
ak

eu
p

D
el

ay
 (n

s)

Issue Width:2
Issue Width:4
Issue Width:6
Issue Width:8

Figure 5-7: The Wakeup logic delay for varying issue queue size and issue width.

The logic complexity of the select logic increases with increasing issue queue size and issue

width. Increasing the issue queue size increases either the number of levels in the tree-based

 70

selection logic or the sizes of the multiplexors at each level. Increasing the issue width leads

to delayed generation of the request vector at each level, as the selection of an instruction

depends upon all the previous selections. Figure 5-8 shows the select logic delay as the issue

queue size and the issue width are varied.

(Select Logic Delay) vs (Issue Queue Size)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

16 32 64 128

Issue Window

Se
le

ct
 L

og
ic

 D
el

ay
 (n

s)

Issue Width:2
Issue Width:4
Issue Width:6
Issue Width:8

Figure 5-8: The Select logic delay for varying issue queue size and issue width.

The propagation delay of the Register Read stage is dictated by the latency of reading the

multi-ported PRF and the bypass multiplexors following the PRF. The PRF is implemented

as an SRAM, with the number of read and writes ports being a multiple of the issue width, as

shown in Table 5-2.

 71

Table 5-2: Register File read and write ports for varying issue width.

Issue
Width

PRF read
ports

PRF write
ports

1 2 1
2 4 2
3 6 3
4 8 4
5 10 5
6 12 6
7 14 7
8 16 8

With increasing issue width, the complexity of the SRAM and the following bypass

multiplexors increases, leading to more propagation delay. Figure 5-9 shows the impact of

the PRF size and the issue width on the register read logic.

(RegRead Delay) vs (Register File Size)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

32 64 128 256 512

Register File Size

R
eg

Re
ad

 D
el

ay
 (n

s)

Issue Width:2
Issue Width:4
Issue Width:6

Figure 5-9: The Register Read stage logic delay for varying PRF size and issue width.

 72

Figure 5-10 shows the propagation delay of the LSU with varying LQ and SQ sizes. The LQ

is implemented as a pair of CAM and RAM, and so is the SQ. The CAM holds the memory

addresses and the RAM holds the data and other control information. With increasing the

sizes of the LQ and SQ, the sizes of CAMs and RAMs increase, which fall on the timing

critical path of the disambiguation logic.

(LQ/SQ Delay) vs (LQ/SQ Size)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

4/4 8/8 16/16 24/24 32/32 40/40 48/48 56/56 64/64

LQ/SQ Size

LQ
/S

Q
 D

el
ay

 (n
s)

Figure 5-10: The Load-Store Queue logic delay for varying load and store queue sizes.

 73

Table 5-3 shows the delay of all the four types of functional units used in our design. As

expected, the complex ALU (implementing multiply and divide operations) has the largest

latency.

Table 5-3: Delay of different functional units (un-pipelined).

ALU Type Data Width
(bits)

Total
Delay (ns)

Simple ALU 32 0.45

Complex ALU 32 1.15

Ctrl ALU 32 0.45
AGEN 32 0.44

 74

5.2 Physical Design

Figure 5-11 shows the physical design of a 4-way superscalar processor, with the same

configuration mentioned in Table 2-1. The physical design is very preliminary, and can be

further improved for better timing. Although cursory, the physical design shows the strength

of our RTL model. The RTL model can be implemented using a standard ASIC flow for the

detailed study of low level costs associated with the microprocessor design. Table 5-4 shows

the physical design data for this specific implementation.

Table 5-4: Design data for 4-way superscalar processor physical implementation.

Technology 45nm
Die area (excluding L1 caches) 2.6 mm2
Clock frequency 500MHz
Number of ports 324
Number of sequential elements 15,585
Power consumption (only standard cells) 118mW
The worst timing-critical path Next-PC logic (Fig. 2.7)

 75

Figure 5-11. Placed-and-routed 4-way superscalar processor, excluding L1 I- and D-caches.

 76

References

[1] http://www.intel.com/pressroom/kits/quickreffam.htm#pentium.

[2] David Lammers. Intel cancels Tejas, moves to dual-core designs. EETimes Article, 2004.

[3] R. Kumar, D. M. Tullsen, and N. P. Jouppi. Core Architecture Optimization for

Heterogeneous Chip Multiprocessors. PACT, Sep. 2006.

[4] Rakesh Kumar, Keith I. Farkas, Norman P. Jouppi, Par-thasarathy Ranganathan, Dean

M. Tullsen. Single-ISA Het-erogeneous Multi-Core Architectures: The Potential for Proc-

essor Power Reduction. Proceedings of the 36th annual IEEE/ACM International Symposium

on Microarchitecture, December 2003.

[5] H. Hashemi Najaf-abadi and E. Rotenberg. Architectural Contesting. Proceedings of the

15th IEEE International Sym-posium on High-Performance Computer Architecture (HPCA-

15), pp. 189-200, February 2009.

[6] Niket K. Choudhary, Salil Wadhavkar, Tanmay Shah, Sandeep Navada, Hashem H.

Najaf-abadi, and Eric Rontenberg. FabScalar. In the Workshop on Architecture Research

Prototyping (WARP), in conjunction with ISCA-36, 2009.

[7] Kurt Keutzer, A. Richard Newton, and Narendra Shenoy. The future of logic synthesis

and physical design in deep-submicron process geometries. Proceedings of the 1997

international symposium on Physical design, p.218-224, April 14-16, 1997, Napa Valley,

California, United States.

http://www.intel.com/pressroom/kits/quickreffam.htm#pentium

 77

[8] H. P. Hofstee. Power Efficient Processor Architecture and the Cell Processor. HPCA,

2005.

[9] Benjamin C. Lee, David M. Brooks. Accurate and efficient regression modeling for

microarchitectural performance and power prediction. ASPLOS-XII: International

Conference on Architectural Support for Programming Languages and Operating Systems.

San Jose, CA, October 2006.

[10] Sukhun Kang and Rakesh Kumar. Magellan: A Framework for Fast Muti-core Design

Space Exploration and Optimization Using Search and Machine Learning. Design,

Automation, and Test in Europe, DATE, Munich, March 2008.

[11] J.L. Cruz, A. González and M. Valero. Multiple-Banked Register File Architecture.

ISCA-27, IEEE-ACM International Symposium on Computer Architecture. Vancouver, June

2000.

[12] N.J. Wang, J. Quek, T.M. Rafacz, and S.J. Patel. Characterizing the effects of transient

faults on a high-performance processor pipeline. In International Conference on Dependable

Systems and Networks. IEEE Computer Society, Jun 2004.

[13] The Standard Performance Evaluation Corporation, http://spec.org.

[14] http://www.opensparc.net/

[15] http://www.opencores.org/

[16] J. E. Smith and G. S. Sohi. The Microarchitecture of Superscalar Processors. In

Proceedings of the IEEE, December 1995.

http://spec.org
http://www.opensparc.net/
http://www.opencores.org/

 78

[17] A. R. Lebeck, J. J. Koppanalil, T. Li, J. Patwardhan, and E. Rotenberg. A Large, Fast

Instruction Window for Tolerating Cache Misses. Proceedings of the 29th IEEE/ACM

International Symposium on Computer Architecture, pp. 59-70, May 2002.

[18] A. Hartstein, Thomas R. Puzak. The optimum pipeline depth for a microprocessor.

Proceedings of the 29th annual international symposium on Computer architecture, May

2002, Anchorage, Alaska.

[19] Eric Sprangle, Doug Carmean, Increasing processor performance by implementing

deeper pipelines, Proceedings of the 29th annual international symposium on Computer

architecture, May 2002, Anchorage, Alaska.

[20] B.S. Amrutur and M.A. Horowitz. Speed and power scaling of SRAMs. IEEE Journal

of Solid State Circuits, 35(2): 175-185, February 2000.

[21] Todd Austin, Eric Larson, Dan Ernst. SimpleScalar: An Infrastructure for Computer

System Modeling. Computer, v.35 n.2, p.59-67, February 2002.

[22] Charles Price. MIPS IV Instruction Set, revision 3.1. MIPS Technologies, Inc.,

Mountain View, CA, January 1995.

[23] K. C. Yeager. MIPS R10000 Superscalar Microprocessor. In IEEE Micro, April 1996.

[24] Jim Keller. The 21264: A Superscalar Alpha Processor with Out-of-Order Execution,

October 1996. 9th Annual Microprocessor Forum, San Jose, California.

[25] James E. Stine, Ivan Castellanos, Michael Wood, Jeff Henson, Fred Love, W. Rhett

Davis, Paul D. Franzon, Mi-chael Bucher, Sunil Basavarajaiah, Julie Oh, Ravi Jenkal,

"FreePDK: An Open-Source Variation-Aware Design Kit," mse,pp.173-174, 2007 IEEE

International Conference on Microelectronic Systems Education (MSE'07), 2007.

 79

[26] André Seznec , Stéphan Jourdan , Pascal Sainrat , Pierre Michaud, Multiple-block ahead

branch predictors, Proceedings of the seventh international conference on Architectural

support for programming languages and operating systems, p.116-127, October 01-04, 1996,

Cambridge, Massachusetts, United States.

[27] Daniel A. JimCnez, Stephen W. Keckler, and Calvin Lin. The impact of delay on the

design of branch predictors. In Proceedings of the 33th Annucri Internutionul Symposium on

Microorchitecture, December 2000.

[28] B. Ramakrishna Rau , Joseph A. Fisher, Instruction-level parallel processing: history,

overview, and perspective, The Journal of Supercomputing, v.7 n.1-2, p.9-50, May 1993.

[29] James E. Smith, Andrew R. Pleszkun. Implementation of precise interrupts in pipelined

processors, Proceedings of the 12th annual international symposium on Computer

architecture, p.36-44, June 17-19, 1985, Boston, Massachusetts, United States.

[30] W. W. Hwu , Y. N. Patt, Checkpoint repair for out-of-order execution machines,

Proceedings of the 14th annual international symposium on Computer architecture, p.18-26,

June 02-05, 1987, Pittsburgh, Pennsylvania, United States.

[31] Kenneth C. Yeager, The MIPS R10000 Superscalar Microprocessor, IEEE Micro, v.16

n.2, p.28-40, April 1996.

[32] Subbarao Palacharla , Norman P. Jouppi , J. E. Smith. Complexity-effective superscalar

processors. Proceedings of the 24th annual international symposium on Computer

architecture, p.206-218, June 01-04, 1997, Denver, Colorado, United States.

[33] T. Karkhanis and J. E. Smith. Automated Design of Application-Specific Superscalar

Processors. ISCA, 2007.

 80

[34] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown,

MiBench: A Free, Commercially Representative Embedded Benchmark Suite, IEEE 4th

Annual Workshop on Workload Characterization, Austin, TX (December 2001).

[35] C. Dawson, S.K. Pattanam, D. Roberts, "The Verilog Procedural Interface for the

Verilog Hardware Description Language," ivc, pp.17, 1996 IEEE International Verilog HDL

Conference (IVC '96), 1996.

[36] Stuart Sutherland. The VERILOG PLI Handbook: A User's Guide and Comprehensive

Reference on the VERILOG Programming Language Interface. Kluwer Academic

Publishers, Norwell, MA, 1999

[37] M.Bohr el al., “A high-performance 0.25-pm logic technology optimized for 1.8V

operation”, IEDM, pp. 847-850, 1996.

[38] Scott Thompson, Paul Packan, and Mark Bohr. “MOS Scaling: Transistor Challenges

for the 21st Century”, Intel Technology Journal, Q9, 1998.

[39] David A. Patterson , John L. Hennessy. Computer architecture: a quantitative approach,

Morgan Kaufmann Publishers Inc., San Francisco, CA, 1990

[40] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A Framework for

Architectural-Level Power Analysis and Optimizations. 27th International Symposium on

Computer Architecture (ISCA-27), Vancouver, Canada, June 2000.

[41] P. Shivakumar and N. P. Jouppi. Cacti 3.0: An integrated cache timing, power, and area

model. Technical Report 2001-2, HP, Western Research Laboratory, 2001.

 81

[42] Cyrus Bazeghi , Francisco J. Mesa-Martinez , Jose Renau. uComplexity: Estimating

Processor Design Effort. Proceedings of the 38th annual IEEE/ACM International

Symposium on Microarchitecture, p.209-218, November 12-16, 2005, Barcelona, Spain.

[43] Strozek, Brooks. Efficient Architectures through Application Clustering and

Achitectural Heterogeneity. CASES, 2006.

[44] V. Kathail, et al. PICO: Automatically Designing Custom Computers. IEEE Computer,

35(9):39-47, Sep. 2002.

[45] Tom R. Halfhill. Tensilica's software makes hardware. Microprocessor Report, 23 June

2003.

[46] Il Park, Michael Powell, and T. N. Vijaykumar. Reducing register ports for higher speed

and lower power. In Proceedings of the 35th Annual International Symposium on

Microarchitecture (MICRO), pages 171-181, November 2002.

[47] R. Balasubramonian, S. Dwarkadas, and D. Albonesi. Reducing the complexity of the

register file in dynamic superscalar processors. In Proceedings of the 34th International

Symposium on Microarchitecture (MICRO 34), pages 237-249, Dec. 2001.

[48] R. M. Bentley. Validating the Pentium 4 Microprocessor. In Proceedings of the

International Conference on Dependable Systems and Networks, pages 493-498, July 2001.

[49] P. Bose, D. H. Albonesi, and D. Marculescu. Guest Editors’ Introduction: Power and

Complexity Aware Design. IEEE Micro, pages 8–11, Sept/Oct 2003.

[50] R. Hum. How to Boost Verification Productivity. EE Times, January 10 2005.

 82

[51] Anita Lungu and Daniel J. Sorin. Verification-Aware Microprocessor Design. Sixteenth

International Conference on Parallel Architectures and Compilation Techniques (PACT),

September 2007.

[52] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. Automatically

Characterizing Large Scale Program Behavior. In the 10th International Conference on

Architectural Support for Programming Languages and Operating Systems, October 2002.

[53] Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic´. Digital Integrated

Circuits. Prentice Hall, 2nd Edition.

[54] N. Weste and K. Eshraghian. Principles of CMOS VLSI Design. AddisonWesley, 2nd

Edition.

[55] S. Wilton and N. Jouppi. Cacti: An enhanced cache access and cycle time model. In

IEEE Journal of Solid-State Circuits, May 1996.

[56] N. Delorme, M. Bellevile, and J. Chilo. Inductance and capacitance formulas for VLSI

interconnects. Electronic Letters, Vol. 32, No. 1 I, pp. 996-997, May 1996.

[57] M. S. Lam and R. P. Wilson. Limits of control flow on parallelism. In the 19th

International Symposium on Computer Architecture, May 1992.

[58] Y. Sazeides and J. E. Smith. The predictability of data values. In Proc. 30th Annu. Int.

Symp. Microarchitecture, Dec. 1997, pp. 248-258.

[59] M. H. Lipasti and J. P. Shen. Exceeding the dataflow limit via value prediction. In

Proceedings of the 29th Annual ACM/IEEE International Symposium and Workshop on

Microarchitecture, pp. 226-237, December 1996.

 83

[60] James E. Smith. A study of branch prediction strategies. 25 years of the international

symposia on Computer architecture (selected papers), p.202-215, June 27-July 02, 1998,

Barcelona, Spain.

[61] Tse-Yu Yeh and Yale N. Patt. A comparison of dynamic branch predictors that use two

levels of branch history. Proceedings of the 20th annual international symposium on

Computer architecture, p.257-266, May 16-19, 1993, San Diego, California, United States.

[62] S. McFarling. Combining branch predictors. In DEC WRL Technical Note TN-36. DEC

Western Research Laboratory, 1993.

[63] Mary D. Brown, Jared Stark, and Yale N. Patt. Select-free instruction logic. In 34th Int'l

Syrup. on Microarchitecture, pp. 204-213, December 2001.

[64] George Z. Chrysos and Joel S. Emer. Memory dependence prediction using store sets.

Proceedings of the 25th annual international symposium on Computer architecture, p.142-

153, June 27-July 02, 1998, Barcelona, Spain.

[65] R. Ronen, A. Mendelson, K. Lai, L. Shih-Lien, F. Pollack, and J. P. Shen. Coming

challenges in microarchitecture and architecture. Proc. IEEE, vol. 89, pp. 325, Mar. 2001.

