
ABSTRACT 

YAESOUBI, REZA. A Comparison of Factor Screening Methods for Simulation Models. 

(Under the direction of Dr. Stephen D. Roberts). 

Computer simulation models that represent a real-world system consist of a large number of 

input variables which are generally referred to as factors in Design of Experiments (DOE). 

The large number of involved factors makes certain analyses which are usually conducted on 

the simulation models prohibitive or impractical. These analyses may include building 

predictive metamodels, finding the optimum factor settings for the simulated system, and etc. 

Factor Screening experiments are intended to examine all or some of the involved factors to 

identify those with significant effect on a selected response (output). The identified important 

factors can then be used in subsequent analyses. 

This thesis is focused on factor screening methods with promising performance on simulation 

models from the medical decision making community with a relatively large number of 

factors. Two groups of factor screening methods are addressed: classical designs which are 

generally used for physical systems, and recent designs which have been exclusively 

developed for simulation models. Among the classic designs, 2k Fractional Factorial (FF) 

Designs and Central Composite Designs are investigated in depth, because of their superior 

performance on the simulation models. Among the recent methods developed for simulation, 

Sequential Bifurcation (SB), folded-over SB (SB-X), Cheng’s method, Controlled Sequential 

Bifurcation (CSB), folded-over CSB (CSB-X), Latin Hypercube Designs (LHD), and Nearly 

Orthogonal Latin Hypercube (NOLH) designs are addressed. In addition, two methods based 

on Cheng’s method are developed in this thesis: the Modified Cheng’s method, and the 

folded-over Modified Cheng’s method (MCh-X). MCh-X is shown in this research that has 

superior performance compared with FF designs, Cheng’s method, and CSB-X for situations 

where the response has high homogeneous variance.  



Next, several criteria are considered for evaluating the factor screening methods, and the 

screening methods are compared based on the proposed criteria. Furthermore, the factor 

screening experiments are conducted on two available deterministic and stochastic simulation 

models. For the deterministic medical decision model, 2k Fractional Factorial Designs, 

folded-over SB (SB-X), and Nearly Orthogonal Latin Hypercube (NOLH) designs are used; 

and for the stochastic medical decision model, 2k Fractional Factorial Designs, folded-over 

Modified Cheng’s (MChe-X), and folded-over CSB (CSB-X) were applied 

Finally, based on quantitative measures, the performance of each method used for the 

available simulation models is evaluated in terms of its efficiency (requiring minimum 

number of runs), effectiveness (accuracy), and cost-effectiveness (achieving the highest 

accuracy with the least number of runs). Cost-effectiveness, which to the best of our 

knowledge has never been used as a criterion for evaluating factor screening methods, is 

introduced as a new measure encompassing both the concept of accuracy and efficiency. The 

research revealed that for the deterministic model, SB-X and for the stochastic model, MCh-

X are the most cost-effective methods.  
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Terminology 

• Experiment: a series of simulation runs in which purposeful changes are made 

to the input factors of a system in the form of treatments (scenarios) so that we 

may observe and identify the reasons for changes that may be observed in the 

output response. 

• Design matrix: a matrix where the columns correspond to the input factors, the 

rows correspond to the design points, and the entries correspond to (possibly 

coded) levels of each of the input factor. 

• Design point: same as treatment 

• Observation:  the outcome of a simulation run 

• Replication: single observation (perhaps a summary observation) from a 

simulation corresponding to a particular treatment, but with different random 

number seeds.  Multiple replications have different random number seeds and 

are needed to estimate “experimental error” in a stochastic simulation. 

• Run:  the outcome of executing the simulation model once with specific values 

for each factor and with specific random number seeds.   

• Scenario:  a simulation term that corresponds to an experimental treatment. 

• Treatment: a combination of different levels of factors, corresponding to a row 

in a design matrix. 

• Input factor: an independent variable subject to the control of the experimenters 

that is thought to affect the simulation output response of interest. 

• Effect: a partitioning of the variables in the metamodel reflecting their degree of 

order.  For example, there are main effects, interaction effects, second-order 

effects, and etc. 
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1. Introduction to Factor Screening 

Computer simulation models that represent a real-world system generally consist of a large 

number of inputs or parameters which are referred to as factors in Design of Experiments 

(DOE). The output of a simulation model, which is called response in DOE, can be explored 

by using designed experiments. However, due to their size and running time, large-scale 

simulation models can become prohibitively costly and require time-consuming experimental 

designs to study their behavior. In many cases where the number of factors is relatively large, 

analysts assume that they know which factors are more likely to be important. They 

investigate only a few intuitively selected factors.  Often they use an inefficient and 

ineffective one-factor-at-a-time design to check their assumptions regarding the importance 

of a factor or estimating the main effect of the factors.  

A well-designed experiment allows the analyst to examine many more factors while 

providing insights and information that could not be gained from trial-and-error approaches 

or by using one-factor-at-a-time designs. Screening experiments, which assume that only a 

few factors are really important (parsimony principle), are experiments in which many 

factors are examined and the objective is to identify those factors (if any) that have 

significant (important) effects on the selected response. The parsimony principle states that 

some of the factors are important while others are not; this principle is equivalent to the 

Pareto principle: a few factors are responsible for most of the effect on the response while 

most factors contribute little. 

Screening is generally necessary in the pilot phase of complicated simulation studies 

(Bettonvil et al. (1996)). The factors identified as being important can be further explored in 

later phases; e.g. the important factors might be cast as a metamodel and this metamodel can 

be used in optimization. Moreover, the results of factor screening can be used not only for 

confirming prior expectations (which is as an important step in validating the simulation 

model), but they are also informative when the simulation provides insights that do not match 
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expectations; for example, it is possible that a factor believed to be important by the subject-

matter experts turns out to be statistically insignificant.  

This thesis studies the factor screening methods in the context of some actual medical 

decision simulations. Both deterministic and stochastic models are addressed. This work does 

not present a comprehensive list of all available factor screening methods, but rather 

addresses those that seem most promising by virtue of their attention given in the literature 

and in simulation conferences.  Furthermore, these are readily available or fairly easy to 

construct. 

Many of the classical experimental designs can be used in simulation studies. However, the 

environments in which real-world (physical) experiments are performed are quite different 

from the simulation environments. Wan et al. (2003) point out that simulation experiments 

are significantly different from physical experiments in the following ways: 

1. Screening problems in simulation can involve many more factors than real-world 

problems. In typical physical experiments it is difficult to control more than 20 

factors, while in simulation experiments it is easy to control and simulate many 

combinations of factors because the experiments can be automated. 

2. In traditional physical experiments a factor effect is compared to zero. If the 

effect is found to be statistically significantly different than zero, then the effect is 

considered to be important. But, when screening a simulation model, we usually 

require that the magnitude of an effect be greater than a specified threshold before 

it is considered to be important. 

3. In physical experiments, switching from one factor setting to another can be 

costly (time and money). In simulation, however, switching is comparatively 

easy. This makes sequential methods especially attractive in simulation. 

4. In simulation experiments, common random numbers (CRN) can be implemented 

to reduce the variance of estimated effects as compared to independent 

simulations. Controlling random number seeds is not applicable in physical 

experiments, although the concept is similar to “blocking.” 
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Table  1.1 adapted from Sanchez et al. (2002), list some of the assumptions made in 

traditional Design of Experiments (DOE) settings, as well as features that characterize many 

simulation settings. 

 
 

Table  1.1: The experimental environment 
Traditional DOE Assumptions Simulation Model Characteristics 
Small or moderate number of 
factors 

Large number of factors 

Linear or low-order effects  Non-linear, non-polynomial 
behavior 

Sparse effects Many substantial effects 
Negligible higher-order interactions Substantial higher-order interactions 
Homogeneous errors Heterogeneous errors 
Normally distributed errors Various error distributions 
Black box model Substantial expertise exists 
Univariate response Many performance measures of 

interest 
 

The objectives of this research are as follows: 

1. Evaluating and comparing the performance of the factor screening methods on a 

number of medical simulation models is one of the main objectives of this 

research. This evaluation is based on criteria which are described in Section  2.5.1.  

2. Among those criteria, efficiency (requiring minimum effort to determine the 

important factors) and effectiveness (accuracy) have the most attention. 

Effectiveness, however, is not easy to measure, mainly because no precise 

knowledge about the importance of a factor is available prior to the factor 

screening experiment. Therefore, generating a procedure for measuring the 

effectiveness of a factor screening method is an objective of this research. 

3. Another goal of this research is to create a new measure that encompasses both 

concepts of effectiveness and efficiency. 

4. Finally, we were interested in improving available factor screening methods and 

render them better suited to the characteristics of the medical simulation models 

which are of concern. 
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Section  1.1 will address the classic experimental designs including factorial, fractional 

factorial, and group screening designs. Those designs were initially introduced for physical 

systems, but they have also been used for screening the simulation models. Chapter 2 will 

present the methods exclusively designed for simulation models and address various issues 

associated with each.  It further evaluates and compares the factor screening methods 

presented in this thesis. Chapters 3 and 4 will report the results of factor screening 

experiments on a deterministic model and a stochastic model, respectively. Finally, Chapter 5 

presents the conclusions and recommendation for further study. 

Throughout this thesis, JMP (2005), statistical software developed by SAS Institute Inc., has 

been used for generating the required experimental designs and conducting statistical 

analyses. For the factor screening methods whose designs cannot be generated by JMP, 

computer code, described in the Appendix, has been implemented in the Visual Studio .NET 

environment using VB. NET.  

Sections  1.1 and  1.2 in this chapter review the following two common traditional statistical 

designs:  

1. Factorial and Fractional Factorial (FF) designs: generally considered the classic 

factor screening method; as well as, 2k - FF designs with different resolutions for 

different levels of complexity of the response. These designs can be augmented 

to incorporate quadratic terms into the metamodel by using Central Composite 

Designs (CCD). 
2. Group Screening designs: which dates back to 1961. The key idea in this method 

is to divide factors into some groups and then perform a fractional factorial 

experiment on the groups. If a group turns out to be significant, subgroups or 

individual variables within the group are further screened in the same way. 

1.1. Factorial and Fractional Factorial Designs 

Factorial designs have always been considered an effective approach for screening a 

relatively small number of factors; i.e. they can detect important factors correctly, as long as 
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the assumptions are not violated. Factorial and Fractional Factorial (FF) Designs, also called 

gridded designs, are generally considered classic factor screening methods. Factorial designs 

are sometimes divided into two groups (Kleijnen et al. (2005)): 

1. Fine grids: mk factorial designs, where each factor can have m > 2 levels. 

2. Course grids: 2k factorial designs, where factors have only two levels. 

Designs with fine grids are usually too expensive to apply to simulation models, where a 

large number of factors are involved. On the other hand, course grid designs are usually 

considered both effective and efficient for screening simulation models. The following 

sections investigate these methods and the issues related to them when they are applied to 

simulation models.  

1.1.1. Factorial Designs 

In a factorial design, in each complete trial of the experiment, all possible combinations of 

the levels of the factors are investigated. If we want to collect n samples of each treatment, 

then we need to run n replications for each treatment. In other words, if we want to 

investigate k factors each at m levels and make n replications for each treatment, then we will 

need a total of n·mk runs. The larger the value of m for an mk factorial design, the better the 

space-filling properties of the design. 

Factorial designs are not generally used for factor screening the simulation models, because 

they are too inefficient in the scale of real-world experiments, where more than a handful of 

factors are involved. One of the major advantages of these designs is that they are capable of 

detecting important factors and interactions by using analysis of variance. In addition, since 

factors are studied at different levels, nonlinearity in the response function can be detected. 

Therefore, whenever the simulation run time is minimal, the benefit of the detailed 

information that this group of designs provides about the nature of the response surface may 

outweigh the cost of additional computation time. 

If we assume that the response function can be approximated by function f, then for each 

observation y: 
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where K is the total number of factors and ε is the error term. All factorial designs, including 

2k factorial and 2k fractional factorial designs which will be discussed later in this chapter, 

assume that the error term (ε) in the response function is normally distributed with mean zero 

and constant standard deviation σ. More specifically it is assumed that: 

1. Errors are approximately normally distributed. 

2. The model is adequate: E(ε)  = 0. 

3. Error variance is homogenous: Var(ε) = σ2 (applied only to stochastic models). 

4. Errors are statistically independent: Cov(εi, εj) = 0, for observations ji ≠  (applied 

only to stochastic models). 

Most screening methods assume all the preceding assumptions. Therefore, to avoid repetition 

from now on, these assumptions are referred to as the “default error assumptions.” 

Analyzing the responses to factorial designs is well understood. There are two major analysis 

tools that are usually applied: 

1. Analysis of Variance (ANOVA): ANOVA can be used as a statistical tool to 

effectively determine significant main effects and interactions.  

2. Residual Analysis: Residual analysis is used to check the preceding four 

assumptions and the adequacy of the regression model (metamodel) generated by 

the factorial design.  

Details about ANOVA and residual analysis techniques can be found in any Design of 

Experiments (DOE) textbook, such as Montgomery (2000). In Chapters 3 and 4 of this thesis, 

several residual analysis techniques have been applied to the results of the medical 

simulation experiments.  

Investigating factors at different levels may result in a very expensive design. Therefore, 

factors are usually studied at only two levels. A factorial design where all factors are at two 

levels is called a 2k factorial design, which is one of the most widely used screening methods 

in simulation.  
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1.1.2. 2k Factorial Designs  

The 2k factorial design is the special case of factorial design where each factor has only two 

levels (lower and upper levels). A set of all the possible treatments of such a design requires 

2k observations and is called a 2k factorial design. It provides the smallest number of runs 

with which k factors can be studied in a complete factorial design. For these designs, it is 

possible to fit a metamodel including all interactions, not only between pairs of factors, but 

also among triplets, etc. One of the advantages of 2k factorial designs is that they are very 

easy to construct and already available in almost all statistical software. 

2k factorial designs are based on two assumptions: 

1. Because there are only two levels for each factor, the response function is 

assumed to be approximately linear over the range of factor levels. This 

approximation can also be augmented by interactions terms as: 

εββββ +++++= ∑ ∑∑∑∑∑
<<<=

...
1

0
kji

kjiijk
ji

jiij
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j
jj xxxxxxy  

2. The error term (ε) satisfies the default error assumptions mentioned in Section 

 1.1.1. 

For 2k factorial designs as for all other factorial designs, the adequacy of model can be 

checked by residual analysis, and the factors and interactions with significant effect can be 

detected by using the following statistical methods: 

3. In many experiments involving 2k designs, we will examine the magnitude and 

direction of the factor effects to determine which variables are likely to be 

important. The analysis of variance can generally be used to create an 

interpretation. 

4. Constructing confidence intervals on the effects is another approach to identify 

the significant factors and interactions. If the produced confidence interval for 

each factor or interaction includes zero, the factor or the interaction is considered 

to be insignificant; otherwise it is declared to be significant (Montgomery 

(2000)). 
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5. Using normal probability plots and half-normal plots are other approaches to 

assess the importance of the effects (Montgomery (2000)). 

Since 2k factorial design can estimate all main and interaction effects, it requires a large 

number of experimental runs to screen a small number of variables. A 2k factorial design 

requires 2k experimental points to estimate all k main effects of k variables, all C(k,2) 2-order 

interactions, C(k,3) 3-order interaction, …, and C(k,k) k-order interactions, where C(n,m) is 

the combination of m elements from a set of size n. However, experience suggests that high 

order interaction effects are not usually significant and a model including only main and low-

order interaction effects can be a good fit for the response function. This interpretation leads 

us to a new set of designs called 2k fractional factorial designs. 

1.1.3. 2k Fractional Factorial Designs 

As the number of factors in a 2k factorial design increases, the number of runs required for a 

complete factorial experiment grows rapidly. If the experimenter can reasonably assume that 

certain higher-order interactions are negligible, information on the main effects and low-

order interactions can be obtained by running only a fraction of the complete factorial 

experiment. The number of required runs in a fractional factorial experiment is much smaller, 

but the ability to estimate interaction effects is also reduced. Consequently, these designs are 

widely used in factor screening experiments. Fractional factorial design can be augmented to 

detect curvature by using middle levels or center points; however they also increase the 

number of required runs. 

The two assumptions made for 2k factorial design also hold for fractional factorial designs. 

Furthermore, residual analysis and ANOVA can be used to check the adequacy of the model 

and to detect the important effects 

What makes 2k fractional factorial designs attractive in factor screening experiments is the 

efficient number of runs it requires, which is a direct result of factor confounding, i.e. when 

more effects are confounded, fewer parameters need be estimated and as a result fewer runs 

will be needed. One of the major concerns with fractional factorial designs is that this design 
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may confound a significant interaction effect with other effects; and therefore no information 

can be gained about the individual interaction effects within this confounded structure. The 

issue of confounding introduces the concept of resolution of a design. A design’s resolution 

determines the complexity of metamodels that can be fit to the data if the design is used.  

Analysts may use a fractional factorial design of resolution III to focus on just finding 

important main effects, or use a resolution IV design to focus on finding main and selected 2-

way interaction effects, or use a resolution V design for finding important main and 2-way 

interaction effects.  

1.1.3.1 Resolution III, IV and V Designs 

A design is of resolution R if no p-factor effect is aliased with another effect containing less 

than R - p factors. In other words, the resolution of a design is the minimum number of 

factors in each pair of aliases. As an example, assume that we have three factors: A, B and C. 

If for building a 23-1 design, the generator C = AB is used, then C and AB are aliases and C = 

AB is a pair of design aliases. For this design, A = BC and B = AC are other pairs of aliases. 

Consequently, factor C is confounded with factor AB, factor B with AC, and factor A with 

BC. Confounding causes information about certain treatment effects (usually high-order 

interactions) to be indistinguishable from, or confounded with, other effects. If two effects 

are confounded they cannot be estimated separately. In the preceding example, an estimate 

for factor C (or AB) is actually an estimate for main effect C plus interaction effect AB. 

Therefore, neither the main effect C nor the interaction effect AB can be estimated 

separately. 

As pointed out before, the following designs are of particular interest in fractional factorial 

experiments, especially in simulation:  

1. Resolution III designs: No main effect is confounded with any other main effect, 

however main effects are confounded with two-factor interactions and two-factor 

interactions may be confounded with each other. Well-known designs of 

resolution III are Plackett-Burman designs which can estimate the main effects of 

k factors in only k+1 runs when specific requirements are met. These designs will 

be discussed later in this chapter. 
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2. Resolution IV designs: No main effect is confounded with any other main effect 

or two-factor interaction, but two-factor interactions are confounded with each 

other. This class of design can be constructed by using fold-over experiments with 

a resolution III design.  

3. Resolution V designs: No main effect or two-factor interaction is confounded 

with any other main effect or two-factor interaction, but two-factor interactions 

are confounded with three-factor interactions. 

Now, we address these designs in more detail. 

1.1.3.2 Plackett-Burman Designs 

Plackett-Burman designs are two-level fractional factorial designs for studying k = N-1 

variables in N runs, where N is a multiple of 4 (i.e. N = 4, 8, 12, 16, 20, 28, 32 and 36). These 

designs are the same as pk
III

−2  fractional factorial designs when k + 1 is a power of 2. For N = 

12, 20, 24, 28 and 36, the Placket-Burman designs are sometimes of special interest. They are 

sometimes called nongeometric designs (Montgomery (2000)) because these designs cannot 

be represented as cubes. 

The nongeometric Plackett-Burman designs have very messy confounding structures. For 

instance, in the 12-run design, every main effect is partially confounded with every two-

factor interaction not including itself. For example, the AB interaction is confounded with the 

nine main effects C, D, …, K. Moreover, each main effect in partially confounded with 45 

two-factor interactions. Thus, experimenters are usually advised to use these designs very 

carefully (Montgomery (2000)). 

If we assume the absence of interactions, and N = k + 1 is a multiple of 4, then this design 

can estimate the main effects in only N runs. If N is not a multiple of 4, N should be rounded 

up (e.g., for k = 2, N = 4). Plackett-Burman designs can be found in any textbook on 

experimental designs such as: Montgomery (2000). Some authors, additionally, have 

tabulated Plackett-Burman designs for N equals any multiple of 4 from 40 to 100 (Kleijnen 

(1975b)) 
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Although they are efficient in terms of number of runs required, Placket-Burman designs are 

not usually independently used for factor screening, mainly due to the weaknesses mentioned 

above. Nevertheless, as we will see later, this design has been used with other screening 

designs (e.g. group screening designs). 

1.1.3.3 Fold-over Designs (Resolution IV Designs) 

By combining fractional factorial designs in which certain signs are switched, we can 

systematically isolate effects of potential interest. This type of experiment is called a fold-

over of the original design. In general, if we add to a design of resolution III a further design 

with the signs of a single factor reversed, the combined design will provide estimates of the 

main effect of that factor and its two-factor interactions.  

More generally, if we add to a design of resolution III a second design in which the signs for 

all the factors are reversed, we will have a type of fold-over which breaks the alias links 

between main effects and two-factor interactions. So by using this combined design we can 

estimate all the main effects clear of any two-factor interactions. Resolution IV designs exist 

for k factor and N = 2k when N is a multiple of 8 (Kleijnen (1975a)). 

JMP, can generate resolution IV designs for more than 1000 factors. The number of required 

runs for different number of factors is summarized in Table  1.2. 

 
Table  1.2: Data requirement for R4 designs 

 

k No. of design points
4 23 = 8

5-8 24= 16
9-16 25 = 32
17-31 26 = 64
32-63 27 = 128

64-127 28 = 256
128-200 29 = 512  
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1.1.3.4 Resolution V Designs 

Until recently it was difficult to construct a very efficient R5 fractional factorial for more 

than a dozen factors. For example, the largest R5 fractional factorial in Montgomery (2000) 

is a 28−3.  Sanchez et al. (2005a) have recently developed a method, based on discrete-valued 

Walsh functions, for rapidly constructing very large R5 fractional factorial designs – a simple 

Java program generates designs up to 2120−105 in under a minute. These allow all main effects 

and two-way interactions to be fit, and may be more useful for simulation analysts than 

saturated or nearly-saturated designs. The sizes of the resulting designs are given in Table 

 1.3. 

 
Table  1.3: Data requirement for R5 designs 

 

1.1.3.5 Further discussion on 2k Fractional Factorial Designs 

Factorial designs have several attractive properties. Since more than one factor can be 

examined at a time, these designs can identify important interaction effects. They are also 

orthogonal designs, i.e. the pairwise correlation between any two columns (factors) in the 

design matrix is equal to zero. This simplifies the analysis of the output (response) we get 

from running our experiment, because estimates of the factors’ effects (βi’s) and their 

contribution to the explanatory power of the regression metamodel will not depend on what 

other explanatory terms are placed in the regression metamodel (Sanchez (2005b)). In 

addition, ordinary least squares regression assumes that the ε’s are also identically 

distributed, but the regression coefficients are still unbiased estimators even if the underlying 

variance is not constant. However, examining each factor at only two levels (the low and 

high values) does not reveal how the simulation output behaves for factor combinations in 

k No. of design points k No. of design points
1 21 = 2 18-21 29 = 512
2 22 = 4 22-29 210 = 1,024
3 23 = 8 30-38 211 = 2,048

4-5 24= 16 39-52 212 = 4,096
6 25 = 32 53-69 213 = 8,192

7-8 26 = 64 70-92 214 = 16,384
9-11 27 = 128 93-120 215 = 32,768
12-17 28 = 256
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the interior of the experimental region. Moreover, it is possible that the choice of low and 

high level for factors cancels the interaction (Trocine et al. (2000)). This is depicted in Figure 

 1.1. The chart in left side shows how the interaction would appear given a 2k design while the 

chart in right side shows a strong interaction when another level of factor A is included. 

Factorial Designs (finer grids) can reveal complexities in the region of interest. 
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Figure  1.1: Interaction effect in 2k factorial designs 

 

Clearly, fractional factorial designs are more efficient than factorial designs, but it is more 

complicated to appropriately design a fractional factorial. One of the major concerns about 

the fractional factorial design is that this design may confound the interaction of significant 

importance with other effects; thus the result is combined with other main effects or 

interactions and nothing can be determined about the individual interactions within this 

confounded structure. Consequently, designing a fractional factorial should be done with 

care, so that none of the effects in which we are interested are confounded with other effects.  

Another potential concern with the use of two-level factorial designs is the assumption of 

linearity in the factor effects. Of course, perfect linearity is unnecessary, and the 2k system 

will work quite well even when the linearity assumption holds only very approximately. 

However, it is noticed that if the interaction terms are added to the main effects or first-order 

model, then we have a model capable of representing some curvature in the response 

function (Montgomery (2000)). This curvature results from the twisting of the plane induced 

by the interaction term βijxixj. The first-order model is: 
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In the situations where the curvature in the response function is not adequately modeled by 

the above equation, a second-order response surface model can be used: 
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where the βjj represent pure second-order or quadratic effects.  

Adding center points to 2k design provides protection against curvature from second order 

effects. This method consists of n replications at the point )0,...,0(),...,( 1 =kxx . 

It is not possible to estimate the unknown parameters in this model because the number of 

independent runs is less than the number of unknown parameters. A simple and highly 

effective solution to this problem is to augment the 2k design with axial runs. The resulting 

design, called a central composite design, can now be used to fit the second-order 

metamodel.  

1.1.4. Central Composite Designs (CCD) 

Since 2k factorials or fractional factorials sample each factor at only two levels, only main 

effects and second-order interactions can be estimated by these designs, and it does not 

reveal what happens to the simulation’s response in the middle of the factor ranges. Using a 

3k factorial design lets us estimate quadratic effects, but it requires more design points, 

especially when k is large. Central Composite Designs (CCD) are the most popular class of 

designs used for fitting a second-order model. In practice, a 2k design can be used to fit a 

first-order model, and if the model exhibits lack of fit, axial runs are then added to allow the 

quadratic terms to be incorporated into the model (Montgomery (2000)). 

Generally, the CCD consists of a 2k factorial (or fractional factorial of resolution V) with nf 

factorial runs, 2k axial or star runs, and nc center runs. In the coded designs, if −1 and +1 are 

the low and high levels, respectively, then the center point occurs at (0, 0, ..., 0), the first pair 

of  axial (star) points are (−c, 0, ..., 0) and (c, 0, ..., 0); the second pair of axial (star) points 
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are (0,−c, 0, ..., 0) and (0,+c, 0, ..., 0), and so on. There are two parameters in the design that 

must be specified: the distance c of the axial runs from the design center and the number of 

center points nc. For nc, Montgomery (2000) recommends using three to five center runs. It is 

possible to determine an optimal value of c if the white-noise assumption (i.e. the residuals of 

the model are normally distributed and IID) holds. Since this assumption does not hold for 

most simulation experiments, Kleijnen et al. (2005) believe there is no need to worry too 

much about the choice of c. They, however, suggest that analysts choose an intermediate 

value for better space filling. More information about the CCD can be found in any DOE 

textbook, such as Montgomery (2000). 

1.2. Group Screening 

Group screening is usually used for screening a large number of factors. The key idea in this 

method is to divide factors into groups and then perform a fractional factorial experiment on 

the groups. If a group turns out to be significant, subgroups or individual variables within the 

group are further screened in the same way. 

In group screening designs k factors are grouped into g groups and each group is considered 

as a single factor. All factors in that group are at their high (low) level. Then these g group-

factors are tested and if a group-factor is found to be insignificant, all factors within that 

group-factor are regarded insignificant and can be dropped from further investigation. If a 

group-factor is found to be significant, then one or more factors in that group are significant, 

and further analysis should be done on that group-factor. 

Group screening can be done in two stages or multi stages:  

1. In two-stage group screening which was introduced by Watson (1961), the g 

group-factors are tested in the first stage in order to identify important group-

factors and then in the second stage, each factor in the significant groups is tested 

individually. 
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2. In multi-stage group screening which was introduced independently by Patel 

(1962) and Li (1962), groups that are found to be significant in the first stage (or 

more generally in stage i) are repartitioned into smaller groups that will be tested 

in the next stage. 

Now, we discuss two-stage and multi-stage group screening in more details. 

1.2.1. Two-Stage Group Screening 

Watson (1961) used the following assumptions: 

I. all factors have, independently, the same prior probability of being effective, p, 

II. effective factors have the same effect, ∆ > 0, 

III. there are no interactions present, 

IV. the required designs exist, 

V. the directions of possible effects are known, 

VI. the errors of all observations are independently normal with a constant known 

variance σ2, 

VII. k = g*f, where g is number of groups and f is number of factors per group. 

By assumption (V), we can define the upper (lower) level of each factor the level which may 

lead to the highest (lowest) response. The upper (lower) level of a group-factor is defined 

when all the factors within the group are set at their upper (lower) levels. In this way, and 

with assumption (III), there is no chance of the cancellation of effects, thus a group-factor 

with at least one significant factor will give a nonzero effect.  

If g + 1 is divisible by 4, then assumptions (III) and (IV) allow us to unbiasedly estimate the 

main effect of each group-factor, by using Plackett-Burman designs in only g + 1 runs. 

Otherwise, p-k
III2 would be used in order to identify the significant group-factors. Watson 

(1961) discussed an example of applying group screening on an experiment with 9 factors. 

An important question here would be: what level should be assigned to factors within the 

insignificant groups in Stage 2? Kleijnen (1975b) proved that it is best to set an insignificant 

factor either at its low or high level in all runs of Stage 2. He shows that in this way a 
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possible main effect of this factor is confounded with the grand mean. However, setting the 

factor at its low level for some runs and at its high level in some other runs of Stage 2 

confounds its main effect with the main effect of the significant factors.  

Later, Kleijnen (1975b) showed that the assumptions (I) through (VII) are not very 

restrictive: 

I. Assumption (I) should be interpreted as follows: we need some prior rough 

estimate for the number of factors thought to be significant among the total of k 

factors. If we have some prior rough estimate of the number of significant factors, 

the optimal group-size f, derived by Watson (1961), will be: 

p
f

)1(
1

1
0 α−

=    ( 1.2) 

where: f0 is the size of each group in the first stage, α1 is the significance level in 

the first stage (i.e. the probability of declaring an unimportant group-factor to be 

important), and p is the probability of a factor being significant.  

II. Assumption (II) is needed to derive the optimal group size and therefore is not 

critical. 

III. For assumption (III), Kleijnen (1975b) showed that a two-factor interaction βxy 

biases the estimator of the main effect of a factor z, only if the factors x, y, and z 

belong to three different group-factors (in addition, they believe that pure 

quadratic effects βii never bias the estimator of the main effect.) Therefore, if we 

assume that a two-factor interaction exists only between particular factors, then 

we should place those related factors in the same group. It has been further 

shown that if we examine the group-factors of Stage 1 in a resolution IV design, 

then main effects are not biased by any two-factor interaction (but they are still 

confounded with each other within the same group-factor). For proof, refer to 

Kleijnen (1975b) pages 419-422. 
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IV. Assumption (IV) was introduced in order to derive the group-size that by using 

Plackett-Burman designs minimizes the number of runs in stages one and two. 

However, in practice the number of group-factors in Stage 1 and number of 

factors in Stage 2 are not always a multiple of four. Thus, the number of required 

runs is not always optimal; however, this does not invalidate the procedure.  

V. Assumption (V) can be weakened, because first, the probability of having two 

important factors in the same group is insignificant and second, factors with 

unknown direction can be studied separately.  

VI. Assumption (VI) is needed for derivation of the optimal design and also makes 

ANOVA possible. It has been shown that ANOVA is robust with regard to 

nonnormality and heteroscedasticity. 

VII. Equation 1.2  implies that factors with high probability of being significant 

should be placed in small groups. So different estimates of p (which are more 

realistic) can be incorporated into the group screening method and as a result, the 

group-size is no longer a constant; so assumption (VII) can be replaced by the 

less restrictive assumption:  

∑
=

=
J

i
ii fgk

1

 

where gi is the number of groups of size fi, and J is the total number of group-

factors in stage (1). 

Furthermore, unequal group sizes make it possible to test a factor individually 

when we do not know the direction of its effect. In addition, the number of group-

factors tested in stage one can be chosen such that ∑ =

J

i ig
1

 is a multiple of four, in 

which case a saturated Plackett-Burman design is possible.  

1.2.2. Multi-Stage Group Screening 

In multi-stage group screening, groups that are found to be significant in the first stage (or 

more generally in stage i) are repartitioned into smaller groups that will be tested in the next 

stage. This procedure continues until all the remaining groups from the previous stage are of 
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size one.  The assumptions of multi-stage group screening are the same as those of two-stage 

group screening. 

Earlier research on multi-stage group screening concerned mostly the optimum number of 

groups and group-size in each stage, and estimating the prior probability (p) of a factor being 

important. Patel (1962) derived that the expected number of runs over all (n + 1) stages is 

minimized by choosing the number of groups as calculated in Equations 1.3 and 1.4. 
)1/(

1
+≈ nnkpg      (1.3) 

)1/(1
132 ... +−

+ ≈==== n
nn pgggg   (1.4) 

where, gi
 does not denote the total number of groups in Stage I, but the number of groups into 

which gi-1 is split, and optimal group-sizes can be found by: 
)1/()}1({ +−−−≈ nin

i pf     

Patel (1962) and Li (1962), who originally developed multi-stage group screening, assumed 

that groups in each stage have the same size (fi), but group-size may differ from one stage to 

the next one. Later, Kleijnen (1987) argued that having groups with different sizes would be 

beneficial in some senses: first, it would reduce the required number of runs if we can use 

Plackett-Burman designs, and more importantly, we can study a factor with unknown sign in 

a group of size one. 

1.2.3. Further discussion on Group Screening designs 

As discussed previously, Kleijnen (1975a) showed that the most crucial assumptions for 

group screening designs are:  

1. There is no interaction; however, he showed that two-factor interactions do not 

bias the main effects if we use a design of resolution IV or higher for group-

factors.  

2. The direction of main effects are known; yet, we can study a factor with 

unknown sign in a group of size one to overcome this restriction. 

An important issue with group screening is how to group factors at each stage; however, in 

practice we have prior knowledge about the simulated system and we can use that knowledge 
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to form groups of related factors. In grouping factors, Ivanova et al. (1998) recommend: (1) a 

factor with unknown direction should be placed in a single group, (2) factors with assumed 

(positive) important effects should be placed in one group, and (3) factors with assumed 

(positive) small effects should be placed in one group. 

Another issue is that interactions between variables that are in different groups are not 

measured. Finally, Trocine et al. (2000) have shown that the results of a group screening 

experiment and a fractional factorial experiment on a set of fairly small number of variables 

(17 factors in their example) can result in two different sets of important factors. Thus, a 

decision about how to group factors is of great importance in yielding correct results. 

Mauro (1986) mentioned that there are two major advantages to group screening designs. 

First, since factors within a group are completely confounded and factors in different groups 

are not confounded we can, to a certain extent, control the confounding pattern. Secondly, the 

grouping process reduces the dimensionality of the model and enables the use of orthogonal 

main effect designs, such as Plackett-Burman designs, to test the significance of group-

factors. Moreover, such designs can be analyzed by the usual analysis of variance procedures 

for factorial experiments.  

1.3. Conclusion 

This chapter described the factorial, fractional factorial and group screening designs, which 

have been used as the original factor screening methods for physical systems. This chapter 

also discussed the subsequent issues that usually occur when these methods are applied. 

More recently, several factor screening methods have been introduced which are exclusively 

designed for simulation models. In the next chapter, those designs will be addressed.  
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2. Factor Screening Methods for Simulation 

This chapter reviews several factor screening methods which have been recently applied to 

simulation models. The procedure used by each method as well as the issues that may arise 

when applying the methods are also discussed in this chapter. The methods addressed are as 

follows: 

1. Deterministic Sequential Bifurcation (SB): has gained a great deal of attention 

since its introduction in 1997. It is fundamentally based on the group screening 

design but uses a sequential procedure to determine the important factors.    

2. Cheng’s method, the Modified Cheng’s method and the folded-over Modified 

Cheng’s method (MCh-X): all are versions of SB designed for stochastic 

simulations. 

3. Controlled Sequential Bifurcation (CSB): is another version of SB for stochastic 

simulations which has less strict assumptions than Cheng’s or the Modified 

Cheng’s method. 

4. Latin Hypercube Design (LHD): the first design specifically proposed for 

deterministic computer simulations in 1979, known for its good space-filling 

property. 

In addition, different factor screening methods have different characteristics in terms of 

structure, capability and performance. In this chapter, several criteria are considered for 

evaluating the factor screening methods. Then, based on the proposed criteria, the screening 

methods are evaluated and compared. 
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2.1. Deterministic Sequential Bifurcation 

2.1.1. Introduction 

Originally, Sequential Bifurcation (SB) was originally developed in the doctoral dissertation 

by Bettonvil in 1990, and summarized by Bettonvil et al. (1996). SB is designed to find the 

important factors in simulation models that have many (for example, 300) factors.  The SB 

procedure introduced by Bettonvil et al. (1996) was mainly designed for deterministic 

simulation models. 

SB uses group screening, but instead of applying a fractional factorial design, it uses a binary 

search to determine important factors. SB, like all other group screening techniques assumes 

a low-order polynomial metamodel for the response function of the simulation model, and 

known signs or directions for the first order or main effects. Known signs of the main effects 

are assumed by all group screening techniques, in order to assure that individual effects do 

not compensate for the effects of each other within a group. 

The criterion that SB uses for declaring a factor as important is the absolute value of the 

factor's main effect. In other words, in SB, a factor is called important if and only if its main 

effect is “important.” SB is both effective and efficient; that is, it does find important factors, 

and it requires relatively few simulation runs. 

SB is a combination of two types of screening designs: group screening designs and 

sequential step-down designs: 
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• Group screening methods have been widely used for the situation with a large 

number of factors. As described in Section  1.2, the basic idea behind group 

screening is simple: if several factors can be aggregated into a group, and a 

screening test on that group shows that this group of factors does not have any 

significant effect on the output, then all the factors in the group can be considered 

as unimportant and eliminated from the list of potentially important factors. On the 

other hand, if the screening test shows that the group of factors has a significant 

effect, it is inferred that at least one of the factors in that group is important; 

therefore, the groups should be split into subgroups or individual factors for 

further screening tests. 

• In a sequential design, the design point (factor combination to be studied) at each 

stage is determined as the experimental results become available. Therefore, as the 

experiment progresses, based on the result of screening at each stage, the next 

design point or group of design points are selected.  

SB starts with all factors of interest in a single group and tests that group’s effect. If the 

group’s effect is important, indicating that at least one factor in the group may have an 

important effect, then the group is split into two subgroups. The main effects of these two 

subgroups are then tested and again each subgroup is either classified as unimportant or split 

into two subgroups for further testing. This procedure continues until eventually all factors 

that have not been classified as unimportant are tested individually, where there will be only 

one factor in each remaining subgroups.  

The procedure discussed above is the same for all variants of SB. Here we address two 

variants of SB: SB in the absence of interactions and SB in the presence of interactions (SB-

X) 
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2.1.2. Sequential Bifurcation in the Absence of Interactions 

2.1.2.1 Introduction 

The simplest variant of SB assumes that the simulation output can be modeled by a first-

order polynomial function. In this situation, SB is considered a supersaturated design, where 

the total number of required runs (n) is smaller that the total number of involved factors (K).  

This variant of SB requires the following assumptions: 

Assumption (SB-1): First-order polynomial approximation gives “negligible” approximation 

error over the experimental domain of the simulation model. 

It is convenient to transform an original, quantitative factor into a standardized variable (say 

x) that has the value -1 and +1, where -1 (and +1, respectively) correspond to the level that 

generates a low (and high) output. The simplest approximation of the response function is a 

first-order polynomial in terms of the standardized variables, which has main effects βj and 

overall mean β0. Hence the response function can be estimated by: 

KK xxy βββ +++= ...110   (2.1) 

where: 

y: response of the metamodel (the sequential bifurcation approximation) 

K: total number of factors in the experiment 

βj : first-order or main effect of factor j with j = 1, …, K 

xj: value of factor j, standardized to lie in [-1,+1] 

Based on the Taylor approximation, every differentiable function at point x can be 

approximated by a Taylor expansion around point x. Thus the polynomial approximation 

seems reasonable for representing the metamodel in a vicinity around x. A polynomial 

approximation implies that the underlying simulation model is treated as a black box. The 

advantage of a black box is that it can be applied simply to all types of random and 

deterministic simulations. The disadvantage is that it cannot exploit the special structure of 

the simulation model at hand (Bettonvil et al. (1996)). However the assumption (SB-1) 
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usually does not hold over the entire factor space, but it may be a reasonable assumption for, 

e.g., small variations in a region of interest. 

If for factor zj, we define Lj as the level of factor j that generated a low value for the output y, 

and Hj as the level that generates a higher value, provided that factor zj has any effect at all, 

then the transformation of a factor to its corresponding standardized factor (xj) will be as 

follows: 

2/)(
2/)(
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The scaling in Equation 2.2 implies that in the first-order polynomial metamodel, the most 

important factor is the one with the largest absolute value of its first-order effect or main 

effect (βj); the least important factor is the one with the effect closest to zero. Apparently, the 

importance of factors depends on the experimental domain (experimental area to be 

explored). Kleijnen et al. (2003a) noticed that the larger the range of an untransformed factor 

is, the larger the response difference and hence the main effect of the transformed factor is. 

As mentioned before, in the metamodel given by Equation 2.1, it is assumed that 

approximation errors are negligible. Bettonvil et al. (1996) defines negligible approximation 

errors as errors that are “small” relative to the factor effects. In other words, it is assumed 

that Equation 2.1 represents a perfect fit to the real output. 

Assumption (SB-2): The direction of the effect that a factor may have on the response 

function is known. 

All group screening methods, including SB, assume known signs for the main effects. In 

order to satisfy this assumption, Lj can be defined as the level of factor j that generated a low 

value for the output y, and Hj as the level that generates a higher value, provided that factor j 

has any effect at all. Consequently, if an increase in factor j reduces the output, then the 

upper and lower levels of that factor should be switched such that Hj  <  Lj. Assumption (SB-

2) together with the definition of Hj and Lj, implies that all main effects in Equation 2.1 are 

non-negative: βj ≥ 0.  
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The values of the βi typically will be unknown, but in most situations it is quite realistic to 

assume that their signs are known. For example consider a queuing model where Y represents 

the average waiting time of customers in queue, and xi is the service rate, it is fairly clear that 

the main effect of xi is negative even if the magnitude is unknown. Please refer to Section 

 2.1.4.8 for cases where this assumption is not met.   

2.1.2.2 Design of SB 

The symbol y(j) denotes the response value when the factors 1, ..., j are set at their upper 

levels (Hj) and the remaining factors (j+1, ..., K) are set at their lower levels (Lj). Therefore, 

in the standardized Metamodel 2.1, the values of the first j factors are +1 and the values of 

the remaining factors are -1. So the polynomial in Equation 2.1 yields: 

Kjjjjy ββββββ −−−++++= +− ...... 1110)( ,  j= 0, 1, 2, ..., K 

The symbol βj-j' denotes the sum of individual effects βj through βj' with j' > j. Therefore: 

2
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2.1.2.3 SB Procedure 

SB is a sequential procedure where the selection of the next factor combination to be 

simulated depends on the outputs of the previous combinations already simulated. At the start 

(Stage 0) of the procedure, SB always observes the two responses corresponding to the two 

extreme factor combinations, namely y(0) (all the factors at their low levels) and y(K) (all the 

factors at their high levels). The presence of important factors implies that at the end of Stage 

0, SB gives y(0) < y(K). In this situation, SB split the factor into two different groups of factors. 

If a group size is a power of 2, then SB splits that group into two equal groups; otherwise, SB 

splits that group at a point such that the first subgroup gets a size equal to the largest possible 

power of two. 
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As an example, assume a situation where among 16 factors, factors 5 and 8 are important. 

The SB procedure applied on this group of factors is presented in Figure  2.1. Each row 

depicts a stage of the SB procedure, starting with Stage 0. 

 
Figure  2.1: SB for K = 16 

 

In this example, the presence of important factors implies that at the end of Stage 0, SB gives 

y(0) < y(16). Hence, SB infers that the sum of all individual main effects is important:   β1-16 > 

0. Then, SB splits the group of factors into two groups with equal sizes. At Stage #1, the 

comparison between y(0) and y(8) implies that there should be at least one important factor 

among the first 8 factors:  β1-8 > 0. Group-factor β1-8 is then split into β1-4 and β5-8 .This 

procedure continues until all important factors (5 and 8 in this example) are detected.  

2.1.2.4 Metamodel 

SB uses a first-order polynomial, as presented in Equation 2.1, to approximate the output. 

Therefore, in order to build a metamodel for SB we only need to have estimates of main 

effects. SB, however, only provides the main effect estimates of the important factors. So an 

approximate metamodel in this case will be: 

∑
∈
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jj xy ββ0   I = set of important factors 

SB does not estimate the overall mean (β0).To estimate the β0, one more observation should 

be taken at central points (i.e. all the factors set at their central level). 

β1-16 Y(16) Y(0) 

Y(8) β 9-16 β 1-8 

Y(4) β 5-8 β 1-4 

Y(6) β 7-8 β 5-6 

Y(5) β 6 β 5 Y(7) β 8 β 7 
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2.1.3. Sequential Bifurcation in the Presence of Interactions (SB-X) 

2.1.3.1 Introduction 

By definition, an interaction means that the effect of a specific factor depends on the levels of 

other factors. In order to estimate the main effects in the presence of interaction, Bettonvil et 

al. (1996) used a fold-over design which is considered a resolution IV design. As previously 

discussed, the classic group screening designs assume a first-order polynomial. Kleijnen 

(1975b), however, proved that two-factor interactions do not bias the main effect estimators 

if a resolution IV design is used for the group screening. It means that groups of main effects 

are estimated without bias from two-factor interactions if sequential bifurcation uses a fold-

over design. It should be noted that using a fold-over design when applying SB doubles the 

number of required runs.  SB-X requires the following assumptions: 

Assumption (SBX-1): A first-order polynomial metamodel augmented with two-factor 

interactions gives zero approximation error. Therefore, the simulation output can be 

approximated by a second-order polynomial function as follows: 
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where, 

y: response of the metamodel (the sequential bifurcation approximation) 

K: total number of factors in the experiment 

βj : first-order or main effect of factor j with j =1, …, K 

βj; j′ : interaction effect of the factors j′ and j with 1 ≤ j < j′ ≤ k 

xj: value of factor j, standardized to lie in [-1,+1] 

Assumption (SBX-2): the signs of all main effects are known so βj ≥ 0 (j = 1, …, k) 

In the first-order approximation (Equation 2.1) all main effects were assumed non-negative: 

βj ≥ 0. But, what does this assumption mean in the presence of interactions? In a 2k factorial 

design, the main effect of factor j is defined as the difference between: 

1. the average output over all 2k-1 combinations of other factors, when the factor j is 

at its upper level, and 
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2. the average output over all 2k-1 combinations of other factors, when the factor j is 

at its lower level. 

It can be verified that in a metamodel with interactions as presented in Equation 2.3, the main 

effect of factor j is given by βj. Therefore, the known direction assumption leads to βj ≥ 0 (j = 

1, …, k) 

Assumption (SBX-3): If factor j is unimportant, then βij = 0, for any i ≠ j. SB-X may give 

misleading results if two factors have unimportant main effects but an important interaction. 

Therefore, this assumption is added. 

2.1.3.2 Design of SB-X 

The symbol y(j) denotes the response value when the factors 1, …, j are set at their upper 

levels (Hj) and the remaining factors (j + 1, …, K) are set at their lower levels (Lj). Therefore, 

in the standardized metamodel of Equation 2.3, the values of first j factors are +1 and the 

values of the remaining factors are -1. So the polynomial in Equation 2.3 yields: 
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for  j= 0, 1, 2, …, K 

The symbol y-(j), called the mirror observation of y(j), denotes the response value when the 

factors 1, …, j are set at their lower levels (Lj), and the remaining factors (j + 1, …, K) are set 

at their upper levels (Hj). Therefore, in the standardized metamodel of Equation 2.3, the 

values of the first j factors are -1 and the values of the remaining factors are +1. So the 

polynomial in Equation 2.3 yields: 
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for  j= 0, 1, 2, …, K 

Obviously, the definitions of y(j) and y-(j) imply that y-(0) = y(K) and  y-(K)= y(0).  

Based on the definitions above, the following equation yields an unbiased estimate for the 

main effect of factor j as: 
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2.1.3.3 Procedure 

The SB-X procedure fundamentally follows the same logical procedure used by SB. In Stage 

0, SB-X takes four observations, two of which are equal: y(0) = y-(K) and y(K) = y-(0). Equation 

2.4 yields: 
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The β1-K > 0 implies that there is at least one important factor among K factors and SB-X 

proceeds to Stage 1, where the group factor will be split into two groups of factors: group (1) 

includes factors 1 to K/2 and group (2) includes factors K/2+1 to K. If we assume the K is an 

even number then: 
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If any subgroup yields a zero main effect, it will be dropped from further screening. On the 

other hand, each subgroup with main effect greater than zero will be split into two subgroups, 

and this procedure continues until the sizes of all remaining subgroups are one. 

The fold-over design does not enable us to estimate individual interactions, but it does enable 

us to estimate whether interactions are important or not. If the fold-over design and the 

“original” design (the one without considering the mirror scenarios) give the same 

conclusions, then interactions are unimportant (Kleijnen et al. (2003a)). If both the original 

and fold-over designs find different point estimates, but select the same factors as important, 

it implies that interactions are present in the model, but the main effects of the important 

factors are larger than the two-factor interaction effects (Kleijnen et al. (2003b)).  
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2.1.3.4 Metamodel 

SB-X provides the unbiased estimates of main effects of important factors. Kleijnen et al. 

(2003a) suggested that in order to estimate the individual interaction effects between the 

factors declared as important, a resolution-V design should be used. Eventually the 

metamodel can be approximated by the following equation: 
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2.1.4. Further Discussions on SB and SB-X 

Issues that are addressed in this section are common among all the screening methods that 

are based on SB, including Cheng’s method (Cheng (1997)) and Controlled Sequential 

Bifurcation (Wan et al. (2003)) which will be discussed later in this chapter. In Chapters 3 

and 4 where we have reported the results of our factor screening experiments on the available 

simulation models, we will augment the discussion of some of the following issues according 

to the method being used.  

2.1.4.1 Quantifying Importance 

In the previous sections, SB might have declared a factor j important if its effect βj was 

positive (not zero). In practice, however, adopting this policy would result in declaring all 

factors as important, because all factors have some non-zero effects. Therefore, before 

calling a factor important, its effect should be greater than a certain value, like δ. For 

example, at the first stage, if y(K) - y(0) > δ, we conclude that at least one of the factors 1 

through K is important. For quantifying importance, two policies may be adopted by SB 

users: 

1. In the first policy, the analyst determines a value for δ that if a main effect of a 

factor is greater than that limit, the factor should be considered as important. For 

this policy, at each stage, SB uses a constant δ for finding if a group of factors 

includes any important factor. 
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2. In the second policy, analysts do not need to quantify a priori how big a factor 

effect should be in order to be called important. As simulation outputs become 

available, SB updates the upper limits for the factor effects; the analysts can stop 

the factor screening experiment as soon as they find these limits sharp enough. In 

this policy, in Stage 0, beta limit (βLim) is equal to β0-K, implying that all 

individual main effects are smaller than βLim= β0-K. In Stage 1, βLim will be 

updated to },min{ 12/2/0 KKK −+− ββ . The beta limit of Stage 1 is certainly equal to 

or less than β0-K. For the following stages, βLim at each stage is the minimum of 

beta values (main effects) corresponding to all remaining group-factors at that 

stage. If at a certain stage, the user recognizes that the βLim is too small, SB will 

eliminate the group-factor with main effect equal to βLim and update the βLim to 

the minimum of the remaining group-factor effects. If the user finds the βLim 

large enough, SB proceeds to the next Stage. 

Adopting the first policy leads SB to find all the factors with main effects equal or greater 

than δ. However, if the user chooses a low value for δ, then SB needs to make a large number 

of observations in order to detect all the factors with main effects equal or greater than δ. On 

the other hand, adopting the second policy enables SB to have interaction with user. So, the 

users can eliminate the group-factors with main effect not large enough to be considered 

important by the users. 

2.1.4.2 Rescaling the Effect Coefficient 

In practice, when we consider whether a change in the response is worth pursuing, the cost to 

achieve the change is often critical. In other words, when we compare the effects of two 

different factors, the comparison may have little meaning if the cost to change the factors is 

very different. Therefore, rescaling the effect coefficients with respect to the cost of changing 

the factors’ settings can insure that the results have a useful interpretation. As a result, in the 

new formulation, the cost of deviating from each factor’s nominal level is also incorporated 

into the metamodel.  
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Wan et al. (2003) proposed the following approach to rescale the effect coefficients: Let ci be 

the cost per unit change of factor i, for i = 1, 2, . . . , K. Further, let iDi cc ∈= max*  , where D 

is the set of indices of all of the factors whose settings can only be changed in discrete units 

(e.g., number of machines at a workstation, or pills per prescription). Let 
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which is the maximum change in factor i that can be achieved without exceeding a cost c*; 

and let ωi = δici/c* , which is the fraction of a full-cost move, c*/ci, that can actually be made 

for factor i. If factor i can be changed continuously ( Di ∉ ), or Di ∈ but c*/ci is an integer, 

then ωi = 1. If Di ∈ and c*/ci is not an integer, then ωi < 1. 

Recall that the main-effects model is 
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For screening with a main-effects model, a two-level experimental design is adequate. Let 

the nominal low setting of zi be 0
iz  and let the high setting be iiz δ+0 , for i = 1, 2, . . . , K. 

Define the transformed variables ))(/(/)( 0*0
iiiiiiii zzcczzx −=−= δω . Then Y can be 

expressed as a linear regression on xi, i = 1, 2, ..., K, as: 
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where the low setting of xi is 0, the high setting is ωi, and iiii ωβδβ /~
= , for i = 1, 2, . . . , K. 

Now each βi , i > 0, has a practical interpretation: it represents the change in the expected 

response when spending at most c* to change the setting of factor i.  

2.1.4.3 Verifying the Factor Screening Result 

In order to verify the important factor shortlist reported by SB or SB-X, Kleijnen et al. 

(2003a) tested the effects of the remaining unimportant factors for the following two 

scenarios: first, they set all unimportant factors at their low values, while keeping the 

important factors fixed; and secondly, they switched all unimportant factors to their high 

values, while keeping the important factors fixed. For both scenarios, they fixed the 

important factors at their central (base) values. A considerable difference between the outputs 
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of these two scenarios reveals that there is at least one important factor among the reported 

set of unimportant factors.  

An alternative approach is to build a metamodel in terms of factors identified as important, 

and then check how well the metamodel fits the real output of the simulation model. This 

approach has been employed in Chapters 3 and 4. 

2.1.4.4 Checking Nonlinearity in the Output 

A potential concern in the use of SB or SB-X is the assumption of linearity in the factor 

effects. Of course, perfect linearity is unnecessary, and SB works quite well even when the 

linearity assumption holds only approximately. In fact, it is noted that Equation 2.3 is capable 

of representing some curvature in the response function. This curvature of course, results 

from the twisting of the plane induced by the interaction term βijxixj.  

In running SB-X, we usually anticipate fitting the second-order polynomial, given by 

Equation 2.3.  Nevertheless, we should be aware that a second-order polynomial with pure 

quadratic effects may be more appropriate.  

In SB-X, for each design corresponding to y(j), there exists exactly one and only one 

symmetric design corresponding to y-(j). So the average of y(j) and y-(j) can be an estimate of 

the output corresponding to the center points (all factors at their central levels). Therefore, 

the central point analysis can use the outputs without requiring any further observations at the 

upper and lower levels of the factors. The only required observation is the response value 

when all the factors are at their central levels (center points). Let Fy be the average of 

responses observed by SB-X in the process of factor screening, and Cy be the response value 

corresponding to the center points. If SB and SB-X are being applied to a deterministic 

simulation model, only one observation is needed at the center point. If the difference 

CF yy − is small, then the center points lie on or near the plane passing through the factorial 

points, and the existence of the quadratic curvature is very unlikely. On the other hand, if 

CF yy −  is large, then quadratic curvature is present.  
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2.1.4.5 Factor's Effects on Response 

Three cases may happen if a factor changes from its low level L to its high level H. 

1. Monotonic response surface: the simulation output increases as the factor 

increases. This case can be handled well by SB. 

2. Non-monotonic response surface: the simulation output does not necessarily 

increases as the factor increases. This situation may happen in the presence of 

quadratic effects. In this case, SB may falsely infer that an important factor is 

unimportant. 

3. Interaction Only: When a factor does not have any main effect but its interaction 

with some other factors are significant, SB is not able to declare that factor as 

important. A simple example would be a metamodel like: y = β1,2x1x2. 

Conclusions from (2) and (3) are that SB is not always applicable to all simulation models. In 

case (2), where the output exhibits considerable quadratic effects, in order to get valid results 

from SB, the experimental area should be restricted such that the interaction terms in a 

metamodel can properly represent the curvature in the output. SB is never appropriate for 

case (3). 

2.1.4.6 Approximation Errors 

In both SB and SB-X, assumptions (SB-1) and (SBX-1) also mean that the approximation 

errors are zero, which implies a perfect fit. In order to model the approximation errors, 

Bettonvil et al. (1996) suggested two other alternative approaches: 

1. The approximation errors (say ε) can be assumed to be normally and 

independently distributed (n.i.d) with zero expectation and constant variance σ2 

(white noise error).  

2. Use covariance stationary process estimates, instead of white noise, to model the 

approximation errors.  

If we use either approach (1) or approach (2) to model the error term, after doing the factor 

screening experiment, we have to ensure that the actual residuals are consistent with the 
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assumption we have made. This issue will be discussed thoroughly in the applications in 

Chapters 3 and 4. 

2.1.4.7 Efficiency of SB 

Generally, the efficiency of a screening method is measured by the number of required runs. 

Bettonvil et al. (1996) suggested the following strategies for improving the efficiency of SB: 

1. When the size of a group is not a power of two, then its first subgroup should 

have a size equal to the largest possible power of two. For example, if a group has 

24 factors, then it should be split into two groups, one with 16 factors, and the 

other with 8 factors. 

2. Clustering important and unimportant factors improves the efficiency of SB. For 

example, factors can be labeled from 1 to K in increasing order of their 

importance, so that after Stage #1, the important factors are clustered in the 

second groups. 

Bettonvil et al. (1996) gave a formula for finding the maximum number of runs (maxn) 

needed to find the k important factors among K = 2m factors: 

)]/2([log1 2 kKkmaxn +=   (2.5) 

For SB, the expected number of runs, E(n), with probability of p for a factor to be important, 

is derived by Bettonvil et al. (1996) as follows: 
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2.1.4.8 Issues with Information Requested from Users 

In order to apply SB to a simulation model, the client must supply information on the 

experimental domain (experimental area to be explored), including realistic ranges of the 

individual factors and limits on the admissible scenarios or combinations of factor levels; for 

example, some factor values must add up to 100% (Kleijnen et al. (2003a)). 



A Comparison of Factor Screening Methods for Simulation Models 

 

 37

For SB and SB-X, assumptions (SB-1) and (SBX-1) usually does not hold over the entire 

factor space, and it may be a reasonable assumption for only small variations in a region of 

interest. Therefore, the situation where one of the observed responses seems to be 

unrealistically low or high implies that the user has failed to reasonably specify the factor’s 

upper and lower levels. Thus, restricting the experimental region, by changing the upper or 

lower levels of some factors, might be considered a solution.  

Assumptions (SB-2) and (SBX-2) imply that knowing the signs of main effects is necessary 

for applying SB or SB-X on a simulation system. Bettonvil et al. (1996) used a single-factor-

at-a-time design to discover the direction of the factors that the expert was unable to 

determine. If we assume that β0 is the response when all the factors are set at their central 

level, then y(xj) - β0 yields an estimate of βj, where y(xj) is the response value when all factors 

are set at their central levels except factor j which is set at its upper level. The sign of y(xj) - 

β0 is the same as the main effect sign of factor j. Thus SB requires one more run for each 

factor with unknown direction and therefore, as the number of factors with unknown 

direction increases, the efficiency of SB decreases significantly.  

Sanchez et al. (2005b) relaxed the assumption of known directions by suggesting the use of 

efficient fractional factorial experiments as Phase (1) of the factor screening experiment, to 

estimate the signs and magnitudes of the effects. Their results show that this strategy greatly 

reduces the possibility of erroneously concluding that important effects are unimportant 

because of incorrect groupings. In addition, they showed that re-labeling factors from 1 to K 

in increasing order of their importance (main effects estimated in phase (1)), improves the 

efficiency of SB. 

2.2. Sequential Bifurcation under Uncertainty 

2.2.1. Introduction 

The sequential bifurcation (SB) method developed by Bettonvil et al. (1996) requires the 

assumptions that the simulation response is deterministic and contains negligible random 
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error. In this section we extend SB to handle simulations where the response is stochastic and 

subject to significant error. The main idea of the proposed procedure in this section is derived 

from Cheng (1997). Their method, however, assumes that the response function can be 

represented by a first-order linear function. We make the required changes in their method 

for handling the situations where a first-order polynomial function augmented with second-

order interaction terms is a better approximation for the response function. 

One of the differences between deterministic and stochastic output is that in the latter case a 

disproportionate amount of effort can be expended on investigating factors which are 

borderline in importance. The method proposed by Cheng (1997) allows for an “indifference-

zone.”  If the importance of a factor is estimated to fall inside this indifference zone, then no 

further effort is made to estimate this factor effect more accurately. However, it will be 

shown that the proposed “indifference-zone” does not have a significant effect in improving 

the efficiency of the method. As an alternative, we have based our statistical comparisons on 

hypothesis testing, which is shown to be more efficient. 

2.2.2. Cheng’s SB under Uncertainty 

Cheng (1997) extended the SB method, which was originally developed for deterministic 

simulation models, to handle stochastic simulation models where the response is subject to 

significant error. They assumed a first-order polynomial function for the response function 

with known signs of main effects. 

2.2.2.1 Model Structure and Assumptions 

If y denotes the output of interest from a run, then there are two quantities which affect the 

value of y: 

1. a vector of decision variables: ),...,,( 21 Kxxx=x which are under the control of 

the experimenter 

2. a set of random numbers: ),...,,( 21 nuuu=u  which form the stochastic input 

driving the simulation run 
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Thus, y can be regarded as a function of only x and u: 

),( uxyy =    (2.11) 

Cheng (1997) proposes adopting the following regression metamodel: 

),()(),( uxxyx eηy +=   (2.12) 

where e(x,u) is regarded as an “error” term containing all the variation of y caused by 

stochastic inputs. Moreover we assume that: 

0)],([ =Ε uxe , 

)()],([Var 2 xux σ=e . 

The precise distribution of e(x,u) is not known but can be expected to be approximately 

normally distributed. The objective is to investigate the local behavior of η about some 

notional operating point ),...,,( 00
2

0
1

0
Kxxx=x . If attention is confined to a small change of x 

about x0, one of the following functions can approximately represent η around x0: 

1. First-order polynomial function:  
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2. Second-order polynomial function without quadratic effects 
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Bettonvil et al. (1996) assume that the simulation error e(x,u) is small and can be neglected. 

Cheng (1997) considered the situation where e(x,u) cannot be neglected but locally the 

variability of e(x,u) does not depend on x, that is, he assumes: 
22 )( σσ =x ,  is independent of x. 

Moreover, although the values of the βi are unknown, in most situations it is quite realistic to 

assume that their signs are known. In addition, by simply reversing the sign of xi where 

necessary, it may be assumed that: 

0≥iβ ,   for all i. 

In order to satisfy this assumption, Lj can be defined as the level of factor j that generated a 

low value for the output y, and Hj as the level that generate a higher value, provided that 
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factor j has any effect at all. Consequently, if an increase in factor j reduces the output, then 

the upper and lower levels of the factor should be switched such that Hj  < Lj, and thus the 

definition of Hj and Lj implies that all main effects in equation are non-negative: βj ≥ 0. For 

more explanation about how to relax this assumption please refer to Section  2.1.4.8. 

2.2.2.2 Design of SB under Uncertainty 

Cheng (1997) assumes that the response function (y) can be modeled by a first-order 

polynomial around point x(0). Hence the response function can be estimated by: 

),(... )0(
110 uxexxy KK ++++= βββ   (2.13) 

where: 

y: response of the metamodel (the sequential bifurcation approximation) 

K: total number of factors in the experiment 

βj : first-order or main effect of factor j with j = 1, …, K 

xj: value of factor j, standardized to lie in [-1,+1] 

e(x(0),u): the approximate error, assumed to be approximately normally distributed with 

mean zero and constant variance σ2. 

The symbol y(j) denotes the response value when the factors 1, …, j are set at their upper 

levels (Hj) and the remaining factors (j + 1, …, K) are set at their lower levels (Lj). Therefore, 

in the standardized Metamodel 2.13, the values of the first j factors are +1 and the values of 

the remaining factors are -1. So the polynomial in Equation 2.13 yields: 

),(...... 1110
)( uxey Kjjj

j +−−−++++= +− ββββββ , j= 0, 1, 2, …, K 

If j < k then the scaled difference  

2/][),(D )1()( −−= jk yykj  (2.14) 

has the expectation 

∑
=

=Ε
k

ji
ikjD β)],([   (2.15) 

so that D(j, k) can be regarded as an estimator of the sum of the main effects for factors j to k. 

If the y(j) and y(k) are independent, then  
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2

2
1)],([Var σ=kjD .  (2.16) 

The symbol βj-k denotes the expected sum of individual effects βj through βk with k > j. 

Therefore: 

)],([E kjDkj =−β . 

Improving the accuracy of y(j) can simply be done by replicating this design point. In general, 

if there are r(j-1) observations at level j-1: )1( −j
iy , i = 1, 2, …, r(j-1), and r(k) observations at level 

k: )(k
iy , i = 1, 2, …, r(k), then: 
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and 

)11(
4
1)],([Var )()1(

2
kj rrkjD += −σ .   (2.18) 

2.2.2.3 Cheng’s SB Procedure under Uncertainty 

The primary objective of factor screening is to divide the factors into just two groups: 

important factors and unimportant factors. For calling a factor important, its effect should be 

greater than a certain value, like δ. That is, if δ>),( kjD , we conclude that at least one of the 

factors j through k is important. Thus we can divide the main effects of factors into two 

groups as follows: 

I = { βj: βj > δ}      and     U = { βj: βj ≤ δ}   

As mentioned before, much simulation effort can be spent on borderline cases, where βj is 

close to δ. Cheng (1997) introduced an indifference-zone (0, δ+a) for coping with this 

problem. If βj is estimated as being located within this zone, it is automatically classified as 

being in U. If a is set small relative to δ, then a misclassification where βj is wrongly put in 

U, when actually βj > δ, can be assumed to be of little practical concern, as we know that βj < 

δ + a.  

Similar to deterministic SB, the key idea here is that if we find that for k > j: 
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δβ <∑
=

k

ji
i  

then, since we assumed that βi > 0 for all i, we must have βi < δ for i = j to k. Thus we can 

classify all the βi in the expression above as unimportant. 

The following procedure is taken from Cheng (1997) with some minor changes in notation 

and equations so as to make it consistent with the procedures presented in the previous 

sections for deterministic SB and SB-X. 

Step (0): To initiate the process we make r(0) > 1 and r(K) > 1 runs at levels 0 and K 

respectively (at this step, typically  r(0) = r(K) = a small number, between 2 and 5). Thus at the 

start of Step (1) we have two sets of observations: 

Observations at level 0: },...,1:{ )0()0( rjy j =  

Observations at level K: },...,1:{ )()( KK
j rjy =  

We also place all the coefficients in the single, unclassified set G1 = {β1, β2, …, βK). Thus 

initially the number of sets is p1 = 1. We also assign 1 to s and proceed to the next step. 

Step (s) (s > 0): At the beginning of Step (s), factors are partitioned into ps sets: 

ssisijsi pikjkG ,...,2,1,}:{ ,),1(, =≤<= −β   (2.19) 

For example, at Step (1) (s = 1 and p1 = 1), there is only one set of factors and Equation 2.19 

results in 1},:{ 1,1),1(1, =≤<= − ikjkG iiji β , where k0,1 = 1 and k1,1 = K. Thus G1 = G1,1 = {β1, 

β2, …, βK). 

At the beginning of Step (s), some of the sets are already classified, some are unclassified. If 

all sets have been classified, then the algorithm ends. Otherwise we select any unclassified 

set: call this Gi,s. 

1. If Gi,s is not a singleton set (set of size one) we see if all the coefficients can be 

classified as unimportant. This can be done by considering the expected main 

effect of set Gi,s, which is ),( ,),1( sisi kkD − . Based on Equation 2.19, set Gi,s includes 
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factors k(i-1),s to ki,s, therefore, for estimating ),( ,),1( sisi kkD − , two sets of 

observations are needed: 

Observations at level ki,s: },...,1:{ )()( ,, sisi kk
j rjy =   (2.20-a) 

Observations at level k(i-1),s-1: },...,1:{ )1()1( ),1(),1( −− −− = sisi kk
j rjy . (2.20-b) 

From the assumption that e(x,u) is normally distributed, ),( ,),1( sisi kkD −  is also 

normally distributed with mean and variance: 
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For each new observation sets (2.20-a) and (2.20-b), σ2 can be estimated by: 

S2 for observation set (2.20-a): 
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S2 for observation set (2.20-b): 
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and pooling these estimates gives an overall estimator of σ2 for set Gi,s as: 
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and pooling the estimates of σ2 over all stages gives an overall estimator of σ2 at 

the start of Step (s) as: 
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then with probability approximately (1-α): 
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If therefore 
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)11(
2
1),( )()1(,),1( ,),1( sisi kkssisi rr

SzkkD +−< −− −αδ  (2.23) 

then with confidence (1- α): 
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And since βj are all positive this means: 

},...,1,{           , ,),1(),1( sisisij kkkj +=< −−δβ  

and all the factors in set of Gi,s can be classified as unimportant. 

If Expression 2.23 is not satisfied, then Gi,s will be split into two groups 

at ⎥⎥
⎤

⎢⎢
⎡ +

= −
2

)( ,),1( sisi kkk . The two new sets that will replace Gi,s are: 

} ,...,{        } ,...,{
,),1( 1 sisi kkkk and ββββ +−

 

2. If Gi,s = {βk}, i.e. it is a singleton set, then we proceed to fully classify βk. This can 

be done by considering the expected main effect of set βk, which is ),( kkD . for 

estimating ),( kkD , two sets of observations are needed: 

Observations at level k: },...,1:{ )()( ss kk
j rjy =   (2.24-a) 

Observations at level k-1: },...,1:{ )1()1( −− = ss kk
j rjy . (2.24-b) 

From the assumption that e(x,u) is normally distributed, ),( kkD  is also normally 

distributed with mean and variance: 
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For each new observation set (2.24-a) and (2.24-b), σ2 can be estimated by: 

S2 for observation set (2.24-a): 
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S2 for observation set (2.24-b): 
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and pooling these estimates gives an overall estimator of σ2 for factor k at stage s 

as: 
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and pooling the estimates of σ2 over all stages gives an overall estimator of σ2 at 

the start of Step (s) as: 
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then a two-sided (1- α) confidence interval for βk with upper and lower limits 

given by: 

)11(
2
1),( )()1(2/ ss kksk rr

SzkkD +±= −
±

αβ  . (2.27) 

If δ is contained in this interval we make additional runs at the levels k-1 and k. If 
)1( −skr  and )( skr are not initially equal, add the runs at the level with the smaller 

number of runs, until )()1( ss kk rr =− . Then add runs at both levels k-1 and k, keeping 
)()1( ss kk rr =− . As runs are added, the length of the confidence interval Equation 

2.27 decreases. We stop when either: 

i. −< kβδ , then βk is classified as important, 

ii. δβ <+
k , then βk is classified as unimportant, 

iii. ak +<+ δβ  (where a is small relative to δ), then βk is regarded to be 

sufficiently close to δ to be classified as unimportant. 

Once βk is classified, we increment s and go to Step (s + 1). 
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It will be seen that at the end of the process every βj will have been classified as either 

important or unimportant. Moreover all βj classified as important will have a corresponding 

confidence interval calculated. 

2.2.3. Modified SB under Uncertainty 

This section first addresses the shortcomings and the problems inherent in the Cheng's 

method and then presents an improved algorithm for SB under Uncertainty. 

As mentioned in the previous section, Cheng (1997) introduced an indifference zone (0, δ+a) 

where if βj is estimated as being located within this zone, it is automatically classified as 

being unimportant. However, the method uses the indifference zone only when it is 

classifying a single factor, and does not use the indifference zone when comparing the group-

factor's main effect with δ. But in the process of applying SB, most comparisons are made by 

deciding about the significance of a group-factor not a single factor. For instance, we 

consider the example presented in Bettonvil et al. (1996), where 3 important factors were 

detected among 128 factors. In this example, in the process of factor screening, 29 main 

effects (either group-factor's or single factor's main effect) were compared with δ. Only 6 of 

these comparisons were used for deciding about the importance of a single factor, whereas 

the other 23 were made by comparing a group-factor's main effect with δ, for which the 

“indifference zone” is not applied. And more importantly, when there is only one factor in a 

group, no matter if it is important or not, two runs (with certain numbers of replications) must 

be made in order to classify the factor. Thus, comparing the main effect of this factor with δ 

+ α, only reduces the accuracy of the method and does not improve its efficiency, because we 

have already made 2 runs for this comparison!  

Even if we apply the indifference-zone concept for all the required comparisons, this method 

classifies a main effect, say k, as unimportant when either δβ <+
k  or ak +<+ δβ . Thus, if 

Cheng's method is performed once with parameter (δ, a) and once with parameter (δ+a, 0), 

the results do not differ. In addition, even determining an appropriate value for threshold δ is 

challenging for many users, and they usually want to see the results of factor screening for 

different value of δ. Introduction of another parameter into the method will be even more 
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confusing for the users. They may want to see the factor screening result for different 

combinations of δ and a values, which is often impractical, or completely destroys the 

efficiency of SB. 

Another important issue with Cheng's method is the way it eliminates unimportant factors. 

As mentioned before, the method uses Equation 2.23 for classifying a factor as unimportant. 

As we will show in the following discussion, Equation 2.23 is lenient in classifying 

unimportant factors, i.e. even if a main effect of a factor (or a group-factor) is less than δ, it is 

possible that the method does not eliminate it. Although this strategy does not affect the 

correctness of the method, it is counter to the fundamental assumption of most factor 

screening techniques: only a few factors (k) are important among many potentially important 

factors (K) ( Kk << ). As a result, assuming that each factor is unimportant unless otherwise 

is proven, improves the efficiency of the factor screening procedure, without sacrificing the 

accuracy of the method. 

Finally, although the variance of the error term ),( uxe  is unknown, Cheng's method uses the 

normal distribution percentage point for making statistical comparisons. While the t-

distribution approaches a normal distribution as its degrees of freedom increases, the SB 

method does not make a sufficient number of runs to make this approximation legitimate. For 

example, Bettonvil et al. (1996) report the number of required runs when performing SB on 

models with 1024 involved factors and 0 to 8 important factors. The results summarized in 

Table  2.1, show that even in the worst case SB requires only 65 runs, as a result the variance 

of the error term can be estimated with 64 degrees of freedom. But the t-distribution does not 

follow normal distribution perfectly with this value for degrees of freedom. Therefore, the t-

distribution percentage points should be used in making comparisons. 

 
Table  2.1: Total number of required runs when applying SB on K = 1024 factors 

 

0 1 2 3 4 5 6 7 8
Number of required 
runs 2 12 21 29 37 44 51 58 65

Number of important factor k
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2.2.3.1 Modified Algorithm for SB under Uncertainty 

The modified algorithm is based on all the assumptions made in Section  2.2.2.1. 

Step (0): to initiate the process we make r(0) > 1 and r(K) > 1 runs at levels 0 and K 

respectively (at this step, typically  r(0) = r(K) = a small number, between 2 and 5). Thus at the 

start of Step (1) we have two sets of observations: 

Observations at level 0: },...,1:{ )0()0( rjy j =  

Observations at level K: },...,1:{ )()( KK
j rjy = . 

We also place all the coefficients in the single, unclassified set G1 = {β1, β2, …, βK). Thus 

initially the number of sets is p1 = 1. We also assign 1 to s and proceed to the next step 

Step (s) (s > 0): At the beginning of Step (s), factors are partitioned into ps sets: 

ssisijsi pikjkG ,...,2,1         ,}:{ ,),1(, =≤<= −β   (2.28) 

For example, at Step (1) (s = 1 and p1 = 1), there is only one set of factors and Equation 2.19 

results in 1},:{ 1,1),1(1 =≤<= − ikjkG iiji β , where k0,1 = 1 and k1,1 = K. Thus G1 = G1,1 = {β1, 

β2, …, βK). 

At the beginning of Step (s), some of the sets are already classified, some are unclassified. If 

all sets have been classified, then the algorithm ends. Otherwise we select any unclassified 

set: call this Gi,s. 

1. If Gi,s is not a singleton set (set of size one) we see if all the coefficients can be 

classified as unimportant. This can be done by considering the expected main effect 

of set Gi,s, which is ),( ,),1( sisi kkD − . Based on Equation 2.19, set Gi,s includes factors 

k(i-1),s to ki,s, therefore, for estimating ),( ,),1( sisi kkD − , two sets of observations are 

needed: 

Observations at level kis: },...,1:{ )()( ,, sisi kk
j rjy =   (2.29-a) 

Observations at level k(i-1),s-1: },...,1:{ )1()1( ),1(),1( −− −− = sisi kk
j rjy  (2.29-b) 
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From the assumption that e(x,u) is normally distributed, ),( ,),1( sisi kkD −  is also 

normally distributed with mean and variance: 

∑
−=

=
si

si

k

ki
isiG

,
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)( , βµ ,   )11(
4
1)( )()1(

2
, ,),1( sisi kksi rr

G += −−
συ . 

For each new observation sets (2.29-a) and (2.29-b), σ2 can be estimated by: 

S2 for observation set (2.29-a): 
1
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S2 for observation set (2.29-b): 
1
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and pooling these estimates gives an overall estimator of σ2 for set Gi,s as: 

2

)1()1(
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,
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S   (2.30) 

and pooling the estimates of σ2 over all stages gives an overall estimator of σ2 at the 

start of Step (s) as: 

∑
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,

,),1(

.   (2.31) 

Now, in order to see if the main effect of set Gi,s
 is significant, we test the following 

one-tail hypothesis: 

δµ
δµ

>

≤

)(   :H
)(   :H

,1

,0

si

si

G
G

   (2.32) 

If H0 is rejected, the factor will be classified as important, whereas if H0 is not 

rejected, the implication is that the factor does not have significant effect. Because 

rejecting H0 is a strong conclusion, this formulation forces the factor to demonstrate 

that its main effect exceeds δ. In the other word, this formulation assumes that the 

effect is unimportant unless there is strong evidence to the contrary. 
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If the null hypothesis is correct, δµ =)( ,siG , then the quantity 

)()1(
2

2

)()1(
2
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),()11(
4
1

),(
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),(

kjss

kj

s
rrS

kjD
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kjD

SS
kjD

kjD

t
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− δ

σ

σ

δ

ω
σ

δ

     (2.33) 

has a t-distribution with ω degrees of freedom, where ∑
=

− −+= −
s

i

kk sisi rr
1

)()1( )2( ,),1(ω  

and 2
ss SSS ω= . 

If tα,ω denotes the upper α percentage point of the t-distribution with ω degrees of 

freedom, then if t0 > tα,ω, then we reject the null hypothesis H0 and conclude that the 

corresponding factor or group-factor is important. The condition t0 > tα,ω results in 

)11(
2
1),( )()1(,,),1( ,),1( sisi kkssisi rr

StkkD ++> −− −ωαδ            (2.34) 

Therefore, if the inequality in Equation 2.34 holds, then with confidence (1- α): 

δµ >)( isG   i.e. δβ >∑
−=

si

si

k

ki
i

,

),1(

 

and thus, with confidence (1- α) we can consider set Gi,s as important. Comparing 

inequalities in both Equations 2.23 and 2.34 reveals how lenient the Cheng's 

formulation is on eliminating factors. In the Cheng's formulation, a group-factor 

may remain in the experiment even if its true main effect is slightly less than δ, 

whereas in the new formulation a group-factor can remain in the experiment only if 

it can demonstrate its significant effect. 

If Equation 2.34 is satisfied, then Gi,s will be split into two groups at 

⎥⎥
⎤

⎢⎢
⎡ +

= −

2
)( ,),1( sisi kkk . The two new sets will replace Gi,s: 

} ,...,{        } ,...,{
,),1( 1 sisi kkkk and ββββ +−

 

and we increment s and go to Step (s + 1). 
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2. If Gi,s = {βk}, i.e. it is a singleton set, then we proceed to fully classify βk. This can 
be done by considering the expected main effect of set βk, which is ),( kkD . For 

estimating ),( kkD , two sets of observations are needed: 

Observations at level k: },...,1:{ )()( ss kk
j rjy =   (2.35-a) 

Observations at level k-1: },...,1:{ )1()1( −− = ss kk
j rjy . (2.35-b) 

From the assumption that e(x,u) is normally distributed, ),( kkD  is also normally 

distributed with mean and variance: 

kk ββµ =)( ,   )11(
4
1)( )()1(

2
ss kkk rr += −σβυ . 

For each new observation set (2.35-a) and (2.35-b), σ2 can be estimated by: 

S2 for observation set (2.35-a): 
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S2 for observation set (2.35-b): 
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and pooling these estimates gives an overall estimator of σ2 for factor k at stage s 

as: 
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and pooling the estimates of σ2 over all stages gives an overall estimator of σ2 at the 

start of Step (s) as: 
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If we set ∑
=

− −+=
s

i

kk ss rr
1

)()1( )2(ω , then a two-sided (1- α) confidence interval for 

βk with upper and lower limits given by: 
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)11(
2
1),( )()1(,2/ ss kksk rr

StkkD +±= −
±

ωαβ  (2.38) 

In order to make decision about the importance of factor k, two different strategies 

are used, depending on the expense of making an additional run. 

If simulation runs are expensive, we classify the factor without making any 

additional runs, so  

i. if −< kβδ , then βk is classified as important, 

ii. otherwise, βk is classified as unimportant. 

On the other hand, if simulation runs are not too expensive, we can obtain a better 

estimate of factor k's main effect by making additional runs. If δ is contained in this 

interval additional runs at the levels k-1 and k are made. If )1( −skr  and )( skr are not 

initially equal add the runs at the level with the smaller number of runs, 

until )()1( ss kk rr =− , and then add runs at both levels k-1 and k, keeping )()1( ss kk rr =− . 

As runs are added, the length of the confidence interval calculated as Equation 2.38 

decreases. We stop when either: 

i. −< kβδ , then βk is classified as important, 

ii. δβ <+
k , then βk is classified as unimportant. 

Once βk is classified, we increment s and go to Step (s + 1). 

2.2.4. Folded-over Modified Cheng’s Method (MCh-X) 

In this section, we modify the SB algorithm under uncertainty for cases where the second-

interaction effects are not negligible. The basic idea of SB-X is exactly the same as SB under 

uncertainty: If we find that for k > j, 

δβ <∑
=

k

ji
i  

then, since we assumed that βi > 0 for all i, we must have βi < δ for i = j to k. Thus we can 

classify all the βi in the expression above as unimportant. 
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SB under uncertainty (SB-X) assumes that the response function (y) can be modeled by a 

second-order polynomial function around x(0)  as follows: 

∑ ∑∑
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= +=′
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+++=
1

1

)0(

1
,

1
0 ),(

K

j

K

jj
jjjj

K

j
jj exxxy uxβββ     (2.41) 

where: 

y: response of the metamodel (the sequential bifurcation approximation) 

K: total number of factors in the experiment 

βj : first-order or main effect of factor j with j =1, …, K 

βj′;j : interaction effect of the factors j’ and j with 1 ≤ j′ < j ≤ K 

xj: value of factor j, standardized to lie in [-1,+1] 

e(x(0),u): the approximate error, assumed to be approximately normally distributed with 

mean zero and constant variance σ2. 

2.2.4.1 Design of Folded-over Modified Cheng’s Method 

The symbol y(j) denotes the response value when the factors 1,…,j are set at their upper levels 

(Hj) and the remaining factors (j + 1, …, K) are set at their lower levels (Lj). Therefore, in the 

standardized metamodel from Equation 2.41, the values of first j factors are +1 and the 

values of the remaining factors are -1. So the polynomial in Equation 2.41 yields: 
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               , j= 0, 1, 2, …, K 

The symbol y-(j), called the mirror observation of y(j), denotes the response value when the 

factors 1, …, j are set at their lower levels (Lj) and the remaining factors (j + 1, …, K) are set 

at their upper levels (Hj). Therefore, in the standardized metamodel (Equation 2.41), the 

values of first j factors are -1 and the values of the remaining factors are +1. So the 

polynomial in Equation 2.41 yields: 
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If j < k then the scaled difference  
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4
)()(),(

)1()1()()( −−−− −−−
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jjkk yyyykjD  (2.42) 

has the expectation 

∑
=

=
k

ji
ikjD β)],([E     (2.43) 

so that D(j, k) can be regarded as an estimator of the sum of the main effects for factors j to k. 

If the y(j) and y(k) are independent, then  

2

4
1)],([Var σ=kjD .    (2.44) 

The symbol βj-k denotes the expected sum of individual effects βj through βk with k > j. 

Therefore: 

)],([ kjDEkj =−β . 

Improving the accuracy of y(j) can be done by replicating. In general, if we have r(j-1) 

observations at level j-1: )1( −j
iy  and its mirror: )1( −− j

iy  , i = 1, 2, …, r(j-1), and r(k) observations 

at level k: )(k
iy , and its mirror: )(k

iy− , i = 1, 2, …, r(k), then: 
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and 

)11(
8
1)],([Var )()1(

2
kj rrkjD += −σ .     (2.46) 

2.2.4.2 Algorithm for the Folded-over Modified Cheng’s Method (MCh-X) 

Step (0): to initiate the process we make r(0) > 1 runs at levels 0 and its mirror level -0, and 

r(K) > 1 runs at level K and its mirror level -K. Thus at the start of Step (1) we have four sets 

of observations: 

Observations at level 0:   },...,1:{ )0()0( rjy j =  

Mirror observations at level -0:  },...,1:{ )0()0( rjy j =−  



A Comparison of Factor Screening Methods for Simulation Models 

 

 55

Observations at level K:   },...,1:{ )()( KK
j rjy =  

Mirror observations at level -K:  },...,1:{ )()( KK
j rjy =−  

We also place all the coefficients in the single, unclassified set G1 = {β1, β2, …, βK). Thus 

initially the number of sets is p1 = 1. We assign 1 to s and proceed to the next step. 

Step (s) (s > 0): At the beginning of Step (s), factors are partitioned into ps sets: 

ssisijis pikjkG ,...,2,1                },:{ ,),1( =≤<= −β   (2.47) 

For example, at Step (1) (s = 1 and p1 = 1), there is only one set of factors and Equation 

(2.47) results in 1},:{ 1,1),1(1, =≤<= − ikjkG iiji β , where k0,1 = 1 and k1,1 = K. Thus G1 = G1,1 = 

{β1, β2, …, βK). 

At the beginning of Step (s), some of the sets are already classified, some are unclassified. If 

all sets have been classified, then the algorithm ends. Otherwise we select any unclassified 

set: call this Gi,s. 

1. If Gi,s is not a singleton set (set of size one) we see if all the coefficients can be 

classified as unimportant. This can be done by considering the expected main effect 

of set Gi,s, which is ),( ,),1( sisi kkD − . Based on Equation 2.47, set Gi,s includes factors  

k(i-1),s to ki,s, therefore, for estimating ),( ,),1( sisi kkD − , the following four sets of 

observations are needed: 

Observations at level ki,s: },...,1:{ )()( ,, sisi kk
j rjy =    (2.48-a) 

Mirror observations at level ki,s: },...,1:{ )()( ,, sisi kk
j rjy =−   (2.48-b) 

Observations at level k(i-1),s-1: },...,1:{ )1()1( ),1(),1( −− −− = sisi kk
j rjy   (2.48-c) 

Mirror observations at level k(i-1),s-1: },...,1:{ )1()1( ),1(),1( −−− −− = sisi kk
j rjy . (2.48-d) 

From the assumption that e(x,u) is normally distributed, ),( ,),1( sisi kkD −  is also 

normally distributed with mean and variance: 
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For each new observation set (2.48-a), (2.48-b), (2.48-c) and (2.48-d), σ2 can be 

estimated by: 

S2 for observation set (2.48-a): 
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S2 for observation set (2.48-b): 
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S2 for observation set (2.48-c): 
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S2 for observation set (2.48-d): 
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and pooling these estimates gives an overall estimator of σ2 for set Gi,s as: 
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and pooling the estimates of σ2 over all stages gives an overall estimator of σ2 at the 

start of Step (s) as: 
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Now, in order to see if the main effect of set Gi,s
 is significant, we test the following 

one-tail hypothesis: 

δµ
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    (2.51) 
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If H0 is rejected, then the factor will be classified as important. If H0 is not rejected, 

then the implication is that the factor does not have significant effect. Because 

rejecting H0 is a strong conclusion, this formulation forces the factor to demonstrate 

that its main effect exceeds δ. In the other words, this formulation assumes that the 

effect is unimportant unless there is strong evidence to the contrary. 

If the null hypothesis is correct, δµ =)( ,siG , then the quantity 
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(2.52) 

has a t-distribution with ω degrees of freedom, where ∑
=

− −+= −
s

i

kk sisi rr
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)()1( )2(2 ,),1(ω  

and 2
ss SSS ω= . 

If tα,ω denotes the upper α percentage point of the t-distribution with ω degrees of 

freedom, then if t0 > tα,ω, we reject the null hypothesis H0 and conclude that the 

corresponding factor or group-factor is important. t0 > tα,ω results in 

)11(
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StkkD ++> −− −ωαδ            (2.53) 

Therefore, if Inequality 2.53 holds, then with confidence (1- α): 

δµ >)( ,siG   i.e. δβ >∑
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and thus, with confidence (1- α) we can consider set Gi,s as important.  

If the Inequality 2.53 is satisfied, then Gi,s will be split into two groups at 
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and we increment s and go to Step (s + 1) 

2. If Gis = {βk}, i.e. it is a singleton set, then we proceed to fully classify βk. This can 

be done by considering the expected main effect of set {βk}, which is ),( kkD . For 

estimating ),( kkD , four sets of observations are needed: 

Observations at level k: },...,1:{ )()( ss kk
j rjy =    (2.54-a) 

Mirror observations at level k: },...,1:{ )()( ss kk
j rjy =−   (2.54-b) 

Observations at level k-1: },...,1:{ )1()1( −− = ss kk
j rjy   (2.54-c) 

Mirror observations at level k-1: },...,1:{ )1()1( −−− = ss kk
j rjy  (2.54-d) 

Suppose that 2
skS , 2

skS− , 2
1−skS , and 2

)1( −− skS are the sample variances of observations for 

Equations 2.54-a, 2.54-b, 2.54-c, and 2.54-d, respectively, then pooling these 

estimates gives an overall estimator of σ2 for factor k in stage s as: 
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and pooling the estimates of σ2 over all stages gives an overall estimator of σ2 at the 

start of Step (s) as: 

∑

∑

=

−

=

−

−+

−+
= s

i

kk

s

i
k

kk

s
ss

s

ss

rr

Srr
S

1

)()1(

1

2)()1(

2

)2(

)2(
   (2.56) 

If we set ∑
=

− −+=
s

i

kk ss rr
1

)()1( )2(2ω , then a two-sided (1- α) confidence interval for 

βk with upper and lower limits given by: 

)11(
22

1),( )()1(,2/ ss kksk rrStkkD +±= −
±

ωαβ   (2.57) 

Similar to SB, now in order to decide on the importance of factor k, we follow two 

different strategies depending on the expense of making an additional run. 
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If simulation runs are expensive it is preferred to classify the factor without making 

any additional runs, so  

i. if −< kβδ , then βk is classified as important, 

ii. otherwise, βk is classified as unimportant, 

On the other hand, if simulation runs are not too expensive, we can have a better 

estimate of factor k's main effect by making additional runs. If δ is contained in this 

interval we make additional runs at the levels k-1 and k. If )1( −skr  and )( skr are not 

initially equal we add the runs at the level with the smaller number of runs, 

until )()1( ss kk rr =− . Then we add runs at both levels k-1 and k, keeping )()1( ss kk rr =− . 

As runs are added, the length of the confidence interval presented in Equation 2.57 

decreases. We stop when either: 

i. −< kβδ , then βk is classified as important, 

ii. δβ <+
k , then βk is classified as unimportant, 

Once, βk is classified we increment s and go to Step (s + 1). 

2.2.5. Further Observations 

The key controlling factor in SB under uncertainty is setting the probability level in the 

hypothesis formulations for Equations 2.32 and 2.51. A high level (i.e. small α value) 

increases the probability of correctly determining the important and unimportant sets I and U 

but at the expense of additional observations being needed. A low level (i.e. large value of α) 

makes the overall determination process faster but with a higher risk of variables being 

assigned to the incorrect set. 

Moreover, Cheng’s method does not guarantee to control Type I Error (declaring an 

unimportant factor to be important) for each factor or power (declaring an important factor to 

be important) at any step. Wan et al. (2003) developed a procedure that controls Type I and 

Type II error during a factor screening experiments. This method is discussed in Section  2.3. 
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In addition, the performance of Cheng’s method depends on the case considered. When the 

variances are large or unequal, Cheng’s method loses control of the Type I Error and power 

(Wan et al. (2003)). In addition, Cheng’s procedure is not valid under Common Random 

Numbers (CRN) because it assumes independence and equal variance for each observation. 

Having applied Cheng’s method to a simulation model, the next step would be to check the 

assumptions that Cheng’s method holds. As mentioned before, Cheng’s method assumes: 

1. Errors are approximately normally distributed 

2. The model is adequate: E(ε)  = 0 

3. Error variance is homogenous: Var(ε) = σ2  

4. Errors are statistically independent: Cov(εi, εj) = 0, for observations ji ≠   

Assumptions 1 and 2 can be checked by using normal probability plots, assumption 3 by 

plotting residuals versus actual fits and assumption 4 by plotting residuals in run order or 

plotting ei versus ei-1 (Tunali et al. (2000)). Details of these tests will be discussed during its 

application in Chapter 4. 

2.3. Controlled Sequential Bifurcation (CSB) 

The SB proposed by Bettonvil et al. (1996) has no performance guarantee for the stochastic 

case. Controlled Sequential Bifurcation (CSB), proposed by Wan et al. (2003) is a procedure 

that incorporates a two-stage hypothesis-testing approach into SB to control error and power, 

when factor screening a stochastic simulation model. Similar to basic SB, Wan et al. (2003) 

do not assume that the main-effects model holds across the entire range of the factors x; 

rather, they assume that it is a good local approximation for modest deviations from a 

nominal level, typically the center of the design space. CSB controls the power at each 

bifurcation step and Type I Error for each factor under heterogeneous variance conditions.  

CSB assumes that the response function (y) can be modeled by a first-order polynomial 

function around point x = (x1, x2, …, xK) as follows: 
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)(
1

0 xεββ ++= ∑
=

K

j
jj xy        (2.61) 

where: 

y: response of the metamodel (the sequential bifurcation approximation) 

K: total number of factors in the experiment 

βj : first-order or main effect of factor j with j =1, …, K 

xj: value of factor j, standardized to lie in [-1,+1] 

ε(x): the approximate error, assumed to be approximately normally distributed with 

mean zero and variance σ2(x). 

In CSB, the analyst must specify two thresholds. The lower threshold (∆0) indicates the level 

that the main effect of a factor must reach to be considered important, while factors with 

main effects larger than the higher threshold (∆1) are considered critical. In other words, for 

factor j if βj ≤ ∆0, then factor j is classified as unimportant and if βj ≥ ∆1, factor j is classified 

critical, and otherwise if ∆0 < βj < ∆1, it is classified as being important.   

CSB assumes that the sign of each factor effect is known so that we can set the levels of the 

factors to have βi ≥ 0 for all i > 0. Further, we assume that for a fixed factor setting, x = (x1, 

x2, …, xK), replications of Expression 2.61 are independent and identically distributed (IID); 

dependence of outputs across different factor settings due to CRN is permitted. 

CSB uses a hypothesis-testing approach to control the probability of Type I error (i.e., the 

probability an effect is classified as important when it is not) and power (i.e., the probability 

that an important effect is correctly classified). More specifically, for those factors with 

effects ≤ ∆0, CSB controls the Type I Error by declaring them important to be less than α; 

and for those factors with effects ≥ ∆1, CSB provides power for identifying them as 

important to be greater than γ. Those factors whose effects fall between ∆0 and ∆1 are 

considered important and the CSB procedure has reasonable, though not guaranteed, power 

to identify them (Wan et al. (2003)). In summary, the CSB procedure controls the Type I 

Error for each factor individually and guarantees the power at each step. 

Like other group screening designs, CSB begins with all factors placed in a single group and 

the group’s accumulated effect is tested. If the group’s effect is classified as unimportant, 
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then all factors within the group are classified as unimportant. Otherwise, the group is split 

into two smaller ones for further testing. If the group contains only one factor, this factor is 

classified as important. This procedure continues until all factors have been classified. One 

important advantage of CSB is that it rarely misclassifies a critical factor as unimportant, or 

an unimportant factor as important (Sanchez et al. (2005b)). A detailed procedure of CSB is 

presented in Wan et al. (2003). 

For the special case, where α = 1 - γ (Type I error is equal to one minus power), Wan et al. 

(2005) implements a fully sequential test in CSB that has the same error control as the two-

stage testing procedure. The test adds one replication at a time to both the upper and lower 

levels of the group being tested until a decision is made. Wan et al. (2005) mentioned that in 

most cases the sequential test is more efficient than the two-stage testing procedure. 

Wan et al. (2003) observed that CSB has superior performance to Cheng’s method in large 

and unequal variance cases. CSB has guaranteed performance with different parameter and 

factor configurations, which makes it attractive for problems with limited prior knowledge, 

especially about the variance of the error term. Cheng’s method, on the other hand, assumes 

variance homogeneity to gain advantages in degrees of freedom and it can be effective when 

this assumption is satisfied. 

Wan et al. (2004) improved the CSB procedure by incorporating a fold-over design in the 

hypothesis test to identify important main effects even when two-factor interactions and 

quadratic terms are present. The new procedure, called CSB-X, still has the same error 

control for screening main effects. At each step, the design gives an unbiased estimate of the 

main effect of the group, which is defined as the summation of the main effects of all factors 

in the group, even when two-factor interactions and quadratic terms are present. However, 

CSB-X is not able to estimate interaction and quadratic effects.  

2.4. Latin Hypercube Sampling (LHS) 

Latin Hypercube Sampling (LHS) was proposed by McKay (McKay et al. (1979)) for 

situations involving a relatively large number of factors. Latin hypercube (LH) sampling 
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provides a flexible way of constructing efficient designs for quantitative factors. Let k be the 

number of factors and let n denote the number of design points desired (n ≥ k), and define n 

levels per factor. The low and high levels for factor xi are coded as 1 and n, respectively, and 

the set of coded factor levels are {1, 2, . . . , n}. In Random LH each column of the design 

matrix is a random permutation of the factor levels. So in one replication, each of the k 

factors will be sampled exactly once at each of its n levels. LH designs have good space-

filling properties; that is, the design points are scattered throughout the experimental region 

with minimal unsampled regions.  Unlike the 2k factorial design, the LH design provides 

some information about the interior of the experimental region. The main benefit of LH 

sampling is its efficiency in terms of the number of required runs. The smallest LH designs 

are square, with n = k, so the number of design points grows linearly with k rather than 

exponentially (Sanchez (2005b)). 

LH designs can be used in factor screening. One approach to determine the important factors 

by using LH sampling is to build a metamodel for the LH designs.  Then based on the 

estimated parameters, the factors with important effects can be classified as important. In 

order to have uncorrelated estimates for the metamodel parameters, the design matrix should 

have orthogonal columns, or equivalently zero correlations. This property is critical for factor 

screening experiments, because if the parameter estimates are biased, the factors may not be 

classified correctly as important or unimportant. Cioppa (2005) measures the degree of 

orthogonality of a design matrix with the maximum pairwise correlation of the columns of 

the design matrix, denoted by ρ. A design matrix with ρ = 0 is truly orthogonal, and a design 

matrix with ρ = 1 has at least one column that is a linear combination of the remaining 

columns. 

It is not always easy to generate an orthogonal LH. Random LH designs, where the elements 

of each column are permutated randomly, have good orthogonality properties if n is much 

larger than k, but for smaller designs some factors might have high pairwise correlations. One 

approach often taken is to randomly generate many LH designs and then choose a good one 

(Sanchez (2005b)). Ye (1998) described a procedure to construct an Orthogonal Latin 

Hypercube (OLH) when its number of rows n is a power of 2 or a power of 2 plus 1; i.e. for n 

= 2m or 2m + 1, an OLH with 2m - 2 columns can be constructed. Later, Cioppa (2005) 
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extended the Ye’s procedure (Ye (1998)) to incorporate more factors into the design matrix. 

Table  2.2 from Cioppa (2005) shows the number of factors that can be screened by Ye’s 

method and extended Ye’s method. 

 
Table  2.2: Number of factors for Ye’s method and Ye’s extended method 

 

They, however, noticed that the space-filling of these new designs is poor; therefore, they 

suggested sacrificing some of the orthogonality intentionally in order to achieve better space-

filling while incorporating a greater number of factors. These designs are called Nearly 

Orthogonal Latin Hypercubes (NOLH). They define a NOLH design as a design which has a 

maximum pairwise correlation no greater than 0.03 and a condition number no greater than 

1.13 (For more information about the condition number of a matrix, please refer to Cioppa 

(2005).) Based on their procedure, Sanchez has implemented an Excel file which produces 

Nearly Orthogonal Latin Hypercube (NOLH) for less than 29 factors (Sanchez (2005a)). The 

numbers of design points required for investigating k ≤ 29 factors are provided in Table  2.3.  

 
Table  2.3: Number of runs for NOLH designs 

Number of factors Number of design points 
2-7 17 

8-11 33 
12-16 65 
17-22 129 
23-29 257 

 

The major disadvantage of the OLH and NOLH designs is that these designs are not yet 

available for more than 29 factors. In addition, despite having a good space-filling property, 

these designs require considerably more runs than Resolution IV designs.  

Number of runs m Ye’s method Extended Ye’s method
17 4 7 6
33 5 11 8
65 6 16 10
129 7 22 12

Maximum number of factors by
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2.5. Comparing Factor Screening Methods 

Different factor screening methods have different characteristics in terms of structure, 

capability and performance. In this section, several criteria are considered for evaluating the 

factor screening methods. Then, based on the proposed criteria, the screening methods are 

evaluated and compared. 

2.5.1. Criteria for Evaluating Designs 

This section describes criteria for evaluating experimental designs which are generally 

applied to simulation models. We will use these criteria to compare the factor screening 

methods to understand the strength and weakness of each. 

2.5.1.1 Number of Runs 

One of the important attributes on which a design can be evaluated is the number of runs it 

requires for estimating the metamodel parameters or determining the important factors. 

However, for stochastic models, where a number of observations should be obtained for each 

scenario, it is more realistic to evaluate a method based on the number of required 

observations instead of number of required scenarios. 

A design is called saturated if the number of required runs, n, equals the number of 

metamodel parameters, q. For example, if the metamodel is a first-order polynomial in k 

factors, then q = k +1 (where 1 refers to the grand or overall mean, often denoted by β0); and 

a saturated design for this model requires n = k + 1 runs to estimate the metamodel 

parameters (here only main effects).  

A screening method is called saturated if it can determine the important factors among the K 

involved factors with K runs. And it is called supersaturated if it can determine the important 

factors with less that K runs.  
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2.5.1.2 Accuracy 

In general, in screening experiments we want (1) to detect as many important factors as 

possible, and (2) to declare important as few unimportant factors as possible. Accuracy, 

which also has been called ‘effectiveness’ (Trocine et al. (2001)), is often difficult to 

measure, because in practical problems the underlying coefficients of the effect are unknown. 

In this thesis, we measure the accuracy of the factor screening results by generating a 

metamodel for the factors identified as being important. Then the goodness of fit of the 

metamodel is evaluated. 

2.5.1.3 Orthogonality  

A design is said to be orthogonal if the columns of the design matrix are orthogonal (i.e., the 

inner product of any two columns is zero). Orthogonality has long been a desirable criterion 

for evaluating designs. For an orthogonal design, since the input factors are uncorrelated, it 

simplifies interpretation of the results. Lack of orthogonality, also called multicolinearity, 

implies that the effect estimates are not independent or cannot be computed at all. 

Unfortunately, building an orthogonal design also has limitations. In reality, some factor 

level combinations may not be feasible. For example, in an M/M/1 queue the expected 

steady-state waiting time is infinite if the arrival rate exceeds the service rate. In general, 

forcing orthogonal designs may limit many factors to narrower ranges. Unfortunately, in 

complex models it may not be possible to know a priori which factor-level combinations are 

problematic; therefore, in these situations, in order to avoid getting unrealistic response 

values, all the factor ranges should be narrowed. 

2.5.1.4 Space Filling 

Space-filling designs sample not only at the edges of the hypercube that defines the 

experimental area, but also in the interior. A design with good space-filling properties frees 

analysts from making many assumptions about the behavior of the response surface. Kleijnen 

et al. (2005) believes that space-filling designs, such as the Latin Hypercube Design (LHD), 
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currently provide the best way of exploring surfaces where we do not expect to have smooth 

metamodels. 

2.5.1.5 Strictness of Assumptions 

As the number of factors increases, to be more efficient, factor screening methods tend to 

require more restrictive assumptions. A first-order polynomial function is generally assumed 

for the response by methods that screen a large number of factors, such as SB and PB 

designs. If the runs are not prohibitively expensive, the first-order polynomial function can 

be augmented by second-order interaction terms. SB-X and Resolution IV and V designs 

require this assumption. Moreover, it is desirable that a factor screening method can be easily 

adapted to account for curvature, for example by introducing a central point for factors.  

Additionally, the group screening methods, including SB and all its variants, assume that the 

interaction between two factors is important only if both factors have important main effects. 

This assumption may not always be true in practice; therefore, a method which does not 

require this assumption is more desirable.  

In addition, most of the classical factor screening methods such as Fractional Factorials, SB, 

and Cheng’s method assume variance homogeneity over the entire experimental region. The 

newly developed methods such as CSB, however, allow the assumption of variance 

heterogeneity. Although this more general assumption makes CSB less efficient, its result is 

more reliable for situations where the typical error assumptions are violated.  

In general, although hard to achieve, it is desirable for factor screening methods to be able to 

screen a large number of factors with the least restrictive assumptions, while maintaining 

reasonable efficiency. 

2.5.1.6 Ability to Handle Constraints on Factor-Level Combinations 

In many situations, the value that a factor can attain is completely dependent on the values of 

other factors. For example, the values of a number of factors must add up to 100%.  Or, for 

example in many queuing situations, certain combinations of factor settings give unstable 
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outputs. The classic DOE literature presents mixture designs for these situations 

(Montgomery (2000)). Many designs exist for exploring experimental regions (i.e., 

permissible combinations of design points) that are either hypercubes or spheres. In 

simulation experiments, restricting factor values to realistic combinations may complicate the 

design process dramatically. Until designs that can handle such situations are available, 

Kleijnen et al. (2005) believes that the visual presentation of the results may be the most 

appropriate ways of determining whether these situations exist. 

2.5.1.7 Ease of Design Construction and Implementation 

Simulation models usually involve a large number of factors. Consequently, the number of 

runs required for the factor screening experiment is too large to be made manually. 

Therefore, it is necessary to implement computer code to automate the process of factor 

screening a simulation model. As a result, the factor screening methods need to be simple 

enough to be implemented in a computer code. 

In addition, the results of factor screening experiments are generally used by the simulation 

modelers who are not particularly familiar with the statistical aspects of the factor screening 

experiments. Therefore, it is desirable for a factor screening method to generate results that 

can be interpreted by the modelers without requiring too much statistical knowledge. 

2.5.2. Evaluating Screening Methods 

Based on the criteria described for evaluating screening methods in Section  2.5.1 and the 

structures of factor screening methods explained in Chapter 2, we can now classify the 

methods according to the number of factors they can screen and the assumptions they 

require. Figure  2.2, which is partially driven from Kleijnen et al. (2005) shows suitable 

methods for particular situations.  
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Figure  2.2: Recommended designs for simulation models 

 

In Figure  2.2, the horizontal axis represents a continuum from simple to complex response 

surfaces. A simple response surface can be modeled by a first-order polynomial function and 

identically and independently distributed error terms, whereas a complex response surface 

cannot simply be modeled by low-order polynomial functions, and the error terms can 

present a more complex nature. The vertical axis represents the number of factors that the 

method can screen. 

In Figure  2.2, the lower left represents simple response surfaces with only a handful of 

factors, while the upper right represents very complex response surfaces with many factors. 

An analyst willing to make simplifying assumptions can start from the left of the figure. If 

little is known about the response surface, the analyst can start from the upper right of the 

figure for an initial experiment. In the present thesis, we have employed all the methods 

shown in Figure  2.2 except the Frequency Domain Methodology (FDM). More information 

about FDM can be found in papers by Jacobson et al. (1991), Sanchez et al. (1987), Sanchez 

et al. (2003), and Schruben et al. (1987). Now, we evaluate and compare the factor screening 

methods discussed in this chapter based on some of the criteria introduced in Section  2.5.1. 

For deterministic simulation models, the factor screening methods require only one 

observation for each run (or scenario). For these models, therefore, the number of required 

runs is equal to the number of obtained observations. On the other hand, for stochastic 

simulation models, depending on the factors screening method being used, different number 

of observations may be needed for each run (or scenario).  
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Figure  2.3 compares the number of required runs for each factor screening method for the 

deterministic models. The number of runs for R4 is based on Table  1.2, for R5 is based on 

Table  1.3, and for the Orthogonal Latin Hypercube Design (OLHD) is based on Table  2.3. 

The number of needed runs by SB is calculated based on Equation 2.5, with the probability 

of a factor to be important equal to 0.15. Moreover, as observed in Section  2.1.3.3, SB-X 

requires twice as many runs as SB. 

 

 
Figure  2.3: Number of required runs for the factor screening methods 

 

Figure  2.3 indicates that SB and SB-X are the most efficient methods in terms of required 

number of runs. However, it should be noted that one assumption of SB and SB-X is the 

known signs of main effects; when this assumption cannot be easily satisfied, prior to 

applying SB or SB-X, a Resolution III designs (such as BP) should be used to determine the 

directions of the main effects. The number of runs required by this initial experiment is 

almost equal to the number of involved factors.  

Orthogonal Latin Hypercube (OLH) designs are only available for up to 29 factors (based on 

the procedure proposed by Sanchez (2005a)), and even in that range it is considered an 
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expensive design as compared with other methods. R5 designs are generally available for up 

to 120 factors in the statistical software; but they are so expensive that they are infrequently 

used for screening more than a handful of factors. 

Figure  2.3 is also applicable for the stochastic simulation models, with the difference that 

instead of SB and SB-X, Cheng’s method, Modified Cheng’s method, CSB, and CSB-X are 

used. In addition, for the stochastic models, the number of observations obtained for each 

treatment (run) should also be taken into consideration. For R4, R5 and OLH designs, 

depending on the desired level of accuracy for the parameter estimates, a certain number of 

observations are obtained for each treatment. For Cheng’s and Modified Cheng’s methods, 

however, the number of observations should be determined such that the required statistical 

comparison at each step can be conducted. CSB and CSB-X, depending on the response 

variance, may obtain different numbers of observations for different treatments. 

From the perspective of the necessary number of observations, the performance of Cheng’s 

method, the Modified Cheng’s method, CSB and CSB-X, deteriorates as the response 

variance increases. This deterioration occurs because they need more observations at each 

step to be able to conduct the necessary statistical comparisons. As a result, one major 

advantage of R4 designs over the sequential designs is that R4 designs do not require an 

enormous number of observations to detect the important factors in the case of a high 

response variance. Moreover, although high variance reduces the accuracy of the parameter 

estimates, but for factor screening purposes, the parameters are not required to be estimated 

with high level of accuracy. After conducting a factor screening experiment, a metamodel 

can be generated using the important factors in which the parameters are estimated with the 

desired degree of accuracy. 

In terms of the metamodel complexity assumed for the response, LH designs are the most 

flexible, because they do not assume any specific type of response function. A stepwise 

approach is usually used to fit a metamodel to the data obtained according to a LH design. 

Using this approach, a simple metamodel (e.g. first-order polynomial) is formed and then, 

more complex terms (e.g. second or third-order interactions or pure quadratic) are added to 

the metamodel until the fitted metamodel shows an appropriate goodness-of-fit or all the 
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degrees of freedom are consumed. Likewise, R4 and R5 designs can easily be augmented by 

Central Composite Designs (CCD) to incorporate the quadratic terms. It is therefore possible 

for the LH, R4 and R5 designs to detect the important factors that do not present significant 

main effect but present important quadratic effects. On the other hand, SB and its variants 

(generally sequential designs) are not able to detect an important factor with insignificant 

main effects and important quadratic effects because they classify factors only based on the 

main effect estimates. 

Among the described methods, the LH designs have the best space-filling property. For the 

R4 and R5 design, this property can be improved significantly by incorporating CC designs 

into the R4 or R5 designs. In contrast, SB and CSB and their variants have the poorest space-

filling property, because they only consider upper and lower levels for factor screening. 

Variance homogeneity is always required by R4, R5 and LH designs. However, when this 

assumption is violated, a corrective action, such as transformation of the response function, 

may be considered. Although in the transformed metamodel the parameter estimates do not 

convey perceptible meaning, the important factors can still be detected as if no 

transformation had been applied. CSB and CSB-X are claimed to function correctly even if 

the variance homogeneity assumption is violated. But Cheng’s method and the Modified 

Cheng’s method may lead to false results if this assumption is not met. Moreover, 

transformation is not very useful for these two methods, because determining an appropriate 

delta limit (δ) when the transformation has been applied can be impractical. 

2.6. Conclusion 

This chapter described several factor screening methods which are generally used for 

screening with simulation models, as well as the subsequent issues usually occurring when 

these methods are applied. Each of these methods has advantages and disadvantages, and are 

suitable only for certain situations. Several criteria were addressed in this chapter for 

evaluating the factor screening methods among which, the number of required observations, 

space-filling property, and the strictness of assumptions appeared to be of greatest 
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importance. None of the factor screening methods are claimed to be superior in all the 

criteria. A method with good space-filling property or a complex metamodel requires an 

excessive number of runs; or a method with a moderate number of required runs has to make 

several simplifying and strict assumptions.  

This chapter indicated that each factor screening method is suitable for certain situations 

specified by the complexity of the response function and the number of factors to be 

screened. In the next two chapters, we apply the methods discussed previously to two 

medical simulation models, and then evaluate the performance of each method. 
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3. Factor Screening on Deterministic Models 

This chapter provides the results from several factor screening experiments on an available 

deterministic model, called the Drug Model. The methods will be evaluated in terms of the 

number of required runs and the goodness of fit of the metamodel built for the factors 

detected as important.  

A major issue with using statistical tools such as ANOVA in analyzing a deterministic 

simulation model is the fact that these statistical tests do not convey reasonable meaning in 

the context of deterministic models. In other words, F-ratio, p-value, and standard errors 

calculated in ANOVA are meaningful only when the data are obtained from a stochastic 

response. Therefore, through this chapter, whenever we apply a statistical test on the data, we 

assume that the data are obtained according to a single replicate design. 

3.1. Factor Screening on Drug Model 

The Drug Model is a proprietary deterministic simulation model which consists of 34 factors; 

but according to an expert’s opinion, due to dependency, some of the factors should be 

confounded. The values of the confounded factors cannot be changed independently; thus, 

we treat the confounded factors together as a single factor. After appropriately combining 

confounded factors, we performed the factor screening experiment on 25 factors. Since the 

number of factors is not excessive in the Drug model and the model executes quickly, a 2k-

Fractional Factorial with resolution IV is a reasonable design to be used as a factor screening 

method. It is efficient in terms of number of required runs and it provides unbiased estimates 

for all main effects. Sequential Bifurcation augmented with a fold-over design (SB-X) and 

Latin Hypercube Design (LHD) are other methods that are used for factor screening the Drug 

model.  
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As mentioned previously, a computer code has been implemented for factor screening the 

available simulation models. The complete structure of the code is discussed in Appendix A. 

For SB-X, which is a sequential procedure, the code generates the appropriate design at each 

Stage, whereas for 2k Fractional Factorial and Latin Hypercube designs, the user should 

provide the code with the proper designs. The code can read those designs via an Excel file 

and returns the obtained observations for each treatment. We used JMP and Sanchez (2005a) 

to generate the 2k Fractional Factorial and LH designs, respectively. 

3.1.1. 2k Fractional Factorial Design 

JMP was used to generate a 2k fractional factorial design of resolution IV. This design 

required 64 runs for estimating the factors’ main effects. Since the Drug model is a 

deterministic model, only one observation is needed for each scenario.  

It is possible that for some combinations of upper and lower levels of factors, the model 

generates an unrealistic response. Therefore, after making 64 observations, we showed the 

distribution plot of observed responses to our client to make sure that all the response values 

are at a reasonable range. The plot of the response distribution is shown in Figure  3.1. 

  
Figure  3.1: Response distribution of the Drug Model 

 

Analysis of variance and fit for the 2k fractional factorial design are shown in Table  3.1 and 

Table  3.2. 
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Table  3.1: Summary of 
fit for the 2k - FF design  

Table  3.2: ANOVA for the 2k - FF design 

 

 

 
 

Both the R2
Adj and the model p-value shows that the generated metamodel satisfactorily fits 

the data. R2
Adj = 0.999 implies that 99.9% of the variation in the data can be accounted for by 

the model. Therefore, a first-order polynomial function augmented with second-order 

interactions effects can be a good approximation for the response function. It should, 

however, be noted that for the deterministic models the F-test and p-value do not carry any 

meaningful interpretation. 

The plot of actual versus predicted response is shown in Figure  3.2 and the normal 

probability plot for residuals is depicted in Figure  3.3. Both of these plots indicate that the 

normal distribution assumption for residuals seems reasonable and there is no significant 

evidence for the violation of this assumption. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  3.2:  Actual by predicted data 
for 2k - FF design 

Figure  3.3: Residual distribution for 2k - FF design 
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RSquare
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0.999243
1096.687
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Summary of Fit
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3.1.1.1 Adding center point 

Before judging the significance of each factor, the existence of nonlinearity effects in the 

response function should be checked by adding a center point (a point with all factors at their 

central levels).  The analysis of variance and summary of fit for the new model with the 

center point added are shown in Table  3.3 and Table  3.4  

 
 

Table  3.3: Summary of Fit for 2k - FF 
with center point 

Table  3.4: ANOVA for 2k - FF with center point 

 

 

 

Adding the center point reduces R2
Adj from 0.9992 to 0.9988 and F-Ratio from 1486.609 to 

991.1448. Although the reduction in R2
Adj is not significant, the decrease in F-Ratio is not 

negligible and requires further investigation.  

As shown in Figure  3.4 and Figure  3.5, the center point acts as an outlier.  Both figures show 

that the residual for the center point is remarkably greater than the residuals for other design 

points.  All of this evidence suggests that a first-order polynomial augmented by second-

order interactions may not be a good approximation of the response function. Therefore, a 

Central Composite Design (CCD) is used to estimate the quadratic effects in the data.  

 

 

 

 

 

 

RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

0.999856
0.998847
1343.113
79956.65

65

Summary of Fit

 

Model
Error
C. Total

Source
56
8

64

DF
1.0013e+11
14431616.9
1.0014e+11

Sum of Squares
1.788e+9

1803952.1

Mean Square
991.1448

F Ratio

<.0001*
Prob > F

Analysis of Variance

 

Model
Error
C. Total

Source
56
8

64

DF
1.0013e+11
14431616.9
1.0014e+11

Sum of Squares
1.788e+9

1803952.1

Mean Square
991.1448

F Ratio

<.0001*
Prob > F

Analysis of Variance
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Figure  3.4: Residual by predicted 
response for 2k - FF with center point 

Figure  3.5: Residual Distribution for 2k - FF with center 
point 

 

3.1.1.2 Central Composite Design 

The Central Composite Design (CCD) is the most popular class of designs used for fitting a 

second-order model. The created “on-face CCD” requires 225-19 runs for a fractional factorial 

of resolution IV, and 2 × 25 runs for axial designs, and 1 run for central point; thus a total of 

115 runs are needed.  An on-face CCD provides more information about each factor. In this 

design, two more observations are added for each factor j. For the first observation, factor j is 

at its upper level while other factors are at their center level, and for the second observation, 

factor j is at its lower level while other factors are at their center level. The analysis of 

variance and fit for the CCD are shown in Table  3.5 and Table  3.6. 

 
Table  3.5: Summary of fit for 
CCD  

Table  3.6: ANOVA for CDD 
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DF
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Sum of Squares
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343057.5

Mean Square
3712.961

F Ratio

<.0001*
Prob > F

Analysis of Variance

 

RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

0.99989
0.999621
585.7111
78940.56

115

Summary of Fit
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Both the R2
Adj and the model p-value show that the generated metamodel satisfactorily fits 

the data. R2
Adj = 0.999 implies that 99.9% of the variations in the data can be accounted for 

by the model.  

The plot of actual versus predicted response is shown in Figure  3.6 and the normal 

probability plot for residuals is depicted in Figure  3.7. Both of these plots show that the 

normal distribution assumption for residual seems reasonable and there is no significant 

evidence that implies a violation of this assumption. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  3.6: Actual by predicted data 
for CCD 

Figure  3.7: Residual distribution for CCD 

 
 

3.1.1.3 Finding Important Factors 

The client wanted to find the factors that would produce a change in the response function of 

$5000 or more. Therefore, for the Drug model an important factor was defined as a factor 

able to cause a $5000 change in the output.  

As a first step to identify the important factors, the “Rule of 2” is employed. This criterion 

drops any effect with F-Ratio less than 2 from the model. For more information about “Rule 

of 2”, refer to Wallace (1977). The analysis of variance and fit for the restricted model are 

shown in Table  3.7 and Table  3.8.  
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Table  3.7: Summary of fit for the 
restricted model  

Table  3.8: ANOVA for the restricted model 

 

 

 
 

Both the R2
Adj and the model F-Ratio have increased. The increase in R2

Adj is not significant, 

but the model F-ratio has increased noticeably.  

Table  3.9 displays the estimated effects of the generated metamodel. Recall that an important 

factor is one that will cause a $5000 change in the output. Therefore, if a factor has a main 

effect greater than $5000/2 = $2500, or a quadratic effect greater than $5000, or is involved 

in a second-order interaction effect greater that $5000/2 = $2500, it is declared to be 

important. Table  3.10 lists the important factors. 

 

 

 

 

 

 

 

 

 

 

 

Model
Error
C. Total

Source
43
71

114

DF
1.0315e+11
38720308.7
1.0319e+11

Sum of Squares
2.3988e+9
545356.46

Mean Square
4398.535

F Ratio

<.0001*
Prob > F

Analysis of Variance

 

RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

0.999625
0.999397
738.4825
78940.56

115

Summary of Fit
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Table  3.9: Parameter estimates for CCD 

 
Table  3.10: List of important factors for the Drug Model 

Screening ID Effect Main effect Expert Guess

1 X1 34729.802 Important
5 X5 -5370.167 Important
7 X7 9008.4596 Important
9 X9 -5217.852 Unknown

11 X11 -6844.832 Important
16 X16 -9907.881 Important
29 X29 -4363.484 Important  

Intercept
X1
X2
X3
X5
X6
X7
X8
X9
X11
X13
X16
X18
X19
X20
X21
X23
X24
X27
X29
X30
X34
X1*X2
X1*X5
X1*X7
X1*X8
X1*X9
X1*X11
X1*X13
X1*X16
X1*X19
X1*X20
X1*X21
X1*X24
X1*X27
X1*X29
X1*X30
X1*X34
X2*X6
X2*X9
X2*X11
X3*X8
X7*X34
X16*X16

Term
77582.572
34729.802
323.20964
-1015.555
-5370.167
-579.185

9008.4596
1352.0727
-5217.852
-6844.832
302.22846
-9907.881
-224.8697
1185.3053
1544.9978
1041.3688
486.47313
-1298.365
-268.6111
-4363.485
268.38015
347.05847
132.02197
-150.7269
3344.7731
1037.7573
-1879.518
-2368.665
474.01233

-3311.14
670.2912

1144.0938
601.8327

-971.5914
-1187.343
-2091.306
791.26544
649.04553
-941.7017
-186.0884
-456.553

344.54431
242.55652
2366.1858

Estimate
105.4975
90.90092
90.90092
90.90092
90.90092
90.90092
90.90092
90.90092
90.90092
90.90092
90.90092
90.90092
90.90092
90.90092
90.90092
90.90092
90.90092
90.90092
90.90092
90.90092
90.90092
90.90092
92.31032
92.31032
92.31032
92.31032
92.31032
92.31032
92.31032
92.31032
92.31032
92.31032
92.31032
92.31032
92.31032
92.31032
92.31032
92.31032
92.31032
92.31032
92.31032
92.31032
92.31032
139.2577

Std Error
735.40
382.06

3.56
-11.17
-59.08
-6.37
99.10
14.87

-57.40
-75.30

3.32
-109.0
-2.47
13.04
17.00
11.46
5.35

-14.28
-2.95

-48.00
2.95
3.82
1.43

-1.63
36.23
11.24

-20.36
-25.66

5.13
-35.87

7.26
12.39
6.52

-10.53
-12.86
-22.66

8.57
7.03

-10.20
-2.02
-4.95
3.73
2.63

16.99

t Ratio
<.0001*
<.0001*
0.0007*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
0.0014*
<.0001*
0.0158*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
0.0042*
<.0001*
0.0043*
0.0003*
0.1570
0.1069
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
0.0476*
<.0001*
0.0004*
0.0105*
<.0001*

Prob>|t|

Parameter Estimates
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3.1.1.4 Generating the Metamodel 

A metamodel can now be constructed using the on-face central composite design composed 

of the 7 factors determined to be important.  This design requires 27-1 factorial runs for a 

resolution V design, 14 axial and 1 center point run. The analysis of variance and fit for the 

model are shown in Table  3.11 and Table  3.12. 

 
 

Table  3.11: Summary of fit for the 
generated metamodel  

Table  3.12: ANOVA for the generated metamodel 

 

 

 
 

Both the R2
Adj and the model p-value show that the generated metamodel satisfactorily fits 

the data.  

The plot of actual versus predicted response is shown in Figure  3.8 and the normal 

probability plot for residuals is given in Figure  3.9. Both of these plots show that the normal 

distribution assumption for residuals appears reasonable and there is no significant evidence 

that implies the violation of this assumption. 

 

 

 

 

 

 

 

Model
Error
C. Total

Source
35
43
78

DF
1.0055e+11
20338912.3
1.0057e+11

Sum of Squares
2.8729e+9
472997.96

Mean Square
6073.863

F Ratio

<.0001*
Prob > F

Analysis of Variance

 

RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

0.999798
0.999633
687.7485
79290.21

79

Summary of Fit
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Figure  3.8: Actual by predicted 
responses 

Figure  3.9: Residual distribution for the generated 
metamodel 

 

Now, in order to have more accurate estimates for effects, all the effects with F-Ratio less 

than 2 are eliminated. The analysis of variance and fit for the restricted model are shown in 

Table  3.13 and Table  3.14.  

 
 

Table  3.13: Summary of fit for the 
restricted metamodel  

Table  3.14: ANOVA for the restricted metamodel 

 

 

 
 

Both the R2
Adj and the model F-Ratio has increased. The increase in R2

Adj is not significant, 

but the model F-ratio has been almost doubled. The estimates of effects are shown in Table 

 3.15 and the effect tests for each factor are tabulated in Table  3.16.  
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Model
Error
C. Total

Source
24
54
78

DF
1.0055e+11

23919103
1.0057e+11

Sum of Squares
4.1895e+9
442946.35

Mean Square
9458.331

F Ratio

<.0001*
Prob > F

Analysis of Variance

 

RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

0.999762
0.999656
665.5421
79290.21

79

Summary of Fit
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Table  3.15: Parameter Estimates for the 
restricted model 

Table  3.16: Effect Tests for the restricted model 

 

As mentioned before, CCD assumes a second-order polynomial function for the response 

function: 
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where, each variable xj is standardized and lies in [-1,+1].  K is the total number of important 

factors. 

The estimates for parameters for the preceding metamodel are shown in Table  3.17. The 

intercept (β0) can be found in Table  3.15.  

 

 

 

 

Intercept
X1
X5
X7
X9
X11
X16
X29
X1*X7
X5*X7
X1*X9
X7*X9
X1*X11
X9*X11
X1*X16
X7*X16
X9*X16
X11*X16
X1*X29
X5*X29
X7*X29
X9*X29
X11*X29
X16*X29
X16*X16

Term
77694.757
34541.257
-5266.857
8995.4255
-5103.579
-6819.673
-9775.387
-4312.412
3246.6237
-170.4662
-1787.298
-473.1196
-2357.947
132.21765
-3188.866
-734.4593
531.34936
771.27978
-1872.782
283.82892

-489.505
277.68439
372.13995
531.14008
1909.7029

Estimate
184.5882
81.92258
81.92258
81.92258
81.92258
81.92258
81.92258
81.92258
83.19277
83.19277
83.19277
83.19277
83.19277
83.19277
83.19277
83.19277
83.19277
83.19277
83.19277
83.19277
83.19277
83.19277
83.19277
83.19277
201.9507

Std Error
420.91
421.63
-64.29
109.80
-62.30
-83.25
-119.3
-52.64
39.03
-2.05

-21.48
-5.69

-28.34
1.59

-38.33
-8.83
6.39
9.27

-22.51
3.41

-5.88
3.34
4.47
6.38
9.46

t Ratio
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
0.0453*
<.0001*
<.0001*
<.0001*
0.1178
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
0.0012*
<.0001*
0.0015*
<.0001*
<.0001*
<.0001*

Prob>|t|

Parameter Estimates

X1
X5
X7
X9
X11
X16
X29
X1*X7
X5*X7
X1*X9
X7*X9
X1*X11
X9*X11
X1*X16
X7*X16
X9*X16
X11*X16
X1*X29
X5*X29
X7*X29
X9*X29
X11*X29
X16*X29
X16*X16

Source
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1

Nparm
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1

DF
7.8744e+10
1830825372
5340566933
1719070397
3069524133
6306840626
1227395113
674596172

1859759.45
204443877

14325896.1
355834450

1118816.48
650807608
34523549

18069257.4
38071840.3
224467991

5155766.64
15335369.8
4934951.74
8863241.24

18055026
39608811.4

Sum of Squares
177774.3
4133.289
12056.92
3880.990
6929.788
14238.38
2770.979
1522.975

4.1986
461.5545
32.3423

803.3353
2.5259

1469.270
77.9407
40.7933
85.9514

506.7611
11.6397
34.6213
11.1412
20.0097
40.7612
89.4212

F Ratio
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
0.0453*
<.0001*
<.0001*
<.0001*
0.1178
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
0.0012*
<.0001*
0.0015*
<.0001*
<.0001*
<.0001*

Prob > F

Effect Tests
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Table  3.17: Coefficient of the CCD second-order metamodel 

 

3.1.1.5 Verifying the Result of Factor Screening 

One way to verify that the factors detected as important are truly important is to investigate 

how well the metamodel generated in Section  3.1.1.4 represents the response function over 

the experimental region. To examine the metamodel over the entire experimental region, 

Latin Hypercube Sampling (LHS) is used to sample the region, because this design has a 

very good space filling property. The actual response, predicted response, and the residual 

corresponding to the 25 samples are summarized in Table  3.18. 

 
Table  3.18: Actual Y and Predicted Y for the LH design 

Run Actual Y Predicted Y Residual Run Actual Y Predicted Y Residual
1 83704.84 78877.15 4827.68 14 80054.54 78601.54 1453.00
2 43371.03 44620.36 -1249.33 15 117914.22 112402.38 5511.84
3 87827.41 82294.57 5532.84 16 69784.64 68691.96 1092.68
4 68500.53 67193.99 1306.54 17 97714.04 91606.70 6107.34
5 72249.55 72008.55 241.01 18 44076.85 41243.52 2833.33
6 66189.77 61537.24 4652.52 19 99746.05 101527.67 -1781.62
7 72278.91 68081.51 4197.40 20 97846.81 93081.43 4765.38
8 108016.13 108776.57 -760.44 21 102907.90 99778.30 3129.60
9 66004.85 67779.36 -1774.51 22 60654.60 60427.11 227.49

10 61662.48 60965.39 697.08 23 95239.70 92315.00 2924.69
11 92160.59 92433.84 -273.26 24 88636.54 89297.45 -660.91
12 124421.96 122110.74 2311.22 25 49374.06 48907.52 466.54
13 52563.30 52421.58 141.73

 

Now, to see how well the Actual Y is estimated by the Predicted Y, we fit the Actual Y to the 

Predicted Y for the data shown in Table  3.18. The fit of Actual Y by Predicted Y is shown in 

Figure  3.10. 
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Figure  3.10: Fit of Actual Y by Predicted Y 

 

Ideally, the intercept and the slope of the fitted line should be 0 and 1, respectively. For this 

metamodel, however, the intercept of -56.1248 is not very critical when compared with the 

average of the Actual Y’s, which is 80116.05. The slope of 1.0242 seems acceptable, too. 

Therefore, we can conclude that the generated metamodel is a good fit for the Drug model 

over the entire range of factors. 

Another measure for evaluating the goodness of fit is Mean Absolute Relative Error 

(MARE):  
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where ei is the residual and iY  is the observed response value for ith observation, and n is the 

total number of observations. However, since MARE always decreases as more regression 

variables are included in the metamodel, the adjusted MARE, defined as follows, is a better 

criterion for evaluating the goodness of fit: 

qN
NMAREMAREAdj −

−
=

1)(  

where, N is the total number of runs and q is the number of regression variables. 

For the generated metamodel, N = 25 and q = 7. The MARE and MAREAdj for this metamodel 

are: 0.02901 and 0.03869, respectively. The small MARE represents a good-fit. 
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3.1.2. Sequential Bifurcation with Interactions (SB-X) 

The only parameter that SB-X requires from a user is the delta limit (δ), which is the value 

that the main effect of a factor should reach to be considered important. As mentioned in 

Section  3.1.1.3 the client was interested in the factors that were able to change the response 

function as much as $5000. Thus, $2500 was selected as the delta limit. As discussed earlier, 

SB-X assumes that the direction for main effects is known. A Plackett-Burman design was 

used to discover the signs of main effects. This design required 28 runs.  Although SB-X 

assumes a second-order polynomial for the response function, it cannot estimate the second-

order interaction and quadratic effects. It, however, can provide unbiased estimates for main 

effects (βj). In order to estimate the interaction and quadratic effects, a fractional factorial 

design of resolution V and central composite design (CCD) is used for the factors identified 

to be important. 

3.1.2.1 Results of SB-X 

It is possible that for some combinations of upper and lower levels of factors, the model 

generates an unrealistic response. Therefore, we showed the distribution plot of observed 

responses obtained by SB-X, to our client to make sure that all the response values are at a 

reasonable range. The plot of the response distribution is shown in Figure  3.11 

  
Figure  3.11: Response distribution of Drug Model 
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SB-X identified 7 factors to be important by making 40 runs. The factor screening results are 

shown in Table  3.19.  

 
Table  3.19: List of Important Factors for the Drug Model 

Screening ID Effect Main effect Expert 
Guess

1 X1 38,412.39 Important
5 X5 -5,635.76 Important
7 X7 8,411.16 Important
9 X9 -4,952.41 Unknown
11 X11 -6,538.56 Important
16 X16 -10,198.10 Important
29 X29 -5,658.13 Important

 

3.1.2.2 Generating Metamodel 

Since the factors identified as important are exactly the same for SB-X and Fractional 

Factorial methods, the metamodel generated in Section  3.1.1.4 can be used here, too. 

3.1.2.3 Verifying the Result of Factor Screening 

A similar procedure to that used in Section  3.1.1.5 should be followed in this section too, but 

since the generated metamodel for both methods are the same the results will be identical. 

Therefore, the MARE and MAREAdj for this metamodel are: 0.03869 and 0.02901, 

respectively. 

3.1.3. Latin Hypercube Design 

As mentioned in Section  2.4, to use LH designs to find the important factors, a metamodel 

should be fitted to the data observed according to the selected LH design. Sanchez (2005a)  

has implemented an Excel file containing the Nearly Orthogonal Latin Designs (NOLD) for 

up to 29 factors. These designs have both good orthogonality and space-filling properties. 

We used this design for generating the metamodel from which we can determine the 

important factors. 
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3.1.3.1 Fitting the Metamodel 

For the 25 factors involved in the Drug model, an NOLD requires 256 runs. Before fitting a 

metamodel to the collected data, we should ensure that the responses for all treatments are at 

a reasonable range. Therefore, we showed the distribution plot of observed responses 

obtained by the NOLD to our client to make sure that this requirement is met. The plot of the 

response distribution is shown in Figure  3.12. 

 
Figure  3.12: Response distribution of the Drug Model  

 

With 256 observations, we can fit a metamodel with at most 256 unknown parameters. 

Fitting a full second-order metamodel for 25 factors needs 351 runs: 1 run for the intercept, 

25 runs for the main effects, 25 runs for the quadratic effects, and 300 runs for second-order 

interactions. Therefore, we begin by fitting a second-order polynomial - without the 

interaction terms - to the collected data. The summary of fit and ANOVA for this metamodel 

are shown in Table  3.20 and Table  3.21. 

 
 

Table  3.20: Summary of fit for the 
LHD  

Table  3.21: ANOVA for the LHD 

 

 

 
 

Then, we declare any factor with both main and quadratic effect’s F-ratio less than 2 to be 

unimportant; because it is very unlikely that a factor is truly important but its main and 
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Error
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50
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1.3149e+11
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Sum of Squares
2.6298e+9
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Mean Square
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F Ratio
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Prob > F
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quadratic effects are insignificant. Consequently, factors 18, 22, 26, 28, and 34 will be 

eliminated and the further analyses will be done on the remaining 20 factors.  

Next, in order to fit a metamodel, we used the “stepwise fit” feature of JMP. In this approach, 

at each step we have an option to add as many terms (main, second-order interaction, or 

quadratic) as necessary to the metamodel. We started by including all the main effects except 

factors 18, 22, 26, 28, and 34 in the metamodel; and then among all the interaction and 

quadratic terms, we entered a term only if it increased the R2
Adj of the fit. Next, we need to 

ensure that all the included terms have F-ratio greater than 2, and if not, the term should be 

dropped from the model. In addition, all the terms left out should be investigated to ensure 

that they will not improve the R2
Adj if included in the metamodel. 

Analysis of variance and fit for the metamodel generated according to the preceding 

procedure are shown in Table  3.22 and Table  3.23. 

 
 

Table  3.22: Summary of fit for the 
restricted model  

Table  3.23: ANOVA for the restricted model 

 

 

 
 

Both the R2
Adj and the model p-value show that the generated metamodel satisfactorily fits 

the data. R2
Adj = 0.997 implies that 99.7% of the variation in the data can be accounted for by 

the model. 

The estimates for the following metamodel parameters are shown in Table  3.24 and the effect 

tests are tabulated in Table  3.25.  
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Error
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Source
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DF
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Sum of Squares
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Mean Square
1762.910

F Ratio
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Prob > F
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Table  3.24: Parameter Estimates for the 
restricted model 

Table  3.25: Effect Tests for the restricted model 

 

3.1.3.2 Finding Important Factors 

Table  3.24 displays the estimated effects of the generated metamodel. Recall that an 

important factor is one that will cause a $5000 change in the output. Therefore, if a factor has 

a main effect greater than $5000/2 = $2500, or a quadratic effect greater than $5000, or is 

involved in a second-order interaction effect greater that $5000/2 = $2500, it is declared to be 

important. Table  3.26 lists the important factors. 

Intercept
X1
X2
X3
X5
X6
X7
X8
X9
X11
X13
X16
X19
X20
X21
X23
X24
X29
X30
X1*X2
X1*X7
X1*X8
X1*X9
X1*X11
X1*X13
X1*X16
X1*X19
X1*X20
X1*X23
X1*X24
X1*X29
X3*X6
X3*X23
X7*X16
X7*X29
X8*X16
X9*X16
X16*X24
X16*X29
X8*X8
X16*X16
X29*X29

Term
80172.131
34864.449
465.72545
-1035.484
-5376.57

-708.5214
8499.0135
1421.4935
-5089.421
-6314.29

773.66232
-10214.39
1092.1924
1184.8533
1031.0479
479.1223

-1405.969
-4734.318
427.39727
-521.4689
2722.9529
734.26507
-1331.023
-2215.342
727.65015
-3188.903
547.74223
518.94735
401.15382
-676.8848
-1789.718
524.66434
678.27722
-711.1261
-357.5484
-513.5008
532.51364
684.03782
550.70957
-518.3683
1040.6807
492.94926

Estimate
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145.6134
145.6134
145.6134
145.614

145.6128
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145.6132
145.6134
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145.6142
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303.9734
313.5033

Std Error
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3.20
-7.11

-36.92
-4.87
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9.76

-34.95
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-32.51

2.94
-2.02
7.55
2.66

-5.04
-8.32
2.68

-11.76
2.11
1.78
1.66

-2.31
-6.51
2.10
1.81

-2.94
-1.47
-1.88
2.15
2.59
2.17

-1.66
3.42
1.57

t Ratio
<.0001*
<.0001*
0.0016*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
0.0012*
<.0001*
<.0001*
0.0037*
0.0446*
<.0001*
0.0084*
<.0001*
<.0001*
0.0080*
<.0001*
0.0362*
0.0761
0.0975
0.0216*
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0.0372*
0.0719
0.0036*
0.1425
0.0617
0.0325*
0.0104*
0.0308*
0.0974
0.0007*
0.1173

Prob>|t|

Parameter Estimates
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0.0362*
0.0761
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<.0001*
0.0372*
0.0719
0.0036*
0.1425
0.0617
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Table  3.26: List of important factors for the Drug Model 

Screening ID Effect Main effect Expert Guess

1 X1 34864.449 Important
5 X5 -5376.57 Important
7 X7 8499.0135 Important
9 X9 -5089.421 Unknown

11 X11 -6314.29 Important
16 X16 -10214.39 Important
29 X29 -4734.318 Important

 

3.1.3.3 Verifying the Result of Factor Screening 

The similar procedure used in Sections  3.1.1.5 and  3.1.2.3 should be followed in this section 

too, but since the factors identified as to be important by the LH method are exactly the same 

as those detected by the other two methods, the generated metamodels will be also identical; 

therefore, the MARE and MAREAdj for this metamodel will be: 0.03869 and 0.02901, 

respectively. 

3.2. Comparing Results 

To identify important factors, the Fractional Factorial (FF) design generates a metamodel 

first. For the Drug model, FF needed 64 factorial runs for a resolution IV design, 50 runs for 

axial points, and 1 run for center points. Therefore, it detected the important factors by 

making 115 runs. SB-X needs the signs of all main effects before starting its factor screening 

procedure. Therefore, the Plackett-Burman design with 28 runs was used to determine the 

main effect signs. Then, SB-X required 40 runs to detect the important factors. LHD requires 

256 runs to generate a metamodel by which the important factors can be detected. Unlike SB-

X, it does not need any prior information. 

The necessary information for comparing these three methods is summarized in Table  3.27. 
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Table  3.27: Summary of factor screening results 
 Fractional 

Factorial 
Sequential 
Bifurcation 

Latin Hypercube 

# of Initiation runs 0 28 0 
# of runs used for factor screening 115 40 256 
# of factors identified to be important 7 7 7 
Total # of runs used for factor screening 115 68 256 
MARE 0.02901 0.02901 0.02901 
MAREAdj 0.03869 0.03869 0.03869 
Goodness of fit Actual Y = -

56.1248 + 1.0242 
Predicted Y 

Actual Y = -
56.1248 + 1.0242 

Predicted Y 

Actual Y = -
56.1248 + 1.0242 

Predicted Y 
Mean of Actual Y 80116.05 80116.05 80116.05 

 

Based on MARE values, and the intercepts and slopes of “Goodness of fit”, we can conclude 

that all these three methods are accurate and effective for the Drug model; that is, all the 

(relatively) important factors have been accurately detected. Thus, in terms of effectiveness, 

all these three methods have the same performance on the Drug model. 

In terms of efficiency, SB-X requires the least number of runs, even though we assumed that 

no prior information exists about the direction of the factors and therefore we had to make 28 

additional runs to determine the main effect directions.  

3.3. Conclusion 

We applied three factor screening methods to a deterministic simulation model. These 

methods were: Fractional Factorial of Resolution IV, SB-X, and Latin Hypercube Sampling. 

All the methods identified the same 7 factors as being important. Next, a metamodel was 

generated for the 7 important factors; 25 observations were obtained according to a Latin 

Hypercube Designs and the goodness of fit of the generated metamodel was measured by the 

Mean Average Relative Error (MARE) and the adjusted MARE (MAREAdj). All three methods 

performed equally in terms of accuracy; however, SB-X required the least number of runs to 

determine the important factors. 
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4. Factor Screening on Stochastic Models 

This chapter provides the results from several factor screening experiments on an available 

stochastic model, called Prophy Model. The methods include Fractional Factorial design, 

Cheng’s method, the Modified Cheng’s method, and Controlled Sequential Bifurcation 

(CSB). The methods are evaluated in terms of number of required runs and the goodness of 

fit of the metamodel built from the factors detected as important.  

4.1. Necessary Steps before Factor Screening the Prophy 

Model 

The Prophy Model is a proprietary stochastic simulation model built in TreeAge® (2006) and 

consists of 76 factors. Among those factors, 54 factors correspond to 27 distribution-based 

variables and the rest are constant factors. Distribution-based variables are those whose 

values are determined according to a distribution function whose parameters are referred to 

as factors. For example, in the Prophy model variable-1 follows a standard Beta (0,1) 

distribution with shape factor-1 and  shape factor-2 as distribution parameters. In almost all 

cases, the factors associated with a common distribution variable should be confounded, i.e. 

their values cannot change independently.  After confounding the necessary factors, the 

factor screening experiment is performed on 40 factors. 

Before performing factor screening on stochastic models, it is usually suggested that the 

experimental region be explored by using an inexpensive design such as small Latin 

Hypercube Design (LHD) or a Plackett-Burnman (PB) design. JMP is not able to generate an 

LHD for more than 25 factors; therefore since the Prophy model consists of 40 factors, LHD 

could not be used to explore the response over the region. Alternatively, a PB design 

augmented with a center point could be used. For 40 factors, PB requires 44 runs in addition 

to one run that is added for the center point. Since the response was believed to have high 

variance, 20 replications of each run were made. This small experiment can be used for the 

following analyses: 
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1. To insure that the treatments are statistically different at this number of 

replications an ANOVA is conducted on the observed data. If treatments are not 

statistically different with this number of replications, the number of replications 

needs to be increased. 

2. To insure that the response function has equal variance over the experimental 

region, when the variances across treatments are not equal, the usual analysis of 

variance assumptions are not satisfied.  Thus the ANOVA F-test is not valid. As 

discussed previously, most of the factor screening methods designed for 

stochastic models assume homogeneous variance over the entire experimental 

region, i.e. equal variances for all treatments. Therefore, prior to performing a 

factor screening experiment, constant variance over the region must exist.  If not, 

some variance-stabilizing transformation is applied and the experiment is run on 

the transformed data.  

As mentioned previously, a computer code has been implemented for factor screening the 

simulation models. The complete structure of the code is discussed in Appendix A. For 

Cheng’s method, the Modified Cheng’s methods, and CSB-X, which are sequential 

procedures, the code generates the appropriate design at each Stage, whereas for the 2k 

Fractional Factorial and the BP, the user needs to provide the code with the generated 

designs. We used JMP to produce the 2k Fractional Factorial and PB designs and then the 

code can read the designs via an Excel file.  

4.1.1. ANOVA on the Observed Data 

Initially we chose 20 observations for each treatment. The observed responses for each 

treatment are plotted in Figure  4.1. The diamonds encompass two-sided 95% confidence 

intervals for observations corresponding to each treatment.  This figure reveals that with a 

95% confidence level based on 20 replications for each treatment, many treatments are 

statistically different.  
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Figure  4.1: Response versus Treatment 

 

The analysis of variance is shown in Table  4.1. The p-value is less than 0.0001, confirming 

that the treatments are statistically different.  

 
Table  4.1: ANOVA for the BP designs 

 

The preceding analyses suggest that 20 replications for each treatment is sufficient for 

making statistical comparisons between treatments. However, as Figure  4.1 indicates, the 

response of the Prophy model seems to have a relatively high variance.  The mean standard 

deviation for all treatments is 1872.46, which is quite high compared to the overall mean, 

10321.94.   

High standard deviation would result in inaccurate estimation of effects and misleading 

detection of important factors. Two approaches to cope with this problem are to either 

increase the number of observations or to use batch means. These methods and their 

influence on our analyses will be addressed in the next sections. 
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Mean Square
6.0389
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4.1.2. Testing the Equality of Variance 

A plot of residual versus fitted values is usually a good visual aid for detecting irregular 

patterns among data. Nonconstant variance can often be observed on this plot. Sometimes the 

variance of the observations increases as the magnitude of the observations increase. If this is 

the case, the residuals get larger as the observed data gets larger, and the plot of residual 

versus fitted values will look like an outward-opening funnel. Nonconstant variance also 

arises in cases where the data follow a nonnormal, skewed distribution because in skewed 

distributions the variance tends to be a function of the mean (Montgomery (2000)). 

Although residual plots are frequently used to diagnose inequality of variance, several 

statistical tests have also been proposed. A formal test for the following hypotheses is: 
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where a is the number of treatments. Montgomery (2000) recommends using “Bartlett’s test” 

when the normality assumption holds and “Modified Levene test” when the normality 

assumption is violated. 

Bartlett’s test computes a statistic whose sampling distribution is closely approximated by the 

chi-square distribution with a - 1 degrees of freedom, when the a random samples are from 

independent normal populations. The test statistics is: 
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Here a is the number of treatments, ni is the number of observations for treatment i, N is the 

total number of observations, and 2
iS  is the sample variance of the ith treatment. The test 

should reject H0 when values of 2
0χ that are too large; that is H0 is rejected only when 

2
1,

2
0 −> aαχχ  

where 2
1, −aαχ is the upper α percentage point of the chi-square distribution with a - 1 degrees 

of freedom.  

Because Bartlett’s test is sensitive to the normality assumption, there may be situations where 

the Modified Levene test is more appropriate. To test the hypothesis of equal variances in all 

treatments, the Modified Levene test uses the absolute deviation of the observations yij in 

each treatment from the treatment median, say iy~ . These deviations can be denoted by 

⎩
⎨
⎧

=
=

−=
i

iijij nj
ai

yyd
,...2,1
,...,2,1

for    ~  

The Modified Levene test then evaluates whether or not the means of these deviations are 

equal for all treatments. It turns out that if the mean deviations are equal, the variances of the 

observations in all treatments will be the same. The test statistic for Levene’s test is simply 

the usual ANOVA F statistic for testing equality of means applied to the absolute deviations. 

To check for the equality of variance in the Prophy model, a Plackett-Burnman design is 

augmented with a center point to observe the behavior of the response function over the 

experimental region.  

Bartlett’s Test 

The Bartlett’s test is usually conducted at the significant level 0.01 or 0.001. Anderson et al. 

(1974) suggests rejecting the variance homogeneity assumption if the test is rejected at the 

significant level 0.001 and if the homogeneity test is accepted at α = 0.01 level, no 

transformation is required. 
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The Bartlett’s test statistic for the observed data in the BP designs is 81.35562
0 =χ . Since 

78.74952
44,001.0 =χ , at the confidence level of 0.1%, we reject the null hypothesis and 

conclude that not all the variances are statistically equal. However, the test statistic is slightly 

greater than the critical level; therefore, we tend to also rely on the result of Modified Levene 

test. 

Modified Levene Test 

The ANOVA for the Modified Levene test is shown in Table  4.2. The large p-value implies 

that there is no significant difference between the treatment variances. Therefore, the Levene 

test fails to reject the null hypothesis and we conclude that there is not enough evidence to 

accept variance heterogeneity.  

 
Table  4.2: ANOVA for the Levene test 

 

Plot of Residual versus Predicted Data 

As previously noted, one way to test variance equality is to plot the residual versus predicted 

data. To draw this plot, a first-order metamodel for the data collected is fit according to the 

Plackett-Burnman designs discussed previously in Section  1.1.3.2 . The plot of residual 

versus predicted data is shown in Figure  4.2. No irregular pattern is observed in this plot and 

the data variation is almost the same among all treatment.  

Treatment
Error
C. Total

Source
44

855
899

DF
61955257.9
1497857400
1559812657

Sum of Squares
1408074
1751880

Mean Square
0.8038
F Ratio

0.8159
Prob > F

Analysis of Variance
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Figure  4.2 : Residuals by Predicted Plot 

Homogeneous Variance Decision 

The Bartlett’s test rejected the homogeneous variance for treatments, but the Levene test and 

the plot of residual versus predicted did not reject the variance homogeneity. However, for 

the Prophy model we can not accept the variance homogeneity assumption with certainty, 

and therefore in future experiments, we’ll retest this assumption and take corrective action if 

necessary. 

4.2. Factor Screening the Prophy Model 

There are 40 factors in the Prophy model that need to be screened. We applied three different 

factor screening methods to determine the important factors. Since the number of factors is 

not excessive and the model executes quickly, a 2k-Fractional Factorial with resolution IV is 

a reasonable design to be used as the factor screening method. Cheng’s method and 

Controlled Sequential Bifurcations, which both are based on the Sequential Bifurcation 

augmented with a fold-over design (SB-X), were used for the Prophy model.  
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4.2.1. 2k Fractional Factorial Design 

JMP was used to generate a 2k fractional factorial design of resolution IV. This design 

required 128 runs for estimating the factors’ main effects. A total of 20 observations were 

obtained for each scenario. 

It is possible that for some combinations of upper and lower levels of the factors, the model 

generates an unrealistic response. Therefore, after making 128×20 = 2560 observations, we 

showed the distribution plot of observed responses to our client to make sure that all the 

response values are within a reasonable range. The plot of the response distribution is shown 

in Figure  4.3. 

  
Figure  4.3: Response distribution of Prophy Model 

 

Analysis of variance and fit for the 2k fractional factorial design are shown in Table  4.3 and 

Table  4.4. Table  4.5 summarizes the lack of fit analysis. 
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Table  4.3: Summary of fit for the 2k - 
FF design 

Table  4.4: ANOVA for the 2k - FF design 

 

 

 
 

Table  4.5: Lack of fit for the 2k - FF design 

 

The small R2
Adj implies that only a small amount of variation can be accounted for by the 

model. However, the large p-value for lack of fit (0.4236) indicates that low R2
Adj is not 

because of bad fit, but it is due to high degree of variation existing in the observed data 

corresponding to each treatment.  

With 20 observations for each treatment, the 95% half-width can be constructed as follows: 

 65.825
20

16.1764
19,025.01,2/ ==− t

n
St nα  

It should be noted that the main goal of this experiment is not to estimate the main effects 

with high accuracy, but to detect the factors with important effects. In spite of that, in order 

to get more accurate results for the factor screening experiment, we increase the number of 

observations to 90, or equivalently decrease the half-width to 400. 

Analysis of variance and fit for the 2k fractional factorial design with 90 observations for 

each treatment are shown in Table  4.6 and Table  4.7  

 
 
 
 
 
 
 

Lack Of Fit
Pure Error
Total Error

Source
87

2432
2519

DF
276650407

7563135131
7839785538

Sum of Squares
3179890
3109842

Mean Square
1.0225
F Ratio

0.4236
Prob > F

0.2283
Max RSq

Lack Of Fit

 

Model
Error
C. Total

Source
40

2519
2559

DF
1960528627
7839785538
9800314165

Sum of Squares
49013216
3112261

Mean Square
15.7484
F Ratio

<.0001*
Prob > F

Analysis of Variance

 

RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

0.200048
0.187345
1764.16

10259.69
2560

Summary of Fit

 



A Comparison of Factor Screening Methods for Simulation Models 

 

 103

Table  4.6: Summary of fit for the 2k - 
FF design 

Table  4.7: ANOVA for the 2k - FF design 

 

 

 
 

The F-Ratio has increased but the R2
Adj has changed only slightly. One approach to reduce 

the variation among the observations is to put a number of observations in a batch and treat 

the batch mean as one observation. For each treatment, a total of 90 observations were 

obtained, and every 15 observations can be placed in a batch. Now, for each treatment, the 6 

batch means are used for fitting the metamodel.  

4.2.1.1 Test the equality of variance for the batched data 

When batched data are used, there are 6 observations corresponding to each treatment. 

Before fitting a metamodel to the batched data, the variance of observations should be 

checked to ensure all the treatments have equal variances.  

As previously mentioned in Section  4.1.2, the Bartlett’s test is usually conducted at the 

significant level of 1% or 0.1%. The Bartlett’s test statistic for the batched data is 

170.39052
0 =χ , and 168.13322

44,01.0 =χ  and 183.18642
44,001.0 =χ ; at the confidence level of 

1%, , 2
0χ  is only slightly greater than 2

44,01.0χ  and at the level 0.1%, the homogeneity 

assumption is not rejected. Therefore, to make an accurate decision, the Modified Leven test 

is also conducted on the data. 

The ANOVA for the Modified Levene test is shown in Table  4.8. The large p-value implies 

that there is not a significant difference between the treatment variances. Therefore, the 

Modified Levene test fails to reject the null hypothesis and we can conclude that the variance 

is homogeneous for batched data. 

 

 

Model
Error
C. Total

Source
40

11479
11519

DF
9964379840
3.8283e+10
4.8247e+10

Sum of Squares
249109496
3335007.3

Mean Square
74.6953
F Ratio

0.0000*
Prob > F

Analysis of Variance

 

RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

0.206529
0.203764

1826.2
10288.1

11520

Summary of Fit
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Table  4.8: ANOVA for Levene test 

 

For the 2k Fractional Factorial design, the plot of residuals versus predicted value is shown in 

Figure  4.4. This plot reveals no irregularity in the data, leading us to the conclusion that the 

treatments do not have statistically different variances.  

 
Figure  4.4 : Residuals by Predicted 

 

Figure  4.4 demonstrates that the variation among observations is proportional to the power of 

the mean of y; i.e. 
αµσ ∝y  

or more specifically for observation i: 
αα θµµσ iiyi

=∝ , 

where θ is a constant of proportionality. We may take logs to obtain 

iyi
µαθσ logloglog += . 
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Treatment
Error
C. Total

Source
128
645
773

DF
10893411
58193799
69087210

Sum of Squares
85104.8
90222.9

Mean Square
0.9433
F Ratio

0.6529
Prob > F

Analysis of Variance
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Therefore, a plot of 
iyσlog  versus iµlog would be a straight line with slope α. Typically, the 

standard deviation Si
 and the average iy of the ith treatment can be used to estimate 

iyσ and 

iµ . The plot of 
iyσlog  versus iµlog is shown in Figure  4.5. This plot reveals that even 

though the α is estimated to be 0.5109, but the 
iyσ fluctuation is significant and it does not 

increase or decrease regularly as iµ increases. Therefore, even if a transformation is applied 

to the data, its effect will not be noticeable, because the main goal of transforming y is to 

yield a constant variance. When 
iyσ changes almost independent of iµ (which is the case 

here, since the correlation coefficient between 
iyσ and iµ is estimated to be 0.1156) constant 

variance cannot be achieved. 

 
Figure  4.5: plot of  Log(Sigma) versus  Log(Mean) 

 

4.2.1.2 Analyses for the 2k Fractional Factorial Design with Batched Means 

Analysis of variance and fit for the 2k fractional factorial design with batched data are shown 

in Table  4.9 and Table  4.10. Table  4.11 summarizes the lack of fit analysis. 

 
 

y = 0.5109x + 0.5577
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log (Sigma i) = 0.5577174 + 0.5109316 Log (Mean i) 
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Table  4.9: Summary of fit for the 2k - 
FF design for batched data 

Table  4.10: ANOVA for the 2k - FF design for batched 
data 

 

 

 
 

Table  4.11: Lack of fit for the 2k - FF design for batched data 

 

The R2
Adj, and F-Ratio have increased significantly compared with Table  4.3 and Table  4.4, 

which implies that when the batching strategy is employed, the generated metamodel 

represents a better fit to the data. Therefore, from now on, we use only the batched data for 

our analyses.  

The normal probability plot for residuals is depicted in Figure  4.6. This plot indicates that, 

when batched means are used, the normal distribution assumption for residuals seems 

reasonable and there is no significant evidence for the violation of this assumption.  

 

 

 

 

Lack Of Fit
Pure Error
Total Error

Source
87

640
727

DF
24681895

138960970
163642864

Sum of Squares
283700
217127

Mean Square
1.3066
F Ratio

0.0400*
Prob > F

0.8339
Max RSq

Lack Of Fit

 

Model
Error
C. Total

Source
40

727
767

DF
673215065
163642864
836857930

Sum of Squares
16830377

225093.35

Mean Square
74.7707
F Ratio

<.0001*
Prob > F

Analysis of Variance

 

RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

0.804456
0.793697

474.44
10290.72

768

Summary of Fit
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Figure  4.6 : Residual distribution for 2k - FF design with batched data 

 

4.2.1.3 Adding center point 

Before judging the significance of each factor, the existence of nonlinearity effects in the 

response function should be checked by adding a center point (a point with all factors at their 

central levels).  The analysis of variance, fit, and lack of fit for the new model with three 

center points added are shown in Table  4.12, Table  4.13 and Table  4.14, respectively.   

 
 

Table  4.12: Summary of fit for the 2k - 
FF design for batched data 

Table  4.13: ANOVA for the 2k - FF design for batched 
data 

 

 

 
 

Table  4.14: Lack of fit for the 2k - FF design for batched data 

 

Lack Of Fit
Pure Error
Total Error

Source
88

657
745

DF
24699714

141127971
165827685

Sum of Squares
280679
214807

Mean Square
1.3067
F Ratio

0.0390*
Prob > F

0.8318
Max RSq

Lack Of Fit
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Model
Error
C. Total

Source
40

745
785

DF
673215065
165827685
839042750

Sum of Squares
16830377
222587.5

Mean Square
75.6124
F Ratio

<.0001*
Prob > F

Analysis of Variance

 

RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

0.802361
0.791749
471.7918
10289.99

786

Summary of Fit
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Adding the center point does not show any significant effect on the R2
Adj and the model F-

Ratio. In addition, there is a very negligible change in the p-value of the lack of fit analysis, 

which confirms the observation that the model does not present nonlinearities.  

4.2.1.4 Finding Important Factors 

The client wanted to find the factors that would produce a change in the response function by 

$300 or more. Therefore, for the Prophy model an important factor was defined as a factor 

whose main effect is $150 or more. Based on this criterion, the list of important factors is 

shown in Table  4.15. 

 
Table  4.15 : List of important factors for the Prophy model 
Screening ID Effect Main effect Expert Guess

6 X6 -150.350 Unknown
9 X9 256.125 Unknown

21 X21 -576.997 Unknown
25 X25 -152.659 Important
32 X32 -270.680 Unknown
37 X37 355.171 Unknown
39 X39 212.579 Unknown
43 X43 -272.534 Unknown

 

4.2.1.5 Generating the Metamodel 

A metamodel can now be constructed using a CCD design for the 8 important factors listed 

in Table  4.15. This design requires 28-2 factorial runs for a Resolution V design, 2×8 runs for 

axial designs, and 3 runs for central point; thus a total of 83 runs were needed. For each run, 

90 observations were obtained, which were divided into 6 batches, each containing 15 

observations. The analysis of variance, fit, and lack of fit for the model are shown in Table 

 4.16, Table  4.17 and Table  4.18. 
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Table  4.16: Summary of fit for the 
CCD 

Table  4.17: ANOVA for the CCD 

 

 

 
 

Table  4.18: Lack of fit for the CCD 

 

The normal probability plot for residuals is shown in Figure  4.7. This plot indicates that the 

normal distribution assumption for residuals appears reasonable and there is no significant 

evidence that implies the violation of this assumption. Moreover, Figure  4.8 implies that the 

assumption of homogeneous variance is also valid for the generated metamodel. 

 

 

 

 

 

 

 

 
Figure  4.7: Residual distribution for CCD Figure  4.8: Residuals by Predicted Plot 

 

Now, in order to have more accurate estimates for effects, all the effects with F-Ratio less 

than 2 are eliminated. The analysis of variance and fit for the restricted model are shown in 

Table  4.19 and Table  4.20.  

Lack Of Fit
Pure Error
Total Error

Source
36

417
453

DF
10366823
82866033
93232855

Sum of Squares
287967
198720

Mean Square
1.4491
F Ratio

0.0488*
Prob > F

0.8082
Max RSq

Lack Of Fit
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Model
Error
C. Total

Source
44

453
497

DF
338718810
93232855

431951665

Sum of Squares
7698155
205812

Mean Square
37.4038
F Ratio

<.0001*
Prob > F

Analysis of Variance

 

RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

0.784159
0.763194
453.6651
10286.58

498

Summary of Fit
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Table  4.19: Summary of fit for the 
restricted metamodel 

Table  4.20: ANOVA for the restricted metamodel 

 

 

 
 

Both the R2
Adj and the model F-Ratio have increased. The increase in R2

Adj is not significant, 

but the model F-ratio has been almost doubled. 

The estimates of effects are shown in Table  4.21 and the effect tests for each factor are 

tabulated in Table  4.22. The CCD design assumes the following second-order polynomial 

function for the response function: 
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where, each variable xj is standardized and lies in [-1,+1].  K is the total number of important 

factors. 

 
Table  4.21: Parameter Estimates for the 
restricted model 

Table  4.22: Effect Tests for the restricted model 

  

Intercept
X6
X9
X21
X25
X32
X37
X39
X43
X9*X25
X21*X32
X9*X37
X25*X37
X32*X37
X9*X39
X32*X39
X21*X43

Term
10286.58

-121.4572
258.50315
-591.3126
-137.1693
-325.7138
341.8811

265.24942
-295.1558
-48.25613
35.353818
39.312477
-45.31833
-65.05988
-39.75623
-37.32949
46.422043

Estimate
20.09495
22.53482
22.53482
22.53482
22.53482
22.53482
22.53482
22.53482
22.53482
22.88422
22.88422
22.88422
22.88422
22.88422
22.88422
22.88422
22.88422

Std Error
511.90

-5.39
11.47

-26.24
-6.09

-14.45
15.17
11.77

-13.10
-2.11
1.54
1.72

-1.98
-2.84
-1.74
-1.63
2.03

t Ratio
0.0000*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
0.0355*
0.1230
0.0865
0.0482*
0.0047*
0.0830
0.1035
0.0431*

Prob>|t|

Parameter Estimates

 

X6
X9
X21
X25
X32
X37
X39
X43
X9*X25
X21*X32
X9*X37
X25*X37
X32*X37
X9*X39
X32*X39
X21*X43

Source
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1

Nparm
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1

DF
5841734

26462256
138461648

7450908
42011433
46285543
27861473
34498312

894203
479959
593461
788640

1625390
606934
535100
827522

Sum of Squares
29.0495

131.5902
688.5353
37.0515

208.9124
230.1665
138.5482
171.5515

4.4466
2.3867
2.9511
3.9217
8.0827
3.0181
2.6609
4.1151

F Ratio
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
0.0355*
0.1230
0.0865
0.0482*
0.0047*
0.0830
0.1035
0.0431*

Prob > F

Effect Tests

Model
Error
C. Total

Source
16

481
497

DF
335224517
96727149

431951665

Sum of Squares
20951532

201095.94

Mean Square
104.1867

F Ratio

<.0001*
Prob > F

Analysis of Variance

 

RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

0.77607
0.768621
448.4372
10286.58

498

Summary of Fit
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4.2.1.6 Verifying the Result of Factor Screening 

One way to verify that the factors detected as important are truly important is to investigate 

how well the metamodel generated in Section  4.2.1.5 represents the response function over 

the experimental region. To examine the metamodel over the entire experimental region, 

Latin Hypercube Sampling (LHS) is used to sample the region. For the 40 treatments of the 

LH designs, 6 batched means, each calculated from 15 observations, were obtained. Now, to 

see how well the Actual Y is estimated by the Predicted Y, the Actual Y is fit to the Predicted 

Y. The fit of Actual Y by Predicted Y is shown in Figure  4.9. 

 
Figure  4.9: Fit of Actual Y by Predicted Y 

 

Ideally, the intercept and the slope of the fitted line should be 0 and 1, respectively, and all 

the observations should be as close as possible to the fitted line. For this metamodel the 

intercept of -1738.626 would be of concern because it is noticeably high compared with the 

average of Actual Y’s, which is 10271.016. Moreover, the slope of 1.1702 also seems to be 

problematic. 

For stochastic models, however, a quantitative criterion for evaluating the metamodel’s 

goodness of fit is more preferable. Kleijnen et al. (2000) suggest using the coefficient of 

determination which is defined as follows: 

9000

10000

11000

12000

13000

A
ct

ua
l Y

9500 10000 10500 11000 11500
Predicted Y

Linear Fit

Bivariate Fit of Actual Y By Predicted Y

Actual Y = -1738.626 + 1.1702 Predicted Y



A Comparison of Factor Screening Methods for Simulation Models 

 

 112

∑∑

∑∑

= =

= =

−

−
−= n

i

m

r
ri

n

i

m

r
rii

i

i

yy

yy
R

1 1

2
,

1 1

2
,

2

)(

)ˆ(
1  

where,  

iŷ : predicted value for treatment i. 

yi,r: actual response for rth observation of treatment i. 

y : mean of all observations 

mi: number of observations for treatment i.  

n: total number of observations for all treatment 

R2 equals one (perfect fit) if all n metamodel output equals their corresponding simulation 

outputs ( rii yy ,ˆ = , for all i and r). Because R2 always increase as more regression variable are 

added (higher q), the adjusted R2 is introduced 

qN
NRRAdj −

−
−−=

1)1(1 22  

where, N is the total number of obtained runs and q is the number of regression variables.  

For the fitted metamodel, where q is 8 and N is 240, we obtained R2 = 0.5460 and 2
AdjR = 

0.5323. 

4.2.2. Cheng’s Method Augmented with Fold-over Design  

The only parameter that Cheng’s method requires from a user is the delta limit (δ), which is 

the value that the main effect of a factor should reach to be considered important. As 

mentioned in Section  4.2.1.4 the client was interested in the factors that were able to change 

the response function as much as $300, or equivalently have the main effect of $150 or more. 

Thus, $150 was selected for delta limit. As discussed earlier, SB-X assumes that the direction 

for main effects is known. A Plackett-Burman design was used to discover the signs of the 

main effects. This design required 44 runs and as before, for each treatment 6 batched means 

were obtained, with 15 observations in each batch.  
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In Section  2.2.4.2 it was shown that a (1-α)% half-width for the estimate of main effect βi can 

be calculated by: 

)11(
22

1
)()1(,2/ ss kks rrSt +−ωα    (4.1) 

If we assume the same number of observations for each Stage, Equation 4.1 can be 

approximated by: 

(1-α)% half-width for βi: 
n

Szα2
1   (4.2) 

Since we did not want to miss an important factor with main effect $150 greater that the delta 

limit, we required that the half-width be less than 150; i.e. 

2

2

300
)(150

2
1 Szn

n
Sz α

α >⇒<  

The average of variances for the 44 treatments of the BP design is 1874.01 and therefore with 

α = 0.05, the minimum number of observations for each treatment will be 106. Therefore, to 

use Cheng’s method, for each treatment we obtained 120 observations and then split them 

into 10 batches, each of which includes 12 observations. 

4.2.2.1 Results of the Modified Cheng’s Method 

The original Cheng’s method classifies a group (or a factor) as unimportant if the upper 

bound of the confidence interval for its main effect is greater than delta limit (δ). For the 

Prophy model even when 120 observations are obtained for each run, since the standard 

deviation is dramatically high, the above criterion is always satisfied and no factor is detected 

as unimportant. Alternatively, the Modified Cheng’s method was used for the Prophy model.  

This method identified 5 factors as important by making 34 runs. As mentioned before, for 

each run 120 observations were obtained which were split into 12 batches. The factor 

screening results are shown in Table  4.23. For both the original and the Modified Cheng’s 

method, the delta limit (δ) and the alpha (α) were set at $150 and 0.05, respectively. 
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Table  4.23: List of important factors for the Prophy model 
Screening ID Effect Main effect Expert Guess

21 X21 -517.498 Unknown
32 X32 -329.886 Unknown
37 X37 339.302 Unknown
39 X39 237.679 Unknown
43 X43 -385.458 Unknown  

 

It is possible that for some combinations of upper and lower levels of factors, the model 

generates an unrealistic response. Therefore, we showed the distribution plot of observed 

responses at all stages to our client to make sure that all the response values are reasonable. 

The plot of the response distribution is shown in Figure  4.10. 

 
 Figure  4.10: Response distribution of Prophy Model 

 

4.2.2.2 Generating a Metamodel 

To build a metamodel using the factors detected as important by the Modified Cheng’s 

method, a CCD was used. The created on-face CCD required 25-1 runs for a 25-1-fractional 

factorial of resolution V, and 2×5 runs for axial designs, and 3 runs for central point; thus a 

total of 29 runs were needed. For each run, 90 observations were obtained, which were 

divided into 6 batches, each contains 15 observations. The analysis of variance, fit, and lack 

of fit for the model are shown in Table  4.24, Table  4.25 and Table  4.26. 
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Table  4.24: Summary of fit for the 
CCD 

Table  4.25: ANOVA for the CCD 

 

 

 
 

Table  4.26: Lack of fit for the CCD 

 
 

CCD assumes a second-order polynomial function for the response function: 
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where, each variable xj are standardized and lies in [-1,+1] and K is the total number of 

important factors. The estimates of effects are shown in Table  4.27. 
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Table  4.27: Parameter Estimates for the 
restricted model 

 

4.2.2.3 Verifying the Result of Factor Screening 

Again we used Latin Hypercube Sampling (LHS) to investigate the goodness of fit of the 

generated metamodel. The fit of Actual Y by Predicted Y is shown in Figure  4.11. 

 
Figure  4.11: Fit of Actual Y by Predicted Y 
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41.94925
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44.4939
44.4939
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t Ratio
<.0001*
<.0001*
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Figure  4.11 reveals that the generated metamodel is barely able to account for the variation 

existing in the obtained observations. The values of the coefficient of determination (R2) and 

the adjusted R2 ( 2
AdjR ), which were introduced in Section  4.2.1.6, substantiates this claim; for 

the fitted metamodel, where q is 5 and N is 240, R2 = 0.1838 and 2
AdjR = 0.16996, which both 

are too low. Therefore, in order to have a more accurate metamodel we will decrease the 

delta limit to $100 allowing the procedure to declare more factors important. 

4.2.3. Modified Cheng’s Method with Smaller Delta Limit 

The Modified Cheng’s method was applied again on the Prophy model with delta limit (δ) 

and alpha (α) set at $100 and 0.05, respectively. The method identified 8 factors as important 

by making 40 runs. As mentioned before, for each run 120 observations were obtained, 

which were split into 12 batches. The factor screening results are shown in Table  4.28. 

 
 

Table  4.28: List of important factors for the Prophy model 

.

Screening ID Effect Main effect Expert Guess

8 X8 -191.8425 Unknown
21 X21 -732.6497 Unknown
24 X24 -159.1982 Unknown
25 X25 -240.658 Important
32 X32 -178.6335 Unknown
37 X37 395.9072 Unknown
39 X39 178.9597 Unknown
43 X43 -236.7192 Unknown  

4.2.3.1 Generating Metamodel 

As previously done, to build a metamodel using the factors detected as important by the 

Modified Cheng’s method, a CCD was used. The created on-face CCD required 28-2 runs for 

a 28-2-fractional factorial of resolution V, and 2×8 runs for axial designs, and 3 runs for 

central point; thus a total of 83 runs were needed. For each run, 90 observations were 

obtained, which were divided into 6 batches, each contains 15 observations. The analysis of 
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variance, fit, and lack of fit for the model are shown in Table  4.29, Table  4.30 and Table 

 4.31. 
Table  4.29: Summary of fit for the 
CCD 

Table  4.30: ANOVA for the CCD 

 

 

 
 

Table  4.31: Lack of fit for the CCD 

 
 

The normal probability plot for residuals is shown in Figure  4.12. This plot indicates that the 

normal distribution assumption for residuals appears reasonable and there is no significant 

evidence that implies the violation of this assumption. Moreover, Figure  4.13 implies that the 

assumption of homogeneous variance is also valid for the generated metamodel. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  4.12: Residual distribution Figure  4.13: Residuals by Predicted Plot 
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For the generated metamodel, a large number of effects have F-Ratios less than 2; therefore, 

applying Rule of 2 would result in too much bias in the parameter estimations. On the other 

hand, dropping the factors with small F-Ratio would result in more accurate estimates for the 

metamodel parameters.  We, therefore, dropped the effects with F-Ratio close to zero (i.e. 

less than 0.4). The parameter estimates for the restricted metamodel are shown in Table  4.32. 

 

Table  4.32: Parameter Estimates for the 
restricted model 

 

4.2.3.2 Verifying the Result of Factor Screening 

Again we used Latin Hypercube Sampling (LHS) to investigate the goodness of fit of the 

generated metamodel. The fit of Actual Y by Predicted Y is shown in Figure  4.14. 
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Figure  4.14: Fit of Actual Y by Predicted Y 

 

For the fitted metamodel, where q is 8 and N is 40, the coefficient of determination (R2) and 

the adjusted R2 ( 2
AdjR ) are R2 = 0.49199 and 2

AdjR = 0.47667. Comparing Figure  4.11 and 

Figure  4.14, as well as the values of R2 and 2
AdjR  in this Section and Section  4.2.2.3 confirms 

that reducing the Delta limit has led the Modified Cheng’s method to produce a more 

accurate and reliable result. 

4.2.4. Controlled Sequential Bifurcation with Interactions (CSB-X) 

The Controlled Sequential Bifurcation with fold-over design (CSB-X) was applied on the 

Prophy model with the following parameters:  

N0 = 5 

Alpha (α): 0.2 

Gamma (γ): 0.8 

Delta zero (∆0): 100 

Delta zero (∆1): 200 

For each treatment, 10 observations were made and placed in a single batch. It should be 

noted that we first ran the method with alpha 0.1, but due to high response variance, for most 
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of the treatments, the CSB-X required more than 1000 observations; therefore, we set alpha 

at 0.2 to make the procedure less demanding in terms of number of required runs.  

The method identified 9 factors as important by making 125 runs, and equivalently 1802 

batched means. The factor screening results are shown in Table  4.33. 

 
Table  4.33: List of important factors for the Prophy model 

.

Screening ID Effect Main effect Expert Guess
6 X6 -274.1726 Unknown
9 X9 229.9934 Unknown

21 X21 -754.4293 Unknown
25 X25 -176.5533 Unknown
32 X32 -223.5743 Unknown
37 X37 415.7047 Unknown
43 X43 -354.549 Unknown
55 X55 -168.9961 Unknown
65 X65 218.452 Unknown  

4.2.4.1 Generating a Metamodel 

As was done before, to build a metamodel using the factors detected as important by the 

CSB-X method, a CCD was used. The created on-face CCD required 29-2 runs for a 29-2-

fractional factorial of resolution V, and 2×9 runs for axial designs, and 3 runs for central 

point; thus a total of 149 runs were needed. For each run, 90 observations were obtained, 

which were divided into 6 batches, each contains 15 observations. The analysis of variance, 

fit, and lack of fit for the model are shown in Table  4.34, Table  4.35 and  

Table  4.36. 
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Table  4.34: Summary of fit for the 
generated metamodel 

Table  4.35: ANOVA for the generated metamodel 

 

 

 
 
Table  4.36: Lack of fit for the CCD 

 

The normal probability plot for residuals is shown in Figure  4.15. This plot indicates that the 

normal distribution assumption for residuals appears reasonable and there is no significant 

evidence that implies the violation of this assumption. Moreover, Figure  4.16 implies that the 

assumption of homogeneous variance is also valid for the generated metamodel. 

 

 

 

 

 

 

 
Figure  4.15: Residual distribution Figure  4.16: Residuals by Predicted Plot 
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hand, dropping the factors with small F-Ratio would result in more accurate estimates for the 

metamodel parameters.  We, therefore, dropped the effects with F-Ratio close to zero (i.e. 

less than 0.4). The parameter estimates for the restricted metamodel are shown in Table  4.37. 

 

Table  4.37: Parameter Estimates for the 
restricted model 

 

4.2.4.2 Verifying the Result of Factor Screening 

Again we used Latin Hypercube Sampling (LHS) to investigate the goodness of fit of the 

generated metamodel. The fit of Actual Y by Predicted Y is shown in Figure  4.17. 
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Figure  4.17: Fit of Actual Y by Predicted Y 

 

For the fitted metamodel, where q is 9 and N is 40, the coefficient of determination (R2) and 
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AdjR ) are R2 = 0.44747 and 2

AdjR = 0.42833.  
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having defined 125 scenarios, the CSB-X determined the important factors with 1802 

batched means or equivalently 18020 observations. 

The necessary information for comparing these three methods is summarized in Table  4.38. 

Cost-effectiveness shown in the last row is the ratio of the total number of required 

observations to the Adjusted R2.  

nsobservatio required of # Total
 RAdjustedesseffectivenCost

2

=−  

 
 

Table  4.38: Summary of the factor screening on the Prophy model 
 Fractional 

Factorial 
Modified 

Cheng’s Method 
CSB-X 

Parameters - α = 0.05, δ = 100 α = 0.2, γ = 0.8, 
∆0 = 100,  
∆1 = 200 

# of initiation observations 0 3960 3960 
# of observations used for factor screening 11520 4080 18020 
# of factors identified to be important 8 8 9 
Total # of observations used for factor 
screening 

11520 8040 21980 

Coefficient of determination (R2) 0.5460 0.49199 0.44747 
Adjusted R2 0.5323 0.47667 0.42833 
Goodness of fit Actual Y = -

1738.626 + 1.1702 
Predicted Y 

Actual Y = -
1681.946 + 1.1572 

Predicted Y 

Actual Y = -
1273.59 + 1.1137 

Predicted Y 
Mean of Actual Y 10271.02 10271.02 10271.02 
Cost-effectiveness (×10000) 0.462 0.593 0.1949 

 

Based on the values of coefficient of determination (R2) and adjusted R2, the Fractional 

Factorial (FF) design produced the most accurate results; in other words, for the Prophy 

model, the FF design is the most effective method among the methods studied in this chapter. 

In terms of efficiency, the Modified Cheng’s method requires the least number of 

observations, even though we assumed that no prior information exists about the direction of 

the factors and therefore we had to make additional 3960 observations to determine the main 

effect directions. However, it should be noted that FF design could have been used with a 

fewer number of observations for each treatment. Because, although reducing the number of 

observations decrease the accuracy of the estimated parameter, the important factor can still 

be detected with reasonable degree of accuracy, if a sufficient number of observations are 
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obtained. Yet, determining the sufficient number of observations to maintain the desired 

accuracy is itself a challenging issue. 

From a cost-effectiveness perspective, it turned out that for the Prophy model, the Modified 

Cheng’s method can detect the truly important factors (effectiveness) with the least number 

of required observations (cost).  

4.4. Conclusion 

We applied three factor screening methods to a stochastic simulation model. These methods 

were: Fractional Factorial of Resolution IV, Modified Cheng’s method, and CSB-X. These 

methods identified different factors as being important. For each method, a metamodel was 

generated for the identified important factors. For verifying the results of each method, a 

Latin Hypercube Design was used. The goodness of fit for the generated metamodels was 

measure by the coefficient of determination (R2) and Adjusted R2. For the Prophy model, the 

Modified Cheng’s method required the least and the CSB-X required the most number of 

observations. Moreover, the FF design produced the most and CSB-X produced the least 

accurate results. And finally, in terms of cost-effectiveness, the Modified Cheng’s method 

outperformed the other two approaches. 
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5. Conclusion and Recommendation 

Computer simulation models that represent a real-world system generally consist of a large 

number of factors. Finding the factors with significant effects on a selected response has 

always been of great interest. Often, the analysts use an inefficient and ineffective one-factor-

at-a-time design to check the importance of a factor or estimating the main effect of the 

factors. On the other hand, screening experiments, which are more efficient and effective 

experiments, examine many factors to identify those factors (if any) that have significant 

effects on the selected response. 

It should be noted that the factor screening experiment is a back and forth procedure; i.e. 

some assumptions are made about the response surface, an appropriate screening 

methodology is applied and then the validity of the assumptions needs to be checked. If the 

assumptions are proved to be valid, the factor screening result is reliable; otherwise, the 

assumptions should be revised and the methodology should be augmented to incorporate the 

new assumptions. As a result, the expert prior knowledge about the response surface and the 

importance of the factors has remarkable effect on the efficiency and effectiveness of the 

screening experiment. 

For the available deterministic model (the Drug model), three methods were applied: 2k 

Fractional Factorial (FF) Design, Nearly Orthogonal Latin Hypercube (NOLH) Design, and 

folded-over Sequential Bifurcation (SB-X). For this model, the research showed that all the 

three methods have equal accuracy (effectiveness), but the SB-X was the most efficient in 

terms of required number of runs.  

In general, for the deterministic models, the following recommendations are usually made: 
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1. For models with moderate number of factors (less than 29) and very little 

knowledge about the response surface, NOLH design is usually recommended. 

These designs are more expensive than the other two methods but have better 

space-filling property. Moreover, since these designs allow a stepwise fit to the 

obtained data, no specific assumption about the response surface is required. 

Therefore, the analysts can begin with any kind of response function (usually 

first-order polynomial) and then, if necessary, revise their assumption. 

2. For models with a large number of factors and little prior knowledge about the 

response surface, 2k FF designs of resolution IV are recommended. Because, 

while maintaining good efficiency, they can easily be augmented to incorporate 

quadratic effects into the metamodel by using Central Composite Designs 

(CCD). 

3. For models whose response can be approximated by a first-order polynomial 

augmented with second-order interaction terms, SB-X is superior. However, it 

requires known directions for the main effects. This assumption can be satisfied 

by the expert judgment or using a Plackett-Burnman design.  

For the available stochastic model (the Prophy model), the following methods were applied: 

2k Fractional Factorial (FF) Design, folded-over Cheng’s method and the Modified Cheng’s 

method, and folded-over Controlled Sequential Bifurcation (CSB-X). For this model, due to 

high variance, Cheng’s method failed to operate; the FF design turned out to be the most 

accurate method; and the Modified Cheng’s method was the most efficient method in terms 

of the required number of runs. From a cost-effectiveness perspective, it turned out that the 

folded-over Modified Cheng’s method (MCh-X) can detect the truly important factors 

(effectiveness) with the least number of required observations (cost). In general, from a cost-

effectiveness perspective, MCh-X is believed to have superior performance to FF designs 

and CSB-X for situations where the response has homogeneous high variance.  

For screening the stochastic models, the following recommendations should be considered: 
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1. As the response variance gets higher, the accuracy of FF designs, Cheng’s 

method, and MCh-X deteriorates, but CSB-X can still maintain a good level of 

accuracy. On the other hand, the high variance results in remarkable impairment 

in the efficiency of Cheng’s method, MCh-X and particularly the CSB-X 

method; however, for these situations, NOLH and 2k FF designs can still 

classify the factors correctly while requiring a moderate number of observations. 

2. If Common Random Numbers (CRN) are employed, Cheng’s and the MCh-X 

method may lead to misleading results; while CSB-X, LHD and 2k FF can still 

be used. 

3. With the same reasoning as provided for the deterministic models, for stochastic 

models with moderate number of factors (less than 29) and very little 

knowledge about the response surface, NOLH design is usually preferred.  

4. For stochastic models with a large number of factors and little prior knowledge 

about the response surface, 2k FF designs of resolution IV are recommended.  

5. For models whose response can be approximated by a first-order polynomial 

augmented with second-order interaction terms, MCh-X is superior in terms of 

then required number of runs. CSB-X is also considered being more efficient 

than 2k FF and NOLH designs for cases where the response variance is not too 

high. 

The contributions of this research are as follows: 

1. Cheng’s method was modified to make it work for the simulation models where 

the response variance is high. The new method, called the Modified Cheng’s 

method (MCh-X), was shown to be the most cost-effective method among the 

other stochastic methods studied in this research. 

2. A procedure was proposed for measuring the effectiveness (accuracy) of a 

factor screening method. 

3. A new criterion, called cost-effectiveness, was introduced that encompasses 

both concepts of efficiency and effeteness. 

4. The performance of some well-known factor screening methods was evaluated 

in terms of efficiency, effectiveness, and cost-effectiveness. 
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5. A factor screening code has been implemented, called NCSU-FSC, which is 

able to do factor screening on a simulation model based on the methods 

addressed in this research. In addition, so far we have able to incorporate this 

class into the simulation models built in Excel, TreeAge, and Microsoft Visual 

Studio .NET. 

Recommendation for Future Study 

One possible area for future research is to conduct the factor screening experiment on more 

than one response. In selecting the best strategy (sometimes called system or scenario) 

among a group of strategies that share a common set of input factors, say },...,{ 1 KxxI = , it is 

of great interest to detect those factors with significant influence on the decision about 

selecting the best system. That is, to find factors that a change in their values results in a 

different selection as the best strategy. The problem of “Factor Screening between 

Strategies” is aimed at detecting the factors that have the most important effect in the 

superiority of one strategy over the other or vice versa. 

As mentioned in Section  2.5.1.6 some treatments may result in unrealistic response values 

and therefore they may cause the result of factor screening to be unreasonable or not reliable. 

In those situations, since the users do not exactly know which factor(s) have caused the 

disturbance, they have to narrow the range of some intuitively selected factors to eliminate 

the outliers. Therefore, it is of great interest to generate a methodology which is able to detect 

the disturbing factor(s) only based on the obtained responses and their corresponding design 

points. 

Conducting sensitivity analysis on the parameters of the sequential factor screening methods 

is another interesting area for future research. SB-X has only one parameter which is delta 

limit (δ). Cheng’s method and the Modified Cheng’s method have three parameters: Type I 

error (α), delta limit (δ), and number of observations for each design point (n). CSB-X needs 

5 parameters: initial number of observations (N0), Type I error (α), Type II error (γ), Delta 

zero (∆0), and Delta zero (∆1). It appeared that Cheng’s method, Modified Cheng’s method, 
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and CSB-X are not very sensitive to the Type I error (α); this conjecture, however, should be 

investigated more precisely.  

Finally, at the outset of this research, medical decision making models were the target 

applications.  It was thought that these models may have special characteristics that could be 

exploited to improve factor screening.  However, this conjecture could not be founded and 

further work may again attempt to extract those characteristics.  
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Appendix A: Computer Code for Factor Screening 

Factor screening experiment can be conducted either manually or automatically. In a manual 

factor screening experiment, the factor screening method is usually implemented step by step 

by user. The interaction between the method and the simulation model is possible through 

active review of each result by the user. In the other words, based on what the factor 

screening method dictates, the user manually changes the factor levels in the simulation 

model, and then depending on the response value, the factor screening method specifies a 

new setting for the simulation model to run. Therefore, in the manual factor screening 

experiment, all the interaction between the method and the simulation models is done by the 

user. On the other hand, in an automatic factor screening experiment, all the required 

interactions between the factor screening method and the simulation model, including the 

assignments of factor levels and receiving the corresponding response value, are performed 

by a separate module, called a Factor Screening Class (FSC). 

This Appendix addresses the general structure of the factor screening class used in the NCSU 

Factor Screening Class (NCSU-FSC) library developed for this thesis. The NCSU-FSC 

library can be imported into any simulation model implemented in a language which is 

executable by Microsoft Visual Studio .NET.  The library will also interact with Microsoft 

Excel by using a simple bridge written in Microsoft Visual Studio .NET and the VS .NET 

collection. Moreover, NCSU-FSC requires that all the involved factors in the simulation 

model be listed in a database with a special structure. Detailed descriptions of the factor 

database are discussed in the Section A.4. 

A.1. Simulation Model Structure in the Context of Factor 

Screening Experiment 

In the context of factor screening experiment, a simulation model can be assumed to consist 

of three major components as described below and depicted in Figure A.1: 
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1. Input factors: values of involved factors used by the simulation model in order 

to generate the result. The involved factors can be divided into two main 

groups: 

a. Constants: global constant factors common among all the possible 

scenarios and usually don't change from one scenario to another. 

b. Scenario variables: variables whose values are assigned by the code or 

user according to the defined scenario. 

2. Simulation procedures: includes the procedures required for generating the 

outputs by using the input factors.  

3. Output: depending on the type of the simulation model, the output can be either 

deterministic or probabilistic: 

a. Deterministic output: the output of a model that has no random input; as 

a result, all the required analyses for factor screening are done based on 

only one replication of the model. 

b. Stochastic output: the output of a model that operates with at least some 

random inputs. To do analyses on the response of stochastic simulation 

models, based on the desired degree of accuracy, an appropriate number 

of replications should be taken. 

 

Simulation 
Procedures Input Factors Output 

Simulation Model 

Figure A.1: Simulation Model in the Context of Factor Screening 
Experiment
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A.2. Incorporating the Factor Screening Class into a 

Simulation Model 

Each factor screening method, regardless of the design it employs, sets input factors at some 

levels, run the simulation model, get the model response, designs another treatment and 

continue the procedure until it stops according to a certain criteria specified by the method. 

Therefore, the factor screening module must be able to control the values of input factors, run 

the simulation model whenever necessary, and from the generated outputs, and get the 

information required for factor screening, such as the mean and the standard deviation of the 

response selected for factor screening. The general concept of this process is depicted in 

Figure A.2. 

 

In practice, to incorporate the factor screening procedure into a simulation model, some 

components of the structure presented in Figure A.2 needs to be modified and some 

additional elements should be added. These adjustments are: 

1. Use "Factor Database" instead of "Input Factors" 

2. Add "Interaction Manager" component 

3. Use "Response" instead of "Output" 

4. Add "Signal-to-Run" component 

 

 
Data Flow 

 
Control Flow 

Simulation 
Procedures Input Factors Output

Simulation Model 

Figure A.2: Factor Screening Module installed on a simulation model 

Factor Screening Class 

Report 
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The new conceptual model is shown in Figure A.3 and its components are described below: 

 

A.2.1. Factor Database 

Generally, in a simulation model, all the involved factors are embedded in the simulation 

code. Therefore, it is completely impossible for the factor screening code to gain control over 

all factors for assigning them the appropriate values. In order to solve this problem, all the 

involved factors which the user is interested in screening, must be listed in a special-

structured database and the simulation model must be coded such that it can read the required 

input factor from the Factor Database. The structure of the Factor Database is discussed in 

Section A.4. 

A.2.2. Interaction Manager 

The main function of the "Interaction Manager" class is to make the communication between 

FSC and the simulation model possible. Most of the factor screening methods use a "coded" 

language, where scaled values are used instead of the factor's real values. Therefore, one of 

the main rules of "Interaction Manager" class is to function as a translator between the model 

 
Data Flow 

 
Control Flow 

Figure A.3: Factor Screening Module installed on a simulation model 
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and the factor screening class. In addition, the interaction manager has control over the factor 

database to change the factor levels as dictated by the screening method. 

Employing this strategy has the following additional advantages: 

1. Any necessary modification or improvement can be made in the screening 

methods regardless of the simulation model on which the factor screening is 

being applied. 

2. To have a factor screening code that can work with different types of Factor 

Databases created by different applications, such as Excel, Access, and etc., we 

only need to add the required features in the Interaction Manager class and no 

change in the factor screening methods is required. 

3. Many factor screening methods need to exchange information with the user 

before the start of the factor screening experiment and while the screening is in 

progress. The Interaction Manager can facilitate this type of interactions without 

requiring the users to change the code in their simulation models. 

A.2.3. Response 

Factor screening experiments can be performed on only one response function, which should 

be specified by the user. Therefore, the simulation model must be able to provide the factor 

screening code with the information about the response function. This information usually 

includes the response mean and variance, and the number of replication used to produce the 

response value. 

The "Interaction Manager" class in NCSU-FSC has a MustOverride function called 

"GetModelResponse" which can be overridden by user with the function that returns the 

value of the response function on which the factor screening is done. 

A.2.4. Signal-to-Run Component 

One of the most desirable features of the factor screening class is its ability to operate with 

least interference in the simulation model. In other words, it should not require the model 
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developers to modify their code so as to incorporate the factor screening class into the 

simulation model. In order to achieve this superiority, an overridable function should be 

included in the Interaction Manager class which can be overridden by user with the 

subroutine that triggers the simulation model to run. This overridable function acts as a 

"Signal-to-Run" component. Therefore, whenever the factor screening class needs a new 

observation of the response function, it calls this function to signal the simulation model to 

run and then the Interaction Manager can get the response value via the "Response" 

component. 

A.2.5. Factor Screening Methods Collection (FSMC) 

The fundamental component of any factor screening library is the collection of the methods 

that can be employed for factor screening experiments. These methods can generally be 

divided into two groups: 

1. Sequential methods, in which the design of each stage is determined based on 

the response of the previous stage; such as: SB, Cheng’s method and CSB. 

2. Predetermined methods such as Fractional Factorial and BP designs, where the 

data are collected according to a predetermined design matrix. 

Almost all the statistical software, like SAS, JMP, and etc., are able to generate 2k Fractional 

Factorial, Plackett-Burman, and Latin Hypercube Designs. For these methods, the FSC needs 

to only obtain the desired number of observations for each row of the designs matrix, and the 

consequent analyses are conducted by the statistical software. NCSU-FSC can provide the 

user with an Excel worksheet where the user can input the design matrix and then the code 

obtains the required number of observations for each design row and returns the values to the 

Excel worksheet. 

It should be noted that in the implementation of these methods, factors are generally assumed 

that vary in a scaled range, like between -1 to 1 or 0 to 1. Therefore, by using a suitable 

interaction management these methods can be applied on any simulation models. 

NCSU-FSC includes the following sequential factor screening methods: 
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1. Deterministic Sequential Bifurcation (SB) 

2. Deterministic Sequential Bifurcation augmented with fold-over design (X-SB) 

3. Stochastic Sequential Bifurcation (Cheng’s method and the Modified Cheng’s 

method) 

4. Stochastic Sequential Bifurcation augmented with fold-over design (Cheng’s 

method and the Modified Cheng’s method augmented with fold-over design) 

5. Controlled Sequential Bifurcation augmented with fold-over designs (CSB-X) 

A.3. Structure of the Factor Database 

In the factor screening experiments, the simulation model should be run for the different 

combinations of certain factor levels as specified by the screening design. For example in a 2k 

factorial design, the simulation model should be run for 2k combinations of factor levels, 

which requires the analyst to run the simulation model for 2k times and each time assign 

different values to all the involved factors. On the other hand, simulation models are 

generally used for studying large-scale or complicated systems which usually include a large 

number of variables. As a result, when performing factor screening on a simulation model, 

even if an efficient screening method is employed, the required number of factor 

combinations is so high that changing factor levels for each simulation run by hand is 

prohibitive.  

As a solution, it is desirable that a computer program be in charge of assigning values to the 

factors according to a certain screening design, at each run. In order to achieve this, it is 

necessary that all the involved factors in the model be explicitly listed in a database which 

can be accessed by the FSC module.  

This section addresses the structure and configuration of the Factor Database that each 

simulation model with moderately large number of factors is encouraged to have in order to 

make the factor screening experiments possible or much easier. Table A.1 shows the fields of 

the factor database and the following sections provide explanation for each field.  
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Table A.1: Factor database 

Variable 
ID

Factor 
ID

Screening 
ID

Variable 
Name

Input 
Distribution

Parameter 
Name

Center 
Level

Low 
Value

High 
Value Involved Effect On

Factor 
Direction

Expert 
Guess

1 1 1 X1 Beta Alpha 3.955 3.2765 4.4330 TRUE "Cost/QALY" Positive Important
1 2 1 X1 Beta Beta 3.955 4.4330 3.2765 TRUE "Cost/QALY" Positive Important
2 3 2 X2 Beta Alpha 4 3.5595 4.3505 TRUE "Cost/QALY" Negative Unknown
2 4 2 X2 Beta Beta 4 4.3505 3.5595 TRUE "Cost/QALY" Negative Unknown
3 5 3 X3 Constant value 0.02 0 0.03 TRUE "Cost/QALY" Unknown Unknown

Factor Information
General Information Values Expert Judgment

 

A.3.1 Variable ID, Factor ID, and Screening ID 

We can group the factors involved in a simulation model into distribution-based factor and 

constant factors. Distribution-based variables are those whose values are determined 

according to a distribution function whose parameters are referred as factors.  

For example, in Table A.1, variable-1 follows a standardized (0,1) Beta distribution with 

shape factor-1 as shape (alpha) and shape factor-2 as parameters. And variable-3 is a constant 

variable and can be referred as factor-5. 

Obviously, in each simulation model there are a numbers of factors that are highly dependant 

on each other. It means that when changing the value of one of them, we have to change the 

value of the others too. A well-known example would be the parameters of random variables. 

For instance, assume a uniform random variable with parameter a as min and b as max. If we 

want to set the mean of this random variable at its upper level, we have to change the value 

of a and b simultaneously, equally and in the same direction. Therefore, for all the factors 

believed to be dependent, the same value must be assigned to the corresponding 

'Screening ID' column, so that the FSC treats them as a single factor. Otherwise, the FSC 

will change the value of those dependent factors as the screening method dictates, which can 

be completely unreasonable. For example, assign greater value to min parameter and the 

smaller value to max parameter! 

A.3.2. Variable Name  

This field can store the name of the variables. 
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A.3.3. Input Distribution and Parameter Name 

For distribution-based variables, the name of the distribution and its parameters, and for 

constant variables, ‘constant’ and ‘value’ are assigned to these two fields. 

A.3.4. Central, Upper and Lower Values  

For each factor, central, upper, and lower levels are desired to be assigned by the expert. For 

some special types of factors, like random variables, FSC is not able to assign the upper and 

lower levels, thus the expert is requested to provide the appropriate values for the 

corresponding lower and upper levels. 

A.3.5. Is the variable involved? 

The first decision about each factor is to whether include it in the screening experiment or 

not. This decision is of great importance due to the following reasons: 

1. Eliminating factors that have no role in the model will reduce considerably the 

number of required runs for factor screening experiment. 

2. Eliminating factors that play an important role in the model will definitely lead 

to misleading results. 

In addition, in the simulation models that allow users to choose different scenarios to run 

(like CRC model), a great number of factors are not even involved when a specific scenario 

is chosen. Ideally, the simulation model should be able to assign the appropriate value (i.e. 

involved or not involved) to this field as soon as the user defines the scenario of interest. 

Otherwise, the context expert would be the best source to fill out this field. By default, 

NCSU-FSC will consider all variables as involved in the model. 

A.3.6. Effect on Which Response Function(s)? 

Simulation models usually generate statistics for a various number of response functions, and 

it is possible that the analyst would like to perform factor screening experiment on more than 
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one output function. However, not all the factors have an effect on all the response functions; 

by contrast, a large number of factors affect only certain response functions. Therefore, 

having chosen the response, we need to identify the factors that have influence on it. For that 

reason, the analyst will be requested to specify for the FSC the different response functions 

on which to do factor screening. Then, for each factor, the expert should determine the 

response function that the factor might have effect on, and assign the function’s name to the 

EffectOn field. This allows the FSC to conduct factor screening on only the factors that 

are believed to have effect on the selected response. 

A.3.7. Factor Direction  

As previously discussed, some of the screening methods assume that the signs of the main 

effects are known. Violation of this assumption would result in ignoring the main effects of 

some important factors and eventually leads to misleading results. If the expert cannot 

specify the main effect directions, the FSC should be able to determine the directions by 

running a Resolution III or a one-factor-at-a-time design.  

A.3.8. Expert Guess 

This field provides the experts with opportunity to import their insight about the significance 

of a factor into the factor screening experiment. The user can assign one of the values 

"Important", "Unknown", and "Unimportant" to the field ExpertGuess. This information 

can be used either for checking the results of the factor screening experiment, or for 

improving the efficiency of the method. The FSC can place all the factors named 

“Unimportant” in a single group and then apply an inexpensive design, such as a Resolution 

III, to judge about the significance of this group-factor.  
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A.4. Conclusion 

Automating the factor screening experiment demands a specific structure for the simulation 

code and the database in which the factors and their corresponding information are stored. In 

this chapter we proposed an exclusive structure for the Factor Screening Class (FCS) and the 

factor database. These structures are believed to noticeably facilitate the process of factor 

screening. 


