
Abstract

CORNE, MATTHEW ALLAN. Instabilities of Geometrodynamic Evolution in the

Hamiltonian Formulation of General Relativity. (Under the direction of A. Kheyfets.)

Difficulties with instability of numerical geometrodynamic evolution associate with

the modeling of gravity waves generated by colliding black holes. This modeling is an

integral part of the gravity wave detection effort (ground-based detectors LIGO and

VIRGO and future space-based detector LISA). However, all algorithms have proven

largely unsuccessful as they amplify (exponentially) nonphysical constraint-violating

modes such that the numerical codes crash almost immediately after the modes ap-

pear. Equivalently, these models violate initial constraints (essentially enforcing con-

servation of energy and momentum) because of numerical errors and, subsequently,

either imperfect numerical techniques or inadequate formulation of Hamilton’s evolu-

tion equations cause rapid drift of the solutions off the constraint shell.

Another possibility seriously considered in these models concerns the inadequacy

of Hamilton’s equations off shell. This has resulted in hyperbolic reformulations of

Einstein’s equations that exclude acausal modes of the solutions (modes propagating

between the normal and the null of a nullcone or out of the null cone), leading to

more stable solutions. The development has resulted in marginally better algorithms.

However, difficulties remain (this does not yield a sufficiently stable code). Improved

understanding of the nature of instabilities is needed.

This research investigates instabilities caused by violation of the initial-value con-

straints. It considers the observation that the drift off shell of a source-free gravita-

tional field equates with a transition from a source-free field to a field with a source.

The simplest model permits, as a source, a scalar field that is not necessarily subject

to standard energy conditions. Such a field resembles the one that is used by cos-

mologists for the description of inflation and acceleration phenomena or, historically



preceding it, the C-field introduced originally by Hoyle and Narlikar. Unlike the ap-

proach taken in cosmology, this work considers associated exponential instability in

the Hamiltonian formulation (ADM and its hyperbolic modifications). Particularly,

this work looks at a field theory with a Lagrangian for a pre-existing source (or source-

less, though this does not change the formulation) and considers how introducing the

C-field modifies the evolution of the system.

Study of the mechanism of instability might lead to better numerical evolution

schemes, but this development is beyond the scope of the suggested work.
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Chapter 1

Introduction

General relativity is a powerful theory. Calculations using the theory yield accurate

results, although few experiments allow for study or verification of one of its pre-

dictions: gravitational waves. Development of the Earth-based detectors, LIGO and

VIRGO, and the proposed space-based LISA, provide means to detect these waves.

Meanwhile, development of accurate models is crucial for studying the gravitational

behavior of sources such as colliding black holes and neutron stars. Further, these

models yield information to compare with observations at the detectors. However,

current modeling schemes yield physically unrealizeable results, given the conditions

under which they are studied. Particularly, the models violate initial-value energy and

momentum constraints. The wave solutions go off of the constraint shell, yielding wild

solutions that blow-up (grow rapidly).

Specifically, constraint-violating modes build up; wave solutions go off of the con-

straint shell (set of physically admissible solutions). As time progresses, constraint-

violating modes overtake constraint-obeying modes, leading to rapid growth of so-

lutions. To keep solutions on-shell, methods consider possibilities such as adjusting

the constraints at each time step, introducing algebraic and differential conditions

for constraints, and even rewriting Einstein’s equations. This work posits a different

argument, suggesting that the growth encountered after violations dominate might

be an artifact of leaving out physical information, particularly in the source term.
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As a possible remedy, this work introduces a minimally-coupled scalar field in the

source term. The scalar field produces particles in strongly curved spacetime. Sources

of gravitational waves (colliding black holes, etc.) strongly curve space. Concerning

constraint violations, a scalar field of negative energy density activates in such situa-

tions, and so the constraints cannot be violated as such. Instead, violations represent

the contribution of the scalar field term. Effectively, the problem of stability turns

out to be an artificial difficulty; the set of admissible solutions is increased (i.e., the

constraint shell is smeared out and is less rigid).

Chapter 2 begins by tracing the development of the theory through the Lagrangian

formulation, an action principle first appears which gives Einstein’s equations. These

equations give all of the information about the gravitational fields, more accurately

described as curvature, and the geometry, and they connect this information with a

source. The equations require the conservation of energy-momentum, with the terms

associated with geometry and curvature vanishing under divergence. Gravitational

waves represent the solutions to these equations.

Chapter 3 poses these equations more simply via the 3 + 1 decomposition of

spacetime. This makes a Cauchy problem (equivalence of classical gravitational fields

to the time history of spacelike hypersurfaces’ geometries), and the entire procedure

of splitting the curvature into that intrinsic to the hypersurface and that extrinsic for

the hypersurface embedded in 4-dimensional spacetime allows for a redressing of the

problem of second-order differential equations, via variational principles, into dynamic

and constraint equations. Then, the possibility of formulating an initial-value problem

occurs, and it handles via the move from a canonical picture to one expressed in terms

of curvature.

Chapter 4 discusses modeling of gravitational waves. These waves comprise of

superpositions of plane waves. Models of gravitational waves consider both the weak-

field limit and the strong-field limit. The weak-field limit considers that gravitational

waves occur as perturbations of Minkowski spacetime. The strong-field limit considers

2



curved spacetime.

Chapter 5 considers the problem of stability and presents a possible solution.

The stumbling block of gravitational wave models occurs in their long-term behavior:

constraint-violating modes dominate the equations, and the solutions blow-up expo-

nentially. Avoiding wild growth requires satisfying the constraint equations. Introduc-

tion of the C-field, a particle-generating scalar field, allows for treatment of unstable

solutions associated with vacuum sources. This investigation considers equivalence

of unstable solutions in sourceless models with constraint-satisfying solutions in the

presence of this scalar field.
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Chapter 2

Einstein’s Equations: Lagrangian

Formulation

2.1 Geometry and the Metric

General relativity changes radically the Newtonian view of gravity as a collection of

field lines in an absolute, fixed background space. A composite spacetime replaces the

previous notion of absolute 3-space and absolute time, and its distortion manifests

the field lines. More rigorously, a smooth 4-manifold defines classical relativistic

spacetime. The definitions of a 4-manifold and a metric require introduction of several

concepts (see [1], [2], [3], [4], and [5] for more details).

2.1.1 Topological Spaces

A topology on a set X is a subset T ⊂ PX (where PX, the power set of X, is the

collection of all the subsets of X) such that the following properties hold:

i.A1, A2 ∈ T ⇒ A1 ∩ A2 ∈ T ;

ii.{Aµ|µ ∈ I} ⊂ T ⇒
⋃
µ∈I

Aµ ∈ T ;
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iii.∅ ∈ T and X ∈ T. (2.1)

A topological space (many different kinds exist) is written as (X, T ). Open sets of

this space correspond to the elements/subsets of T .

Considering the Euclidean space IRn, a subset S ⊂ IRn is open when an open ball

contained in S is centered around each of its elements s ∈ S. [6] An open (ε) ball

with radius ε centered around a point x′ = (x′1, ..., x
′
n) consists of points x such that

|x− x′| < ε. Then the union of such ε balls gives an open set. The distance between

points is given by the norm,

|x− x′| = [
n∑

i=1

(xi − x′i)
2)]

1
2 . (2.2)

A metric is a distance function satisfying several properties [5]:

i. Positivity : ∀x, x′ ∈ X, d(x, x′) ≥ 0;

ii. Nondegeneracy : d(x, x′) = 0 ⇒ x = x′;

iii. Symmetry : ∀x, x′ ∈ X, d(x, x′) = d(x′, x);

iv. Triangle Inequality : ∀x, x′, x′′ ∈ X, d(x, x′′) ≤ d(x, x′) + d(x′, x′′). (2.3)

This distance function maps the cartesian product of a set with itself into IR, thus

defining a metric space. So, (1.2) corresponds to the Euclidean metric on IRn. An

alternative description considers differential distances. In the case of differentials, the

metric is represented by

ds2 = dx1
2 + ... + dxn

2. (2.4)
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2.1.2 Manifolds

Define M := (X, T ) as a topological space. Then, X is Hausdorff if for every x, x′ ∈ X,

x 6= x′, there exist neighborhoods of the points in X such that their intersection is

the empty set. Let there be a set of real functions {g, f1, ..., fn} on M . [7] If ∃

a real function u(t1, ..., tn) defined on IRn such that g = u(f1, ..., fn) on M , then g

depends smoothly on the functions f1, ..., fn. For a point m ∈ M , it is equivalent that

g(p) = u(f1(p), ..., fn(p)). If the set of these functions contains a nonempty subset

G := G(M) such that a function depending smoothly on functions in G belongs to

G and such that if the function assumes an equal value to a function in G that it

belongs to g, then M is a smooth premanifold.

IRn is a smooth premanifold. The points are n-tuples of real numbers, and smooth

functions on IRn are infinitely differentiable functions of the points.

To further define M , introduce dimension. M is an n − dimensional smooth

manifold if every m has a neighborhood diffeomorphic to some open subset of IRn.

What does it mean to be diffeomorphic?

Build up to the idea of diffeomorphism by introducing the idea of homeomorphism.

Let X and Y be Hausdorff spaces. A homeomorphism is a function f : X → Y one-

to-one, onto, and such that it and its inverse f−1 : Y → X are continuous. Going back

to the topological space (X, T ), a chart at m ∈ X is a function α : A → IRd, where the

open set A contains m and α is a homeomorphism onto an open subset of IRd. This

requires the dimension of α to equal d. The chart’s coordinate functions are the real-

valued functions on A given by entries α’s values. More specifically, they are functions

(compositions of the charts with standard coordinates on IRd) xi = ai ◦ α : A → IR,

where ai : IRd → IRrepresent the standard coordinates on IRd. So for each p ∈ A, αp =

(a1p, ..., adp). In this way, the chart is written in terms of the coordinate functions,

α = (a1, ..., ad). These terms yield coordinate definitions, with α a coordinate map,

A a coordinate neighborhood, and (x1, ..., xd) coordinates or a coordinate system at

m.

6



Next introduce the concept of C∞ functions. Call a real-valued function f : B → IR

C∞ (continuous to order ∞) if B is an open set in IRd and f has continuous partial

derivatives of all orders and types. Then, the function β : B → IRe is a C∞ map if

the components ai ◦ β : B → IR, i = 1, ..., e, are C∞.

Two C∞ − related charts α : A → IRd and β : B → IRe on a topological space

possess the following properties: d = e and either A ∩ B = ∅ or α ◦ β−1 and β ◦ α−1

are C∞ maps. The domain of α ◦ β−1 is an open set in IRd, β(A ∩ B). A separable

Hausdorff space with a d − dimensional chart at every point defines a topological

manifold. A C∞ atlas requires every pair of charts to be C∞−related. An admissible

chart to a C∞ atlas is C∞−related to every chart in the atlas. A topological manifold

with all admissible charts of some C∞ atlas comprises a C∞ manifold.

Let an atlas exist as the single chart, the identity map I : IRd → IRd. The coordinate

functions then yield the cartesian coordinates ai. Then, a C∞ admissible coordinate

map on IRd is a one-to-one C∞ map α : A → IRd with A an open set and |∂xi

∂ai | 6= 0

(xi = ai ◦ α are the coordinate functions). From the inverse function theorem, if f i

(i = 1, ..., d) are real-valued C∞ functions on some open set of IRd and at some r ∈ IRd

|∂xi

∂ai | 6= 0, then ∃ a neighborhood U of r and a neighborhood V of (f 1r, ..., fdr) such

that the map ρ = (f 1, ..., fd) takes U onto V , is one-to-one, and has a C∞ inverse.

This obtains admissible coordinates.

Let α1 : U → IRd and α2 : V → IRe be respectively C∞ charts on C∞ manifolds M

and N . Assume F : M → N a continuous map. Then Λ = F 1V is an open subset of

M . Let Λ1 = α1Λ; then Λ1 is an open set in IRd. The α1 − α2 coordinate expression

for F is the map α2 ◦ F ◦ α1
−1 : Λ1 → IRe. If the coordinate expressions ∀ admissible

charts are C∞ maps on cartesian spaces, then F is a C∞ map.

Thus, a diffeomorphism from M onto N is a one-to-one, onto, C∞ map F : M → N

such that the inverse map F−1 : N → M is also C∞. And it is clear now that every

m has a neighborhood diffeomorphic to an open subset in IRn.
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2.1.3 Bases: Vectors and 1-Forms

Consider vector objects residing in a vector space U . Define them as u := dP
dλ

, or the

derivative of a point along a curve, parametrized by λ and taken at the beginning/tail

of the curve (λ = 0). Introduce basis vectors eµ and their duals ωµ [5]. For nontrivial

scalars (not all equal to zero) cµ, a linearly dependent finite set of vectors is such

that a linear combination
∑i

µ=1 cµuµ = 0. Linear independence is the opposite case;∑i
µ=1 cµuµ 6= 0.

Define a basis as a linearly independent spanning set in this vector space. Con-

sidering a basis {eµ} and its dual {ωµ}, then < ων , eµ >= δν
µ gives the functional

representation. The basis vectors of different indices lie parallel to surfaces defined

by the duals; the basis vector of the same index as the dual pierces exactly one sur-

face of it. This holds for any basis (coordinate and noncoordinate). For {xµ} a set

of coordinates of the vector space, define a coordinate (holonomic) basis eµ := ∂
∂xµ

with dual ωµ := dxµ. Then, at some initial point, < dxµ, ∂P
∂xν >= ∂

∂xν xµ = δµ
ν [1].

Different charts yield different coordinate bases [2].

Vectors and 1-forms expand according to bases and duals. In this way, u = eµu
µ

and σ = σµω
µ; to obtain the components, uµ =< ωµ,u >, σµ =< σ, eµ >. These

imply that < σ,u >= σµu
µ. For simplicity of calculation, introduce the Einstein

summation convention for these components:

σµu
µ =

n∑
µ=0

σµu
µ. (2.5)

Consider curved spacetime (nonorthonormal basis vectors in non-Lorentz frames).

Moving from a Lorentz transformation (as found in Minkowski spacetime) to a general

change of basis requires the use of an arbitrary nonsingular matrix, ||Lµ
ν || = ||Lν

µ||−1.

So, eν = eµL
µ

ν , and ων = Lν
µω

µ. Components of vectors and 1-forms transform also;

vµ = Lµ
νv

ν for vectors, and σν = σµL
µ

ν . For coordinate bases, Lµ
ν = ∂xµ

∂xν [3],

[1]. If the determinant (called the Jacobian) of this transformation matrix equals

zero at a point, then the transformation is singular at the point. For noncoordinate

8



(anholonomic) bases, however, partial derivatives do not define its basis vectors. That

is, a transformation does not exist from a coordinate basis to such a basis.

Now, let G1(M) be a vector field, m ∈ M an arbitrary point in the manifold, and

u,v ∈ G1(M). If a rank-2 tensor field g(u,v) is defined on M with the properties that

g(u,v) = g(v,u) (nondegenerate) and the bilinear form gp on the tangent bundle

TpM (the union of all the tangent spaces to M) is positive definite, then M is a

Riemannian space [5]. Then, the tensor field g corresponds to the metric tensor field,

and the bilinear form defines a scalar product in the tangent space, transforming the

tangent space into a Euclidean space.

For spacetime, we want to work from a manifold M of dimension 4. However, we

are not dealing with Euclidean tangent spaces anymore because of the index of the

metric tensor field. The index is the number of diagonal components of a bilinear

form which are equal to −1. So, metrics in relativity are known as Lorentz metrics.

In the language of general relativity,

g := gµνω
µ ⊗ ων (general basis)

= gµνdxµ ⊗ dxν (coordinate basis), (2.6)

where ωµ is the dual basis of the vector field V (whose basis is eµ), and gµν is the

metric tensor. ⊗ is the tensor product; it produces new tensorial quantities of rank

equal to the sum of the ranks of the inputs.

Operating with the metric tensor involves insertion of the appropriate arguments.

For a tensor with lowered indices (covariant tensor), gµν , this implies insertion of two

vector arguments. The tensor will operate on them as to produce a scalar (inner

product). With raised indices (contravariant tensor), gµν , this implies insertion of

two one-form arguments. And the mixed tensor, gµ
ν , allows for arguments of both

types. Essentially, as was stated above, a metric tensor operates to produce a scalar

quantity for two arguments, and this means lengths and angles for tensors of rank 1.
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Explicitly for the case of basis vectors,

gµν ≡ g(eµ, eν) ≡ eµ · eν . (2.7)

Also, the metric tensor is its own inverse, so that ||gµν || ≡ ||gµν ||−1. Also, redefine

the Kronecker delta as gµνg
νκ = δµ

κ.

This leads to an interesting aspect of general relativity known as Lorentz or general

covariance. At infinitesimal scales about some point, the spacetime can be taken to be

flat, as in the Minkowski case. This is an expectation from the fact that the smaller

the scale, the closer the space should match the tangent space. And so this yields a

Lorentz frame. Also, general covariance eliminates a preferred frame. In this respect,

it develops complications in reference to Mach’s Principle (see later in the paper).

2.2 Curvature and the 4-Manifold

What is curvature? Curvature in general relativity manifests as the distortion of

spacetime. But how is curvature described mathematically?

A good place to start is with the concept of free-fall geodesics [1]. Before geodesics,

consider free-fall trajectories. By the strong equivalence principle, in all local Lorentz

frames in the universe, all nongravitational interactions must behave special relativis-

tically. Less rigorously, this means the worldtube of a freely falling massive body (con-

sidering only that it interacts with gravity) is independent of the body’s composition

and structure (weak equivalence principle). Forming a spacetime with a congruence

of these trajectories and using the property of locally Lorentz frames, establish an

affine parameter λ as the time for events on the trajectories. This parametrization is

unique only to first order since two quantities remain arbitrary: the choice of origin in

time, and the units of parametrization. These trajectories are called geodesics since

the trajectories from one event to another follow the straightest possible path along

a tangent.
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The generic definition for a covariant derivative of a tensor field at a point P(0)

along a parametrized curve P(λ):

(∇uT)atP(0) = lim
ε→0
{
T[P(ε)]parallel-transported toP(0)

−T[P(0)]

ε
}. (2.8)

The covariant derivative is a linear operator (see the properties below). Given a

general basis, it follows obviously that the covariant derivative generally does not

equal the partial derivative. Define the connection coefficients:

Γα
µν ≡< ωα,∇eνeµ > . (2.9)

This gives the α component of the change in the basis eµ relative to parallel transport

along eν . In terms of their components,

Γαβµ =
1

2
(gαβ,µ + gαµ,β − gβµ,α + cαβµ + cαµβ − cβµα);

Γα
µν = gακΓκµν . (2.10)

The c’s are the commutation coefficients of a basis. For tangent vector fields u and v,

with the picture of each as directional derivatives ∂u and ∂v, define the commutator:

[u,v] ≡ [∂u, ∂v] ≡ ∂u∂v − ∂v∂u. (2.11)

For two basis vectors,

[eµ, eν ] ≡ cµν
κeκ; cµνκ ≡ cµν

λgλκ. (2.12)

For a coordinate basis, [u,v] = (uνvµ
,ν − vνuµ

,ν)eµ = (uνvµ
,ν − vνuµ

,ν)(
∂

∂xµ ).

Consider the case where the tensor field is a vector field. Covariant derivatives

describe how quickly a vector field changes along a curve. Specifically, let v be a
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vector field, and let the curve have a tangent vector u = d
dλ

, where λ is the affine

parameter along a free-fall geodesic. Then the covariant derivative of v along u is

∇uv ≡
dv

dλ
. (2.13)

This also interprets as the rate of change of v with respect to the affine parameter.

Covariant derivatives have several properties:

i. Symmetry : ∇uv −∇vu = [u,v] for any vector fields u and v;

ii. Chain Rule : ∇u(fv) = f∇uv + v∂uf for any function f, vector field v,

and vector u;

iii. Additivity : ∇u(v + w) = ∇uv +∇uw for any vector fields v and w,

and vector u;

iv. ∇au+bnv = a∇uv + b∇nv for any vector field v, vectors or vector fields

u and n, and numbers or functions a and b. (2.14)

It is appropriate here to introduce the concept of parallel transport. Define par-

allelism to be the condition that for two vectors on two tangent spaces, they will be

identical. To say that a vector field is parallel transported along a tangent vector, the

following equation must hold:

dv

dλ
≡ ∇uv = 0. (2.15)

The parallel transport of a tangent vector along the curve with it as a tangent

vector is equivalent to the property of a curve being a geodesic:

du

dλ
= ∇uu = 0. (2.16)

This is a second-order equation, since the tangent vector u = ∂
∂λ

is a derivative also.
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Consider geodesic deviation. Geodesic deviation occurs when, in a congruence

of geodesics, the geodesics separate in some way at common points of the affine

parameter λ. The displacement n = ∂
∂n

from a point on one of these curves to the

other one defines geodesic separation. n determines the geodesic (relatively speaking).

Then, obtain the relative acceleration vector:

∇u∇un. (2.17)

This describes the relative acceleration of the separation vector n along the tangents

to the geodesics.

A definition for curvature is imminent now. Begin with a congruence of geodesics,

and consider the geodesic equation, ∇uu = 0, for each. Taking the limit going to

zero of the difference between geodesic equations on neighboring curves, obtain the

covariant derivative along the separation vector n:

∇n[∇uu] = (∇n∇u +∇u∇n −∇u∇n)u

= (∇n∇u + [∇n,∇u])u

= 0. (2.18)

In Cartan’s notation, u = dP
dλ

with P := P(n, λ). Using the symmetry of the

covariant derivative, write

∇nu−∇un = [n,u]

= [
∂

∂n
,

∂

∂λ
] =

∂2

∂n∂λ
− ∂2

∂λ∂n

= 0

⇒ ∇nu = ∇un

⇒ (∇n∇u + [∇n,∇u])u

13



= ∇u∇un + [∇n,∇u]u = 0. (2.19)

This is the geodesic deviation equation. The first term represents acceleration of

a body relative to a fiducial observer on a geodesic. The commutator, [∇n,∇u], gives

the tidal gravitational forces - the spacetime curvature. Consider this commutator

acting on a tensor field, Z, with the covariant derivatives being along tensor fields

X and Y. Allow for Z to remain the same at some initial point P0, but allow for

variations of Z to change at different points via a function (arbitrary except for the

condition f(P0) = 1):

ZNew(P) = f(P)ZOld(P). (2.20)

This changes the action of the commutator on Z since

[∇X,∇Y]ZNewatP0
− [∇X,∇Y]ZOldP0

= [∇X,∇Y]ZOldP0
+ ZOld∇[X,Y]f − [∇X,∇Y]ZOldP0

= ZOld∇[X,Y]f. (2.21)

The commutator should equate to a linear operator/tensor in equation (2.14). It

does not fulfill this requirement, however, since it depends on the variations of the

vector fields at the evaluation point. A modification to eliminate this dependence

produces a tensor, the curvature operator R(X,Y):

R(X,Y)Z ≡ [∇X,∇Y]Z−∇[X,Y]Z

⇒ R(X,Y) ≡ [∇X,∇Y]−∇[X,Y]. (2.22)

The object R(σ,Z,X,Y) is the Riemann curvature tensor. Written differently in
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terms of its arguments,

R(X,Y)Z ≡ R(σ,Z,X,Y) =< σ,Z,X,Y >= Rα
κλµ, (2.23)

where σ is a one-form. The last term represents the components of the Riemann

tensor. Explicitly, the components take the form

Rα
κλµ = Γα

κµ,λ − Γα
κλ,µ + Γα

τλΓ
τ
κµ − Γα

τµΓτ
κλ − Γα

κτcλµ
τ

= gασ(Γσκµ,λ − Γσκλ,µ + ΓστλΓ
τ
κµ − ΓστµΓτ

κλ − Γσκτcλµ
τ ). (2.24)

Inserting tangent vector fields, the modification to the curvature tensor in Eq.

(2.22) equals zero under commutation, so the Riemann tensor retains the form of the

original geodesic deviation equation. In terms of components, the geodesic deviation

equation appears as follows:

D2nα

dλ2
+ Rα

βγδu
βnγuδ = 0. (2.25)

The Riemann tensor possesses several different symmetries, both algebraic and

differential. First is antisymmetry on its first two and last two indices:

Rµντρ = R[µν][τρ]. (2.26)

Next is symmetry under exchange of the first and last pairs:

R[µν][τρ] = R[τρ][µν]. (2.27)

Parts of the tensor that are totally antisymmetric vanish, so that

R[µντρ] = 0 and Rµ[ντρ] = 0. (2.28)
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In the spacetime of this universe, the Riemann tensor has only 20 independent

components out of an initial 256. This aspect simplifies working with the tensor. For

its differential symmetries, look at the Bianchi identities:

Rα
µ[γν;τ ] = 0. (2.29)

These identities, particularly, require the existence of the law of conservation of

energy-momentum and its automatic fulfillment (i.e., a field with degrees of freedom

to reduce the arbitrary degrees of freedom of a source).

The Ricci tensor occurs by contracting the first and third slots of Riemann. Con-

sider a basis and its dual; the contraction will look like

R(ωα, a, eα,b) = R(a,b). (2.30)

In component notation,

Rµν = Rα
µαν . (2.31)

The Ricci or curvature scalar is the contraction of the indices of a Ricci tensor:

Rµ
µ = R. (2.32)

This scalar curvature term is the cornerstone of the Hilbert action principle, which

gives the simplest geometric action in general relativity.

2.3 Calculus of Variations and the Least Action

Principle

The development of field theory requires an understanding of variational calculus.

Constructing a model involves starting with an action principle, varying the action,
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and studying variations with respect to different quantities in the action. This method

yields multiple equations (equations of motion, equations of constraint, wave equa-

tions, etc.) which allow for the determination of the particular system.

More abstractly, an action is a form of functional. A functional is a quantity which

is like a function of a function. More accurately, a functional J is such a quantity that

it depends on some kind of function (and possibly different derivatives), and both this

function and the functional itself depend on the choice of coordinates [8]. Functionals

are correspondences assigning definite real quantities to functions/curves belonging

to a class.

Many situations in physics require analysis of the simple functional,

J [f(x)] =
∫

a1

a2

F (x, f(x), f ′(x), ..., f (n)(x)). (2.33)

This representation includes higher-order derivatives. In many cases (such as the

Euler-Lagrange equations), only first derivatives occur. Nonetheless, a general ap-

proach proves necessary for this work. Consider the space Dn(a1, a2) consisting of

all functions f(x) defined on the interval [a1, a2] and which are continuous and have

continuous derivatives through order n. Let these functions satisfy the following con-

ditions:

f(a1) = A0, f
′(a1) = A1, ..., f

(n−1)(a1) = An−1,

f(a2) = B0, f
′(a2) = B1, ..., f

(n−1)(a2) = Bn−1. (2.34)

To determine an extremum for this function, consider the variation of the func-

tional. A necessary condition for the functional to have an extremum at a point is for

its variation to vanish for all points and admissible increments g(x) of the independent

variable f(x), or
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δJ [g(x)] = 0. (2.35)

Substitute for f(x) the term f(x) + g(x) which also belongs to the space Dn(a1, a2).

Then the variation δJ of the functional is an expression linear in the increment g(x)

and all of its derivatives and which differs from the increment 4J = J [f(x)+ g(x)]−

J [f(x)] by an amount of order greater than 1 relative to g(x) and its derivatives. For

f(x) and f(x) + g(x) to satisfy the boundary conditions (Eq. (2.29)),

g(a1) = g′(a1) = ... = g(n−1)(a1) = 0,

g(a2) = g′(a2) = ... = g(n−1)(a2) = 0. (2.36)

Apply Taylor’s theorem to obtain the increment 4J :

4J =
∫

a

b

[F (x, f + g, f ′ + g′, ..., f (n) + g(n))− F (x, f, f ′, ..., f (n))]dx (2.37)

=
∫

a

b

(Ffg + Ff ′g′ + ... + Ff (n)g(n))dx + ..., (2.38)

where Ff (n) = ∂F
∂f (n) , f (n) = d(n)f

dx(n) , and g(n) = d(n)g
dx(n) . These functionals are linear; the

variation of the functional equates only with the principal linear part of the increment

(as specified above), so

δJ =
∫

a

b

(Ffg + Ff ′g′ + ... + Ff (n)g(n))dx, (2.39)

and for the extremum δJ = 0,

∫
a

b

(Ffg + Ff ′g′ + ... + Ff (n)g(n))dx = 0. (2.40)

To obtain a representation with no derivatives of g(x) present, use integration by
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parts repeatedly and eliminate those derivatives by the boundary conditions given in

Eq. (2.31):

∫
a

b

(
∂F

∂f(x)
− d

dx

∂F

∂f ′(x)
+ ... + (−1)n dn

dxn

∂F

∂f (n)
)g(x)dx (2.41)

⇒ ∂F

∂f(x)
− d

dx

∂F

∂f ′(x)
+ ... + (−1)n dn

dxn

∂F

∂f (n)
= 0. (2.42)

This is the more generic form of Euler’s equations. In many problems, only derivatives

of the functionals with respect to the first-derivatives appear; these are the Euler-

Lagrange equations.

Another important topic is Lagrange multipliers [8]. Lagrange multipliers prove

useful in dealing with side conditions or constraints. Constraints come in two pack-

ages: those equal to the number (dimension) of functions, and those less than the

number of functions. Restated, the first condition (known as an isoperimetric prob-

lem) says that given a functional, boundary conditions for the function, and the

condition that the original functional has an extremum for that function, another

such functional exists that takes a fixed value where the function is not an extremum.

Mathematically,

J [f(x)] =
∫

a1

a2

F (x, f(x), f ′(x))dx; (2.43)

K[f(x)] =
∫

a1

a2

G(x, f(x), f ′(x))dx = s; (2.44)

f(a1) = A, f(a2) = B, (2.45)

where J and K are functionals and Eq. (2.43) constitutes the boundary conditions.

f(x) is not an extremum for K[f(x)]; however, a constant λ exists such that f(x) is

an extremum for the functional
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∫
a1

a2

(F + λG)dx

⇒ ∂F

∂f(x)
− d

dx

∂F

∂f ′(x)
+ λ(

∂G

∂f(x)
− d

dx

∂G

∂f ′(x)
) = 0. (2.46)

This generalizes to the situation with n functions:

J [f1(x), ..., fn(x)] =
∫

a1

a2

F (x, f1(x), ..., fn(x); f ′1(x), ..., f ′n(x))dx;

fi(a1) = Ai, fi(a2) = Bi, (i = 1, ..., n);∫
a1

a2

Gj(x, f1(x), ...fn(x); f ′1(x), ..., f ′n(x))dx = sj (j = 1, ..., k);

⇒ ∂

∂fi(x)
(F +

k∑
j=1

λjGj)−
d

dx
{ ∂

∂f ′i(x)
(F +

k∑
j=1

λjGj)} = 0. (2.47)

For the case of n derivatives in the functionals:

∂

∂fi(x)
(F +

k∑
j=1

λjGj) + ... + (−1)n dn

dnx
{ ∂

∂fn
i (x)

(F +
k∑

j=1

λjGj)} = 0. (2.48)

The case of finite subsidiary conditions concerns the situation with fewer constraint

equations than degrees of freedom/number of functions. Recognize the same kind of

boundary conditions (fi(a1) = Ai, fi(a2) = Bi; i = 1, ..., n) for the functions contained

in J [f(x)]. Then, the subsidiary conditions satisfy the relation [9]

Gj(x, f1(x), ..., fn(x)) = 0, (j = 1, ..., k). (2.49)

To consider the case for a general number of functions, establish boundary conditions

for the functions. Consider a functional only for the class of curves existing in the

(n− k)-dimensional manifold satisfying the boundary conditions. Let the functional

have an extremum for the curve formed from these functions. Carry through k partial
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derivatives of the quantity H := (F +λG) to obtain a system of differential equations.

Solve this system to obtain λ(x):

∂

∂fi(x)
(F +

k∑
j=1

λjGj) + ... + (−1)n dn

dnx
{ ∂

∂fn
i (x)

(F +
k∑

j=1

λjGj)} = 0,

(i = 1, ..., n), (j = 1, ..., k), k < n. (2.50)

In principle, this formalism extends to the situation of dependence on multiple vari-

ables in IRd, but most situations considered here (such as the thermodynamic quanti-

ties in Appendix C) do not require this development.

An important example of a functional, the action, occurs in field theory. The

action describes the energetic properties of a system; it contains both the dynamics

and the constraints. The most general form of the action takes the form

S =
∫

dnx L, (2.51)

where L is the Lagrangian density. The Lagrangian describes the energy in the system

and is written in terms of the kinetic and potential terms. Consider L := L(φm,∇φm),

where φm := φm(t, x1, ..., xn) is a set of functions. Denote the φm’s as field functions.

Commonly in physics, t ≡ x0. Many Lagrangians depend only on such functions and

their first derivatives, so the action takes the form

S[φ,∇φ] =
∫

t1

t2
dx0

∫
...

∫
(n−1)−V olume

L(φ,∇φ)dx1...dxn

=
∫

n−V olume
L(φ,∇φ)dnx. (2.52)

This reduces to the most general action in 4 dimensions,

S[φ,∇φ] =
∫
L(φ,∇φ)d4x =

∫
L(φ,∇φ) dt. (2.53)
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The least-action principle (δS = 0) yields Euler-Lagrange equations. Note that

some actions require higher-order derivatives; this follows from the above discussion.

However, application of Taylor’s theorem and repeated integration by parts handle

the situation.

2.4 Hilbert Action Principle and Einstein’s Equa-

tions

The Hilbert action principle yields appropriate initial-value data [1] for solving Ein-

stein’s equations. Written most generically,

S =
∫

d4x[L
√
−g]. (2.54)

√
−gd4x together is the proper 4-volume. L is the Lagrangian. d4x is the coordi-

nate volume, and so
√
−g densitizes the Lagrangian. When sources exist (as opposed

to the existence of only vacuum), the Lagrangian splits into a geometric term and a

source term. Hilbert wrote the first term, LGeom, in terms of the scalar 4-curvature

R:

L = LGeom + LSource =
1

16π
R + LSource. (2.55)

LGeom depends only on the metric tensor and its derivatives. LSource depends on

the metric tensor as well as different source terms (commonly scalar fields but also

vector and tensor fields in some field theories). R is the scalar curvature introduced

before. Rewrite it as

R = gµνRµν . (2.56)

Vary the action; this will give δS = 0 by the principle of least action. Take this

variation with respect to the contravariant metric tensor; after some computations
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and manipulations (see Appendix A), obtain the following:

δS =
1

16π

∫
d4x[(Rµν −

1

2
gµνR

+ 16π(
δLSource

δgµν
− 1

2
gµνLSource))δg

µν ]
√
−g = 0. (2.57)

Setting the coefficient of the variation of the metric tensor to zero, obtain Einstein’s

equations:

Rµν −
1

2
gµνR = 16π(

δLSource

δgµν
− 1

2
gµνLSource). (2.58)

Introduce the definition of the energy-momentum tensor, Tµν :

Tµν = −2(
δLSource

δgµν
+ gµνLSource). (2.59)

Letting the left-hand side equate with Gµν , the Einstein tensor, obtain

Gµν = 8πTµν . (2.60)

Note that this form leaves out what is known as Einstein’s greatest blunder, Λgµν ,

where Λ is the cosmological constant. However, upon inspection,

Gµν + Λgµν = 8πTµν

⇒ Gµν = 8πTµν − Λgµν

⇒ Gµν = 8πT ′
µν . (2.61)

In principle (with similar consequences to the scalar field employed later in this

work), this cosmological constant term can be absorbed into an energy-momentum

tensor as a source. Historically, the Einstein tensor was proposed because it is diver-
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genceless - a necessary requirement for conservation of energy-momentum since that

tensor is on the other side. The covariant derivative of the metric tensor equals zero

(Appendix A), so the scalar cosmological constant term Λ as written in the Einstein

tensor only affects the divergences if it possesses dependences that cause its gradient

to be nonzero. For classical sources, this term usually vanishes, though for anything

else (e.g., minimally coupled scalar fields) it need not disappear.

2.4.1 Conditions for the Einstein Tensor

The Einstein tensor is required to be divergenceless. This follows from computations

concerning the Riemann tensor, and it is of critical importance for the conservation

of energy-momentum. Recall the Bianchi identities for the Riemann tensor [3]:

Rαµ[γν;τ ] = Rαµγν;τ + Rαµτγ;ν + Rαµντ ;γ = 0. (2.62)

Contract these similarly to obtaining the Ricci tensor:

gγα{Rαµγν;τ + Rαµτγ;ν + Rαµντ ;γ} = Rµν;τ −Rµτ ;ν + Rγ
µντ ;γ. (2.63)

Contract again:

gµν{Rµν;τ −Rµτ ;ν + Rγ
µντ ;γ} = R;τ −Rν

τ ;ν −Rγ
τ ;γ = 0. (2.64)

By the rules of Einstein summation, γ → ν without any difficulties, so that

R;τ −Rν
τ ;ν −Rν

τ ;ν = R;τ − 2Rν
τ ;ν = 0. (2.65)

Rewrite this equation so that the covariant derivative is over ν:

R;τ − 2Rν
τ ;ν = gν

τR;ν − 2Rν
τ ;ν = {gν

τR− 2Rν
τ};ν = 0

24



⇒ {2Rν
τ − gν

τR};ν = 0

⇒ 2{Rν
τ −

1

2
gν

τR};ν = 0

⇒ {Rν
τ −

1

2
gν

τR};ν = 0. (2.66)

The divergence of the terms inside equals zero. Rewrite these terms using their

symmetry properties:

Rντ − 1

2
gντR = Gντ

⇒ {Rντ − 1

2
gντR};ν = Gντ

;ν = 0. (2.67)

Since the Ricci tensor and the metric tensor are symmetric, the term under the di-

vergence is symmetric. This term is, as seen above, the Einstein tensor. Then,

Gντ
;ν = Gτν

;ν = 0. (2.68)

So, the Einstein tensor must be divergenceless.

Consider the Riemann tensor. The Einstein tensor can be related to the double-

dual of the Riemann tensor (this is notation for relating antisymmetric tensors of

different ranks). The double-dual of the Riemann tensor has components [1]

Gµν
κλ ≡

1

2
εµνρσRρσ

θτ 1

2
εθτκλ = −1

4
δθτκλ

µνρσRρσ
θτ . (2.69)

Contract over the first and third indices of this tensor to get the Einstein tensor:

Gφα
φγ ≡ Gα

γ. (2.70)

For this work, some of the components are particularly useful [1]:
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G0
0 = −(R12

12 + R23
23 + R31

31);

G0
1 = R02

12 + R03
13. (2.71)

2.4.2 Conditions for the Source: Classical and Non-Classical

A complete treatment of Einstein’s equations necessitates discussion of sources for the

energy-momentum tensor [10]. A classical source is, roughly, a pre-existing, constant

source of matter, energy, or both. Perfect fluids, dust, and vacuum satisfy this.

Several pointwise energy conditions exist with varying degrees of rigidity: the strong

energy condition, the weak energy condition, the dominant energy condition, the null

energy condition, and the trace energy condition. Particularly, these come from the

positivity property of a term in Raychauduri’s equation [2]. Finally, the conservation

property must hold.

Start with the trace of the Einstein tensor [2], [11]:

Gµν = Rµν −
1

2
Rgµν = 8πTµν

⇒ gµνGµν = gµν(Rµν −
1

2
Rgµν) = 8πgµνTµν

= R− 4(
1

2
R) = −R = 8πgµνTµν

⇒ R = −8πT. (2.72)

Inserting this into Einstein’s equations,

Rµν −
1

2
Rgµν = Rµν +

1

2
(8πT )gµν = 8πTµν

⇒ Rµν = 8π(Tµν −
1

2
Tgµν). (2.73)
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Consider a unit timelike vector uµ. Then, ρ ≡ Tµνu
µuν is the energy density of

the matter distribution measured by an observer in a comoving reference frame. For

classical matter, the weak energy condition requires that the local energy density to

an observer on a worldline with a tangent vector equal to the unit normal at a point

on the worldline to be greater than or equal to zero:

Tµνu
µuν ≥ 0;

ρ ≥ 0; ρ + pi ≥ 0. (2.74)

The components of a physically realizeable classical energy-momentum tensor diago-

nalize when expressed with respect to an orthonormal basis [2], [10]. Then, treatment

of this problem yields four types of energy-momentum tensors. One is the standard

for a perfect fluid. Pressures in the spacelike directions and energy density at a point

are measured. Another case is for radiation traveling in one direction in space and

in time. Two cases are not observed classically: the case of negative pressures being

individually of greater magnitude than the energy density, and the case of vacuum

generating pressure. The values ρ and pi are the energy density and the principal

pressures of the matter.

The strong energy condition places restrictions on the value of quantities in the

energy-momentum tensor, putting a lower limit on the values of matter stresses [2],

[12] :

Tµνu
µuν ≥ −1

2
T ;

ρ ≥ 0;

ρ +
∑
i=1

3
pi ≥ 0;

ρ + pi ≥ 0. (2.75)
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This requires that negative principal pressures, or tensions, be lesser in magnitude

than the energy density.

Consider the dominant energy condition. −T µ
νu

ν represents the energy-momentum

4-current density; this quantity should always be a future directed timelike or null

vector, which is equivalent to saying that the speed of energy flux of matter < c. As

previously, T µνuµuν ≥ 0. This means that, locally, the energy density is non-negative

and that the local energy flux vector is not in a spacelike direction. Expanding the

condition, it is equivalent that ρ ≥ |pi|.

The other energy conditions follow essentially from these three. The null energy

condition already occurs in the others:

ρ + pi ≥ 0. (2.76)

Finally is the trace energy condition [12]:

T µ
µ ≤ 0;

ρ−
∑
i=1

3
pi ≥ 0. (2.77)

The regime for the weak, strong, null, and dominant energy conditions includes

only purely classical sources of matter, including classical scalar field such as in Brans-

Dicke theory [10], [12] . For the trace energy condition, the equations of state cannot

be too rigid. Since this is not agreeable to neutron stars, however, this energy condi-

tion is not used.

Non-classical sources do not satisfy these pointwise energy conditions. Scalar

fields of non-zero rest mass and quantum effects especially defy these conditions. In

particular, the C-field of this work possesses a negative energy density when generating

particles and expanding space.

The energy-momentum tensor must satisfy the requirement of global conservation.
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That is,

T µν
;ν = 0. (2.78)

This follows simply from the Bianchi identities:

Gµν = 8πT µν ;

Gµν
;ν = 0 ⇒ Gµν

;ν = 8πT µν
;ν = 0

⇒ T µν
;ν = 0. (2.79)

This work addresses the situation where this is violated, and a prescription is devel-

oped to compensate for such a violation.
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Chapter 3

Hamiltonian Formulation: The 3 +

1 Split

3.1 Arriving at the Split

GR possesses a unique difficulty that, at any time, the metric modifies via a coordi-

nate transformation [13]. Determining the time evolution of this field as a dynamical

quantity proves challenging. Coordinate invariance leaves the physics alone, so an ap-

proach separating the true dynamical quantities (the number of independent Cauchy

data) from the quantities concerning the coordinate system resolves this difficulty.

Determination of the independent dynamical modes of the gravitational field arrives

via the canonical form, which involves the minimal quantity of variables specifying the

system’s state. The canonical form requires that field equations be of first order in the

time derivatives and that time is separated from the spatial quantities. In GR, linear

time derivatives comprise the Palatini Lagrangian, making this form advantageous.

General covariance leads to analogy with Hamiltonian mechanics, which parametrizes

in a way where the conjugate pair, the Hamiltonian and the time, allows for another

degree of freedom. GR’s invariance under arbitrary coordinate transformations makes

it already parametrized.

Recall the action principle for a system of a finite number of degrees of freedom,
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and introduce parametrization:

S =
∫

t1

t2
dtL =

∫
t1

t2
dt(

∑
i=1

N
piqi

· −H(p, q)). (3.1)

Define the generating function as

G(t) =
∑

i

piδqi −Hδt, (3.2)

where δqi = δ0qi+qi
·δt. The first term, δ0qi, represents the independent variation of qi.

This generating function separates translations in spacetime to translations in space

and translations in time. This follows from the hypothesis that the total variation of

the action depends functionally only on the endpoints; the hypothesis also yields the

standard Hamilton’s equations for the p’s and q’s and the conservation of energy.

Consider an arbitrary parametrization, λ, so that the action takes the form

S =
∫

λ1

λ2

dλLλ ≡
∫

λ1

λ2

dλ[
∑
i=1

N+1
piq

′
i], (3.3)

where q′ ≡ dq
dλ

. This representation yields a constraint equation,

pN+1 + H(p, q) = 0. (3.4)

Using the method of constraint multipliers, introduce another term in the action such

that

S =
∫

λ1

λ2

dλ[
∑
i=1

N+1
piq

′
i − α(λ)R]. (3.5)

Varying the action yields the constraint equation R(pN+1, p, q) = 0, which implies

a solution that pN+1 = −H. Note that canonical form collapses because of the

constraint multiplier α in the Hamiltonian; general covariance strikes the Hamiltonian.

Returning to canonical form requires manipulation via implicit differentiation and

variational calculus. Insert the solution of the constraint equation:
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S =
∫

dλ[
∑
i=1

N
pi

dqi

dλ
−H(p, q)

dqN+1

dλ
]

=
∫

dqN+1
∂λ

∂qN+1

[
∑
i=1

N
pi

dqi

dqN+1

−H
dqN+1

dλ
]

=
∫

dqN+1[
∑
i=1

N
pi −H]. (3.6)

This formulation allows for qN+1 to be an independent coordinate such that no de-

pendence exists on an arbitrary parametrization external to the system. Practically,

imposing a coordinate condition allows for elimination of parametrization. Writing

the generator with this logic, obtain

G =
∑
i=1

N
piδqi −HδqN+1. (3.7)

Consider parametrized field theories, where the generalized coordinates appear as

four new field variables qN+κ = xκ(λµ) (which in turn have four conjugate momenta

pN+κ(λ
µ)). Four constraint equations relate the conjugate momenta to the Hamil-

tonian density and the momentum density. This implies four Lagrange multipliers

ακ(λ
µ) for the field. The Hamiltonian is the generator of time-translation. It is in-

variant with respect to the lapse (true time) and the shift; this makes it invariant

with respect to time-translation. This formalism extends to the metric field.

3.2 Splitting Geometry and the Metric

The formalism in Chapter 2 describes the 4-manifold as an object in which other ob-

jects of lesser or equal dimension exist. With the proper definition of curvature and

introduction of the action principle and variational calculus, this machinery leads to

Einstein’s equations. This set of second-order equations, however, proves challenging

to solve. The motivation for splitting spacetime into a foliation of spacelike hyper-

surfaces Σ parametrized by t, a global time function, is to yield two sets of first-order
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equations along with two sets of constraints. First-order equations are manifestly eas-

ier to deal with, and the constraint equations allow for specifying initial conditions,

which leads to the boundary value problem.

3-geometry is fixed on two faces of a sandwich, which is a representation of two

adjacent hypersurfaces. To construct a sandwich, the metrics of the 3-geometries of

the lower and upper hypersurfaces are needed. Starting from the 4-geometry, the

metric must be split. The formula for the proper length of a line connecting a point

on the lower hypersurface to a point on the upper is required. Finally, the formula

describing this point on the upper hypersurface is needed. In the language of Chapter

2, define the spacetime as (M,g) where M is the 4-manifold and g is the metric. Let

µ : M → Σ and t : M → IR. The mapping for time is classical; hence why it maps

to the real numbers. Topologically, the 4-manifold may be written as the Cartesian

product of the family of hypersurfaces and the real line, Σ× IR.

Let n be the normal to the hypersurfaces. Introduce the spatial metric induced

on Σ by g, γµν :

γµν = gµν + nµnν . (3.8)

Also, let N be the lapse function and N i be the shift vector. Define a timelike vector

field t on M , and write its components:

tµ = Nnµ + Nµ, (3.9)

where N is the lapse and Nµ is the shift. Consider normal and tangential components

of t; the timelike vector field satisfies the following relation:

tµt;µ = 1. (3.10)

In terms of this vector field, formalize the lapse and the shift:
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N = −tµnµ = −tµgµνn
ν

= [nµt;µ]−1; (3.11)

Nµ = γµνt
ν . (3.12)

These relations follow since n is normal to the shift,

Consider a coordinate system xµ = (t, xk) for Σ. On the adjacent hypersurface,

where the parameter changes by dt, the coordinates take the form xµ + dxµ = (t +

dt, xk +dxk). Finding the proper interval between the adjacent hypersurfaces requires

finding the proper distance in the lower hypersurface and the proper time between

the lower and upper hypersurfaces. Shift gives the proper distance, and lapse gives

the proper time. To describe a point in the upper hypersurface in terms of the lower

one, write

xk
Upper(x

s) = xk −Nk(t, xk)dt, (3.13)

and to describe the proper time between them, write

dτ = N(t, xk)dt. (3.14)

(Note that dτ 2 ≡ ds2.) Write the line element:

ds2 = gµνdxµdxν

= g00dx0dx0 + gi0dxidx0 + g0jdx0dxj + gijdxidxj

= (NkN
k −N2)dt2 + Nidxidt + Njdtdxj + gijdxidxj

= (NkN
k −N2)dt2 + gij(N

jdt + dxj)dxi + gijN
idtdxj

= −N2dt2 + gij(N
iN jdt2 + N jdtdxi + N idtdxj + dxidxj)
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= −(N dt)2 + gij(dxi + N i dt)(dxj + N j dt), (3.15)

where (4)g00 = (NkN
k − N2), (4)gi0 = Ni,

(4)g0j = Nj, and (4)gij =(3) gij, with all

quantities on the lefthand side corresponding to the 4-metric and quantities on the

right corresponding to the 3-metric. The critical difference between the spatial metric

and the 3-metric is that the spatial metric is the metric of the hypersurface expressed

in the spacetime coordinate basis, and the 3-metric is the metric of the 3-geometry

(it is the term gij).

The contravariant components of the 4-geometry in this new representation follow

in the standard way. This is especially important for the shift, since the object started

as a vector. Using an inverse 3-metric, obtain

(4)g00 = − 1

N2
;

(4)gi0 =
N i

N2
;

(4)g0j =
N j

N2
;

(4)gij =
gij −N iN j

N2
. (3.16)

Finally, consider an important property of the normal to the hypersurface. Con-

tracted with its dual, < n,n >= −1, or

< n,n > = nαeαnαdxα

= (
1

N
e0)(−Ndt) + (−Nk

N
ek)(0dxk)

= −1. (3.17)

In component language, nα = (−N, 0, 0, 0), and nα = ( 1
N

,−Nk

N
). With this informa-

tion, build the split curvature formalism.
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3.3 Curvature Revisited

Curvature takes a new form in 3 + 1 decomposition. Use of coordinate bases eases

calculations; the computations presented in this work take full advantage.

In this formalism, the spatial scalar curvature invariant (3)R serves as the best

measure of intrinsic curvature. Considering a basis, take an infinitesimal displacement

in the hypersurface,

dP = eidxi. (3.18)

dxi is the dual basis of ei, and P is the initial reference point on the hypersurface.

Let a field of tangent vectors lie in the hypersurface; they will have the same basis.

Then,

V = eiV
i, (3.19)

and the scalar product with the base vector ej is

(V · ej) = V i(ei · ej) = V igij = Vj, (3.20)

where these are the covariant components of the tangent vector field.

From previously established machinery, consider parallel transport of one of these

vectors. The motivation is to obtain this parallel transport within the hypersurface;

from the machinery, the covariant derivative must also reside intrinsically in the 3-

geometry. So,

∇ei
V = ∇ei

(ejV
j) = ejV

j
,i + (Γκ

jieκ)V
j. (3.21)

The covariant derivative must project onto the hypersurface; this requires refine-

ment of the previous expression to eliminate those components of connection with

time. Taking the unit timelike normal n, these components take the form
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(V jΓ0
ji)(e0 · n). (3.22)

To represent the components of the covariant derivative taken with respect to the

3-geometry, write

Vm|i = em ·(3) ∇ei
V = Vm,i − V kΓkmi, (3.23)

where (3)∇ here is the covariant derivative with respect to the 3-geometry (not the 4-

geometry as previously). These are the covariant derivative components in Σ. In this

context, then the Riemann curvature tensor may be written down for the 3-geometry

and in turn the scalar curvature.

Extrinsic curvature proves an interesting and fundamentally important concept for

3 + 1 decomposition. It requires that the hypersurfaces in question be imbedded in

an enveloping 4-geometry (in general, a higher dimensional space). A representation

of the extrinsic curvature is that of a linear operator; for an infinitesimal displacement

on the hypersurface, the infinitesimal change in the timelike normal vector represents,

approximately, as

dn = −K(dP), (3.24)

for some reference point on the hypersurface. The sign of the extrinsic curvature

operator is positive for the case where the curvature of the hypersurface is convex and

negative for a concave hypersurface.

In a coordinate representation, let K act on a tangent vector equivalent to the

basis vector ei. This gives local displacement in the ith coordinate direction:

∇in = −K(ei) = −Ki
jej

⇒ −Ki
jej · ek = −Ki

jgjk = −Kik;
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ek · ∇in = ∇i(n · ek) − n · ∇iek

= −n · ∇iek = −(n · eµ)Γµ
ki = −(n · e0)Γ

0
ki (by orthogonality)

= −n · ∇kei = −Kki

⇒ Kik = Kki (Symmetry) (3.25)

Parallel transport extends in definition to transport parallel with respect to the en-

veloping spacetime geometry.

For this work, the representation in ADM notation is noteworthy. From the pre-

vious section, use the covariant form of the lapse and shift; the normal components

look like

(n0, n1, n2, n3) = (−N, 0, 0, 0). (3.26)

Obtaining the components of the change in the normal with regard to the parallel

transport of the normal to itself,

(dn)i = ni;mdxm

= [ni,m − Γκ
imnκ]dxm

= NΓ0
imdxm

⇔ −Kimdxm

⇒ Kim = −ni;m

= −NΓ0
im = −N [g0σΓσim]

= −N [g00Γ0im + g0sΓsim]

=
1

N
[Γ0im −N sΓsim]

=
1

2N
[Ni,m + Nm,i − gim,0 − 2ΓsimN s]

=
1

2N
[Ni|m + Nm|i − gim,0]
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=
1

2N
[gi0|m + g0m|i − gim,0]. (3.27)

where the metric tensor terms in front of the connection coefficients are for the 4-

geometry (i.e., they can be rewritten in terms of lapse and shift). Since these are

contravariant metric terms, they take this particular form. Partial derivatives are with

respect to components; the shifts change with respect to the basis in the hypersurface,

and the 3-geometry changes in coordinate time. This is the extrinsic curvature as used

in 3 + 1 decomposition, specifically the components as projected onto the hypersurface

(the spatial part).

An alternative approach to extrinsic curvature involves the Lie derivative. The Lie

derivative represents another way to study curvature via parallel transport. The Lie

derivative £uv is defined via a commutator (generically for a noncoordinate basis):

£uv = [u,v]

= (u[vα]− v[uα] + uµvνcµν
α)

∂

∂xα

= (uκvα
,κ − vκuα

,κ + uµvνcµν
α)

∂

∂xα
, (3.28)

where the partial derivative at the end corresponds to a basis vector. In a coordinate

basis, the c’s equal zero.

This formalism extends to tensors, also. For practical purposes (see computations

from Appendix B), this work describes only up to rank 2.

Define the spatial metric: this is the spacelike hypersurface’s metric as expressed

in the spacetime coordinate basis. Let nµ be the tangent field to the timelike normal

curves. Then,

γµν = gµν + nµnν . (3.29)

Letting the curvature vector/4-acceleration of the timelike normal curves be defined
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by aµ ≡ nκ∇κn
µ and defining the orthogonality relation nµa

µ = 0, state from the

computation in the Appendix that

£n(γµν) = nµ;ν + nν;µ + nµaν + aµnν

= nµ;ν + nν;µ + nµn
κnν;κ + nκnµ;κnν . (3.30)

From the previous definition for extrinsic curvature (Kµν = −nµ;ν) and after some

computation, arrive at the statement that

Kµν = −1

2
£u(γµν). (3.31)

Throwing out the time part of this, this yields the standard relation as shown above.

This serves more as an example to conclude the calculations for rewriting the

action. The Lie derivative is a commutator; considering that curvature is the change

in a vector transported around a closed route, involve basis vectors. Then,

R(ej, ek)ei = ∇ej
∇ek

ei −∇ek
∇ej

ei −∇[ej,ek]ei. (3.32)

Since the commutator of two basis vectors is zero, the route closes. Introduce the

equations of Gauss and Weingarten,

∇ek
ei = Kki

n

n · n
+(3) Γm

ikem, (3.33)

and calculate the curvature:

∇ej
∇ek

ei = ∇ej
[Kik

n

n · n
+ Γ(3)m

ikem]

= Kik,j
n

n · n
−KikKj

mem
1

n · n
+ Γ(3)m

ik,jem

+ Γ(3)m
ik[Kmj

n

n · n
+ Γ(3)s

mjes];

40



∇ek
∇ej

ei = ∇ek
[Kij

n

n · n
+ Γ(3)m

ijem]

= Kij,k
n

n · n
−KijKk

mem
1

n · n
+ Γ(3)m

ij,kem

+ Γ(3)m
ij[Kmk

n

n · n
+ Γ(3)s

mkes];

⇒ R(ej, ek)ei = ∇ej
∇ek

ei −∇ek
∇ej

ei

= (Kik|j −Kij|k)
n

n · n
+ [(n · n)−1(KijKk

m −KikKj
m) +(3) Rm

ijk]em. (3.34)

The coefficient of the basis vector em gives the components of the curvature tensor

(those components of spatial indices). Explicitly,

Rm
ijk =(3) Rm

ijk + (n · n)−1(KijKk
m −KikKj

m), (3.35)

and for the case of lowering the curvature tensor indices via input arguments of n,

Rn
ijk = g(n,n)Rnijk = gnnRnijk = −(n · n)−1(Kij|k −Kik|j). (3.36)

These are the Gauss-Codazzi equations which yield the 4-curvature in terms of the

intrinsic 3-geometry and the extrinsic curvature.

At this point, reexamine the Einstein tensor. From Chapter 2, consider the time-

components of the Einstein tensor found from the double-dual of the Riemann tensor,

and exploit Eq. (3.35) [1]:

G0
0 = Gn

n = −(R12
12 + R23

23 + R31
31)

= −((3)R12
12 +(3) R23

23 +(3) R31
31 + (n · n)−1[(K1

2K2
1 −K2

2K1
1)

+ (K2
3K3

2 −K3
3K2

2) + (K3
1K1

3 −K1
1K3

3)]

= −(
1

2

(3)

R +
1

2
(n · n)−1[Tr(K2)− (TrK)2])

= −(
1

2
[(3)R− (n · n)−1[(TrK)2 − Tr(K2)]])
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= −8πT 0
0 = −8πρ. (3.37)

Similarly,

G0
1 = Gn

1 = Rn2
12 + Rn3

13

= −(n · n)−1(K2
1|2 −K2

2|1 + K3
1|3 −K3

3|1)

⇒ Gn
i = −(n · n)−1[Km

i|m − (TrK)|i] = 8πJi. (3.38)

Although these equations were determined using an orthonormal tetrad, they are

equivalent if used with any frame in the hypersurface. Ji corresponds to the i-th

covariant component of the momentum density associated with other sources than

gravity [1], [14]. Eqs. (3.37) and (3.38) yield the Hamiltonian and momentum con-

straints, respectively, and these are the natural forms of the intial-value constraints.

Finally, an important quantity, along with Eq. (3.35), proves necessary for rewrit-

ing the geometric action (see Appendix B for the full computation):

Ri
nin = (TrK)2 − TrK2 + Covariant divergence. (3.39)

These quantities produce a natural splitting of spacetime into slices and their parametriza-

tion.

3.4 The Action Rewritten

With extrinsic and intrinsic curvature elucidated and with the metric split into spatial

and temporal components, the action takes on a new form. Recall the Lagrangian

from the Hilbert action principle, and consider the Lagrangian density:

LGeom =
1

16π

√
−gR
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=
1

16π

√
−g[Rα

α] =
1

16π

√
−g[gαβRαβ]

=
1

16π

√
−g[gαβRµ

αµβ] =
1

16π

√
−g[Rµβ

µβ]

=
1

16π

√
−g[R00

00 + R0j
0j + Ri0

i0 + Rij
ij]. (3.40)

The first term, R00
00, equals zero by definition. Also, under pair exchange (switching

indices in both pairs), the Riemann tensor is symmetric, so

R0j
0j + Ri0

i0 = 2Ri0
i0 = 2Rin

in. (3.41)

Using this information,

=
1

16π

√
−g[Rij

ij + 2Rin
in]

=
1

16π

√
−g[gjjRi

jij + 2gnnRi
nin] =

1

16π

√
−g[gjjRi

jij + 2(n · n)Ri
nin]

=
1

16π

√
−g[(3)R + (n · n)−1(gjjKjiKj

i − gjjKjjKi
i) + 2(n · n)((TrK)2 − TrK2)]

=
1

16π

√
−g[(3)R + (n · n)(TrK2 − (TrK)2) + 2(n · n)((TrK)2 − TrK2)]

=
1

16π

√
−g[(3)R + (n · n)((TrK)2 − TrK2)], (3.42)

where (3)R is the spatial part of the Ricci scalar, and n is the unit timelike normal

to the hypersurfaces. This calculation simplifies when a divergence integrates out to

a surface term. Variations of the geometry (metric tensor) interior to this surface do

not affect this surface term, and so it contributes nothing to the equations of motion

- throw it out. (See Appendix B for details.) The action then becomes

S =
1

16π

∫
[[(3)R + (n · n)((TrK)2 − TrK2)]N

√
g + 16πLSource]d

4x, (3.43)

where
√
−g = N

√
g as before, and LSource does not densitize explicitly here using

√
−g since, even though it should divide by a 3-form to be a vector-valued density,
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other methods of densitization such as delta functions prove more useful in situations,

particularly those concerning the last part of this paper when considering scalar fields

acting at points/events.

Moving to the canonical (ADM) picture, introduce several quantities now:

1

16π
πij =

δS

δgij

=
δLGeom

δgij,0

=
δ

δgij,0

[
1

16π
N
√

g[(3)R + (n · n)((TrK)2 − TrK2)]]. (3.44)

Calling on Eq. (3.27), obtain

1

16π
πij =

1

16π
N
√

g[(n · n)(
δ

δgij,0

((gijKij)(g
ijKij)− gjsKsmgmiKij)

=
1

16π
N
√

g[−(
δ(TrK)2

δgij,0

− δ

δgij,0

gjsKsmgmiKij)]

=
1

16π
N
√

g[−(− 2

2N
TrKgij +

2

2N
gjsKsmgmi)]

= − 1

16π

√
g[TrKgij −Kji]

=

√
g

16π
(gijTrK−Kij). (3.45)

This quantity is the geometrodynamic field momentum, the term dynamically conju-

gate to the geometrodynamic field coordinate gij.

H
16π

=
1

16π
(

1
√

g
(Trπ2 − 1

2
(Trπ)2)−√g(3)R) (superhamiltonian);

Hi

16π
=
−2

16π
πik

|k (supermomentum). (3.46)
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Rewrite the action in terms of these quantities:

S =
1

16π

∫
[−gij

∂πij

∂t
−NH(πij, gij)−NiHi(πij, gij)

−2[πijNj −
1

2
N iTrπ + N |i√g],i + 16πLSource]d

4x. (3.47)

The first term involving the partial derivatives of the conjugate momenta with respect

to coordinate time can be written via the product rule as

−gij
∂πij

∂t
= − ∂

∂t
(gijπ

ij) + πij ∂gij

∂t
, (3.48)

with the full time derivative falling out of the variational principle since variations in

the interior geometry do not affect terms at the surface/boundary (such variations go

to zero). Also, the divergence in this action, [...],i, disappears as it is a surface term.

This gives an action principle

S =
1

16π

∫
[πij ∂gij

∂t
−NH(πij, gij)−NiHi(πij, gij) + 16πLSource]d

4x. (3.49)

From this action follow the equations of evolution.

3.5 New Variations: Hamilton’s Equations and the

Constraints

Consider variations of equation (3.47) above. To get Hamilton’s equations of motion,

vary with respect to the field coordinate and its conjugate. To get the constraint

equations (those which govern conservation of energy and momentum), vary with re-

spect to the lapse and the shift. For the superhamiltonian and the supermomentum,

the choice is clear - they both inherently depend on the field coordinates and the con-

jugate momenta. Lapse and shift are geometric quantities - inherent in themselves.
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For the source Lagrangian, it depends on the conditions, but it will most likely have a

dependence on the 4-metric and so will have a dependence on the 3-metric, the lapse,

and the shift. Also, it will have dependences on its fields - it is important to analyze

these equations as well, both in the context of the Lagrangian formulation of GR and

also in this Hamiltonian formulation. Typically, because of the source’s dependence

on quantities present in the ADM decomposition, these extra terms modify the equa-

tions put forth for the superhamiltonian, the supermomentum, and one of Hamilton’s

equations.

Writing down these variations, first with respect to gij, then to πij, N , and Ni,

obtain the desired equations:

∂πij

∂t
= −N

√
g(Rij − 1

2
gijR) +

N

2
√

g
gij(Trπ2 − 1

2
(Trπ)2)

−2N
√

g
(πimπm

j − 1

2
πijNm)|m +

√
g(N |ij − gijN |m

|m)

+(πijNm)|m −N i
|mπmj −N j

|mπmi +
∂LSource

∂gij

;

∂gij

∂t
=

2N
√

g
(πij −

1

2
gijTrπ) + Ni|j + Nj|i;

H
16π

=
∂LSource

∂N
;

Hi

16π
=

∂LSource

∂Ni

. (3.50)

This is the canonical form. In the case of no source, then the constraint equations

will equal zero. Even in the case of a source, they can be rewritten to equal zero. For

the purpose of this work, however, we will consider the form where a nonzero term

appears on the righthand side. The importance is in the consideration of stability,

as violations of the constraints (the superhamiltonian specifically) appear as nonzero

terms on the righthand side.
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3.6 The Initial-Value Problem

The ADM formulation allows freedom in how the hypersurfaces push forward with

respect to the time parameter. “Many-fingered time” lets different parts of the hy-

persurfaces move forward differently, so long as they remain spacelike. The lapse

function N(t, xk), gives this freedom in the integration for each change in t. For the

dynamic equations, the lapse is a prescribed quantity - nature does not determine it.

The shift follows similar logic. Essentially, choice of lapse and shift yields the choice of

coordinates of spacetime, leading to the appearance of the 3-metric and the extrinsic

curvature of successive hypersurfaces. The 4-geometry remains unchanged, however

- this says that many representations exist for the same quantities [1].

Choosing N = 1 and N i = 0 (synchronous reference system) simplifies calculations

[15]. However, doing so leads to coordinate singularities due to the focusing of normal

geodesics and generally, it complicates the interpretation. The evolution of the 3-

geometry and the extrinsic curvature depends on the choice of slicing, the choice of

the initial spatial basis, and the way the basis changes from slice to slice (i.e., what

occurs with lapse and shift). So, the best approaches take the most generic structure

and avoid overspecification, initially, of the quantities.

To solve the initial-value problem, specify appropriate initial-value data: the six

functions gij
(3)(xi), the six functions πij(xi) or Kij(xi), and the source qualify. These

functions satisfy the constraint equations which give the number and the form of

degrees of freedom. Critical for this problem is the Cauchy formulation. Knowing

the existence of the topological space (M,g), assume the 4-metric possesses global

hyperbolicity. Then, no closed or nearly closed causal paths exist; M possesses a

Cauchy surface (where every inextendible causal timelike or null curve without end-

points intersects a hypersurface only once); a universal time function describes this

surface; the topology of M is Σ × R. Using this information, obtaining a maximal

development of the data becomes plausible.

Starting with the covariant form of Einstein’s equations [2],
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Rµν −
1

2
gµνR = 8πTµν , (3.51)

consider the left hand side. Particularly, for unit normal vectors to the surface, using

Einstein summation,

Gµνn
ν = 0

⇒ Rµνn
ν − 1

2
gµνRnν = 0

⇒ Rµνn
ν = 0. (3.52)

From the definition of the Riemann tensor and from Eq. (3.36), this yields the mo-

mentum constraint equation in vacuum [2]:

⊥µ
νGµκn

κ = 0

⇒ ⊥µ
νRµκn

κ = Kk
j|k −Kk

k|j = 0. (3.53)

⊥ is the projection operation of the spatial metric tensor on another tensor (Appendix

B).

For the Hamiltonian constraint equation in vacuum, consider Eq. (3.35):

γαγγβδRαβγδ = (gαγ + nαnγ)(gβδ + nβnδ)Rαβγδ

= R + Rβδn
βnδ + Rαγn

αnγ + Rαβγδn
αnγnβnδ

= R + 2Rκλn
κnλ

= 2Gκλn
κnλ = 0

⇒ Gκλn
κnλ =

1

2
Rαβγδγ

αγγβδ

⇒ 1

2
γjmγikRmijk =

1

2
γjmγik((3)Rmijk
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+ KijKkm −KikKjm)

=
1

2
((3)R−KkmKkm + Kk

kK
m

m)

=
1

2
((3)R− Tr(K2) + (TrK)2) = 0. (3.54)

For the case of a matter source, recall Eqs. (3.37) and (3.38):

H =

√
g

2
((3)R + (TrK)2 − Tr(K2)) = 8πnµnνTµν ;

Hi = Ki
a
|a − (TrK)|i = −8πnµγi

νTµν . (3.55)

Note that γµ
ν ≡ ⊥µ

ν . The evolution equations take the form

(∂t −£Ni
)Kij = −N|ij + NRij − 2NKiaKj

a + N(TrK)Kij

−8πNγi
νγj

µTµν − 4πNγij(n
µnνTµν

−γabγa
νγb

µTµν). (3.56)

The derivative operator in front of the extrinsic curvature is the time derivative opera-

tor normal to the spatial foliation consisting out of the partial derivative with respect

to time and the Lie derivative with respect to the shift. The evolution equation for

the spatial metric is

(∂t −£Ni
)γij = −2NKij. (3.57)

Constructing foliations requires appropriate treatment of lapse. Maximal slicings

(TrK = 0) in asymptotically flat spacetimes or slicings of TrK = Const. in closed

universes gives reasonably the maximal development. The importance of this trace is

that its derivative with respect to the parametrization yields linear elliptic equations

of the same form on each slice that control the lapse.
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Determining the lapse follows well as a minimization problem. Consider that ∂τγ

and ∂τK define small deformations of a hypersurface (parametrized by τ) imbedded in

spacetime. The lapse N defines the normal/orthogonal deflection of the hypersurface.

Then, ∂τγ is the stretching-strain tensor. The components associate with the lapse;

for initial nonzero K, the lapse produces stretching, as follows from the term −2NK.

∂τK, the bending strain tensor, yields the tangential stretching: N(j|i). To choose

lapse, minimize the free energy of the volume bending strain, ∂τTrK:

H[N ] =
1

2

∫
Σ
(∂τTrK)2d3x. (3.58)

Varying this with respect to the lapse causes the volume bending strain to equal zero.

After establishing the foliation, select an appropriate shift. Several reasonable

approaches exist. Consider correlating the four-velocity of the source with the timelike

vector field tµ. This allows for the fixing of the spatial coordinates on each differential

3-volume element. The comoving method proves limited in vacuum and when rotation

occurs.

Another method [15] uses the shift to maintain symmetry of the induced spatial

metric. Again, use maximal slicing to attain the lapse. Then, select the shift such

that the spatial part of the metric possesses desired properties (e.g., isotropy).

A final method uses the shift to keep differential gauge conditions on the induced

spatial metric’s transport along t. Define the conformal metric:

γ̄ij ≡ |γij|−
1
3 γij. (3.59)

Then, the Lie derivative £tγ̄ij gives means to measure the distortion occurring for

an object traveling from one slice to the next slice. Before continuing, note the Lie

derivatives along t and N i for the spatial metric:

£tγµν = −2NKµν + £Nµγµν ,
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£N iγij = Nj|i + Ni|j,

⇒ Σij = −2N(Kij −
1

3
γijTrK) + σjNi, (3.60)

where the tensor Σij corresponds to the distortion. The first term represents the

shear of the unit normal field, n, and the second term is the shear stretching in the

tangential direction. From this, the goal is to minimize the shear stretching energy,

S[N i] =
1

2

∫
Σ

ΣijΣ
ijd3x. (3.61)

Choosing the shift then becomes an equilibrium problem: globally minimize the dis-

tortion.

More generally, the minimal distortion shift proves useful. Minimize the total

stretching energy,

E =
∫
Σ

γijγkl(£tγik)(£tγjl)d
3x; (3.62)

this preserves the asymptotic gauge conditions.
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Chapter 4

Gravitational Waves

4.1 Definition

What are gravitational waves? One way of defining gravitational waves considers that

Einstein’s equations are wave equations. Vary the action with respect to the metric,

get curvature on the left and source on the right, and consider what happens to the

geometry. Mathematically, the solutions satisfy a wave equation.

But what does this wave look like? A physical description is necessary: the wave

is a ripple of geometry propagating outward from a source. However, this picture

becomes complicated when GR is considered to the fullest extent. Nonlinear effects

complicate the situation: radiation damping, refraction of the waves, gravitational

redshift, backscattering, and self-attraction present themselves.

Radiation damping occurs when the energy of the source decreases as waves are

radiated. This is conservation of energy at work, so waves will not be strictly periodic;

they diminish with time.

The energy of gravity waves can curve spacetime, also, but the strongest curvature

is due to massive objects. The waves do not retain the same shape; the wavefronts

refract as the waves travel through curved regions. Also, the wavelength is gravita-

tionally redshifted.

Backscattering off of the curvature occurs. For a wave pulse, the shape and polar-
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ization will change and produce portions of the wave that will spread out behind the

pulse. These portions travel slower than c. This effect also pertains to the curvature

the waves produce - their self-interaction.

No way around these problems exists for the situation of strongly curved spacetime.

However, spacetime far enough away from a source may be taken to be flat, so long as

other sources are minimal or nonexistent, depending on the complexity of the model.

This leads to a useful approximation that can be made to closely resemble the full

theory in the appropriate regime.

The linearized theory of gravity gives a weak-field approximation to GR. Gravita-

tional waves are considered in situations far enough away from the source such that

spacetime is not strongly curved. Also, the waves are taken to be weaker, with the

wavelength λ much less than the background radius of curvature R. This means that

spacetime is taken to be Minkowski, and that Lorentz covariance holds. Instead of

the traditional metric to describe gravity, a different symmetric, rank-2 tensor does

the job, h̄µν . Using the standard Lorentz/Hilbert gauge,

h̄µκ
,κ = 0. (4.1)

Use the Minkowski prescription to manipulate indices:

h̄µν = ηµαh̄αβηβν , (4.2)

where ηµν is the flat metric.

Writing a standard wave equation for propagation,

4h̄µν ≡ ηαβh̄µν,αβ = h̄,α
µν,α = 0, (4.3)

with 4 the d’Alembertian. From here, the full metric for spacetime can be written,

noting that the global inertial frames of the previous equations are not totally inertial:
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gµν = ηµν + hµν + O([hµν ]
2), (4.4)

where the metric perturbation hµν is related to h̄µν (the gravitational field) by

hµν = h̄µν −
1

2
h̄ηµν ;

h ≡ hκ
κ = −h̄ = −h̄κ

κ. (4.5)

The gauge can modify coordinates, which in turn allows for correction to the

metric:

xα
New = xα

Old + ξα;

h̄
αβNew = h̄

αβOld − ξα,β − ξβ,α + ηαβξκ
,κ. (4.6)

The infinitesimal coordinate transformations, ξµ, change the gauge, and they obey a

relation

ξκ,λ
λ = 0. (4.7)

This gauge freedom leads into discussion of monochromatic plane waves, the sim-

plest solutions of the linearized equations. Such waves take the form

h̄µν = Re[Aµνe
ikαxα

], (4.8)

where the constant Aµν is the amplitude, and the constant kα is a wave vector. These

satisfy two conditions: k is a null vector, which is a consequence of the wave equation,

and A is orthogonal to k, which is due to the subsidiary conditions. Mathematically,
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kµk
µ = 0 (Null vector k);

Aµνk
ν = 0 (Orthogonality of A and k). (4.9)

[3] These relations follow as such. Consider Einstein’s equations in vacuum (Eq. 2.3).

For the plane wave solution,

h̄µν
,κ = ikκh̄

µν . (4.10)

For Einstein’s equations, this yields

ηκλh̄µν
,κλ = −ηκλkλkκh̄

µν = 0

⇒ ηκλkλkκh̄
µν = 0. (4.11)

Because of the gravitational plane wave solution, this expression only vanishes when

ηκλkλkκ = kκkκ = 0. (4.12)

This requires nullity of the vector and one-form quantity k. For a hypersurface where

kκx
κ takes a constant value, the metric h̄ takes a constant value also.

Consider a photon traveling in the direction of the null 3-vector {ki} along a

parametrized curve, xκ(τ) = kκτ + lκ, with the last term being a constant vector.

Then,

kκx
κ(τ) = kκk

κτ + kκl
κ = kκl

κ. (4.13)

Since the quantity on the left is a constant, then kκl
κ is also constant. This implies

that the photon travels with the gravitational wave and since the speed of propagation

of the photon is known, this yields that the gravitational wave travels with the same
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speed, c. Because k is null, then

kκk
κ = (k0k

0 + k1k
1 + k2k

2 + k3k
3) = 0;

k0k
0 = −ω2; k1k

1 + k2k
2 + k3k

3 = |k̄|2;

⇒ ω2 = |k̄|2. (4.14)

The last equation is the dispersion equation for the gravitational wave.

This wave equation holds only when imposing the gauge condition h̄µν
,ν = 0. Then,

for some amplitude Aµν ,

h̄µν
,ν = (Aµνeikµxµ

),ν

= Aµν
,νe

ikµxµ

+ ikνA
µνeikνxν

= ikνA
µνeikνxν

= 0

⇒ kνA
µν = 0, (4.15)

which gives orthogonality.

To obtain two dynamic degrees of freedom, recall the gauge. It introduces a plane

wave vector,

ξκ ≡ −iCκeikµxµ

; (4.16)

the four arbitrary constants representing the amplitude of this vector alter arbitrarily

four of the components of A. Avoid this alteration by selecting a specific gauge.

Consider the transverse-traceless (TT) gauge. Also consider a 4-velocity, u, to

exist throughout all of the spacetime as given by h̄µν . Impose the following conditions:

56



Aκλu
λ = 0; (4.17)

Aκ
κ = 0. (4.18)

Choosing a comoving frame, rewrite all of the conditions without reference to wave

number:

hκ0 = 0 (nonzero spatial components only);

hlm,m = 0 (divergence-free spatial components);

hl
l = 0 (trace-free spatial components). (4.19)

This eliminates the distinction between h and h̄. These gauge conditions are linear

in hµν .

Consider general gravitational waves in the linearized theory. As with electromag-

netic waves, gravitational waves resolve into a superposition of plane waves. Taking a

specified 4-velocity as above, a gauge always exists where hµν satisfies the constraints

above. Because of the nonzero spatial components, consider only six wave equations:

4hlm = hlm,κ
,κ = 0. (4.20)

This all leads to the transverse-traceless (TT) tensor, a symmetric tensor satisfying

the previous constraints (though not necessarily the wave equations). Possessing only

spatial nonzero components and being divergenceless (propagating orthogonally to

its orientation) yield the transverse part. The trace-free spatial components give the

traceless part.

Consider two test particles. The gravitational wave’s curvature tensor oscillates.

Attach a coordinate system to the worldtube of one particle. Then, as a wave passes
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by, the separation vector n wiggles between the two particles; the distance of one

particle as measured by the other fluctuates. This information comes from the action

of the curvature tensor on the separation vector. In the transverse-traceless gauge,

Rl0m0 = R0l0m = −Rl00m = −R0lm0 = −1

2
hTT

lm,00. (4.21)

Fundamentally, gravitational waves induce geodesic deviation between the test parti-

cles. Directed orthogonal to the separation, deviation occurs. Plane waves traveling

along the direction of separation cause no deviation.

Information about geodesic deviation for test particles allows for study of polar-

ization of plane waves. While important in its own right, polarization yields the

energy-momentum for waves. The difference between EM waves and gravity waves is

in the polarization: EM waves polarize vectorially; gravity waves polarize tensorially.

With gravity waves, once the polarizations are known, the waves can be written down.

The amplitudes then go into computation of the energy-momentum, contributing to

the large-scale background curvature.

4.2 Modeling Waves

Modeling of gravitational waves critically motivates finding solutions of the initial-

value problem. The ingredients for a model include a field theory/action principle, a

generic or specific metric/spacetime, and a means to compute solutions (some kind

of algorithm, but this goes beyond the scope of this work). Typically, the action

principle is the most simple, that given by Hilbert. Two regimes are considered: the

weak-field limit and the strong-field limit. The weak-field limit considers spacetime

that resembles Minkowski, and the strong-field limit considers massive objects with

strong gravitational fields.

Modeling the waves involves using the ADM decomposition and its variants. De-

veloping an appropriate foliation, specifying lapse and shift, and selecting the cor-
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rect boundary conditions (depending on the problem) leads to a means of modeling.

Consider the parametrized hyperbolic system of equations. It follows from the pre-

sentation in Chapter 3: write the spatial 3-metric in terms of the normal to the

hypersurfaces which are foliated by the function for coordinate time [14]. With defi-

nitions for lapse and shift, adopt a coordinate system for the hypersurfaces and write

the 3 + 1 line element for the metric (equation from Ch. 2).

The difficulties in modeling waves occur because the constraint-violating solutions

(called unphysical in some works) of the evolution equations blow up. This manifests

as a sudden and rapid increase in the amplitude of the wave. Both constraint-obeying

and constraint-violating modes occur in these equations, and the gross violation of

constraints eventually causes the latter solutions to overwhelm the former. This is

known as the problem of stability: as the constraint-violating modes take over, the

exponential growth of the solutions appears as instability.

Different approaches to this problem include rewriting Einstein’s equations to ac-

comodate extra constraints to elminate these modes and imposing constraints at every

time step. The problems with stability remain, however, and the critical difficulty is

that, if these waves can exist in nature and if this instability is real, why do obser-

vations indicate no rapidly growing gravitational waves? Such exponentially growing

waves require a continuous feed of energy, similar to perpetual motion. But this is

not present either, and it cannot be or else thermodynamics is wrong.
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Chapter 5

A Possible Prescription For

Stability

5.1 Motivation

Instability in numerical modeling of the dynamics of geometry arises due to modes

that violate the Hamiltonian and momentum constraints. These violations drive the

rapid drift of the solutions off the constraint shell. Consider a source-free gravitational

field; its Hamiltonian constraint takes the following form:

H =

√
g

2
((3)R + (TrK)2 − Tr(K2)) = 0. (5.1)

For the sake of formalism, call the energy-momentum tensor in vacuum TµνV acuum. In

the Lagrangian formulation, this is equivalent to energy conservation:

T 00
V acuum;0 = 0. (5.2)

Such measures as hyperbolic reformulation of Einstein’s equations that exclude

acausal modes of the solutions lead to improved stability. However, the solutions

inevitably violate the constraints (particularly the Hamiltonian constraint). So, Eq.

(5.1) does not equal zero and so appears to have a source present. This does not
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follow logically from starting in vacuum. Consider energy and momentum constraint

violations in the Lagrangian formulation:

T µν
V acuum;ν 6= 0. (5.3)

A possibility for correcting this situation is to consider introduction of another

term in the action that violates conservation of energy-momentum in an opposite

way, so that

(T µν
V acuum + T µν

Other);ν = 0. (5.4)

This work considers that off-shell drift of solutions for a source-free gravitational

field equates with solutions for a field with a source. A scalar field not necessarily

subject to standard energy conditions suffices for the simplest possible source. Partic-

ularly, this work looks at a field theory with a Lagrangian for a pre-existing source (or

sourceless, though this does not change the formulation) and considers how introduc-

ing Hoyle’s C-field modifies the evolution of the system [16]. The ability of the C-field

to produce particles makes it advantageous, as this property allows for a change in

the Hamiltonian constraint (see sections 5.2 and 5.3). This change adjusts according

to a coupling constant f , and the increasing violation of the constraint by vacuum

solutions over time resembles the change in this constraint due to an increasing C-field

in time.

5.1.1 Action with a Matter-Producing Scalar Field

Consider an action with a classical scalar C-field inspired by Hoyle and Narlikar [20]:

S[gµν , C
(a)(xµ), Xµ] =

∫
[(

1

16π
R + LMatter + LC−Field)

√
−g]d4x

=
∫

[(
1

16π
R + LMatter)

√
−g]d4x−

∑
a

ma

∫
da
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+
1

f

∑
a

∑
b

∫ ∫
G;µνdXµ(a)dXν(b). (5.5)

This is a generic action for a direct particle field with a preexisting matter distribu-

tion, and it is a modification of the Fokker action principle [20]. LMatter is a source

Lagrangian, and LC−Field is associated with the scalar field. a and b are parameters

which label worldlines for different particles and possess the condition a < b. These

parameters represent the proper time. Xµ(a) and Xν(b) are the coordinates of points

on the worldlines, parametrized by a and b. ma is the proper mass of created particles

along the worldlines a. The reason for maintaining parametrization with respect to

proper time involves consideration of the proper mass; other parametrizations will

change the mass. As demonstrated in this work, a condition for particle production

concerns this proper mass, and convenience dictates its use. The C-field is contained

within the Green’s functions, and so here it is not taken as a fundamental field.

This work investigates the smooth-fluid approximation. To obtain this from the

above action, see computations in Appendix C. Then,

S[gµν , C(xµ), Xµ(a)] =
∫

([
1

16π
R + LMatter +

1

2
f · (C,µC

,µ)]
√
−g)d4x−

∑
a

ma

∫
da

−
∑
a

ma

∫
C,µ

dXµ(a)

da
da

=
∫

([
1

16π
R + LMatter +

1

2
f · (C,µC

,µ)

−
∑
a

ma

∫ δ(4)(xµ −Xµ(a))√
−g

(1 + C,µ
dXµ(a)

da
)da]

√
−g)d4x

=
∫

([
1

16π
R + LMatter +

1

2
f · (C,µC

,µ)

−
∑
a

ma
δ(3)(xµ −Xµ(a))√

−g
(1 + C,µ

dXµ(a)

da
)]
√
−g)d4x. (5.6)

This is a theory with minimal coupling (that is, the least required coupling is

that with the geometry). The scalar field manifests in this action as gradients; only

derivatives of the field couple to anything. f is a coupling (time, in this case) con-
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stant for this field, and its value determines how strongly the C-field affects Einstein’s

equations and adjusts the conservation of energy-momentum (sections 5.2 and 5.3).

The Lagrangian for the C-field will depend on the metric, lapse, and shift (ultimately,

all of the stuff in the geometry); this serves as a good generic formulation. LMatter

is the matter Lagrangian, and it contains all sources (or vacuum) of gravitation not

associated with the scalar C-field. It remains generic and depends only on the geom-

etry; this permits flexibility in the choice of matter and matter distribution. In the

last term, summation occurs over the worldlines/number of particles. xµ represents

the coordinates of a point in the spacetime not on the worldline.

5.1.2 Properties of the C-Field

C represents the scalar field; given a point with coordinates xµ, the field C(a)(xµ)

(associated with a worldline a) at that point is defined as [21]

C(a)(xµ) =
1

f

∫
G(xµ, Xµ(a));µdXµ(a). (5.7)

The same parametrization from above regarding the worldline holds [20]. The function

G(xµ, Xµ(a)) is a scalar Green’s function; it satisfies the relationship

[
√
−ggµνG(xµ, Xµ(a)),ν ],µ = −δ(4)(xµ −Xµ(a)). (5.8)

Since the partial derivatives of the metric tensor and
√
−g vanish, this equation recasts

as

gµνG(xµ, Xµ(a));µν = −δ(4)(xµ −Xµ(a))√
−g

. (5.9)

At a point A on the worldline, the Green’s function above describing the interaction

between A and another point B is

gµνG(A, B);µν = −δ(4)(A(a)−B(b))√
−g

. (5.10)
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Depending on whether a particle is created or destroyed at a point on the worldline,

the field takes the value

C(a)(xµ) = ∓ 1

f
G(xµ, Xµ(a)) (5.11)

for creation/destruction. The parametrization of points on the worldline is taken as

implicit. See Figures 5.1 and 5.2 for graphical displays of this process.

6

n

Σ

r

Xµ(1)

r

Xµ(2)

r

Xµ(3)

r
Xµ(4)

r
Xµ(5)

r

Figure 5.1: Creation of particles by C-field. n represents the normal to the hypersur-
face, and Σ represents the hypersurfaces. Particles come into existence at the points
Xµ(a) on the hypersurfaces.

6

n

Σr

Xµ(5)

r

Xµ(4)

r
Xµ(3)

r
Xµ(2)

rXµ(1)

Figure 5.2: Destruction of particles by C-field. Their termination occurs at the points
Xµ(a) on the hypersurfaces.

For the smooth-fluid (perfect fluids and dusts) approximation,

C(xµ) =
∑
a

m(a)C
(a)(xµ). (5.12)
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Consider the action given by Eq. (5.3). Write Einstein’s equations (computations

in Appendix C):

Rµν − 1

2
gµνR = 8π[T µν − f(C ,νC ,µ − 1

2
gµνC,κC

,κ)]. (5.13)

This equation separates the energy-momentum tensor for the original matter distri-

bution from the energy-momentum tensor for the C-field terms. Representing the

conservation of energy-momentum in the Lagrangian picture involves the divergence

of the right-hand side of these equations. For a standard matter distribution (such

as a perfect fluid), the divergence of the energy-momentum tensor equals zero. For

the matter distribution considered here, the extra terms of the C-field add in. So,

where the divergence of the standard-matter energy-momentum tensor is non-zero,

the divergence of the C-field terms is nonzero also, and these terms cancel each other

out to preserve the zero-divergence of the righthand side. Inclusion of the C-field

terms retains conservation of energy-momentum of the entire system.

Hoyle and Narlikar ([16] and [17]) considered two postulates important for the

C-field. First is Weyl’s postulate: worldlines of created matter form a geodesic con-

gruence (family of curves) normal to a spacelike hypersurface. This retains only

normal terms in the divergence of the energy-momentum tensor:

T µν
;ν = fC ,µC ,ν

;ν . (5.14)

The second postulate says that hypersurfaces are homogeneous and isotropic. If

C increases/decreases as a function of time, then either the particles possess variable

proper mass, or the number of such particles will be variable throughout time. This

implies for monotonically increasing C, the number of particles created at events will

increase. Hoyle considered that the C-field increases with time (C = t) [16], [17].

Another condition relates the gradient of the C-field to the available energy. Note

that the energy density can be positive or negative, since the C-field satisfies the

relationship [22]
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C,µC
,µ = pµp

µ = E2 = ma
2 (for particles of proper mass ma), (5.15)

the same way as the Dirac Equation admits positive and negative energy solutions

[24]. It pops on and off, attaining this critical energy threshold (where E2 = ma
2) at

some point in an instant of time. For most problems (see [21] and [23]), the energy

density of the C-field is negative. With a negative energy density, the C-field generates

negative extrinsic curvature, which in GR associates with expansion/inflation. The

space expands while the particles are being generated. It produces particles in the

vicinity of strong gravitational fields when the amount of squared-energy equals the

squared-proper mass.

The choice of the C-field relates to its ability to compensate for violations of

energy-momentum. Other sources, such as the EM field tensor, will be unable to

because they conserve energy and momentum [1], [2].

5.2 How the Scalar Field Affects the Equations of

Evolution and the Constraints

Using the ADM formulation as outlined in Chapter 3, finding Hamilton’s equations

and the constraint equations determines some properties of this scalar field and gives

information about what happens with these waves. the properties of this field are im-

portant because of their implications to the physics and, specifically, to these models.

(See Appendix C for all computations.)

Consider the equations of evolution:

∂gij

∂t
=

2N
√

g
(πij −

1

2
gijTrΠ) + Ni|j + Nj|i; (5.16)
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∂πij

∂t
= −N

√
g(Rij − 1

2
gijR) +

N

2
√

g
gij(TrΠ2 − 1

2
(TrΠ)2)

−2N
√

g
(πimπm

j − 1

2
πijTrΠ) +

√
g(N |ij − gijN |m

|m)

+(πijNm)|m −N i
|mπmj −N j

|mπmi + 8πN
√

ggij(LMatter

+
1

2
f · ((NkN

k −N2)C ,0C ,0 + NiC
,0C ,i + NjC

,jC ,0 + gijC
,jC ,i)

+fC ,jC ,i) + 16πN
√

g
δLMatter

δgij

−8πN
√

ggijρProper[1 + (NkN
k −N2)C ,0dX0(a)

da
+ NiC

0dX i(a)

da

+NjC
,j dX0(a)

da
+ gijC

,j dX i(a)

da
]− 16πN

√
gρProperC

,j dX i(a)

da
. (5.17)

Because none of the matter or C-field terms in the Lagrangian depend on conjugate

momentum, their effects on Eq. (5.14) appear only via (5.15). For this equation, the

C-field contributes strongly to the dynamics, causing this equation of motion to have

a nonlinear dependence on lapse and shift (specifically, it has a cubic dependence

with regard to the scalar field terms). ρProper ≡
∑

a ma
δ(3)(xµ−Xµ(a))√

−g
yields the proper

density of the created particles. Because the C-field creates particles at rest, the

3-momenta equal zero, so

∂πij

∂t
= −N

√
g(Rij − 1

2
gijR) +

N

2
√

g
gij(TrΠ2 − 1

2
(TrΠ)2)

−2N
√

g
(πimπm

j − 1

2
πijTrΠ) +

√
g(N |ij − gijN |m

|m)

+(πijNm)|m −N i
|mπmj −N j

|mπmi

+8πN
√

ggij(LMatter +
1

2
f((NkN

k −N2)C ,0C ,0) + 16πN
√

g
δLMatter

δgij

−8πN
√

ggijρProper[1 + (NkN
k −N2)C ,0dX0(a)

da
]. (5.18)

Critical for the problem of stability is the Hamiltonian constraint:
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H =
1
√

g
(TrΠ2 − 1

2
(TrΠ)2)−√gR

= 16π
√

g(LMatter +
1

2
f · ((NkN

k −N2)C ,0C ,0 + NiC
,0C ,i

+NjC
,jC ,0 + gijC

,jC ,i) +
N

2
f · (−2NC ,0C ,0)

−ρProper[1 + (NkN
k −N2)C ,0dX0(a)

da
+ NiC

0dX i(a)

da
+ NjC

,j dX0(a)

da
]

−NρProper[−2NC ,0dX0(a)

da
])

= 16π
√

g(LMatter +
1

2
f((NkN

k −N2)C ,0C ,0)

+
N

2
f(−2NC ,0C ,0)− ρProper[1 + (NkN

k −N2)C ,0dX0(a)

da
]

−NρProper[−2NC ,0dX0(a)

da
]). (5.19)

The momentum constraint (supermomentum) is considered also:

Hi = −2πij
|j = N

√
g[(

1

2
fC ,0C ,i − ρProperC

0dX i(a)

da
)] = 0. (5.20)

Only derivatives of the C-field appear in the constraints and the evolution equations,

and the constraints possess nonlinear dependences on lapse and shift.

5.3 Thermodynamic Properties of this System

Consider an initial matter configuration of a perfect fluid (a simple gas of material

particles with the same proper mass), with the production of a dust (similar to a

perfect fluid except exerts no pressure on boundaries or other elements in a mixture)

by the C-field. This ensures minimal interaction between anything, and the dust will

not contribute to the pressure of the system.

Examine the case of variable particle number. Via Lorentz covariance on infinites-

imal tangents to the hypersurface, thermodynamics as done in Minkowski spacetime

extends to curved spacetime. Effectively, a single lightcone cannot describe the entire
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hypersurface but, on these tangents to the hypersurface, lightcones can be drawn.

This does not adequately or even accurately describe the behavior of the geometry

in GR, but it is necessary for extending the flat spacetime formulation to curved

spacetime.

Any discussion of thermodynamics requires the equations of state. A statistical

description of the system necessitates appropriate terminology, as found in Synge [25].

Working from Maxwell’s thermodynamic relations, start with an entropy integral:

SModified = −dV
∫

[N logN +NC−Field logNC−Field]dΩ. (5.21)

N and NC−Field are the distribution functions for the perfect fluid and the dust,

respectively. The distribution functions depend on position and momentum; this

representation yields exponential relationships. Consider a nullcone originating from

a point on the hypersurface. dΩ is the 3-volume formed by the projection of a part

of the nullcone between the point on the hypersurface and the target region.

Varying the entropy integral with respect to the distribution functions, obtain

logN + 1 = α + ξµp
µ and

logNC−Field + 1 = αC−Field + ξµp
µ, (5.22)

where the α’s and the ξµ’s are Lagrange multipliers.

Particles do not interact in this mixture, thus validating the separate distribution

functions. A critical and necessary simplifying assumption concerns the mean 4-

velocity ūµ of this system. Define the mean 4-velocity with the Lagrange multiplier

ξµ and the reciprocal temperature ξ:

ūµ = − ∂ξ

∂ξµ
=

ξµ

ξ
. (5.23)

The perfect fluid and the dust share the same mean 4-velocity.
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Write the distribution functions:

N (xµ, pµ) = Aeξµpµ

;

NC−Field(x
µ, pµ) = AC−Fielde

ξµpµ

. (5.24)

After some computations and manipulations, the energy-momentum tensor takes the

form

Tµν = (mN0G(mξ) + maN0C−FieldG(maξ))ūµūν + gµν
N0

ξ
. (5.25)

N0 and N0C−Field are the number densities for the mixture. The action eliminates

constancy for the number of created particles.

Taking the divergence of the energy-momentum tensor and using the fact that

particle number for the dust is not conserved, arrive at the relation

T µν
;ν = (maN0C−FieldG(maξ)ū

µūν);ν

=
maξ

µξν

ξ2
[N0C−FieldG(maξ)];ν = fC ,µC ,ν

;ν . (5.26)

This expression concerns the original energy-momentum tensor. In effect, these C-

particles are built into it and, without detailing the time-dependence, shows that the

energy-momentum tensor anticipates these particles. So, this makes the terms of the

C-field corrections to what Einstein’s equations yield with a standard classical source.

Writing the conservation equations with this new information:

fC ,µC ,ν
;ν = f · ((NkN

k −N2)C ,0
;0C

,0

+ NiC
,0

;0C
,i + NjC

,j
;jC

,0 + gijC
,j

;jC
,i))
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⇒ f · (NkN
k −N2)C ,0

;0C
,0 =

maξ
0ξ0

ξ2
[N0C−FieldG(maξ)];0;

fNiC
,0

;0C
,i =

maξ
iξ0

ξ2
[N0C−FieldG(maξ)];0;

fNjC
,j

;jC
,0 =

maξ
0ξj

ξ2
[N0C−FieldG(maξ)];j;

fgijC
,j

;jC
,i =

maξ
iξj

ξ2
[N0C−FieldG(maξ)];j. (5.27)

Simplify these for particles at rest:

f · (NkN
k −N2)C ,0

;0C
,0 =

maξ
0ξ0

ξ2
[N0C−FieldG(maξ)];0;

fNiC
,0

;0C
,i = fNjC

,j
;jC

,0 = fgijC
,j

;jC
,i = 0. (5.28)

Using this information, restate the constraints and the dynamical equations in terms

of intrinsic and extrinsic curvature:

H =

√
g

2
((3)R− Tr(K2) + (TrK)2)

= 8π[(mN0G(mξ) + maN0C−FieldG(maξ))−
N0

ξ

+
f

2
C ,0C,0]; (5.29)

Hi = Ki
a
|a − (TrK)|i = 0; (5.30)

(∂t −£Ni
)Kij = −N|ij + NRij − 2NKiaKj

a + N(TrK)Kij

+8πNgij[
1

2
(mN0G(mξ) + maN0C−FieldG(maξ))

−f · (C ,0C,0)]; (5.31)
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(∂t −£Ni
)gij = −2NKij. (5.32)

These represent the constraints and evolution equations given in the standard form.

5.4 Physical Interpretation of this System

Consider evolution in the case of no source (vacuum). Over long times, the solutions

blow up, violating the Hamiltonian constraint particularly. As a result, solutions go

off-shell. This causes the Hamiltonian constraint, despite the initial vacuum config-

uration, to become nonzero. Violation of the constraints equates with deviation of

solutions inside and outside of the nullcone at a point on a hypersurface. The C-field

compensates for this: its placement into the source smears the constraint shell, al-

lowing for these solutions to remain on shell. The negative energy density permitted

by the C-field presents no difficulties with relaxation of classical energy conditions.

Because the C-field can account for violations both within and outside the nullcone, it

makes for an ideal source. With suitable adjustment of the coupling constant f , solu-

tions can be constrained not to behave too wildly. Currently, exponential growth (the

blowing up of solutions) plagues models. An advantage of this approach involves the

coupling constant appearing as a time constant within an exponential function [23].

With a reasonable selection, this time constant prevents rapid explosion of solutions.

The C-field acts only when the curvature is great enough to have the necessary

energy equivalent to the rest mass of a particle [22]. It switches on and off in such a

situation. Specifically, it does not affect a particle’s worldline; it interacts with the

particle only at the ends (this follows from variation of the particle trajectories).

The critical difference between this and current gravity wave models is the inclu-

sion of production of massive particles. Particle production does not usually associate

with classical fields. To choose lapse and shift in the standard way (lapse being 1 and
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shift being 0) retains the C-field’s influence. Certain quantities must be chosen (such

as lapse and shift), while others require evaluation. With this information, the mean

4-velocity also contributes to the choice of slicing. Because the C-field creates parti-

cles at rest, frames where the spatial components of the mean 4-velocity equal zero

allow for simplification of the equations.

Thermodynamics introduces number density and temperature. Consider these

quantities with the C-field on the hypersurface. If the number density increases, then

for constant volume the number of particles increases. This leads to the temperature:

when more particles enter the system, the temperature decreases. The definition

of the mean 4-velocity (the change in reciprocal temperature ξ with respect to the

timelike vector ξµ) allows for a corresponding change in the timelike vector for any

change in temperature. This simplifies the equations. Because of the many-fingered-

time nature of the hypersurfaces, the C-field varies over the entire hypersurface. These

equations can be used to evaluate this, although obtaining answers appears nontrivial.

In this work, the created particles have uniform, non-variable proper mass along their

worldlines. They are discretized (which is consistent with a dust), so the particle

number varies.

More complicated sources and relaxation of conditions yield other difficulties. If

the C-field produces anything but a dust, the pressure becomes variable. In all cases

of matter creation, the temperature changes as the introduction of particles lowers

the temperature. Also, mass might be variable along the worldlines. In this work,

however, the C-field acts only at the endpoints of worldlines, so this difficulty does

not occur. Relaxation of isotropy yields a nonzero momentum constraint, leading to

coupling with the Hamiltonian constraint.

The negative energy density of the C-field requires relaxation of energy conditions

since classical considerations involve matter distributions of positive energy densities

only. Introducing a matter source - particularly one that creates new matter - requires

a scalar field with behavior similar to quantum fields. Particle creation allows for
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violation of the classical energy conditions, although these conditions impose only

after assumptions placed on the matter distribution [12].

The difficulty with current approaches to stabilization appears because of overde-

termination of the equations. Removing the constraint violation from one set of terms

and introducing a new set which leads to the same troubles provides only an aesthetic

repair. While a great revelation of GR is the equivalence of matter and geometry, it

is this equivalence which should allow the consideration of different kinds of behavior

concerning the matter. The action considered here is not a radical departure from

GR, in that it retains the physics given by Einstein’s equations. Using a scalar field

only in the production of matter and only on the righthand side conservatively adjusts

the equations without requiring any modifications to the curvature. The scalar field

imposes no artificial construction onto the equations; this action principle gives an or-

dinary energy-momentum tensor on one side of the equation with the Einstein tensor

on the other side. This ordinary energy-momentum tensor anticipates the production

of particles via the C-field. The implication of this requires that the sourceless case is

artificial; the vacuum as conceived is not truly empty but instead possesses a minimal

source (such as the C-field, perhaps).

74



Chapter 6

Conclusions

The choice of Hoyle’s C-field as a source offers a possible resolution to the problem

of stability. With suitable properties, this scalar field compensates for the constraint

violations occurring in gravitational wave models. A full study of the scalar field’s

properties - how it affects the equations of motion, the constraints (conservation of

energy-momentum), the thermodynamics of the system - yields information that can

influence construction of models.

Consideration that terms produced by a scalar field source act as corrections to

sourceless fields imply incomplete understanding of gravitational processes. The pos-

sibility that the C-field is a minimum required source (rather than vacuum) leads to

unknown physics. Its unique properties - particularly its negative energy density that

violates classical energy conditions - make it non-standard for classical theories. This

means that semiclassical physics or quantum theory might enter into general relativ-

ity. The interesting thing about this scalar field is that it has not been quantized. Its

behavior under quantization should be investigated, particularly if it is the classical

limit of a quantum field, as it will further tie gravity with other field theories.

Another difficulty involves the form of Einstein’s equations. Hyperbolic partial

differential equations prove difficult to stabilize. An investigation of their stability

conditions might allow for a better understanding of why these solutions blow up.

Beyond the scope of this work is the connection to a quantum theory of gravity.
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Quantization is the transformation of classical quantities into quantum operators.

Classical scalar fields quantize into fields consisting of operators. The quantum me-

chanical vacuum has a zero-point energy 1
2
mω2; if the C-field is or relates to a quantum

scalar field, then the analogy between this work and quantum considerations can be

justified. The classical vacuum may turn out to be an idealization, where the C-field

might act as a sort of minimal source with zero as a possibility but not rigidly fixed.

A larger implication is that the presence of a quantum scalar field in the source indi-

cates conditions that must apply to the geometry and the curvature on the quantum

level. Since a quantum scalar field is written in terms of ladder operators, this repre-

sentation must also influence the form of the Einstein tensor. Considerations of the

lapse and shift also become important in studying quantum effects; Planck time and

Planck length become standards of measurement. Also, information about the mass

of a particle coming from a scalar field depends critically on the time of information

transfer. A particle only knows of its mass after it interacts with such a field and if

it exists within the uncertainty time, it might not know its mass, which means that

it doesn’t generate curvature. This might offer insight into the behavior of vacuum

fluctuations and possibly that particles must interact with a field (such as Higgs) to

generate curvature. A quantum theory of gravity, requirements in nature for the gen-

eration of gravitational waves, and the mechanism by which particles “know” their

mass become important for this.

Numerical solutions of Einstein equations with a vacuum source seem to demon-

strate a generic instability and might have a physical origin when the constraints are

violated (manifested as numerical errors). The changes needed to resolve this prob-

lem are not clear presently. This work has presented the possibility that allowing

the solutions to deviate from vacuum may resolve the difficulty. Admissibility of the

C-field is necessary to account for the possibility that the “matter” generated by nu-

merical errors does not necessary satisfy the energy conditions. If, in the future, this

idea proves insufficient for handling the errors, further investigation on the quantum
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level might be necessary. In particular, interaction between quantized matter and the

gravitational field might need to be reconsidered.
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Appendix A

Derivation of the Lagrangian

Formulation Of Einstein’s

Equations

This appendix gives the nuts and bolts of how to obtain Einstein’s equations from

an action principle. The most generic action principle to be considered in general

relativity has the following form:

S =
∫

d4x[LGeom

√
−g + LFields

√
−g]. (A.1)

LGeom is the geometric Lagrangian (contained in the Hilbert action); this term

gives the action its curvature. LFields contributes all other information concerning

matter, energy, and sources generically speaking.

The principle of least action requires extremization of this action. So, variation of

this action must equal zero:

δS = 0. (A.2)

Applying the variation, obtain the following:

78



δS =
∫

d4x[δ(LGeom

√
−g) + δ(LFields

√
−g)]

=
1

16π

∫
d4x[δ(

√
−ggµνRµν) + 16πδ(LFields

√
−g)]

=
1

16π

∫
d4x[gµνRµνδ

√
−g +

√
−gRµνδg

µν +
√
−ggµνδRµν

+16π
√
−gδLFields + 16πLFieldsδ

√
−g]

=
1

16π

∫
d4x[Rδ

√
−g +

√
−gRµνδg

µν +
√
−ggµνδRµν

+16π
√
−gδLFields + 16πLFieldsδ

√
−g]. (A.3)

Einstein’s equations follow from varying the action with respect to the metric

tensor, gµν . To achieve this, all variations must occur with respect to this metric,

but the current form of this variation includes variations of
√
−g and Rµν . These

variations transform, via the rules of calculus, and become with respect to the metric.

Consider the first term, δ
√
−g. Recall that the determinant of a matrix may be

written as a product of a matrix with its cofactor matrix, in this case Aµν :

g = det‖gµν‖ = gµνA
µν

⇒ Aµν = gµνg. (A.4)

Then:

δ
√
−g =

∂
√
−g

∂g

dg

dgµν

δgµν

= − 1

2
√
−g

∂gµνA
µν

∂gµν

δgµν
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= − 1

2
√
−g

Aµν = − 1

2
√
−g

gµνgδgµν

=
1

2

√
−ggµνδgµν . (A.5)

To get the variation in the form of δgµν , consider the definition of the Kronecker

delta:

δµ
ν = gµαgαν

=


1 when µ = ν,

0 when µ 6= ν.
(A.6)

Since the Kronecker delta takes on constant values by definition, any variation of it

will equal zero:

δδµ
ν = 0

= δgµαgαν = δgµαgαν + gµαδgαν = 0

⇒ gνκ[δgµαgαν + gµαδgαν ] = gνκδgµ
ν + gνκgµαδgαν = 0

⇒ δgµκ + gνκgµαδgαν = 0

⇒ δgµκ = −gνκgµαδgαν
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⇒ δgαν = −gµαgνκδg
µκ

⇒ 1

2

√
−ggµνδgµν =

1

2

√
−ggµν [−gκµgναδgκα]

= −1

2

√
−gδν

κgναδgκα

= −1

2

√
−ggκαδgκα. (A.7)

The contractions over κ and α are over dummy indices; rename them as µ and ν,

respectively, so that

δ
√
−g = −1

2

√
−ggµνδg

µν . (A.8)

Thus, the variation of
√
−g finds representation as a variation with respect to the

metric tensor.

Next, consider the variation of the Ricci tensor δRµν . Because the Ricci tensor

depends only on the second order derivatives of the metric tensor, changes in the

metric tensor do not appear. However, the connection coefficients play a role in its

variation. This can be seen by rewriting the Ricci tensor as a contracted Riemann

tensor:

Rµν = Rα
µαν . (A.9)

Writing the Riemann tensor in terms of the connection:

Rα
µβν = Γα

µν;β − Γα
µβ;ν + Γα

κβΓκ
µν − Γα

κνΓ
κ

µβ − Γα
µκcβν

κ. (A.10)
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The connections are symmetric in their two lower indices (as given in the chosen

coordinate frame), as can be seen by definition. Permutation of the lower indices

retrieves two of the partial derivatives of the metric, and symmetry of the metric

tensor retrieves the third permuted term. In this frame, the connection coefficients

take the following form (where the c’s disappear in a coordinate basis):

Γκ
µν = gκλΓλµν =

1

2
gκλ(gλµ,ν + gλν,µ − gµν,λ + cλµν + cλνµ − cµνλ). (A.11)

Since the only concern is with changes in the connection coefficients, focus attention on

the tensor, δΓα
µν . For the variation of the Riemann tensor, only the partial derivatives

of the connection contribute due to the transformation formula for connections:

Γκ
µν = {Γα

χε
∂xχ

∂xµ

∂xε

∂xν
+

∂2xα

∂xµxν
}∂xκ

∂xα
. (A.12)

For any set of connection coefficients Γα
χε, the tensor characteristics are eliminated

by the last term. The variation of this connection, δΓα
χε, subtracts this last term out

between two choices of connection.

Writing out the variation of the Riemann tensor (with a motivation for varying

Ricci):

δRα
µβν = δΓα

µν;β − δΓα
µβ;ν + δ(Γα

κβΓκ
µν)− δ(Γα

κνΓ
κ

µβ)

= δΓα
µν;β−δΓα

µβ;ν +δ(Γα
κβ)Γκ

µν +Γα
κβδ(Γκ

µν)−δ(Γα
κν)Γ

κ
µβ−Γα

κνδ(Γ
κ

µβ). (A.13)

At the point of interest, pick a coordinate system where the connection coefficients

disappear. Then, only first derivatives of the varied connections give the curvature.

Thus,
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δRα
µβν = δΓα

µν;β − δΓα
µβ;ν . (A.14)

For the variation of Ricci,

δRµν = δRα
µαν = δΓα

µν;α − δΓα
µα;ν . (A.15)

Now, the variation of the action may be written as:

δS =
1

16π

∫
d4x[(Rµν −

1

2
gµνR + 16π(

δLFields

δgµν
− 1

2
gµνLFields))δg

µν

+gµν(δΓκ
µν;κ − δΓκ

µκ;ν)]
√
−g = 0. (A.16)

The variation over the first derivatives of the coefficients remains. Apply the method

of integration by parts:

1

16π

∫
d4x[gµν(δΓκ

µν;κ − δΓκ
µκ;ν)]

√
−g

=
1

16π

∫
d4x[gµνδΓκ

µν;κ

√
−g]− 1

16π

∫
d4x[gµνδΓκ

µκ;ν

√
−g]

=
1

16π
{gµνδΓκ

µν

√
−g −

∫
d4x[δΓκ

µν(g
µν√−g);κ]

−gµνδΓκ
µκ

√
−g +

∫
d4x[δΓκ

µκ(g
µν√−g);ν ]}

=
1

16π
{gµν√−g(δΓκ

µν − δΓκ
µκ)−

∫
d4x[δΓκ

µν(g
µν√−g);κ

−δΓκ
µκ(g

µν√−g);ν ]}

=
1

16π
{gµν√−g(δΓκ

µν − δΓκ
µκ)−

∫
d4x[((gµν√−g);κ

−δν
κ(gµλ√−g);λ)δΓ

κ
µν ]}. (A.17)

The first term is a term at the limits, so this variation will vanish (variation at the

limits is zero). Apply symmetrization to the second term, and extremize the integral:
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1

16π

∫
d4x[((gµν√−g);κ −

1

2
δµ
κ(gνλ√−g);λ −

1

2
δν
κ(gµλ√−g);λ)δΓ

κ
µν ] = 0

⇒ (gµν√−g);κ −
1

2
δµ
κ(gνλ√−g);λ −

1

2
δν
κ(gµλ√−g);λ = 0

⇒ (gµν√−g);κ =
1

2
[δµ

κ(gνλ√−g);λ + δν
κ(gµλ√−g);λ]

=
1

16π

∫
d4x[((gµν√−g);κ − δν

κ(gµλ√−g);λ)δΓ
κ

µν ]. (A.18)

Investigate the covariant derivatives of (gµν√−g). Only the zero solution satisfies

the forty covariant derivatives (gµν√−g);κ for the set of forty equations (gµν√−g);κ−
1
2
δµ
κ(gνλ√−g);λ − 1

2
δν
κ(gµλ√−g);λ = 0, which implies covariant constancy. This is due

to the fact that a locally flat arbitrary Lorentz frame exists. So gµν = ηµν in a small

enough neighborhood around a point. Since the terms of ηµν are constant-valued

(Minkowski metric), first derivatives will be zero. From this,
√
−g, gµν , gµν , and

(gµν

√
−g) are covariantly constant also. So, the variation over the derivatives of the

connection will vanish.

√
−g;τ =

√
−g,τ − Γσ

στ

√
−g

=
∂
√
−g

∂g

∂g

∂gµν

gµν,τ − Γσ
στ

√
−g

=
1

2

√
−ggµνgµν,τ − [

1

2
gασ(gασ,τ + gατ,σ − gστ,α)

√
−g]. (A.19)
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Rewrite the
√
−ggµνgµν,τ term via the product rule, and apply throughout the entire

equation:

√
−ggµνgµν,τ = (

√
−ggµνgµν),τ − (

√
−ggµν),τgµν . (A.20)

Since the derivative of the contravariant metric density vanishes:

⇒ 1

2
{(
√
−ggµνgµν),τ − [(gασ√−g)(gασ,τ + gατ,σ − gστ,α)]}

=
1

2
{(
√
−ggµνgµν),τ − [(

√
−ggασgασ),τ + (

√
−ggασgατ ),σ − (

√
−ggασgστ ),α]}

=
1

2
[−(
√
−ggασgατ ),σ + (

√
ggασgστ ),α] =

1

2
[−(
√
−gδσ

τ ),σ + (
√
−gδα

τ )α]

=
1

2
[−
√
−g,τ +

√
−g,τ ] = 0. (A.21)

This is a consequence of the determinant’s metric dependence. Covariant derivatives

of the metric vanish, and so the covariant derivative of the
√
−g vanishes as well.

Since the covariant derivative of the tensor density is zero from before, and the

expression equals zero, then

gνλ;κ = 0

= gνλ,κ − gλσΓσ
νκ − gνσΓσ

λκ

⇒ gνλ,κ = gλσΓσ
νκ + gνσΓσ

λκ. (A.22)
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Now, consider permutations of the indices, first with λ and κ, then with ν, λ, and κ

moved one slot to the left each:

gνκ,λ = gκσΓσ
νλ + gνσΓσ

κλ;

gλκ,ν = gκσΓσ
λν + gλσΓσ

κν . (A.23)

Using algebraic manipulation, sum the terms accordingly and group by metric tensor:

gνλ,κ + gνκ,λ − gλκ,ν

= gλσΓσ
νκ + gνσΓσ

λκ + gκσΓσ
νλ + gνσΓσ

κλ − gκσΓσ
λν − gλσΓσ

κν

= gλσ{Γσ
νκ − Γσ

κν}+ gνσ{Γσ
λκ + Γσ

κλ}+ gκσ{Γσ
νλ − Γσ

λν}. (A.24)

Take advantage of the symmetry of the connection coefficients in their lower two

indices (Γα
βγ = Γα

γβ), and cancel terms as such:

gνλ,κ + gνκ,λ − gλκ,ν

= gλσ{Γσ
νκ − Γσ

νκ}+ gνσ{Γσ
λκ + Γσ

λκ}+ gκσ{Γσ
νλ − Γσ

νλ}

= gνσ{Γσ
λκ + Γσ

λκ} = 2gνσΓσ
λκ (A.25)

⇒ Γσ
λκ =

1

2
gνσ(gνλ,κ + gνκ,λ − gλκ,ν). (A.26)

This calculation recovers the equation for the connection coefficients in a coordinate

basis, as required by Riemannian geometry.

Now, equating the coefficient of δgµν with zero, Einstein’s equations can be recov-

ered:
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⇒ Rµν −
1

2
gµνR + 16π

δLFields

δgµν
− 16π

1

2
gµνLFields = 0

⇒ Rµν −
1

2
gµνR = −16π

δLFields

δgµν
+ 8πgµνLFields. (A.27)

Setting the left hand side equal to Gµν and the right hand side proportional to the

stress-energy tensor, obtain the desired equation form:

Gµν = 8πTµν . (A.28)

Gµν is the Einstein tensor, and Tµν is the energy-momentum tensor that contains

the gravitational source information.
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Appendix B

Derivation of and Mathematical

Tools for the Split Spacetime

Formulation

This appendix bridges the gap between the action principle of the Lagrangian for-

mulation to the splitting of space and time in the Hamiltonian formulation. The

progression follows from Misner, Thorne, and Wheeler [1], Chapter 21, problems 8 -

10 and from Wald [2], Appendix E and Chapter 10.

B.1 Lie Derivatives

The Lie derivative is an important quantity for studying transport of tensorial objects

along the direction of other objects. An advantage to this approach is the indepen-

dence from an affine parameter of the derivative. Lie derivatives operate by converting

tensor fields of type { r
s
} into tensor fields of the same type. The following computa-

tions concern the Lie derivative of scalars, vectors, one-forms, and rank-2 covariant

tensors carried out in a coordinate basis.

The Lie derivative of a scalar quantity is straightforward:
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£uf ≡ u[f ] = uαeαf = fαuα. (B.1)

For the derivative of a vector field v along a vector field u:

[u, v](f) = u[v(f)]− v[u(f)] = ulel(v
memf)− vlel(u

memf)

= ulvm
,lemf − vlum

,lemf = ulvm
,lf,m − vlum

,lf,m

⇒ [u, v] = [ulvm
,l − vlum

,l]em

⇒ [n, v] = [nαvβ
,α − vαuβ

,α]eβ, (B.2)

where n is another vector field and is only a notational change.

Consider the Lie derivative of a one-form:

£n < σ, v > = < £nσ, v > + < σ,£nv >

⇒< £nσ, v > = n[< σ, v >]− < σ, [n, v] >

= < σ, v >,β nβ − σα(nαvβ
,α − vαnβ

,α)
∂

∂xβ
dxα

= σαvα
,βnβ + σα,βvαnβ − σαnαvβ

,αδβ
α + σαvαnβ

,αδβ
α

= σα(vα
,βnβ − nαvβ

,αδβ
α) + (σα,βnβ + σαnβ

,αδβ
α)vα

= (σα,βnβ + σαnβ
,αδβ

α)vα = (σα,βnβ + σβnβ
,α)vα

= (σα,βnβ + σβnβ
,α)vβδα

β

= (σα,βnβ + σβnβ
,α)vβdxα ∂

∂xβ

⇒ £nσ = (σα,βnβ + σβnβ
,α)dxα

(B.3)

Since the Lie derivative satisfies a product rule, it is a derivation (linear operator

and product rule), so tensors of general types compose of tensor products of vectors
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and 1-forms:

£nT = £n(σ ⊗ λ)

= £nσ ⊗ λ + σ ⊗£nλ

= [(σα,βnβ + σβnβ
,α)dxα]⊗ λγω

γ + σαωα ⊗ [(λγ,βnβ + λβnβ
,γ)]dxγ

= [(σα,βλγ + σαλγ,β)nβ + σβλγn
β

,α + σαλβnβ
,γ]dxα ⊗ dxγ

= [(σαλγ)βnβ + σβλγn
β

,α + σαλβnβ
,γ]dxα ⊗ dxγ

= [Tαγ,βnβ + Tβγn
β

,α + Tαβnβ
,γ]dxα ⊗ dxγ. (B.4)

The Lie derivative possesses no affine dependence (i.e., the connections equal zero),

so the partial derivatives become covariant:

£nT = [Tαγ;βnβ + Tβγn
β

;α + Tαβnβ
;γ]dxα ⊗ dxγ. (B.5)

B.2 Intrinsic and Extrinsic Curvature

Using this information, the six algebraically independent components of the Riemann

tensor follow. Define a timelike unit normal field u of a spacelike hypersurface, and

let Lie derivation in its direction yield a general time differentiation. Let γµν :=

gµν + uµuν be the spatial metric induced on the hypersurface by the 4-metric. The

4-acceleration of the timelike normal curves with tangent vector field uµ is a curvature

vector, aµ ≡ uκ∇κu
µ. Two important algebraic properties allow for simplication of

many terms: uµu
µ = −1, and uµa

µ = 0.

Begin with the Lie derivative along this tangent field of the metric tensor:

£ugµν = [gµν;κu
κ + gκνu

κ
;µ + gµκu

κ
;ν ]

90



= [gκνu
κ
;µ + gµκu

κ
;ν ]

= [uν;µ + uµ;ν ]. (B.6)

Consider now the Lie derivative of the spatial metric; since the Lie derivative obeys

additivity:

£u(gµν + uµuν) = £ugµν + £u(uµuν)

= £ugµν + £u(uµ)uν + uµ£u(uν) ≡ £uγµν

= [γµν;κu
κ + γκνu

κ
;µ + γµκu

κ
;ν ]

= [gµν;κu
κ + uµ;κuνu

κ + uµuν;κu
κ + gκνu

κ
;µ

+uνuκu
κ
;µ + gµκu

κ
;ν + uµuκu

κ
;ν ]

= [uν;µ + uµ;ν + uµ;κuνu
κ + uµuν;κu

κ

+uνuκu
κ
;µ + uµuκu

κ
;ν ]. (B.7)

Using the definition of the 4-acceleration:

[uν;µ + uµ;ν + uνu
κuµ;κ + uµu

κuν;κ + uνuκu
κ
;µ + uµuκu

κ
;ν ]

= [uν;µ + uµ;ν + uνaµ + uµaν + uνuκu
κ
;µ + uµuκu

κ
;ν ]. (B.8)

Rewriting the last terms in the expression as uαuρu
ρ
;β = uαuρ∇βuρ = uρu

βgβα∇βuρ =

uρa
ρgαβ, recover each term’s equality with 0 from the identity uµa

µ = 0 so that

£uγµν = [uν;µ + uµ;ν + uνaµ + uµaν + uκu
µgµνu

κ
;µ + uκu

νgνµu
κ
;ν ]

= [uν;µ + uµ;ν + uνaµ + uµaν ]. (B.9)

With this information, rederive the extrinsic curvature tensor as the Lie derivative
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of the spatial metric via comparison of the coordinate-components of before with those

from the derivative:

−1

2
£uγµν = −1

2
[uν;µ + uµ;ν + uνaµ + uµaν ]

= −1

2
[−Kνµ −Kµν + uνa

νgνµ + uµa
µgµν ]. (B.10)

From the symmetry of the extrinsic curvature tensor:

−Kµ
νeν = ∇µu

νeν

⇒ eκ∇µu
νeν = eκ(−Kµ

νeν) = −Kµ
νgκν = −Kµκ;

emu0 = 0 ⇒ ∇µ(emu0) = (∇µem)u0 + em(∇µu
0) = 0

⇒ (∇µem)u0 = −em(∇µu
0)

⇒ Kµκ = (∇µeκ)u
0

= (Γα
µκeα)u0 = u0e0Γ

0
µκ + umemΓm

µκ

= u0e0Γ
0
µκ = u0∇κeµ = Kκµ. (B.11)

Using again the identity uµa
µ = 0 and exploiting the symmetry of the extrinsic

curvature tensor:

−1

2
£uγµν = −1

2
[−2Kµν ] = Kµν . (B.12)

Define the unit projection tensor into the hypersurface as ⊥µ
ν≡ δµ

ν + uµuν ; this

equates to the mixed-index spatial metric tensor. Also, define Kαβ = − ⊥µ
α⊥ν

β u(µ;ν)

and ωαβ = − ⊥µ
α⊥ν

β u[µ;ν]. Then,

uα;β ≡ −Kαβ − ωαβ − aαuβ
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= ⊥µ
α⊥ν

β u(µ;ν)+ ⊥µ
α⊥ν

β u[µ;ν] − aαuβ

= ⊥µ
α⊥ν

β uµ;ν − aαuβ = (δµ
α + uµuα)(δν

β + uνuβ)uµ;ν − aαuβ

= uα;β + uνuβuα;ν + uµuαuµ;β + uµuαuνuβuµ;ν − aαuβ

= uα;β + uβuνuα;ν + uαuµuµ;β + uµuαuβuνuµ;ν − aαuβ

= uα;β + uβaα + uαuµuµ;β + uµuαuβaµ − aαuβ

= uα;β + uβaα − aαuβ + uαuµuµ;β + uαuβuµaµ

= uα;β. (B.13)

This relation yields the covariant derivative of this tangent field in terms of extrinsic

curvature and the acceleration/curvature vector of the timelike normal curves. Upon

further investigation,

ωαβ = − ⊥µ
α⊥ν

β u[µ;ν]

= −(δµ
α + uµuα)(δν

β + uνuβ)
1

2
(uµ;ν − uν;µ)

= −1

2
(uα;β + uνuβuα;ν + uµuαuµ;β + uµuαuνuβuµ;ν − uβ;α

−uµuαuβ;µ − uνuβuν;α − uµuαuνuβuν;µ)

= −1

2
(uα;β + uβaα + uαuµuµ;β + uαuβuµaµ − uβ;α

−uαaβ − uβuνuν;α − uαuβuνaν)

= −1

2
(uα;β + uβaα − uβ;α − uαaβ)

= −1

2
(uα;β + uβuβ∇βuα − uβ;α − uαuα∇αaβ). (B.14)

Using the fact that uκu
κ = −1:

ωαβ = −1

2
(uα;β + uβuβ∇βuα − uβ;α − uαuα∇αaβ)

= −1

2
(uα;β −∇βuα − uβ;α +∇αuβ)
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= −1

2
(uα;β − uα;β − uβ;α + uβ;α) = 0. (B.15)

This follows from uµ being the unit normal field for a family of spacelike hypersurfaces.

So,

uα;β = −Kαβ − aαuβ

= −Kαβ − gαβaβuβ = −Kαβ. (B.16)

Use this information to redress the Lie derivative of the extrinsic curvature:

£uKµν = (Kµν;κu
κ + Kκνu

κ
;µ + Kµκu

κ
;ν)

= −1

2
([uµ;νκ + uν;µκ + uµ;κaν + uµaν;κ + aµ;κuν + aµuν;κ]u

κ

= (Kµν;κu
κ −KκνK

κ
µ −KµκK

κ
ν)

= (−uκ∇κ∇νuµ −KκνK
κ

µ −KµκK
κ

ν). (B.17)

Consider the Ricci identity:

uσ∇σ∇λuτ = uσ∇λ∇σuτ +(4) Rρτλσu
σuρ. (B.18)

Use this in the definition of the Lie derivative of K:

£uKµν = −uκ∇κ∇νuµ −KκνK
κ

µ −KµκK
κ

ν
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= −uκ∇ν∇κuµ −(4) Rρµνκu
κuρ −KκνK

κ
µ −KµκK

κ
ν

⇒(4) Rρµνκu
κuρ = −uκ∇ν∇κuµ −KκνK

κ
µ −KµκK

κ
ν −£uKµν

= −uκ∇ν∇κuµ − 2KµκKκνg
κκ −£uKµν . (B.19)

Permuting indices:

(4)Rµρνκu
κuρ = uκ∇ν∇κuµ + KκνK

κ
µ + KµκK

κ
ν + £uKµν (B.20)

Project the remaining free indices:

⊥µ
α⊥ν (4)

β Rµρνκu
κuρ =

1

2
⊥µ

α⊥ν
β[(3)∇µaν +(3) ∇νaµ]+ ⊥µ

α⊥ν
β aµaν

+KακK
κ

β + £uKαβ. (B.21)

Using this information, write the projection of (4)Rn
inj:

⊥(4) Rninj =
1

N
£NuKij + KikK

k
j +

1

N
N|ji. (B.22)

To determine the evolution equations, rewrite the Lie derivative of γµν using Eq. (3.9)

and the fact that the natural orthogonal vector field is Nuµ [15]:

£Nuγµν = £tγµν −£Nγµν

= −2NKµν . (B.23)

This gives the dynamic equations for the spatial metric. Now, using the projection of
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Rij, consider the rewritten Lie derivative of Kij:

£NuKij = £tKij −£NKij

= −N|ij + N [(3)Rij − 2KikK
k
j + KijTrK− 8πγi

νγj
µTµν

−4πγij(n
µnνTµν − γabγa

νγb
µTµν)]. (B.24)

This gives the dynamics of the extrinsic curvature.
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Appendix C

Evolution Of Spacetime With

Presence Of The C-Field

C.1 The Direct Particle Field Action

This appendix details an example of the ADM formulation applied to a scalar field

coupled to matter (non-zero mass scalar field). To attain this formulation, construc-

tion of the field theory is required.

Consider an action inspired by Hoyle and Narlikar [16], [17], [23]:

S =
1

16π

∫
R
√
−gd4x +

∫
LC−Field

√
−gd4x. (C.1)

The first term corresponds to the geometric action, and the second term represents

the contribution from the C-field. From the definitions in Chapter 5, this takes the

form [20]

S[gµν , C
(a)(xµ), Xµ] =

1

16π

∫
R
√
−gd4x−

∑
a

ma

∫
da

+
1

f

∑
a

∑
b

∫ ∫
G;µνdXµ(a)dXν(b)
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=
1

16π

∫
R
√
−gd4x−

∑
a

ma

√
gµνdXµ(a)dXν(a)

+
1

f

∑
a

∑
b

∫ ∫
G;µνdXµ(a)dXν(b)

=
1

16π

∫
R
√
−gd4x−

∑
a

ma

√
gµνdXµ′(a)gµ′µdXν′(a)gν′ν

+
1

f

∑
a

∑
b

∫ ∫
G;µνdXµ(a)dXν(b)

=
1

16π

∫
R
√
−gd4x

−
∑
a

ma

∫ √
gµν

dXµ′(a)

da
gµ′µ

dXν′(a)

da
gν′νda

+
1

f

∑
a

∑
b

∫ ∫
G;µνdXµ(a)dXν(b)

=
1

16π

∫
R
√
−gd4x

−
∑
a

ma

∫ √
gµν

dXµ′(a)

da

dXν′(a)

da
gµ′µgν′νda

√
−gd4x

+
1

f

∑
a

∑
b

∫ ∫
G;µνdXµ(a)dXν(b). (C.2)

This satisfies the condition that a < b, with the sum notations a and b represent-

ing worldlines of created particles. Xµ(a) and Xµ(b) represent the coordinates for

given points on the worldlines a and b, respectively. a is the proper time at a given

point on the worldline a. Xµ(a) is a point on the worldline a (parametrized by the

worldline) that represents the events (endpoints of worldlines) where particle cre-

ation/destruction occurs. This action resembles that of the Fokker action principle,

though this work does not address the EM field tensor. Vary this action with respect

to the metric tensor:

δS =
1

16π

∫
δ[R

√
−g]d4x−

∑
a

ma

∫
δ[da] +

1

f

∑
a

∑
b

∫ ∫
δ[G;µνdXµ(a)dXν(b)].(C.3)

For the first term, the variation was worked out in Appendix A, and so this yields

the term [Rµν − 1
2
gµνR]δgµν . Consider variation of the second term [11]:
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∑
a

ma

∫
δ[da] =

∑
a

ma

∫
δ[

√
−gµνdXµ(a)dXν(a)]

=
∑
a

ma

∫
δ[

√
−gµν

dXµ

dλ

dXν

dλ
dλ]

= −1

2

∑
a

ma

∫
dλ[−gµν

dXµ′

dλ

dXν′

dλ
gµ′

µgν′
ν ]−

1
2
dXµ′

dλ

dXν′

dλ
gµ′

µgν′
ν√−gd4xδgµν

= −1

2

∑
a

ma

∫
dλ[−gµ′ν′

dXµ′

dλ

dXν′

dλ
]−

1
2
dXµ

dλ

dXν

dλ

√
−gd4xδgµν

= −1

2

∑
a

ma

∫
da

dXµ

da

dXν

da

√
−gd4xδgµν

=
1

2

∑
a

ma

∫
da

δ(4)(xµ −Xµ(a))√
−g

dXµ(a)

da

dXν(a)

da

√
−gd4xδgµν , (C.4)

where λ is an arbitrary parameter. Vary the last term:

1

f

∑
a

∑
b

∫ ∫
δ[G;µνdXµ(a)dXν(b)] =

1

f

∑
a

∑
b

∫ ∫
δ[G;µν ]dXµ(a)dXν(b)

+
1

f

∑
a

∑
b

∫ ∫
G;µνδ[dXµ(a)dXν(b)]. (C.5)

Before proceeding, consider variations of the function G, with x a point in spacetime

and A a point on the worldline a:

δG(x− A(a)) = −
∫

[δ(
√
−ggµν)[G(x′ − A(a))],ν ],µG(x− x′)d4x′. (C.6)

Integrate this term by parts, and use the relation G(x− x′) = G(x′ − x):

δG(x− A(a)) = δ(
√
−ggµν)[G(x′ − A(a))]G(x− x′)

−
∫

[δ(
√
−ggµν)[G(x′ − A(a))],ν [G(x− x′)],µ]d4x′

= −
∫

[δ(
√
−ggµν)[G(x′ − A(a))],ν [G(x− x′)],µ]d4x′. (C.7)
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Consider point A on worldline a and point B on worldline b. The latter point

replaces the more generic point x. Then,

δ[G(A(a)−B(b));µν ] = −
∫

δ(
√
−ggµν)[G(A(a)−x′)];νµ′ [G(B(b)−x′)];µν′d4x′. (C.8)

This means, for the final term,

1

f

∑
a

∑
b

∫ ∫
δ[G;µνdaµdbν ]

= − 1

f

∫
d4x′

∑
a

∑
b

∫ ∫
δ(
√
−ggµν)[G(A(a)− x′)];νµ′ [G(B(b)− x′)];µν′daµ′

dbν′

= −f
∫

d4x′
∑
a

∑
b

δ(
√
−ggµν)C(a)

;νC
(b)

;µ

= −f
∫

d4x′
∑
a

∑
b

[C(a)
;νC

(b)
;µg

µνδ(
√
−g) + C(a)

;νC
(b)

;µ

√
−gδgµν ]

= −f
∫

d4x′
∑
a

∑
b

[
1

2
C(a);κC(b)

;κg
µν√−gδgµν + C(a)

;νC
(b)

;µ

√
−gδgµν ]

= −f
∫

d4x′
∑
a

∑
b

[−1

2
C(a);κC(b)

;κgµν

√
−gδgµν + C(a)

;νC
(b)

;µ

√
−gδgµν ]

= −f
∫

d4x′
∑
a

∑
b

[−1

2
C(a);κC(b)

;κgµν + C(a)
;νC

(b)
;µ]
√
−gδgµν

= f
∫

d4x′
∑
a

∑
b

[−1

2
C(a);κC(b)

;κg
µν + C(a);νC(b);µ]

√
−gδgµν (C.9)

For Einstein’s equations in this representation:

Rµν − 1

2
gµνR = 8π[

∑
a

ma

∫
[
δ(4)(xµ −Xµ(a))√

−g

dXµ′
(a)

da

dXν′
(a)

da
gµ′

µgν′
ν ]da

−2f
∑
a

∑
b

[−1

2
C(a);κC(b)

;κg
µν + C(a);νC(b);µ]]

= T µν − f
∑
a

∑
b

[C(a);νC(b);µ + C(a);µC(b);ν − C(a);κC(b)
;κg

µν ]. (C.10)

The energy-momentum tensor here contains the mass terms from the created particles.

100



For the smooth-fluid approximation, C =
∑

a maC
(a), and

Rµν − 1

2
gµνR = 8π

∑
a

ma

∫
[
δ(4)(xµ −Xµ(a))√

−g

dXµ′
(a)

da

dXν′
(a)

da
gµ′

µgν′
ν ]da

−f [−1

2
C ;κC;κg

µν + C ;νC ;µ]

= 8π
∑
a

ma

∫
[
δ(4)(xµ −Xµ(a))√

−g

dXµ(a)

da

dXν(a)

da
da]

−f · [−1

2
C ;κC;κg

µν + C ;νC ;µ]

= T µν − f · [C ;νC ;µ − 1

2
C ;κC;κg

µν ]. (C.11)

These match the form Einstein’s equations written by Hoyle and Narlikar [17].

Consider the definition of the C-field:

C(a)(xµ) =
1

f

∫
G(xµ, Xµ(a));µdXµ. (C.12)

This is the contribution of the worldline a to the total C-field at the point given by

coordinates xµ [19]. For a worldline with endpoints A1 and A2,

C(a)(xµ) =
1

f
[G(xµ, A2(a))−G(xµ, A1(a))]. (C.13)

This implies that the C-field arises only from the ends of worldlines. [21] If the

worldline is created at A1 (A2 →∞), then C(a)(x) = − 1
f
G(x, A1(a)). If it is destroyed

at A2 (A1 → −∞), then C(a)(x) = 1
f
G(x, A2(a)). The result is

C(a)(x) = ∓ 1

f
G(x, A(a)), (C.14)

for creation/destruction at point A. For the Green’s function as before,

gµνG(A(a), B(b));µν = −δ(4)(A(a), B(b))√
−g

. (C.15)

These relations imply, for the C-field, that
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C(a),µ
;µ =

1

f
[−δ(4)(xµ −Xµ

1 (a))√
−g

−−δ(4)(xµ −Xµ
2 (a))√

−g
]. (C.16)

Making use of Einstein’s equations and Weyl’s postulate (particles created on con-

gruence of geodesics) for the original C-field action [21],

T µν
;ν = [

∑
a

ma

∫
[
δ(4)(xµ −Xµ(a))√

−g

dXµ(a)

da

dXν(a)

da
da]];ν

=
∑
a

ma[
∫

[
δ(4)(xµ −Xµ(a))√

−g

dXµ(a)

da

dXν(a)

da
da]];ν

=
∑

Xµ(a)

ma[
δ(4)(xµ −Xµ(a))√

−g

dXµ(a)

da
dXν(a)];ν

=
∑

Xµ(a)

ma
δ(4)(xµ −Xµ(a))√

−g

dXµ(a)

da
; (C.17)

−f
∑
a

∑
b

[C(a);νC(b);µ + C(a);µC(b);ν − C(a);κC(b)
;κg

µν ];ν

= −1

2
f

∑
a

∑
b

[C(a);ν
;νC

(b);µ + C(a);µC(b);ν
;ν ]

= −f
∑
a

C(a),ν
;ν

∑
b6=a

C(b),µ = −
∑

Xµ(a)

δ(4)(xµ −Xµ(a))√
−g

∑
b6=a

[C(b)(Xµ(a))],µ. (C.18)

The points Xµ(a) give endpoints where particle creation/destruction occurs. Summa-

tion over Xµ(a) includes both endpoints of the worldline for a finite worldline. The

term under the summation with b 6= a yields the contributions to the C-field from the

worldlines b at the points with coordinates Xµ(a). Summing over these points yields

all contributions. Since the Einstein tensor has zero divergence, this requires

T µν
;ν = −TC−Field

µν
;ν

⇒
∑

Xµ(a)

ma
δ(4)(xµ −Xµ(a))√

−g

dXµ(a)

da
=

∑
Xµ(a)

δ(4)(xµ −Xµ(a))√
−g

∑
b6=a

C(b)(Xµ(a)),µ
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⇒ ma
dXµ(a)

da
=

∑
b6=a

[C(b)(Xµ(a))],µ. (C.19)

This condition must be satisfied at the worldline’s endpoints. In the smooth-fluid

approximation,

T µν
;ν = fC ,µC ,ν

;ν . (C.20)

As a final consideration, look at the divergence of the gradient of the C-field. For

ease of calculation, introduce the vector Green’s function:

gµνGκλ′;µν + Rλ
νGνλ′ = −ḡκλ′

δ(4)(Xκ(a)−Xλ′
(b))√

−ḡ
; (C.21)

ḡκλ′ is Synge’s parallel propagator [26]. The parallel propagator gives, for a geodesic

connecting two points, a means to describe the transformation of a vector parallel

transported to itself along the geodesic. For the divergence of the C-field gradient

[19],

fC(a),µ
;µ =

∫
G;µ′

;µ
;µdXµ′

(a) = −
∫

Gν
µ′;ν

µ
µdXµ′

(a)

= −
∫
{Gν

µ′
;µ

;νµ + (Rµ
κG

κ
µ′);µ}dXµ′

(a)

= −
∫
{Gν

µ′
;µ

;µν + Rν
κνµG

κ
µ′

;µ + Rµ
κνµG

ν
µ′

;κ + (Rµ
κG

κ
µ′);µ}dXµ′

(a)

= −[
∫
{Gν

µ′
;µ

;µ + Rκ
νGκ

µ′}dXµ′
(a)];ν . (C.22)

Consider the current:

J (a)µ =
∫ δ(4)(xµ −Xµ(a))√

−ḡ
ḡµ

µ′dXµ′
(a)

= −
∫
{gκτGµ

µ′;κτ + RµτGτµ′}dXµ′
(a)

= −
∫
{Gµ

µ′
;τ

;τ + RτµgττG
τ
µ′}dXµ′

(a)
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= −
∫
{Gµ

µ′
;τ

;τ + Rτ
µGτ

µ′}dXµ′
(a). (C.23)

For its divergence,

J (a)µ
;µ = −[

∫
{Gµ

µ′
;τ

;τ + Rτ
µGτ

µ′}dXµ′
(a)];µ

= −[
∫
{Gν

µ′
;µ

;µ + Rκ
νGκ

µ′}dXµ′
(a)];ν

⇒ fC(a),µ
;µ = J (a)µ

;µ. (C.24)

For the smooth-fluid approximation, let C(xµ) =
∑

a maC
(a)(xµ) be the total C-

field at a point xµ as produced via contributions from all worldlines, and let Jµ(x) =∑
a maJ

(a)µ(x) be the smooth-fluid mass-current. Then,

C ,µ
;µ =

1

f
Jµ

;µ. (C.25)

To obtain the equations of motion for a particle, vary the trajectories [19]:

δS =
1

16π

∫
δ[R

√
−g]d4x−

∑
a

ma

∫
δ[da] +

1

f

∑
a

∑
b

∫ ∫
δ[G;µνdXµ(a)dXν(b)]

=
1

16π

∫
δ[R

√
−g]d4x−

∑
a

ma

∫
δ[

√
−gµν

dXµ

dλ

dXν

dλ
dλ]

+
∑
b6=a

∫
δ[C(b)

,µ(x)dXµ(a)]. (C.26)

For a fixed parametrization, the metric gµν [X
α(λ)] differs between curves by [1]

δgµν ≡ gµν [A
α(λ) + δAα(λ)]− gµν [A

α(λ)]

=
∂gµν

∂Xσ
δAσ(λ). (C.27)

The tangent vector components dXν

dλ
differ by
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δ(
dXν

dλ
) ≡ d(Aν + δAν)

dλ
− dAν

dλ

=
d

dλ
(δAν). (C.28)

Then, rewrite these terms:

∫
λI

λF

√
−gµν

dAµ

dλ

dAν

dλ
dλ =

∫
λI

λF −gµν
dAµ

dλ
dAν

dλ√
−gκρ

dAκ

dλ
dAρ

dλ

dλ

⇒ δτ = δ{
∫

λI

λF −gµν
dAµ

dλ
dAν

dλ√
−gκρ

dAκ

dλ
dAρ

dλ

dλ}

=
∫

λI

λF −gµν
dAµ

dλ
d(δAν)

dλ
− 1

2
(gµν,σδA

σ)dAµ

dλ
dAν

dλ√
−gκρ

dAκ

dλ
dAρ

dλ

dλ. (C.29)

Consider the first term, and integrate by parts:

∫
λI

λF

(−gµν
dAµ

dλ

d(δAν)

dλ
) = −gµν

dAµ

dλ
δAν |λF

λI
+

∫
λI

λF dgµν

dλ

dAµ

dλ
δAνdλ

+
∫

λI

λF

gµν
d2Aµ

dλ2
δAνdλ

=
∫

λI

λF

{ d

dλ
[gµν

dAµ

dλ
]δAν}dλ

=
∫

λI

λF

{ d

dλ
[gµν

dAν

dλ
]δAµ}dλ

=
∫

λI

λF

{ d

dλ
[gσν

dAν

dλ
]δAσ}dλ. (C.30)

For the full variation,

δa =
∫

λI

λF { d
dλ

[gσν
dAν

dλ
]− 1

2
gµν,σ

dAµ

dλ
dAν

dλ
}√

−gκρ
dAκ

dλ
dAρ

dλ

δAσdλ = 0

⇒ d

dλ
[gσν

dAν

dλ
]− 1

2
gµν,σ

dAµ

dλ

dAν

dλ
= 0. (C.31)
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Write δAσ = f(λ)dAσ

dλ
. Then,

∫
λI

λF { d
dλ

[gσν
dAν

dλ
]− 1

2
gµν,σ

dAµ

dλ
dAν

dλ
}√

−gκρ
dAκ

dλ
dAρ

dλ

f(λ)
dAσ

dλ
dλ = 0

⇒ { d

dλ
[gσν

dAν

dλ
]− 1

2
gµν,σ

dAµ

dλ

dAν

dλ
}dAσ

dλ
= 0. (C.32)

Note that this holds for the proper time a as well.

Expand the first term:

d

dλ
[gσν

dAν

dλ
] =

dgσν

dλ

dAν

dλ
+ gσν

d2Aν

dλ2
. (C.33)

The contraction over indices in the first part of the expansion can be dealt with by

introducing a dummy index:

dgσν

dλ

dAν

dλ
=

1

2
(
dgσµ

dλ

dAµ

dλ
+

dgσν

dλ

dAν

dλ
)

=
1

2
(
dgσµ

dAν

dAν

dλ

dAµ

dλ
+

dgσν

dAµ

dAµ

dλ

dAν

dλ
). (C.34)

Inserting this into the variation:

1

2
(
dgσµ

dAν

dAν

dλ

dAµ

dλ
+

dgσν

dAµ

dAµ

dλ

dAν

dλ
) + gσν

d2Aν

dλ2
− 1

2
gµν,σ

dAµ

dλ

dAν

dλ
= 0. (C.35)

Specify these computations to the worldline a. Then, Aµ → Xµ. So,

1

2
(
dgσµ

dXν

dXν

da

dXµ

da
+

dgσν

dXµ

dXµ

da

dXν

da
) + gσν

d2Xν

da2
− 1

2
gµν,σ

dXµ

da

dXν

da

=
1

2
(gσµ,ν + gσν,µ − gµν,σ)

dXµ

da

dXν

da
+ gσν

d2Xν

da2
= 0. (C.36)
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Raising indices,

1

2
gασ(gσµ,ν + gσν,µ − gµν,σ)

dXµ

da

dXν

da
+ gασgσν

d2Xν

da

=
1

2
gασ(gσµ,ν + gσν,µ − gµν,σ)

dXµ

da

dXν

da
+

d2Xα

da2

= Γα
µν

dXµ

da

dXν

da
+

d2Xα

da2

= 0. (C.37)

These are the geodesic equations, so the C-field does not affect the created particles

along their worldlines.

From Eq. (C.30), the surface term yields with Eq. (C.26)

∑
a

ma[−gµν
dXµ

da
δXν +

∑
b6=a

C(b)
,µδX

µ]|λF
λI

= 0

=
∑
a

ma[−
dXν

da
δXν +

∑
b6=a

C(b)
,µδX

µ]|λF
λI

=
∑
a

ma[−
dXµ

da
δXµ +

∑
b6=a

C(b)
,µδX

µ]|λF
λI

= 0

⇒
∑
a

ma
dXµ

da
=

∑
b6=a

C(b),µ. (C.38)

This corresponds to conservation of energy concerning created particles and matches

Eq. (C.19).

C.2 The Smooth Fluid Action

C.2.1 Einstein’s Equations

Now, consider a slightly modified action that includes another Lagrangian for an

already-present matter distribution, LMatter. Determine Einstein’s equations for the

action S[gµν , C,Xµ] in Eq. (5.3):

107



δS =
∫

δ((
1

16π
R + LMatter +

1

2
f · (C,µC

,µ))
√
−g

−
∑
a

ma(1 + C,µ
dXµ(a)

da
)da
√
−g)d4x. (C.39)

Consider variations of each term with respect to the metric tensor. From Appendix

A,

1

16π
δ(R

√
−g) =

1

16π
[Rµν −

1

2
gµνR]δgµν ;

δ(LMatter

√
−g) =

√
−gδLMatter+(δ

√
−g)LMatter = (

∂LMatter

∂gµν
−1

2
gµνLMatter)

√
−gδgµν ;

δ(
1

2
f · (C,µC

,µ)
√
−g) = δ(

1

2
gµνf · (C,µC,ν)

√
−g)

= [
1

2
f · (C,µC,ν)

√
−g]δgµν − [

1

2
fgµκC

,κC,κg
κµ]δ

√
−g

= [
1

2
f · (C,νC,µ −

1

2
gµνC,κC

,κ)]
√
−gδgµν ;

δ[
∑
a

ma

∫
(1 + C,µ)

dXµ(a)

da
da
√
−g] =

∑
a

ma

∫
δ[(1 + C,µ

dXµ(a)

da
)da
√
−g]

=
∑
a

maδ[
∫

da
δ(4)(xµ −Xµ(a))√

−g
(1 + C,µ

dXµ(a)

da
)
√
−g]

108



=
∑
a

ma[
δ(3)(xµ −Xµ(a))√

−g
(1 + C,µ

dXµ(a)

da
)δ
√
−g]

= ρProper(1 + C,µ
dXµ(a)

da
)δ
√
−g

= −1

2
gµν

√
−gρProper(1 + C,µ

dXµ(a)

da
)δgµν ;

⇒ Rµν − 1

2
gµνR

Rµν − 1

2
gµνR = 8π[T µν − f · (C ,νC ,µ − 1

2
gµνC,κC

,κ)]; (C.40)

T µν = (gµνρProper(1 + C,µ
dXµ(a)

da
)

−2
∂LMatter

∂gµν

+ gµνLMatter). (C.41)

ρProper =
∑

a ma
δ(3)(xµ−Xµ(a))√

−g
is the proper density of the created particles.

Now, consider a variation of the action w.r.t. the C-field (this obtains the wave

equations for the C-field) [8]:

δS

δC
=

∫ δ

δC
((

1

16π
R+LMatter+

1

2
f ·(C,µC

,µ))
√
−g−

∑
a

ma(1+C,µ
dXµ(a)

da
)da
√
−g)d4x.

(C.42)

C does not appear explicitly in this representation. However, it obtains via integration
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by parts:

δS = δ[
∫

((
1

16π
R+LMatter +

1

2
f · (C,µC

,µ))
√
−g−

∑
a

ma(1+C,µ
dXµ(a)

da
)da
√
−g)d4x]

=
∫

[[
1

16π

∂

∂C
R+

∂

∂C
LMatter +

1

2
f ·[[− ∂

∂C,µ

(C,µC,νg
νµ)];µ+[− ∂

∂C,ν

(C,µC,νg
νµ)];ν ]]

√
−g

−[
∑
a

ma

∫ δ(4)(xµ −Xµ(a))√
−g

(− ∂

∂C,µ

C,µ
dXµ(a)

da
)da];µ]

√
−gδCd4x

=
∫

[
1

2
f [−C ,µ

;µ − C ,ν
;ν ]
√
−g − [ρProper

dXµ(a)

da
];µ]
√
−gδCd4x

=
∫

[
1

2
f [−24C]

√
−g − Jµ

;µ

√
−g]δCd4x

=
∫

[f4C − Jµ
;µ]δCd4x; (C.43)

⇒ f4C = Jµ
;µ

⇒ C ,µ
;µ =

1

f
Jµ

;µ. (C.44)

On the boundaries, the variation equals zero. This eliminates any terms not under

integrals. 4 is the d’Alembertian. The term ρProper ≡
∑

a ma
δ(3)(x−A(a))√

−g
yields the

proper density of the particles. Jµ = ρProper
dXµ(a)

da
is the mass current.

Variation with respect to the trajectories follows as in the previous section. Leave
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the action in its original form with integrals over the worldlines;

To study the conservation properties of this action, recall that the divergence of

the Einstein tensor (the lefthand side of Einstein’s equations) is zero. Manifestly, the

righthand side must follow this, so

T µν
;ν = [f · (C ,νC ,µ − 1

2
gµνC,κC

,κ)];ν

= fC ,ν
;νC

,µ + fC ,νC ,µ
;ν −

1

2
gµνC,κ;νC

,κ − 1

2
gµνC,κC

,κ
;ν . (C.45)

Matter is created normal to a hypersurface with constant C via Weyl’s postulate

[16]. Also, this work considers a variable number of particles produced. All non-

normal terms vanish, leaving

T µν
;ν = fC ,µC ,ν

;ν . (C.46)

If C is not constant, then the particle mass varies along the worldline. For the variable

mass scenario, the other terms may remain, but such a case is beyond the scope of

this work.

C.2.2 3 + 1 Dynamic Evolution

Using the ADM decomposition on the action, obtain

S =
∫

(
1

16π
(−gij

∂πij

∂t
−NH−NiHi − 2(πijNj −

1

2
N iTrΠ + N |i√g),i)

+(LMatter +
1

2
f · (g00C

,0C ,0 + gi0C
,0C ,i + g0jC

,jC ,0 + gijC
,jC ,i)

−
∑
a

ma
δ(3)(xµ −Xµ(a))

N
√

g
[1 + g00C

,0dX0(a)

da
+ gi0C

0dX i(a)

da
+ g0jC

,j dX0(a)

da

+gijC
,j dX i(a)

da
]))N

√
gd4x. (C.47)
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Recall from the ADM three-plus-one decomposition that
√
−g = N

√
g where g =

det|gij| = gijA
ij. Rewrite the decomposed covariant metric using ADM. The reason

for using the covariant metric is because covariant spatial components of 4-tensors

form 3-tensors dependent only on the surface. (Quantities on such a surface are

defined via 3-D operations on 3-tensors.) [13] Hoyle’s treatment of the gradients

of the C-field as equivalent to 4-momenta make this choice more logical. Also, the

term under summation corresponds in total to the proper density of the particles, so

variations occur only over terms not included in this density. Vary the action w.r.t.

the metric, conjugate momentum, lapse, and shift, and obtain Hamilton’s equations

and the constraint equations:

δS

δgij

=
∫

(
1

16π
(−∂πij

∂t
−N

√
g(Rij − 1

2
gijR) +

N

2
√

g
gij(TrΠ2 − 1

2
(TrΠ)2)

−2N
√

g
(πimπm

j − 1

2
πijTrΠ) +

√
g(N |ij − gijN |m

|m)

+(πijNm)|m −N i
|mπmj −N j

|mπmi)

+
N
√

ggij

2
(LMatter +

1

2
f((NkN

k −N2)C ,0C ,0 + NiC
,0C ,i

+NjC
,jC ,0 + gijC

,jC ,i))

+
N
√

g

2
fC ,jC ,i + N

√
g
δLMatter

δgij

−N

√
g

2
gijρProper[1 + (NkN

k −N2)C ,0dX0(a)

da
+ NiC

0dX i(a)

da

+NjC
,j dX0(a)

da
+ gijC

,j dX i(a)

da
]

−N
√

gρProperC
,j dxi

da
)d4x (C.48)

⇒ ∂πij

∂t
= −N

√
g(Rij − 1

2
gijR) +

N

2
√

g
gij(TrΠ2 − 1

2
(TrΠ)2)

−2N
√

g
(πimπm

j − 1

2
πijTrΠ) +

√
g(N |ij − gijN |m

|m)

+(πijNm)|m −N i
|mπmj −N j

|mπmi

+8πN
√

ggij(LMatter +
1

2
f((NkN

k −N2)C ,0C ,0 + NiC
,0C ,i

+NjC
,jC ,0 + gijC

,jC ,i)
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+fgijC
,jC ,i) + 16πN

√
g
δLMatter

δgij

−8πN
√

ggijρProper[1 + (NkN
k −N2)C ,0dX0(a)

da
+ NiC

0dX i(a)

da

+NjC
,j dX0(a)

da
+ gijC

,j dX i(a)

da
]

−16πN
√

gρProperC
,j dX i(a)

da
. (C.49)

Since the particles are created at rest, the 3-momentum of the created particles equals

zero (C ,i = 0), so

∂πij

∂t
= −N

√
g(Rij − 1

2
gijR) +

N

2
√

g
gij(TrΠ2 − 1

2
(TrΠ)2)

−2N
√

g
(πimπm

j − 1

2
πijTrΠ) +

√
g(N |ij − gijN |m

|m)

+(πijNm)|m −N i
|mπmj −N j

|mπmi

+8πN
√

ggij(LMatter +
1

2
f((NkN

k −N2)C ,0C ,0) + 16πN
√

g
δLMatter

δgij

−8πN
√

ggijρProper[1 + (NkN
k −N2)C ,0dX0(a)

da
]. (C.50)

For the variation w.r.t. the conjugate momentum:

δS

δπij
=

∫
[

1

16π
(−∂gij

∂t
+

2N
√

g
(πij −

1

2
gijTrΠ) + Ni|j + Nj|i)]d

4x (C.51)

⇒ ∂gij

∂t
=

2N
√

g
(πij −

1

2
gijTrΠ) + Ni|j + Nj|i. (C.52)

For the superhamiltonian:

δS

δN
=

∫
[− H

16π
+
√

g(LMatter +
1

2
f((NkN

k −N2)C ,0C ,0

+NiC
,0C ,i + NjC

,jC ,0 + gijC
,jC ,i)) +

N
√

g

2
f(−2NC ,0C ,0)
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−√gρProper[1 + (NkN
k −N2)C ,0dX0(a)

da
+ NiC

0dX i(a)

da

+NjC
,j dX0(a)

da
+ gijC

,j dX i(a)

da
]

−N
√

gρProper[−2NC ,0dX0(a)

da
]]d4x (C.53)

⇒ H =
1
√

g
(TrΠ2 − 1

2
(TrΠ)2)−√gR

= 16π
√

g(LMatter +
1

2
f((NkN

k −N2)C ,0C ,0 + NiC
,0C ,i

+NjC
,jC ,0 + gijC

,jC ,i) +
N

2
f(−2NC ,0C ,0)

−ρProper[1 + (NkN
k −N2)C ,0dX0(a)

da
+ NiC

0dX i(a)

da

+NjC
,j dX0(a)

da
]−Nρ[−2NC ,0dX0(a)

da
])

= 16π
√

g(LMatter +
1

2
f((NkN

k −N2)C ,0C ,0)

+
N

2
f(−2NC ,0C ,0)− ρProper[1 + (NkN

k −N2)C ,0dX0(a)

da
]

−NρProper[−2NC ,0dX0(a)

da
]). (C.54)

And for the supermomentum:

δS

δNi

=
∫

[−Hi + N
√

g(
1

2
fC ,0C ,i − ρProperC

0dX i(a)

da
)]d4x (C.55)

⇒ Hi = −2πij
j = N

√
g[(

1

2
fC ,0C ,i − ρProperC

0dX i(a)

da
)] = 0. (C.56)

C.2.3 Thermodynamics of the C-Field

This section details the thermodynamic computations of this work using the conven-

tions and work of Synge [25]. Introduce terms to describe the system statistically.

Let v be the population number, N µ the numerical flux vector, and N the distri-

bution function. At a point/event on a hypersurface, draw a nullcone with positive

(future-forward) orientation. Let nµ be a timelike unit vector. Consider a slicing of

the nullcone such that a target dV (3-dimensional infinitesimal volume element) is
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obtained. pµ is the 4-momentum of particles in the gas. Considering the part of the

nullcone between the point on the hypersurface and the target, project this region

onto the hypersurface. This projection yields a 3-volume, dΩ. Further, this 3-volume

can be written as dΩ = dω|pµn
µ|. Synge calls dω the ’absolute 2-content’ of the

3-volume at the point of intersection of the 4-momentum with the nullcone.

Mathematically,

v = Nµn
µdV = dV

∫
NdΩ; (C.57)

⇒ −Tµνn
νdV = dV

∫
NpµdΩ. (C.58)

−Tµνn
ν is the 4-momentum flux across the infinitesimal target. These quantities

maximize the entropy integral (as follows from the third law of thermodynamics):

F = −dV
∫
N logNdΩ (C.59)

Treat the equations pertaining to population number and 4-momentum flux as con-

straints; from the method of Lagrange multipliers,

δF − δ[αv − ξµTµνn
ν ] = 0, (C.60)

where α and ξµ are Lagrange multipliers (generally, functions of the coordinates xµ

on the hypersurface but not the 4-momentum). Vary this integral with respect to the

distribution function:

δ[N logN ]− δ[αN + ξµNpµ] = 0

= δN [logN ] +N δ logN − αδN − ξµpµδN

= [logN +
∂ logN

∂N
]δN − [α + ξµpµ]δN

= [logN + 1]δN − [α + ξµpµ]δN
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⇒ (logN + 1)δN = αδN + ξµpµδN . (C.61)

This yields the most probable distribution function,

N (xµ, pµ) = Aeξµpµ

. (C.62)

Note that A and ξµ are functions of xµ. Write them as

A
∫

eξκpκ

dΩ = −A
∫

pµn
µeξκpκ

dω = −Nµn
µ,

A
∫

pµe
ξκpκ

dΩ = −A
∫

pµpνn
νeξκpκ

dω = −Tµνn
ν . (C.63)

These equations can be used to solve for A and ξµ.

The distribution function is an absolute property of this gas. Arbitrary selection of

the timelike unit normal vector yields a sample population. Remove the dependence

of N , A, and ξµ on this vector, and rewrite the above equations:

A
∫

pµe
ξκpκ

dω = Nµ,

A
∫

pµpνe
ξκpκ

dω = Tµν . (C.64)

This rewriting gives 14 equations instead of the previous 5. Now, write the 5 conser-

vation equations:

N µ
;µ = 0;

T µν
;ν = 0. (C.65)

Define Φ as follows:
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Φ =
∫

eξκpκ

. (C.66)

Rewriting equations (C.27) and (C.28) with this yields

Nµ = A
∂Φ

∂ξµ

;

Tµν = A
∂2Φ

∂ξµ∂ξν

. (C.67)

Let the Lagrange multiplier ξµ be timelike normal, and also let it satisfy the relation-

ship

ξ =
√
−ξµξµ (C.68)

⇒ ξ2 = −ξµξ
µ = −Cnµn

µ = −C(−1) = C

⇒ C = ξ2 ⇒ ξµ = ξnµ, (C.69)

where nµ is the normal to the hypersurface. The quantity ξ is the reciprocal temper-

ature.

At these points on the hypersurface, where a locally Lorentz frame can be specified,

so can a 4-momentum space. Then,

p0
2 = −m2 cosh2 χ,

p1
2 = m2 sinh2 χ sin2 θ cos2 φ,

p2
2 = m2 sinh2 χ sin2 θ sin2 φ,

p3
2 = m2 sinh2 χ cos2 θ, (C.70)

for the components of the 4-momentum. The parameters satisfy
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0 < m < ∞; 0 ≤ χ < ∞; 0 ≤ θ ≤ π; 0 ≤ φ < 2π. (C.71)

With fixed m, the 4-momentum vector traces a hypersphere of radius m, and this

contains all of the possible 4-momenta of the particles of proper mass m. For a

mixture of n gases, n hyperspheres must be considered. This must be modified for

photons, but that is beyond the scope of this work.

Using this coordinate system along with the absolute 2-content of a 3-cell of the

hypersphere, dω = m2 sinh2 χ sin θdχdθdφ, rewrite Φ:

Φ = 4πm2
∫
0

∞
e−mξ cosh χ sinh2 χdχ. (C.72)

This resembles the Bessel function,

Kn(x) =
∫
0

∞
e−x cosh χ cosh nχdχ

=
xn

(2n− 1)!

∫
0

∞
e−x cosh χ sinh2n χdχ, (C.73)

where the functions satisfy the following relations:

xK ′
n(x)− nKn(x) = −xKn+1(x);

xK ′
n(x) + nKn(x) = −xKn−1(x);

Kn+1(x)−Kn−1(x) = 2n
Kn(x)

x
. (C.74)

This implies that Φ = 4πmK1(mξ)
ξ

.

The number density (the number of particles per unit 3-volume) is defined as such:

N0 = −Nµū
µ (C.75)
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⇒ N µ = N0ū
µ. (C.76)

where ūµ is the mean 4-velocity of the particles with the standard relation ūµū
µ = −1,

and ξ is the reciprocal temperature. Using (C.30) with (C.37), obtain

Nµ =
4πAm2ξµK2(mξ)

ξ2
;

Tµν =
4πAm3ξµξνK3(mξ)

ξ3
+

4πAm2gµνK2(mξ)

ξ2
. (C.77)

Define the mean 4-velocity as

ūµ = − ∂ξ

∂ξµ
=

ξµ

ξ
, (C.78)

It satisfies the invariant relationship ūµū
µ = −1. In the momentarily comoving ref-

erence frame, ξµ is purely timelike (orthogonal to the hypersurface as shown in Eq.

C.69), and it follows from the definition of a perfect fluid, which is

Tµν = (ρ + p)ūµūν + pgµν . (C.79)

For the C-field, the conservation equations fail. So, consider a mixture that con-

serves the original number of particles. Doing so introduces a modified entropy in-

tegral, modified distribution equations, and modified equations of state. The new

particles will be taken in the simplest form, a relativistic dust (i.e., no pressure).

Also, the particles are created at rest (ūi = 0). Then,

FModified = −dV
∫

[N logN + NC−FieldlogNC−Field]dΩ; (C.80)∫
N0dΩ = −Nµn

µ;∫
N0C−FielddΩ = −NµC−Fieldn

µ; (C.81)
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∫
(N +NC−Field)pµdΩ = −Tµνn

ν ; (C.82)

logN + 1 = α + ξµp
µ;

logNC−Field + 1 = αC−Field + ξµp
µ; (C.83)

⇒ N = Aeξµpµ

, NC−Field = AC−Fielde
ξµpµ

. (C.84)

Write the number flux vectors and the new energy-momentum tensor for the initial

perfect fluid and the created particles:

A
∫

pµe
ξκpκ

dω = Nµ,

AC−Field

∫
pµe

ξκpκ

dωC−Field = NµC−Field, (C.85)

A
∫

pµpνe
ξκpκ

dω + AC−Field

∫
pµpνe

ξκpκ

dωC−Field = Tµν . (C.86)

From this and the number densities, write expressions for computing the section of

the nullcone between the starting point on the hypersurface and the target:

A =
N0ξ

4πm2K2(mξ)
; (C.87)

AC−Field =
N0C−Fieldξ

4πma
2K2(ma

2ξ)
. (C.88)

Using this with (C.30) and (C.37), expand the energy-momentum tensor:

⇒ ρ + p =
4π

ξ
[Am3K3(mξ) + AC−Fieldma

3K3(maξ)]

= mN0G(mξ) + maN0C−FieldG(maξ); (C.89)

p =
4π

ξ2
Am2K2(mξ)

=
N0

ξ
. (C.90)
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The function G(x) = K3(x)
K2(x)

= 2
x
− K′

2(x)

K2(x)
.

The action implies a non-constant number density N0C−Field for the C-field par-

ticles. In the case of inflation/production, this increases. Use the rewritten energy-

momentum tensor and the number flux vector:

Tµν = (mN0G(mξ) + maN0C−FieldG(maξ))ūµūν + gµν
N0

ξ
,

N µ = N0ū
µ,

NC−Field
µ = N0C−Fieldū

µ, (C.91)

⇒ [mN0G(mξ) + maN0C−FieldG(maξ))ūµūν ];ν + (
N0

ξ
);µ

= (maN0C−FieldG(maξ)ūµūν);ν

= fC ,µC ,ν
;ν ;

(N0ū
µ);µ = N0;µū

µ +N0ū
µ
;µ = 0;

(N0C−Fieldū
µ);µ = N0C−Field;µū

µ +N0C−Fieldū
µ
;µ

= N0C−Field;µū
µ =

ξµ

ξ
N0C−Field;µ. (C.92)

This follows since the mean 4-velocity is constant and the number density for the

C-particles is increasing. These relations imply that

fC ,µC ,ν
;ν =

maξ
µξν

ξ2
[N0C−FieldG(maξ)];ν . (C.93)

Finally, write this expression in terms of split spacetime:

fC ,µC ,ν
;ν = f · ((g00C

,0
;0C

,0 + gi0C
,0

;0C
,i + g0jC

,j
;jC

,0

+ gijC
,j

;jC
,i))

= f((NkN
k −N2)C ,0

;0C
,0 + NiC

,0
;0C

,i

+ NjC
,j

;jC
,0 + gijC

,j
;jC

,i))
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⇒ f(NkN
k −N2)C ,0

;0C
,0 =

maξ
0ξ0

ξ2
[N0C−FieldG(maξ)];0; (C.94)

fNiC
,0

;0C
,i =

maξ
iξ0

ξ2
[N0C−FieldG(maξ)];0 = 0; (C.95)

fNjC
,j

;jC
,0 =

maξ
0ξj

ξ2
[N0C−FieldG(maξ)];j = 0; (C.96)

fgijC
,j

;jC
,i =

maξ
iξj

ξ2
[N0C−FieldG(maξ)];j = 0. (C.97)

These equations give a few more relations by which we can determine properties of

the C-field, specifically in the case of such a field producing a dust.

Using the information about 3-momentum (particles are created at rest) and that

spatial components of the covariant normal vector equal zero:

H =

√
g

2
((3)R− Tr(K2) + (TrK)2)

= 8πnµnν [Tµν − f · (C,νC,µ −
1

2
gµνC,κC

,κ)]

= 8π[Tµνn
µnν − f · (C,νC,µn

µnν − 1

2
gµνn

µnνC,κC
,κ)]

= 8π[(mN0G(mξ) + maN0C−FieldG(maξ))ūµūνn
µnν + gµν

N0

ξ
nµnν

−f · (C,νC,µn
µnν − 1

2
gµνn

µnνC,κC
,κ)]

= 8π[(mN0G(mξ) + maN0C−FieldG(maξ))−
N0

ξ

+fC ,µC,µ −
f

2
C ,κC,κ]

= 8π[(mN0G(mξ) + maN0C−FieldG(maξ))−
N0

ξ

+
f

2
C ,0C,0]; (C.98)

Hi = Ki
a
|a − (TrK)|i

= −8πnµγi
ν [Tµν − f · (C,νC,µ −

1

2
gµνC,κC

,κ)]

= −8π[nµγi
ν(mN0G(mξ) + maN0C−FieldG(maξ))ūµūν + nµγi

νgµν
N0

ξ
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−nµγi
νf · (C,νC,µ −

1

2
gµνC,κC

,κ)

= −8π[nµ(δν
i + nνni)(mN0G(mξ) + maN0C−FieldG(maξ))ūµūν

+nµ(δν
i + nνni)gµν

N0

ξ

−nµ(δν
i + nνni)f · (C,νC,µ −

1

2
gµνC,κC

,κ)]

= −8π[(mN0G(mξ) + maN0C−FieldG(maξ))n
µūµ(ūi + nνniūν)

+(ni + nµnµni)
N0

ξ

−f · (nµ(C,iC,µ + nνniC,νCµ)− 1

2
(ni + nµninµ)C,κC

,κ)]

= 0; (C.99)

(∂t −£Ni
)Kij = −N|ij + NRij − 2NKiaKj

a + N(TrK)Kij

−8π(Nγi
νγj

µ +
1

2
Nγijn

µnν − 1

2
γijγ

abγa
νγb

µ)[Tµν

−f(C,νC,µ −
1

2
gµνC,κC

,κ)]

= −N|ij + NRij − 2NKiaKj
a + N(TrK)Kij

−8π(Nγi
νγj

µ +
1

2
Nγijn

µnν − 1

2
Nγijγ

abγa
νγb

µ)

[(mN0G(mξ) + maN0C−FieldG(maξ))ūµūν + gµν
N0

ξ

−f · (C,νC,µ −
1

2
gµνC,κC

,κ)]

= −N|ij + NRij − 2NKiaKj
a + N(TrK)Kij

−8π(N(δν
i + nνni)(δ

µ
j + nµnj) +

1

2
N(gij + ninj)n

µnν

−1

2
(gij + ninj)(g

ab + nanb)(δν
a + nνna)(δ

µ
b + nµnb))

[(mN0G(mξ) + maN0C−FieldG(maξ))ūµūν + gµν
N0

ξ

−f · (C,νC,µ −
1

2
gµνC,κC

,κ)]

= −N|ij + NRij − 2NKiaKj
a + N(TrK)Kij

−8π(N(δν
iδ

µ
j + nνniδ

µ
j + δν

in
µnj + nνnin

µnj)
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+
1

2
N(gijn

µnν + ninjn
µnν)

−1

2
Ngij(g

abδν
aδ

µ
b + gabδν

an
µnb + gabnνnaδ

µ
b + gabnνnan

µnb

+nanbδν
aδ

µ
b + nanbδν

an
µnb + nanbnνnaδ

µ
b + nanbnνnan

µnb))

−f · (C,νC,µ −
1

2
gµνC,κC

,κ)]

= −N|ij + NRij − 2NKiaKj
a + N(TrK)Kij

−8π(N(δν
iδ

µ
j + nνniδ

µ
j + δν

in
µnj + nνnin

µnj)

+
1

2
N(gijn

µnν + ninjn
µnν)

−1

2
Ngij(g

νµ + nµnν + nνnµ + nνnbnµnb

+nνnµ + nνnbnµnb + nanµnνna + nanbnνnan
µnb))

[(mN0G(mξ) + maN0C−FieldG(maξ))ūµūν + gµν
N0

ξ

−f · (C,νC,µ −
1

2
gµνC,κC

,κ)]

= −N|ij + NRij − 2NKiaKj
a + N(TrK)Kij

−8π(Nδν
iδ

µ
j +

1

2
Ngijn

µnν − 1

2
gij(g

νµ + 3nµnν))

[(mN0G(mξ) + maN0C−FieldG(maξ))ūµūν + gµν
N0

ξ

−f · (C,νC,µ −
1

2
gµνC,κC

,κ)]

= −N|ij + NRij − 2NKiaKj
a + N(TrK)Kij

−8π[(mN0G(mξ) + maN0C−FieldG(maξ))(Nūjūi

+
1

2
Ngijn

µnν ūµūν −
1

2
gij(ū

ν ūν + 3nµnν ūµūν))

+(Ngji −
1

2
Ngij −

1

2
Ngij(g

νµgµν + 3nµnν))
N0

ξ

−f · (NC,iC,j +
1

2
Ngijn

µnνC,νC,µ

−1

2
gij(C

,µC,µ + 3nµnνC,νC,µ)

−1

2
(gji −

1

2
gij −

1

2
gij(g

νµgµν + 3nµnνgµν))C,κC
,κ)]

= −N|ij + NRij − 2NKiaKj
a + N(TrK)Kij

−8π[(mN0G(mξ) + maN0C−FieldG(maξ))(
1

2
Ngijn

µnν ūµūν
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−1

2
(gij + ninj)(2ū

ν ūν)) + (
1

2
Ngji −

1

2
Ngij)

N0

ξ

−f · (1
2
Ngijn

µnνC,νC,µ −
1

2
Ngij(C

,µC,µ)

−1

2
(
1

2
Ngij −

1

2
N(gij))C,κC

,κ)]

= −N|ij + NRij − 2NKiaKj
a + N(TrK)Kij

+8πNgij[
1

2
(mN0G(mξ) + maN0C−FieldG(maξ))

−f · (C ,µC,µ)]

= −N|ij + NRij − 2NKiaKj
a + N(TrK)Kij

+8πNgij[
1

2
(mN0G(mξ) + maN0C−FieldG(maξ))

−f · (C ,0C,0)]; (C.100)

(∂t −£Ni
)γij = −2NKij. (C.101)
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