
ABSTRACT 

ROSE, BENJAMIN MICHAEL. Real-time Photorealistic Stereoscopic Rendering of 
Fire. (Under the direction of Dr. David McAllister.) 
 

We propose a method for real-time photorealistic stereo rendering of the 

natural phenomenon of fire. Applications include the use of virtual reality in fire 

fighting, military training, and entertainment.  Rendering fire in real-time presents a 

challenge because of the transparency and non-static fluid-like behavior of fire. It is 

well known that, in general, methods that are effective for monoscopic rendering are 

not necessarily easily extended to stereo rendering because monoscopic methods 

often do not provide the depth information necessary to produce the parallax 

required for binocular disparity in stereoscopic rendering.  We investigate the 

existing techniques used for monoscopic rendering of fire and discuss their 

suitability for extension to real-time stereo rendering.  Methods include the use of 

precomputed textures, dynamic generation of textures, and rendering models 

resulting from the approximation of solutions of fluid dynamics equations through the 

use of ray-tracing algorithms.  We have found that in order to attain real-time frame 

rates, our method based on billboarding is effective. Slicing is used to simulate 

depth. Texture mapping or 2D images are mapped onto polygons and alpha 

blending is used to treat transparency.  We can use video recordings or pre-

rendered high-quality images of fire as textures to attain photorealistic stereo.  
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Chapter 1 

Introduction 
 

1.1 Motivation 
There are many potential uses for stereoscopic real-time fire graphics.  

Included in those potential uses are various forms of entertainment and training 

simulations. 

 

Stereo technology is becoming more popular in the movie industry.  On 

04/13/07, DreamWorks3 announced that it will “produce all of its films in 

stereoscopic 3D technology starting in 2009.”  From the same article written by 

DreamWorks, “It is expected by 2009 that there will be several thousand screens 

equipped for 3D.”  This emphasis will spur more interest and research in stereo 

imaging.  

 

Stereoscopic technology will also be extended to the video game market and 

training simulations. Fire fighters will be able to train in virtual environments.
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1.2 Salient Visual Features of Fire 
Fire is a chemical reaction creating flames that are light emitting gas left more 

buoyant than air.  Flames move in three dimensions and in directions that are 

difficult to predict.  Parts of the flames may be transparent or semi-transparent.  

The color of light given by sections of flames depends on the temperature of the gas 

in that section, blue being hotter than yellow and yellow hotter than red.  The 

temperature of the fire can be affected by many factors.  For a fire in an open 

atmosphere, the more oxygen and hydrogen that is supplied, the hotter the fire will 

burn given that the source of fuel remains constant.  If the fire were to be provided 

with a higher ratio of oxygen to fuel or fuel to oxygen, parts of the fuel or oxygen will 

not be part of the reaction, thus less energy is released: the fire will burn with less 

intensity and release more unburned particles in the form of smoke into the air. 

 

Different fuels cause fire to behave in different ways.  A steady stream of 

gaseous fuel will yield a fire with smooth curves comprising its silhouette as is 

indicated in Figure 1.  A solid fuel, such as a block of wood, will produce a fire with 

more sporadic pointed flames jutting out in many directions, while flowing away from 

source(s) of gravity.  The key difference between the gaseous and solid fuels is 

that there is a force exerted by the stream of gaseous fuel.  The section of gaseous 

fuel that is burning will quickly heat its neighboring gaseous fuel sections to their 

ignition temperatures.  The result is a force being exerted on what appears to be 

fire, but is actually the force of the fuel itself. 
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Figure 1: Fire with steady stream of gaseous fuel. 

 

In a gravity influenced atmosphere, the glowing gases will move upward due 

to diffusion of density.  The surrounding air is denser than the gas.  Gravity applies 

a downward force to denser gases, and the less dense gas must flow up and 

displace the denser air.  This is the reason why flames are pointed upward when its 

fuel source is not acted on by an external force. 

 

The density of the fuel before ignition can also influence the behavior of fire.  

A denser material with the same molecular structure will take longer to ignite than a 

less dense material. 

 

Wind exerts a force on the heated, illuminating gas, and hence has a heavy 

influence over the motion of fire.  Wind can also extinguish a fire.  If the wind is 

strong enough to move and disperse the hot gas to preclude the already ignited 

gases from heating the neighboring gases or fuel, the fire will expire. 
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Lamorlette4 points out that computer monitors do not have enough contrast to 

show fire for the semi-transparent, moving entity where only bright backgrounds 

would be visible through it and it is better to have a dark background.     

 

Our primary concern here is the visual behavior of flames for applications in 

virtual reality. Fire moves at a rate that the human visual system is unable to collect 

images, so there is motion blur for the viewer.  Flames vary in color and 

transparency, from flame to flame as well as within a flame.  In the examples below 

we render a wood fire that is unaffected by wind.  The solution presented herein 

can be applied to most types of fire and external environments.  

 

1.3 Stereography 
When considering stereo computer graphics, it is essential to understand 

visual depth cues that humans use to subconsciously determine positions of objects 

in relation to each other and the viewer.  There are two categories of depth cues 

outlined in McAllister5: physiological and psychological.  Most visual depth cues can 

be replicated through a technique in monoscopic rendering, but there are a few that 

cannot. 

 

The physiological category encompasses four types of visual depth cues: 

accommodation, convergence, binocular disparity, and motion parallax.   



 5 

 

Accommodation is the depth cue represented varying tension from the ciliary 

muscle in the eye.  This change in tension causes the lens of the eye to change 

thickness.  The degree to which the thickness of the lens changes when focusing 

on an object is used by the brain to determine the approximate distance to the 

object in focus. 

 

Convergence is the behavior of the eyes when focusing on an object in three-

dimensional space.  The eyes rotate inward as the object becomes closer and 

outward as the object moves away.  The brain uses the angle created by the two 

sight lines to determine the approximate distance to the object in focus. 

 

Binocular disparity is the actual difference in the images perceived by each 

eye.  McAllister notes that binocular disparity “…is the salient depth cue used by 

the visual system to produce the sensation of depth, or stereopsis.”  The brain  

compares the differences between objects from image to image to determine 

relative position in three dimensional space. 

 

Motion parallax is the distance two points in space appear to separate or 

come together when the viewer moves. This gives an impression as to how far away 

the points are from each other.  The further they appear to move, the closer they 
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are to one another. Objects further away appear to move slower than those closer to 

the viewer. 

 

The psychological category encompasses seven types of visual depth cues: 

linear perspective, shading and shadowing, aerial perspective, interposition, retinal 

image size, texture gradient, and color.   

 

Linear perspective causes an object to look smaller from far away than it 

would if it were closer to the viewer.  Linear perspective also causes parallel lines 

going away from the viewer to appear to converge.  Linear perspective is created in 

computer graphics by using a technique known as perspective projection.   

 

Shading is the inverse relationship between the amount of light reflected by 

an object and its distance from the light source, due to diffusion of light over 

distance.  The other is shadowing, which occurs when one object obstructs the 

path of light onto another object. 

 

The aerial perspective cue refers to the way objects further away are 

perceived as blurry and become more distinct as they get closer.  This cue also 

represents the behavior of distant objects’ sometimes appearing bluer than they 

would if closer to the viewer.  Objects from a distance look bluer due to the 

atmosphere and the way it scatters light.  Blue light scatters more than other colors 
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because it has a shorter wavelength.  Aerial perspective can be simulated using a 

technique known as depth cueing; we blur the object color with that of the 

surrounding background. 

 

Interposition occurs when one translucent object partially blocks another 

object because it is closer to the viewer and obstructs the view of the more distant 

object.  Semi-transparent objects such as a stained glass window can change the 

appearance of another object when interposed.  

 

Retinal image size refers to our knowledge of the relative sizes of objects.  If 

a woman in the image is the same size as a house on the retinas of the eyes, the 

viewer will conclude that the house is further away than the woman.   

 

Texture gradient relates the amount of detail in a surface.  The skin of an 

orange close to the viewer reveals a degree of definition that cannot be perceived at 

a distance. 

 

The color visual depth cue refers to the way the brain associates the 

difference in color saturation with a difference in location in relation to the viewer.  

Objects with bright colors often appear closer than darker ones. 
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Because it is generally accepted that binocular disparity is the most important 

depth cue, there have been many techniques developed to simulate it.  The area of 

study surrounding these techniques has become known as stereo computer 

graphics.  Utilizing such techniques to simulate binocular disparity is known as 

stereoscopic rendering or imaging. 

 

McAllister groups 3D imaging into three main categories: holographic, 

multiplanar, and stereo pair.  Holographic and multiplanar techniques are 

autostereoscopic. They do not require special viewing devices to be worn by the 

user or special viewer retinal techniques such as crossing the eyes used in cross 

viewing described below.  The stereo pair technique is not considered to be 

autostereoscopic.  

1.3.1 Computing Stereo Pairs 
There are several techniques that are used to produce the left and right eye 

views required in stereo imaging.  There are advantages and disadvantages 

depending on the computational algorithms available and the length of time that will 

be involved in viewing the images.  

 

In the discussion below we assume a right handed coordinate system: the 

viewer is assumed to be centered on the positive z axis which is perpendicular to the 

view plane. The y axis is the vertical axis with the positive axis pointing up and the x 

axis is horizontal with the postive x axis to the right.  See Figure 2. 
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    Figure 2: Right handed coordinate system. 

 

 The intersection of two lines from a point in the scene to each eye on the 

view plane or stereo window produces what are called homologous points. The 

horizontal distance between these points is called the horizontal parallax and the 

vertical distance is called the vertical parallax or vertical displacement. Ideally the 

vertical displacement should be zero.  Extended viewing of stereo pairs with vertical 

displacement can be uncomfortable for the viewer, straining eyes and producing 

headaches. 

 

Horizontal parallax is the horizontal distance between homologous points in a 

scene, the value of the abscissa of the right eye point minus the abscissa of the left 

eye point.  When the difference is positive, the point in the scene is behind the 

stereo window or plane.  A negative difference occurs when the point is in front of 

the stereo plane.  A horizontal parallax of 0 would place the image directly on the 

stereo plane. 
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One technique for computing stereo pairs is that of performing two 

perspective projections from the same center of projection and rotating the scene 

about an axis parallel to the vertical scene axis.  This method produces vertical 

displacement caused by linear perspective. In some scientific software, rotation of 

the scene about a vertical axis is straightforward while translation of the scene is 

not. When using this technique the rotation should be limited to 2 to 3 degrees.    

 

Parallel projection is another method, creating the phenomenon known as 

Emmert's law. When objects fail to follow linear perspective (they appear to 

decrease in size as the distance from the viewer increases) objects look larger than 

they should.  Without linear perspective, the images would produce a stereo pair 

where the depth would be difficult for the viewer to discern. 

 

The correct way to compute a stereo pair is to use two perspective 

projections with different centers, one at each eye.  This preserves linear 

perspective and eliminates vertical displacement. The left and right eye images can 

be produced by translating the scene horizontally left and right half the distance 

between the eyes (the interocular distance) and using a single center of projection 

on the z axis. 
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1.3.2 Viewing Stereo Pairs 
There are two ways of viewing stereo pairs that don't require special viewing 

devices: parallel viewing and cross viewing.   

 

Parallel viewing requires the left eye image to be placed to the left of the right 

eye image.  A blocking device like a sheet of paper placed between and 

perpendicular to the plane of the images helps to preclude cross talk where the left 

eye is able to see the right eye image or vice versa.   

 

Cross viewing is used when the left and right eye images are reversed. The 

eyes are crossed and the left and right eye images are merged in the center.  

 

Both of these viewing techniques may require some practice and many 

people are not able to experience stereopsis. The cross viewing method has the 

advantage that large images or images that are far apart can be viewed. In this 

thesis all stereo pairs have been arranged in right eye/left eye order for cross 

viewing.  
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Chapter 2 

Monoscopic Techniques 
 

2.1 Previous Work 
Fire was first modeled with particle systems by Reeves5 in 1983.   In 

Reeves’ work particles would be generated and modified with every new frame in the 

animation: the location, acceleration, velocity, color and size of the particles.  

Reeves used two particle systems to produce a wall of fire and explosions on a 

planet in the movie Star Trek II: The Wrath of Khan7.  Although simple to 

implement, the solution presented does not yield photorealistic images, a goal of 

this research. 

 

Perlin6 utilized his own randomization noise equations to produce turbulent 

fields, that when used in conjunction with a color-assignment function, could 

produce a fire-like image.  Although Perlin noise functions can be used to produce 

images of fire in real-time, the images do not have sufficient realism. 

 

Beaudoin2 generates images of fire by creating a skeleton of individual flames 

using a velocity field, some starting from the surface of the burning object, some 

starting from a point off of the surface simulating how flames can break away from 
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the fire.  A three-dimensional model is created using the flame skeletons and 

numerical methods used to emulate the wide base and narrow top portion of flame.  

Rendering performance is not real-time and the resulting images are not 

photorealistic (Figure 3). 

 

 

Figure 3: Results from Beaudoin's method2. 

 

Lamorlette approaches fire in a similar way to Beaudoin where flames are 

created independently, then merged together.  The complexity of this method 

exceeds that proposed by Beaudoin but provides the animator as much control of 

the look and behavior of the fire as possible.  The images are photorealistic, 

although they cannot be computed in real-time using standard commercial hardware 

(Figure 4). 
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Figure 4: Lamorlette's method4 implemented in the movie Shrek. 

 

Nguyen6 implements incompressible Navier-Stokes equations and gives 

attention to the often ignored gas expansion due to combustion.  Nguyen treats the 

expansion of gas at the moment of combustion by approximating the reaction zone 

with an implicit surface.   Incompressible Navier-Stokes equations are applied to 

the fuel and the heated gases, independent of each other, then the two sets of data 

are revisited to ensure the conservation of mass in the system.  Nguyen was able 

to generate fire for various fuel types, both solid and gaseous, at a rate of 

approximately 3 minutes a frame using a Pentium IV (Figure 5). 
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      Figure 5: A single frame from Nguyen's method6. 

 

Stam13,14 devised an approximation to the Navier-Stokes equations that 

allowed him to reduce computation times of simulation-based modeling and 

rendering of fire to “interactive” rates.  Stam's method produces photorealistic 

images of fire (Figure 6) and could potentially be computed in real-time for 

stereoscopic rendering.  
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    Figure 6: Fire produced by Stam's method13. 

 

Our method is based on using photorealistic monoscopic images of fire and 

any of the previous three methods could be used to produce such images. Since our 

emphasis is to determine how to use such images to generate a realistic stereo 

rendering of a fire, for expediency we chose to capture images using video. Hence, 

our method for producing textures, while easy to implement, is limited to rendering 

fire that can be represented by applying image processing to video frames.  

 

2.2 Textures 
Two dimensional textures are images or patterns that are “pasted,” or 

mapped to surfaces of objects. Textures are patterns that can be used to simulate 

surface properties without creating the geometry that would be necessary to 
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produce the same appearance. Textures can be combined with other textures, 

lighting, and object properties to create what appear to be very complicated  

geometrical objects and environments. We will use two dimensional semi-

transparent textures in conjunction with alpha blending to simulate the speed and 

photorealism of fire. We will apply these textures to flat surfaces called billboards to 

provide depth for stereo imaging.   

 

A texture map is a specification of the relationship of points on a section of 

the target surface of an object to a section of the texture.  Two and three 

dimensional textures can be created from scanned images such as photographs, 

video, drawings, etc. Procedural textures are textures whose properties are 

computed by an algorithm. 

 

For scanned images, a rule or map is required to associate each pixel with 

the location of points on the surface of the object. In addition, a rule is required to 

use a property or properties of a pixel on the texture image to modify the property of 

interest associated with surface points. In order to modify color values by applying a 

texture, the illumination values, surface color and other previously mapped textures 

must be combined with the current texture to be mapped. This is known as alpha 

blending, which is the process of combining two colors based on a parameter known 

as an alpha channel associated with each color.  
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We use alpha blending to simulate transparency in rendering fire.  There are 

many different ways to use alpha blending, the most common being linear 

interpolation.  If 0 � α � 1 is the alpha value of the current texture color to be 

blended, C1,  and the underlying color present on the surface is C2, then the alpha 

blended color that replaces C2 is C = αC1 + (1 –α) C2. Hence α = 0 means that the 

color C1 is to be completely transparent and C = C2.  Using this simple linear alpha 

blending to blend semi-transparent fire textures positioned in front or behind each 

other resulted in fire that had a flat appearance with an abnormally large yellow 

core.  We implemented a slightly more complex method of alpha blending, 

discussed in a later section. 

 

The value of α is used along with the depth and color values of all points in 

the lines of sight from the viewpoint to determine the final pixel value displayed.  

Because the color values of an object behind a transparent object must be 

computed before computing the resulting color values looking through the 

transparent object, care must be taken that the order objects are added in the 

rendering pipeline is from back to front.   

 

As an object increases distance from the viewer, details are less visible, less 

information is required to represent the object and less resolution is required to 

represent the textures for the object. In addition, applying full resolution textures to a 

distant object will result in pixel position conflicts creating aliasing. To treat this 
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problem, common graphics APIs often provide mipmapping, described by Woo9 as 

downsampling objects and textures to exploit the reduced information to enhance 

rendering speed and avoid the position conflicts. In our case, the result is better 

looking, antialiased fire. We have applied mipmapping using the OpenGL API for 

this research. 

 

Video textures were presented by Schodl12 in 2000.  Video textures are 

collections of images captured from video. Image similarities are analyzed based on 

several criteria, and then displayed in an order determined by those results.  

Schodl showed how video textures can be created with examples of a candle flame, 

a clock with pendulum, a campfire, a waterfall, a person posing for a portrait, and 

blowing grass.  The transitions between textures are stored via a probability matrix 

or a set of explicit links.  Often, the number of transition links is not large enough to 

warrant the probability matrix, so the set of links is used for the final representation.   

 

After finding the similarities between textures, there is still the problem of 

direction of motion.  The flight of a baseball moving through the frame of view from 

left to right provides an example.  It is sometimes not sufficient for the system to 

know only what images are similar to one another.  In the case of the flight of a 

baseball, placement of frames must be consistent with the movement. For this 

reason, Schodl’s system preserves a constant number of temporally adjacent 

frames for its transition selection. 
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Another issue of concern is a situation where there is a transition that, while 

visually pleasing, would lead to a frame with no following frame.  Schodl resolves 

this by creating an efficient algorithm for computing “anticipated future cost,” and 

selecting the optimal transition path.  The average difference between frames in 

possible transitions is computed.  The implementation can be modified to favor a 

single transition of optimum (lowest) difference or a transition with the optimum 

average difference of possible transitions following that transition. 

 

Video textures have been used to create photorealistic monoscopic real-time 

renderings of fire12.  Schodl’s use of video textures does not address the 

requirement of depth information for stereoscopic rendering.  An example video 

texture of a person’s portrait is given where video textures were used via three 

cameras at viewing angles having about 20 degrees difference.  Depth information 

was interpolated using the video from the three cameras.  The results were not 

photorealistic. 

 

2.3 Simulations 
Fluid modeling techniques generate three-dimensional models using a subset 

of gaseous phenomena properties with an acceptable loss of precision. Real-time 

rendering of fluid simulation representations is difficult because of the calculation 

required.  Reducing the complexity of fire simulation formulas without sacrificing 
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visual quality has been advanced by many researchers.    Obtaining aesthetic, 

realistic results using simulation involves essentially three steps: building the data 

for the model, extracting and computing data relevant to the surface, and using that 

surface data in one of a number of ways in conjunction to other colors of the scene 

(when the fluid is transparent or semi-transparent) to calculate  the correct colors in 

the scene.  Each portion presents its own challenges, and there are many options 

and intricate steps in each.  There is a large performance impact on the choices 

one makes when determining which implementations of these steps to execute.    

 

The model data can be stored as vectors, points, values in a grid, or a 

combination.  Many implementations have incorporated several aspects of fire that 

are not displayed; rather, these attributes of the fire are used to compute the 

properties of the next model in the succession to be used for rendering.  Essential 

attributes that are not directly rendered include density, velocity, and viscosity.   

 

The equations that describe fluid motion are called the Navier-Stokes 

equations.  They are described by Stam13 as “a precise mathematical model for 

most fluid flows occurring in Nature.”  Those working with Navier-Stokes equations 

have found them too complicated and computationally expensive to be sufficient for 

real time animation in computer graphics.  Instead, people like Stam have 

concentrated on creating adequate approximations of the Navier-Stokes equations 

that produce a pleasing and realistic but real-time alternative.   
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There are principally two types of fluid dynamic representations, Eulerian and 

Lagrangian.  Both representations, or methods, involve estimating behavior of 

equations in different ways.  Vesterlund15 gives a good metaphor for helping the 

reader understand the differences in Eulerian and Lagrangian methods. Vesterlund 

describes the Eulerian method as putting a grid around and throughout a fluid, 

where the attributes of the liquid, such as velocity, were stored for every grid point.  

He describes the Lagrangian method as a system of corks floating on the surface of 

a liquid. 

 

Jos Stam has contributed extensively in the fields of fluid dynamics and 

computer graphics.  Stam's fluid solver involves two grids of the same size, one for 

density values and the other for velocity vectors.  Both are given initial data, then 

updated in small time steps using his variations of the Navier-Stokes equations. 

Updating the density grid involves adding density to the grid, diffusing the density 

values throughout the grid, and density movement along velocity grid vectors.  

Adding density to the grid is straightforward, and is left to the artist using the system 

to determine how much and where.  Diffusion affects each grid cell using its 

neighbors' density values, the diffusion rate, the time step, and the number of cells 

in the grid.  
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First, the time step, diffusion rate, and size of the grid are used to compute a 

variable to be used in every cell in the density grid.  Second, the cells of the grid 

are all traversed and the density values are set based on the neighboring cells in a 

manner that avoids creating an unstable diffusion. 

 

The computed value used to modify each cell's density value without proper 

care would change sporadically, going negative, or growing beyond realistic values.  

“Any technique that performs only explicit updates between adjacent cells will fail.”14  

Stam incorporated an implicit time step approach using densities that, when diffused 

in reverse, would result in the densities at the previous time step.  Once every cell's 

value has been adjusted, the boundary cells are modified once more to adjust for 

them being boundary cells. 

 

The density in the density grid's cells must flow along with the velocity vectors 

in the velocity grid in order to produce fluid like motion.  This is accomplished by 

using a technique similar to that used in the density diffusion portion, where the 

formula is traced backwards in time.  In any given time step, each cell is computed 

in the following fashion.  Starting in the center of the cell, the flow into that position 

is traversed towards its origin for one time step.  The closest N cells to the final 

position are linearly interpolated and the resulting value is stored as the cell in 

question's density, where N is the same number of neighboring cells used in the 

density diffusion portion.  The boarder cells are then modified again.  Stam 
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remarks, “the method is stable because it uses linear interpolation; the new values 

are never larger than the maximum density of the previous time step.” 

 

Stam's velocity solver is essentially the same as the density solver, with the 

exception that the velocity solver employs a method to conserve mass.  It is 

important that the velocity leaving the cell equals that coming into it to generate 

good looking swirls for fluids.  A Poisson equation is used to accomplish this task. 

 

Stam's work is currently the only “interactive” simulation model available, yet 

there is no rendering information included.   There still remains the challenge of 

moving from a simulated model of fire to a rendered image and the problem of 

rendering at animation speeds.  This paper will explore solutions found in similar 

papers with realistic but not real time results.  The data must be rendered correctly 

by first translating it into graphics primitives. 

 

Traditionally volumetric rendering involved computationally traversing rays 

through pixels in the viewplane through the scene to get the appropriate color values 

for that pixel.  There has been work on making this form of volumetric rendering 

more efficient, but it remains computationally expensive.  A much faster alternative 

to traditional volumetric rendering using standard polygon oriented hardware is 

surface rendering. 
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Surface modeling partitions an object into polygons, or flat surfaces 

connected along edges.  Point splatting is the technique of using ellipses with alpha 

transparency masks for rendering an object's surface in a scene. Point splatting 

using surfels9,15 offers a more efficient alternative than using polygons.  Surfels 

(surface elements) are essentially data objects that store all the relevant  

information required for rendering the object's surface.  A surfel can hold any type 

of information, but usually contains the position, normal, radius and color associated 

with that surfel's point in space.  The radius is used when calculating the alpha 

mask, gradually blending more towards the outer edge of the ellipses.  Adding an 

acceptable shading scheme for the surfels specifically tailored for fire animations 

and performing ray tracing on the scene yields a smooth, attractive surface for the 

fire15.  

 

 

For surface rendering to be used, the surface must be extracted from the fire 

model, if it has not been already.  Surfaces of fluids can be defined as implicit 

surfaces15.  Implicit surfaces are surfaces that are defined by points that satisfy 

some conditional.  As an example, if a simulation of fire has been run and a density 

grid obtained, the implicit surface of the fire could be considered where the density 

of the cell of the grid is not zero, and one of its neighboring cells' density values is.  

Implicit surfaces benefit from point splatting because they are comprised of points in 

3D space. 
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Most fluid dynamic modeling solutions are realistic but are too 

computationally intensive for implementing real time4,6,15, or they are tractable but do 

not yield realistic looking flames1.  Stam's solution gives realistic results and may 

be able to achieve real time performance using modern hardware. We did not test 

this assertion.    
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Chapter 3 

Extending Monoscopic Techniques 
 

There are many issues involved in extending monoscopic techniques to 

stereo.  A technique that appears feasible to implement in real time for a 

monoscopic environment can become too computationally expensive to implement 

in stereo. Or the monoscopic technique may not provide the necessary depth 

information to permit rendering of left and right eye views with the correct parallax. 

 

According to Adabala et. al.1, to obtain acceptable visual representations of 

flame from a fluid simulation technique involving a grid, the animator or developer 

must be skilled at modifying non-intuitive controls.  Beaudoin2 points out that every 

solution that relies on a simulation of fire is often difficult to predict what effect on 

the fire a given value will have.  For example, initial densities and initial velocities 

must be provided as must the velocity and density injectors.  Fluid simulations of 

fire can create three dimensional models of fire and needs only be modeled once 

per frame.  Volumetric rendering must be computed for each of the two eyepoints.  

The fastest way to do this is by extracting the surface and point splatting surfels, 

computing colors, transparency, and intensity for every surfel, computationally 

expensive.  Add to this the cost of modeling the fire as well as the other objects in a 
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given scene, and simulations lose their appeal.  For this reason, our solution 

focuses on extending monoscopic texture techniques to stereo. 

 

Billboards are two dimensional (planar) surfaces.  We have discovered that 

by preprocessing realistic monoscopic flame images and using several alpha 

blended billboards with images of flames pasted on them, a photorealistic stereo 

image of fire can be rendered in real-time.  

 

Chapter 4 

A Proposed Solution / Billboarding 
We describe our method using video capture, image processing, texturing 

and alpha blended billboards to generate stereo images of photorealistic fire.  

 

4.1 Video Capture 
Our method utilizes actual flames captured by a digital camcorder to produce 

photorealistic results.  Filming was done at night with no artificial lighting so that the 

only color values in the final flame textures were produced from the flames.  Care 

must be taken to ensure that the correct color values are being recorded by 

adjusting settings on the camera.  The goal is to record so that an acceptable 

animated texture can be cropped from the resulting images. Care is required to 

avoid the appearance of over-exposure.  One must ensure that the extents of the 
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fire have been captured and that the camera is steady to simplify cropping during 

the editing process.  

 

One must also avoid high intensity yellows or whites in the image, as color 

intensities are additive when using alpha blending. We combine semi-transparent 

images to produce a flame with depth and the transparency causes intensity 

accumulation that can make the image too bright. 

 

Images were captured at 30 frames per second. At this speed, 30 flame 

textures are sufficient to produce photorealistic real-time stereo fire.   Camera 

settings were on default, point and shoot. The video was then imported into an 

iMovie project where individual frames were extracted and exported to images.  We 

exported frames to images and saved them preserving the order that they appeared 

in the video.  This produced frames similar to that shown in Figure 7.  The next 

process is to crop and edit. 

 

 

Figure 7: A frame taken from video footage of fire. 
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4.2 Image Editing 
We used Macromedia Fireworks to crop to eliminate the fuel source so the 

fire could be ported to arbitrary scenes. This produces the image in Figure 8.  

 

Figure 8: Image cropped from the video frame (Figure 7). 

 

Cropping severs the flame base from the fuel source and can result in 

apparent jumping and discontinuous movement.  We used the line tool in Fireworks 

to add a line of black along the bottom of the images as seen in Figure 9. We then 

softened the lower edges of each flame image to minimize the jumping appearance 

by applying the smudge tool in Fireworks to blend the flames with the black line.  

See Figure 10. This altered the lower portion so the images of the fire so they are 

not completely flat. 
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Figure 9: Cropped image with added black line. 

 

 

Figure 10: Cropped image with black line and softened base. 

 

Cropping can also affect the acceptable range of choosing aspect ratios 

when mapping the texture to billboards during the animation. We discuss this in 

more detail later.  The final step was to save all images in the same dimensions. 

We used gif images that measured 252 by 252 pixels. 
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4.3 Alpha Blending 
Using a linear alpha blending resulted in non-photorealistic flames that appeared 

flat and had abnormally large and unbroken yellow cores.  See the stereo pair in 

Figure 11.  

 

 

Figure 11: Our implementation using linear blending. 

 
 

 To overcome this effect of linear alpha blending, we applied a slightly more 

complex form of blending.  We make use of OpenGL's glBlendFunc to get the 
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desired appearance.  Woo9 presents a clear description of OpenGL's blending 

capabilities and the many blending factors available through standard OpenGL API.   

 

 In an OpenGL application, two blending factors (quadruplets) and two sets of 

color/alpha values (RGBA) are used to determine the final resulting color when 

blending.  There is one set of color/alpha values and one blending factor for the 

destination, the current color/alpha values stored in the pixel behind the source (the 

object or texture in between the destination and the camera) along the camera’s line 

of sight.  The other set of color/alpha values and blending factor are associated 

with the source.  If there are multiple objects or textures that have been drawn by 

OpenGL which are located behind one another in the camera’s line of sight, they will 

be blended procedurally in a back to front order.   

 

The colors and alpha value of each texture are added to each other after the 

blending factors have been applied.  Computations are made using textures in a 

back to front order using two sets of values (one from each texture) at a time, a 

source and destination.  The color and alpha values are clamped to 1, meaning 

that they are forced into representing the percentage of possible intensity for their 

respective values (0 to 1).   

 

Consider two points on two textures (one each) that lie in the line of site to a 

given pixel on the screen.  Assume the texture furthest from the camera is fully 
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opaque and the point in question is P1 with quadruplet (P1R, P1G, P1B, P1A).  The 

point on the second texture is denoted as P2 with quadruplet (P2R, P2G, P2B, P2A).  

The source blending function is represented by S with quadruplet (SR, SG, SB, SA) 

and the destination blending function is represented by D with quadruplet (DR, DG, 

DB, DA).  Supposing that blending is enabled, the resulting value for the pixel will be 

(P2RSR+P1RDR, P2GSG+P1GDG, P2BSB+P1BDB, P2ASA+P1ADA). 

 

For example, suppose you were to have two textures in the same line of sight 

of the camera (one behind the other) and you wanted to make the texture closest to 

the camera half transparent and the further texture completely opaque.  Draw the 

texture farthest from the camera and then set the source blending function to 

GL_SRC_ALPHA, which will multiply the source color and alpha values by the alpha 

set for drawing the texture closest to the camera.  Then draw the closer texture with 

an alpha value of 0.5, halfway between 0.0 (totally transparent) and 1.0 (totally 

opaque).     

 

The source blending factor used by our method to modify the source values 

before summation is the destination value subtracted from 1.  The destination 

blending factor is simply 1.  So if the source red value to be applied to the pixel 

were Sr, the destination red value were Dr, the resulting value for red would be Sr (1-

Dr) + Dr. This process is continued for every color value as well as the alpha value.  

Intuitively, we needed blending factors that would handle the transparency, while 
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requiring larger color values from all involved textures to reach the maximum 

potential for each color in order to keep a reasonable level of detail in the flames.  

We know that the values for each color are clamped between 0 and 1, so taking the 

difference of 1 and the value will always be 1 or less.  Instead of simply adding the 

source and destination color, the source is multiplied by this value first.  Unless the 

destination color’s value was already full intensity, the intensity of the value added to 

the destination value will be lower.  To ensure the transparency effect, the blending 

factors must not cause source or destination values to be completely replaced; 

rather the blending factors should allow both source and destination values to 

contribute. 

 

4.4 Animation 
We are given texture frames 1-n in the video sequence that have been 

prepared as an animation. In our example, n = 34.  To obtain volume in the fire we 

partitioned the fire into several billboards, interleaved as shown in Figure 12. Each 

billboard will project a loop constructed from the flame animation captured above. 

Single texture frames are mapped to each billboard. Placing overlapping textures on 

the same plane results in artifacts in the form of pixel discoloration. 

 

  There are tradeoffs between the number and spacing of billboards. Too many 

billboards close together will produce a “blobby” appearance (a narrow histogram or 
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a small variety of colors) while too few billboards will show as separate animations 

vs. a single continuous fire. For the example included here we used 6 billboards, 

arranged in 3 overlapped pairs k = 1, 2, 3 and having initial frame values as shown 

in Figure 13. 

 

 

Figure 12: Billboard positions and initial frame indices. 

 

Arranging the fire textures in pairs this way has multiple advantages.  

Overlapping helps give the illusion of large variation in the flames of a fire. The 

amount of overlap can be used to control the size of the “core” of the fire and 

resulting color.  

 

In our example, Figure 12, there are 0.1 OpenGL units between the closer 

pair of textures.  The portion of overlap for each pair in our example is 1/3.  The 



 37 

pairs are spaced to enhance the illusion of volume in the fire.  The distance 

between the texture pairs is 0.19 OpenGL units. 

 

The selection of frame sequences for each billboard has a major effect on the 

character of the animation and contributes to the 3D effect of the fire.  The goal is 

to create an animation of fire that has depth and coherence without distracting 

patterns. Sequencing the animation frames to obtain realistic results required 

considerable experimentation. Random sequences of frames were tried but did not 

contain sufficient consistency to appear realistic. We found that constructing 

subsequences of frames from the original video loop produced the best results. 

Different billboards are assigned different initial frames and different step sizes or 

frame increments between frames. Frame increments, m, n, were varied for each 

billboard to enhance variation in fire behavior as described below. The issue of the 

number and sequence of frames in representing natural phenomena in motion such 

as fire, rain, snow, etc. so that the viewer is unaware of repeated cycles is a subject 

for further research.  

 

We first choose two initial frame numbers for the furthest pair of billboards, 

e.g., for k = 1 the initial frames are 2 and 10 in Figure 12. The pair of billboards next 

closest to the viewer are then assigned succeeding frame values, e.g. for k = 2, 

initial frames are 2+1 = 3 and 10 + 1 = 11, and so on.  We then choose increments 

(positive or negative) mk, nk for each billboard pair to be used to step through the 
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frames in the animation sequence. For example, the frame sequence presented on 

the left billboard for k = 1 is 2, 2 + m1, 2 + 2m1, 2 + 3m1, … and we continue this 

process in a loop. 

 

 We tried incrementing the associated sequential texture index of every billboard 

by one (mk, nk = 1) in every time step. This, however, resulted in a fire that appeared 

to be moving away from the viewer.  We then tried setting the frame increment for 

each billboard in the left column to 1 (mk = 1) and the frame increment for the right 

billboard in the associated pair to –1 (nk = -1).  The result was an animation that 

moved in a clockwise circular direction about an axis in the center of the fire 

perpendicular to the ground. To remedy this, while maintaining realistic and 

interesting motion, we change nk to –2 (nk = -2) for alternating billboards columns.  

We describe below how to extend our approach to grouping of billboards in groups 

of three vs. pairs.  An approach similar to that taken by Schodl12 could be used to 

determine the texture to display for each billboard every time step.  Our method 

produces photorealistic fire animation without any probability analysis.  In the 

following section we discuss the effect of modifying billboard aspect ratios to change 

the appearance of a fire. 

 

4.5 Aspect Ratio Manipulation and Additive Scaling 
 We experimented with different billboard aspect ratios to change the look and 

feel of the fire.  A ratio of 1:1.5 was the ideal aspect ratio for the billboards in our 
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example presented here in Figure 13.  Photorealism began to diminish when the 

aspect ratio exceeded 1:1 (Figure 14) or went below 1:2.5 (Figure 15). 

 

Figure 13: Single frame of billboards with a 1:1.5 aspect ratio. 

 
 
 

 



 40 

Figure 14: Single frame of billboards with a 1:1 aspect ratio. 

 

 

Figure 15: Single frame of billboards with a 1:2.5 aspect ratio. 

 

 While modifying aspect ratio can be used to scale a fire, one can also add new 

billboards, a method we call additive scaling. To create wider fires using the same 

textures without hyper-extending the billboard’s aspect ratios for our example, we 

add more juxtaposed billboards and group them with existing billboards into triplets 

as shown in Figure 16. Juxtaposed billboards are in the same plane and the 

distance between their plane and the billboard behind is still 0.1 OpenGL units. The 

distance separating triplet groups in this example is the same as previous examples.  

Using the same number of flame textures as our other examples (n = 34), we create 

a completely different animation of stereo photorealistic fire images (Figure 17).  

We allow l, m, and n to denote frame increments in this example representing the 

leftmost, middle, and rightmost columns of billboards respectively.  We use the 
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same values for mk and nk (mk = 1, nk = -2) while setting the value for lk as -2 (lk = -

2).   

 

 

Figure 16: Widening a fire base by adding juxtaposed billboards. 

 
 
 
 
 

 

 

Figure 17: A single frame from the animation resulting from additive scaling. 
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 We discovered that in using our method, one must adjust the color intensity for 

drawing the textures and texture spacing when extending to fires of a larger area.  

Figure 18 was created using 11 rows of billboard sets of 7 for each row as shown in 

figure 19.  The distance used between rows and textures within each row in the z 

direction was 0.2 OpenGL units.  The distance used between each texture in the x 

direction was 0.4 OpenGL units.  Figure 20 illustrates how the result of rendering 

11 rows of 7 billboards with the same distances between billboards as the previous 

examples, 0.1 OpenGL units. 

 
Figure 18: A single frame from the animation with 11 rows of 7 textures. 
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Figure 19: 11 rows of 7 billboards. 

 

 
Figure 20: A single frame from the animation of 11 rows of 7 billboards with distances of 

0.1 OpenGL units. 
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4.6 Viewer and Billboard Movement 
 As the viewer moves in a scene, the billboards must also move so that their 

normals are always pointed towards the viewer. Billboards are being rotated as a 

group around an axis centered on and orthogonal to the base of the fire (Figure 21).  

 

 
Figure 21: Billboard motion in response to viewer change in position. 

 
 

 Fire is unique in that the flames move and change so quickly that a viewer in 

motion is never aware of the group motion of the billboards.  Billboards are 

restricted to be perpendicular to the base of the fire.  Our method does not require 

the base of the fire to lie flat on the ground or surface.  Viewer motion must be 

somewhat restricted; if the viewer looks straight down on the fire, perpendicular to 

its surface plane, the separate billboards used in the representation will be evident.  

As the distance from the fire and the change in angle from directly above the fire 

increase, the billboards become less obvious and eventually indiscernible.  In 

addition, more billboards can be added as the viewing position becomes closer to 

the fire or closer to being over top of the fire.  Provided the point of view does not 
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go above the fire, the closeness to the fire is limited only by the resolution of the 

flame texture(s).  The viewing position can even be inside of the fire when color 

intensity is lowered for drawing the billboard textures (Figure 22). 

 

 

Figure 22: A single frame from the point of view within the fire. 
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Chapter 5 

Conclusions and Further Research 
We have presented a viable solution for rendering real-time photo-realistic 

fire in stereo.  The solution stresses ease of image gathering and implementation.  

While the method requires preparation of texture images from each selected frame 

of a video at the beginning of the process, it allows for very rapid rendering using 

commercial graphics hardware. The example fire scene presented here in all its 

variations, using 34 flame textures stored in memory, executed at 60 fps on a 

1.73GHz machine running XP Service Pack 2 with 512 MB of RAM. The graphics 

card was an NVIDIA GeForce Go 6200. The method can be easily extended to treat 

multiple fires burning in parallel and to simulate fire propagation. Simulation of a fire 

covering a large area will require study of how to randomize initial frames and frame 

step sizes to avoid the forming of recognizable cyclical patterns.  

 

 It may also be possible to combine our method with a fluid flow model with the 

use of careful image morphing.  Other issues to be studied include the addition of 

smoke, audio, realistic illumination of objects by the fire, arbitrary viewing angles 

and applying transformations to the billboards to simulate external forces such as 

wind.  
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