
ABSTRACT

Kulkarni, Amit Narayan. An Investigation of Forwarding in the MPLS
support for Differentiated Services. (Under the guidance of Dr. Mladen

A. Vouk.)

The changing nature of the Internet-based applications is imposing stricter demands on

the performance of the Internet. As the Internet resources become more and more

constrained, the Best Effort (BE) model is increasingly proving less capable of providing

the required Quality of Service (QoS). One of the solutions recently proposed by IETF is

the Differentiated Services (DiffServ) architecture, which can provide different levels of

QoS to each class by aggregating traffic into different classes at the network edge, and by

giving differential treatment for each class within the core of the network. DiffServ,

however, performs within the limits of the resources along the shortest path, and hence its

performance is a function of resource availability along that path. Another standard

proposed by IETF is Multi Protocol Label Switching (MPLS), a fast switching based

technique that offers new capabilities for IP based networks. It combines the control of IP

routing with efficiency of layer 2 switching. Traffic engineering (TE), or the ability to

map traffic flows onto an existing physical topology is an example of key application of

MPLS. MPLS and DiffServ, though independently developed, are complimentary

technologies in the pursuit of end to end QoS.

An IETF RFC provides a guideline and requirements for MPLS support for

Differentiated services. We studied this RFC in terms of what it does and does not

specify about MPLS-DiffServ . We investigate the issues involved in implementation of

the forwarding component of MPLS-DiffServ and evaluated the implementation vis-à-vis

its functional requirements, its performance, and its ability to deliver better QoS. We

conclude that MPLS-Diffserv does provide IP services a greater control over the network

while simultaneously being able to deliver Different service levels.

An Investigation of Forwarding in the MPLS support
for Differentiated Services.

By

Amit N Kulkarni

A thesis submitted to the graduate faculty of
North Carolina State University

in partial fulfillment of the requirements for the degree of
Master of Science.

Computer Science

Raleigh

2002

APPROVED BY

__________________ _________________

Dr Gorge Rouskas Dr. Rudra Dutta

Dr Mladen A. Vouk
(Chair of Advisory Committee)

 ii

Dedication

To my Father, Late Mr. Narayan Y. Kulkarni

 iii

Biography

Amit Kulkarni was born and brought up in Nashik, a city in western Indian state of

Maharashtra. He completed his bachelors from Government College of Engineering

Pune. He then joined North Carolina State University to obtain Masters degree in

Computer Science. He worked as a Research Assistant to Dr Vouk in the field of

Differentiated Services and MPLS for around two years.

 iv

 Acknowledgements

I take this opportunity to express deepest gratitude to Dr Mladen Vouk. It was an honor

and privilege to work with him. His knowledge and patience are only few of the many of

his qualities, which I would try to imbibe in myself. I thank him for giving me this

opportunity. I would also like to thank Dr Dutta and Dr Rouskas for agreeing to be on my

committee despite such short notice. I thank Dr Mike Westall of Clemson University,

from the bottom of my heart for his guidance and Linux expertise which helped me

surmount numerous kernel crashes.

 I thank Marhn Fullmer for providing me the facilities and supporting our research needs

in the networking lab. I wish to thank Kesava Narasimhan. His knowledge and expertise

are a source of inspiration. He has always been there for me to help and guide. I thank

fellow members of the research team Zyad Dwekat, Mukul Senapati for allowing me to

bounce my ideas off them and keeping me sane. I thank Mrugendra Singhai. He’s been

my partner in crime for last two years and a constant source of inspiration. I would also

like to thank friend and co-worker Aric Lambert at IP Infusion for constantly

encouraging me to complete my write-up.

Mere words are insufficient to express my gratitude and love for my parents my two

sisters and my wife Nivedita. Without their incredible support, this would not have been

possible.

 v

Table of Contents
List of Figures .. viii

1 Introduction .. 1

1.1 Need for QoS .. 1
1.2 Solutions for QoS.. 2
1.3 Goals and Objectives .. 4

2 Background .. 6

2.1 Differentiated Services.. 6
2.1.1 Per Hop Behavior:.. 7

2.1.1.1 Expedited Forwarding (EF-PHB): .. 7
2.1.1.2 Assured Forwarding (AF- PHB)... 7
2.1.1.3 Default PHB.. 8

2.1.2 Components of DiffServ architecture .. 9
2.1.3 Advantages of DiffServ ... 10

2.1.3.1 Scalability: .. 10
2.1.3.2 Ease of administering.. 10
2.1.3.3 Simplicity.. 10
2.1.3.3 Measurable.. 10

2.1.4 Limitations ... 11
2.2 Multi Protocol Label Switching.. 12

3 MPLS and DiffServ.. 15

3.1 Motivation... 15
3.2 Concepts.. 18

3.2.1 Types of LSPs .. 19
3.2.1.1 E –LSPs... 19
3.2.1.2 L-LSPs .. 19

3.2.2 Label forwarding Model in DiffServ LSR... 19
3.2.2.1 Incoming PHB determination ... 20
3.2.2.2 Out going PHB determination .. 20
3.2.2.3 Label forwarding... 20
3.2.2.4 Encapsulation of DS information.. 21

3.2.3 Implementation Models ... 21
4 Linux .. 24

4.1 Networking support for Linux .. 24
4.2 QoS Support in Linux ... 26

4.2.1 queuing discipline .. 26
4.2.2 Classes.. 27
4.2.3 classifiers.. 28

4.3 MPLS support in Linux .. 29
5 Implementation... 31

5.1 Soft router implementation of DiffServ.. 31
5.1.1 Introduction.. 31
5.1.2 Usage.. 32

 vi

5.1.3 Extensions .. 33
5.1.3.1 Default classifier ... 34
5.1.3.2 Port Classifier.. 34
5.1.3.3 DSCP Marking.. 34
5.1.3.4 PHB Map .. 34
5.1.3.5 Multiple Interfaces .. 35

5.2 Approach... 36
5.2.1 Unlabeled packet.. 36
5.2.2 Labeled packet ... 36

5.3 Issues... 38
5.3.1 PHB not present ... 38
5.3.2 Performance requirements not defined .. 38
5.3.3 Model Implemented ... 38
5.3.4 Simplification of PHB value handling... 39
5.3.5 Processing issue. .. 39

5.4 Software components.. 40
5.5 Usage... 41

5.5.1 mplsadm utility: ... 41
5.5.2 Load script file ... 41

5.6 Advantages and Limitations ... 42
5.6.1 Advantages... 42
5.6.2 Limitations ... 42

6 Tests and Results.. 43

6.1 Test I ... 44
Configuration .. 45

Smartbits ... 45
DiffServ... 45
MPLS .. 45

Conclusion .. 45
6.2 Test II .. 46

Configuration .. 47
Smartbits ... 47
DiffServ... 47
MPLS .. 47

Conclusion .. 47
6.3 Test III... 48

Configuration .. 49
Smartbits ... 49
DiffServ... 49
MPLS .. 49

Conclusion .. 49
6.4 Discussion of Results.. 50

7 Conclusion.. 51

7.1 Summary ... 51
7.2 Future Work .. 51

 vii

References ... 53

 viii

List of Figures

Fig 2.1 IP header fields ... 6
Fig 2.2 Logical components of DiffServ router.. 9
Fig 2.3 MPLS router schematic view ... 12
Fig 2.4 MPLS Domain.. 14
Fig 3.1 MPLS header .. 18
Fig 5.1 DS router... 31
Fig 5.2 Architecture Model of [Narasimhan] ... 33
Fig 5.4 Schematic view of DiffServ LSR ... 37
Fig 6.1 Schematic view of Test I setup... 44
Fig 6.2 Schematic view of Test II setup ... 46
Fig 6.3 Schematic view of Test III setup ... 48

 1

1 Introduction

1.1 Need for QoS

Internet has grown at a frenetic pace ever since the first network was constructed in 1965

[History] and with it has changed the way people look at Internet. No one considers

Internet as a research product privy of some government institutes anymore, on the

contrary Internet has become an integral part of our lives and nerve center of the global

economy. From being a file transfer mechanism and a means for instant communication

Internet has played host to a variety of real time multimedia applications, Video

conferencing, Voice over IP and many more. These applications have not only put strain

on the existing network resources but also their varied nature has brought with it

differences in requirements to be serviced. For example a voice application is extremely

sensitive to delay and delay variation but can tolerate some loss, a video application can

sustain higher delay than voice applications but data loss may have noticeable effects

where as data application is tolerant to higher delay and delay variation.[Williams et.al.]

The classic IP is unable to cater to the “Quality of Service” requirements of these

demanding applications. Ironically, the very features that has helped it succeed,

connection less protocol, Best effort model, ease of implementation, had proved

insufficient to meet the new challenges and general perception was that change was

required.

 2

1.2 Solutions for QoS

Some technologies e.g. Type of Service (TOS) and Integrated Service (IntServ) were

created in an attempt to provide some quality of service (QoS) control. However their

limitations have restricted their general application and they have been unable to provide

a framework for provision of service to meet service level agreements (SLA’s).

One of the earliest techniques to be implemented, Type of Service allowed network to

distinguish between network control traffic and user traffic based on the TOS byte field

in the IP header [RFC791]. It provides a coarse-grained classification and identification

of limited number of flows. However since the traffic classes were defined much earlier

they do not reflect well the current needs of the network and with no provision to define

more classes this byte is often not fully supported in routers.

Another technique that was defined was IntServ [RFC-INTSERV]. IntServ provides

well-defined end-to-end QoS for point to point and point to multi point applications. In

this architecture the application initiates a session on demand with the network using

Resource Reservation Signaling Protocol (RSVP). This session identifies the service

requirements of the application including the bandwidth and delay, source of data. RSVP

is a soft state protocol that allows merging of resource requests. While this is very

powerful for small networks in terms of guaranteeing, the overhead of maintaining state

per flow state and the processing power required makes this solution not very attractive

for the core which can have thousands of such flows.

 3

It was obvious something different was required. Two protocols proposed recently by

IETF, Differentiated Services (DiffServ) [RFC-DSARCH] and MultiProtocol Label

Switching (MPLS)[RFC-MPLSARCH] are generating a lot of interest. Both aggregate

the traffic at the edge and process on the aggregate at the core. MPLS though cannot offer

different level of service within the same class and DiffServ cannot provide the ability to

engineer the traffic with consideration for the resource constraints. Thus despite their

advantages these technologies have limitations in delivering end to end QoS.

 4

1.3 Goals and Objectives

The goal of the project was to experimentally evaluate the emerging IETF proposals and

standards related to delivery of end-to-end QoS, specifically where it concerns

Differentiated Services (DiffServ) support for QoS sensitive traffic engineering based on

MPLS [RFC_MPLSDS].

The first objective was to construct a re-usable test-bed where the experiments and

evaluations could be conducted. We had an existing Linux-based test–bed for DiffServ

evaluation and research [Narasimhan, Dwekat]. This test-bed was to be extended to

include MPLS, and MPLS support for DiffServ, based on IETF standards.

The second objective was to use the test-bed to understand a specific element of an end-

to-end architecture that arises in MPLS assisted PHB and PDB formulation – the function

of forwarding. MPLS forwarding was to be studied in relation to the implementation of

the existing and proposed MPLS, QoS modifications and extensions, and with respect to

DiffServ based support. The basic test-bed we have was used previously to study

DiffServ issues [Dwekat]. However, MPLS offers additional challenges, as well as an

attractive range of capabilities since it separates forwarding and signaling work and each

can be independent of the other as long as the interfaces are well defined. Traffic

Engineering via MPLS is generating a lot of interest especially in the prevailing market

conditions where the cost of network upgrade for over provisioning may be prohibitive.

This forces network service providers to efficiently utilize the existing infrastructure and

improve its performance.

 5

So the basic practical challenge was to implement forwarding functionality of MPLS in a

DiffServ environment, and gain an understanding of the issues relating to MPLS support

for DiffServ architecture. Design goal was to enable the user to choose either protocol

depending upon his/her requirements. Consideration was given to the fact that this code

might be used in the future as a base to implement Label Distribution Protocol (LDP).

Since the code had to conform to existing design architecture, performance at times was

sacrificed for the sake of design consistency.

The next chapter provides the background for MPLS, DiffServ and concepts and issues in

MPLS support for DiffServ. Chapter 3 Discusses Linux operating system support for

MPLS, QoS and networking. Chapter 4 discusses our implementation chapter 5 discusses

tests and evaluation of results. Chapter 6 describes the Network simulator and simulates

the topology for detailed results. Chapter 7 concludes with summary and identifies future

work.

 6

2 Background

In this chapter we discuss the background materials related to DiffServ and MPLS.

2.1 Differentiated Services

The main goal of DiffServ architecture [RFC-DSARCH] was to provide a scalable

framework for Quality of Service support without the need to maintain per flow state.

This is mainly achieved by aggregating number of flows and giving it similar treatment.

DiffServ nodes at the ingress of a domain process and mark the TOS byte in IP header of

the packet by a code (called DiffServ Code Point or DSCP), based on a negotiated

contract and other routers in the domain that receive the packet look at only the DSCP

value to impart a particular treatment to the packet. This particular treatment is called a

“Per-Hop Behavior”(PHB).

 0 5 7

 0 31

Fig 2.1 IP header fields

Destination IP address
Source IP address

TOS

Protocol

DSCP CU

 7

2.1.1 Per Hop Behavior:

PHB is defined as the externally observable behavior applied at a DS compliant node on

a flow. It forms the basic building block of the DiffServ architecture. PHB is used to

identify the treatment that will be given to a particular flow (or aggregate if the router is a

core router). This treatment includes selection of queues and schedulers at the interface

egress. The defined PHBs are

2.1.1.1 Expedited Forwarding (EF-PHB):

The aim of the EF PHB is to provide low delay and virtually no loss to some flows

without per flow queuing. Loss, latency and jitter are all due to the queues traffic

experiences while transiting the network. Therefore providing low loss, latency and jitter

for some traffic aggregate means ensuring that the aggregate sees no (or very small)

queues. Queues arise when (short-term) traffic arrival rate exceeds departure rate at some

node. Thus a service that ensures no queues for some aggregate is equivalent to

bounding rates such that, at every transit node, the aggregate's maximum arrival rate is

less than that aggregate's minimum departure rate. The EF –PHB is useful for

applications that are delay sensitive like voice and video. [RFC_EFPHB]

2.1.1.2 Assured Forwarding (AF- PHB)

This forwarding mechanism is intended for urgent data that requires controlled load

service. Most network applications can do with some excess bandwidth if available.

However the least they want is some guaranteed bandwidth even in times of heavy

congestion. AF PHB provides for such a traffic demand.

 8

AF PHB can offer different levels of forwarding assurances. The current AF

specification provides delivery of packets in four classes each with three (two are also

allowed)drop precedences. Packets in one class must be forwarded independently of the

packets in another AF class [RFC-AFPHB].

A DS node should implement all four general use AF classes. Packets in one AF class

must be forwarded independently from packets in another AF class, i.e., a DS node must

not aggregate two or more AF classes together

Packets with the lowest drop precedence are assumed to be within the subscribed profile.

An AF compliant node allocates resources (buffer space and bandwidth) equal to atleast

achieve the configured service bandwidth

2.1.1.3 Default PHB

Default PHB is the common best effort forwarding behavior, which is available in

existing routers. This PHB is used when DSCP does not match to any other PHBs. A

default PHB can be implemented by a queuing discipline that sends packets of this

aggregate whenever the output link is not used by any other PHB. Network Dimensioning

should ensure that this aggregate should not be starved. That way, senders that are not

DiffServ aware can continue to use the network in the same manner as they do today.

 9

2.1.2 Components of DiffServ architecture

Fig 2.2 shows a logical DiffServ router. DiffServ router consists of the following

components

Fig 2.2 Logical components of DiffServ router

A classifier classifies the incoming packet into an appropriate behavioral aggregate and

identifies the PHB treatment to be imparted to the flow. A traffic conditioner may

condition the incoming flow to ensure the traffic meets the profile agreed upon in the

SLA or equivalent agreement. A Buffer Manager and a Link Scheduler ensure hat

appropriate treatment is imparted to the flow. Before packet leaves the DiffServ domain,

it can be optionally shaped so that it is within the bounds of agreement with the next

domain service provider. A more detailed explanation and its components can be

obtained from [Narasimhan, Dwekat].

Classifier

Traffic
Conditioner

Buffer
Manager

Link
Scheduler

 Shaper

 Meter

 10

2.1.3 Advantages of DiffServ

2.1.3.1 Scalability:

Scalability is very important concern as a network core can have large number of flows

and any protocol which requires to maintain per flow state or computational complexity

does not scale well. DiffServ aggregates flows and hence can handle large number of

flows. Also since PHBs are essentially kept simple, DiffServ lends itself well to use at

high speeds making it scalable in terms of speed.

2.1.3.2 Ease of administering

In a Differentiated Services framework, different DiffServ domains can implement PHBs

as they see fit as long as the bilateral agreements that it makes with the other domain are

met. This gives the service providers a freedom to choose their implementation as a

consequence they can provide Differentiated Services with minimal change in their

infrastructure.

2.1.3.3 Simplicity

The DiffServ implementation does not diverge a lot from the basic IP. Hence it maintains

simplicity and ease of implementation /upgradation at the cost of granularity.

2.1.3.3 Measurable

Since at each hop in a DiffServ domain, the traffic conditioners and shapers are

constantly measuring arrival data and the link schedulers are monitoring packets to be

sent, not much effort is required to procure vital information about the behavior of the

 11

network. The service providers can use the information to best allocate bandwidths and

make service level agreements with the user.

2.1.4 Limitations

There appear to be two principal limitations to the DiffServ architecture as defined by

[RFC-DSARCH]:

• DiffServ architecture suggests only mechanisms for relative packet forwarding

treatment to aggregate flows, traffic management and conditioning. However it

does not provide an architecture for end-to-end QoS.

• DiffServ framework does not lend itself to handle link failures. For example if a

link carrying EF traffic, in DiffServ domain goes down, there is no way for the

provider to quickly send the traffic through alternate link and ensure minimum

packet loss.

Furthermore, there is no traffic engineering provision in DiffServ. As a result some links

in the domain might experience congestion while other links go unutilized.

 12

2.2 Multi Protocol Label Switching

MultiProtocol Label Switching (MPLS) is a versatile solution to address the problems

faced by the present-day networks: speed, scalability, quality-of-service (QoS)

management, and traffic engineering. MPLS has emerged as an elegant solution to meet

the bandwidth-management and service requirements for next-generation Internet

protocol (IP) based backbone networks. MPLS addresses issues related to scalability and

routing (based on QoS and service quality metrics) and can exist over existing

asynchronous transfer mode (ATM) and frame-relay networks. It eliminates the

complexities of IP over ATM and provides IP routing with hitherto unavailable control.

As shown in Fig 2.3, MPLS separates the forwarding and control, so each can develop

independently of the other.

Control

Information in

Packets IN Packets OUT

Fig 2.3 MPLS router schematic view

Routing protocol

Routing table

 Line card Line card

 Routing pro tocol
 Packet processing

 13

When a packet is received at an Ingress Label Switched Router (LSR), also known as

Label Edge Router (LER), it identifies the Forwarding Equivalence Class (FEC) of the

packet and assigns the label for that FEC based on the mapping in the Incoming Label

Map (ILM also known as the Label Information Base or LIB). The ILM can be populated

either manually at each node or by means of some signaling protocol like LDP.

Subsequent LSRs in the path of packet then make their forwarding decisions based on the

label of the packet and corresponding action for the label stipulated by either signaling or

manual configuration in the ILM. The last node in the MPLS domain known as, Egress

LER pops out the label so that the next router receives the packet in its earlier form. Fig

2.4 describes the MPLS domain.

[Semeria] presents a good discussion about evolution of MPLS and terminologies in

MPLS. [RFC-MPLSARCH] proposes the MPLS architecture and contains the

information and explanation for various aspects and design decisions in MPLS

implementation. Interested reader is referred to [Mpls_charter] for latest information in

standards development undertaken by the IETF.

 14

Fig 2.4 MPLS Domain

 15

3 MPLS and DiffServ

3.1 Motivation

MPLS and DiffServ share some common points. Both models do aggregation of traffic at

the edge and processing of the traffic only at the core. Both models are scalable. MPLS

offers many advantages to service providers. However, it is incapable of providing

differentiated service levels in a single flow. Hence MPLS and DiffServ seem to be a

perfect match and if they can be combined in such away to utilize each technology’s

strong points and counter the other’s weaknesses, it can lead to a symbiotic association

that can make the goal of end to end QoS feasible.

Note that either DiffServ or MPLS can be used to offer some services with differing QoS.

Any routing scheme can be used in a DiffServ network and some level of service

differentiation will be perceived by the users due to the way packets with different

codepoints are treated at DiffServ nodes. MPLS networks can be configured to offer

different QoSs to different paths through the network. If the two technologies are

combined, then standardized DiffServ service offerings can be made and MPLS can

facilitate great control over the way these services are implemented. Such control means

that it is more likely the operator will be able to offer services within well-defined QoS

parameters.

 16

DiffServ aids MPLS in following ways.

1. MPLS only aids layer3 QoS and does not introduce a new QoS architecture. So

DiffServ can help MPLS by providing the QoS architecture to MPLS networks.

2. MPLS being a path-oriented mechanism, when used in backbone networks can

give rise to scalability problems especially with RSVP-TE.MPLS + DiffServ

combination gives rise to networks where there is no per-flow state to be

maintained in core routers. Only per-LSP state is to be maintained. If DiffServ is

not used, and IntServ is used with MPLS (as is proposed in a new draft), There

will be the overhead of maintaining both per-flow state and per-LSP state. With

LSP aggregation, one can reduce the number of LSPs.

3. DiffServ can provide differentiation of service within each flow.

4. The aggregated flow scheme of DiffServ not only reduces the flow state

overhead, but also enhances the performance of MPLS by reducing the number of

labels to be managed.

MPLS aids DiffServ in many ways.

1. When link failures happen, MPLS-based fast rerouting aids DiffServ in

guaranteeing much stricter QoS. Of course, link failures are not day-to-day

occurrence in backbone networks.

 17

2. Traffic Engineering is provided by MPLS to DiffServ. You can visualize different

paths for different PHB groups, resource-preemption, different protection levels

for different PHBs etc.

3. When you want to use DiffServ in heterogeneous link-layer environments, for

example, in ATM networks, MPLS is pretty much the best option to go for. Of

course this may not be a great need, given the excellent QoS guarantees supported

by ATM.

To date most of the work in DiffServ and MPLS has focused on defining technologies.

IETF has standardized an RFC for MPLS support of Differentiated Services [RFC-

MPLSDS]. Raghavan et.al. [Law et.al.] have simulated MPLS +DiffServ and so also

Murphy [Murphy et.al]. But there is not much actual implementation around. This

research attempts to explore the issues and functional capabilities possible in the

implementation of Differentiated Services Support for MPLS in a soft router

implementation.

 18

3.2 Concepts

DiffServ and MPLS do not operate at the same layer in protocol stack. Consequently

these two technologies cannot work together without some effort. [RFC-MPLSARCH]

defines the MPLS header to be a 32-bit quantity that contains,

Fig 3.1 MPLS header

Label: 20 bits. This value contains the MPLS label

EXP: experimental use 3 bits

S: Stacking bit, used to stack multiple labels

TTL: time to live 8 bits places a limit on number of hops a MPLS packet can traverse.

Recall that the LSR does not examine IP header where the DSCP information resides. So

some means must be available to correlate the DiffServ PHB with the packet. The three-

bit EXP field could be used for the purpose but the DSCP field is 6 bits in length (2 bits

are currently unused- CU). Even if we discount the one bit to indicate whether traffic is in

profile or out of profile, we have 5 bits that need to be mapped to three bits in the MPLS

shim header. There are two solutions defined in [RFC-MPLSDS] to remedy these

problems I) EXP inferred LSP (E-LSP) and II) Label only inferred LSP L-LSP

S TTL Label EXP

 19

3.2.1 Types of LSPs

3.2.1.1 E –LSPs

A single LSP can be used to support up to eight BAs of a given FEC, by using the three-

bit EXP field. These LSPs are called EXP inferred LSPs or E-LSPs since the PSC of the

packet depends solely on the three bit EXP value. Thus the label is used to make the

forwarding decisions and the EXP value used to determine the treatment the packet

receives. The limitation to this approach is it can support a maximum of eight PHBs per

LSP.

3.2.1.2 L-LSPs

To counter this a separate LSP can be established for the <FEC, OA> pair. With such

LSPs the PSC is explicitly signaled at label establishment so that after label

establishment, the LSR can infer exclusively from the label value the PSC to be applied

to a labeled packet and the drop precedence of the same is determined by the EXP value.

This approach is called Label only inferred LSP or L-LSP. An arbitrarily large number of

PHBs can be supported.

3.2.2 Label forwarding Model in DiffServ LSR

In an L-LSP different Ordered Aggregates of a given FEC may be transported over

different LSPs, the Label swapping decision for the DiffServ LSR clearly depends on the

Behavior aggregate of the packet concerned. Also since IP DSCP field is not always

available to the LSR, an MPLS DiffServ router behaves differently than a non-MPLS

 20

DiffServ router. The DiffServ LSR label switching behavior as defined by [RFC-

MPLSDS] has four stages

3.2.2.1 Incoming PHB determination

For E-LSP the EXP-PHB mapping can either be pre-configure or explicitly signaled

during E-LSP establishment. This mapping is then used by the LSR to determine the

PHB treatment to be given to the incoming packet.

For L-LSP the PHB to be applied is the function of PSC and is set up during LSP

establishment. Therefore the PSC is already known to the LSR based on the label and it

then determines the drop precedence (and hence the PHB) by looking up the value of

EXP field in the EXP-PHB mapping.

3.2.2.2 Out going PHB determination

A DiffServ LSR may perform marking, policing, and shaping on the incoming traffic

streams, potentially changing the outgoing PHBs associated with non-conforming packets

in the incoming traffic streams. Thus the incoming and out going PHBs might be

different.

3.2.2.3 Label forwarding

Each LSR must know the DiffServ context for a label, which is stored in the NHLFE for

each outgoing label. The DiffServ context consists of

• LSP type

• Supported PHBs

 21

• EXP-PHB mapping for incoming label

• PHB-EXP mapping for outgoing label.

This information is populated by the ILM and FTN at the time of label set up

3.2.2.4 Encapsulation of DS information

For E-LSP the PHB-EXP mapping can either be pre-configured or explicitly signaled

during establishment of the E-LSP. The LSR determines the EXP value to be written to

the outgoing packet label from the PHB-EXP mapping.

For L-LSP the PSC information is carried by the label and is set up during establishment.

The EXP value to be written is determined by looking up the PHB-EXP mapping.

Obviously, to enforce the service differentiation, the LSR must apply the forwarding

treatment pertinent to the supported PHB specification.

3.2.3 Implementation Models

[DIFF-TUNNEL] describes how DiffServ behaves with IP tunnels of various forms.

MPLS is not a type of IP tunnel as the encapsulating header is a MPLS label and not an

IP header. However MPLS is still a form of a tunnel and has certain similarities with

respect to IP tunnels like

• Intermediate nodes (those along the LSP) operate only on the basis of outer

DiffServ information (the one encoded in the label).

• LSPs are also unidirectional.

 22

IP Tunnels have no penultimate hop popping described in [RFC-MPLSARCH]. However

for those implementations, where this information is not meaningful, it is a non-issue.

The two conceptual models defined in [DIFF-TUNNEL] are applicable for MPLS

DiffServ with some changes; namely pipe model and the uniform model.

In a Pipe model the MPLS tunnels hide the intermediate MPLS nodes from the DiffServ

perspective. There are two types of DiffServ information to be conveyed by the tunneled

packets, one that is useful to intermediate nodes in the LSP (LSP DiffServ) and the other,

which is meaningful beyond the LSP (tunneled DiffServ).

With a pipe model LSP DiffServ information needs to be conveyed to LSP egress so that

it can apply forwarding treatment based on the same and also tunneled DiffServ

information is required to be conveyed, since it (tunneled DiffServ information) is to be

passed beyond the egress. [RFC-MPLSDS] requires the support of pipe model as “For

support of the Pipe Model over a given LSP without PHP, an LSR performs the Incoming

PHB Determination and the DiffServ information Encoding in the following manner

- when receiving an unlabelled packet, the LSR performs Incoming PHB Determination

considering the received IP Header.

- when receiving a labeled packet, the LSR performs Incoming PHB Determination

considering the outer label entry in the received label stack. In particular, when a pop

operation is to be performed for the considered LSP, the LSR performs Incoming PHB

 23

Determination BEFORE the pop.

- when performing a push operation for the considered LSP, the LSR:

o encodes DiffServ Information corresponding to the OUTGOING PHB in the

transmitted label entry corresponding to the pushed label.

 o encodes DiffServ Information corresponding to the INCOMING PHB in the

encapsulated header (swapped label entry or IP header).

- when performing a swap-only operation for the considered LSP, the LSR encodes

DiffServ Information in the transmitted label entry that contains the swapped label -

when performing a pop operation for the considered LSP, the LSR does not perform

Encoding of DiffServ Information into the header exposed by the pop operation (i.e. the

LSR leaves the exposed header "as is"). “

[RFC-MPLSDS] also defines the uniform model but since it is not supported in our

implementation, it is beyond the scope of the current discussion. [RFC-MPLSDS]

mandates the support of the pipe model but the uniform model is optional. For more

information the reader is referred to [RFC-MPLSDS].

 24

4 Linux

Linux is a widely popular Unix like operating system Its source code is available freely

on the internet. The presence of a large number of developer base gives ‘never-before’

support for Linux. Originally developed by Linus Torvalds and contributed by developers

worldwide Linux has become the favorite operating system among university researchers.

Linux already supports the basic routing functionality, moreover with, kernels 2.4.1

onwards, implementing a variety of queuing methods and kernel 2.4.5 onwards,

implementing support for MPLS, it forms a good base for soft router implementation.

The following chapter aims to discuss various Linux features used in the implementation.

Section 3.1 describes the networking support in Linux and section 3.2 describes the QoS

support inherent in Linux section 3.3 aims to throw light on the mpls-linux

implementation.

4.1 Networking support for Linux

The best way to understand the networking support in Linux is to trace journey of a

packet inside Linux [PKT_JOURNEY]. If the network card receives an Ethernet frame

that matches the local MAC address or is a link layer broadcast, it issues an interrupt. The

network driver for this particular card handles the interrupt, fetches the packet data via

DMA / PIO into RAM. It then allocates a local structure sk_buff and calls a function of

the protocol independent device support routines: net/core/dev.c:netif_rx(skb).

 25

If the driver didn't already timestamp the skb, it is time-stamped now. Afterwards the skb

gets enqueued in the appropriate queue for the processor handling this packet. If the

queue backlog is full the packet is dropped at this place. After enqueuing the skb, the

receive soft interrupt is marked for execution via include/linux/interrupt.h:

__cpu_raise_softirq().

The interrupt handler exits and all interrupts are re-enabled. Further handling of our

packet is done in the network receive softirq (NET_RX_SOFTIRQ) which is called from

kernel/softirq.c:do_softirq().

NET_RX_SOFTIRQ calls net/core/dev.c:net_rx_action(). Here the skb is dequeued

from this cpu's receive queue and afterwards handed to the appropriate packet handler. In

case of IPv4 this is the IPv4 packet handler. (linux/net/ip_input.c ip_rcv()).

ip_rcv performs sanity checks on the packet (checksum , header length etc) and

depending upon whether the packet is for the host machine or meant to be forwarded to

some other machine it is sent to either net/ipv4/ip_local_deliver() or

net/ipv4/ip_forward(). If the packet is in error ip_err is called. ip_forward calls

ip_send() which calls ip_queue_xmit() which prepends the hardware layer header to the

skb and transmits the packet out through the hardware output function pointer typically

dev_queue_xmit() in linux/net/core/dev.c. [LINUX-IPNET]

 26

4.2 QoS Support in Linux

QoS support in Linux is implemented through the Traffic Control code (TC). The TC

code resides in the kernel and the different blocks can be compiled in as modules or

straight into the kernel [QoS-LINUX].

Basic principle of TC is to condition the traffic after next hop has been decided i.e. the

forwarding code has decided which interface the packet will go out on. This means only

the out going packets are subjected to TC. Linux traffic control can be used to build and

array of complex queuing mechanisms and classes and filters that control the packets sent

to the output interface.

The TC consists of three building blocks

4.2.1 queuing discipline

The queuing discipline can be thought of as the traffic/data-packet manager for a device.

It encapsulates within it the two other major TC components and controls how data flows

through them. Only one such managing component can be attached to a device. Queuing

disciplines form a basic building block for QoS support of Linux. When a Linux kernel

configured for QoS support is booted up, the function net_dev_init (in net/core/dev.c)

calls the function pktsched_init (in net/sched/sch_api.c) to initialize the traffic control

unit in the Linux kernel. In pktsched_init(), the queuing disciplines that have been

compiled into the kernel are all registered and initialized. Other queuing disciplines (like

the one we are using –described later) can be loaded as modules in the kernel.

 27

When an outbound packet on the device is queued for transmission by calling

dev_queue_xmit, the enqueue function of the device’s queuing discipline (if present) is

called. The queuing discipline is pointed to by field qdisc in the device structure

(include/linux/net/device.h). Soon after the packet is enqueued dev_queue_xmit calls

qdisc_run which calls qdisc_restart in /net/sched/sch_generic.c. qdisc_restart polls

continuously to check if a packet is ready to be sent. It first tries to obtain the packet

from the dequeue function of the qdisc and if it succeeds it calls hard_start_xmit function

for the device driver to actually send the packet. If the packet could not be sent for some

reason it calls the requeue function for the qdisc.

4.2.2 Classes

The class (es) are managed by the device queuing discipline. A class consists of rules for

messaging data owned by that class. For example, all data packets in a class could be

subjected to a rate limit of 1Mbps and allowed to overshoot up to 3Mbps between the

hours of midnight and 6AM. Several queuing disciplines can be attached to classes,

including FIFO (First-In-First-Out), RED (Random Early Detection), SFQ (Stochastic

Fair Queuing) and Token Bucket. If no queuing discipline is attached to a device, basic

FIFO is used. In the example shown later, no specific class queuing disciplines are

attached, thus defaulting to simple FIFO. CBQ, CSZ and Priority can also be used for

classes and allow for sub-classing within a class. This shows how easily very complex

scenarios using TC can be built. The queuing disciplines managing classes are referred to

as class queuing disciplines. Generally, the class queuing discipline manages the data and

queues for that class and can decide to delay, drop or reclassify the packets it manages.

 28

4.2.3 classifiers

Classifiers or filters describe packets and map them into classes managed by the queuing

disciplines. These normally provide simple description languages to specify how to select

packets and map them to classes. Currently, several filters (depending on your needs) are

available in conjunction with TC, including the route-based classifier, the RSVP

classifier (one for IPV4 and another for IPV6) and the u32 classifier. All of the

firewalling filters can be used subject to their internal filtering tags. For example,

ipchains could be used to classify packets.

Queuing disciplines and classes are tied to one another. The presence of classes and their

semantics are fundamental properties of the queuing disciplines. In contrast, filters can be

arbitrarily combined with queuing disciplines and classes, as long as the queuing

disciplines have classes. Not all queuing disciplines are associated with classes. [QoS-

API].

 29

4.3 MPLS support in Linux

There is ongoing work in the research community in the field of MPLS. “MPLS for

Linux” is a project under source forge [source-forge] to implement MPLS stack for Linux

kernel and also the portable versions of signaling protocols. For more information about

the project refer to [source-forge]. At the time of writing the project had completed

MPLS kernel stack covered under GNU public license [GPL] and LDP implementation.

When an MPLS packet is received on the interface, net_rx_action() receives the packet

and passes it to mpls_rcv() ,which gathers the required information about the packet

concerning its label space and the MPLS label itself and calls mpls_input().

This function obtains the corresponding entry for the label in the Incoming Label Map

(ILM) and accordingly either does a PUSH or a POP on the label stack. If the entry

requires the label to be deleted then the function calls the appropriate underlying protocol

handler function for the packet. If the entry requires to forward the packet then

mpls_output2() is called which gets the output label for the corresponding incoming

label and transmits the packet using either hh_output() or dst->neighbor->output()

which is a pointer to output function for this route, typically dev_queue_xmit().

The ILM is set up by either a signaling protocol like LDP, CR –LDP or through manual

configuration using a utility mplsadm. This utility creates an FEC for the IP address

specified and then binds the label value and the appropriate action (push pop or delete) to

the FEC. Appendix A explains the utility and its usage in greater detail.

 30

When an unlabelled packet is received, it traverses through the ip stack like any other

packet. net_rx_action() hands the packet to ip_rcv().This function performs the initial

checks on the packet and then calls ip_route_input() to identify the next hop for the

packet. In this regard rt_set_nexthop() is called. If the packet is a member if a FEC for

which a label is assigned (bound), rt_set_nexthop hands the packet over to

mpls_output() function passing the FEC information in dst_proto_data field of the

packet. This function extracts the corresponding entry for the FEC from the FTN and

calls mpls_output2() for transmission to the next hop.

The functions mpls_opcode_peek ,mpls_opcode_push and mpls_opcode_pop perform the

required action on the label namely looking at the label ,pushing a new label or popping

out a existing label.

 31

5 Implementation

5.1 Soft router implementation of DiffServ

5.1.1 Introduction

We used the soft router DiffServ implementation by [Narasimhan] as a base. It uses the

basic forwarding functionality of the Linux router. The code resides at the output

interface. A packet received at an input interface is forwarded to a particular output

interface based on the routing table and the decisions made by the Linux forwarding

code. When it reaches the output interface the DiffServ code by [Narasimhan] treats it

with various modules like classification, buffer manager based on a user-friendly script.

 routing
i/p interface
 DS Code
 o/p Interface
i/p interface

Fig 5.1 DS router

Fig 5.1 shows this high level path of packet through DS router.

The code is loaded as a module in the kernel where it registers itself as the Queuing

discipline(3.2.3) and thus gets attached to the output interface specified. The DiffServ

 32

module thus runs in the context of the kernel space. A simple configuration script

provides the parameters of the PHB the packet receives, such as classifiers, traffic

conditioners, buffer managers, and link scheduler. This data however is present in the

user space but is required by the initialization of the DiffServ module in the kernel space.

Another program init_qd reads the file from the user space and communicates to the

DiffServ module through a “dummy driver”.

5.1.2 Usage

The usage of the program as recommended in [Narasimhan] is

“The user needs to first create the configuration file “qdisc.rc”. In this file, he specifies

how he wants the DiffServ modules to be initialized. It includes specifying the type of

classifier, traffic conditioner, buffer manager, link scheduler etc. He then calls load

<device> to load the DiffServ modules at the output interface device. The DiffServ router

is now ready for traffic. The DiffServ modules can be unloaded by unload device. To re-

initialize the DiffServ modules, the user needs to unload it first, edit the qdisc.rc file and

then reload it using load. While running tests, the user can view various statistics that are

captured, by executing the dump_config program. The dump_config program not only

shows the state of the system, but it also displays the statistics that are captured like

average buffer size etc.”

 33

5.1.3 Extensions

Since the DiffServ module is so closely associated with the kernel , it is only to be

expected that change in kernel versions could jeopardize its functioning. We made some

changes in the code so that it is compatible with Linux kernel 2.4.* (earlier version was

Linux 2.2.*). The details of the changes and explanation for porting is given in Appendix

B . We note that even this version is kernel 2.4 specific and might require some porting

effort, should there be any major changes in the kernel.

The DiffServ module used to send all unclassified packets and ARP packets through

control queue. The following diagram in [Narasimhan] describes the behavior.

Fig 5.2 Architecture Model of [Narasimhan]

Classifier

Buffer Manager Traffic

Conditio
ner

Link

Scheduler

Queue 1

Queue N

ARP Queue

 34

5.1.3.1 Default classifier

ARP packets do not go through various DiffServ modules but are sent through a separate

queue called the ARP Queue. All other packets, which cannot be classified, are also sent

through ARP queue. This behavior is not acceptable if MPLS support is required, as there

has to be a provision for Best Effort traffic. We added a new classifier Default Classifier

which if defined would accept all the packets for which no other classifier was found.

The ARP packets were classified and sent through the high priority ARP queue.

5.1.3.2 Port Classifier

We also implemented classification by port. The port classifier assumes the transport

layer protocol is either TCP or UDP, which is true in most port-based applications. To

handle any exceptions to the rule, we already have an existing protocol based classifier.

5.1.3.3 DSCP Marking

DiffServ Code Point or DSCP encodes the PHB requirements of the packet. Hence it is

essential that the DiffServ module be able to mark outgoing packets with the specified

DSCP. We implemented the DSCP marking at flow level i.e. each outgoing flow can

mark packets. The user can ignore, retain or mark DSCP as per requirements of the

network.

5.1.3.4 PHB Map

For DiffServ LSR module to provide the functionality to treat an incoming packet based

on its PHB, it must be aware of what PHBs are provided for what flows. i.e. it needs a

 35

Map between PHBs and the flows so it can pass a packet belonging to a particular PSC

through a particular flow which provides the PHB.

5.1.3.5 Multiple Interfaces

The earlier DS implementation was generic and would attach itself to the interface

specified when the module is loaded in the kernel. The problem with this approach is it

lends itself unsuitably to be used on multiple interfaces of a same machine. Not only is

this non-conformant with DiffServ standards [DS_RFC] but also hinders traffic

engineering. We took the simplistic approach of making the code interface specific

instead of other better options in terms of design, because of the inherent inflexibility in

the earlier architecture.

 36

5.2 Approach

There are two types of events that change the state of a DiffServ LSR

1) Receipt of an un-Labeled packet and

2) Receipt of a labeled packet

5.2.1 Unlabeled packet

This packet is received when the pervious hop of the packet does not belong to MPLS

domain or doest not have an LSP set for this path. Whenever such a packet arrives at a

DiffServ LSR, it is treated based on the DiffServ configuration for it i.e. it is classified

based on the appropriate classifier and given the appropriate PHB. If a LSP is not set for

the packet, then it is similar to only DiffServ being configured. However if a LSP is set a

MPLS label is pre-pended to the packet. The EXP value for the label alone, currently,

maps the DiffServ Code Point information, as only E-LSPs are being supported. To

support L-LSPs, the label value would have to be considered while mapping. Also the

incoming label map (ILM) also should contain a field that specifies whether the entry

specifies an E –LSP or an L-LSP.

5.2.2 Labeled packet

This packet is received when the previous hop of the packet belongs to MPLS domain.

The DiffServ LSR checks its ILM for the incoming label entry. Based on the operation

specified in the label, action is taken for example. If the label entry specifies SET for a

particular device the packet is sent to that device. The outgoing label value stored in the

 37

auxiliary data field in dst entry in the skbuff, which acts as a place holder. A control bit

is set in the dst entry to help identify the packets in the IP layer. A bit is also set for delete

option of a label as a special case as the delete option specifies the delivery of the packet

to IP layer. When the packet does arrive at the outgoing interface, on which DiffServ

module is loaded, the DiffServ LSR gives the PHB treatment to the packet recommended

by the label value. The outgoing packet label can have either the PHB mapping value of

the incoming label (i.e. the intended PHB) or can have the actual PHB value that is being

imparted. The current implementation encodes the intended PHB mapping value.

The following figure shows schematic, simplified view of the DiffServ LSR. When

labeled packet is received by mpls_ds_rcv(), it passes it to mpls_ds_input() which looks

up the ILM for the label and sets the proper device and sends it to DiffServ module for

PBH treatment.

 DS Code

 Output interface I

 mpls_ds_rcv

 Input interface

 DS Code

 Output interface II

Fig 5.4 Schematic view of DiffServ LSR

 38

5.3 Issues

5.3.1 PHB not present

If an incoming packet requests particular PHB which is not supported by the router it is

tempting to classify the packet based on the IP fields or impart the “best available” PHB

next to the requested PHB. But as [RFC-MPLSARCH] states that any intermediate

MPLS node (core) should refer to only the label at the top of stack to make forwarding

decisions. Also if best available PHB is imparted, the user would be expecting a different

class of service than being provided with neither parties being informed of the same, thus

making the problem difficult to debug. This solution would also be difficult to

implement. One other alternative is to impart the default PHB treatment if default PHB is

specified, otherwise drop the packet. The simplest option is to drop the packets. This

makes it easier to track the problem however can be disconcerting in requiring every

PHB supported to be defined. In our implementation we decided to drop the packets

whose PHB requirements cannot be met by the router.

5.3.2 Performance requirements not defined
[RFC-MPLSDS] defines the standard for MPLS support. However it does not specify

performance requirements or conformance requirements for implementation

5.3.3 Model Implemented
[RFC-MPLSDS] solution provides for three types of models Pipe Model, short Pipe

Model and the Uniform Model. Pipe Model is mandatory and the other two models are

 39

optional [RFC-MPLSDS]. Our implementation supports the Pipe model currently but can

be changed easily to support the uniform model.

5.3.4 Simplification of PHB value handling

For implementation purposes we have simplified the handling of PHB specification and

mapping values. The PHB specifications for a particular flow would be dependant on the

norms and policies in the domain being used, while the PHB mapping would be based on

the requirements of the service provider.

5.3.5 Processing issue.

The current implementation adds an extra overhead in processing a given packet.

 40

5.4 Software components

qdisc_mod_ifindex.o : This object file contains main DiffServ modules code .This is

specific to the interface (e.g. for eth0 the file is qdisc_mod_eth0.0).It will be loaded as

kernel module.

init_qd [<interface name>]: This executable is common for all the interfaces. It reads the

data from the script file in user space and writes it through the dummy driver in kernel

space. It takes optional parameter as the interface name the qdisc module is attached to. If

interface name is passed it writes the data through the device driver specific to the

interface passed.

dum_drv_ifindex.o: This is the dummy driver for that particular interface (e.g. for

interface eth the file is dum_drv_eth1.o) . This is also loaded as a kernel module.

dump_config[<interface name>]: This executable denotes the current state of the system.

Can be optionally passed the interface name to print the statistics of qdisc loaded on that

particular interface. dump_config assumes that particular module is loaded.

clear_stats [<interface name>]: This executable clears all counters and resets the

statistical counters. Can be optionally passed the interface name to clear statistics for that

particular interface. It assumes that particular module is already loaded.

Load <interface name>: This shell script loads the corresponding module in the kernel

and adds tc. It also loads the dummy driver module to pass the information from user

space to kernel space.

 41

5.5 Usage

5.5.1 mplsadm utility:

The user first has to set up an LSP according to his/her traffic requirements. ‘mplsadm’ is

a utility that helps manually set up the mpls tables. These values can also be set

automatically by using either LDP or some other signaling protocol. The runtime values

are displayed by the /proc utility in files /proc/net/mpls_in /proc/net/mpls_out and

/proc/net/mpls_fec for the ILM, FTN and FEC tables respectively. Appendix A

discusses the usage for the mplsadm utility and Appendix C is a small shell script written

for all label settings during testing.

5.5.2 Load script file

The user then has to set up DiffServ control parameters like the traffic conditioning to be

applied for a particular flow, the classification required the buffer manager and the

scheduling technique to be used. All the information is written in a file ‘qdisc.rc’ The

program parses this file and sets up its values. A detailed description of the script file and

its syntax is explained in [Narasimhan]. Appendix B lists a few basic things about the

script file and few example script files.

The user would need to specify the PHB of the flow in the qdisc.rc and optionally

indicate the DSCP marking for the outgoing packet on that particular flow.

 42

5.6 Advantages and Limitations

5.6.1 Advantages

Modular: Since the code is modular, the user can specify lot of parameters for each

module and thus control the behavior of network to a greater extent.

Optional Set up: The user can set up either MPLS or DiffServ or DiffServ over MPLS

depending on the requirements, thus the implementation is backward compatible and can

work in an existing test bed.

Traffic engineering ability gives lot of control over network performance and helps avoid

congestion through certain paths enabling it to deliver a better QoS.

5.6.2 Limitations

The implementation puts additional processing overhead per packet. Even the MPLS

labels are handed over to the IP layer, hence performance of an individual machine is

equivalent or worse than only DiffServ but not better.

However the performance of MPLS-DS domain, because of the additional flexibility,

might be better than only DiffServ domain.

 43

6 Tests and Results

We tested the functionality of each module. A smartbits SMB 200 was used both as

source and sink. The machines used as routers were AMD 686 128 MB 900MHz

Gateway machines were equipped with 3COM 3c905 10/100 Mbps PCI Network

Interface Cards, running Linux.

The aim of testing was to verify and check functionality of each module in a DiffServ

LSR and also to understand the possible interaction between LSPs and PHBs. We also

demonstrate how the Traffic Engineering (TE) ability can be combined effectively with

Differentiated Services to implement an End-End QoS framework.

 44

6.1 Test I

Aim : Test I was carried out to test the basic functionality and co-existence of the

DiffServ and MPLS components.

Setup : Smartbits was used as traffic generator generating two types of streams. Both

these streams were applied different DiffServ PHB and different MPLS Labels at one

machine and were stripped off at the other machine to deliver back to Smartbits port.

Fig 6.1 Schematic view of Test I setup

M/C –I

eth0

 eth2

M/C –II

 eth2

eth0

SMB 200
Port 3 port 1

 45

Configuration

Smartbits

Packet size : 128 bytes Test Duration: 60 secs

Flow ID Source IP Destination

IP
Packets
Sent

Packets
received

Loss %

1 10.5.4.30 10.3.4.50 253378 120504 52.44
2 10.5.4.40 10.3.4.50 253378 253378 0

DiffServ

Classifier

Flow
ID

Flag Value PHB

Traffic
Conditioner

Buffer
Manager

Link
Scheduler

1 SRC_
ADDR

10.5.4.30 EF SRTCM
(cbs = 2Mbps)

Normal Static priority
(priority=10)

2 DEF - DEF DUMMY Normal Static priority
(priority= 5)

MPLS

Flow ID FEC Label LSP Path
1 10.3.4.50 16 M/c I -> M/c II

Conclusion

The basic MPLS DiffServ functionality works and co–exists. The software can push and

pop out labels and the PHB value is propagated to the next hop where appropriate action

is taken

 46

6.2 Test II

Aim : Test II was carried out to test the basic functionality and co-existence of the

DiffServ and MPLS components.

Setup : Smartbits was used as traffic generator generating three streams. These streams

were applied different DiffServ PHB. Different MPLS Labels applied at one machine

were swapped at second machine and finally stripped off at third machine to deliver back

to Smartbits port.

Fig 6.2 Schematic view of Test II setup

M/C –I

eth0

 eth2

M/C –
III

 eth2

eth0

SMB 200
Port 3 port 1

M/C –II

eth0
 eth2

 47

Configuration

Smartbits

Packet size : 128 bytes Test Duration: 60 secs
Flow ID Source IP Destination

IP
Packets
Sent

Packets
received

Packets lost
(%)

1 10.5.4.30 10.7.6.90 168918 30954 81.675
2 10.5.4.40 10.7.6.80 168918 118941 29.586
3 10.5.4.50 10.7.6.80 168918 167125 1.061

DiffServ

Classifier

Traffic
Conditioner

Buffer
Manager

Flow
ID

Flag Value PHB

Link
Scheduler

1 SRC_
ADDR

10.5.4.40 EF SRTCM
cir = 2.5MB/s

Normal Static priority
(100)

2 DEF - DEF DUMMY Normal Static priority
(50)

MPLS

Flow ID FEC Label at I Label at II LSP Path
1 10.7.6.80 16 21 M/c I -> M/c II

-> M/c III
2 10.7.6.90 32 37 M/c I -> M/c II

-> M/c III

Conclusion
The basic MPLS DiffServ functionality works and co –exists. The elementary test bed

set-up demonstrates that the DiffServ LSR can pop, push, and swap the label and take

appropriate action based on the label value. The PHB value is propagated and acted upon

by subsequent routers.

 48

6.3 Test III

Aim : Test III was carried out to test the ability to perform traffic engineering and to

demonstrate its effectiveness.

Setup : Smartbits was used as traffic generator generating three types of streams.

Initially these three streams share the traffic resulting in packet loss. Traffic engineering

was then applied on M/C I and results noted

Fig 6.3 Schematic view of Test III setup

M/C –I

eth0
 eth1

 eth2

M/C –
III

 eth2
eth1

eth0

SMB 200
Port 3 port 1

M/C –II

eth0
 eth2

 49

Configuration
Smartbits

Packet size : 128 bytes Test Duration: 60 secs
Flow ID Source IP Destination

IP
Packets
Sent

Packets
received

Loss %

1 10.5.4.30 10.7.6.90 168918 120199 28.84
2 10.5.4.40 10.7.6.80 168918 168918 0
3 10.5.4.50 10.7.6.80 168918 168918 0

DiffServ

Classifier

Flow
ID

Flag Value PHB

Traffic
Conditioner

Buffer
Manager

Link
Scheduler

1 SRC_
ADDR

 EF SRTCM Normal Static
priority

2 DEF - DEF DUMMY Normal Static
priority

MPLS

Flow ID FEC Label LSP Path
1 10.7.6.80 16 m/c I -> m/c II-> m/c

III
2 10.7.6.90 32 m/c I -> m/c II-> m/c

III
3 10.7.6.90 42 m/c I -> m/c III

Conclusion

The basic MPLS DiffServ functionality works and co –exists. The above experiment

demonstrates traffic engineering. Packets destined for 10.7.6.90 , that had earlier

traversed the link M/C I-M/C II ->M/C III are directly routed to Machine III

 50

6.4 Discussion of Results

As we note from the tests I and II, the basic functionality of the DiffServ LSR is satisfied.

Test I demonstrates “label push” and “label delete (pop)” while test II shows in addition

to the aforementioned, “label swap” and “interface set” functionality. The DiffServ PHB

indicated in the label is preserved. It is interesting to observe that when Traffic

Engineering is applied on M/C I in test III, and default traffic is sent through a different

route, better performance is obtained. Also service differentiation can be applied to the

diverted traffic as shown. MPLS supports traffic engineering and DiffServ supports

service differentiation respectively, the combination of the two combines both the

advantages, and hence gives the service provider lot of flexibility and control over the

performance of the network.

We note that since demonstration of functionality was the aim of the experiment and not

performance token DiffServ control parameters have been used. A better performance

can be achieved by better tuning of the DiffServ parameters like traffic conditioner,

Buffer Manager, Link Scheduler etc. interested reader is referred to [TEST-REPORT] for

details.

 51

7 Conclusion

7.1 Summary

We described the protocols DiffServ and MPLS among the recently proposed protocols

to provide Quality of Service. We described how the advantages of both could be

combined in MPLS support of Differentiated Services that could potentially provide

considerable flexibility and ability to provide service differentiation to the service

provider. We further described our extensions to the existing DiffServ implementation

and our implementation of MPLS support for Differentiated Services. Next we discussed

issues involved in our implementation. We created scenarios to test our implementation

and we observe that while DiffServ can provide service differentiation and guaranteed

bandwidth, it does not handle overloaded traffic or link failures. Similarly while MPLS

can provide control and ability to fast re-route and traffic engineering, it does not offer

service level differentiation. MPLS support of DiffServ combines the advantages of both

protocols. We conclude that MPLS combined with DiffServ could be an important step

towards providing end-to-end QoS in IP based networks.

7.2 Future Work

In our experiments we used token DiffServ parameters to demonstrate functionality. In

the future, a comprehensive experimentation could be done to determine ways to

optimize performance using a combination of various DiffServ parameters. Our

implementation supports only E-LSPs. Support of L-LSPs could also be implemented,

which would enable support of more than eight PHBs.

 52

Multicast packets form an increasing portion of the Internet traffic with the advent of

P2Pand movie broadcasts. Multicast support could also be implemented both in MPLS

and DiffServ. The current implementation is able to interact only with Ethernet frames.

Support of other mechanisms like ATM and Frame relay can also be implemented in

future.

 53

References

[Adisheshu et.al] Hari Adisheshu , Guru Parulkar , Raj Yavatkar, A state management

protocol for Int-Serv DiffServ and label Switching, IEEE ICNP'98,

Oct 1998, pp 272-281.

[Awduche et.al.] D.O. Awduche, MPLS and Traffic Engineering in IP Networks,

IEEE communications magazine, vol. 37, no. 12, Dec 1999, pp 42-

47.

[Bux et.al.] Werner Bux, Wolfgang E. Denzel, Ton Engbersem, Andreas

Herkersdorf, and Ronald Luijten, Technologies and Building blocks

for fast packet forwarding, IEEE Communication Magazine,

Volume: 39 Issue: 1, Jan. 2001, pp.70 – 77.

[Cole] Bernard Cole, Defining Network API, www.embedded.com, Dec

2001 http://www.embedded.com/story/OEG20011207S0099,

[Crowley et.al.] Patrick Crowley, Marc E. Fiuczynski, Jean-Loup Baer and Brian N.

Bershad, Characterizing Processor Architectures for Programmable

Network Architecture Proceedings of the 2000 International

Conference on Supercomputing, Santa Fe, N.M., May 2000, pp. 54-

65.

[DIFF-HEADER] Nichols, K., Blake, S., Baker, F. and D. Black, Definition of the

Differentiated Services Field (DS Field) in the IPv4 and IPv6

Headers, RFC 2474, December 1998.

[DIFF-NEW] Grossman, D., New Terminology and Clarifications for DiffServ,

RFC 3260, April 2002.

 54

[DIFF-TUNNEL] Black, D., Differentiated Services and Tunnels,RFC 2983, October

2000.

[Dwekat] Dwekat Zyad Ahmed, Construction and Evaluation of a Service

Level Agreement Test-Bed, Thesis (M.S.)--North Carolina State

University, 2001, ix, 99 p.

[GPL] GNU Public License, www.gnu.org/copyleft/gpl.html

[Herity et.al.] Dominic Herity Network Processor Programming Embedded

Systems Programming, July 2001,

http://www.embedded.com/story/OEG20010730S0053

[History] Barry M. Leiner, Vinton G. Cerf, David D. Clark Robert Kahn,

Leonard Kleinrock, Daniel Lynch, Jon Postel, Larry G. Roberts

Stephen, A Brief History of the Internet, Wolff Internet Society,

http://www.isoc.org/internet/history/brief.shtml

[Horlait et.al] Eric Horlait, Nicolas Rouhana, Differentiated Services and

Integrated Services Use of MPLS, IEEE Symposium on Computers

and Communications, 2000. Pg 194-199.

[Laubach] M Laubach Classical IP and ARP over ATM RFC 1577 January

1994

[Law et.al.] Law Raymond, Raghavan Srihari, DiffServ and MPLS –Concepts

and Simulation, Department of Electrical and Computer Engineering

Virginia Polytechnic Institute and State University

 55

[LINUX-IPNET] Glenn Herrin, Linux IP Networking: A Guide to the Implementation

and Modification of the Linux Protocol Stack TR 00-04 May 31,

2000

[Mpls_charter] Multiprotocol Label Switching (MPLS) Charter

www.ietf.org/html.charters/mpls-charter.html

[Murphy et.al] S. Murphy, D. Botvich, T. Curran, On design of DiffServ/MPLS

networks to support VPNs 16th UK Teletraffic Symposium, May

2000

[NGN_INTEL] Network Processor Division, Intel Corporation Next Generation

Network Processor Technologies Enabling cost Effective Solutions

for 2.5 Gbps to 40 Gbps Network Services, Intel Corporation, Oct

2001, http://www.intel.com/design/network/papers/279050.htm

[Nie et.al.] Xiaoning Nie; Gazsi, L.; Engel, F.; Fettweis, G A new Network

Processor architecture for High Speed Communications Signal

Processing Systems, 1999. SiPS 99. 1999 IEEE Workshop on, 1999

Page(s): 548 –557.

[Narasimhan] Narasimhan, Kesava Prasad, An Implementation of Differentiated

Services in A Linux Environment. Thesis (M.S.)--North Carolina State

University, 2000, viii p 116.

[Peirre et.al.] Peirre Paulin, Karim, Network Processors :A Perspective on Market

Requirements Processor Architectures and Embedded S/W Tools,

Design, Automation and Test in Europe, 2001. Conference and

Exhibition 2001. Proceedings, 2001

Page(s): 420 –427.

 56

[PKT_JOURNEY] Harald Welte, The journey of a packet through the Linux 2.4

network stack , www.gnumonks.org/ftp/pub/doc/packet-journey-

2.4.html

[QoS_LINUX] Saravanan Radhakrishnan, Linux - Advanced Networking Overview,

Department of Electrical Engineering & Computer Science The

University of Kansas, http://qos.ittc.ukans.edu/howto

[QoS-API] Gopi Vaddi & Pramodh Malipatna, An API for Linux QoS Support,

Department of Electrical Engineering & Computer Science The

University of Kansas,

http://www.ittc.ukans.edu/~pramodh/courses/linux_qos/mainpage.ht

ml

[Redford] Rob Redford, Enabling Business IP services with Multi Protocol

Label Switching, Multiservice Switching Business Unit, Cisco

Technologies,
www.cisco.com/warp/public/cc/so/neso/vvda/ipatm/mpls_wp.htm

[RFC-791] Information sciences Institute, University of Southern California,

Internet Protocol DARPA internet program protocol specification,

RFC 791, September 1981.

[RFC-AFPHB] Heinan et.al. Assured Forwarding PHB group, RFC 2597, June

1999.

[RFC-DSARCH] Blake S et.al. An Architecture for Differentiated Services, RFC

2475, December 1998.

[RFC-EFPHB] Jacobson et.al. An Expedited Forwarding PHB, RFC 2598,June

1999.

 57

[RFC-INTSERV] R Braden et.al. Integrated Services in the Internet Architecture :an

Overview Internet, RFC 1633, June 1994.

[RFC-MPLSARCH] E. Rosen, A Vishwanathan, R. Callon, Multiprotocol Label

Switching Architecture, RFC 3031, January 2001 .

[RFC-MPLSDS] B. Davie, S. Davari, P. Vaananen, R. Krishnan, P. Cheval, J.

Heinanen, Multi-Protocol Label Switching (MPLS) Support of

Differentiated Services, RFC 3071 May 2002.

[Semeria] Chuck Semeria, MultiProtocol Label Switching: Enhancing Routing

in the New Public Network, Juniper Networks, Inc. White Paper,

http://www.juniper.net/techcenter/techpapers/200001.html

[status_report] Bill Michael, MPLS Breakthrough a Status report, Computer

Telephony Network Magazine, May 2001

http://www.cconvergence.com/article/CTM20010425S0001/1

[source-forge] www.source-forge.net/projects/linux-mpls

[tech_guide] Ennovate Networks Inc , www.techguide.com Innovations in IP

networking

[TEST-REPORT] Kulkarni Amit, Singhai Mrugendra, A comprehensive Test Report

For Differentiated Services Implementation

[Trimintzois et.al.] Panos Trimintzios, llias Andrikopouls, George Pavlou, and Paris

Flegkas, University of Surrey, U.K. David Griffin, Panson

Georgatsos, Algonet S.A., Danny Goderis and Yves T’Joens, A

management and control architecture for providing IP Differentiated

Services in MPLS –based Networks, IEEE Communications, special

 58

issue in IP-Oriented Operations and Management, IEEE, May 2001,

Vol. 39, No. 5, pp. 80-88.

[Williams et.al.] Brian Williams, Quality of Service Differentiated Services and Multi

Protocol Label Switching, Ericsson Australia White Paper, March

2000, http://www.securitytechnet.com/resource/rsc-center/vendor-

wp/ericsson/qoswhite_paper317.pdf

