
ABSTRACT

HUBER, DANIEL ERIC. Simple Motion in Glyph-Based Visualization. (Under the direc-
tion of Dr. Christopher G. Healey).

Visualizations provide many advantages over textual displays as a means to analyze and

explore large sets of data. When analyzing data visually, users often want to perform two

tasks: identify elements with specific values, and discriminate between elements with different

values. Both of these tasks can be aided through the proper application of visual features in

visualizations. Our objective is to study how two properties of simple motion, direction of

motion and flicker, can be used to effectively aid the discrimination task in a visualization.

We present two user studies and an example of a practical application in the meteorological

domain. Our user studies consist of visual search experiments in which viewers are asked to

detect the presence or absence of a target group of elements within a background group as

quickly and as accurately as possible. Direction of motion is tested by varying the angular

difference between target and background motion and measuring mean viewer error rates and

response times. In our study, viewers needed an angular separation of at least30◦ in order

to rapidly and accurately detect the presence of the target. Flicker is tested by varying the

difference in flicker rate between the target and background for both coherent and noncoherent

flicker. In our experiment, viewers were able to rapidly and accurately detect the presence of the

target when target and background elements flickered coherently, regardless of the difference in

rate of flicker. During the noncoherent flicker experiment, viewers were only able to accurately

detect the presence of the target when the target or background flickered rapidly and there was

at least a 240 ms difference between target and background cycle times. Finally, we show that



by using the results from our user studies in our weather data visualization, groups of similar

elements are easily distinguishable.
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Chapter 1

Introduction

Computers have long been used to process and store large amounts of complex information

as sets of numbers and strings. However, working with data in such a raw form is not always

the most productive approach to analyzing a problem. Even if it were possible to read through

the number of pages required to present data from a large data set, it is easy to miss potentially

interesting phenomena. This is because our visual system is not optimized to process large

amounts of text for trends or relationships between the different values. On the other hand, our

ability to process, recognize and remember relationships within images is much stronger. As

computers became cheaper, faster and capable of processing larger amounts of data, researchers

have started to take advantage of the strengths in our visual system by developing methods to

transform numerical and textual information into images displayed on a computer screen. This

process is known as visualization.

Expressing numerical data visually is not exclusive to the computer and in fact goes back

much further than the computer itself. As early as 1686, Edmund Halley created a world map
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that depicted the path of trade winds and the locations of monsoons. Halley drew strokes

characterized by one end being noticeably thinner than the other. The strokes were drawn in

patterns, which resemble vector fields, to show the direction of the winds (the wind came from

the direction of the thin end on each stroke). Monsoons were represented by dense areas of

alternating strokes [Tuf83].

Over time, visualizations have aided people in analyzing as well as discovering new pat-

terns in complex information sets. Scientists in fields ranging from medicine to meteorol-

ogy to civil engineering have all benefited from being able to explore data visually while

performing tasks such as diagnosing patients or predicting future events [BA02, Tre99]. Re-

searchers have found that visualization systems are also particularly useful for analyzing ab-

stract data, for example, the wealth of information stored in databases, or network traffic pat-

terns. [CAL+97, BP01].

There are two fundamental tasks users often want to perform when viewing data visually.

First, they may want to easily discriminate between the values of two pieces of data. Said

differently, a user will want to form mental groupings of similar pieces of data. Second, users

will want to easily identify the value of a single data point or the difference between values

of two or more data points. As it turns out, the discrimination task is often much easier than

the identification task. This is because being able to identify the value of two pieces of data

generally implies, as a necessary condition, the ability to discriminate between them.

With the goals of providing discriminability and identifiability, the designer of a visualiza-

tion system must carefully address the issue of how raw data is represented by visual elements.

The type, style, and placement of the elements will have a significant effect on a user’s ability
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to perform the two fundamental tasks.

Today’s computers can process and store enormous amounts of information. As a result,

useful data sets often have a large number of elements as well as a high dimensionality, mean-

ing each sample point encodes multiple attributes. Dealing with multi-dimensional data sets

can be especially challenging. It is often difficult to display all the attributes associated with

each element simultaneously. One approach for dealing with this situation uses simple visual

elements called glyphs. A glyph is the building block of the visualization. A glyph possesses

distinguishing visual characteristics such as shape, color, orientation and density. Each attribute

of the data set controls one characteristic, or visual feature, of a glyph.

In order to harness the power of our low-level vision system during visualization, study

in the field of cognitive psychology is required. In particular, results from visual perception

experiments can be directly applied to the task of choosing effective visual features for a vi-

sualization. Image properties such as color, orientation, density, size, shape and motion have

been determined to be processed by our vision system preattentively, meaning that we are able

to quickly discern certain aspects of these features without the need for focused attention. In

other words, the features often ‘pop out’ of the display, making them easily distinguishable.

Using visual features that are processed preattentively can lead to visualizations that facili-

tate rapid and accurate discrimination and identification of information. Previous research in

our lab has shown how color, texture and orientation can be used effectively in visualizations

[HE98, HE99, HE96, Hea96].

This thesis explores the use of motion in visualizations. We chose to use motion as a visual

feature because it possesses strong perceptual cues. Over the past twenty years, psychologists
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have supported this claim by reporting on how humans perceive motion. Simple linear motion

has been found to be processed preattentively when elements are moving in sufficiently differ-

ent directions [DD92]. Additionally, motion has been shown to effectively aid the process of

grouping elements [Bra98]. These properties make motion an excellent candidate for use as a

visual feature in visualizations.

Unfortunately, few experiments have determined appropriate values of motion to use in

visualizations. We investigated how simple linear motion and flicker, or blinking, can be used

effectively. For each type of motion, we wanted to know the conditions that make the feature

‘pop out’. To do this, we set up two visual search experiments, one for linear motion and one

for flicker. In each setup, a sequence of search trials was presented to a viewer. Each trial

consisted of a group of similar elements and potentially a smaller target group of dissimilar

elements located within the larger group. Viewers were asked to determine as quickly and

as accurately as possible whether or not a target group appeared within the larger group. We

recorded accuracy and response time as a measure of viewer performance. After a short delay,

the next trial was presented. Results from our study show how simple linear motion and flicker

can be used in visualizations effectively.

Our first experiment explored how large an angular difference is needed to easily discrimi-

nate between two groups of elements moving linearly. In this case, the target elements differed

from the background elements only in their direction of motion.

Our second experiment attempted to answer two questions: how large an interval is needed

between the rate of flicker of two groups of elements in order to distinguish one from the other,

and how does coherence of phase between individual elements within groups affect the ability
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to easily recognize a difference between groups? In these cases, the target elements differed

from the background elements by rate of flicker, and possibly by the phase of their flicker

pattern.

Finally, we created visualizations of weather data using linear motion and flicker as visual

features. The application confirms that linear motion and flicker can be used to effectively

discriminate between groups of elements with different attributes in a practical application

domain.

The remaining chapters of this thesis are as follows. An overview of visualization is given

in chapter 2, and motion in chapter 3. A description and analysis of the linear motion experi-

ment is given in chapter 4 and of the flicker experiment in chapter 5. A sample visualization

with motion is discussed in chapter 6. Concluding remarks and ideas for future work are then

given in chapter 7.
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Chapter 2

Visualization

2.1 What Is Visualization

In the simplest of terms, visualization is the process of transforming numerical and textual

information into images. The images express the values, structure and relationships in data sets

and allow exploration in a way that plain text cannot provide.

There are generally considered two categories of visualization, scientific and information.

The major difference between the two types is that scientific visualizations display data that

contain some inherent spatial property. Spatial locations for each data element must be com-

puted in an information visualization. This is often done by simply mapping data attributes to

each of the spatial axes (e.g., as is done for horizontal and vertical axes in a 2D graph). Both

types of visualizations share many properties and as a result, techniques used in a scientific

visualization can often be applied to an information visualization and vice versa.

Mathematically speaking, a visualization is a function,M , that maps a data set,D, com-
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posed ofn sample points, or elements,{e1 . . . en}, into some visual representation,V .

M : D = {e1 . . . en} → V

There are thus three phases in the creation of a visualization. First, the type of data set

and elements to be analyzed must be chosen. Sources of data come from many different disci-

plines. This first phase drives the visualization because it strongly affects the decisions made

during the second and third phases of creating a visualization. The second phase chooses a

visual representation. Visual representations vary greatly from one application to the next.

Consequently, creating and improving visual representations are often the focus of research

in the visualization community. Common types of visual representations include scatterplots,

volume visualizations, tree structures and glyphs. Lastly, the mapping,M , from data elements

to visual representation must be chosen. Some visualization architectures help users determine

an appropriate mapping. For example, one visualization system helps users choose an effec-

tive M by posing a sequence of questions to the user. The responses to the questions guide a

visualization assistant to select perceptually optimal methods for converting a data set into a

visualization [HSAE99].

Many data sets also have several dimensions, meaning each data element consists of two or

more attribute values. This complicates matters further. A multi-dimensional data set contains

a set ofm attributes,A = {A1 . . . Am}. Each dimension of the data set corresponds to some

attributeAj . Thus, each data elementei is composed ofm attribute values,ei = {a1 . . . am},

where eachaj is the value of attributeAj. An increase in dimensionality affects both the choice
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of visual representation and the choice of mapping from data elements to visual representation.

These topics are addressed later in this chapter.

2.2 Foundations of Visualization

Visualization in scientific computing traces its roots back to a panel discussion in the 1980’s

where members expressed the need to apply graphics and image technologies to computational

science. They stated a goal for visualization to “provide new scientific insight through visual

methods.” This goal was based on the observation that scientific discovery is the process of

gaining insight through error. They concluded that “the most potential for visualization is

the insight gained and mistakes understood by spotting visual anomalies while computing”

[MDB87].

Today, several disciplines form the basis for developments in visualization. Within com-

puter science alone there are a number of subfields involved including computer graphics,

animation, computer vision, image processing and user interface design. Many of the im-

provements in the field have come about from other sciences as well. Medicine, meteorology,

and economics are just some of the industries that push visualization further with their need to

analyze large quantities of data.

Another critical area to the study of visualizations comes from cognitive psychology. Re-

searchers in this field study how the human visual system ‘sees’ visual properties in the world

around us. In the context of visualizations, cognitive psychologists are interested in how hu-

mans perceive visual imagery. Knowledge gained regarding this activity can lead to visualiza-
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tions that express greater amounts of information more intuitively. Chapter three discusses the

topic of visual perception in more detail.

2.3 Benefits of Visualization

There are many reasons why one would want to examine data visually. A visual represen-

tation of data can provide a prompt qualitative overview without giving specific quantitative

details. Having a general visual overview contained within a single display allows a user to

make quick and accurate deductions because he or she is able to consume relevant high-level

information all at once. Oftentimes only a cursory glance is required to form important con-

clusions.

When further analysis of a large data set is required, a visualization can help identify areas

of interest for in-depth exploration. Dennis and Healey developed a navigation assistant that

clusters potentially important data into spatially-coherent regions and facilitates investigation

through an intelligent camera planner [DH02]. An effective user interface would also allow a

user to manually navigate and select areas of interest, which triggers the display of a higher

level of detail for the selected elements.

Visualizations are also a powerful means to enhance identification of structure, patterns,

trends and other relationships between elements of a data set. Such tasks may not be as effort-

lessly performed without a visual representation. In fact, large data sets can easily overwhelm

users, so much so that pertinent relationships are overlooked. Miller’s work from cognitive psy-

chology in 1956 implies that by taking advantage of humans’ visual abilities a larger amount
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of information can be processed without overload [Mil]. Researchers have addressed this issue

by creating methods to display as much information in as small a space as possible while still

maintaining comprehensibility of all data attributes.

Yet another advantage visualizations provide is the ability to explore and discover new re-

lationships within a data set. In 1854, an outbreak of cholera took the lives of several hundred

Londoners. The source of the infectious disease was unknown until Dr. John Snow drew a

map showing the locations of each death and the locations of eleven area water pumps. It be-

came obvious that a centrally located water pump was contaminated [Tuf83]. In more recent

times, visualization has provided a means to view and explore invisible natural phenomena.

The atomic nucleus is so small that current photographic technology cannot capture its struc-

ture. However, an abundance of precise data exists to describe the nucleus’ energy states. Cook

et al. developed an application to visualize and interact with several theoretical models of the

nucleus. The authors’ goal was to provide a means for physicists to explore the atomic nucleus

in ways that numerical data alone does not allow [CHY99]. Figure 2.1 shows a volume visu-

alization of reconstructed CT (computed tomography) slices of an abdominal aortic aneurysm

and the stents used to reinforce it.

Occasionally, the ability to manipulate data by hand visually is easier than making similar

modifications through a text based interface. Some visualization architectures account for this

by providing an interface to edit data. For example, Aiken et al. allow users to browse a

visualization of a database and stop to make edits directly within the display [ACSW96].
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(a) (b) (c)

Figure 2.1: An abdominal aortic aneurysm visualized with different colourmaps and viewing directions: (a) an
aneurysm visualized using a perceptual colourmap; (b) a cut through the volume created with Volren’s interactive
clip planes, showing the cross-sectional area of the aneurysm and the two iliac arteries, and the location of tynes
(metal hooks) in a stent used to reinforce the artery wall; (c) an orthogonal viewing direction, showing clearly the
location of the tynes in the vertical iliac artery.

2.4 Visualization Design

There are a number of considerations that must be taken into account when designing a vi-

sualization architecture. To address these considerations, answering the question: what makes

an effective visualization, is a good place to start. In his book, Edward Tufte describes several

aspects of how to display quantitative information. Two techniques are directly relevant to our

discussion on visualization. First, a display should show data accurately, without distorting

meaning. Second, data should be displayed in a way that encourages comparisons between

different elements [Tuf83]. Adhering to these guidelines is critical to the fundamental tasks of

discriminability and identifiability.

Other design decisions should also be considered. In many cases, the decisions made
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should be strongly tied to specific application areas and implementation requirements. In his

case study on operational weather forecasting, Treinish points out that using generic visualiza-

tion techniques without regard for the users’ goals can prove to be counterproductive. Instead,

he suggests that a careful composition of visual elements to describe data such as tempera-

ture, wind speed, and precipitation will result in more effective visualizations [Tre99]. While

it is generally not cost effective to develop specific visualization applications for every pos-

sible type of data set, Treinish’s work suggests the importance of a user-guided method to

specify visualization parameters. Robertson and De Ferrari describe a visualization reference

model that lets users specify visual directives, such as, “show variable X using representa-

tion R,” and interpretation aims, such as, “show local trends for variable Y and its correlation

with variable Z” [RDF94]. Allowing the user to configure the visualization to suit his or her

needs can improve data exploration and knowledge discovery by making the discriminabil-

ity and identifiability tasks easier. In an effort to aid the user in configuring a visualization,

mixed-initiative algorithms have been used to guide the user through a series of questions

[KFL91, Koc94, HSAE99].

2.5 Multi-Dimensional Visualization

Recall that a multi-dimensional data set is one where each data element is comprised of

more than one attribute value. For example, in a weather data set, each sample point might

encode location, temperature, amount of precipitation, and wind speed. The techniques for

visualizing multi-dimensional data have received considerable attention in the visualization
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community. Some researchers focus on the development of novel visual representations to

represent such data, while others concentrate on improving how data is mapped to specific

visual representations. Both of these areas of research address the issue posed by Grinstein:

how can we improve the consumption of large quantities of data? [GLI98]

The difficulty in visualizing multi-dimensional data arises from the fact that most displays

are two-dimensional, for example, a computer screen or a sheet of paper. Therefore, methods

are needed to compress multi-dimensional data into some representation that can be displayed

in a two-dimensional space. In the case of computers, it is often sufficient to transform data into

three-dimensional space and then let traditional computer graphics techniques project the rep-

resentation onto a screen. Clearly, each dimension adds an additional challenge to identifying

attribute values of data elements and discriminating between them. Consequently, several types

of visual representations have been developed to cope with visualizing large, multi-dimensional

data sets.

Pixel based Visual Representations

One method for displaying large amounts of data in a small space is based on pixels as

the underlying representation. Pixels were chosen because they are the smallest elements that

can be displayed on a computer screen, and therefore, mapping one attribute value to one pixel

allows the largest amount of information to be viewed at once. Keim and Kriegel designed a

visualization system where each attribute value of a data element controls the color of a pixel.

The pixels are arranged in a spiral about some user defined reference point, where a pixel’s

position along the spiral is determined by how similar the corresponding data point is to the
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reference point. Separate dimensions are either viewed in separate windows or by grouping the

pixels comprising one data element along the spiral [KK95].

Because the attributes of a sample point are either spread across multiple views or arbitrarily

arranged together, it can be difficult to ascertain the values of each attribute of a single data

point. It also makes comparing data elements difficult.

Glyph based Visual Representations

A category of multi-dimensional visualizations that can provide a better coupling of at-

tributes to sample points uses simple visual elements called glyphs to represent data elements.

Glyphs are composed of several different visual features and are thus able to encode several

dimensions of information in a single object. Glyphs come in many different varieties, some

of which are described here.

Star plots use a point to represent each data element and lines protruding from each point

to represent attribute values. The length of each line is determined by the value of the corre-

sponding attribute [Spe99].

A slightly more amusing type of glyph is called a Chernoff face. These visual elements

take advantage of a human’s ability to differentiate between other human faces. Each glyph is

a stylized drawing of a human face where values of attributes are encoded by the size, shape

and separation of different facial features [Che73].

Another glyph-based visualization that harnesses humans’ perceptual abilities uses texture

elements as the building blocks of a visualization. Healey and Enns describe a system where

data points are represented by perceptual texture elements, or pexels. The pexels are placed
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Figure 2.2: Visualization of the oceanography datasets, color used to represent plankton density (blue, green,
brown, red, and purple represent lowest to highest densities), height used to represent current strength, texture
density used to represent SST: February, 1956.

on a gridded surface with each cell containing one data element. Each pexel can be identified

by a combination of its visual features, e.g. color, luminance, orientation, height, density and

regularity. Each attribute of a data set controls one visual feature, for example, in a weather

data set, wind speed might be mapped to the height of a pexel [HE98, HE99, IFG+98, Hea96,

HE96].

Figure 2.2 shows a data frame from an oceanography dataset representing seasonal ocean

conditions for February, 1956. These datasets are analyzed in the context of simulations of

salmon migration patterns, which are used to try to identify where in the open ocean salmon

feed and grow during the year. Color shows the variation in plankton densities (blue, green,

brown, red, and purple for low to high densities). Height shows current strength (taller for

stronger). Density shows sea-surface temperature (denser for higher). This mapping allow the

oceanographers to track current strengths and SSTs. In February, most plankton densities are

less than 28 g/m3 (i.e., blue and green strips). Currents are low in the north-central Pacific;
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a region of weak currents also sits off the south coast of Alaska. Most of the ocean is cold

(sparse pexels), although a region of higher temperatures can easily be seen as dense pexels in

the south.

A disadvantage of glyph-based visualizations is that there are normally fewer data elements

per display, although there is not necessarily less total data shown because each glyph can

encode multiple data values. Fortunately, the results of the pexel-based visualizations show

that taking advantage of the strengths of the low-level human vision system can help users

analyze large multi-dimensional displays quickly and correctly with little effort. Thus, we

need some way to map attributes of a data set to visual features based on visual perception, the

topic of the next chapter of this thesis.
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Chapter 3

Motion

3.1 Visual Perception Overview

In the context of statistical displays, Tufte describes graphical excellence as being the com-

munication of complex ideas in the least amount of space with precision, clarity, and efficiency

[Tuf83]. The application of theories in visual perception to visualization is one way to help

achieve graphical excellence.

Studies in visual perception attempt to determine how humans analyze images. Contribu-

tors from cognitive psychology, psychophysics, computer science and other fields continue to

provide a great deal of information on this topic. We are concerned with studies on the percep-

tual strengths and weaknesses of various visual features, in particular, simple motion. We want

to know how motion can be used to facilitate accurate and efficient detection and grouping of

visual elements, in a manner similar to previous research on the perceptual strengths of color

and texture in visualization design [IFG+98, Hea96, HE98, HE99].
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Perceptual efficiency is critical to an effective information display. By using visual features

that can be rapidly identified, users can process data quickly and easily. Typically, a visual fea-

ture is considered perceptually efficient if it can be detected in less than 200-250 milliseconds.

Determining the efficiency and accuracy of a particular perceptual task can be difficult. One

popular strategy uses visual search experiments. In a visual search experiment a viewer views

a sequence of images, and for each image the viewer is asked to determine if some identifying

characteristic is present or absent. For example, a viewer may be asked to determine if a red

circle is present in a field of red squares and blue circles. The response time and accuracy of

each response is recorded. These values can be analyzed to measure a viewer’s performance

during the search task. Details of our visual search experiments with linear motion and flicker

are given in the next two chapters.

The ability to mentally group elements by visual feature is an important task in visualiza-

tion. Treisman, Driver and Nakayama are among many who found that perceptual groups in

a single display can be searched independently [TG80, Tre82, DD92, NS86]. McLeod et al.

also showed that even if elements belonging to one perceptual group are scattered among other

elements, search can still be restricted to the perceptual group [MDC88]. These are some of

the strengths motion can offer as a visual feature.

3.2 Properties of Motion

Like color, texture and shape, motion is considered a fundamental sense. Consequently, the

ability to perceive motion provides many benefits to humans. Cues given by motion of objects
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can help encode depth and relative distances of objects. Perception of motion is also essential

in anticipating the time to collision of moving objects. Most important to this thesis, motion

cues can also aid in image segmentation, e.g. the detection and grouping tasks mentioned

previously [Nak85].

Computers can give the impression of continuous motion through a perceptual illusion

known as the phi phenomenon. Simulated motion occurs when a sequence of static images

containing an object displaced by small increments are displayed in rapid succession. The

brain fuses the images together and motion is perceived. The rate at which successive images

need to be presented in order to perceive motion is known as the critical flicker frequency.

The critical flicker frequency varies depending on color, brightness, and size of objects to be

displayed but is generally around 60 images per second.

Motion of an object can range from simple to complex. Some motion types are anchored

about a specific point. Example anchored motions include rotation, oscillation, flicker, and

deformation. Other motion types are not constrained in this way. These motions include simple

linear motion and motion of an object along a vector field. We chose to test simple linear

motion and flicker in our visualizations. As a result, we studied how direction of motion and

flicker can be used in a perceptually efficient manner.

3.2.1 Direction of Motion

Motion of an object as it changes position is characterized by two quantities, direction and

speed. Matthews and Qian report that the senses in the brain that detect differences in direction

and differences in speed of two objects are at least partially independent. This implies that
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the threshold for detecting small differences in direction may be different than the threshold

for detecting small differences in speed [MLGQ99]. Speed of an object, however, does influ-

ence the time it takes to detect a difference in direction of moving stimuli. In visual search

experiments speed is often measured in degrees per second, which is the rate at which the vi-

sual angle between the center of focus and an object changes. De Bruyn and Orban reported

on the relation of direction discrimination to speed measured with random dot patterns. They

found that discrimination improved as speed increased to approximately 4 degrees per second.

That threshold remained constant up to a speed of approximately 128 degrees per second. For

speeds greater than 128 degrees per second, the ability to discriminate direction differences

deteriorated [DBO88].

Differences in the direction of motion of glyphs provide cues to help identify individual

elements that differ from the field. Nothdurft reported on the ability to discriminate direction

of an incoherently moving target dot in a field of coherently moving background dots. The di-

rection of each background dot was allowed to vary slightly from the direction of its neighbors.

Nothdurft found that as the maximum allowable variation between background dots increased

(i.e. the background dots lost their coherent motion pattern), the difference in direction needed

to detect the target dot increased even more rapidly. When the maximum allowable variation

between background dots was 60 degrees, the target dot was effectively hidden amongst the

background and could no longer be accurately detected [Not93].

Perceptual grouping tasks are also aided through proper use of direction of motion. In

multi-dimensional visualizations, grouping tasks can be complicated by visual features used

in conjunction. In addition to identifying preattentive features, visual search experiments can
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help identify features that are perceptually efficient when used in conjunction. For example,

detecting a red circle in a group of blue circles or a group of red squares is easy. However,

detecting a red circle among a group of blue circles and red squares is more difficult. See

Figure 3.1 for such an example of conjunction search versus preattentive search. Nakayama

and Silverman showed that when sets of elements move coherently, e.g. in the same direction,

viewers can easily form mental groups from each set and can search the groups independently,

without interference between groups [NS86]. Driver et al. also showed that linear motion, in

the form of oscillation, can be used to separate elements into distinct visual groups. However,

they found that perceptually efficient motion is only produced when elements in each group

oscillate with the same phase. For example, finding a horizontally moving X among a field

of vertically moving X’s and horizontally moving O’s is easy when horizontal elements move

together and vertical elements move together. When elements within each group move out of

phase, it is much more difficult to find the horizontally moving X [DD92].

Average luminance levels also affect the ability to segregate texture by motion. Takeuchi et

al. found that the minimum amount of time to detect a difference in the direction of two moving

textures increases as luminance decreases [TYDV04]. Many perceptual tasks are easier when

the stimulus is presented near the focus of attention. However, Takeuchi et al. also found that

in low luminance conditions, detection of a difference in motion in the periphery is easier than

detection near the fovea, or center of attention [TYDV04].

Research suggests that detection of difference in motion between elements is influenced by

a perception of a global motion pattern in addition to perceived differences in local motion.

Bravo created an experiment that essentially ‘windowed’ groups of dots moving in the same
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direction within each window. The windows separated groups so that perceived differences in

direction were not due to edges formed by local velocity differences. Viewers were asked to

identify the window containing dots moving in a direction incoherent from the pattern formed

by motion in the other windows. Bravo concluded that moving stimuli can be segregated at a

global level, without the need for perceived differences in direction of motion at the boundaries

[Bra98].

The performance of many perceptual tasks can be improved through repeated practice. Ball

and Sekuler reported on the ability to learn direction of motion discrimination. Viewers were

trained every day for approximately 30 minutes. Results showed that learning was specific

to an area within 45 degrees of the trained direction. Effects of training lasted at least 10

weeks [BS87]. Matthews et al. produced a follow-up report that showed training on direction

discrimination transferred to orientation discrimination. However, training on orientation did

not transfer to direction learning [MLGQ99].

3.2.2 Flicker

We are interested in the properties of perceivable intermittent stimulation produced by flick-

ering glyphs. The rate at which flicker occurs in order to perceive a distinct on-off pattern must

be below the critical flicker frequency (CFF). The CFF is influenced by many variables of

the stimulus as well as other human factors, such as age. The luminance value of a stimulus

strongly affects the minimum frequency at which image fusion occurs. Graham reports that

at high luminance levels, CFF is approximately 60 cycles per second (cps). However, under

low luminance conditions, CFF is reduced to approximately 15 cps [Gra65]. Additionally, the
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effects of luminance on the CFF are different when the flickering stimulus is presented in the

periphery versus in the fovea. Under high luminance, the CFF is greater for stimulus in the

fovea than in the periphery. Conversely, with low luminance, the CFF is lower for stimulus in

the fovea than in the periphery [Bro65].

Discrimination of flicker rate is an important task if flicker is to be used in visualization.

Brown discusses several factors that influence our sensitivity to flicker rate discrimination. Lu-

minance affects rate discrimination, in addition to its impact on CFF. Specifically, as luminance

increases, the perceived rate of flicker decreases [Bro65]. Brown also discusses the differential

frequency threshold,∆F/F , which is a measure of the smallest detectable change in flicker

rate∆F for a given baseline rateF . Data was recorded for flicker rates between 8.4 cps and

51 cps. Over this range,∆F/F was found to vary from 0.02 to 0.05, meaning that the rates

of flicker must differ by about 2-5% in order to produce a distinguishable a difference. It was

shown that a flicker rate of 22.5 cps required the largest∆F to produce a visible difference

[Bro65]. Eccentricity, the angle between a viewer’s center of view and a stimulus, also affects

the differential frequency threshold.∆F is generally higher for a stimulus presented in the

periphery than in the fovea [Bro65].

3.3 Motion in Visualization

Motion has been used in visualizations for a variety of purposes. Wright discussed several

ways to use motion to enhance and improve visualizations of capital market data. Animation

was used to let users move around data and zoom in on areas of interest. He also showed that

23



motion can be effectively used to replay changes in data over time. Using motion for play back

purpose increased the amount of Federal bond market information displayed by two orders of

magnitude when compared to a traditional quote screen display. Wright also used motion of a

curve to communicate projected profits and losses [Wri95].

Motion can also be effective at attracting attention in a visualization. Bartram et al. used

simple motion of icons as an alert to users engaged in some visually demanding task. They

found that motion as a notification mechanism is better than a static change of color or shape,

especially when the notification icon appears in the user’s periphery. Less than 2% of alerts

cued by motion were missed versus 6% of alerts in the center of attention and 25% of alerts in

the periphery cued by color. The authors also compared the distraction level of motion cues.

They found anchored motions, e.g. flicker and rotation, to be less distracting than traveling

motions [BWC01b].

Bartram et al. also found that different motion patterns are effective at grouping dissimilar,

spatially dispersed glyphs. For example, glyphs with different colors and shapes that moved in

a coherent circular motion pattern were efficiently separated from glyphs that oscillated. They

also found that two groups of oscillating glyphs could be discriminated from one another most

easily if their directions were separated by at least 16 degrees if the two directions came from

two different quadrants (i.e. the two motions straddled either the x- or y-axis) [BWC01a].

Jesse and Strothotte use simple motion similar to Batram’s. They use three types of motion,

oscillation, rotation, and distortion, in their glyph-based visualizations to convey meaning to

the user. It was shown that moving a glyph, or small subset of glyphs, among a group of static

glyphs effectively brings the moving glyphs to attention. In this way, motion is used as a cue
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for spotting interesting data [JS01].

Motion is also effective at providing a general overview of trends in data. Kerlick used

motion associated with specific shapes of glyphs to communicate information to users. For

example, arrow and dart shaped glyphs moved along the path of a vector field to show the

gradients in the data, while a spherical glyph was deformed to an ellipsoid according to the

values of some tensor field [Ker90].

25



(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Examples of visual searches for color, shape and a conjunction of the two: (a) and (b) show that a
search for a red circle among blue circles is rapid and accurate. (c) and (d) show that a search for a red circle
among red squares is rapid and accurate. (e) and (f) show that a conjunction search for a red circle among blue
circles and red squares is significantly more difficult; target is absent in (e), present in (f).
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Chapter 4

Direction Experiment

Our direction of motion experiment was similar to some of the visual search experiments

described in the preceding chapter. Viewers were asked to rapidly detect if a group of target

elements was moving in a direction different than the background elements. Elements differed

only by direction of motion. Based on the research reported in the previous chapter, we hypoth-

esized that direction of motion could be used in a visualization to help discriminate between

groups of elements with similar values.

4.1 Methods

4.1.1 Design

The stimuli were presented in a 20× 20 grid of square cells inside a window with a black

background. Boundaries between cells were not visible. Each cell contained a single moving

pexel(perceptual texture element) in the shape of a yellow square, with area roughly equal to
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Figure 4.1: Example of pexel movement within a cell. The pexel moves in the direction of the arrows. Starting at
(1), the pexel moves to (2), which is at the edge of a cell. The pexel then ‘jumps’ to (3), where it continues on to
(4). (4) is also at the edge of the cell, so the pexel reappears at (5) and continues on to (6).

one-tenth of the area of a cell. The motion of a pexel was defined by its direction,d, and speed,

s. When a pexel reached the edge of a cell it wrapped back around to the other side of the cell.

See Figure 4.1 for an example of this behavior.

Direction of motion was constrained between0◦ and90◦ counter-clockwise from horizon-

tal, i.e. pexels moved up, right, or up and to the right. The speeds of all pexels were identical

and constant throughout the experiment. The starting offsets within each cell of every pexel

were also identical.

During some trials, a 3× 3 target patch of pexels was present within the field of background

pexels. The target patch moved in the directiondT whereas the background pexels moved in
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(a) (b)

Figure 4.2: An example of two experiment displays on a 10× 10 grid. The vectors extending from each pexel
indicate the direction of motion. (a) no target is present; (b) a target with lower left corner in the third column and
fourth row is present.

the directiondB. When the target patch was present,dT anddB were never equal. Figure 4.2

shows example target-absent and target-present trials on a 10× 10 grid of pexels.

Boundary Between Target and Background Pexels

When adjacent pexels had equal values ford ands, with the same relative starting offset,

the impression of a continuous stream of pexels was created. All pexels reached the edge of

their cells and ‘jumped’ back to the other side simultaneously. The space left empty by one

pexel was filled by an adjacent pexel reappearing in its place. Thus, there was no evidence of a

boundary between pexels.

However, when a target patch was present, a discontinuity at the boundary between back-

ground and target was formed by the difference indT anddB. There were several ways to

handle the transition between background and target patches. One solution was to do nothing.
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Unfortunately, doing nothing produced a noticeable popping when pexels reached the edge of a

cell. Entire pexels were removed and redrawn at new locations when their centers passed over

cell boundaries. This caused the pexels within the target patch to appear to jump around in-

stead of flow continuously. With such a large distraction it was difficult to determine if viewers

would notice a difference in direction or the popping effect first.

A second solution was to gradually fade-out pexels as they approached the edge of a cell

and fade-in pexels as they moved away from an edge. Unfortunately, the changes in luminance

also created a distraction.

A third solution was to create a stencil around the target cells. A stencil can be thought of as

a sheet of paper with a hole cut out. When elements pass under the stencil, only those portions

that are underneath the hole are visible. Our stencil masks out background pexels extending

into the target area as well as target pexels extending into the background area. This created the

effect of pexels gradually disappearing from view. In order to make pexels gradually reappear

on the other side of their cells as they disappeared, multiple pexels had to be drawn in each cell

for some duration. By making pexels appear and disappear gradually, no jumping or change

of luminance distractions were noticeable. We used a stencil around the target cells in our

experiment.

4.1.2 Procedure

Viewers sat in front of an LCD screen at a comfortable viewing distance. Each viewer was

presented with 540 trials in random order. In half of the trials, the target patch was present.

Possible values fordT anddB were 0◦, 10◦, 20◦, 30◦, 40◦, 50◦, 60◦, 70◦, 80◦, and 90◦. Among
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the 270 trials with the target present, every combination ofdT anddB, with dT 6= dB, was

presented three times. The target patch was randomly located within the grid and at least one

row and one column away from the edge of the grid.

For each trial, a viewer was asked to identify whether or not he or she saw a target group

of pexels moving in a direction different than the background field of moving pexels. If the

viewer perceived a target patch he or she pressed a key to indicate ‘present’. If no target patch

was seen, the viewer pressed a different key to indicate ‘absent’. The viewer was asked to

respond as quickly and accurately as possible. Response time and correctness of each trial

were recorded. A one second delay occurred between the time a viewer indicated the presence

or absence of a target and the time the next trial began. During the delay, feedback was given

to the viewer in the form of a green plus sign for a correct response and a red minus sign for an

incorrect response. After every 135 trials the viewer was given an opportunity to take a break

for as long as needed.

Each viewer practiced on 36 trials immediately prior to completing the experiment. 18

practice trials contained a target; the other 18 did not. Among the practice trials with the target

present, each magnitude of difference in direction that would be present during the experiment

was presented twice.

4.1.3 Viewers

Ten viewers participated in the experiment. Some of the viewers were familiar with visual

search experiments, while others did not have any previous experience. All viewers had normal

or corrected-to-normal vision.
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Figure 4.3: Mean error rates,e, with error bars are plotted against angular difference,∆d, for the direction
experiment. Error bars represent±1 standard error.

4.2 Results and Discussion

Performance was measured by mean viewer error rates,e, and response times,rt. Fig-

ure 4.3 showse for each difference betweendT anddB. At an angular difference∆d = 10◦,

viewers responded correctly on only64% of trials. An increase to∆d = 20◦ increased accu-

racy to96%. With ∆d ≥ 30◦ viewers responded correctly on more than98% of trials. An

analysis of variance (ANOVA) on the data shows that the magnitude of∆d had a significant

impact on the accuracy at which viewers could rapidly discriminate between two groups of

elements moving in different directions (F = 108.8, p < 0.0001).

Figure 4.4 showsrt for each∆d. As ∆d increased,rt decreased until∆d = 40◦ where

response time leveled off to between 750 and 800 ms. A∆d ≤ 20◦ producedrt greater
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Figure 4.4: Mean response times,rt, with error bars are plotted against angular difference,∆d, for the direction
experiment. Error bars represent±1 standard error.

than 1 second. An ANOVA on the response time data shows that the magnitude of∆d was a

significant factor in the time it took viewers to respond during the discrimination task (F =

121.3, p < 0.0001).

The results suggest that a target patch of moving pexels can be rapidly and accurately

detected within a field of moving pexels when∆d ≥ 30◦. This confirms research presented

earlier that linear motion can be used to segregate groups of elements effectively. We also found

that viewers did not increase in accuracy or achieve faster response times as they progressed

through the sequence of trials. Furthermore, when∆d ≥ 30◦, rapid and accurate detection is

possible regardless of the specific background direction.
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Chapter 5

Flicker Experiment

The design of our flicker experiment was similar to our direction of motion experiment.

Viewers were asked to rapidly detect the presence or absence of a group of target elements

flickering at a rate different than the background elements. In half of the experiment, elements

differed only by flicker frequency. In the other half, elements differed by flicker frequency and

phase. As with direction of motion, we hypothesized that flicker could be used in a visualiza-

tion to help discriminate between groups of elements with similar values.

5.1 Methods

5.1.1 Design

The stimuli were presented as a 20× 20 grid of yellow square pexels. Each pexel flickered

on and off with frequencyf in cycles per second (e.g. if the target is visible for 100 ms and

invisible for 100 ms, thenf = 5 cps). The duration of ‘on’ and ‘off’ stages were always equal.
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During an ‘on’ stage the pexel was completely visible, and during an ‘off’ stage the pexel was

completely invisible.T is the absolute duration (in milliseconds) of one cycle (e.g.,T = 200

ms in the previous example).

The experiment was comprised of two sub-experiments, coherent flicker and noncoherent

flicker. In the coherent flicker sub-experiment, all background pexels flickered with an iden-

tical frequency and a zero phase (i.e. all pexels blinked on and off at the same time). During

the noncoherent flicker sub-experiment, all background pexels flickered with an identical fre-

quency but random phases (i.e. all pexels blinked at the same rate, but not necessarily on and

off together).

During some trials a 3× 3 target patch of pexels was present. The target pexels flickered at

a frequencyfT whereas the background pexels flickered at a frequencyfB. It was always the

case thatfT 6= fB. In the coherent sub-experiment, target pexels also had a zero phase. In the

noncoherent sub-experiment, target pexels had random phases.

5.1.2 Procedure

Viewers sat in front of an LCD screen at a comfortable viewing distance. Half of the

viewers were presented with the coherent sub-experiment first, while the others were presented

with the noncoherent sub-experiment first. The procedures for both sub-experiments were the

same. During each sub-experiment, each viewer was presented with 192 trials in random order.

In half of the trials the target patch was present. The target was randomly located within the

grid and at least one row and one column away from the edge of the grid. The magnitude of

the difference between between target and background periods was one of 4 values:∆T = 120
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ms (8.33 Hz),∆T = 240 ms (4.17 Hz),∆T = 360 ms (2.78 Hz), or∆T = 480 ms (2.08 Hz).

Among the 96 trials with the target present, each∆T was presented 24 times. The possible

flicker rates of the target varied based on the∆T being presented. With a target periodTT

measured in milliseconds, for∆T = 120 ms,TT ∈ {120, 240, 360, 480}; for ∆T = 240 ms,

TT ∈ {240, 360, 480, 600}; for ∆T = 360 ms,TT ∈ {360, 480, 600, 720}; for ∆T = 480 ms,

TT ∈ {480, 600, 720, 840}. The background pexels flickered with a periodTB = TT ± ∆T ,

except whereTT = ∆T , in which caseTB = TT + ∆T .

For each trial, a viewer was asked to identify whether or not he or she saw a group of

pexels flickering at a rate different than the background pexels. The pexels continued to flicker

until the viewer pressed a key to indicate ‘present’ if the target was seen or another key to

indicate ‘absent’ if it was not. The viewer was asked to respond as quickly and as accurately

as possible. Responses times and accuracy were recorded for each trial. A one second delay

occurred between the time the viewer indicated the presence or absence of a target and the time

the next trial began. During the delay, feedback was given to the viewer in the form of a green

plus sign for a correct response and a red minus sign for an incorrect response. After every 48

trials the viewer was given an opportunity to take a break for as long as needed.

Immediately prior to completing each sub-experiment, the viewer practiced on 32 trials. 16

practice trials contained a target; the other 16 did not. Among the practice trials with the target

present, each magnitude of difference in flicker rate that would be used during the experiment

was presented four times.
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5.1.3 Viewers

Eight viewers participated in the experiment. All viewers participated previously in the

direction experiment described in the preceding chapter. All viewers had normal or corrected-

to-normal vision.

5.2 Results and Discussion

Viewer performance was measured by mean error rates,e, and mean number of visibility

changes,vc, that occurred before a response was made.vc tells us how many times the target

or background switched on and off before the viewer responded.vc was calculated using the

faster flicker rate between target and background,Tbase = min(TT , TB). Given a response time

rt and a periodTbase, the number of visibility changesvc for a single trial was:

vc = b2 rt

Tbase
c

An important point to note aboutvc is that it depends on the minimum of the target and

background periods. Therefore, we plottede andvc versus∆T for trials with the sameTbase.

Figure 5.1 showse for each combination of∆T and Tbase for both the coherent (Fig-

ure 5.1(a)) and noncoherent (Figure 5.1(b)) sub-experiments. Clearly, viewers were more

accurate at detecting the presence of the target when all pexels flickered coherently. View-

ers achieved near perfect accuracy regardless ofTbase or ∆T . ∆T had no significant impact

in e for everyTbase (p > 0.05 for everyTbase). When pexels flickered noncoherently, viewers
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responded incorrectly on more than 50% of trials for mostTbase. Only for Tbase = 120 ms did

viewers respond correctly on more than half of trials for every∆T (i.e., for rapidly flickering

backgrounds or targets). In this case, when∆T ≥ 240 ms viewers responded with near perfect

accuracy.∆T only had a significant impact one for Tbase = 120 ms (p < 0.0001). These

results suggest that whenTbase = 120 ms and pexels flickered noncoherently, viewers needed

∆T ≥ 240 in order to accurately detect the presence of a target.

Figure 5.2 showsvc for each combination of∆T andTbase for both the coherent (Fig-

ure 5.2(a)) and noncoherent (Figure 5.2(b)) sub-experiments. Again, viewers performed better

when pexels flickered coherently. During coherent flickervc was in the range 10-12 when

Tbase = 120 ms, and in the range 2-6 whenTbase ≥ 240 ms. With noncoherent flicker,vc was

in the range 25-48 whenTbase = 120 ms, and in the range 10-35 whenTbase ≥ 240 ms.

Furthermore, when pexels flickered coherently,vc did not vary significantly with different

∆T acrossTbase. ∆T only had a significant impact onvc for Tbase = 360, but the absolute dif-

ference invc in this case was only 1.25. With noncoherent flicker,vc did not vary significantly

across∆T . However,vc differs over∆T for eachTbase by more than 5 forTbase ≤ 360. This

suggests that viewers eventually ‘gave up’ and guessed whether the target was present or not.

The results of this experiment show that a target patch of flickering pexels can be detected

rapidly and accurately regardless of the difference in flicker rate if the target and background

pexels flicker coherently. No significant difference was found between viewers who com-

pleted the coherent sub-experiment first versus viewers who completed the noncoherent sub-

experiment first. Additionally, based on results from our direction experiment, we assume that

viewers did not increase performance in later trials based on early trials.
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Figure 5.1: Mean error ratese are plotted versus target-background period difference∆T for each base period
Tbase. (a) shows results from the coherent flicker sub-experiment; (b) shows results from the noncoherent flicker
sub-experiment.
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Figure 5.2: Mean visibility changesvc are plotted versus target-background period difference∆T for each base
periodTbase. (a) shows results from the coherent flicker sub-experiment; (b) shows results from the noncoherent
flicker sub-experiment.
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Chapter 6

Weather Application

In this chapter we provide the details of a practical application in the meteorological do-

main using simple linear motion and flicker in a glyph-based visualization. We used a data set

recorded by the Intergovernmental Panel on Climate Change over the years 1961 to 1990. The

data set contained average monthly surface climate conditions, such as temperature, precipita-

tion, cloud cover, wind speed, and pressure, measured at1
2

◦
latitude and longitude increments

spanning the entire world.

One of the limiting factors that determines how many sample points can be visualized using

motion is processor speed. In order to achieve acceptable frame rates that give the appearance

of smooth motion, the display needs to be updated at least 15 times per second. With a large

data set, it may not be feasible to update the locations and visibility of all elements in that short

amount of time. In our application, we visualize the Eastern portion of the United States, as far

west as central Texas, which contains approximately 14,000 data points.

One of the strengths of linear motion, found through visual search experiments, is its ability
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to segregate elements into groups. From this we decided to map various climate conditions to

linear motion in order to test its effectiveness in a practical visualization. Our visualization

usedpexels(perceptual texture elements) to represent the values at each sample point of the

data set. Each pexel was in the form of a yellow square, and its position within the display

was given by the latitude and longitude of the corresponding sample point. The process of

mapping an attribute value to the value of a visual feature (e.g. direction of motion) is basically

a binning problem. We chose to use 7 bins so we needed 7 directions of motion (−90◦ to 90◦

in 30◦ increments). An attribute value was then mapped to a bin by comparing its value to the

minimum and maximum values of that attribute. Values in the first quantile were mapped to

−90◦, in the second quantile to−60◦, and so forth.

We first chose to map temperature to linear motion. We expected to see more or less hori-

zontal bands of elements because temperature changes almost uniformly from North to South.

Linear motion did in fact produce this phenomenon. We also mapped precipitation to linear

motion. From this mapping it was easy to see the higher spatial frequency that precipitation

data exhibits, especially during the month of May. We noticed the following effects of linear

motion in our visualization:

• Although it was easy to group similar elements that were near each other, it was dif-

ficult to determine if spatially dispersed clusters of elements were moving in the same

direction.

• Comparison between values of neighboring groups was easy. For example, it was easy

to tell if the direction of one group had a greater slope, and thus a higher value. However,
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it was difficult to determine the magnitude of difference between groups.

• Linear motion was able to present an overall trend to the data. For instance, it was easy to

see that some months are hotter than others because the overall motion pattern of pexels

was upward versus downward.

• Unfortunately, it was difficult to identify pexels with a specific direction of motion, es-

pecially if they were amongst pexels with varying directions. This is because the motion

of a group of neighboring pexels can influence our perception of the direction of another

group of pexels. For example, a small patch of horizontally moving pexels within a larger

field of vertically moving pexels may appear to move diagonally.

Next, we tested the effects of flicker in our weather visualization. With flicker, we must

be concerned with the rate at which the display is updated because the maximum frequency of

flicker that can be produced is1
2

of the display update frequency. For example, if the display is

updated 20 times per second (20 Hz), then the fastest produceable flicker rate is 10 Hz. In order

to avoid aliasing problems (the result of trying to use a frequency greater than the maximum

flicker frequency), we tied the values of flicker in our visualization to the display rate. Thus,

there would never be a case when a high attribute value appeared as a lower value, the result of

an aliasing problem. Given a display rater, the 7 possible flicker rates were,2r, 4r, 8r, 16r,

32r, 64r, and128r, with high attribute values mapped to a fast flicker rate.

One difference between our experimental flicker setup and our use of flicker in a practical

visualization is the appearance of a pexel during its ‘off’ stage. In our visual search experi-

ment, we made the pexel completely invisible. We found this to be somewhat distracting in
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an actual visualization because pexels seem to appear out of nowhere. To remedy this, instead

of disappearing completely, we made pexels blend in with the background, but still be visible,

during an ‘off’ stage.

In testing flicker, we first mapped temperature to flicker. The same bands of elements

with similar temperatures that were seen with linear motion were also seen with flicker. See

Figure 6.1 for an example of this behavior. We also mapped precipitation to flicker and found

that flicker was good at grouping high spatial frequency data. We found that flicker had the

following effects in our visualization:

• The boundaries between groups of pexels were easily distinguishable.

• It was possible to group spatially dispersed clusters of pexels with the same flicker fre-

quency.

• Small clusters of outliers within a larger cluster of elements were quickly noticeable.

• Comparison of flicker rates between groups was easy, although it was difficult to deter-

mine by how much two groups differed.

• It was difficult to identify pexels with a specific attribute value. By using the display rate

as a base for flicker rate, it was impossible to determine, without a full range of flicker

values for comparison, why a pexel blinked at the rate it did. A slow flicker rate could

be caused by either a low attribute value or a slow display rate. Displaying a legend

containing the range of possible flicker rates could help alleviate this problem.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.1: An example of a weather visualization with temperature mapped to flicker. Shown are a sequence of
frames (a-h) depicting the average temperatures for the month of January in Florida and surrounding states.
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Chapter 7

Conclusions and Future Work

Visualizations provide a means to analyze and explore large sets of data. Several techniques

exist to present data visually, including glyph-based visualizations where each glyph encodes

multiple attribute values of a single sample point. The effectiveness of a glyph’s visual features

such as color, form, texture, and density have been studied previously. We were interested in

how simple motion of glyphs could be used in visualizations. We conducted two user studies to

ascertain the properties of direction of simple linear motion and flicker relevant to visualization.

We then applied the knowledge gained from the results of these studies to a visualization of

weather data.

From our first experiment, we found that viewers were able to rapidly and accurately detect

a target group of elements within a background when the direction of the groups differed by

at least 30◦, regardless of the specific direction of any one group. This suggested that when

direction of motion is used as a visual feature, directions of groups with similar values should

differ by at least 30◦, thus giving a maximum of 12 possible direction categories.
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In our second experiment, we found that viewers were able to rapidly and accurately de-

tect a target group of elements that flickered at a rate different than the background elements

only if the phases of all elements were equal. The actual difference in frequency and specific

frequencies of groups were irrelevant for the rates we tested.

Through our experiments and informal analysis of our practical visualization of weather

data we found that direction of motion and flicker can be used to aid the task of discriminating

between groups of elements. It is easy to see where boundaries between groups are located. It

is unclear whether direction of motion and flicker are well suited for the task of identifying the

absolute values of flicker or direction of motion for a particular element. It does seem likely

that viewers are able to compare elements to determine if one has a higher value than another,

such as elementa is blinking faster than elementb, or the direction of elementa is steeper than

elementb. However, further user studies are needed to confirm the conditions in a visualization

under which this may be possible.

Often times a user may want to view several attributes of a multi-dimensional data set at

once. Therefore, a combination of visual features is required to encode the values of attributes.

Previous studies in cognitive psychology have shown the effects of conjunction searches of

motion with color, shape, and stereoscopic depth. We would be interested in using these find-

ings in a visualization setting in addition to conducting further user studies to determine how

simple motion can be combined with other visual features.

Other types and properties of motion may be effective in visualizations and should be ex-

plored further. An obvious property of simple linear motion that could be used is speed of

motion. Research from psychophysics and psychology suggest that the visual system is ca-
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pable of detecting differences in speed. An oscillation motion may also have advantages in

visualization.
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