
ABSTRACT

WAGLE, PRASAD AJIT. Cache Line Boundary Allocation for Garbage Collected Systems. 
(Under the direction of Dr. Edward F Gehringer.)

Garbage-collected systems became increasingly popular with the release of the Java 

programming language. Cache performance of garbage-collected systems has been a heavily 

researched area. Past work has shown that cache-line utilization has been poor in garbage-

collected systems. This work aims to reduce the cache miss rate by aligning objects to cache-

line boundaries during object allocation. Object alignment on a cache line makes that object 

use minimum number of cache lines. This improves the overall utilization of a cache line 

between the time a memory block is brought into the cache and evicted from it. Improved 

cache utilization translates into improvement in total program execution time. Both cache 

performance (cache miss rate) and total execution time is studied on the Java Grande, 

DaCapo suite, Spec JBB2000, Spec JVM98 and soot benchmarks.

The boundary allocation strategy is shown to improve cache performance/execution 

time for most memory-intensive benchmarks. The strategy performs well when implemented 

in the old generation of generational collectors. Boundary allocation in the young generation 

shows only marginal performance improvement. Most objects in the young generation “die” 

very soon. Hence the advantages of alignment do not outweigh the extra work of allocation.

 Performance of a benchmark will improve if fragmentation due to cache line 

alignment is diminished. It is shown that fragmentation depends on the object size 

distribution. Benchmarks that show performance improvement have a denser object-size 

distribution for object size equal to less than half the cache-line size and vice versa. It is also 

shown that fragmentation would decrease (hence performance would improve) with bigger 

cache lines.  
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Chapter 1

INTRODUCTION

 Automatic memory management is one of the biggest attractions of modern object-

oriented languages like Java and C#. On the other hand, languages like C and C++ require 

programmer to manage memory allocation and de-allocation. Such manual memory 

management may cause problems like dangling pointers and/or memory leaks in the 

program. These problems are prevented in garbage-collected systems. But this advantage of 

simplified memory management comes with overheads like application pause time and 

higher memory footprint. 

A garbage-collected system occasionally halts the application program, the mutator, 

to reclaim unused memory on the heap. This reclaimed memory is used to satisfy future 

allocation requests. This results in significant amount of application pause times, which are 

undesirable. Moreover, delaying reclamation of memory until garbage collection is triggered, 

results in a temporary increase of memory footprint. Various garbage-collection algorithms, 

such as incremental collection, concurrent collection and parallel collection, have been 

proposed in the past to reduce these overheads. An incremental collection algorithm 

interleaves mutator work with small segments of collector work. This results in small bursts 

of pause times instead of occasional big pause time, desirable to ensure real-time guarantees. 

In contrast, concurrent collectors schedule a separate collector thread, which runs in parallel 

with the mutator thread without halting the mutator. A parallel collection algorithm, 

commonly used with multi-threaded workloads, spawns multiple garbage-collector threads 
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(usually one for each mutator thread), which does collection work in parallel, thereby 

reducing pause time. Both concurrent and parallel collection algorithms are more commonly 

used on multi-processor/multi-core systems to exploit thread-level parallelism and hence also 

require synchronization to ensure correct execution.

Apart from reclaiming memory, a garbage-collected system spends significant time in 

allocating memory. Some of the metrics that determine efficiency of an allocation policy are 

memory fragmentation, and time spent in allocation code. Allocation policies like bump-

pointer allocation and segregated free-lists have been proposed in the past. The bump-pointer 

policy satisfies memory requests by advancing a “bump-pointer” through an available 

memory chunk. A garbage collector traverses the object graph, marks the live objects and 

copies them to a free memory chunk and reclaims the old memory chunk. This collector is 

called as semi-space collector since it divides the heap space into two spaces: one is used to 

allocate objects and the other is used to copy live objects at every collection. 

On the other hand, a segregated free-list maintains collection of free memory blocks: 

multiple lists, each with blocks of a particular size. An allocation request is satisfied by 

allocating memory from a free-list of block size greater than or equal to the requested size. 

The garbage collector marks the live objects by doing an object graph traversal and returns 

references to unmarked objects (blocks) to the respective free-lists. This collection policy is 

called a mark-and-sweep collection since the collection work is divided into two phases: 

marking of live objects and sweeping of dead objects. The simplicity of a bump-pointer 

comes at a cost of copying live objects at each garbage collection cycle, whereas a segregated 

free-list causes some amount of internal fragmentation.
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Performance of a garbage collection/allocation algorithm heavily depends on efficient 

utilization of the underlying hardware. Past research has exploited temporal locality using 

patterns of access to objects. These access patterns are recorded during the mutator phase, 

and then used to sort live objects during garbage collection so that objects that are accessed 

in succession are located adjacent to each other. With the increasing cache-line size and 

bigger caches, it becomes important to study how these objects are packed in a cache/cache 

line. 

The goal of this thesis is to study the impact of cache-line sharing amongst objects for 

a uni-processor system. An optimization to the bump-pointer allocation policy is proposed: 

Allocate objects such that they span the minimum number of cache lines. For objects smaller 

than cache-line size, ensure that objects are allocated within a cache-line boundary. For 

objects bigger than cache-line size, start the allocation at a cache-line boundary: this ensures 

that an object uses the minimum number of cache lines. This optimization ensures that 

minimum numbers of cache lines are brought into the cache when an object is referenced. 

Moreover it is expected to reduce the amount of false sharing among multi-processor caches. 

However this optimization leads to fragmentation because of object alignment on cache-line 

boundaries. Fragmentation is expected to reduce with increasing cache-line size. 

The experiments study cache performance using Vtune Performance Analyzer for 

existing and proposed allocation strategies with generational garbage collector. Workloads 

from the DaCapo benchmark suite, Spec JVM 98, Spec JBB2000 and Java Grande 

benchmarks are used for evaluation.
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Chapter 2

BACKGROUND

 This chapter introduces the terminology used in this research. Memory allocation is 

discussed in section 2.1. Section 2.2 discusses different garbage-collection algorithms. 

2.1 Memory Allocation

Memory allocation can be performed according to three disciplines: static, stack and 

heap. Static memory allocation happens at compile time and is used for data like global 

variables and constants. Stack memory is allocated at run time and consists of thread-local 

variables, function parameters and function return values. Heap allocation refers to dynamic 

memory allocation of objects that will outlive the activation of the procedure that created 

them, or whose size could not be determined at compile time. This research focuses on 

optimizing heap allocation. There are various ways to manage heap memory, eg., bump-

pointer allocation, free-list allocation, buddy allocation.

2.1.1 Bump-Pointer Allocation

Bump-pointer allocators allocate monotonically increasing addresses.  Each time 

memory is allocated, a pointer is incremented (bumped) past the region that is being 

allocated. This results in a contiguous object layout. The allocator obtains a finite number of 

pages from the virtual memory manager.  These pages constitute a memory chunk. The 

bump-pointer initially points to the start of the chunk and is incremented by object size at 

each allocation. When the chunk is exhausted, a new chunk is obtained. When the heap 
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becomes full, a garbage-collection cycle is triggered in order to free memory. Bump-pointer 

is one of the simplest and fastest allocation algorithms. When allocation can be done from the 

current, chunk, the algorithm is said to use its “fast path.”  The fast path of this algorithm 

executes only a few instructions including a check for chunk exhaustion, bumping the pointer 

and returning an address. The slow path of the allocation sequence checks whether a 

garbage-collection cycle needs to be triggered, requests pages from the memory manager, 

and initializes the bump-pointer. A sufficiently large chunk size can make the fast path a 

common case and improve performance. This allocation algorithm is used with semi-space 

collectors [1]. A semi-space collector divides the heap into two equally sized regions called 

semi-spaces. The allocation algorithm allocates memory in one of the spaces called from-

space (while other semi-space called to-space is kept free). When from-space becomes full, a 

garbage-collection cycle is triggered. The garbage collector compacts the heap by copying 

live objects to to-space and then freeing the from-space. Thus one of the drawbacks of bump-

pointer allocation is that it requires object motion at every garbage-collection cycle. The 

garbage-collection algorithms are explained in the next section.

2.1.2 Free-List Allocation

Free-list allocation operates by connecting unallocated regions of memory in a linked 

list. Each node in the free-list can be of different size. When allocating memory, the 

algorithm searches the free-list for a node big enough to hold the object. When such a node is 

found, it is deleted from the free-list and the address is returned. A garbage-collection cycle 

is initiated when an allocation request cannot be satisfied from the free-list. Memory freed in 

the process is put back on the free-list. The biggest advantage of this scheme is that it does 
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not require moving objects at every garbage collection. However, traversing a free-list at 

each allocation causes a big overhead and deteriorates performance. Moreover, this strategy 

does not collocate successively allocated objects on the heap. This makes it difficult to 

exploit spatial locality.

2.1.3 Segregated Free-List Allocation

Segregated free-list allocation is an extension of the free-list allocation explained in 

the previous sub-section. It maintains different free-lists for different object sizes called size 

classes. When allocating memory for an object, the algorithm requests memory from a free-

list of a size class that is big enough to hold the object. This removes the overhead of 

searching through a free-list common to all size classes. Segregated free-list allocation is 

used with in-place collectors like reference counting and mark-sweep garbage collection 

(explained below).

2.2 Garbage Collectors

Garbage collectors can be classified into two broad categories: object-moving and 

non-moving collectors. A moving collector compact the heap by collocating live objects 

during each garbage collection cycle. This leaves a contiguous free memory region for future 

allocation requests. Semi-space and mark-compact [1] collectors are well known object-

moving collectors. Moving collectors perform very well when the number of live objects 

remaining at each collection cycle is small. The smaller the survival rate, the smaller is the 

overhead of object motion. 
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In-place collectors, on the other hand, use free-lists to manage the heap and avoid 

object motion. At the end of every collection cycle, memory occupied by unreachable objects 

is returned back to the free-list, and can be used for future allocations. Mark-sweep collectors 

and reference counting are non-moving collectors. The overhead of maintaining the free-list 

is reduced if object survival rate is high. 

2.2.1 Reference Counting

The reference count of an object is defined as the number of pointers that reference 

that object. A reference-counting algorithm maintains a reference count for each object. 

When an object is allocated, its reference count is initialized to one. This value is 

incremented when a reference is added to the object and decremented when a pointer to the 

object is deleted or overwritten. When the reference count falls to zero, the object is no 

longer reachable (it becomes dead) and can be collected immediately. Thus the work of 

garbage collection is distributed over the program execution phase. Hence reference counting 

is called as an incremental garbage-collection algorithm.

An advantage of this strategy is that a dead object can be reclaimed almost 

immediately. However the reference-count adjustment during pointer manipulation is an 

overhead. Another disadvantage of this algorithm is that it is not able to reclaim cyclic data 

structures [1].

2.2.2 Mark-sweep Collection 

Mark-sweep garbage collection involves two phases called “mark” and “sweep”. 

Every object has a bit associated with it, to identify if that object is live. Garbage collection 

begins with mark phase: all objects reachable from the root are marked as live. Sweep phase 
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begins after all live objects are traversed. All unmarked objects are now returned to the free-

list. A garbage-collection cycle is triggered when the heap becomes full. Unlike reference 

counting, this algorithm can handle cyclic data structures without any special code. However, 

full-heap garbage collection causes long pause times.

2.2.3 Copy Collection (Semi-Space Collection)

Copying garbage collection organizes the heap as two semi-spaces (from-space and  

to-space). The allocation starts in the from-space. When the from-space is full, garbage 

collection is triggered and live objects are copied to to-space. At the end of garbage 

collection cycle, the roles of the from-space and to-space are reversed. 

Figure 2.1: Semi-space garbage collection: Objects are first allocated in the to-space. When 
garbage collection is triggered, live objects A, B and C are copied to from-space. Objects D, 
E and F are unreachable and hence garbage. Then the roles of from-space and to-space are 
reversed.

To Space

To Space

From Space

From Space

A

BC

D

Root set

A

BC

Root set

F E
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An advantage of copying garbage collection is that it can use faster allocation 

algorithms. Moreover it is a compacting collector i.e. all live data is compacted to the bottom 

of to-space on every garbage collection. Compaction of live data prevents fragmentation. 

However the disadvantage is that twice as much address space is needed. 

2.2.4 Generational garbage collection

Generational collectors are based on the hypothesis that most objects die young [3, 4]. 

Around 65% to 95% of objects in Java programs are short-lived [4]. A generational strategy 

divides the heap into two or more generations: a nursery (or the young generation) and one or 

more old generations. A new object is allocated in the nursery region. When the nursery 

region runs out of space, a garbage-collection cycle is triggered and live objects are copied 

(promoted) to the old generation. The nursery becomes free to satisfy future allocation 

requests.

Generational collection reduces pause times: Shorter collections are performed on 

small nurseries and the full heap is collected less frequently. Unlike semi-space collectors, 

generational collectors do not copy long-lived objects repeatedly at each collection cycle; an 

object once promoted to old generation is not touched during nursery collection. This 

improves virtual-memory performance since the allocator is now working on a small memory 

space: the nursery. References from an object in the old generation to a nursery object are 

remembered as a part of the root set. A root set is defined as set of objects directly reachable 

from the application program (program variables).  
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Figure 2.2: Generational garbage collection: Objects are first allocated in the nursery. 
Objects that survive garbage collection are promoted to old generation. Objects B and C are 
unreachable and hence garbage. Objects D and E are reachable from object A (part of the 
root set for nursery collection). Hence objects D and E are promoted to old generation. The 
nursery becomes free at the end of collection. 

While the old generation does not need to be collected as frequently as the nursery, it 

does occasionally need attention. The old generation can be collected using either a moving 

or in-place collector. This work experiments with reference counting and a semi-space 

collector for old generation.
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Chapter 3

RELATED WORK

 There have been many studies of cache performance of garbage-collected systems 

using heap allocation. Peng and Sohi [6] studied cache behavior for Lisp programs. They 

proposed an ALLOCATE instruction to improve cache performance, which allocates 

memory in a cache without reading it from the memory. 

Reinhold [17] in his research found that sophisticated collectors are unnecessary to 

improve cache performance. He found that programs perform well even with a simple 

generational compacting collector. His studies show that cache performance was best with 

infrequent garbage collection. This stands to reason, because a garbage collection, which 

touches all accessible objects, results in the ejection of many actively referenced objects from 

the cache. However, his research studied only direct-mapped caches, which now are almost 

extinct. 

Generational collectors have very good virtual-memory performance compared to 

other collectors, because only a small memory space (the nursery region) is being recycled 

frequently. This small frequently reused area tends to stay in main memory. Wilson, Lam and 

Moher [5] extended this idea to improve cache performance: A cache miss-rate would 

decline if the entire nursery region fits into the cache. In other words performance is better 

with nursery size less than the cache size. Investigations also revealed that the majority of 

misses in a cache larger than nursery size were conflict misses.
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Zorn [9] studied the impact of various garbage-collection algorithms on cache 

performance. He used trace-driven simulation to analyze four common Lisp programs. He 

found that a generational copy collector increased the cache miss rate by four times over a 

generational mark-and-sweep collector, in a direct mapped cache. Furthermore, the miss rate 

was reduced by up to a factor of five, when a two-way associative cache was used with a 

generational copy collector. 

Chilimbi and Larus [7] proposed a real-time profiling technique that studies the data 

access patterns and allocates objects to extract temporal locality. Such cache-conscious data 

placement guided by profiling runs, improves cache performance. 

Diwan, Tarditi and Moss [8] studied the performance of generational garbage 

collection in ML using various cache configurations. They used the Standard ML of New 

Jersey compiler. The best performance was achieved with a cache that had sub-block 

placement and a write-allocate policy.

Hirzel [10] evaluated the cache and TLB performance for ten different data layouts. 

The objects are sorted during copying garbage collection and outside of garbage collection. 

The layout of objects in old generation after they are sorted is called as a data layout. 

Both Chilimbi [7] and Hirzel [10] have used data access patterns to sort objects and 

hence enhance performance. He concludes that data layouts are important for program 

performance and that almost all layouts yield best performance for some programs and worst 

for others. 

The goal of this thesis work is to evaluate how sharing of cache lines among objects 

affects cache performance. The idea is to allocate objects such that minimum number of 
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cache lines is used for each object. This would reduce the number of cache lines brought in 

when an object is referenced and hence reduce the cache miss rate. This work aims at 

improving cache performance and overall program execution time by allocating objects on 

cache line boundary. Generational garbage collection is used for this study.
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Chapter 4

EXPERIMENTAL METHODOLOGY

4.1 Object Allocation on Cache Line Boundary

The goal of this thesis work is to improve cache performance by reducing the amount 

of cache-line sharing among objects. Sharing of a cache line among objects can be reduced 

by allocating objects on a cache-line boundary: An object should be allocated such that it 

occupies minimum number of cache lines.

Figure 4.1: Object allocation on cache line boundary: A memory region used by a bump-
pointer allocator is shown. Dotted lines are cache line boundaries. The top diagram shows 
regular bump-pointer allocation, which allocates memory space by bumping a pointer by 
object size (shaded in black). The shaded object occupies 3 cache lines. The second diagram 
shows allocation on a cache-line boundary. The grey shaded space is an unallocated region 
called a hole. In this case, an object occupies only 2 cache lines.

0 255191

Bump Pointer

63 127
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This strategy is expected to improve cache performance by reducing the number of 

cache lines brought in to the cache when an object is read. This advantage comes at the 

expense of increased fragmentation, as shown in Figure 4.1. Fragmentation is caused due to 

object alignment on cache line boundary. Alignment is only necessary if an object occupies 

more number of cache lines than required. Such fragmentation could cause extra garbage-

collection cycles and possibly degrade performance.

This thesis aims at evaluating performance of this strategy using a generational 

collector. The first set of experiments use a generational reference counting collector. They 

use a nursery of big enough size (15% of virtual memory size) which is copy-collected. A 

reference counting algorithm is used for the old generation. The allocation optimization is 

employed only for the nursery objects. A bigger nursery is used to delay object promotion, so 

that objects spend more time in nursery where optimization is performed. A second set of 

experiments use a generational copy collector, which, unlike generational reference counting, 

uses a semi-space collector for the old generation. A smaller nursery (less than 1% of virtual 

memory) is used and the allocation optimization is performed only for old-generation 

objects. Smaller nursery size also helps to reduce mutator pause times.

Figure 4.2 compares pseudo-code for the original bump-pointer allocation with code 

for bump-pointer with cache-line alignment. Apart from fragmentation, the strategy has the 

overhead of a few extra instructions in the fast path. These extra instructions include bump-

pointer alignment, calculating number of cache lines used and minimum number of cache 

lines required. To benefit from this strategy, the cache performance improvement from the 

strategy should be greater than the overhead.
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Figure 4.2a: Original Bump Pointer allocation code: Pseudo-code for bump-pointer 
allocation. It includes a check for chunk exhaustion, bump-pointer increment, and return of 
the start address of the allocated memory. The slow path is taken when the chunk becomes 
full.

Figure 4.2b: Bump Pointer with boundary allocation code: Pseudo-code for bump-pointer 
allocation with alignment on cache-line boundary. It includes a check for chunk exhaustion, a 
check for number of cache lines used, alignment of the bump-pointer, bump-pointer 
increment and return of the start address of the allocated memory. The slow path is taken 
when the chunk becomes full.

alloc(int bytes)
{
   if(bytes + bmpPtr > chunkLimit)
        return allocSlowPath(bytes);
  
//   INCREMENT BUMP POINTER

  return oldBmpPtr;

}

ALLOC using original bump pointer allocation

alloc( int bytes)
{
   if(bytes + bmpPtr < chunkLimit)
   {
         if(NUM_CACHE_LINE_USED = = MIN_CACHE_LINES_REQD)

  // increment BUMP POINTER & return OLD BUMP POINTER
        else
        {

  // Align the BUMP POINTER to next CACHE_LINE_BOUNDARY
 // increment BUMP POINTER & return OLD BUMP POINTER

         }
    }
  
   return allocSlowPath(bytes);
}

ALLOC on cache line boundary
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4.2 Virtual Machine

Jikes RVM version 2.4.1 [2] was used for this study. It is a widely used open-source 

research virtual machine whose memory management toolkit (MMTk) [11] provides an 

efficient and extensible framework to implement garbage collection algorithms. MMTk was 

configured for a generational collector using a baseline compiler (compiler that does not 

optimize the byte code). This work uses a generational reference counting collector (GenRC) 

and generational copy collector (GenCopy) for experiments. Fixed-size nurseries were used 

for both configurations [11]. GenRC uses a bigger nursery of size equal to 15% of total 

virtual memory (244MB on the machine used), whereas GenCopy uses a nursery of less than 

1% of virtual memory (< 16MB). The bump-pointer allocation code was modified for cache-

line alignment, as shown in figure 4.2b. Nursery region of the GenRC collector uses this 

modified bump-pointer allocator whereas the reference-counted old generation uses a 

segregated free-list allocator. GenCopy collector uses unmodified bump-pointer allocator for 

the nursery region and the modified code for the old generation semi-spaces. Each 

benchmark was run 6 times in a native x86 Linux environment and the median of execution 

times were used for analysis.

4.3 Benchmarks

The Java Grande benchmarks [12] were chosen because they were readily available 

and stress memory system, bandwidth and processing power. We also used other memory-

intensive benchmarks including the DaCapo benchmark suite [13], Spec JBB2000 [14], Spec 

JVM98 [15] and Soot [18]. Three of the DaCapo benchmarks chart, eclipse and lusearch, 
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were not used because they were incompatible with Jikes RVM at the time research was 

performed. Spec JBB2000 is used for evaluating server-side performance for Java 

applications. It emulates a 3-tier system, the most common type of server-side Java 

application today. Soot is a Java optimization framework used for optimization or 

transformations on Java byte code.

Table 4.1: Spec JVM98 benchmark description [15]
Benchmark Description
_201_compress Modified Lempel-Ziv method (LZW). Basically finds common 

substrings and replaces them with a variable-size code. This is 
deterministic, and can be done on the fly. Thus, the decompression 
procedure needs no input table, but tracks the way the table was built.

_202_jess JESS is the Java Expert Shell System is based on NASA's CLIPS 
expert shell system. In simplest terms, an expert shell system 
continuously applies a set of if-then statements, called rules, to a set 
of data, called the fact list. The benchmark workload solves a set of 
puzzles commonly used with CLIPS. To increase run time the 
benchmark problem iteratively asserts a new set of facts representing 
the same puzzle but with different literals. The older sets of facts are 
not retracted. Thus the inference engine must search through 
progressively larger rule sets as execution proceeds.

_209_db Performs multiple database functions on a memory resident database. 
Reads in a 1MB file which contains records with names, addresses 
and phone numbers of entities and a 19KB file called scr6 which 
contains a stream of operations to perform on the records in the file. 
The program loops and reads commands till it hits the q command.

_213_javac This is the Java compiler from the JDK 1.0.2. 
_222_mpegaudio This is an application that decompresses audio files that conform to 

the ISO MPEG Layer-3 audio specification. The workload consists of 
about 4MB of audio data.

_227_mtrt This is a variant of _205_raytrace, a raytracer that works on a scene 
depicting a dinosaur, where two threads each renders the scene in the 
input file time-test model, which is 340KB in size.

_228_jack A Java parser generator that is based on the Purdue Compiler 
Construction Tool Set (PCCTS). The workload consists of a file 
named jack, which contains instructions for the generation of jack 
itself. This is fed to jack so that the parser generates itself multiple 
times. 
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Table 4.2: Dacapo benchmark description [13]
Benchmark Description
Antlr parses one or more grammar files and generates a parser and lexical 

analyzer for each
Bloat performs a number of optimizations and analysis on Java bytecode 

files
Chart uses JFreeChart to plot a number of complex line graphs and renders 

them as PDF
Eclipse executes some of the (non-GUI) JDT performance tests for the 

Eclipse IDE
hsqldb executes a JDBCbench-like in-memory benchmark, executing a 

number of transactions against a model of a banking application
jython interprets a the pybench Python benchmark
luindex Uses lucene to indexes a set of documents; the works of Shakespeare 

and the King James Bible
lusearch Uses lucene to do a text search of keywords over a corpus of data 

comprising the works of Shakespeare and the King James Bible
pmd analyzes a set of Java classes for a range of source code problems

Table 4.3: Java Grande benchmark description [12]
Benchmark Description
montecarlo A financial simulation, using Monte Carlo techniques to price 

products derived from the price of an underlying asset.
raytracer Measures the performance in pixels/sec of a 3D raytracer.
moldyn N-body code modeling particles interacting under a Lennard-Jones 

potential in a cubic spatial volume with periodic boundary conditions.

4.4 Evaluation Framework

Experiments were performed on stock hardware instead of using a simulator. 

Improvement in wall clock time is used as one of the metrics. Cache-performance numbers 

were obtained by reading hardware counters using Intel’s Vtune performance analyzer [16]. 

Configuration of the machine used for experiment is shown in the table below.
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Table 4.4: Machine configuration
Processor Intel Pentium 4, CPU freq 1.70 GHz.
On-chip L1-cache cache size 8KB, line size 64 bytes, 4-way associative, separate 

instruction and data caches. 
On-chip L2-cache cache size 256KB, line size 64 bytes, 8-way associative, unified 

instruction and data cache.
TLB details 64 entry instruction & 64 entry data TLB, fully associative, 4KB pages. 

4.4.1 VTune Performance Analyzer

The VTune performance analyzer version 9.0 was used in this experiment to measure 

cache performance. It uses low-overhead event-based sampling to read the hardware 

counters. Overhead incurred by sampling is typically less than 5%. Event-based sampling 

interrupts the processor after a certain number of events; this is called as a sample after 

value. Hardware counters are read during this interrupt period. Numbers specific to a process 

are collected and stored in a file. These numbers can be viewed using a module called view. 

VTune is capable of measuring various events relevant to cache performance. This 

work uses an event called L2 Cache Read Misses which is the count of cacheable load 

memory accesses that incurred a miss in L2 cache. This count is a good indicative of cache 

performance due to LOADS to heap memory. Next chapter discusses performance results of 

the boundary allocation strategy.
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Chapter 5

RESULTS

The success of allocation on a cache-line boundary can be measured by diminished 

wall-clock time and reduction in the cache miss rate. L2 cache miss rates were measured 

using Intel’s Vtune analyzer as mentioned in section 4.4. Total execution time is measured 

using separate runs than used for measuring cache miss rate. This avoids the overhead of 

sampling the hardware counters used for measuring cache miss rate. 

The first set of experiments (section 5.1) use a generational reference-counting 

collector with a nursery size equal to 15% of total virtual memory. The boundary allocation 

strategy is used only for young-generation objects. The second set of experiments use a 

generational copy collector. Its nursery size is less than 1% of total virtual memory. 

Experiments were run using nursery sizes between 1MB and 8MB. The boundary-allocation 

strategy is used only for old-generation objects. All experiments are performed on a machine 

with a 256KB L2 cache and a 64-byte cache-line size. 

5.1 Generational Reference Counting collector

The generational reference-counting collector uses a 244MB nursery (15% of virtual 

memory) with a bump-pointer allocator. A total heap size of 900MB is used so that full heap 

collection does not occur. When both the young and the old generations are garbage-

collected, it is called a full heap collection. This thesis aims at improving mutator 

performance by improving cache performing. It does not aim at optimizing garbage-
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collection performance. Hence full heap collection is avoided in all the experiments by using 

a large enough heap.

Figure 5.1: Performance improvement with boundary allocation in nursery: Percentage 
improvement in total execution time and L2 read misses because of boundary allocation 
strategy. This strategy is only applied to young-generation objects. L2 cache of size 256KB is 
used.

Performance improvement because of boundary allocation is shown in figure 5.1. 

Total execution time and L2 read misses are used as performance metrics for comparison. 

The graph has a separate column for each benchmark. The last column shows average 

improvement across all benchmarks.

Average execution time deteriorates as shown in the graph. Also, the average 

improvement in L2 read misses is barely positive. The performance deterioration in 

execution time is because of the overhead of aligning nursery objects on a cache-line 

boundary. Although improvement in cache performance was expected, the results show 

otherwise. To investigate reason for the diminished performance, we look at a metric called 

Survival rate: the average fraction of objects (size) that outlive nursery collection. 

Performance does not improve because of low survival rates of nursery objects in these 
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benchmarks. As shown in Figure 5.2, the average survival rate is around 15%. This means 

that on an average 85% of the objects allocated die “young”—before they can be garbage-

collected. The boundary-allocation scheme can improve performance only if cache lines 

(objects) are brought back into the cache. With only 15% objects surviving, there is less 

probability that a live object would be evicted and brought back into the cache. 

Figure 5.2: Survival Rate of nursery objects with 244MB nursery: The survival rate of 
nursery objects is shown in the figure. Nursery size of 244MB is used. Last column shows 
the average of survival rates across all benchmarks.

Survival rate (Figure 5.2) correlates very well with L2 read misses (Figure 5.1) for 

most of the benchmarks. For example, the hsqldb benchmark from the DaCapo suite has a 

survival rate of around 75%, and shows 23% improvement in L2 read misses. Some 

benchmarks like moldyn that show good survival rate but are not memory intensive 

(allocates only 5MB memory) and hence do not show performance improvement. Apart from 

low survival rate, other parameters that cause performance deterioration are the percentage 

time spent doing garbage collection (% GC time) and number of extra garbage collection 

cycles caused because of boundary allocation (num. extra GC cycles). Extra GC cycles occur 
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because of fragmentation in nursery (due to boundary allocation) which increases the total 

execution time. Nursery collection traverses the live objects and copies them to the old 

generation. An object that gets copied is not re-referenced before garbage collection finishes: 

The cache hit rate is very poor during garbage collection, and boundary allocation can 

improves it only when an object is re-referenced. Hence the advantage of boundary allocation 

dimishes as % GC time rises. 

Table 5.1 compares these parameters for memory intensive-benchmarks. Benchmarks 

that cause extra GC cycle (pmd, bloat and soot) have all shown performance deterioration. 

Pmd spends about 25% of total execution time doing GC and is also the benchmark that 

shows maximum performance deterioration (–3.6%). On the other hand, the montecarlo and 

hsqldb benchmarks that show substantial performance improvement have good survival rate, 

spend little time doing GC and do not cause extra GC cycles. 

Table 5.1: Comparison of parameters like % GC time, GC cycles and survival rate for 
memory-intensive benchmarks. Numbers highlighted in bold cause’s performance
penalty.
Benchmark % Improvement in exec 

time
% GC 
time

Num. extra GC 
cycles

% Survival 
rate

montecarlo 2.84 3.1 0 31
jython 1.59 7.63 0 1.75
hsqldb 2.35 0 0 75.5
pmd 3.6 24.8 1 14.76
antlr 3.25 0 0 7.17
bloat 0.75 2.36 2 1.65

luindex 1.77 7 0 13.28
soot 2.02 10.1 1 10.67
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5.2 Generational copy collector

Figure 5.3: Performance improvement with boundary allocation in old generation: 
Percentage improvement in total execution time and L2 read misses with a boundary-
allocation strategy. This strategy is only applied to old generation objects. L2 cache of size 
256KB is used. Nursery sizes of 1MB and 2MB are used.

This collector uses copy collection for both young and old generations. The 

boundary-allocation strategy is implemented only in the old generation. The generational 

hypothesis states that most of the objects die young. Old-generation objects are less likely to 

die very soon. With higher survival rates for old-generation objects, cache performance is 
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expected to improve. Moreover, nursery collections are more frequent than old-generation 

collection. This forestalls motion of old-generation objects for a longer time than young 

generation objects. Hence for benchmarks that have considerable number of  old generation 

objects, a live object from the old generation is more likely to be re-referenced before 

collection than a live object in the young generation.

Nursery sizes of less than 1% of virtual memory size (1MB and 2MB) are used for 

this experiment. Smaller nurseries are used to reduce the pause times due to nursery 

collection. Also, with smaller nurseries, the old generation will have a larger impact on cache 

performance. As shown in Figure 5.3, better performance is seen with this strategy than when 

boundary allocation was done for the nursery. Although the average improvement in 

execution time is only around 2%, soot and most of the memory-intensive benchmarks in the 

DaCapo suite have improved by more than 4%.  Improvement in L2 read misses correlates 

very well with improvement in execution time. 

Although most of the benchmarks from DaCapo suite perform very well with the 

boundary-allocation strategy, some memory-intensive benchmarks, such as Montecarlo from 

the Grande suite, Spec JBB, and Jython from the DaCapo suite don’t perform very well. To 

investigate reason for the same, allocation behavior of these benchmarks was studied. 
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Figure 5.4: Distribution of object allocation size for benchmarks that perform well in 
total execution time (pmd, bloat and soot). 
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Figure 5.5a: Distribution of object allocation size for benchmarks that perform 
marginally well in total execution time (antlr, hsqldb, luindex).
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Figure 5.5b: Distribution of object allocation size for benchmarks that perform 
marginally well or marginally diminish in total execution time (jython, Spec JBB and 
javac).
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Distribution of object allocation size in the old generation was plotted for each 

benchmark. To plot the distribution, 32 counters were used at a granularity of 4 bytes per 

counter, starting from 0 bytes allocated. For example, when an object of size 24 bytes is 

allocated, counter number 6 will be incremented. All objects with sizes more than 128 bytes 

(32 counters  4 bytes) were counted by the last counter (counter number 32). A nursery of 

size 1MB was used for this experiment. 

The distributions are shown in Figure 5.4 and Figure 5.5. Figure 5.4 shows 

distributions for benchmarks that perform very well in total execution time. Figure 5.5 shows 

distributions for benchmarks that either show marginal improvement or marginal degradation 

in total execution time. The Raytracer and Moldyn benchmarks from the Grande suite, and 

JVM98 benchmarks were excluded from this experiment because they are not memory-

intensive benchmarks.

It can be seen from Figure 5.4 that all benchmarks that perform well have more than 

50% their object allocations less than 28 bytes long (less than half of the L2 cache line size of 

64 bytes). Bloat, Pmd and Soot benchmarks, which improved by more than 5% in total 

execution time, have more than 70% object allocations of size less than 28 bytes. On the 

other hand, it can be seen from Figure 5.5 that benchmarks that have significant numbers of 

allocations larger than 28 bytes show marginal improvement or deterioration in performance. 

For example, Spec JBB has around 67% of its allocations larger than 28 bytes.  
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Table 5.2: Comparison of allocation rates in old generation and objects size distribution
(< 24 bytes) for all benchmarks.
Benchmark Alloc rate in 

old generation 
(MB/sec)

Is Memory 
intensive?

Are more than 30% of 
allocations less than ⅓ cache-

line in size (24 bytes)?
montecarlo 3.05 
raytracer 0.015
Moldyn 0.02
jython 0.2  
hsqldb 2.42  
pmd 0.78  
antlr 1.04  
bloat 0.2  

luindex 0.77  
soot 0.57  
jbb 0.9 
db 0.14

mtrt 0.13
jack 0.12

compress 0.01
jess 0.08

mpeg 0.03

Table 5.2 compares parameters including allocation rate in old generation and object 

size distribution (< 24 bytes) for all benchmarks. All benchmarks with allocation rate above 

0.2 MB/sec are considered memory intensive. All memory intensive benchmarks that have 

more than 30% of allocations less than ⅓ cache-line size perform well.

As discussed earlier, the boundary-allocation strategy helps only if the amount of 

fragmentation caused by object alignment to cache-line boundaries is low. The next section 

shows that fragmentation is greater with larger object sizes. With increased fragmentation, 

the cache can accommodate fewer objects. This will cause extra cache misses and hence 

retard performance.



32

5.3 Probability of Fragmentation 

Let’s assume a cache line size of L bytes is used. Let’s also assume that the bump-

pointer is located X < L bytes past a cache line boundary. Now, when an allocation of B bytes 

is requested, fragmentation would be caused if (B modulo L) > L – X. This is shown in Figure 

5.6.

Figure 5.6: Probability of fragmentation: Address space used for bump-pointer allocation. 
Dotted lines are cache-line boundaries for a line size of L bytes.  The bump-pointer is located 
X bytes past the cache-line boundary, and an allocation of B > L  X bytes is requested. The 
memory chunk shaded in red is fragmentation; allocation begins at the next cache line 
boundary. 

X

Bump Pointer
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The probability that fragmentation will occur when an allocation request of size B is 

initiated is given by Pfrag.

Pfrag = [Prob(occurrence of a particular B & X)  Prob(B modulo L > L– X)]

Prob(B modulo L > L–X) = ( (B modulo L) –1 ) / L

For example, let L = 64 bytes and B = 70 bytes. There are 64 possible values of X, of which 5 

values will cause fragmentation: X = 63, 62, 61, 60, 59 ( (B modulo L) –1 ) = 5.  (These are 

the values of X that would cause the object of size B to span 3 lines instead of the minimum 

number of 2 lines.)

From Figure 5.4 and 5.5, it can be seen that for most benchmarks object allocations of 

sizes more than cache line size (64 bytes) is very less. For B < L, Pfrag is directly proportional 

to B (allocation size) and inversely proportional to L (cache line size). In other words, 

fragmentation would diminish if occurrences of smaller Bs (object sizes) are more probable. 

Performance improves because of boundary allocation if fragmentation is lower. 

Fragmentation should also decrease with increase in cache line size L. Hence according to 

the hypothesis, performance of benchmarks would improve further if bigger cache lines are 

used. 
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Chapter 6

CONCLUSION

The cache-line boundary allocation strategy improves the cache miss rate and hence 

the overall performance of Java applications. Objects are allocated so that the minimum 

number of cache lines is used per object. Hence most of the times with this strategy 

minimum number of cache lines would be brought in to the cache when an object is 

referenced. This improves the over all utilization of a cache line between the time it is 

brought in to the cache and evicted out. Better utilization of a cache line would result in 

improved cache performance. Performance was measured for range of Java benchmarks 

including Java Grande, Dacapo suite, Spec JBB2000, soot and Spec JVM98.

This strategy was first studied with a generational reference counting collector. The 

boundary-allocation scheme was implemented only for the nursery. Results showed only 

marginal improvement or deterioration in wall clock time with this strategy. Consistent 

improvement is not seen because of the poor survival rate: most objects allocated in the 

nursery die very young. Experiments show that on an average, only 15% objects survive 

nursery collections for a heap size of 244MB. Thus 85% of nursery address space is dead 

objects, which are interspersed with 15% live objects. The overhead of aligning these 85% 

short-lived objects shows up as performance deterioration. Performance improvement would 

depend on the number of times a cache line (of an object that is boundary aligned) is re-

referenced and brought back into the cache. 
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Nursery collections happen when the nursery address space is full. The collection 

cycle promotes all the live objects to the old generation. Thus objects allocated towards the 

end of the nursery address space do not have enough time to be re-referenced. They get 

promoted to the old generation prematurely. 

The boundary allocation was then implemented for a generational copy collector. The 

strategy was implemented only for the old generation. This strategy improved performance 

of most of the memory-intensive applications. Execution time improved by around 4% on 

average, and cache miss rate improved by around 10% on average. Survival rate for old-

generation objects is much higher than nursery objects. Execution time improvement for 

benchmarks was as high as 8% (soot), while some benchmarks, such as SpecJBB, show 

marginal performance deterioration. 

Object-size distribution was plotted for old-generation objects to study the reasons for 

performance degradation. It was found that benchmarks performed well if a majority of their 

objects were less than half the size of a cache line. Benchmarks like Spec JBB that showed 

performance deterioration had more than 65% of their allocations of size more than half a 

cache line. It was shown in section 5.3 that for boundary allocation, fragmentation would 

increase with increase in object allocation size. More fragmentation would cause degradation 

in cache performance. 

Section 5.3 also shows that fragmentation would diminish (and hence performance 

would improve) with an increase in cache line size. Cache line sizes have increased in the 

past and are expected to increase in the future. Hence boundary allocation would become 

more important in the future. Future work includes studying the performance of boundary 



36

allocation on symmetric multi-processor (SMP) systems. This strategy is expected to reduce 

conflict misses when used for a multi-threaded workload on a SMP system. It would also be 

interesting to study the impact of boundary allocation on hyper-threaded architectures. In a 

hyper-threaded architecture threads that are scheduled on the same core also share the on-

chip cache. Number of cache line evictions would increase with increase in number of 

threads. Hence boundary allocation is expected to perform better since it aims at reducing the 

number of cache lines occupied by an object. 

It would also be useful to study boundary allocation strategy in combination with 

other works like cache conscious data placement by Chilimbi [7]. This work records the 

access patterns of objects during mutator time. This information is then used to sort objects 

during garbage collection to extract temporal locality.  
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