
Abstract 
BRYKSINA, ELENA ALEXANDROVNA. Assessing the Impact of Strategic Safety Stock 

Placement in a Multi-Echelon Supply Chain. (Under direction of Dr. R. Handfield and Dr. D. 

Warsing) 

 
The objective of this study is to develop prescriptions for strategically placing safety stocks 

in an arborescent supply chain in which there are moderate to severe risks of disruptions in 

supply. Our work builds off of recently published work by Graves and Willems (2003) that 

demonstrates that a simple-to-compute, congestion-based adjustment to supply lead times, first 

developed by Ettl et al. (2000), can be embedded in a non-linear optimization problem to 

minimize total investment in safety stock across the entire supply chain. We are interested in 

investigating how the Graves and Willems (GW) model performs under uncertainty in supply. 

We first propose an adjustment to the model (Mod-GW) by considering two types of fulfillment 

times, a normal fulfillment time jL  and a worst possible fulfillment time jK , which allows us to 

account for supply uncertainty, or disruptions in supply.  We evaluate the performance of GW 

and Mod-GW using Monte Carlo simulation and, using motivation from Timed-Petri Net 

analysis, develop an Informed Safety Stock Adjustment (ISSA) algorithm to compute the 

additional buffer stock levels necessary to improve downstream service performance to the target 

level. We find that the service performance of the Mod-GW solution is most sensitive to the 

probability of disruption at any node in the supply chain, requiring higher safety stock 

adjustments through ISSA as this probability increases. In particular, the relative value of the 

holding costs for components and finished goods—and the resulting impact on where safety 

stock is held in the network—is an important moderating factor in determining the level of 

service performance degradation of the Mod-GW solution as either jp , the probability of 



  

disruption at node j, or j jK L , the ratio of the disrupted and normal lead times, increases (i.e., as 

disruptions exert more impact on the network). The Informed Safety Stock Adjustment algorithm 

generally suggests a sufficient complementary amount to the safety stock.  
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1. Introduction 
The subject of managing risks in supply chains is gaining a significant amount of notoriety in 

Operations Management, Management Science and Operations Research.  A recent issue of 

Production and Operations Management journal (2005, v 14, n 1) was fully devoted to the 

subject.  It is not clear, however, that practicing managers have a sufficiently well-developed 

sense of how to use safety stocks to mitigate risks—stemming both from uncertainty in demand 

and uncertainty in supply—in a manner that is both effective in accomplishing the risk mitigation 

and efficient in not driving down profits.  A College of Management professor at NCSU 

frequently uses the example of a major U.S. auto manufacturer whose risk mitigation strategy 

consisted of mandating that its plants, it suppliers, and its suppliers’ suppliers all carry six 

weeks’ worth of inventory across all items (Blackhurst, 2005).  Clearly, such a “one-size-fits-all” 

approach to risk mitigation is unlikely to be an efficient approach.  On the other extreme there 

are examples where not enough inventory was left in the system to reduce customer response 

times, and increase agility (Parker 2000). Not understanding the use of inventory in buffering 

against uncertainty can leave companies handicapped in the event of a disruption in supply or 

production.  Karpinski (2001) reports that prior to the September 11, 2001, terrorist attacks in the 

U.S., companies did not typically account for the possibility of extensive and/or long disruptions 

in their inventory planning. Thus, there is a definite need among companies to know how to plan 

for disruptions.  

The author’s experience in talking to practicing managers about where to place safety stock 

and at what levels lends support to the notion that the anecdotal examples above are not unique 

and that managers generally are searching for reasonably straightforward, but still effective and 

efficient, approaches to mitigating risks. The existing business literature suggests some 

approaches for risk mitigation that are more general but not mathematically rigorous (Chopra, 

2004; Anonymous, 2003). On the other extreme, there are many complex mathematical models 

that follow very strict assumptions, limiting their applicability in practice (Wee, 2004).  Hence, 

there is a need for a methodology that will balance these two extremes of generality and 

specificity. The desired methodology would, on the one hand, provide a company with some 

guiding principles, but on the other hand, have some analytical rigor supporting those guidelines.  

The rest of the paper is organized as follows. Section 2 outlines the objectives of the study, 

and Section 3 provides a review of the literature that is relevant to this research. Section 4 states 
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the proposed model and methodology, and Section 5 presents our computational experiments, 

analysis, and discussion of the results.  Finally, Sections 6 and 7 provide conclusions and 

recommendations for future research. 
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2. Objectives 
The objective of this study is to develop prescriptions for strategically placing safety stocks 

in an arborescent supply chain in which there are moderate to severe risks of disruptions in 

supply.  Our approach is to take an existing model for safety stock placement in a supply chain 

network (Graves and Willems, 2003), adjust this model to account for disruptions in supply 

and/or production, and develop a simulation-based, algorithmic approach to modifying it further 

where necessary.  The “where necessary” portion of the previous sentence leads us to generate 

the strategic prescriptions for safety stock placement.  
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3. Literature Review 
In this section we would like to present different supply chain modeling methods that are 

available today. Since our model, presented later in the paper, is a combination of two distinct 

modeling techniques we feel that it is beneficial for the reader to have an overview of the work 

done in the past in the area. 

3.1 Comprehensive Supply Chain Models 
Quantitative models for supply chain management can be grouped into three broad classes:  

analytical performance models, simulation models, and optimization models (Tayur, 1999).  A 

comprehensive overview of existing tools and techniques used to solve supply chain problems is 

presented by Hicks (1997). 

3.1.1 Analytical performance models 
Models of supply chains in stochastic environments typically consider the network as a 

discrete-event, dynamic system. Such systems can be studied as Markov chains, stochastic Petri 

nets, or queuing network models (Raghavan, 1998; Viswanadham, 1992). Malone and Smith 

(1988) have looked at organizational and coordination structures, which constitute a key element 

of any business process. Raghavan and Viswanadham (1998) discuss performance modeling and 

dynamic scheduling of make-to-order supply chains using fork-join queuing networks. 

Viswanadham and Raghavan (1998) compare make-to-stock and assemble-to-order systems 

using generalized stochastic Petri net models. They also use integrated queuing and Petri net 

models for solving the decoupling point location problem - i.e., the point (facility) in the supply 

chain at which all finished goods are assembled to confirmed customer orders. 

3.1.2 Simulation models 
The models discussed above are highly abstracted models of business processes that require 

significant simplifying assumptions to allow their formulation and solution. To obtain a very 

accurate and detailed model, one has to represent many realistic features, which may only be 

possible through the use of a simulation model. Simulation models for supply chain decision 

making have become prevalent in the literature in recent years. Examples of such studies can be 

found in Malone (1987), Connors et al. (1996), and Feigin et al. (1996). A “combination study,” 

of sorts, is presented by Bhaskaran and Leung (1997), who describe re-engineering of supply 
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chains using queuing network models and simulation.  Feigin et al. (1996) have looked into 

enterprise modeling and simulation in an object oriented environment.  Similar work has been 

done by Mujtaba et al. (1994) and Chu (1997). Swaminathan et al. (1997) built-on the work of 

Mujtaba et al. (1994) and Chu (1997) by using a set of generic objects representing various 

supply chain entities. Using a generic object-based agent framework, they demonstrate how 

software objects can be used to build simulation models for a variety of supply chain networks. 

 3.1.3 Optimization models 

One major focus area of supply chain optimization models is to determine the location of 

production, warehousing, and sourcing facilities, and the paths the products take through them. 

These methods provide models mostly for strategic and strategic/tactical levels. One of the 

earliest and most often cited works in this area is that of Geoffrion and Graves (1984). They 

describe a mixed integer programming model for determining the location of distribution 

facilities. Along similar lines, Cohen and Lee (1988, 1989) consider global manufacturing and 

distribution networks and formulate mixed integer optimization programs.  

Another significant portion of the supply chain literature consists of multi-echelon inventory 

control models. A comprehensive review of these models can be found in Vollman et al. (1997). 

These methods generally deal with operational or tactical/operational levels. Such multi-echelon 

inventory models have been successfully implemented in industry.  For instance, Billington and 

Lee (1993) develop a multi-echelon inventory model to reflect the decentralized supply chain 

witnessed in Hewlett-Packard’s DeskJet printer supply chain. They develop a single-stage base-

stock model that uses target service levels as its inputs. They develop a single-stage, base-stock 

model that uses target service levels as its inputs. Their model is a tractable approximation that 

can be expanded into multiple stages. Ettl et al. (2000) take the work of Billington and Lee and 

put it in an optimization context where the goal is to minimize the overall inventory capital and 

guarantee the customer service requirements. 

3.2 Models for Safety Stock Placement 
Our work builds most directly off of recently published work on developing effective 

heuristically-based computational rules for placing safety stocks in arborescent supply chains 

subject to uncertainty in demand and, in essence, congestion in supply.  Most recently, Graves 

and Willems (2003) demonstrate that a simple-to-compute, congestion-based adjustment to 



 6

supply lead times, first developed by Ettl et al. (2000), can be embedded in a non-linear 

optimization problem to minimize the total investment in safety stock across the entire supply 

chain.  The motivating work behind these approaches was done by Lee and Billington (1993). 

While finding the inventory-minimizing safety stock levels based on the lead-time-inflation 

heuristic of Ettl et al. (2000) can provide some insights into safety stock placement, it makes two 

assumptions that we consider to be restrictive and not sufficiently reflective of the real value of 

risk mitigation as viewed by many practitioners—especially in the wake of the 9/11 terrorist 

attacks, which not only crippled supply chains for a brief period of time in 2001, but more 

importantly, caused managers and supply chain academics alike to consider the importance of 

the “resiliency” of a supply chain to minor, moderate, or major disruptions in supply.  The two 

restrictive assumptions are (1) that “nominal” supply lead time at each node is a constant 

(although congestion-based lead time is a random variable) and (2) that unmet demand in a given 

period is either fully backlogged or fully lost. In this thesis, we focus only on relaxing just first 

restrictive assumption. Relaxing the second assumption is left for future research. 
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4. Model and Methodology 
We use the Graves and Willems (2003) model as our base model and modify it to better fit 

our research. The Graves and Willems model follows a periodic review policy. In our 

implementation, inventory is reviewed every period. Each stage of the supply chain operates 

according to a base-stock policy, placing a replenishment order on its suppliers equal to the 

observed demand each period. The suppliers have no capacity constraints. The model assumes 

that per-period demand has mean µ, and standard deviation σ. The demand is stationary and 

independent for non-overlapping periods. The goal of the model is to determine the inventory 

level at each node of the supply chain to meet a target service level—i.e., a target probability of 

not running out of stock before replenishment arrives. The target service level for the external 

customer is an exogenous variable dictated by the market. The service targets for the internal 

customers are decision variables in our optimization context. 

4.1 Base Model (Graves and Willems Model) 

Our supply chain network is defined as a graph ( ),G N E= , comprised of a set of nodes 

{ }1, ,N n= K  and edges (arcs) ( ){ }, : , ,E i j i j N i j= ∈ ≠ .  Figure 1 shows the generic, n – node 

supply chain, where node 1 ( 1n ) is the final customer, and inventory iI is controlled by node in . 
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Figure 1 – Generic n-node Supply Chain 
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We define the nominal amount of time required by any node j to fulfill an order as the 

fulfillment time, which we denote by jL , and we denote the replenishment time of node j by jτ .  

Thus, as indicated by Graves and Willems (following the model of Ettl et al. 2000), the worst-

case replenishment time of node j is  

 
( )

{ }max

: ,
max ,j j ii i j E

L
∈

= +τ τ  (1) 

but the expected replenishment time can be expressed as 

 
( ): ,

,j j ij i
i i j E

E L L
∈

  = +  ∑τ π  (2) 

where ijπ  is the probability that supply node i causes a stock-out at j and can be estimated using 

expression (3.4) in Graves and Willems (2003), which comes originally from Ettl et al. (2000).  

Using these expressions—and assuming that demand over the replenishment lead time at each 

node j is normally distributed with mean j jE   µ τ  and standard deviation j jE   σ τ — leads to 

a relatively straightforward non-linear optimization problem to minimize the total investment in 

safety stock across the network.  Specifically, that optimization problem is as follows:  

 min ( ) ( )
1 j

N

j j j j jk
j

C h E k z k z dzσ τ φ
∞

=

  = + −    ∑ ∫ , (3) 
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subject to   
( )1

1k α−= Φ , 
 

where α  is the target service level at the final customer, Φ is the standard normal cdf, φ is the 

standard normal pdf, ih  is the annual inventory holding cost at node i, and the other parameters 

are as defined above.  The safety stock factors ik  ( 2, ,i n= K ) are the decision variables. 

4.2 Methodology 
We are interested in investigating how the Graves and Willems (GW) model performs under 

uncertainty.  The model presented above addresses only one aspect of variability, demand 

uncertainty. We are curious to know how the GW model will perform once supply variability is 

added to the environment. We anticipate that the above model will not yield the desired results 

when both types of uncertainty are present. We say the model performs well if the target service 

level is reached at the final node.  By considering two possible fulfillment times, a normal 

fulfillment time jL  and worst possible fulfillment time jK , we can account for supply 

uncertainty, or disruptions in supply. Our supply disruption model is fully discussed in Section 

4.3.  Finally, if accounting for disruptions by modifying fulfillment times is not sufficient, we 

propose an Informed Safety Stock Adjustment (ISSA) algorithm, addressed in Section 4.4, to 

bridge the gap between the actual and the target service levels.  

To accomplish our research goal we propose to use Monte-Carlo simulation. Simulation can 

assist us in creating a model of the operation of the supply chain and allow us to conduct a series 

of numerical experiments to gain better understanding of the behavior of the chain under supply 

uncertainty, and more importantly, a better understanding of where additional need of safety 

stock is needed. We compute modified base-stock levels by altering the GW model to account 

for supply uncertainty—resulting in what we call the Mod-GW model—and finally, we apply 

our ISSA algorithm.  

We designed our simulation model in Visual Basic. The model simulates 1000 periods of a 

given chain operations and uses 10 runs to obtain average results of the key performance 

measurements. The inputs for the model are the fulfillment times, annual holding costs, 

probability of a disruption at each node, and the solutions for the base stock levels from the 

Graves and Willems model.  The outputs from the simulation are average service level for each 

node, average ending inventory at each node, average fill rate for each node, average disruption 
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count for each node, average number of times a downstream node was impacted by a disruption 

at an upstream node, average disruption length at each node, and average disruption length 

experienced by a downstream node as a result of a disruption at an upstream node. 

4.3 Modeling Supply Chain Disruptions (Modified Graves and Willems Model) 

Recall that jj LK >  is the “worst-case” fulfillment lead time (i.e., the “disrupted” lead time) 

for node j, and let jp  be the probability that node j is disrupted in any period t.  Since expression 

(2) above is itself an estimate, we merely extend the estimate further by using ( )1 j j j jp L p K− +  

in place of jL ; solving objective function (3) with this update yields the Mod-GW solution. 

For the purposes of our Monte Carlo simulation, we define the disruption state in period t of 

node i to supply node j as 

 
( )
( ), ,

1  if ,  supply is disrupted in period 

0  if ,  supply is not disrupted period .i j t

i j t
DS

i j t

= 


 (4) 

Let tjr ,  be the “remaining disruption time” in period t of node j.  When a disruption occurs, tjr ,  

will initially be assigned the sampled value of a random variable describing the disruption time, 

denoted by iiDT , , which follows a probability distribution defined on the interval 1, j jK L −  .  

For each succeeding period, tjr ,  will decrease by one unit, until it reaches zero.  In addition, an 

order placed on node j by node i at any period t is fulfilled with lead time tjj rL ,+ . 

Thus, the sampling process to determine if a node i is disrupted from supplying node j in a 

given period t is as follows: 

for i = 1 to n 

 , , 0i j tDS =  

% start by assuming node i will be “up” this period 

 for all j such that ( ),i j E∈  

  { }1,0max ,, −= titi rr  

      % remaining disruption time decreases by one, or disruption is over 

  if , , 1 0i j tDS − =  then 
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      % if node i was “up” last period, then draw to determine if node i is to be  

% disrupted this period 

  Sample p = RAND() 

  if ip p≤  then 

   , , 1i j tDS =  

   Sample tir , from the distribution of ,i jDT  

         % node i will be “down” for the succeeding tjr ,  periods 

  end if 

  else 

   if 0, >tir  then , , 1i j tDS =  

% if node i was “down” last period, then it stays down if 0, >tir  

  end if 

 next j 

next i 

4.4 Computing Disruption Impact on Supply 
Developed by Carl Petri in the 1960s (Petri 1962), the Petri net is a mathematical modeling 

tool used to graphically represent and analyze complex systems. We can model our supply chain 

as a Petri Net. The particular aspect of Petri net modeling that we are interested in modifying is 

reachability analysis. As ground work for our development, we use the type of reachability 

analysis described by Blackhurst et al. (2004), which is used for analyzing the impacts of supply 

uncertainty on the ability of a supply chain to deliver product after an unexpected event occurs. 

Though we use the reachability analysis of Blackhurst et al. (2004) as motivation, we introduce 

time elements and measure the impact of each disruption on the downstream nodes in terms of 

time units. We describe this process as timed reachability analysis (TRA). 

Let us define ( ) ( ){ }, , , , , : , , , ,j
i mP i k l m N i k l m E= ∈ ∈K K  as the jth path from node i to m, 

where a path is a sub-set of E that represents a sequence of arcs leading from node i to m, such 

that the ending node in the preceding edge is the first node in the consequent arc. Further, we 

define miPcount ,  to be the number of paths leading from node i to node m. Let 
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 
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, 

 
 where n N= , be a matrix whose elements ijST  represent the number of times node i was out of 

stock due to a disruption at an upstream node j, and let  

 

 

11 1
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DL

DL DL
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be a matrix whose elements ijDL  represent the total number of periods node i was out of stock 

due to a disruption at an upstream node j. We also define the disruption recovery state at node j 

at time t as 

0
1

0
0

0
1

1,

1,

,

,
, =

=
=
=





=
−

−

tij

tij

tij

tij
tij DS

DS
and
and

DS
DS

if
if

DR  

Finally, let tjI ,  be the inventory on hand at node j in period t.  

4.4.1 Timed Reachability Analysis Algorithm 
TRA estimates the extent of the downstream delay caused by an upstream disruption in the 

supply chain and determines the degree of impact on the upstream node by each of the 

downstream nodes.  The information from the timed reachability analysis could be used to make 

informed adjustments to our analytic computations of safety stocks.   

Our algorithm for TRA is as follows: 

For i = 2 to n 

      For 1=k  To imPcountk =  

 For j = 1 To  j = k
imP , where k

imP  is the number of elements on path k
imP  

% Starting with the fist node, first path, and the first node on the path cycle through  

% all nodes, all paths for each node, and all nodes on each path 

       If ThenDROrDS tijtij 11 ,, ==  
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  If ThenI tj 0, =  

       1,1 =+ tijDS  

% Disruption state is in effect at the next down stream node when there is a disruption  

% state or disruption recovery state at the node upstream and when 0, =tjI  at the  

% upstream node 

        If ThenDSandDS tijtij 10 ,1, ==−  

   1+= ijij STST  

% Increment ijST  by 1 only one time for each node  

        End If 

        1+= ijij DLDL  

% Disruption length is incremented each time there is a disruption at the node or any  

% upstream nodes 

  End If 

       End If 

       If  j = 1       Then 

  If Thenr ti 0, =  

         

ijii

tii

tii

Ltimedc
DR
DS

+=

=

=

1
0

,

,

 

  End If 

% If a node is the node where disruption occurred then 0, =tiiDS  when 0, =tir , and  

% disruption recovery state begins ( 1, =tiiDR ) 

  If Thendctime ii=  

          
0

0,

=

=

ii

tii

dc
DR

 

  End If 

       End If 

% 0, =tiiDR  when the regular fulfillment time elapses  
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       If j >1       Then 

        If ThenIAndDS tjtij 01 ,, >=   

           

1

,

,

1

0

++=

=

=

jjij

tij

tij

Ltimedc

DR

DS

 

  End If 

% For all other nodes 0, =tijDS  when inventory 0, >tjI  

  If Thendctime ij=  

            
0

0,

=

=

ij

tij

dc

DR
 

  End If 

% 0, =tiiDR  when the regular fulfillment time elapses  

       End If 

 Next 

      Next 

Next 

4.5 Informed Safety Stock Adjustment Algorithm (Adjusted Modified Graves and Willems model) 
The information of interest from the timed reachability analysis is the impact of a disruption 

at any upstream node on the final node ( 1n ).  This is measured by the number of periods the final 

node’s demand is not met due to a disruption at any upstream node.  The impact serves as an 

input to a linear optimization problem, where the objective is to minimize total cost of the 

additional buffer inventory while also ensuring that the supply chain achieves the desired service 

level at the final node.    

We define iSL  as the service level at node i (an output from the simulation) and T as the 

simulation time (i.e., the number of periods run in the simulation).  Then, the LP to find the 

inventory adjustment levels is as follows: 

  1

2 1

min
n

i i i i

i i

h DL x
ST

µ
=
∑       (5) 

subject to 



 15

  ( ) ( )TTSLDLxDL
n

i

n

i
iii α−−









−=∑ ∑
= =

11,max
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            0 1ix≤ ≤ , 1, ,i n= K  
 

The solution to this LP, ( )nixi ,...1= , is computed in Excel Solver and is used to compute the 

additional inventory, 1 1/i i i i iA x DL STµ= , that needs to be added to the base stock at node i 

( 1,...i n= ). The base stock adjustment is performed manually. 

5. Computational Experiments, Findings and Discussion  
We applied and tested the methodology described above on two supply chain networks, a 

smaller one containing four nodes and a larger one containing eight. The smaller network was 

used for extensive sensitivity analysis and for deriving prescriptions for safety stock placement 

under different scenarios. The larger network was used to verify the scalability of our approach 

and to determine whether the findings from the analysis of the small network hold for the larger 

system.   

Our experiments fall into two categories. The first is a traditional sensitivity analysis where a 

number of parameters are increased and/or decreased one-at-a-time by a set increment. The 

second is a scenario analysis where we vary either one or more factors, not in increments but 

once to a larger or smaller value. For each scenario, we compare three different solutions. First, 

the base stock levels are computed via the original Graves and Willems (2003) model (GW). 

Second, the base stock levels are computed via the modification to the Graves and Willems 

model that we discuss in Section 4 (Mod-GW). Finally, the base stock levels are adjusted when 

needed through the Informed Safety Stock Adjustment (ISSA) process also described in Section 

4. The parameters we vary in both the sensitivity and scenario analyses are holding cost ih , 

normal fulfillment time iL , the worst case fulfillment time iK , and probability of a disruption ip .  

5.1 Small network experiments and analysis 
The four-node supply chain that is the focus of our small-network experiments is shown in 

Figure 2. For this supply chain network, N = {1,…,4} and ( ) ( ) ( ){ }1,2,2,3,2,4=E . 
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Figure 2 – Four Node Supply Chain 

 
 

The base case for our experiment is shown in Table 1. We require the service level at node 1 

to be 95%, meaning that ( ) 645.195.01
2 =Φ= −k . The service level requirements for the upstream 

nodes serve as a decision variables. If the system achieves the service level that falls in a 95% 

confidence interval around 0.95α = , we say that the system performs up to expectations.    

Table 1 – Network Parameters for the Base Case Experiments 

Node iL  iK  ip  ih  jµ  jσ  

2 1 2 1% 10 200 30 
3 3 10 1% 1 200 30 
4 3 10 1% 1 200 30 

5.1.1 Sensitivity Analysis Results 
We are interested to know how a small change in each of the parameters affects the system 

performance, and when the system goes from performing below expectations to achieving the 

target service level. To answer these questions, we use sensitivity analysis. We change each of 

the parameters in small increments and simulate the system performance for each change. For 

the base stock calculation, we use the Mod-GW model. Figures 3 through 6 summarize our 

results. The black dots represent the target service level. The white squares are the simulation 

results. The vertical lines represent a 95% confidence interval. 
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Figure 3 – Service Level vs. Ratio between Normal Fulfillment and Worst Possible Fulfillment Times at node 
3 
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Figure 4 – Service Level vs. Ratio between Annual Holding Cost at Node 3 and Node 2 
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Figure 5 – Probability of Disruption at Node 3 vs. Service Level 
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Figure 6 – Probability of Disruption at Node 2 vs. Service Level 
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The naïve interpretation of Figure 3 is that as the normal fulfillment time increases, the 

system performs better. However, remember that when we vary normal fulfillment time our 

worst case fulfillment time stays the same. Therefore, the results from Figure 3 should be 

interpreted as follows:  As the gap between the normal fulfillment and worst fulfillment times 

shrinks, the system performs better. The same analysis can be made for the results presented in 

Figure 4. As we increase annual holding cost for node 3, the holding cost at node 2 remains the 

same. Therefore, as the costs difference between nodes 2 and 3 shrinks, the Modified Graves and 

Willems model suggests more safety stock being placed downstream at node 2. Also notice that 

the simulation results display a relatively large standard error; longer simulation runs may be 

necessary to allow us to achieve more stable system performance.  (For more detailed data the 

reader is referred to Appendix I.)   

5.1.2 Scenario Analysis Results 
Similar to the sensitivity analysis, we compare the GW, Mod-GW, and ISSA solutions, but in 

this case, across various combinations of changes in the base case parameter values.  Table 2 

below summarizes the results obtained for the base case. 
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Table 2  - Base Case Results, Four-Node Supply Chain 

 Base Stock Levels Node 1 Service Level Node 1 Fill Rate 

  Node 2 Node 3 Node 4 Mean Std. Dev. Mean Std. Dev. 
GW 296 694 694 91.50% 2.09% 93.10% 2.00% 
Mod-GW 299 709 709 92.90% 1.80% 94.30% 1.80% 
ISSA 299 1233 709 94.50% 2.19% 95.80% 2.00% 

 

By observing the results from the base case, it is easy to notice that ISSA algorithm has 

suggested placing additional safety stock only at node 3. Recall that there is no difference 

between node 3 and 4 from the parameters stand point; thus, we believe the linear programming 

problem used in ISSA could have alternate optimal solutions, and we suspect that the system 

would perform equally well if the additional safety stock for node 3 were spread equally between 

nodes 3 and 4. Table 3 summarizes these results and confirms our hypothesis.  

Table 3 – Base Case Results, Four-Node Supply Chain (additional Safety Stock for node 3 is split evenly between 3 
and 4) 

 Base Stock Levels Node 1 Service Level Node 1 Fill Rate 

  Node 2 Node 3 Node 4 Mean Std. Dev. Mean Std. Dev. 
Mod-GW 299 709 709 92.5% 2.5% 93.7% 2.1% 
ISSA 299 1233 709 94.5% 2.19% 95.8% 2.0% 
ISSA Manual 299 971 971 94.0% 2.1% 95.5% 1.7% 

 
We now analyze the system performance as various problem parameters are changed one-at-

a-time, and then in conjunction. Table 4 below summarizes the results for scenarios where the 

one of the parameters was changed from the base case value. (More extensive tables of the 

results can be found in Appendix I.) 
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Table 4 - Additional Scenario Results 

  Base Stock Levels Node 1 Service Level Node 1 Fill Rate 
Scenario   Node 2 Node 3 Node 4 Mean Std. Dev. Mean Std. Dev. 

GW 304 1345 693 93.8% 1.20% 95.4% 1.1% 
Mod-GW 307 1354 708 94.6% 2.1% 95.9% 2.0% 

2a ( )3 6L =  

ISSA 307 1717 708 95.8% 2.61% 96.8% 2.5% 
GW 549 655 613 94.9% 2.81% 95.7% 2.6% 
Mod-GW 556 670 628 95.4% 1.9% 96.3% 1.7% 

2b ( )4 5h =  

ISSA 556 670 628 95.4% 1.9% 96.3% 1.7% 
GW 296 694 694 71.1% 4.91% 75.4% 4.3% 
Mod-GW 301 847 709 77.5% 5.4% 81.3% 4.8% 

2c ( )3 0.10p =  

ISSA 301 1488 800 91.6% 2.83% 93.8% 2.3% 
GW 296 694 694 85.8% 1.93% 90.5% 1.7% 
Mod-GW 321 708 708 85.3% 3.4% 91.0% 2.9% 

2d ( )2 0.10p =  

ISSA 464 1406 1422 98.5% 1.12% 99.2% 0.7% 
 

Further, we looked at how the experimental parameters interact with each other by changing 

them in conjunction with each other. Table 5 summarizes our findings. More extensive tables of 

the results can be found in Appendix I.  

Table 5 – Scenario Analysis ( )jj handL  

 
 Base Stock Levels 

Node 1 Service 
Level Node 1 Fill Rate 

Scenario 
  Node 2 Node 3 Node 4 Mean 

Std. 
Dev. Mean 

Std. 
Dev. 

GW 313 1345 1345 95.60% 1.99% 97.00% 1.50% 
Mod-GW 315 1353 1353 95.10% 1.50% 96.70% 1.30% 

3a ( )643 == LL  

ISSA 315 1353 1367 96.20% 1.70% 97.50% 1.20% 
GW 558 1307 614 96.90% 1.21% 97.50% 1.00% 
Mod-GW 564 1316 628 96.50% 1.60% 97.30% 1.30% 

3b ( )5;6 43 == hL  

ISSA 564 1316 628 96.50% 1.60% 97.30% 1.30% 
GW 875 1205 600 98.40% 0.86% 98.80% 1.80% 
Mod-GW 887 1213 614 98.60% 1.00% 98.90% 0.90% 3c

( )
( )5

6

43

3

==
=

hh
L

 

ISSA 887 1213 614 98.60% 1.00% 98.90% 0.70% 
GW 1110 1200 1200 99.90% 0.15% 100.00% 0.00% 
Mod-GW 1118 1208 1208 100.00% 0.10% 100.00% 0.10% 

3d
( )
( )5

6

43

43

==
==

hh
LL

 

ISSA 1118 1208 1208 100.00% 0.10% 100.00% 0.10% 
GW 685 600 600 96.20% 1.97% 96.90% 1.80% 
Mod-GW 698 614 614 96.70% 1.00% 97.20% 0.90% 

3e ( )543 == hh  

ISSA 698 614 614 96.70% 1.00% 97.20% 0.90% 
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Table 6 – Scenario Analysis ( )jjj Kandph ,,  

 
 Base Stock Levels 

Node 1 Service 
Level Node 1 Fill Rate 

Scenario 
  Node 2 Node 3 Node 4 Mean 

Std. 
Dev. Mean 

Std. 
Dev. 

GW 549 655 613 80.20% 3.21% 83.60% 2.70% 
Mod-GW 554 810 629 84.30% 4.40% 87.30% 3.90% 

4a 
( )10.0;5 34 == ph  

ISSA 554 1296 629 94.40% 2.40% 95.90% 1.80% 
GW 558 1307 614 90.10% 2.88% 92.90% 2.60% 
Mod-GW 567 1392 628 94.10% 1.90% 95.90% 1.50% 

4b 
( )
( )10.0;5

6

34

3

==
=

ph
L  

ISSA 567 1565 628 96.60% 2.20% 97.60% 1.90% 
GW 296 694 694 77.80% 3.10% 82.20% 2.60% 
Mod-GW 370 705 705 80.90% 3.30% 86.10% 2.50% 

4c 
( )4;10.0 22 == Kp  

ISSA 656 1370 1440 97.00% 1.00% 98.30% 0.60% 
GW 277 706 706 83.90% 2.10% 88.40% 2.20% 
Mod-GW 301 720 720 84.20% 2.70% 89.20% 2.60% 

4d 
( )15;10.0 22 == hp  

ISSA 443 1518 1496 97.70% 1.10% 99.50% 0.50% 
GW 277 706 706 77.20% 3.60% 81.10% 3.20% 
Mod-GW 348 718 718 79.30% 4.10% 84.80% 3.20% 

4e  
( )
( )4;15

10.0

22

2

==
=

Kh
p  

ISSA 651 1374 1457 96.30% 1.00% 98.00% 0.70% 
 

From scenarios 3a through 3e, we conclude that the system performs well under Mod-GW as 

the ratio of the disrupted fulfillment time to the normal fulfillment time ( j jK L ) decreases (i.e., 

as j jL K  approaches 1 from below, per Figure 3) and/or as the upstream holding cost increases 

relative to the downstream holding cost.  As the probability of disruption increases at any node, 

however, the system performs well below the expectation level, and the ISSA is needed to adjust 

for that. In certain cases such as in Scenarios 4a through 4e, the ISSA suggests too much of 

safety stock and forces the system to perform above the desired service level. We think the 

solution for ISSA can be more accurate if the simulation either covers more periods or we take 

more samples.   

5.1.3 Discussion 
Considering the results from Scenarios 2a through 2d for the Mod-GW solutions, we offer 

the following observations: 

1. When the ratio jj LK /  decreases by 50%, the system service level improves by 0.3 

percentage points. 
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2. When the ratio of node 4 holding cost to node holding cost 2 decreases by 50%, the 

service level improves by 1.1 percentage points. 

3. When the probability of disruption at node 3 increases 10 times, the service level drops 

by 16.8 percentage points. 

4. When the probability of disruption at node 2 increases 10 times, the service level drops 

by 9 percentage points. 

Let us take observation 1 and look at the sensitivity results outlined in Section 5.1.1 

Sensitivity Analysis Results. As jj LK /  gets smaller, the system performs better. We conclude 

that the performance of the Mod-GW model degrades as the disruption length increases relative 

to the normal fulfillment time. In those cases, we recommend use of the Informed Adjustment of 

Safety Stock Algorithm to determine an additional amount of safety stock and its placement in 

order to achieve the service level requirements.  

We observe a similar result in respect to relative holding costs between node 4 and node 2.  

As 4h  decreases relative to 2h  the Mod–GW model does not suggest enough safety stock. The 

reason for that is, smaller the 4h  causes more incentive for the Mod–GW model to place safety 

stock at node 4 and not enough at 2.   When we apply ISSA, it suggests additional inventory at 

the node that has the lower holding cost, and the resulting performance of the system comes up 

to the expected level. One might suspect that the ISSA should also place additional inventory at 

node 2. However, placing more of safety stock at node 4 significantly mitigates the possibility of 

a disruption at node 4 propagating to node 2.  

Scenarios 2c and 2d focus on the probability of disruption at nodes 3 and 2 respectively. We 

first observe that increasing 3p  has a greater impact on the service level at node 1 than 

increasing 2p . Recall that the service level at node 1 in scenario 2c ( 3 0.10p = ) is 77.5% and in 

2d ( 2 0.10p = ) is 85.3%. What is also important to note is that ISSA does not suggest enough of 

additional safety stock for scenario 2c and suggests too much for scenario 2d. We suspect that 

this is due to the higher variability in the number of disruptions. Figure 7 represents variability in 

the number of disruptions for node 2.  
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Figure 7 Variability in number of disruptions  
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From the sensitivity analysis, we observe that the probability of a disruption and the service 

level have an inverse, and almost linear, relationship, with a much steeper slope for changes 

in 3p . The slope in Figure 5 is – 1.4, and slope in  

Figure 6 is – 0.69. Therefore, the probability of disruption at the supplier level appears to 

have a greater impact on system performance. We suspect that this is due to the fact that Mod-

GW tries to place greater safety stock at the node where the chances of disruptions are higher. 

Therefore, as the probability of disruption increases at node 2, more safety stock at node 2 allows 

the system to perform better.  

When looking at the scenario analysis results, it is easy to observe that if the system performs 

well when a particular parameter is changed, then it performs well – and even better than in the 

individual cases – when two or more parameters are changed in conjunction. This statement 

holds true for the results in Scenarios 3a through 3e, where normal fulfillment time and annual 

holding cost are changed. For the results in Scenarios 4a through 4e, the additional parameter 

varied is the probability of disruption. In those cases, the system does not perform well. 

Furthermore, Mod-GW performs poorly when the probability of a disruption is relatively large. 

Once we apply the ISSA algorithm, the system generally achieves the target service level. 

We are also interested in looking at interactions between various parameters, and how they 

affect the system performance and safety stock placement. Consider scenarios 2c, 4a, and 4c. In 

scenario 2c, where the ( 3 0.10p = ), the Mod-GW model places the bulk of the safety stock at the 
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supplier nodes 3 and 4, but it does not adequately account for disruptions in setting these safety 

stock levels. The ISSA algorithm tries to increase safety stock, mainly at node 3, but also at node 

4. It does not suggest any change to the base stock level at node 2. Although the performance 

improves, it still misses the target. When we decrease the difference between the holding costs 

for node 2 and node 4 (Scenario 4a), the Mod-GW solution redistributes the safety stock 

redistribution, with more of it going to nodes 2 and 3.  As a result, the system performs better. 

However, the ISSA algorithm still makes additional improvements in service performance by 

further increasing the safety stock at node 3.  

Thus, our research findings from analyzing a small supply chain network can be summarized 

as follows: 

1. As the ratio jj LK /  decreases, the system performs better under the Modified Graves 

and Willems solution  

2. As the relative holding cost between an upstream node and the final stocking point 

decreases, the system  performs better under the Modified Graves and Willems 

solution 

3. The Modified Graves and Willems model solution does not sufficiently reflect the 

effects on the supply chain of an increasing probability of disruptions.  

4. When the probability of disruption is increased in conjunction with holding cost or 

normal fulfillment time, the system performs worse under the Modified Graves and 

Willems solution.  

5.2 Large network experiments  
We are interested in testing some of our findings obtained from the extensive analysis of the 

small network on a larger supply chain. The larger supply chain that is the focus of our analysis 

is shown in Figure 8. This network has { }1, 2, ,8N = K  and 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }2,1 , 3, 2 , 4, 2 , 5,3 , 6,3 , 7, 4 , 8, 4E = . 
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Figure 8 – Eight-Node Supply Chain 

 
 

The base case for our experiment is shown in Table 7. We require the service level at node 1 

to be 95%, meaning that ( ) 645.195.01
2 =Φ= −k . The service level requirements for the upstream 

nodes serve as a decision variables. If the system achieves a service level that falls in 95% 

confidence interval around 0.95α = , we say that the system performs up to expectations.  

Table 7 – Network Parameters for the base case Experiments 

Node iL  iK  ip  ih  jµ  jσ  

2 1 2 1% 10 200 30 
3 3 10 1% 1 200 30 
4 3 10 1% 1 200 30 
5 3 10 1% 0.1 200 30 
6 3 10 1% 0.1 200 30 
7 3 10 1% 0.1 200 30 
8 3 10 1% 0.1 200 30 

5.2.1 Scenario Analysis 
We start by first obtaining the results for the base case in three ways. First, the base stock 

was computed via original Graves and Willems model. Second, the base stock was computed via 
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the Mod-GW model. Finally, the base stock was adjusted when needed through the Informed 

Safety Stock Adjustment process. Table 8 summarizes results obtained for the base case. 

Table 8 – Base Case Results, Eight-Node Supply Chain 

 Base Stock Levels 
Node 1 Service 

Level 
Node 1 Fill 

Rate 

  
Node 
2 Node 3 

Node 
4 

Node 
5 

Node 
6 

Node 
7 Node 8 Mean 

Std. 
Dev. Mean 

Std. 
Dev. 

GW 300 770 770 679 679 679 679 84.20% 4.70% 87% 4.10% 
Mod-
GW 303 787 787 694 694 694 694 84.60% 3.10% 87% 2.60% 
ISSA 303 1292 787 1421 1378 1345 1405 93.60% 1.80% 95% 1.70% 
 

Next, we would like to test if the conclusions 1 through 3 from the discussion in section 5.1.3 

Discussion hold. To accomplish that, we performed scenario analysis on the large network. We 

looked at three scenarios where we changed the holding cost, normal fulfillment time, and 

probability of disruption at the first tier suppliers. Table 9 summarizes our results: 

Table 9 – Additional Results for 8-Node Supply Chain 

 
 Base Stock Levels 

Node 1 Service 
Level 

Node 1 Fill 
Rate 

Scenario   
Node 
2 

Node 
3 

Node 
4 

Node 
5 

Node 
6 

Node 
7 

Node 
8 Mean 

Std. 
Dev. Mean 

Std. 
Dev. 

GW 624 917 662 628 628 683 683 90.10% 3.00% 92% 2.20% 
Mod-
GW 635 936 678 642 642 698 698 92.10% 2.30% 94% 1.80% 

5a 
    ( )54 =h  

ISSA 635 936 678 1169 819 1229 1218 95.30% 1.80% 97% 1.60% 
GW 300 770 770 679 679 679 679 67.20% 5.70% 72% 5.40% 
Mod-
GW 305 931 787 692 692 694 694 73.00% 5.00% 77% 4.70% 

5b 
( )10.03 =p  

ISSA 305 1606 908 1391 1474 1476 1419 93.80% 2.60% 96% 2.00% 
GW 308 1448 770 670 670 679 679 86.00% 3.50% 89% 3.10% 
Mod-
GW 311 1458 787 685 685 694 694 87.10% 3.70% 90% 3.30% 

5c 
  ( )63 =L  

ISSA 311 1458 1040 1290 1309 1355 1342 95.00% 2.20% 97% 1.90% 
 

Observing the results obtained from the larger network, we conclude that our expectations 

hold. The chain performs better than the base case when the ratio jj LK /  decreases, and as the 

relative holding cost between an upstream node and the final stocking point decreases. The ISSA 

algorithm suggests a sufficient amount of additional safety stock to achieve the target service 

level. Finally, increasing the probability of disruption at a supplier forces a system service level 

performance below that of the base case under the Mod-GW model, as expected. In this case, the 
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Informed Safety Stock Adjustment Algorithm suggests also suggests a sufficient amount of 

additional safety stock to achieve the target service level. 

We also notice interesting safety stock re-adjustments as the system’s parameters vary. 

Consider the base case results Table 8 and scenario 5a Table 8 results.  As 4h increases more 

safety stock is pushed to node 2, the base-stock for node 2 more than doubles. Notice that 

because node 3 is relatively cheaper more safety stock placed their. Safety stock is also 

rebalanced between the second tier suppliers nodes 5 – 8 although all of them identical. That 

forces the system to perform almost to up to expectations; however, the ISSA algorithm is stilled 

required. The ISSA algorithm assigns additional safety stock to nodes 5 – 8. It is interesting that 

nodes 7 and 8 get almost identical additional safety stock supplies, but nodes 5 and 6 are not.  

It is easy to observe that as a supply chain gets larger and more complex there is more 

interactions between its components. It is also harder to anticipate what the best safety stock 

allocation is.  

6. Summary of Findings 
We categorize our findings into observational results and guiding managerial principles.  Our 

observational results can be summarized as follows: 

1. When upstream nodes have identical parameters and there is a need for the ISSA 

algorithm, the LP to allocate additional buffer stock may have multiple optimal 

solutions. 

2. Increasing visibility to the larger supply chain by accounting for an additional echelon 

results in a more realistic and more accurate system performance. The resulting 

performance is contingent on system parameters and their interaction with each other, 

as above.  

Although we have some concrete conclusions and observations that come from our research, 

we cannot provide a precise recipe to management regarding how to place safety stock in a 

supply chain.  In general, safety stock placement depends substantially on the supply chain cost 

and lead-time parameters. We can, however, provide three general principles regarding important 

relationships in the problem parameters, as follows: 
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1. The relative difference in holding cost between the supplier components and finished 

goods has a significant impact on where safety stock is placed throughout the supply 

chain. If the difference is small, then more safety stock is going to be placed 

downstream.  

2. Both the relative frequency of disruptions at upstream nodes and their length relative 

to the normal lead time have an impact on safety stock levels and placement in the 

chain.  An analytic solution to compute the base stock levels in the chain does not 

adequately account for disruptions, particularly as their likelihood increases. 

Therefore, there is a need for tools that can assess the network performance and 

suggest the appropriate adjustments to safety stock levels and placement. 

3. As the network grows larger and more complex, it becomes harder to compute analytic 

solutions that ensure performance up to expectations. Therefore, there is a need for 

heuristics to complement analytic solutions. 

Summarizing our observational results and general principles, it is clear that relying solely on 

analytic solutions cannot guarantee the desired service performance results in a supply chain that 

is subject to disruptions in supply. Our model provides a way to balance the analytic and 

heuristic solutions so that they complement each other.   

7. Recommendations for future research 
The research presented in this thesis can lead to a number of follow-on studies.  Three that 

we feel to be of particular interest are as follows: 

Demand Decay:  The “stochastic-service” model of Graves and Willems (2003) that serves 

as the basis for our research assumes that demand is fully backlogged. It would be interesting to 

relax that assumption and instead use a demand loss model similar to the one suggested in 

Warsing et al. (2000).  In this case, the fraction of original demand remaining if it is fulfilled s 

periods late is given by 

( )
( )1    if 0

0   otherwise,

se ss
γ ρ ρδ

− − − < <= 


 

where ρ is the maximum number of periods that any amount of demand remains and γ is a 

scaling parameter.  The importance of this model is that it allows us to study the ability of safety 

stock-based buffering to limit the loss of market share in the event of a supply disruption, a 
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clearer basis upon which to justify inventory buffering than just shifting inventory costs around 

the supply network.  Moreover, the model can be used to assess the impact of a particular 

buffering strategy in scenarios with a larger or smaller proportion of customers that are willing to 

wait for backlogged demand to be fulfilled.  Since this effect would be quite difficult to account 

for analytically in an optimization model, the ISSA algorithm developed in this thesis is 

particularly well-suited to the analysis. 

Continuous distribution for disruption probability:  Our research assumes a discrete 

distribution to simulate disruptions. We are interested to know if any of our results change or if 

the Mod-GW model is more accurate using a continuous distribution, such as a Beta distribution.  

Supply chain with divergent elements:  The supply chains we study in this thesis are 

convergent supply chains. Additional research needs to be done to observe how the proposed 

methodology performs when the supply chain network has both divergent and convergent 

elements. An example of such a supply chain is given in Figure 9. 

Figure 9 – Supply Chain with divergent elements 
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Appendix I 
Complete Results for Four-Node Supply Chain 
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Appendix II  
Complete results for Eight-Node Supply Chain 
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Appendix III 
 
VBA for Four-Node Supply Chain Simulation 
Sub ThreeNodeSC() 
Dim inventory(1 To 4) As Double 
Dim D(1 To 4) As Double 
Dim unsat(0 To 5, 0 To 2000) As Double 
Dim order(1 To 4, 1 To 2000) As Double 
Dim onorder(1 To 4) As Integer 
Dim shipment(1 To 4, 1 To 2000) As Double 
Dim basestock(1 To 4) As Double 
Dim leadtime(1 To 4) As Double 
Dim invshipped(1 To 4) As Double 
Dim z(1 To 4) As Double 
Dim disr(1 To 4) As Integer 
Dim dtime(1 To 4) As Integer 
Dim y(1 To 4) As Double 
Dim Inp(1 To 4, 1 To 4) As Integer 
Dim Outp(1 To 4, 1 To 10) As Integer 
Dim OutpTime(1 To 4, 0 To 10) As Double 
Dim OutpTimeLong(1 To 4, 1 To 10) As Double 
Dim p(1 To 4, 1 To 4, 1 To 4) As Integer    'Path(number, node, path) 
Dim Pcount(1 To 4) As Integer 
Dim DT(1 To 4, 1 To 4) As Integer           ' disruption time 
Dim Starved(1 To 4, 1 To 4) As Integer 
Dim initial(1 To 4, 1 To 4) As Integer 
Dim timecheck(1 To 8, 1 To 8) As Integer 
Dim DR(1 To 4, 1 To 4) As Integer 
Dim dc(1 To 4, 1 To 4) As Integer 
Dim count(1 To 4) As Integer 
Dim effected(1 To 4) As Integer 
Dim POS(1 To 4) As Integer 
Dim check2(1 To 4) As Integer 
Dim check(1 To 4) As Integer 
Dim DS(1 To 4, 1 To 4) As Integer 
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Dim down(1 To 4, 1 To 4) As Integer 
Dim i, j, k, startnode, node, row1, column1, check1, l As Integer 
Dim row, column, m, n, bf, review, pois As Integer 
Dim x, time, delta, lt, dummy, canship1, canship2, canship3, deamandloss, mu3, std3, csl, csl1, short0, short2, short3, howsoon, 
howlong As Double 
leadtime(2) = Worksheets("SC Williem and Graves v1").Cells(15, 3) 
leadtime(3) = Worksheets("SC Williem and Graves v1").Cells(13, 3) 
leadtime(4) = Worksheets("SC Williem and Graves v1").Cells(11, 3) 
mu3 = Worksheets("SC Williem and Graves v1").Cells(18, 10) 
std3 = Worksheets("SC Williem and Graves v1").Cells(18, 11) 
inventory(4) = Worksheets("SC Williem and Graves v1").Cells(28, 8)  'in units 
inventory(3) = Worksheets("SC Williem and Graves v1").Cells(29, 8) 
inventory(2) = Worksheets("SC Williem and Graves v1").Cells(30, 8) 
basestock(4) = Worksheets("SC Williem and Graves v1").Cells(28, 8)  'in units 
basestock(3) = Worksheets("SC Williem and Graves v1").Cells(29, 8) 
basestock(2) = Worksheets("SC Williem and Graves v1").Cells(30, 8) 
For k = 1 To 1010 
    For m = 1 To 4 
        order(m, k) = 0 
        shipment(m, k) = 0 
    Next 
Next 
For k = 0 To 1010 
    For m = 0 To 4 
        unsat(m, k) = 0 
    Next 
Next 
For i = 1 To 4 
    dtime(i) = 0 
    effected(i) = 0 
Next 
demandloss = 0 
review = 1 
row = 33 
csl = 0 
csl1 = 0 
For i = 1 To 4 
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    For m = 1 To 4 
        DT(i, m) = 0 
    Next 
Next 
'Reachability Analysis 
row1 = 57 
column1 = 28 
For i = 1 To 4                         'Fill the Inp Matrix 
    For j = 1 To 4 
        Inp(i, j) = Worksheets("22 Node SC").Cells(row1, column1) 
        column1 = column1 + 1 
    Next 
    row1 = row1 + 1 
    column1 = 28 
Next 
column1 = 1 
k = 1 
Pcount(1) = 1 
p(1, 1, 1) = 1 
For i = 1 To 4                         'Fill in the paths 
    For j = 1 To 4 
        If Inp(i, j) = 1 Then 
            Pcount(i) = Pcount(i) + 1 
            m = 1 
            p(Pcount(i), i, m) = i 
            For n = 1 To Pcount(j) 
                While p(n, j, m) <> 0 
                    p(Pcount(i), i, m + 1) = p(n, j, m) 
                    m = m + 1 
                Wend 
                m = 1 
                If n < Pcount(j) Then Pcount(i) = Pcount(i) + 1 
            Next 
            If p(Pcount(i), i, 1) = 0 Then p(Pcount(i), i, 1) = i 
        End If 
    Next 
Next 
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'MsgBox "Path for node 4 is  " & P(1, 4, 1) & " " & P(1, 4, 2) & " " & P(1, 4, 3) 
For i = 1 To 4                           'Perform Reachability Analysis/Fill the Outp Matrix 
    For j = 1 To 4 
      If Inp(i, j) = 1 Then 
        Outp(i, column1) = j 
        k = 1 
        While Outp(j, k) <> 0 
            Outp(i, column1 + 1) = Outp(j, k) 
            column1 = column1 + 1 
            k = k + 1 
        Wend 
      column1 = column1 + 1 
      End If 
    Next 
column1 = 1 
Next 
column1 = 1 
row1 = 66 
column1 = 28 
For i = 1 To 4                         'Out put the Outp Matrix into the Excel 
    For j = 1 To 4 
        Worksheets("22 Node SC").Cells(row1, column1).Value = Outp(i, j) 
        column1 = column1 + 1 
    Next 
row1 = row1 + 1 
column1 = 28 
Next 
For row1 = 66 To 69                     'Remove Zeros from Outp Matrix 
    For column1 = 28 To 31 
        If Worksheets("22 Node SC").Cells(row1, column1) = 0 Then 
            If row1 <> 67 Or column1 <> 28 Then 
                Worksheets("22 Node SC").Cells(row1, column1) = Empty 
                    'Selection.ClearContents 
            End If 
        End If 
    Next 
Next 
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'End Reachability Analysis 
'----------------------------------------Start time simulation------------------------------ 
For time = 1 To 1000 
'------------------------------That's where RA used to be----------------------------------- 
'------------------------------------------------------------------------------------------- 
Sheets("Sheet1").Select 
    column = 1 
    Worksheets("Sheet1").Cells(row, column).Value = time 
'Fill in lead time 
    leadtime(2) = Worksheets("SC Williem and Graves v1").Cells(15, 3) 
    leadtime(3) = Worksheets("SC Williem and Graves v1").Cells(13, 3) 
    leadtime(4) = Worksheets("SC Williem and Graves v1").Cells(11, 3) 
    For i = 2 To 4 
        If disr(i) = 1 Then 
            leadtime(i) = leadtime(i) + y(i) 
            y(i) = Application.WorksheetFunction.Max(0, y(i) - 1) 
        End If 
    Next 
'Node 1 operational Logic ------------------------------------------------------------------------------------------------ 
    inventory(2) = inventory(2) + shipment(2, time)         'begining inventory 
    onorder(2) = onorder(2) - shipment(2, time) 
'update unsat vector 
    n = 15 
    For k = 1 To 15 
        For m = 3 To 15             'Searching for appropriate delta 
            If Worksheets("Demand Decay").Cells(m, 4).Value = n - k + 1 Then delta = Worksheets("Demand Decay").Cells(m, 5).Value 
        Next 
        unsat(0, n - k + 1) = delta * unsat(0, n - k) 
        unsat(1, n - k + 1) = delta * unsat(1, n - k) 
        demandloss = demandloss + unsat(0, n - k) * (1 - delta) 
        unsat(0, n - k) = 0 
        unsat(1, n - k) = 0 
    Next 
    Worksheets("Sheet1").Cells(row, column + 14).Value = demandloss 
    x = Rnd() 
    D(2) = Application.WorksheetFunction.Max(0, Application.WorksheetFunction.NormInv(x, mu3, std3)) 
    Worksheets("Sheet1").Cells(row, column + 1).Value = D(2) 
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'checking how much of backlog can be satisfied 
    n = 15 
    For k = 0 To 15 
        canship2 = inventory(2) 
        inventory(2) = inventory(2) - Application.WorksheetFunction.Min(unsat(0, n - k), canship2) 
        unsat(0, n - k) = unsat(0, n - k) - Application.WorksheetFunction.Min(unsat(0, n - k), canship2) 
        short0 = short0 + unsat(0, n - k) 
    Next 
'Determine How much of the current inventory can be shipped 
    canship2 = inventory(2) 
    inventory(2) = inventory(2) - Application.WorksheetFunction.Min(D(2), canship2) 
    unsat(0, 0) = D(2) - Application.WorksheetFunction.Min(D(2), canship2) 
    short0 = short0 + unsat(0, 0) 
    If unsat(0, 0) > 0 Then csl = csl + 1 
    Worksheets("Sheet1").Cells(row, column + 2).Value = inventory(2) 
    Worksheets("Sheet1").Cells(row, column + 4).Value = unsat(0, 0) 
    order(2, time) = D(2) 'basestock(1) - inventory(1) - onorder(1) + unsat(0, 0) 
    Worksheets("Sheet1").Cells(row, column + 5).Value = order(2, time) 
    onorder(2) = onorder(2) + order(2, time) 
 
'Node 1 operational logic-------------------------------------------------------------------------------------- 
 
    inventory(4) = inventory(4) + shipment(4, time)   'begining inventory at node 1 for supplier 2 
    inventory(3) = inventory(3) + shipment(3, time)   'begining inventory at node 1 for supplier 3 
    onorder(4) = onorder(4) - shipment(4, time) 
    onorder(3) = onorder(3) - shipment(3, time) 
     
'checking how much of backlog can be satisfied 
    For k = 0 To 15 
        canship2 = Application.WorksheetFunction.Min(inventory(4), inventory(3)) 
        shipment(2, time + leadtime(2)) = shipment(2, time + leadtime(2)) + Application.WorksheetFunction.Min(unsat(1, n - k), 
canship2) 
        inventory(4) = inventory(4) - (Application.WorksheetFunction.Min(unsat(1, n - k), canship2)) 
        inventory(3) = inventory(3) - (Application.WorksheetFunction.Min(unsat(1, n - k), canship2)) 
        unsat(1, n - k) = unsat(1, n - k) - Application.WorksheetFunction.Min(unsat(1, n - k), canship2) 
        short4 = short4 + unsat(1, n - k) 
        short3 = short3 + unsat(1, n - k) 
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    Next 
'Determine how much can be shiped of the current order 
    canship2 = Application.WorksheetFunction.Min(inventory(4), inventory(3)) 
    shipment(2, time + leadtime(2)) = shipment(2, time + leadtime(2)) + Application.WorksheetFunction.Min(D(2), canship2) 
    Worksheets("Sheet1").Cells(row + leadtime(2), column + 3).Value = shipment(2, time + leadtime(2)) 
    unsat(1, 0) = D(2) - Application.WorksheetFunction.Min(D(2), canship2) 
    If unsat(1, 0) > 0 Then csl1 = csl1 + 1 
    short4 = short4 + unsat(1, 0) 
    short3 = short3 + unsat(1, 0) 
    Worksheets("Sheet1").Cells(row, column + 8) = unsat(1, 0) 
    Worksheets("Sheet1").Cells(row, column + 12) = unsat(1, 0) 
'Ending Inventory for buffers 2 and 3 
    inventory(4) = inventory(4) - (Application.WorksheetFunction.Min(D(2), canship2))   'Ending inventory 
    inventory(3) = inventory(3) - (Application.WorksheetFunction.Min(D(2), canship2))       'Ending inventory 
    Worksheets("Sheet1").Cells(row, column + 6).Value = inventory(3) 
    Worksheets("Sheet1").Cells(row, column + 10).Value = inventory(4) 
'Order 2 shippment 
    order(3, time) = D(2) 'basestock(3) - inventory(3) - onorder(3) + unsat(1, 0) * p 
    shipment(3, time + leadtime(3)) = shipment(3, time + leadtime(3)) + order(3, time) 
    Worksheets("Sheet1").Cells(row + leadtime(3), column + 7).Value = shipment(3, time + leadtime(3)) 
    onorder(3) = onorder(3) + order(3, time) 
    Worksheets("Sheet1").Cells(row, column + 9).Value = order(3, time) 
'Order 3 shipment 
    order(4, time) = D(2) 'basestock(4) - inventory(4) - onorder(4) + unsat(1, 0) 
    shipment(4, time + leadtime(4)) = shipment(4, time + leadtime(4)) + order(4, time) 
    Worksheets("Sheet1").Cells(row + leadtime(4), column + 11).Value = shipment(4, time + leadtime(4)) 
    onorder(4) = onorder(4) + order(4, time) 
    Worksheets("Sheet1").Cells(row, column + 13).Value = order(4, time) 
 
'----------------------------------Beginning of RA and disruption---------------------------- 
 
'Actual TRA 
    For i = 2 To 4 
            For k = 1 To Pcount(i) 
                For m = 1 To 4 
 
                    If p(k, i, m) > 1 Then 
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                        If DS(i, p(k, i, m)) = 1 Or DR(i, p(k, i, m)) = 1 Then 
                 
                            If inventory(p(k, i, m)) = 0 Then 
                                DS(i, p(k, i, m + 1)) = 1 
                                If initial(i, p(k, i, m + 1)) = 0 And DS(i, p(k, i, m + 1)) Then 
                                    Starved(i, p(k, i, m + 1)) = Starved(i, p(k, i, m + 1)) + 1 
                                    initial(i, p(k, i, m + 1)) = 1 
                                    'MsgBox "in" 
                                End If 
                            End If 
                             If DS(i, p(k, i, m)) = 1 Then 
                                If m = 1 Then DT(i, p(k, i, m)) = DT(i, p(k, i, m)) + 1 
                                If m > 1 Then 
                                    If inventory(p(k, i, m - 1)) = 0 Then DT(i, p(k, i, m)) = DT(i, p(k, i, m)) + 1 
                                End If 
                             End If 
                             'DT(i, P(k, i, m)) = DT(i, P(k, i, m)) + 1 
                                'timecheck(i,h P(k, i, m)) = 1 
                            'End If 
                        End If 
                    End If 
                    If p(k, i, m) = 1 Then 
                        If DS(i, p(k, i, m)) = 1 And inventory(p(k, i, m - 1)) = 0 Then DT(i, p(k, i, m)) = DT(i, p(k, i, m)) + 1 
                    End If 
                    If m = 1 Then 
                        If time = dtime(i) Then 
                            DS(i, i) = 0 
                            DR(i, i) = 1 
                            dc(i, i) = time + leadtime(i) 
                        End If 
                        If time = dc(i, i) Then 
                            DR(i, i) = 0 
                            dc(i, i) = 0 
                        End If 
                    End If 
                    If m > 1 And p(k, i, m) > 0 Then 
                        If DS(i, p(k, i, m)) = 1 And inventory(p(k, i, m - 1)) > 0 Then 
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                            DS(i, p(k, i, m)) = 0 
                            DR(i, p(k, i, m)) = 1 
                            dc(i, p(k, i, m)) = time + leadtime(p(k, i, m)) 
                        End If 
                        If time = dc(i, p(k, i, m)) Then 
                            DR(i, p(k, i, m)) = 0 
                            initial(i, p(k, i, m)) = 0 
                            dc(i, p(k, i, m)) = 0 
                        End If 
                    End If 
                Next 
            Next 
    Next 
'End of TRA 
    For i = 1 To 4 
        check(i) = 0 
    Next 
'Disruption Simulation 
    For i = 2 To 4 
        If disr(i) = 0 Then z(i) = Rnd() 
    Next 
    If z(2) < Worksheets("SC Williem and Graves v1").Cells(14, 4) Then 
        y(2) = Rnd() * (Worksheets("SC Williem and Graves v1").Cells(15, 4) - Worksheets("SC Williem and Graves v1").Cells(15, 3) - 
1) + 1 
        y(2) = Application.WorksheetFunction.Round(y(2), 0) 
        disr(2) = 1 
        dtime(2) = time + y(2) 
        z(2) = 0.6 
        For i = time + 1 To i = time + leadtime(2) 
            invshipped(2) = invshipped(2) + shipment(2, i) 
        Next 
        check2(2) = 1 
        DS(2, 2) = 1 
        Starved(2, 2) = Starved(2, 2) + 1 
        count(2) = count(2) + 1 
    End If 
    If z(3) < Worksheets("SC Williem and Graves v1").Cells(12, 4) Then 
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        y(3) = Rnd() * (Worksheets("SC Williem and Graves v1").Cells(13, 4) - Worksheets("SC Williem and Graves v1").Cells(13, 3) - 
1) + 1 
        y(3) = Application.WorksheetFunction.Round(y(3), 0) 
        disr(3) = 1 
        dtime(3) = time + y(3) 
        z(3) = 0.6 
        For i = time + 1 To i = time + leadtime(3) 
            invshipped(3) = invshipped(3) + shipment(3, i) 
        Next 
        count(3) = count(3) + 1 
        DS(3, 3) = 1 
        check2(3) = 1 
        'DT(3, 3) = DT(3, 3) + y(3) 
        Starved(3, 3) = Starved(3, 3) + 1 
    End If 
    If z(4) < Worksheets("SC Williem and Graves v1").Cells(10, 4) Then 
        y(4) = Rnd() * (Worksheets("SC Williem and Graves v1").Cells(11, 4) - Worksheets("SC Williem and Graves v1").Cells(11, 3) - 
1) + 1 
        y(4) = Application.WorksheetFunction.Round(y(4), 0) 
        disr(4) = 1 
        dtime(4) = time + y(4) 
        z(4) = 0.6 
        For i = time + 1 To i = time + leadtime(4) 
            invshipped(4) = invshipped(4) + shipment(4, i) 
        Next 
        count(4) = count(4) + 1 
        check2(4) = 1 
        DS(4, 4) = 1 
        'DT(4, 4) = DT(4, 4) + y(4) 
        Starved(4, 4) = Starved(4, 4) + 1 
    End If 
'Time Reachability Analysis 
    For i = 2 To 4 
        If check2(i) = 1 Then 
            check2(i) = 0 
            howsoon = 0 
            howlong = 0 
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            row1 = 73 
            column1 = 28 
            For l = 1 To 4 
                POS(l) = inventory(l) / 200 + onorder(l) / 200 '(lApplication.WorksheetFunction.Max(invshipped(l) / 200, leadtime(l) - 1) 
'invshipped(l) 
            Next 
            k = 1 
            howlong = y(i) 
            howsoon = howsoon + POS(i) 
            OutpTimeLong(i, i) = howlong 
            howlong = howlong + leadtime(i) - POS(i) 
                'effected(i) = effected(i) + 1 
            While Outp(i, k) <> 0 
                j = Outp(i, k) 
                If howlong <= 0 Then 
                    howlong = 0 
                    howsoon = 0 
                End If 
                If howlong > 0 Then 
                    effected(j) = effected(j) + 1 
                End If 
                OutpTime(i, j) = howsoon 
                OutpTimeLong(i, j) = howlong 
                howlong = howlong + leadtime(j) - POS(j) 
                howsoon = howsoon + POS(j) 
                k = k + 1 
            Wend 
            For j = 1 To 4 
                Worksheets("22 Node SC").Cells(row1 + i, column1).Value = Worksheets("22 Node SC").Cells(row1 + i, column1).Value 
+ OutpTime(i, j) 
                Worksheets("22 Node SC").Cells(row1 + i, column1 + 7).Value = Worksheets("22 Node SC").Cells(row1 + i, column1 + 
7).Value + OutpTimeLong(i, j) 
                column1 = column1 + 1 
            Next 
        End If 
    Next 
'End of Time Reachability analysis 
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    For i = 1 To 4 
        If time = dtime(i) Then 
            disr(i) = 0 
            dtime(i) = 0 
            'invshipped(i) = 0 
        End If 
    Next 
 
    For l = 1 To 4 
        For n = 1 To 4 
            timecheck(l, n) = 0 
        Next 
    Next 
'----------------------------------End of RA----------------------------------------------- 
'Row update 
    row = row + 1 
Next 
Worksheets("Sheet1").Cells(1043, 2).Value = 1 - csl / 1000 
Worksheets("Sheet1").Cells(1043, 6).Value = 1 - csl1 / 1000 
Worksheets("Sheet1").Cells(1043, 10).Value = 1 - csl1 / 1000 
'Worksheets("Sheet1").Cells(1044, 5).Value = short0 
'Worksheets("Sheet1").Cells(1044, 9).Value = short3 
'Worksheets("Sheet1").Cells(1044, 13).Value = short4 
row1 = 78 
column1 = 35 
For i = 1 To 4 
    Worksheets("22 Node SC").Cells(row1, column1) = count(i) 
    Worksheets("22 Node SC").Cells(row1 + 1, column1) = effected(i) 
    column1 = column1 + 1 
Next 
i = 1 
j = 1 
For row = 74 To 77                  'Output Starved matrix 
    For column = 42 To 45 
        Worksheets("22 Node SC").Cells(row, column).Value = Starved(i, j) 
        j = j + 1 
    Next 
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    j = 1 
    i = i + 1 
Next 
i = 1 
j = 1 
For row = 74 To 77                  'Output DT matrix 
    For column = 48 To 51 
        Worksheets("22 Node SC").Cells(row, column).Value = DT(i, j) 
        j = j + 1 
    Next 
    j = 1 
    i = i + 1 
Next 
End Sub 



 

 53

Appendix IV 
VBA for Four-Node Supply Chain Sensitivity and Scenario Analysis 

Sub RunTheCode() 

Dim run, row, row1, column, h, i, k, j, pr As Integer 

Dim p As Double 

Dim prob, dev, lt As Double 

Dim AveInv(1 To 4) As Double 

Dim AIS(1 To 4, 1 To 15) As Double  'AveInv Standard Deviation 

Dim SL(1 To 4) As Double 

Dim SLS(1 To 4, 1 To 15) As Double  'SL Standard deviantion 

Dim FR(1 To 4) As Double 

Dim FRS(1 To 4, 1 To 15) As Double  'FR Standard Deviation 

Dim Length(1 To 4) As Double 

Dim AveDisrCount(1 To 4) As Integer 

Dim ADCS(1 To 4, 1 To 15) As Double     'Ave Disr Count Standard Deviation 

Dim AveEffected(1 To 4) As Integer 

Dim bs(1 To 4) As Integer 

Dim sldev(1 To 4) As Double 

Dim frdev(1 To 4) As Double 

Dim aveinvdev(1 To 4) As Double 

Dim adcdev(1 To 4) As Double 

prob = 0.98 

dev = 30 

lt = 9 
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k = 13 

p = 0.99 

row1 = 253             'change here 

'While p >= 0.85            'chage here 

j = 1 

For i = 1 To 4 

    AveInv(i) = 0 

    SL(i) = 0 

    FR(i) = 0 

    Length(i) = 0 

    AveDisrCount(i) = 0 

    AveEffected(i) = 0 

    bs(i) = 0 

    sldev(i) = 0 

    frdev(i) = 0 

    aveinvdev(i) = 0 

    adcdev(i) = 0 

    For k = 1 To 15 

        AIS(i, k) = 0 

        SLS(i, k) = 0 

        FRS(i, k) = 0 

        ADCS(i, k) = 0 

    Next 

Next 

'Worksheets("SC Williem and Graves v1").Cells(14, 3) = p         'change here 
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Worksheets("SC Williem and Graves v1").Select 

SolverOk SetCell:="$M$21", MaxMinVal:=2, ValueOf:="0", ByChange:="$C$23:$C$25" 

SolverSolve UserFinish:=True 

'MsgBox Worksheets("SC Williem and Graves v1").Cells(19, 7) 

For run = 1 To 10 

    Application.run "'VBA Thesis.xls'!ThisWorkbook.clearthetable" 

    Application.run "'VBA Thesis.xls'!ThreeNodeSCTRA.ThreeNodeSC" 

'-----------------------Average End. Inv, Sl, FR----------------------------------------- 

    column = 3 

    For i = 1 To 3 

        AveInv(i) = AveInv(i) + Worksheets("Sheet1").Cells(1046, column) 

        AIS(i, j) = Worksheets("Sheet1").Cells(1046, column) 

        SL(i) = SL(i) + Worksheets("Sheet1").Cells(1043, column - 1) 

        SLS(i, j) = Worksheets("Sheet1").Cells(1043, column - 1) 

        FR(i) = FR(i) + Worksheets("Sheet1").Cells(1044, column - 1) 

        FRS(i, j) = Worksheets("Sheet1").Cells(1044, column - 1) 

        column = column + 4 

    Next 

'---------------------------------Length--------------------------------------------------- 

    row = 75 

    For i = 1 To 3 

        Length(i) = Length(i) + Worksheets("22 Node SC").Cells(row, 48) 

        AveEffected(i) = AveEffected(i) + Worksheets("22 Node SC").Cells(row, 42) 

        row = row + 1 

    Next 
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'-----------------------------------Base Stock---------------------------------------------- 

    row = 30 

    For i = 1 To 3 

        bs(i) = bs(i) + Worksheets("SC Williem and Graves v1").Cells(row, 8) 

        row = row - 1 

    Next 

'----------------------AveDisrCount--------------------------------------------------------- 

    column = 36 

    For i = 1 To 3 

        AveDisrCount(i) = AveDisrCount(i) + Worksheets("22 Node SC").Cells(78, column).Value 

        ADCS(i, j) = Worksheets("22 Node SC").Cells(78, column).Value 

        'AveEffected(i) = AveEffected(i) + Worksheets("22 Node SC").Cells(79, column - 1).Value 

        column = column + 1 

    Next 

    j = j + 1 

Next 

 

For i = 1 To 3 

    For j = 1 To 10 

        sldev(i) = sldev(i) + (SLS(i, j) - SL(i) / (run - 1)) ^ 2 

        frdev(i) = frdev(i) + (FRS(i, j) - FR(i) / (run - 1)) ^ 2 

        aveinvdev(i) = aveinvdev(i) + (AIS(i, j) - AveInv(i) / (run - 1)) ^ 2 

        adcdev(i) = adcdev(i) + (ADCS(i, j) - AveDisrCount(i) / (run - 1)) ^ 2 

    Next 

Next 
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column = 1 

For i = 1 To 3 

    sldev(i) = 1.833 * (sldev(i) / (run - 2)) ^ (1 / 2) 

    frdev(i) = 1.833 * (frdev(i) / (run - 2)) ^ (1 / 2) 

    aveinvdev(i) = 1.833 * (aveinvdev(i) / (run - 2)) ^ (1 / 2) 

    adcdev(i) = 1.833 * (adcdev(i) / (run - 2)) ^ (1 / 2) 

Next 

 

column = 3 

For i = 1 To 3 

    Worksheets("Sensitivity").Cells(row1, column) = AveInv(i) / (run - 1) 

    Worksheets("Sensitivity").Cells(row1, column + 3) = aveinvdev(i) 

    Worksheets("Sensitivity").Cells(row1, column + 6) = SL(i) / (run - 1) 

    Worksheets("Sensitivity").Cells(row1, column + 9) = sldev(i) 

    Worksheets("Sensitivity").Cells(row1, column + 12) = FR(i) / (run - 1) 

    Worksheets("Sensitivity").Cells(row1, column + 15) = frdev(i) 

    Worksheets("Sensitivity").Cells(row1, column + 18) = AveDisrCount(i) / (run - 1) 

    Worksheets("Sensitivity").Cells(row1, column + 21) = adcdev(i) 

    Worksheets("Sensitivity").Cells(row1, column + 24) = AveEffected(i) / (run - 1) 

    Worksheets("Sensitivity").Cells(row1, column + 27) = Length(i) / (run - 1) 

    Worksheets("Sensitivity").Cells(row1, column + 30) = bs(i) / (run - 1) 

    column = column + 1 

Next 

 



 

 58

'Worksheets("Sensitivity").Cells(row1, 2) = p       'change here 

'p = p - 0.01                                         'change here 

row1 = row1 + 1 

'Wend 

End Sub 
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Appendix V 
VBA for Eight-Node Supply Chain Simulation 

Sub EightNodeSC() 

Dim inventory(1 To 9) As Double 

Dim basestock(1 To 9) As Double 

Dim onorder(1 To 8) As Double 

Dim order(1 To 8, 1 To 2000) As Double 

Dim shipment(1 To 8, 1 To 2000) As Double 

Dim unsat(0 To 9, 0 To 2000) As Double 

Dim short(1 To 9) As Double 

Dim SL(1 To 8) As Double 

Dim leadtime(1 To 8) As Double 

Dim z(1 To 8) As Double 

Dim disr(1 To 8) As Integer 

Dim dtime(1 To 8) As Integer 

Dim y(1 To 8) As Double 

Dim Inp(1 To 9, 1 To 8) As Integer 

Dim Outp(1 To 8, 1 To 100) As Integer 

Dim OutpTime(1 To 8, 0 To 8) As Double 

Dim OutpTimeLong(1 To 8, 1 To 8) As Double 

Dim probab(1 To 8) As Double 

Dim longleadtime(1 To 8) As Double 

Dim count(1 To 8) As Integer 

Dim effected(1 To 8) As Integer 
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Dim POS(1 To 8) As Integer 

Dim check2(1 To 8) As Integer 

Dim abovezero(1 To 9) As Double 

Dim P(1 To 8, 1 To 8, 1 To 8) As Integer    'Path(number, node, path) 

Dim Pcount(1 To 8) As Integer 

Dim DT(1 To 8, 1 To 8) As Integer           ' disruption time 

Dim Starved(1 To 8, 1 To 8) As Integer 

Dim initial(1 To 8, 1 To 8) As Integer 

Dim timecheck(1 To 8, 1 To 8) As Integer 

Dim DR(1 To 8, 1 To 8) As Integer 

Dim dc(1 To 8, 1 To 8) As Integer 

Dim DS(1 To 8, 1 To 8) As Integer 

Dim down(1 To 8, 1 To 8) As Integer 

Dim time, mu, delta, std, x, Demand, canship, dummy As Double 

Dim row, column, i, j, l, row2, column2, column1 As Integer 

'Fill in the Inp Matrix 

row = 50 

For i = 1 To 9                  'rows 

    column = 2 

    For j = 1 To 8              'columns 

        Inp(i, j) = Worksheets("Input").Cells(row, column) 

        column = column + 1 

    Next 

    row = row + 1 

Next 
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'Fill The paths 

column1 = 1 

k = 1 

Pcount(1) = 1 

P(1, 1, 1) = 1 

For i = 1 To 8                         'Fill in the paths 

    For j = 1 To 8 

        If Inp(i, j) = 1 Then 

            Pcount(i) = Pcount(i) + 1 

            m = 1 

            P(Pcount(i), i, m) = i 

            For n = 1 To Pcount(j) 

                While P(n, j, m) <> 0 

                    P(Pcount(i), i, m + 1) = P(n, j, m) 

                    m = m + 1 

                Wend 

                m = 1 

                If n < Pcount(j) Then Pcount(i) = Pcount(i) + 1 

            Next 

            If P(Pcount(i), i, 1) = 0 Then P(Pcount(i), i, 1) = i 

        End If 

    Next 

Next 

'Fill inventory and basestock information 

row = 44 
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column = 8 

For i = 2 To 8 

    inventory(i) = Worksheets("Input").Cells(row, column) 

    basestock(i) = Worksheets("Input").Cells(row, column) 

    row = row - 1 

Next 

'Fill in disruption probability information 

row = 15 

column = 4 

For i = 2 To 8 

    probab(i) = Worksheets("Input").Cells(row, column) 

    row = row - 2 

Next 

'Fill in leadtime information 

row = 16 

column = 3 

For i = 2 To 8 

    leadtime(i) = Worksheets("Input").Cells(row, column) 

    row = row - 2 

Next 

'Fill in long lead time info 

row = 16 

column = 4 

For i = 2 To 8 

    longleadtime(i) = Worksheets("Input").Cells(row, column) 
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    row = row - 2 

Next 

'Initialize various parameters 

inventory(9) = 1E+17 

basestock(9) = 1E+17 

leadtime(1) = 0 

mu = Worksheets("Input").Cells(26, 10) 

std = Worksheets("Input").Cells(26, 11) 

 

'Begining of Reachability Analysis---------------------------------------------------------- 

column1 = 1 

k = 1 

For i = 1 To 8                           'Perform Reachability Analysis/Fill the Outp Matrix 

    For j = 1 To 8 

      If Inp(i, j) = 1 Then 

        Outp(i, column1) = j 

        k = 1 

        While Outp(j, k) <> 0 

            Outp(i, column1 + 1) = Outp(j, k) 

            column1 = column1 + 1 

            k = k + 1 

        Wend 

      column1 = column1 + 1 

      End If 

    Next 
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column1 = 1 

Next 

column1 = 1 

row1 = 1032 

column1 = 2 

For i = 1 To 8                         'Out put the Outp Matrix into the Excel 

    For j = 1 To 8 

        Worksheets("Output").Cells(row1, column1).Value = Outp(i, j) 

        column1 = column1 + 1 

    Next 

row1 = row1 + 1 

column1 = 2 

Next 

For row1 = 1032 To 1039                     'Remove Zeros from Outp Matrix 

    For column1 = 2 To 9 

        If Worksheets("Output").Cells(row1, column1) = 0 Then 

            If row1 <> 1032 Or column1 <> 2 Then 

                Worksheets("Output").Cells(row1, column1) = Empty 

            End If 

        End If 

    Next 

Next 

'End of Reachability Analysis--------------------------------------------------------------- 

 

'Start the simulation----------------------------------------------------------------------- 
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row2 = 16 

For time = 1 To 1000 

    column2 = 3 

    Worksheets("Output").Cells(row2, column2 - 2).Value = time 

'Fill in Leadtime------------------------------------------------------------------------------ 

    row = 16 

    column = 3 

    For l = 2 To 8 

        leadtime(l) = Worksheets("Input").Cells(row, column) 

        row = row - 2 

    Next 

 

    For node = 2 To 8 

        If disr(node) = 1 Then 

            leadtime(node) = leadtime(node) + y(node) 

            y(node) = Application.WorksheetFunction.Max(0, y(node) - 1) 

        End If 

    Next 

'Operational Logic-------------------------------------------------------------------------- 

    x = Rnd() 

    Demand = Application.WorksheetFunction.NormInv(x, mu, std) 

    Worksheets("Output").Cells(row2, column2 - 1).Value = Demand 

    For i = 1 To 8                                      'Account for Beg. Inventory and OO 

        For l = 1 To 8 

            If Inp(l, i) = 1 Then 
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                inventory(l) = inventory(l) + shipment(l, time) 

                onorder(l) = onorder(l) - shipment(l, time) 

            End If 

        Next 

'---------------update unsat vector-------------------------------------------------- 

        n = 15 

        For k = 1 To 15 

            For m = 3 To 15             'Searching for appropriate delta 

                If Worksheets("Demand Decay").Cells(m, 4).Value = n - k + 1 Then delta = Worksheets("Demand Decay").Cells(m, 

5).Value 

            Next 

            unsat(i, n - k + 1) = delta * unsat(i, n - k) 

            'demandloss = demandloss + unsat(0, n - k) * (1 - delta) 

            unsat(i, n - k) = 0 

        Next 

'------------------Check how much of backlog can be satisfied------------------------------- 

        n = 15 

        For k = 0 To 15 

            For l = 1 To 9 

                If Inp(l, i) = 0 Then abovezero(l) = 9000000 

                If Inp(l, i) = 1 Then abovezero(l) = inventory(l) 

            Next 

            canship = Application.WorksheetFunction.Min(abovezero(1), abovezero(2), abovezero(3), abovezero(4), abovezero(5), 

abovezero(6), abovezero(7), abovezero(8)) 
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            shipment(i, time + leadtime(i)) = shipment(i, time + leadtime(i)) + Application.WorksheetFunction.Min(unsat(i, n - k), 

canship) 

            For l = 1 To 9 

                If Inp(l, i) = 1 Then 

                    inventory(l) = inventory(l) - Application.WorksheetFunction.Min(unsat(i, n - k), canship) 

                    'short(l) = short(l) + unsat(l, n - k) 

                End If 

            Next 

            unsat(i, n - k) = unsat(i, n - k) - Application.WorksheetFunction.Min(unsat(i, n - k), canship) 

        Next 

        For l = 1 To 8 

            abovezero(l) = 0 

        Next 

'--------------------Satisfy current period Demand------------------------------ 

        For l = 1 To 9 

            If Inp(l, i) = 0 Then abovezero(l) = 900000000 

            If Inp(l, i) = 1 Then abovezero(l) = inventory(l) 

        Next 

        canship = Application.WorksheetFunction.Min(abovezero(1), abovezero(2), abovezero(3), abovezero(4), abovezero(5), 

abovezero(6), abovezero(7), abovezero(8)) 

        shipment(i, time + leadtime(i)) = shipment(i, time + leadtime(i)) + Application.WorksheetFunction.Min(Demand, canship) 

        Worksheets("Output").Cells(row2 + leadtime(i), column2 + 1).Value = shipment(i, time + leadtime(i)) 

        column1 = 3 

        For l = 1 To 9 

            If Inp(l, i) = 1 Then 
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                inventory(l) = inventory(l) - Application.WorksheetFunction.Min(Demand, canship) 

                short(l) = short(l) + unsat(l, 0) 

                Worksheets("Output").Cells(row2, column1).Value = inventory(l) 

            End If 

            column1 = column1 + 4 

        Next 

        'Worksheets("Output").Cells(row2, column2).Value = inventory(i) 

        unsat(i, 0) = Demand - Application.WorksheetFunction.Min(Demand, canship) 

        Worksheets("Output").Cells(row2, column2 + 2).Value = unsat(i, 0) 

        If unsat(i, 0) > 0 Then SL(i) = SL(i) + 1 

        order(i, time) = Demand 'basestock(1) - inventory(1) - onorder(1) + unsat(0, 0) 

        Worksheets("Output").Cells(row2, column2 + 3).Value = order(i, time) 

        onorder(i) = onorder(i) + order(i, time) 

        For l = 1 To 8 

            abovezero(l) = 0 

        Next 

        column2 = column2 + 4 

    Next 'end of cycling through the nodes 

  

'-----------------------------------Disruption Simulation And RA------------------------------ 

'---------------------------Actual RA------------------------------------------------------- 

    For i = 2 To 8 

            For k = 1 To Pcount(i) 

                For m = 1 To 8 
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                    If P(k, i, m) > 1 Then 

                        If DS(i, P(k, i, m)) = 1 Or DR(i, P(k, i, m)) = 1 Then 

                            If inventory(P(k, i, m)) = 0 Then 

                            'MsgBox "node is " & P(k, i, m) & " inv.  " & inventory(P(k, i, m)) & " time is " & time & " DS(2, 1)= " & DS(i, 

P(k, i, m + 1)) 

                                DS(i, P(k, i, m + 1)) = 1 

                                If initial(i, P(k, i, m + 1)) = 0 And DS(i, P(k, i, m + 1)) Then 

                                    Starved(i, P(k, i, m + 1)) = Starved(i, P(k, i, m + 1)) + 1 

                                    initial(i, P(k, i, m + 1)) = 1 

                                End If 

                            End If 

                            'If timecheck(i, P(k, i, m)) = 0 And DS(i, P(k, i, m)) = 1 Then 

                             If DS(i, P(k, i, m)) = 1 Then 

                                If m = 1 Then DT(i, P(k, i, m)) = DT(i, P(k, i, m)) + 1 

                                If m > 1 Then 

                                    If inventory(P(k, i, m - 1)) = 0 Then DT(i, P(k, i, m)) = DT(i, P(k, i, m)) + 1 

                                End If 

                            End If 

                                'timecheck(i,h P(k, i, m)) = 1 

                            'End If 

                        End If 

                    End If 

                    If P(k, i, m) = 1 Then 

                        If DS(i, P(k, i, m)) = 1 And inventory(P(k, i, m - 1)) = 0 Then 

                            DT(i, P(k, i, m)) = DT(i, P(k, i, m)) + 1 
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                        End If 

                    End If 

                     

                    If m = 1 Then 

                        If time = dtime(i) Then 

                            DS(i, i) = 0 

                            DR(i, i) = 1 

                            dc(i, i) = time + leadtime(i) 

                        End If 

                        If time = dc(i, i) Then 

                            DR(i, i) = 0 

                            dc(i, i) = 0 

                        End If 

                    End If 

                    If m > 1 And P(k, i, m) > 0 Then 

                        If DS(i, P(k, i, m)) = 1 And inventory(P(k, i, m - 1)) > 0 Then 

                            DS(i, P(k, i, m)) = 0 

                            DR(i, P(k, i, m)) = 1 

                            dc(i, P(k, i, m)) = time + leadtime(P(k, i, m)) 

                        End If 

                        If time = dc(i, P(k, i, m)) Then 

                            DR(i, P(k, i, m)) = 0 

                            initial(i, P(k, i, m)) = 0 

                            dc(i, P(k, i, m)) = 0 

                        End If 
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                    End If 

                Next 

            Next 

    Next 

'---------------------------End Of Actual RA------------------------------------------------ 

'Begin Disruption Simulation----------------------------------------------------------------- 

    For node = 2 To 8 

        If disr(node) = 0 Then z(node) = Rnd() 

    Next 

    For node = 2 To 8 

        If z(node) < probab(node) Then 

            y(node) = Rnd() * (longleadtime(node) - leadtime(node) - 1) + 1 

            y(node) = Application.WorksheetFunction.Round(y(node), 0) 

            disr(node) = 1 

            dtime(node) = time + y(node) 

            z(node) = 0.6 

            check2(node) = 1 

            DS(node, node) = 1 

            Starved(node, node) = Starved(node, node) + 1 

            count(node) = count(node) + 1 

             

        End If 

    Next 

'Begin Timed Petri Net Reachability--------------------------------------------------------- 

    For node = 2 To 8 
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        If check2(node) = 1 Then 

            check2(node) = 0 

            howsoon = 0 

            howlong = 0 

            row1 = 1042 

            column1 = 2 

            For l = 1 To 8 

                POS(l) = (inventory(l) + onorder(l)) / 200 

            Next 

            k = 1 

            howlong = y(node) 

            howsoon = howsoon + POS(node) 

            OutpTimeLong(node, node) = howlong 

            howlong = howlong + leadtime(node) - POS(node) 

                'effected(i) = effected(i) + 1 

            While Outp(node, k) <> 0 

                j = Outp(node, k) 

                If howlong <= 0 Then 

                    howlong = 0 

                    howsoon = 0 

                End If 

                If howlong > 0 Then 

                    effected(j) = effected(j) + 1 

                End If 

                OutpTime(node, j) = howsoon 
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                OutpTimeLong(node, j) = howlong 

                howlong = howlong + leadtime(j) - POS(j) 

                howsoon = howsoon + POS(j) 

                k = k + 1 

            Wend 

            For j = 1 To 8 

                Worksheets("Output").Cells(row1 + node, column1).Value = Worksheets("Output").Cells(row1 + node, column1).Value 

+ OutpTime(node, j) 

                Worksheets("Output").Cells(row1 + node, column1 + 10).Value = Worksheets("Output").Cells(row1 + node, column1 + 

10).Value + OutpTimeLong(node, j) 

                column1 = column1 + 1 

            Next 

        End If 

    Next 

'End Timed Petri Net Reachability----------------------------------------------------------- 

    For l = 1 To 8 

        If time = dtime(l) Then 

            disr(l) = 0 

            dtime(l) = 0 

        End If 

    Next 

 

    For l = 1 To 4 

        For n = 1 To 4 

            timecheck(l, n) = 0 
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        Next 

    Next 

 

'----------------------------------End of Disruption Simulation And RA---------------------- 

    row2 = row2 + 1 

Next 'end of simulation 

row2 = 1023 

column2 = 7 

For l = 1 To 7 

    Worksheets("Output").Cells(row2, column2).Value = 1 - SL(l) / 1000 

    column2 = column2 + 4 

Next 

column2 = 12 

For l = 1 To 8 

    Worksheets("Output").Cells(1051, column2).Value = count(l) 

    Worksheets("Output").Cells(1052, column2).Value = effected(l) 

    column2 = column2 + 1 

Next 

i = 1 

j = 1 

For row = 1043 To 1050                 'Output Starved matrix 

    For column = 22 To 29 

        Worksheets("Output").Cells(row, column).Value = Starved(i, j) 

        j = j + 1 

    Next 
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    j = 1 

    i = i + 1 

Next 

i = 1 

j = 1 

For row = 1043 To 1050                  'Output DT matrix 

    For column = 32 To 39 

        Worksheets("Output").Cells(row, column).Value = DT(i, j) 

        j = j + 1 

    Next 

    j = 1 

    i = i + 1 

Next 

End Sub 
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Appendix VI 
VBA for Eight-Node Supply Chain Sensitivity and Scenario Analysis 

Sub RunTheCode() 

Dim run, row, row1, column, h, i, j, k As Integer 

Dim prob, dev, lt As Double 

Dim AveInv(1 To 8) As Double 

Dim SL(1 To 8) As Double 

Dim SLS(1 To 8, 1 To 11) As Double 

Dim sldev(1 To 8) As Double 

Dim FR(1 To 8) As Double 

Dim FRS(1 To 8, 1 To 11) As Double 

Dim frdev(1 To 8) As Double 

Dim Length(1 To 8) As Double 

Dim AveDisrCount(1 To 8) As Integer 

Dim ADCS(1 To 8, 1 To 11) As Double 

Dim adcdev(1 To 8) As Double 

Dim AveEffected(1 To 8) As Double 

Dim bs(1 To 8) As Double 

prob = 0.98 

dev = 30 

lt = 8 

k = 13 

h = 6 

row1 = 6          'change here 
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j = 1 

'While k >= 3            'chage here 

For i = 1 To 7 

    AveInv(i) = 0 

    SL(i) = 0 

    FR(i) = 0 

    Length(i) = 0 

    AveDisrCount(i) = 0 

    AveEffected(i) = 0 

    bs(i) = 0 

Next 

'Worksheets("Input").Cells(11, 4) = k         'change here 

Worksheets("Input").Select 

SolverOk SetCell:="$M$27", MaxMinVal:=2, ValueOf:="0", ByChange:="$C$29:$C$35" 

SolverSolve UserFinish:=True 

'MsgBox Worksheets("Input").Cells(19, 7) 

For run = 1 To 10 

    Application.run "'8 node supply chain.xls'!ClearTheTable.ClearTheTable" 

    Application.run "'8 node supply chain.xls'!EightNodeSC.EightNodeSC" 

'-----------------------Average End. Inv, Sl, FR----------------------------------------- 

    column = 7 

    For i = 1 To 7 

        AveInv(i) = AveInv(i) + Worksheets("Output").Cells(1026, column) 

        SL(i) = SL(i) + Worksheets("Output").Cells(1023, column).Value 

        SLS(i, j) = Worksheets("Output").Cells(1023, column).Value 
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        FR(i) = FR(i) + Worksheets("Output").Cells(1024, column).Value 

        FRS(i, j) = Worksheets("Output").Cells(1024, column).Value 

        column = column + 4 

    Next 

'---------------------------------Length--------------------------------------------------- 

    row = 1044 

    For i = 1 To 7 

        Length(i) = Length(i) + Worksheets("Output").Cells(row, 32) 

        AveEffected(i) = AveEffected(i) + Worksheets("Output").Cells(row, 22) 

        row = row + 1 

    Next 

'-----------------------------------Base Stock---------------------------------------------- 

    row = 44 

    For i = 1 To 7 

        bs(i) = bs(i) + Worksheets("Input").Cells(row, 8) 

        row = row - 1 

    Next 

'----------------------AveDisrCount, AveEffected-------------------------------------------- 

    column = 13 

    For i = 1 To 7 

        AveDisrCount(i) = AveDisrCount(i) + Worksheets("Output").Cells(1051, column).Value 

        ADCS(i, j) = Worksheets("Output").Cells(1051, column).Value 

        column = column + 1 

    Next 

    j = j + 1 
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Next 

For i = 1 To 7 

    For j = 1 To 10 

        sldev(i) = sldev(i) + (SLS(i, j) - SL(i) / (run - 1)) ^ 2 

        frdev(i) = frdev(i) + (FRS(i, j) - FR(i) / (run - 1)) ^ 2 

        adcdev(i) = adcdev(i) + (ADCS(i, j) - AveDisrCount(i) / (run - 1)) ^ 2 

    Next 

Next 

column = 1 

 

For i = 1 To 7 

    sldev(i) = 1.833 * (sldev(i) / (run - 2)) ^ (1 / 2) 

    frdev(i) = 1.833 * (frdev(i) / (run - 2)) ^ (1 / 2) 

    adcdev(i) = 1.833 * (adcdev(i) / (run - 2)) ^ (1 / 2) 

Next 

column = 3 

For i = 1 To 7 

    Worksheets("Sensitivity").Cells(row1, column) = AveInv(i) / (run - 1) 

    Worksheets("Sensitivity").Cells(row1, column + 7) = SL(i) / (run - 1) 

    Worksheets("Sensitivity").Cells(row1, column + 14) = sldev(i) 

    Worksheets("Sensitivity").Cells(row1, column + 21) = FR(i) / (run - 1) 

    Worksheets("Sensitivity").Cells(row1, column + 28) = frdev(i) 

    Worksheets("Sensitivity").Cells(row1, column + 35) = AveDisrCount(i) / (run - 1) 

    Worksheets("Sensitivity").Cells(row1, column + 42) = adcdev(i) 

    Worksheets("Sensitivity").Cells(row1, column + 49) = AveEffected(i) / (run - 1) 
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    Worksheets("Sensitivity").Cells(row1, column + 56) = Length(i) / (run - 1) 

    Worksheets("Sensitivity").Cells(row1, column + 63) = bs(i) / (run - 1) 

    column = column + 1 

Next 

'Worksheets("Sensitivity").Cells(row1, 2) = k        'change here 

k = k - 1                                           'change here 

row1 = row1 + 1 

'Wend 

End Sub 


