
ABSTRACT

KOCHERLAKOTA, SARAT MOHAN. Perception Driven Search Strategies For Effective

Multi-Dimensional Visualization. (Under the direction of Christopher G. Healey)

Tracking and analysing large amounts of information in many different application areas

is a critical problem. One approach to address this problem is the use of multi-dimensional

visualizations to represent large datasets. Visualizations can be constructed effectively by the

use of visual features and properties like color and texture. Our objective is to construct multi-

dimensional visualizations using perceptually salient visual features which support rapid visual

analysis and exploration of large datasets. We use a visualization system called ViA use to

construct effective visualizations.

We present a search technique incorporated in ViA, that finds effective attribute-feature

mappings to represent multi-dimensional datasets in a perceptually salient fashion. ViA eval-

uates the salience of attribute-feature mappings using evaluation engines. These evaluation

engines also suggest hints that recommend how the mapping can be improved perceptually.

The search technique we developed uses dataset properties and the hints generated by the eval-

uation engines to quickly and efficiently produce perceptually salient mappings.

Perceptual guidlines were established from studies and experiments on human perception.

ViA works as a semi-automated visualization system that uses an effective search technique to

find salient mappings. Applying ViA to practical datasets indeed proves the effectiveness of

ViA. We think ViA can also produce salient visualizations in a variety domain areas since the

guidelines for generation of effective visualizations are based on human perception.
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Chapter 1

Introduction

Visualization is the area of science dealing with generation and presentation of information

in effective and easy-to-understand representations. Various definitions exist for visualization.

The Oxford English Dictionary describes it as “making visible, especially to one’s mind, things

not visible to the eye.” The Webster’s Dictionary describes visualization as “forming a mental

image of something not present to the sight, an abstraction, etc.”

With respect to computer graphics, one of the more specific definitions describes it as “the

use of computer imaging technology as a tool for comprehending data obtained by simulation

or physical measurement.” [HM90] Another definition describes it as “techniques that allow

scientists and engineers to extract knowledge from the results of simulations and computa-

tions.”

The approach proposed in this thesis to address the need for effective visualization is a semi-

automated perception driven visualization tool called ViA. ViA can be used for exploration and
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analysis of multi-dimensional or multi-variate datasets. The perception driven nature of ViA

allows multiple layers of data to be presented simultaneously within a single image, without

undermining the user’s ability to easily comprehend the information in the representation.

1.1 Need For Visualization

Although small, self-contained collections of data in its raw form of numbers and text is per-

haps readable to most people, the vast amount of information being generated in various areas,

makes it imperative that we devise some ways to track and comprehend it. Experts in these

domains may be knowledgeable about the information they need to analyze and explore. Yet,

absorbing and comprehending vast amounts of information, especially in situations where time

is a critical constraint, is an enormous and difficult task. For instance, in medical scenarios crit-

ical life-saving decisions by doctors and surgeons need to be made from information generated

by medical scanning devices and systems. Another example is meteorological data that con-

tains critical information relating to tracking potentially life-threatening storms and cyclones.

In such scenarios, presenting information effectively aids in making an informed decision in a

short period of time.

Visualizing information is very useful for analysis and exploration of vast sets of infor-

mation, and for extracting knowledge from these datasets efficiently and quickly. Presenting

information using line and bar graphs, pie-charts or even pictures is widespread for analysis

and exploration, and for understanding relationships between various sets of data. It is safe to

say that a single picture can express a thousand words. We can further say that the purpose of
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visualization is to construct such representations that convey large amounts of information to

humans more easily than plain words and numbers.

1.2 Scientific Visualization

As with our definition of visualization, scientific visualization is the representation of scientific

collections of numbers, strings, and datasets using one or more visual features (e.g. color, tex-

ture or motion). Images constructed using visual features allow visual exploration and analysis

to be conducted.

Imagine a datasetD = fe1; ::; eng containingn sample points, or data elements,ei. A

multidimensional dataset represents two or more data attributes,A = fA1; :::; Amg, m > 1.

The data elements encode values for each attribute:ei = fai;1; :::; ai;mg, ai;j 2 Aj. A data-

feature mapping converts the raw data into images that can be presented to a viewer. Such a

mapping is denoted byM = (V;�), whereV = fV1; :::; Vmg is a set ofm visual featuresVj

selected to represent each attributeAj, and�j : Aj ! Vj denotes the mapping of the domain

of Aj to the range of displayable values inVj. Scientific visualization is thus the selection of

M and the analysis of a viewer’s ability to comprehend of the images generated byM . An

effectiveM must produce images that support rapid, accurate and effortless visual exploration

and analysis.
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1.3 Need For Perceptual Visualization

Since scientific visualization deals with generating a mapping between datasets and visual

features thus presenting information in a form understandable to users, one would think it

necessary to find answers to some important questions:

� How does the human vision system perceive visual information?

� Are there visual representations or techniques that are easier to interpret than others?

� How much visual information can be presented in a single image, before it becomes

difficult to absorb any additional data?

Finding answers to these questions allows us not just to better understand human perception,

but also to develop strategies to incorporate these findings in techniques used for visualization.

Perceptual visualization is thus a broad technique that harnesses aspects of human vision in

order to generate effective representations of data.

Figure 1.1 demonstrates the visualization of a multi-dimensional dataset. Here, a weather

dataset is represented using small glyphs (or perceptual texture elements) that vary their color

and texture properties. These properties are used to visualize the different data attributes. Color

representstemperature;bright pink and red strokes for hot temperatures to dark green and blue

strokes for cold temperatures. Coverage representswind speed;tightly packed strokes with

little or no background showing through for strong winds to sparsely packed areas for weak

winds. Density representspressure;more strokes displayed in a fixed area of screen space for

4



Figure 1.1: A visualization of a weather dataset using perceptual texture elements withtemperature! color,wind
speed! coverage,pressure! density, andprecipitation! orientation

increasing pressure. Finally, orientation representsprecipitation; vertical strokes for little or

no rainfall to horizontal strokes for high rainfall.

The visualization shown in Figure 1.1 was constructed to maximize perceptual salience.

The techniques used to visualize particular information determine the effectiveness of the re-

sulting images. Certain techniques are more effective than others. By effective, we mean that

the images are more easily absorbed, and extracting the underlying information or knowledge

within the image does not require as much effort. Perceptual visualization techniques are also

dependent on the type of data they are used for. For example, high spatial frequency data

(i.e. data with sharp spatial changes in its value) is best displayed with luminance. Data with
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discrete values, on the other hand, is best displayed with color. Understanding rules of percep-

tion allows us to choose appropriate mappings based on the properties of the datasets, and the

analysis tasks the user wants to perform.

1.4 Multi-dimensional Dataset Visualization

Multi-dimensional visualization is the simultaneous representation of multiple attributes using

appropriate visual features, within a single image. Such a representation attempts to present

large sets of information within a single image to the user, thereby reducing the time and space

needed to display the information when compared to representing each attribute in separate

images. Representing multiple attributes simultaneously can also aid in understanding the

relationships that might exist between different attributes.

However, representing information in this multi-dimensional manner raises the question:

how much information within a single image, is too much information? It is essential that

the representation of multiple attributes in a single image not exceed the user’s capacity to

comprehend the image and its underlying information.

1.5 Problems In Visualization

Perceptual visualization raises questions that must be addressed before effective, perceptually

salient representations of datasets can be generated. These questions pertain to the nature of

the datasets that need to be mapped to visual features. Some of these questions are:
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� What type of data set is it?

� Are the data attributes discrete or continuous?

� Do the attributes have high or low spatial frequency?

� What kind of visual feature would best suit each attribute for representation?

In addition to the above questions, the presence of a user during multi-dimensional visualiza-

tion raises its own issues [BCE+92]:

� What relative importance does the viewer attach to each attribute to be displayed?

� Do the visual features being represented simultaneously interfere visually with each

other?

� How many attributes can be simultaneously displayed within the same image?

Answers to all of the above questions are essential for proper visual representation of multi-

dimensional data. While some of this information could be provided by domain and visualiza-

tion experts, what is needed is a comprehensive and systematic set of rules and guidelines that

govern basic perceptual visualization, human vision and multi-dimensional dataset visualiza-

tion in a way that allows the semi-automated construction of visualizations for a wide range of

problem environments.

7



1.6 Flexibility

Many studies and research in scientific visualization seem to focus largely on the use of visual-

ization in domain specific areas. This means that one tries to find the best form of visualization

suited to a specific visualization problem. Moreover, these efforts are sometimes ad-hoc in

their methods for building optimal visualizations. There is no guarantee that the techniques

can be applied to other problem domains, even if these domains are similar in nature to the

original dataset.

In order to be a domain independent tool (at least to some extent), a visualization system

would need some kind of processing capability to evaluate a mapping’s effectiveness for a

given dataset and associated analysis tasks. Formalizing perceptual characteristics into rules

and guidelines to direct the visualization process might allow us to provide such an evaluation.

The need to search for a suitable mapping from a set of all possible mappings using such

guidelines and rules becomes a critical task in this type of system.

1.7 Research Goals

The Visualization Assistant (ViA) developed in our research lab, is a perception driven tool,

that incorporates studies on human cognition and human visual perception in order to generate

perceptually salient mappings between datasets and visual features. Given the ability to eval-

uate a mapping for perceptual salience, this thesis studies ways to search intelligently through

the search space of all possible mappings to locate those mappings which best meet the per-
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ceptual guidelines, analysis needs, and dataset characteristic directing the search process. The

research goals of this thesis:

1. Identify the appropriate information about a dataset in the user’s exploration and analysis

needs to constrain a search which satisfy these initial visualization goals.

2. Supplement the evaluation process with additional information that can be used to decide

how to improve weak components in the data-feature mapping.

3. Use evaluation results to rapidly and effectively identify high-quality mappings based on

the dataset’s properties and the user’s analysis requirements.

In summary, we incorporate and study appropriate search strategies within the visualization

tool to return a set of optimal data-feature mappings from a set of all possible mappings for a

generalized dataset and analysis tasks, in an efficient and effective manner.

In the following chapters, we will discuss not just perceptual visualization, and related

efforts, but also the working of ViA, in particular the search process for finding suitable per-

ceptually salient mappings between datasets and visual features, for multi-dimensional dataset

visualization.
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Chapter 2

Perceptual Visualization

The use of perceptual guidelines for designing displaying multi-dimensional datasets is aimed

at producing perceptually salient images or displays to represent complex information spaces

in ways that our human visual system can easily comprehend. Hence, rapid, accurate and

effortless visual exploration of the representations are crucial to the effectiveness of a visual-

ization system [HE99]. In order to be visually effective in this way, research in visualization

has utilized psychophysical studies to understand and harness human visual attention.

2.1 Preattentive Vision

Visual information is processed in two ways by the human vision system. The first could

be labeled as “controlled processing.” The information is dealt with in detail, and capacity to

assimilate information is low. Focus or attention can be easily inhibited. Since attention is

conscious and is low capacity. The manner in which tasks are carried out is serial in fashion
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with attention focusing on one task at a time.

By contrast “automatic processing” or “preattentive processing” is a fast, unconscious man-

ner of perception. Capacity to assimilate information is independent of the load on vision and

is thus very high, attention is less critical and many tasks are done in parallel. A simple ex-

ample of this distinction is the use of controlled processing to perceive textual information, as

compared to automatic processing to perceive basic color and texture patterns.

The dual abilities of human vision to carry out focused processing as well as to complete

automatic tasks are characteristics that can be exploited in order to visualize information. One

of the studies on preattentive vision conducted by Triesman [Tri85], focused on identifying

the characteristics of preattentive vision in humans. A result of the study found that the hu-

man vision system can rapidly identify the presence or absence of a number of basic features

including color, brightness, terminators of line ends, closure or blobness, tilt and curvature.

Figure 2.1 demonstrates some instances of the preattentive nature of the human visual sys-

tem. A red circle in the midst of a group of blue circles is easily detected. Similarly, a red

circle in the midst of red squares is also easily identified. However, the task of locating a red

circle among a group of red squares and blue circles is much more difficult, suggesting that

certain features can be preattentively detected, but preattentive integration of color and shape

detection is not possible.

The above mentioned features were referred to as preattentive because their detection oc-

curs rapidly and accurately presumably preceding focused attention. We now know that low-

level human vision is much more complicated than originally proposed. Also, a viewer’s at-
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(a) (b)

(c) (d)

(e) (f)

Figure 2.1: Examples of target searches: (a, b) demonstrates how the search for a red circle in a sea of blue circles
is rapid and accurate, target is in (a). (c, d) demonstrates how the search for a red circle among a sea of red squares
is rapid and accurate, target is in (c). (e, f) demonstrates how identifying another red circle among a sea of red
squares and blue circles is significantly more difficult, target is present in (e), and absent in (f).
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tention can have a significant impact on what low-level vision can detect. In spite of this, the

term “preattentive” provides an intuitive indication of the type of visual processing offered by

our cognitive visual system. We will therefore continue to use this terminology. The amount

of time needed to detect preattentive features is largely independent of the total number of el-

ements. The use of these features can be very helpful for performing a variety of exploratory

visualization tasks. Some of these include search for target elements with specific preatten-

tive features, identifying spatial boundaries between groups of elements, comparing elements,

and tracking groups across time and space. In the following sections we discuss some of the

preattentive visual features that are useful for visualization.

2.1.1 Color

Light is electromagnetic energy, and the range of the wavelengths from400nm to 700nm

denotes the visible spectrum of light. The perception of color is principally the response of the

human visual system to the visible spectrum. Color perception is described as being made up

of three quantities.

The first quantity known as hue is our perception of the dominant wavelength of reflected

or emitted light. Hue allows us to distinguish between colors like blue, green, orange, purple

and yellow. The visible spectrum spans multiple named color regions from violet, indigo, blue,

green, yellow, and orange to red.

The second quantity called saturation, describes as how much white is mixed with a pure

color. Saturation is our perception of the excitation purity of light. It refers to the mixture of
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white light with pure light. A completely pure color is considered one hundred percent percent

saturated, and is said to contain no white light. Red is a pure color and is thus highly saturated,

while pink is a mixture of red with white light, and is hence considered relatively unsaturated.

Mixing white light in varying quantities with a pure color reduces to the saturation of the color

from one hundred percent to a possible zero percent saturation, which is seen as a shade of

gray.

The third quantity is referred to as lightness. Lightness signifies our perception of the

intensity of the light. Intensity of light is often defined as luminance. While lightness is used

to signify the perceived intensity of light emanating from a reflected object which is not self-

luminous, perceived intensity of light radiating from light sources (self-luminous objects) is

referred to as brightness.

The back of the retina in the human eye is made up of two mechanisms to perceive light:

rods , which detect luminance, and cones, which detect hue. With respect to the cones, there

are three kinds depending on the type of photosensitive pigments within the eye.

The first kind is sensitive to the color blue , with a maximum sensitivity or peak response at

a wavelength of440nm of perceived light. The second kind of cones are those photopigments

sensitive to color green, with a peak response at a wavelength of about545nm. And the third

kind of cones are those sensitive to color red, with a peak response at a wavelength of about

580nm. This theory of the response of different types of cones in the retina to light of different

wavelengths (blue, green and red), is known as the tristimulus theory.

Variations in any or all the three quantities of hue, saturation and brightness produces many
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different colors. The human eye itself can distinguish between millions of different colors.

With luminance as a constant and varying between hues that are fully saturated, the human eye

has been proven to be able to distinguish between about 128 fully saturated hues. The human

eye is less sensitive to hue changes in less saturated light. [FvF+93]

Efforts to quantify colored light have led to various theories surrounding generation of

colors. One theory that suggests that colors can be generated or described using mixtures of

red, green and blue is useful in computer graphics, as the RGB (red-green-blue) model This

model is used to display color on standard computer displays that use color cathode ray tubes

(CRT). While combinations of red, green and blue can be used to produce many different

colors, they cannot produce the entire spectrum of colors that are visible to the human eye.

Other models in computer graphics also utilize the tristimulus theory in generating colors.

The CMY (cyan-magenta-yellow) model uses the three colors that are the complements of

red, green and blue, respectively. While the RGB model defines color as what is added to

blackness, the CMY model defines color as subtracting from white light. CMY is a useful

model for hardcopy devices like ink-jet printers and plotters.

The YIQ and the HSV models are also utilized in computer graphics. YIQ is used to

encode color NTSC television transmissions. Y roughly corresponds to luminance, while I and

Q encode chromaticity (i.e. hue and saturation). This model was designed to be backwards

compatible with the original broadcast standard from black-and-white televisions.

HSV attempts to provide a more intuitive color model by using three axes representing hue,

saturation and value (or lightness). This makes it easier for users to select desired colors by
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providing understandable color dimensions. As with RGB, both models’ gamut cover only a

subset of the entire visible color spectrum.

2.1.2 Color Selection

The CIE (Commission Internationale de l’Eclairage) model also uses a three-dimensional ap-

proach to defining colored light. This model is an international standard established in 1931.

Although, three primary colors are defined in this model, these do not correspond to “real”

colors from the visible color spectrum. This is due to the fact that no combinations of three

visible colors (such as the so-called “primary colors” red, green and blue) can produce all col-

ors in the visible spectrum. However, using combinations of the imaginary primaries X, Y and

Z specified in this model allows us to reproduce all possible colors.

2.1.2.1 CIE LUV

The CIE LUV color model (proposed in 1976) specifies color using three dimensionsL� (en-

coding luminance),u� andv� (together encoding chromaticity). Two useful properties allow

us to control perceived color difference. Colors with the sameL� are considered “isolumi-

nant”, since they have same perceived luminance. And, Euclidean distance and perceived

color difference (specified in�E� units) can be roughly interchanged. This means color dif-

ference between two color stimulix andy which are positioned in CIE LUV at(L�

x; u
�

x; v
�

x)

and(L�

y; u
�

y; v
�

y) can be measured as:
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Healey and Enns [HE98] used the CIE LUV model to measure color distance (or perceived

color difference). They used two additional criteria, linear separation and color category to

further refine their ability to determine the perceptual balance of a set of colors[Hea98]. Color

distance is defined as the Euclidean distance between different colors as measured in a percep-

tually balanced model. Linear separation is defined as the ability to separate a target color all

other, from non-target colors with a single straight line in the color model being used. Color

categories are defined as uniquely named color regions that subdivide the color model. Each

color can then be matched to the named region it occupies.

Experiments conducted to ascertain the effect of linear separation [D’Z91] investigated

the human response to the task of finding a target color in a background of non-target colors.

Results showed that when the target color could be separated by a straight line from the non-

target colors in the color space, the time required to ascertain presence or absence of the target

color was constant time, and independent of the total number of elements on display [Hea98]. If

the target was collinear with the non-targets, the time required to identify presence or absence

was no longer constant, but rather was linearly proportional to the number of elements on

display. Further experiments in this area [BJC96] confirmed that the linear separation effect

applies to colors from the entire visible color domain. Finally, experiments in color category

[KUU95] concluded that searching for a target in a background consisting of a non-target color

that occupied in the same region as the target is significantly more difficult that searching for

17



a color target in a background of a non-target colors which belong to a different named color

region.

These experiments relate closely to understanding the perceptual properties of colors and

how to effectively control color during visualization design. Some of the important questions

that need to be addressed in order to use color in perceptual visualization systems include:

1. Based on human perception of color, what kind of colors (or color categories) can be

used for visualization purposes?

2. What is the maximum number of colors that can be used for purposes of visualization

without hindering the analysis of the data being represented?

Experiments conducted to address these questions [Hea96] showed that up to seven different

isoluminant colors can be displayed simultaneously while still allowing the rapid and accurate

identification of any of the seven colors. The study found that the time required to identify any

one of these colors (shown simultaneously in the presence of the remaining six) was largely

independent of display size, which suggested that target detection in this case occurs preatten-

tively. However, the study also concluded that the selection criteria mentioned earlier, i.e. color

distance, linear separation and color category all need to be considered in choosing colors that

could be rapidly detected. Violating of any of the criteria produced a significant reduction in

user speed and accuracy.

The CIE LUV model provides rough uniformity in choosing colors that can be perceptually

differentiated. Within the model, the color distance of two colors corresponds approximately to

the perceived color difference between the colors. Efforts on controlling color by Ware [WK95]
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produced a system that allows users to minimize color surround effects and reduce perceptual

errors to a constant value along a continuous color scale. This method was used to build scales

that guarantee that color detection remains effective even as neighboring colors are changed

within the visualization. Finally, Rheinigans and Tebbs [RT90], worked on constructing color

scales interactively by allowing the users to trace a path through a perceptually balanced three

dimensional color model. Such a tool allowed users to vary the visualization of an attribute by

mapping its range of values to colors along the color path.

2.1.3 Texture

Aggregates of many small visual elements can be used to develop visual textures [JB83]. Such

textures can be represented by either single elements like colored dots or circles, or complex

patterns. We are interested in studies dealing with the use of textures for representing multi-

dimensional datasets.

The use of textures in multi-dimensional visualization must address a various issues:

1. Identifying the fundamental visual properties of textures that can be used to encode in-

formation.

2. Identifying ways in which these features can be combined together with hue and lumi-

nance to visualize multi-dimensional data.

According to a DOE/NSF joint panel on visualization, harnessing aspects of perception is crit-

ical to increasing our ability to represent and absorb information. Investigations and research

in computer vision and psychophysics have studied texture patterns, and have identified many
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properties of textures that can be used as “perceptual dimensions” in visualization environ-

ments. These properties can be used to represent multiple data attributes together in a common

texture pattern. For example, size (or height, length and width), orientation and density of

individual texture elements can be varied to represent a corresponding data element’s attribute

values.

Triesman’s [Tri85] studies on preattentive vision and their investigations revealed the im-

portance of textures in preattentive vision. The results identified features like size, closure or

blobness and tilt and curvature preattentively detected. Jul´esz [JB83] also determined elon-

gated blobs (rectangles, ellipses or line segments with specific size, angular orientation and

color), ends of line segments (terminators), and crossings of line segments were visual features

that were detected by the low level visual system. This study led to the development of the

texton (texture element) theory.

Although texture patterns developed using textons proved that preattentive vision can iden-

tify differences in texture patterns, certain conditions can inhibit the use of preattentive vision.

One condition that interfered with preattentive detection was the size of the textons. When the

textons were relatively small and the spacing was sparse, preattentive detection was hampered.

Other cases where preattentive detection failed was when texture patterns were created using

combinations of textons. Combinations in texture shapes and form, they concluded, could only

be detected with focussed attention of the display.

Rao and Lohse [RL93a, RL93b] also conducted studies on texture and texture dimensions.

They experimented in identifying texture dimensions by asking viewers to classify pictures
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Figure 2.2: A visualization using streamlines (arrows that can vary their direction, length, and size) of a
two-dimensional vector field of wind patterns over Australia and Indonesia

containing different kinds of textures. They discovered three main texture dimensions that were

used by the viewers to differentiate the images. These were: repetitive patterns as opposed to

non-repetitive patterns (regularity), linearly oriented patterns as opposed to circular patterns

(directionality), and simple patterns as opposed to complex patterns (complexity).

Ware and Knight [WK95] applied results from vision research in synthesizing visual tex-

tures for purposes of visualizing information. They constructed texture patterns using Gabor

filters. The size, orientation and contrast of the Gabor elements were controlled by using the

attribute values in an underlying datasets.

Turk and Banks [TB96] proposed streamlines (directed arrows) to visualize two dimen-

sional vector fields. They introduced a technique which used an energy function to guide the

placement of the streamlines. The positions and lengths of the streamlines control the visual

density of the image. The images in turn represented visualization of flow fields. Attributes
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Figure 2.3: A visualization of a mouse spinal cord using painterly ellipses to represent the data; the image allows
variation of the underpainting lightness, the spacing of an underlying checkerboard pattern, and the major-minor
axis ratio, the major axis direction, the red saturation, and the texture frequency of each ellipse

of the flow data elements like direction and magnitude are represented by using arrowheads

for the streamlines. Figure 2.2 shows a visualization using streamlines proposed by Turk and

Banks to visualize wind patterns.

Laidlaw et al [LAK+98] used ellipse-shaped glyphs to build painterly visualizations of

second-order diffusion tensor fields. Figure 2.3 shows an example of this technique, the vi-

sualization of a 2D slice through a mouse spinal cord. Each sample point in the dataset is

represented with an ellipse and background image properties to display up to six separate data

values. The visual features being applied include lightness of the underpainting, the spacing of
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an underlying checkerboard pattern, and the major-minor axis ratio, major axis direction, red

saturation, and texture frequency of each ellipse.

Kirby, Laidlaw and Marmanis [KML99] used a similar technique of graphical elements

representing artists’ brush strokes to construct discrete and continuous visual elements arranged

in multiple layers. Such representations were used to depict two-dimensional flows in fluid

mechanics. These representations were multi-dimensional as they depicted velocity, vorticity

and other mathematically derived quantities.

Grinsten [GPW89] furthered the idea of textons in a system called EXVIS. This technique

could also be referred to as a “glyph-based” visualization method. “Glyphs” are graphical icons

which have individual features like size, shape, orientation and color that can be controlled

and varied by attributes of the data elements they are chosen to represent. These techniques

are hence extremely useful in the display of multi-dimensional datasets. EXVIS uses stick-

man icons as glyphs to construct texture patterns for the display of multi-dimensional data

elements. Individual properties of the data are represented by varying the orientation and the

spatial positioning of the icons. The texture patterns were used to display spatial coherence in

multi-dimensional data.

Healey and Enns [HE98] discussed the use of perceptual texture elements or “pexels” to

represent the multi-dimensionality of individual data elements. Pexels vary both color and tex-

ture dimensions and arrangements to visualize the underlying data. Figure 2.4 shows a visual-

ization that uses pexels. Different attributes are bound to different pexel properties. Attribute

values within each data element are then used to modify the corresponding pexel’s appearance.
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Figure 2.4: A visualization using pexels to track typhoon Amber (August 28, 1997) making landfall on the
island of Taiwan.wind speedis visualized using height,pressureusing density, andprecipitationusing color.
Neighboring ocean regions without pexels (i.e. with missing data) represent regions obscured by clouds
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Available visual features include:

� color: the color of a pexel,

� height: the height of a pexel in three dimensions (or its size or area in two dimensions),

� density:the spatial packing of the pexels (in two or three dimensions),

� regularity: the underlying spatial placement of the pexels, either regular in a repeating

grid-like fashion or randomly jittered across the display, and

� orientation: the tilt of a pexel in three dimensions (i.e. its polar orientation), or rotation

of the pexel in two dimensions.

EXVIS and pexel-based methods combine the use of texture patterns with color properties in

developing effective multi-dimensional data visualizations. In the next chapter, we address the

issue of choosing appropriate visual features to represent the attribute values of data elements

to generate perceptually salient visualizations.

25



Chapter 3

Related Works

In the previous chapter we examined the concept of perceptual visualization and discussed how

it effectively utilizes human vision and human perceptual abilities. In this chapter, we shall

focus mainly on the development of multi-dimensional data visualization systems, and some

of the research that has been carried out in this area. In particular, we shall look at studies

that allow us to visualize multi-dimensional information simultaneously in a single image,

and research on developing rule-based systems to aid in generating effective and perceptually

salient mappings between data attributes and visual features. Furthermore, since our area of

research deals with perceptual visualization systems, we shall focus on research that integrates

visualization techniques with studies on human vision and cognition to achieve perceptual

salient designs. Finally, we shall look at search techniques that assist in choosing optimal

mappings for visualization from a search space of all possible mappings.
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3.1 A Presentation Tool (APT)

Jock Mackinlay [Mac86] incorporated visualization tools in his Application-Independent Pre-

sentation Tool (APT). APT was developed for designing graphical presentations (such as bar

charts, scatter plots and connected graphs) of datasets, in a two-dimensional form. Though

limiting presentations to a two dimensions, the early research focused on generating rules for

visualization that could be used in a formalized, rule-based fashion in order to generate appro-

priate mappings between datasets and visual features.

3.1.1 Expressiveness And Effectiveness

The underlying principles of this rule-based system were two very important criteria: expres-

siveness and effectiveness.

The expressiveness criterion dealt mainly with the issue of expressing information in a

corresponding graphical language. The graphical language generated by APT was a collection

of tuples. These tuples were composed from two separate sets: a set of graphical objects like

points, lines and areas (encoded on the basis of their graphical properties: positional, temporal

and retinal), and a set of locations where these graphical objects were represented.

The rule set that governed the generation of a graphical language to express information

was combined with the use of an effectiveness criterion. The effectiveness criterion for the use

of graphical objects was based on human perception. Graphical objects were ranked according

to their perceptual effectiveness within a presentation. Objects that were more effective had

a higher ranking enabling the system to display them more prominently in the presentation or

27



display.

The two criteria thus mentioned (expressiveness and effectiveness) are used to control the

generation of a perceptually salient visualization. This process of visualization adopted by

APT is encompassed in three steps:

1. Partitioning: where data is partitioned or classified and graphical objects are ranked or

re-ordered based on their effect on the whole visualization.

2. Selection: where data attributes are mapped to visual features in a one-to-one fashion.

3. Composition: where the data attributes are composed in the same spatial area to construct

the final visualization.

At every stage of this three step strategy, the expressiveness and effectiveness criteria are ap-

plied to guide the mapping process in order to make the final visualization perceptually salient

and effective.

Mackinlay’s work on measures of effectiveness of a visualization and the attempt to com-

bine the various guidelines into applicable formal rules, has inspired many subsequent efforts

in scientific visualization research. APT was developed with the strategy of carefully generat-

ing guidelines for the visualization process. Features incorporated within APT included the use

of a graphical language to formalize the mapping of data attributes to visual features, and the

incorporation of a set of perceptual guidelines and rules to be applied to the mapping process

in order to produce perceptually salient mappings. All of these have served as cornerstones for

many other efforts in the area of scientific visualization.
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Figure 3.1: A visualization using the principle of worlds within worlds. Each data element in the graph encloses
an inner world for attributes that were not represented in the outer world.

3.2 AutoVisual

One significant extension of APT isAutoVisual, developed by Beshers and Feiner [BF93] .

AutoVisual differs from APT in that it can map datasets in a three-dimensional space. The rule

system for AutoVisual is based on a worlds within worlds principle [BF93] for multi-variate

dataset visualization. Each world is represented by a graph. This graph encodes a subset of

the relations contained in the parent world. The subset that is represented is determined based

on the position of the world’s origin with respect to its parent world. Outer worlds comprise

an encoding of data attributes to visual features. Each of the attributes represented in the outer

worlds forms an anchor to an inner world with an encoding of additional attributes to visual

features.
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3.2.1 Worlds Within Worlds

Figure 3.1 illustrates the worlds within worlds principle. Worlds can be represented in one, two

or three dimensions. AutoVisual allows user interaction at all levels. Rather than attempting to

model every data attribute to a pattern of color or texture, AutoVisual relies on using lines, and

surface plots, and height fields together with their worlds within worlds principle to generate

effective interactive visualizations.

One-dimensional plots are represented by an interactor known as a dipstick. In the two-

dimensional form, line graphs are the mode of representation. Three-dimensional representa-

tion is done using height fields and three-dimensional colored point clouds.

Inner worlds in AutoVisual encode what could not be represented in the outer worlds. This

is due to the restriction of at most three-dimensions in each world. Every position in an outer

world represents a data element with up to three of its attribute valuesAi being visualized. Once

selected, that element can be expanded to show addition attribute valuesAj by generating a new

inner world anchored at the given position in the outer world. As the anchor position is moved

in the outer world to select different data elements the inner world’s display automatically

updates to reflect the new element’sAj value. In this way,AutoVisualallows representation of

high dimensional data. Based on this ability, the visualization is known asn-vision.

An n-visionvirtual world is built as a hierarchy of interactors. An interactor consists of

four basic components:

1. An encoding space set: An encoding space is the region in which the graph or plot

is rendered. Each encoding space allows up to three dimensions for representation or
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visualization.

2. A set of encoding objects: Encoding objects constitute the various primitives that make

up the graphical representation of the information. These may include, dipsticks in one-

dimensional, lines in two-dimensional, and three-dimensional height fields and three-

dimensional color-scale point fields.

3. A selection set: A selection determines which geometric subset of the parent interactor’s

encoding space is represented.

4. A user interface: a user-interface component consists of bindings between the user’s ac-

tions and the interactor’s properties. Interactors also have bindings for creating, copying

and deleting child interactors. Interactions supported include translation, scaling and

orientation of the visualization for user analysis tasks.

The use of AutoVisual to encode data attributes using a rule-based system with the graphical

features follows up on Jock Mackinalay’s effectiveness and expressiveness criteria. However

in AutoVisual, the user specifies the visualization task rather than the visualization technique.

AutoVisual also makes a difference between task operators and task selections. Task operators

allow for user tasks to analyze the visualization. These tasks include exploration of the encoded

space, directed search within the space, and comparison of the world with another subset of the

encoded space. Task selections represents a subset of interest within a particular task.

The visualization is constructed as a directed acyclic graph of interactors, with each state

representing an interactive visualization world. An unsuccessful path of interactors can be
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undone using backtracking support provided by the system. Termination conditions applied to

the visualization are represented by potential expressiveness and potential effectiveness criteria

(which are basically similar to the expressiveness and effectiveness criteria as postulated by

Mackinlay, modified to fit interactive visualization). Termination criteria are used to establish

that the system has successfully achieved a satisfactory visualization.

3.3 VISTA

Senay and Ignatius [SI94] also expanded on Mackinlay’s criteria to allow for three-dimensional

visualizations and user interactions. They developed a visualization tool, VISTA, as an auto-

mated visualization system that also employed a rule-based composition technique for gener-

ating effective visualizations. Three components used to build the visualizations are:

1. Data Unit: which mainly comprised of user selections of data attributes and operators to

be represented within the visualization.

2. Design Unit: which is decomposed into three steps. In the first step, data decomposition

takes place. The partitioning divides data into two forms: quantitative or qualitative.

Quantitative data is numerical in nature, with discrete or continuous values. Qualitative

data are either nominal (like the names of people, or organizations), or ordinal (names

from an ordered set, like the months in a year, or the days in a week). In the second step,

a primitive is selected to visualize each partition using effectiveness and expressiveness

criteria (similar to those described by Mackinlay, modified to work for three-dimensional
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environments). This also forms a visualization hierarchy rooted at the most important

data partition. The final design step, applies a composition module to combine pairs of

component visualizations to form a final display of the data.

3. Rendering Unit: which creates an image based on descriptions provided by the design

unit, using rendering algorithms. Composition rules are applied to unify the primitives.

The composition rules are similar to the composition techniques by Mackinlay [Mac86],

and are listed as follows: mark composition, composition by super-imposition, compo-

sition by union, composition by transparency and composition by intersection.

Figure 3.2 illustrates examples of the composition rules employed by VISTA. User interaction

was also provided by the rendering unit through image manipulation operators. Users could

select any component of the visualization, and modify its attributes. Viewing operations like

rotation, translation, and zooming, among others, were also supported. In addition to all of

these, users could change the composition rules that were applied to a data partition.

Unfortunately, the range of uses of the composition rules is extremely restrictive. More-

over, the geometric images developed by the marks and in VISTA is too broad in nature to

produce a single appropriate image. Finally, VISTA does not appear to have a suitable evalua-

tion process for adjudicating effectiveness criteria, although it claimed to support effectiveness.

The application of this criteria appears to be too ad-hoc in nature to be applicable in a formal

or generalizable fashion.
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Figure 3.2: Illustration of VISTA’s composition techniques. The graphs show the results of using (A) mark
composition, (B) composition by super-imposition, (C) composition by union, (D) composition by transparency,
and (E) composition by intersection.
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3.4 Automation

Mackinlay’s criteria for developing an effective visualization encoding is an important step to-

wards designing visualization tools that are not only automated in nature, but are also domain-

independent. Wehrend and Lewis [WL90] used these ideas to develop of a two-dimensional

matrix, with the dimensions classified as:

� data types and objects, and

� visualization or perceptual tasks.

that can be performed on the data objects. The two together form a catalog of visualization

techniques.

3.4.1 Cataloging Objects And Tasks

Data objects are data properties that represent the nature of the data being visualized. Tasks

or operations represent the various visualization and perceptual tasks that the user wants to

perform on the objects. Table 3.1 lists the two columns with their available values.

Wehrend and Lewis suggested that a visualization task could be broken down into smaller

sub-problems, until the size of the sub-problems was at such a level that they could be catego-

rized by entries in the object/ task matrix. The final design of the visualization is a composition

of the candidate representations for the individual sub-problems.

Although this technique offers a useful formalization of objects and tasks, the catalog man-

ner of the classifications does not allow for proper categorization of more complex structures
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Table 3.1: A table of object classes and operation classes examples by Wehrend and Lewis

Object Classes Operation Classes

scalar identify
scalar field locate
nominal distinguish
direction categorize
shape distribution
position rank
spatially extended region or objectcompare
structure within and between relations

associate
correlate

(e.g. three-dimensional fields). Wehrend and Lewis concluded that an automated visualiza-

tion tool would require very specific definitions of the kinds of structures that could be used

for visualization, and of the specific tasks that could be applied to each object or structure.

The classification of objects and operations, nevertheless, is an effective manner of handling

sub-problems within a larger visualization task.

3.4.2 Classifying Visual Knowledge

Lohse et al, [LRBW90, RL93a, RL93b] attempted to classify visual knowledge representations.

Their interest in performing classification was based on the belief that data classification step is

the most important step in designing a multi-dimensional visualization. Lohse et al attempted

to classify data and objects, based on results from experiments on visual perception. These

experiments were designed to investigate the basic properties of various graphical elements,

and their ability to support visual analysis tasks.
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Viewers, chosen heterogeneously, grouped graphical elements in a bottom up manner into

categories of similar elements. The categorization was carried out in a trailblazing manner.

Since the classification was not conceptual in nature, one potential problem was that different

viewers might classify elements into completely different categories. The experimenters coun-

tered this with analyses designed to test both the classifications produced and the possibility

that the subjects influenced those classifications.

The grouping procedure was repeated hierarchically, to collect the graphical elements into

larger and larger clusters. This continued until all elements were in one cluster. Elements

chosen for data classification were selected from a broad range of fields and included items

such as icons, graphs, maps, and tables. On completion of the data sorting and classification

process, the classification, the resulting categories were analyzed in two ways:

1. The first analysis task was called “subject analysis” and was done by asking the subjects

which pair of already sorted items could be considered to be in the same cluster. This

allowed the researchers to conclude that the sort was consistent and homogeneous.

2. The second form of analysis was called “item analysis”, in which the hierarchical nature

of the clustering was collapsed to form non-hierarchical item clusters. The final classifi-

cations were expressed in a two-dimensional coordinate area, with the extremes placed

on the horizontal and vertical axis. Additional groups were derived from this coordi-

nate area. This grouping helped identify perceptually salient multi-dimensional visual

representations.

The findings of this experiment provided an understanding of the way people organize and pro-
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cess visual knowledge. The classification also helped researchers understand how knowledge

can be conveyed visually.

The approaches of Lohse, Mackinlay and Senay and Ignatius [LRBW90], consider data

classification the first stage of a visualization process. Their visualization procedures are data-

driven and the approach is usually bottom up: first the data is classified, and then the classifi-

cation is represented in a graphical form chosen based on its category.

3.5 Natural Scene Paradigm

Robertson and De Ferrari [RD94] however, were not convinced that the data-driven approach

was always appropriate. They worried that this approach placed too much responsibility on

the users. The need for user interaction means that data has to be translated for every inter-

action. As well, the user needs to be an expert at visualization in order to properly classify

data into useful categories. Finally, Robertson and De Ferrari felt the bottom-up nature, of a

knowledge base technique was inefficient in terms of keeping up with the amount of raw data

available. Robertson [Rob90, Rob91] advocated a top-down approach for multi-dimensional

visualization, with the emphasis placed on selecting an effective, and in our case, a perceptu-

ally salient visualization model. Such an approach requires that data attributes be represented

by the individual properties of the chosen model or scene.

With this approach in mind, Robertson developed the Natural Scene Paradigm (NSP) which

is based on his visualization-model driven approach. NSP is a multi-variate data visualization

tool that works on the principle of inversion from Mackinlay’s APT, which itself was princi-
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pally data-driven and bottom-up in approach. According to Robertson and De Ferrari [RD94],

user involvement in visualization systems occur in two ways: by means of user directives to the

system, and by user interpretation aims. Through user directives, the user is able to explicitly

define requirements to the visualization system. An instance of using directives, could involve

asking the system to show a specific variable A using a specific representation B. User inter-

pretation aims involve specifying criteria surrounding the data variables in the representation.

This could, for instance, involve asking the system to show the correlation between variable B

and variable C, or even criteria such as asking the system to show significant changes of the

temperature variable over time. They decided to implement a user directive approach for user

involvement in their system, since they believed it was easier to implement and satisfy, than

user interpretation.

The Natural Scene Paradigm (NSP) implemented visualization in three stages:

1. The first stage involved the selection of a clear and understandable visualization model

(such as a three-dimensional natural scene or structure).

2. The second stage involved the decomposition of the scene into its recognizable properties

(these involve properties that can be controlled by external data input).

3. The third stage involved the combination of user demands with the recognizable scene

properties using graphical simulation techniques.

The multi-dimensionality of the data, the use of different display methods combined with dif-

ferent constraints, and user directives generate varying representations of the scene. Control-
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ling and modifying these factors thus controls the construction of the scene.

3.6 Flow Visualization

Gallop [Gal94] consolidated and improved upon the underlying data models in a flow visual-

ization system. Gallop’s dataset was mainly flow data. He insisted on a classification of data

models and abstract visualization objects, along with an underlying data representation.

The flow datasets were mainly continuous or empirical, and time-dependent in nature. Gal-

lop considered the empirical components and the time components as critical attributes for the

decomposition of the datasets into variables and functions.

Gallop offered the opinion that data elements are basically of two kinds: dependent vari-

ables, and independent variables. His visualization methodology depended on this distinction.

Dependent variables, were ranked in a hierarchical order using dependency as a factor. Data

sampling was done on these variables based on their rank.

For independent variables, no ranking was used; data sampling was done in a non-hierarchical

manner. Both dependent and independent variables were then mapped to a coordinate system.

The need to rearrange data models before visualizing them was suggested by Gallop. The

nature of scientific data being so diverse, Gallop concluded that a formal methodology was

necessary to classify data models, and to express them.
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3.7 PRAVDA

Rogowitz and Treinish [RT93] believed that in order to build visualization systems that are

perceptually salient, the importance of human perceptual and cognitive mechanisms needs to

be better understood and incorporated within visualization systems. The use of mathematical

models for mapping visualizations could achieve representations that were multi-dimensional

in nature, but interpretation of such models may not be consistent across many users. This

is because although many models of visualization have mathematically similar relationships,

they may be very different in their perceptual effect. Hence the need to understand the human

perceptual mechanism better, and the need to incorporate this in a more effective manner within

visualization systems.

Lohse et al [LRBW90] suggested ordering data models based on viewer’s ad-hoc classifi-

cation of elements into similar categories. Such an approach is not sufficient, however. One

needs to better understand how humans perceive spatial variations of luminance and color and

how variations in the physical objects or glyphs used for representation influence their inter-

pretation. This was the basis for PRAVDA.

Properties of human vision and perception were incorporated within a set of perceptual

rules. These rules were then used within PRAVDA to guide the task of mapping data attributes

to suitable visual features. The perceptual rules were themselves categorized into two separate

classes:

� Class I perceptual rules: These rules are used to build a suitable data representation.

Class I rules guide the conversion of multi-dimensional data into perceptual forms, and
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ensure that the structure of the data is faithfully preserved in the visualization. This

is described as a “perceptual isomorphic mapping” by Rogowitz an Treinish. A “non-

isomorphic mapping” occurs when the structure of the data cannot be preserved by its

visual feature. This can happen, for example during the conversion from a continuous

form to a discrete representation. Class I rules are therefore rules that provide isomor-

phic mappings from data to perceptual dimensions, or rules that ensure the invariance of

higher-level visual features, such as color, size and shape.

� Class II perceptual rules: These rules are used to highlight features within the data

being visualized. Class II rules intentionally change the data’s structure to attracting

attention, with methods like highlighting or segmenting the data into sub-regions to better

aid exploration and analysis. These rules also allow the scaling of visual features to

exaggerate details within the scenes.

PRAVDA’s primary research focus has been on the perceptual effectiveness of a color model

called “PRAVDAColor.” PRAVDA uses a rule-based algorithm to select appropriate colors for

a given data attribute. PRAVDAColor uses spatial frequency to guide the use of luminance,

hue and saturation. For instance, high spatial frequency data is mapped using a monotonic

luminance component. Low spatial frequency data is mapped to a single hue that varies in

saturation. The rule-based operations of PRAVDAColor can also be used to select ranges for

data segmentation and highlighting. Though it offers a wide range of data mapping operations,

PRAVDA still requires user interaction to make a final decision on which color mapping to

apply.
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According to the authors, PRAVDA implements a perceptually salient rule-based system

for domain-independent visualization design. PRAVDAColor, uses a rule-based approach to

control the variation of hue, luminance and saturation to best match properties of a target data

attribute.

To implement a more flexible multi-dimensional visualization system, variations of hue,

luminance and saturation do not necessarily suffice, especially if the number of attributes that

need to be supported is large. Visual interference that may occur when hue, luminance and

saturation are shown together in a common display, cannot be overlooked. Healey and Enns

[HE98] concluded that the maximum number of hue variations that the human visual system

can rapidly distinguish is only seven. They also concluded that luminance masks hue patterns

when both are shown simultaneously. PRAVDA may not produce high perceptual effectiveness

in a situation that requires the display of a large number of data attributes.

Color forms an important part of any multi-dimensional perceptual visualization system.

However, additional methods are needed to combine with efficient color models to more fully

support the purpose of multi-dimensional dataset representation.

The Visualization Assistant (ViA) utilizes the work done by Healey and Enns [Hea96,

HE98] to incorporate perceptual guidelines for use of a larger range of visual features. These

guidelines, not only include color models, but also rules pertaining to the use of two-dimensional

and three-dimensional texture properties. Furthermore, the rules support the identification of

patterns in a candidate mapping that could produce visual interference. Although we initially

focussed on direct control of individual properties related to a pexels [HE98] we have adopted
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ViA to use other types of glyphs and visualization metaphors.

3.8 Perceptual Texture Elements

Healey and Enns [HE98] designed a technique using perceptual textures to visualize multidi-

mensional datasets. Information in multi-dimensional datasets is contained in data elements.

Each data element encodes one or more data attributes. These data elements are arrayed across

an underlying three-dimensional height field. One or more pexels (perceptual texture elements)

are used to display each data element, with the attribute values of the element controlling the

visual appearance of its pexels. Texture patterns formed by groups of neighboring pexels can

be visually identified by a viewer during exploration and analysis. Since the pexels are de-

signed to be perceptually salient, many tasks like searching for a target or target area, boundary

detection between spatial groups with common attribute values, region tracking, and estimation

can be performed preattentively.

Healey and Enns [HE98] also tried to focus their research on answering the following

questions:

1. Which perceptual dimensions should be used to control the appearance of a texture pat-

tern?

2. How can dataset attributes best be used to control the dimensions of the pexels?

3. How much visual interference occurs between the perceptual dimensions when they are

varied in a common display?
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Figure 3.3: An illustration of the different kinds of pexel strips that could be used for multi-dimensional visual-
ization. Starting from left, and moving right we have pexel strips showing two levels of irregularity, two levels of
density, and two levels of pexel height.

Healey and Enns used thin paper strip pexels to support the visual features color, height, density

of pexels per unit area, and regularity of placement. Figure 3.3 shows examples of using pexels

in the form of thin paper-like strips. The examples illustrate the use of pexels of different

irregularities, densities and heights.

In order to establish the effectiveness of pexel based visualizations, Healey and Enns con-

ducted psychophysical experiments designed to test a user’s ability to rapidly and accurately

identify the presence or absence of target pexels with a unique height, density and regularity.

The experiments also tested viewer performance with different target pexel types, exposure du-

rations, target group sizes, and background texture dimensions. Results from these experiments

formed a set of guidelines that measure the effectiveness of a given configuration of texture el-

ements for multi-dimensional dataset visualization. As we shall see in the next chapter, these
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guidelines act as the basis for ViA’s evaluation of candidate data-feature mappings.

3.9 Search Techniques

Search techniques are useful in visualization systems for exploring search spaces containing

possible solutions to the problem of selecting effective data-feature mappings.

A “situation space” [RN95] is an exploratory space of possible conditions or states. In

the case of visualization systems, where finding an optimal, perceptually salient mapping is

important, these states are possible mappings or solutions for our visualization problem. For

simple visualization tools that represent only a single attribute, each state would contain a one-

to-one mapping between the attribute and a visual feature. Given a single attribute and a set

of visual featuresV = V1; : : : ; Vn with n visual features that could be mapped to the attribute,

our situation space would containsn states. For multi-dimensional dataset visualization, where

we consider a set ofm data attributes andn visual features, withn � m, we have a possible

situation space containingn!=(n�m)!m! possible mappings, where each node in the space is

a complete mapping with every data attributeAi mapped to a unique visual feature fromVj.

Asm andn grow in size, the number of states in the situation space increases dramatically.

Traditional problem-solving techniques often involve examination of every node in the

space prior to selecting those that fit the criterion for the given task. Although this method

is comprehensive, it is inefficient for large datasets. In addition to a very large situation space

to explore, there is the problem of pursuing solution paths that do not lead to high-quality

results.
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To construct and explore large search spaces efficiently when only a limited amount of time

and effort are available, a system needs a more flexible search strategy. Obtaining a solution

that may be very good, but not necessarily the best possible solution for the task, could be more

desirable when selecting a visualization for a large dataset.

3.9.1 Planning

Russell and Norvig [RN95] advocate that the use of artificial intelligence (AI) planning tech-

niques to find optimal solutions efficiently, for tasks involving a wide range of possible states

or actions, as opposed to accurate but inflexible comprehensive problem-solving techniques.

The planning process, when assisted by a rule-base containing guidelines for search, can ex-

plore a situation space and provide near-optimal solutions in short periods of time, even when

the search space is large and the time required to search it completely would be great. While

heuristics devised by planning systems may not always provide the best solutions for a given

problem, they can still produce good workable results for a given task. This may be more desir-

able than comprehensive techniques which may arrive at the best solution, but at a prohibitive

cost in time and computing effort.

A planning system could be further enhanced by employing a knowledge base of rules that

can act as guidelines to direct the search along promising paths. A limited rule-base would

be significantly easier to manage than problem-solvers utilizing a comprehensive knowledge

base that contains all possible actions for every possible situation. Moreover, a rule base for

a planning system need not be considered complete, since new rules can be added as they are
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found.

3.9.2 Mixed-Initiative Search

Mixed-initiative search is an efficient search strategy that is inspired from the AI planning

approach. Such a strategy is very effective for exploration and analysis of very large search

spaces.

The mixed-initiative search technique resulted from advances in AI planning techniques as

well as studies in human-computer interaction and usability. It approaches generation of a solu-

tion to a task or problem (in our case, that of generating a suitable mapping) as a planning task,

involving both the system and the human user. The system is partly guided by user commands

and queries. According to St. Amant and Cohen [AC97], a system can be considered to be

an assistant as opposed to being merely a tool kit, if it adopts a mixed-initiative approach. St.

Amant and Cohen proposed a mixed-initiative strategy for performing Exploratory Data Anal-

ysis (EDA) tasks for statistical analysis and related areas. Two conditions separate assistants

from being tool kits:

� Partial autonomy of assistants: One needs to give general and brief instructions, and let

the assistant decide how to carry them out, as opposed to giving detailed, step-by-step

instructions.

� Response to guidance or “Accommodation”: Assistants can be guided while they work

as opposed to waiting for a task to be completed before modifying the search parameters.

Responsiveness to human guidance, termed as “accommodation” [LP88] is an important
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characteristic of assistants.

A mixed-initiative search assistant could be supported by a perceptual rule-base containing

guidelines to evaluate candidate data-feature mappings for perceptual salience. For visualiza-

tion systems, a mixed-initiative approach may make the task of searching for effective map-

pings more efficient.

In this chapter we examined various related efforts in scientific visualization and perceptual

visualization. We also discussed rule-based methods for automated or semi-automated visu-

alization design. We described the pexel method for representing multi-dimensional datasets

in a perceptually salient manner. We also examined mixed-initiative search strategies as one

potential technique for effectively searching for perceptually salient data-feature mappings.

The following chapter discusses the design and architecture of ViA, and in particular, exam-

ines the concept of generating and utilizing “hints” against the backdrop of the search process

to locate appropriate visualizations for a given dataset and user-chosen analysis requirements.
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Chapter 4

ViA

In the previous chapters, we discussed the need for perceptual visualization and some of the

various studies and efforts within scientific visualization. We introduced ViA (Visualization

Assistant) as a semi-automated perception driven assistant that aids in designing effective vi-

sualizations of multi-dimensional datasets. In this chapter, we shall discuss in some detail the

architecture and processes that guide the working of ViA.

4.1 General Architecture

A part of our discussion on related works focused on the approach of developing a visualization

tool that aids in generating effective perceptual visualizations. Some of the methods adopted

were clearly data driven, wherein the classification of the data attributes to be visualized was the

most important aspect of the visualization system. Other methods focused on classifying visual

representations based on their ability to display different types of datasets. These methods were
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concerned more with the visual representations as compared to the nature of the datasets. An

observation that one could perhaps draw from both these approaches to visualization, is that

one would need a balanced approach towards incorporating not just the nature of the data being

visualized but also the visual methods used to represent the data.

Raw data is input to a visualization system, through an input mechanism. The input mech-

anism could also be responsible for the classification of the attributes. For data classification

purposes, information about the nature of the dataset would be very important for the visual-

ization system.

A processing mechanism is responsible for performing a visual mapping for the data at-

tributes, by assigning appropriate visual features to represent the attributes.

A display mechanism displays the representation generated by the processing mechanism,

and aids the user in search and exploration tasks. The display mechanism supports various

view transformations to be performed on the visualization.

Additionally, the visualization system would need to support an effective mechanism for

human interaction. Interaction could involve many different forms, from providing suitable

support for input of raw data to the system and describing the data properties, to performing

view manipulation, exploratory and analysis tasks, or direct manipulation of the visual objects

within the representation, and suggestions to produce new mappings or visualizations.

Our design of the visualization system ViA focuses on the mapping of data attributes of

multi-dimensional datasets to visual features. The following sections will discuss in detail the

mapping procedure.
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Figure 4.1: An illustration of the architecture of ViA

4.2 ViA Architecture

Figure 4.1 shows the architecture of ViA. ViA consists chiefly of two main components called

the search engine and the evaluation engine. The search engine is responsible for generating

mappings between data attributes and visual features. The evaluation engines are responsible

for evaluating the mappings produced by the search engine based on the perceptual guidelines

that determine whether the mapping generated is perceptually salient or not. The search engine

also responds to various suggestions or hints on how to improve the current mapping. The

hints are used by the evaluation engines to offer a collection of recommendations to help to fix

weaknesses in the mapping. Because hints can conflict with one another, the search engine is

responsible for deciding how to apply the hints in an appropriate and effective manner.
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4.3 Evaluation Engines

An illustration of ViA’s architecture is presented in the Figure 4.1. The individual evaluation

engines color, luminance, height, density and regularity represent the evaluation process. Each

visual feature utilized by ViA for multi-dimensional visualization is supported by a correspond-

ing evaluation engine. The evaluation engines critique data-feature mappings produced by the

search engine.

4.3.1 Data-Feature Mappings

A data-feature mappingM is maintained as a data structure with two parts:

1. The data attribute-visual feature pairs that make up the mapping,

2. The relevant properties of the dataset that are needed to evaluateM .

When the dataset is first given to ViA, several dataset properties are established, either by

examining the dataset itself, or by asking the viewer. These include:

1. Domain type: Is the attribute’s domain type discrete or continuous?

2. Importance ordering: What is the relative importance ordering of the data attributes to

the user?

3. Spatial frequency: Is the spatial frequency of each attribute high or low?

4. Tasks: What specific analysis tasks (search, estimate, boundary detect, tracking or none)

need to be performed on each attribute?

53



WhenM is evaluated, each individual engine tackles the data-feature pair inM containing its

corresponding visual feature. For example, ifM utilizes color and luminance, it will contain a

pair with an attribute mapped to color, and another pair with an attribute mapped to luminance.

The color evaluation engine will evaluate the color pair and the luminance engine will evaluate

the luminance pair.

The evaluation engines thus analyze each mapped pair withinM and note any violations

with respect to the perceptual guidelines thatM is supposed to satisfy. Based on the number

and the severity of these violations, the evaluation engines generate a normalized evaluation

weight. Wherever possible, along with the evaluation weight, suggestions to improve the map-

ping in the form of “hints” are also generated by the individual evaluation engines. Hints

include a suggested action to improveM and an estimated improvement weight if the hint

were applied and implemented onM .

Hints are critical to allow the search engine to intelligently guide the search process for

better mappings. Design and interpretations of the hints and the manner in which they guide

the search process forms one of the primary focuses of this thesis. We will examine these topics

in this and later chapters.

4.3.2 Evaluation Process

Let us consider a typical mappingM that is to be evaluated. For each data attributeAj, M

contains information about the attribute in terms of the visual featureVj associated withAj,

domain type ofAj (whether discrete or continuous), its spatial frequency (whether high or
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low), its importance (as a normalized value that ordersAj relative to other attributes), and the

user tasks (if any) to be performed onAj.

The evaluation engines collectively contain the perceptual guidelines that allow analysis of

the mappings produced. Each mappingM that is to be evaluated contains mapped pairs of

data attributes and visual features,Aj ! Vj. Each pair, as mentioned before, also contains

information about the attribute with respect to its properties and tasks. The attribute-feature

mapped pair,Aj ! Vj, is evaluated by each of the evaluation engines ( color, luminance,

height, density, orientation and regularity) on the basis of:

1. Attribute domain type: WhetherVj supports the domain type ofAj. For instance, if

Aj is continuous in nature, canVj produce continuous scales? Or ifAj is discrete, can

Vj produce an appropriate number of distinguishable values to represent the range of

discrete values ofAj?

2. Interference: Whether another mapped pair withinM interferes visually withAj ! Vj.

For the purposes of the evaluation process, the perceptual salience order of the visual

features is: luminance, color (hue), height, density and regularity. Interference can occur

if a less important attributeAk is utilizing a more perceptually salient attributeVk.

3. Spatial frequency: Whether the spatial frequency ofAj is appropriately represented by

Vj.

4. Task applicability: Whether user tasks onAj can be supported byVj.

The complete mappingM is thus evaluated by the evaluation engines, with each evaluation
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engine testing the pairAj ! Vj for its perceptual salience. Each evaluation engine returns an

evaluation weight in the range0:0 to 1:0 for M , along with zero or more hints. An evaluation

weight of zero means that the mapped pairAj ! Vj is a flawed mapping, and one means that

the pair is a good mapping with no weaknesses. A lower evaluation weight for a mapping

results from violations of the perceptual guidelines in the evaluation engine that returned the

evaluation weight. A low evaluation weight, is often accompanied with hints that provide

suggestions for potential improvements. The hints also estimate the improvement weight for

the mapping if the hint were applied to the current mapping.

The perception driven search procedure we designed that utilizes hints to generate percep-

tually salient mappings is explained in the following chapter.
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Chapter 5

Search Engine

The previous chapter focused on the evaluation engines. We discussed briefly the constitution

of the individual evaluation engines. In this chapter we focus on the search engine. In particular

we study the design of hints to be used by the evaluation engines to guide the search for

perceptually salient mappings. This forms one of the main contributions of this thesis.

The search engine, as mentioned earlier, is responsible for producing mappings that are

evaluated for perceptual salience of the mappings. The function of the search process is to

generate high-quality mappings in an efficient fashion. As mentioned earlier, this involves

having to search through a situation space [RN95] of all possible mappings and follow one

or more paths that lead to the most perceptually balanced or optimal mappings. User input

involves providing ViA with details regarding the data attributes, and the input files containing

the datasets themselves which need to be visualized. A sample mapping that is assumed to be

fairly perceptually salient is used as the starting point for the search process.
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We also discussed some of the aspects of the evaluation process. The evaluation procedure

returns an evaluation weight adjudging the perceptual salience of the mapping. Good mappings

return high evaluation weights and poor mappings return low evaluation weights, thus allowing

us to compare between mappings using evaluation weights as a suitable metric.

5.1 Hints

Search in ViA is perception driven in nature. Perceptual guidelines incorporated within the

evaluation engines, are used to evaluate the perceptual salience of any mapping produced by

the search engine. Although evaluation weights are extremely useful in determining the per-

ceptual salience of a mapping, we need additional information to aid us in producing better

mappings. The perceptual guidelines guide the evaluation procedure, and violations in the cur-

rent mapping with these guidelines result in reduction of the evaluation weight for the current

mapping. Reporting these violations give us clues that would aid us in potentially fixing the

current mapping. Structuring these clues in a way that suggests fixing or improving the current

mapping to potentially lead to higher evaluation weights, is done with hints.

When the search engine applies the suggestion within the hint to improve the mapping, it

creates a new mapping that has the potential to be better than the original mapping that caused

the hint. The evaluation engine evaluates the new mapping for perceptual salience and returns

an evaluation weight and hints to potentially improve the new mapping.

We can thus divide the search process into three broad stages:

1. Evaluating the mapping: Starting with the first mapping, the evaluation engines analyze
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each mapping sent by the search engine.

2. Generating hints and hint-chains: The evaluation engines provide feedback in form of

evaluation weights and hints about how to improve the mapping. The hints generated

are combined into chains of hints that can be applied simultaneously to improve the

mapping. The hint chains and are stored in a priority queue ordered by their estimated

improvement weight.

3. Processing hint chains to generate new mappings: Each hint chain suggests certain

changes to the original mapping that could improve the mapping. The most promis-

ing hint chains are chosen and processed to generate new mappings, which are then sent

for evaluation to repeat steps 1, 2 and 3.

The first stage involving the evaluation process is carried out by the evaluation engines. We

discussed the nature of the evaluation engines in the previous section. The second stage of

the search process involves the analysis of hints and creation of hint-chains from these hints to

guide the search for new mappings. These operations are explained in the following sections.

5.1.1 Hint Structure

A hint comprises chiefly of:

1. The hint class.

2. The hint type or category.
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3. The visual features or importance weights that the hint is recommending to modify.

These could also be considered the hint operands.

4. The estimated improvement in evaluation weight if the hint were to be applied.

The improvement weight provided with every hint, is the estimated improvement in the current

evaluation weight for the particular mapped pair, should the hint be applied.

Hints are produced on the basis of the four tests: attribute domain type, visual interference,

spatial frequency and task applicability. These are referred to as hint classes. Based on these

four tests, hints of four different types or categories are generated:

� discretization: suggests that a continuous attribute be reduced to appropriate discrete

intervals, or the number of discrete intervals of an attribute be reduced to a lower value,

� feature swap: suggests that the visual features currently assigned to an attribute be

swapped with a more appropriate feature; this can be caused by a mismatch between

the feature and the attribute’s task, spatial frequency, or domain type; it can also occur

when visual features interfere with one another,

� importance weight modification: suggests that the importance weighting of an attribute

be adjusted suitably again to avoid the visual interference between two attributes, and

� task removal: suggests that an unimportant task be disallowed or removed from on an

attribute’s task list.
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Table 5.1: A table of hint classes (domain type, visual interference, spatial frequency, and task applicability) and
visual features (luminance, color, height, density, regularity, and orientation). Each cell shows what the visual
feature supports for the given hint class: “ok” for a good match, “poor” for a weak match, and “no” for an
unallowed match. The final row shows the hint types that might be suggested to fix weaknesses in the given hint
class

Domain Visual Spatial Task
Type Interference Frequency Applicability

Luminance continuous:ok hi: ok search:discrete
discrete:up to 3 lo: poor estimate:discrete

boundary:ok
track: ok

Color continuous:ok w/ luminance hi: poor search:discrete
discrete:up to 7 lo: ok estimate:discrete

boundary:ok
track: ok

Height continuous:ok w/ luminance hi: ok search:discrete
discrete:up to 5 w/ color lo: ok estimate:discrete

boundary:ok
track: ok

Density continuous:no w/ luminance hi: poor search:discrete
discrete:up to 4 w/ color lo: ok estimate:discrete

w/ height boundary:ok
track: ok

Regularity continuous:ok w/ luminance hi: poor search:no
discrete:up to 2 w/ color lo: ok estimate:no

w/ height boundary:ok
w/ density track: discrete

Orientation continuous:ok w/ luminance hi: ok search:discrete
discrete:up to 12 w/ color lo: ok estimate:discrete

boundary:ok
track: ok

Hint Types Feature Swap Feature Swap Feature Swap Task Remove
Weight Modify
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5.1.2 Perceptual Guidelines

The perception driven nature of the search process arises from the fact that the search is influ-

enced by the perceptual guidelines that produce evaluation metrics and hints. Table 5.1.1 shows

the different hint classes and their properties. As we mentioned before, there are four different

types of hints produced by the evaluation process. Each evaluation engine can produce any of

the four types. These types include:

5.1.2.1 Discretize

Each visual feature can support discrete valued attributes, but only up to a certain perceptually

salient limit. These limits vary for the different visual features. For example, according to our

perceptual guidelines, color as a visual feature can be used to display up to seven easily dis-

tinguishable colors or hues (red, blue, green, etc.). More than seven different colors hampers

the ability of the visual system to rapidly identify different attribute values, within the visu-

alization. In other words, the representation stops being perceptually salient, if color is used

to represent more than seven discrete values of an attribute. Likewise, height used as a visual

feature can support to five discrete values, density can support four discrete values, luminance

can support up to three values and regularity can support up to two discrete values.

Note that data can still be displayed. However, it may not be an optimal representation. In

all these cases, if the attribute bound to the visual feature has more discrete values assigned than

the visual feature can optimally support, then the corresponding evaluation engine suggests that

the attribute be discretized to an appropriate maximum size.
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5.1.2.2 Feature Swap

This hint suggests that visual features assigned to certain attributes be swapped or interchanged

in order to make the mapping more perceptually salient.

The conditions that lead to a feature-swap being suggested by the evaluation engines are

numerous. For instance, if an attributeAj is assigned to a visual featureVj that supports fewer

than the number of unique values found inAj, the evaluation engines could suggest switching

to a visual featuresVk that can supportAj in its current form. If some other attributeAk is

currently usingVk, thenAj andAk must swap features. This hint would be suggested in addi-

tion to a discretize hint (as described previously). As an example, supposeVj = luminance

was used to represent an attributeAj with seven unique values. Luminance is not optimal

since it supports a maximum of three values. A feature-swap hint, generated by the luminance

evaluation engine would recommend that luminance be swapped with color, since color can

support up to seven unique discrete values. This kind of feature swapping will also be recom-

mended ifVj does not supportAj ’s spatial frequency (e.g. ifAj was low frequency whenVj

was luminance), or ifVj does not support the tasks the user wants to perform onAj.

A feature can also be suggested to avoid visual interference. If a less important attributeAk

is assigned to a perceptually salient visual featureVk, visual interference occurs betweenAj

andAk. In such a scenario, the evaluation engine detects this condition and suggests a feature

swap betweenAj andAk.
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5.1.2.3 Importance Weight Modify

This hint suggests that the importance weight for an attribute be adjusted up or down by a

certain amount. This happens in visual interference situations where a less important attribute

Ak is assigned a more salient visual featureVj. If the difference in importance weights between

Aj andAk is small, then weights can be modified slightly to reverse their relative ordering( i.e.

to makeAk more important thanAj). This resolves the interference conflict. In this way, an

importance weight modification can be used as an alternative to feature swapping.

5.1.2.4 Task Adjust / Task Remove

Analysis and exploration of the information represented by the visualization is done by the user

in the form of various tasks. Tasks supported by ViA are of four different kinds:

1. Search.

2. Estimate.

3. Boundary detect.

4. Tracking.

The ability of an attributeAj to support different tasks depends on its visual featureVj and on

Aj ’s domain type: discrete or continuous. For example, color, luminance, height and density

when mapped to attributes of discrete types can support any tasks, i.e. all tasks are considered

valid within the representation. The same four visual features when mapped to continuous
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attributes can only support boundary detection and tracking. Regularity can support bound-

ary detect when mapped to an attribute of discrete type, and tracking for both discrete and

continuous attributes.

Whenever an inappropriate task is assigned to an attribute, the evaluation engines issue a

warning that the task is not supported for the given attribute type and visual feature. If the

importance weight of the attribute is below a lower threshold, the evaluation engine suggests

that the offending task be removed for the given attribute, in the form of a task-adjust or task-

remove hint.

All the hints generated by the tests within each evaluation engine are stored in a hint array.

The hint array is refreshed with new hints after each complete complete evaluation cycle.

5.2 Hint Chains

Hints are produced independently by the evaluation engines. While acting on a particular pair

in the mapping, each hint test will produce hints independent of those generated by the other

engines. Although hints can be applied individually to build new mappings, working with one

hint at a time may restrict the efficiency of the search process. This can confine our search for

better mappings to a local maxima within the search space, which does not allow us the option

of pursuing other paths along the search space that would lead to potentially better mappings.

We need a technique that addresses this problem of restricted search by using hints to probe

other areas of the search space.

Our proposed technique is to combine hints together in chains that allow us to apply multi-
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ple hints simultaneously to produce new mappings. Such a technique may reduce or eliminate

the problem of restricting search to a local maxima within our search space since a hint chain

repositions the search multiple steps from its current location in the search space. This allows

us to investigate new mappings or paths that may be more appropriate for the user, and that

may eventually lead to more salient mappings. It also allows us to quickly move to promising

areas within the search space.

5.2.1 Hint Chain Generation

Hint chains are formed as a combination of multiple hints returned by the evaluation engines.

Hint chains are produced only after a complete evaluation of the current mapping, involving

all evaluation engines, has taken place. Combinations of hints are created by a recursive proce-

dure that generates all possible sequences of hints. This procedure builds subsets of the hints

into chains whose lengths vary from a minimum of one (representing an individual hint) to a

maximum equal to the total number of hints returned by all the evaluation engines.

Hint chains are generated to make search more efficient and flexible. However, since eval-

uation engines produce hints in an independent manner, a complete evaluation of a mapping

often produces hints that involve the same visual feature or the same data attribute. Such hints

may be produced by different evaluation engines, or even by different tests within the same

engine. Generating all sequences of these hints will produce hint chains that modify a common

attribute or visual features in different ways. This leads to potential conflicts when they are

applied, since we have no way of knowing which hints should take precedence.
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5.2.2 Conflicting Hints

One instance where hints may conflict with each other concerns those hints acting on the same

visual feature. For example, consider a situation where the color engine produces a hint for fea-

ture swap suggesting that color be swapped with luminance (this could be occur if the mapping

contained luminance is assigned to an attribute with a lower importance weighting than color).

The height evaluation engine also generates a hint for feature swap suggesting that height be

swapped with luminance (for the same reason that luminance has been assigned to an attribute

with lower importance weighting than height). Such a situation presents a conflict in the sense

that both hints cannot be applied simultaneously, because they both deal with luminance being

swapped with different visual features.

In another instance, conflicts could result when a chain contains more than one hint dealing

with the same attribute. For example, consider a situation where more than one hint gener-

ated by the evaluation engines requires that the importance weight for a particular attribute be

modified to two different values.

Both these situations are prevented during the chaining process by using pruning conditions

that check for recurring visual features or data attributes as hints are added to a current chain.

If we prune a hint that conflicts with other hints that are already part of the chain, it is not added

to the chain.

The use of these conditions also helps to keep the total number of hint chains to a manage-

able size. Because all possible orderings of hints are generated, conflicting hints will both have

a chance to be applied but only as a part of two different hint chains.
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Duplicate hint chains with exactly the same hints, but in a different order will be managed

by the search algorithm itself. The search engine keeps track of each mapping it evaluates. Any

request to process a mapping that was previously seen is ignored. Therefore, two hint chains

with the same hints generated from a common mappingM will produce an identical resultM 0.

the first occurrence ofM 0 will be evaluated by the search engine. The second occurrence will

be ignored.

The sequence generator that combines hints to form chains, also produces hint chains com-

prised of a single hint. This allows ViA to consider both individual hints and hint chains to try

to produce improved mappings.

Hints of various sizes compete with each other. Based on the evaluation weights that result

from the application of the hints and the evaluation of the new mappings, the success of hint

chains of varying lengths can be determined.

5.2.3 Processing Hint Chains

As hint chains are generated they are added to a priority queue structure. Hint-chains are stored

in priority queue ordered by their estimated improvement weights. Removing a hint chain from

the front of the priority queue returns the hint chain with the highest estimated improvement

weight.

Each hint within the hint-chain is applied to the mapping that produced it. Each hint chain

contains a description of how to recreate this mappingM . Since hint chains are structured

such that the hints do not conflict with each other, all the hints in the chain can be applied
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simultaneously. Processing a hint chain hence produces a new mappingMk. As previously

noted,Mk is identical to a mapping previously generated, that is ifMk has already been seen,

it is ignored (since if it has already been generated, then it has already been evaluated too.)

Mk is sent to the evaluation engines to be evaluated for perceptual salience. Any violations

of the perceptual guidelines results in new hints to improveMk. These new hints are combined

once again into hint chains, which are placed on the priority queue to be applied at some point

Mk. In this way the algorithm searches along the most promising paths for improved data-

feature mappings.

5.3 Search Termination

With respect to our three stages of search, evaluation of a sample mapping forms the first

stage of the search process. The evaluation produces an evaluation weight and possible hints

wherever necessary, to improve the perceptual salience of the mapping. The generation of

hints, and the creation of hint-chains denotes the second stage of the search process.

The third stage involves the processing or application of hint chains to the mapping as

they are removed from the priority queue, the generation of new mappings from applying

hint chains, and the submission of the new mappings to the evaluation engines to repeat the

evaluation process.

As mentioned earlier, a list containing the twenty-five best mappings to date (based on the

evaluation weights returned for those mappings) is maintained. This list is constantly updated

as new mappings are produced and evaluated.
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This process of generating hints and hint-chains, and producing new mappings from appli-

cation of the most promising hint chains continues until no new mappings are generated. At

this point, the priority queue is empty. When all hint-chains have been exhausted, ViA presents

the list of the twenty-five best mappings to the user, ordered by evaluation weight. This denotes

the end of a ViA run.

In the next chapter we shall look at the application of ViA to practical environments in order

to demonstrate its effectiveness in generating perceptually salient visualizations over multiple

domains.
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Chapter 6

Practical Applications

In the previous chapters, we described the two main components of ViA’s architecture: the

evaluation engines and the search engine. The evaluation engines evaluate data-feature map-

pings and offer hints on how to improve their perceptual salience. Hints are generated from

guidelines that formalize the abilities of low-level human vision. The search engine uses the

hints to search paths that are most likely to produce better mappings. We discussed in detail the

design of the search engine and the way in which hints are are applied to build new mappings.

Finally, we explained how hints are chained together to search as efficiently as possible for the

best mappings.

ViA was designed to work in a domain-independent fashion. The perceptual guidelines

were not constructed for a particular problem environment, rather they were built based on the

fundamental strengths and weaknesses of the human visual system. ViA allows for domain-

specific constraints in the form of user-chosen importance weightings for the different at-
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tributes, a listing of the analysis tasks to be performed, and dataset-specific properties like

domain-type and spatial frequency.

To test ViA’s flexibility, we used it to suggest visualizations for two real-world datasets.

First, we applied ViA to a collection of environmental and weather readings. Next, we applied

it to an e-commerce auction agent dataset. The use of two different domain areas emphasizes

ViA’s domain independent nature. The datasets were visualized using two different rendering

techniques. The weather datasets were displayed with a nonphotorealistic visualization model.

This model uses a two-dimensional visualization design that simulates Impressionist painting

styles to represent data with colored, textured brush strokes. The e-commerce auction agent

datasets were visualized with the pexel method [HE98] discussed in earlier chapters.

6.1 Weather Dataset Visualization

Our first application area is one that we have used throughout this thesis: the visualization

of weather datasets. These datasets represent average monthly weather conditions in1

2

Æ lat-

itude and longitude steps across the continental United States. The averages were provided

by the Intergovernmental Panel on Climate Change (IPCC) using historical weather conditions

for the years 1961 to 1990. The datasets contain eleven separate data attributes:temperature,

wind speed, pressure, precipitation, cloud cover, diurnal temperature range, ground-frost fre-

quency, maximum temperature, minimum temperature, radiation, vapor pressure,and em wet

day frequency.

We used ViA to build visualizations for four different attributes:temperature, wind speed,
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Table 6.1: Attributes from the weather dataset visualized with ViA; each attribute’s domain type, spatial frequency,
analysis tasks to support, and relative importance as specified to ViA are listed in the table; ViA’s initial mapping
M1 wastemperature! color,wind speed! height,pressure! density, andprecipitation! orientation

Attribute Domain Frequency Task Importance

temperature discrete (7 unique values) high search 1.0
wind speed discrete (23 unique values) low boundary 0.75
pressure discrete (296 unique values)low boundary 0.15
precipitation discrete (82 unique) high search 0.75

pressure,andprecipitation.ViA generated mappings for these data attributes using four visual

features: color, height, density, and orientation.

6.1.1 Weather Dataset Mappings

Table 6.1 describes the weather dataset properties and initial user constraints. ViA chose a

starting mappingM1 of temperature! color, wind speed! height1, pressure! density,

precipitation! orientation. The evaluation engines evaluatedM1 based on the user constraints

and dataset properties in the following manner:

1. temperature! color: Color is not appropriate for high spatial frequency data; penalty =

-0.0625. ViA suggests two feature-swap hints: swap color with height (currently mapped

to wind speed), and swap color with orientation (currently mapped toprecipitation).

2. wind speed! height: The number of uniquewind speedis 23, but height only supports

a maximum of five discrete values; penalty = -0.0575. ViA suggests a discretize hint:

discretizewind speedfrom 23 values to five values.

1In a two-dimensional visualization, height corresponds to thesizeof a 2D glyph
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3. pressure! density: The number of uniquepressureis 296, but density only supports

a maximum of four discrete values; penalty = -0.0625. ViA suggests a discretize hint:

discretizepressurefrom 296 values to four values.

4. precipitation! orientation: The number of uniqueprecipitation is 82, but orientation

only supports a maximum of twelve discrete values; penalty = -0.0625. ViA suggests a

discretize hint: discretizeprecipitationfrom 826 values to twelve values.

Based on these results,M1 returned a total normalized evaluation weight of0:755:

� temperature(w/7 discrete values, importance = 1.0)! color, weight =0:1875,

� wind speed(w/23 discrete values, importance = 0.75)! height, weight =0:1925,

� pressure(w/296 discrete values, importance = 0.15)! density, weight =0:1875, and

� precipitation(w/82 discrete values, importance = 0.75)! orientation, weight =0:1875.

M1 produced five hints, two generated by the color engine, and one each by the height, density

and orientation engines:

1. H1;1: Feature swaptemperature(color) withwind speed(height), estimated improvement

= 0:0625.

2. H1;2: Feature swaptemperature(color) with precipitation(orientation), estimated im-

provement =0:0625.

3. H1;3: Discretizewind speed(height) from 23 to five, estimated improvement =0:0575.

74



4. H1;4: Discretizepressure(density) from 296 to four, estimated improvement =0:0625.

5. H1;5: Discretizeprecipitation(orientation) from 82 to twelve, estimated improvement =

0:0625.

These hints were combined to form fifteen hint chains of varying lengths. The total number of

hint chains was constrained by the fact that the search engine does not allow conflicting hints

on the same chain. All the hints are applied, but conflicting hints must appear on different hint

chains. The hint chains that ViA generated were:

1. f H1;1 g: feature swap color w/height; estimated improvement =0:0875.

2. fH1;1, H1;4 g: feature swap color w/height, discretizepressurefrom 296 to 4; estimated

improvement =0:1125.

3. f H1;1, H1;4, H1;5 g: feature swap color w/height, discretizepressurefrom 296 to 4,

discretizeprecipitationfrom 82 to 12; estimated improvement =0:1375.

4. f H1;1, H1;5 g: feature swap color w/height, discretizeprecipitationfrom 82 to 12; esti-

mated improvement =0:1125.

5. f H1;2 g: feature swap color w/orientation; estimated improvement =0:0875.

6. f H1;2, H1;3 g: feature swap color w/orientation, discretizewind speedfrom 23 to 5;

estimated improvement =0:1125.

7. f H1;2, H1;3, H1;4 g: feature swap color w/orientation, discretizewind speedfrom 23 to

5, discretizepressurefrom 296 to 4; estimated improvement =0:1375.
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8. f H1;2, H1;4 g: feature swap color w/orientation, discretizepressurefrom 296 to 4;

estimated improvement =0:1125.

9. f H1;3 g: discretizewind speedfrom 23 to 5; estimated improvement =0:0825.

10. f H1;3, H1;4 g: discretizewind speedfrom 23 to 5, discretizepressurefrom 296 to 4;

estimated improvement =0:1125.

11. f H1;3, H1;4, H1;5 g: discretizewind speedfrom 23 to 5, discretizepressurefrom 296 to

4, discretizeprecipitationfrom 82 to 12; estimated improvement =0:1375.

12. fH1;3,H1;5 g: discretizewind speedfrom 23 to 5, discretizeprecipitationfrom 82 to 12;

estimated improvement =0:1125.

13. f H1;4 g: discretizepressurefrom 296 to 4; estimated improvement =0:0875.

14. f H1;4, H1;5 g: discretizepressurefrom 296 to 4, discretizeprecipitationfrom 82 to 12;

estimated improvement =0:1125.

15. f H1;5 g: discretizeprecipitationfrom 82 to 12; estimated improvement =0:0875.

Given a hint chain withk hintsfH1; : : : ; Hk g, where each hintHi has an estimated improve-

ment weightwi, the chain’s total estimated improvementW is computed as:

W = wmax + c k (6.1)

wherewmax � wi 8i = 1; : : : ; k is the largest estimated improvement, andc is a fractional

constant used to reward longer hint chains.
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The hint chains are stored on a priority queue ordered by each chain’s estimated improve-

mentW . Every chain encodes a description of the mapping on which it is based (i.e.M1 in

the current example). This is needed to reconstruct the mapping when the hints in the chain are

applied.

Once the hint chains are placed on the queue, the chain at the front of the queue (i.e. the

chain with the largestW ) is removed and its hints are applied to build new candidate mappings.

In our example, three hint chains hadW = 0:1375: chain 3, chain 7, and chain 11 (the exact

order of these three chains on the queue depends on the order in which they were generated).

In our implementation, chain 3 was at the front of the queue:

� f H1;1, H1;4, H1;5 g: feature swap color w/height, discretizepressurefrom 296 to 4,

discretizeprecipitationfrom 82 to 12; estimated improvement =0:1375

Data encoded in the hint chain was used to reproduce its original mappingM1. ViA then tried

to apply the three hints. Color was swapped with height. Both discretizations were disallowed,

however, because the search engine considered them too extreme relative to the original number

of discrete values in the target attributes (i.e. discretizingpressurefrom 296 values to 4 makes

pressuretoo coarse; similarly for discretizingprecipitationfrom 82 values to 12).

The result was a new mappingM2 that was then evaluated for perceptual salience. The

evaluation engines reported a total normalized evaluation weight of0:7475:

� temperature(w/7 discrete values, importance = 1.0)! height, weight =0:17,

� wind speed(w/23 discrete values, importance = 0.75)! color, weight =0:2025,
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� pressure(w/296 discrete values, importance = 0.15)! density, weight =0:1875, and

� precipitation(w/82 discrete values, importance = 0.75)! orientation, weight =0:1875.

Interestingly,M2 evaluated slight lower thanM1 (0:7475 for M2 versus0:755 for M1). An

examination of the results from each evaluation engines explains this result. The color evalua-

tion engine evaluatedtemperature! color inM1 to 0:1875, and suggested switching to height,

since this visual feature is better suited to high spatial frequency data. Switching totemperature

! height fixed the spatial frequency issue, but it introduced two new problems:

1. temperature! height: A less important attribute(wind speed)is being displayed with a

more salient visual feature (color), which will cause visual interference.

2. temperature! height: The number of uniquetemperatureis seven, but height only

supports a maximum of five discrete values.

This caused the evaluation weight fortemperature! height inM2 to decrease to0:17. Notice

thatwind speed! pressure actually increased0:2025 (in was0:1925 in M1); this is because

color supports more discrete values than height. Unfortunately, this increase was not enough

to offset the decrease from thetemperature! height pair.

This situation demonstrates an important design property: hints work in a completely inde-

pendent fashion. They are meant to improve one specific property of the mapping being tested.

Hints do not consider how their application can negatively impact other parts of the mapping.

Although it might be possible build smarter hints, the number of potential interactions between

groups of hints within a mapping is enormous. Trying to enumerate appropriate actions in all
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possible cases would be very complicated. Instead, we rely on the search engine to selectively

prune evaluation paths that do not lead to significantly better mappings. This allows us to keep

the hints very simple, and significantly reduces the complexity of ViA’s search algorithm. Re-

sults show that this strategy still produces high-quality mappings, and that these mappings are

usually found early in the search process.

Evaluation ofM2 generated seven hints to address problems in the mapping:

1. H2;1: Discretizewind speed(color) from 23 to seven, estimated improvement =0:0475.

2. H2;2: Discretizetemperature(height) from seven to five, estimated improvement =0:0175.

3. H2;3: Feature swaptemperature(height) withwind speed(color), estimated improvement

= 0:0175.

4. H2;4: Feature swaptemperature(height) withwind speed(color), estimated improvement

= 0:0625.

5. H2;5: Importance weight modifytemperaturefrom 1:0 to 0:875 andwind speedfrom

0:75 to 0:875.

6. H2;6: Discretizepressure(density) from 296 to four, estimated improvement =0:0625.

7. H2;7: Discretizeprecipitation(orientation) from 82 to twelve, estimated improvement =

0:0625.

The height evaluation engine returned the same hint twice (H2;3 andH2;4, feature swap height

with color), with two different estimated improvement weights (0:0175 and0:0625, respec-
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tively). These hints were generated from two different tests on thetemperature! height pair.

The first test examined attribute type, and suggested that height and color swap since color

supports more discrete values than height (seven versus five). The second test examined vi-

sual interference, and again suggested that height and color swap sincetemperature(currently

bound to height) is a more important attribute thanwind speed(currently bound to color). Both

hints were used, but in different hint chains.

The seven hints fromM2 were combined into new hint chains that were added to the priority

queue. The hint chain at the front of the queue was based onM2, and contained four hints:

� f H2;1, H2;2, H2;6, H2;7 g: discretizewind speedfrom 23 to 7, discretizetemperature

from 7 to 5, discretizepressurefrom 296 to 4, discretizeprecipitation from 82 to 12;

estimated improvement =0:1625

M2 was modified based on these hints.H2;2 (discretizetemperaturefrom seven to five) was

allowed; the other three hints were rejected for proposing too coarse a discretization. The result

was a new mappingM3 that evaluated to0:7644:

� temperature(w/5 unique values, importance = 1.0)! height, weight =0:1875,

� wind speed(w/23 unique values, importance = 0.75)! color, weight =0:2025,

� pressure(w/296 unique values, importance = 0.15)! density, weight =0:1875,

� temperature(w/82 unique values, importance = 0.75)! orientation, weight =0:1875,
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Figure 6.1: A histogram that shows when the top 25 mapping list is updated with improved mappings. Notice
that much of the activity in the list occurs early in the search process; ViA is finding the best mappings quickly,
suggesting that the hints chains and priority queue are working as expected to promote the most promising hints
first

M3 generated the highest evaluation weight to date,W = 0:7644. Discretizingtemperature

into five ranges allowed height to support it without penalty, producing a significant increase

in evaluation weight compared toM2.

Removing hint chains from the priority queue continues to generate new mappings, some

of which evaluate even higher thanM3. In all, 87 unique mappings were tested by ViA. Recall

that ViA maintains a list of the top 25 mappings to date. Figure 6.1 shows a histogram of

when new mappings were added to the top 25 list. The histogram shows that much of the

activity in the list occurs early in the search process. This means that ViA found many of the

top mappings quickly, and suggests that the combination of hint chains and priority queue does

an good job of identifying and applying the most promising sets of hints to generate the most

salient mappings.
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The final top 25 list returned by ViA contained a number of intriguing mappings, for ex-

ample:

� M4: temperature(w/5 unique values, importance = 0.875)! height,wind speed(w/12

unique values, importance = 0.875)! color,pressure(w/296 unique values, importance

= 0.15)! density,precipitation(w/82 unique values, importance = 0.75)! orientation;

total evaluation weight =0:8444,

� M5: temperature(w/5 unique values, importance = 0.875)! orientation,wind speed

(w/12 unique values, importance = 0.875)! color, pressure(w/296 unique values, im-

portance = 0.15)! density,precipitation(w/82 unique values, importance = 0.75)!

height; total evaluation weight =0:8444,

� M6: temperature(w/5 unique values, importance = 0.875)! height,wind speed(w/12

unique values, importance = 0.75)! orientation,pressure(w/296 unique values, im-

portance = 0.15)! density,precipitation(w/82 unique values, importance = 0.875)!

color; total evaluation weight =0:8162, and

� M7: temperature(w/7 unique values, importance = 0.875)! color, wind speed(w/12

unique values, importance = 0.812)! orientation,pressure(w/296 unique values, im-

portance = 0.15)! density,precipitation(w/82 unique values, importance = 0.812)!

height; total evaluation weight =0:8125.

We visualized three of the mappings,M1,M4, andM5, using a two-dimensional nonphotoreal-

istic visualization technique. Each weather reading was displayed using one or more simulated
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brush strokes. The color, size, coverage (amount of canvas covered by the strokes), and orienta-

tion of the strokes corresponded to the color, height, density, and orientation features suggested

by ViA.

Figure 6.2 shows data for February over the eastern United States visualized usingM1. In

this mapping, color representstemperature. Bright pinks and reds denote higher temperatures

in the south, while dark greens and blues show lower temperatures in the north. We can easily

observe the expected higher-to-lower temperature variation as we move south-to-north across

the map. The size of the strokes representswind speed. Notice the area of stronger winds

(with corresponding larger strokes) in the center-left area of the map. The coverage of the

strokes representspressure. The entire map is sparse (i.e. large amounts of the background

canvas show through) since pressure is low across the entire country for the month of Febru-

ary. Finally,precipitation is represented by orientation: vertical strokes for low rainfall, and

horizontal strokes for high rainfall. Areas of increased rainfall can be seen as tilted strokes in

southern states like Georgia, Alabama, and Florida.

The use of color and orientation maketemperatureand precipitation relatively easy to

identify. On the other hand,wind speedandpressurevariations are harder to see. A mapping

with a higher evaluation weight,M4, attempts to address some of this imbalance by swapping

color for wind speedand size fortemperature(Figure 6.3). It is now very easy to identify the

strong winds in the center of the country (shown as bright pink strokes). As well,temperature

variations are still visible as large strokes in the south, and small strokes in the north.
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Figure 6.2: Visualizing average weather conditions for February over the eastern United State using ViA mapping
M1: temperature! color,wind speed! size,pressure! density, andprecipitation! orientation; all attributes
are displayed in their original form
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Figure 6.3: Visualizing average weather conditions for February over the eastern United State using ViA mapping
M4: temperature! height,wind speed! color,pressure! density, andprecipitation! orientation;tempera-
turewas discretized to five ranges, and had its importance weight reduced to 0.875;wind speedwas discretized to
twelve ranges, and had its importance weight increased to 0.875
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Figure 6.4: Visualizing average weather conditions for February over the eastern United State using ViA mapping
M5: temperature! orientation,wind speed! color,pressure! density, andprecipitation! height;tempera-
turewas discretized to five ranges, and had its importance weight reduced to 0.875;wind speedwas discretized to
twelve ranges, and had its importance weight increased to 0.875
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Finally,M5 swaps orientation fortemperatureand size forprecipitation(Figure 6.4). In this

visualizationtemperaturevariations can be quickly distinguished as clearly visible difference

in orientation. The use of size to denoteprecipitationdoes an excellent job of highlight the

region of high precipitation in the south as a group of large strokes. As inM4, wind speed

is well represented with color. Finally, lowpressureis shown as a sparse packing of strokes

across the map.

This example provides a detailed description of how ViA was used to produce perceptually

salient data-feature mappings for a collection of environmental weather conditions. In the next

section we emphasize ViA’s domain-independent nature by using it to visualize a completely

different type of dataset containing results from a simulated e-commerce auction competition.

6.2 E-Commerce Visualization

The Trading Agent Competition2 (TAC) is a simulated e-commerce auction environment run

on the Michigan Internet AuctionBot platform3. The AuctionBot is a TCP-based auction server

that implements numerous types of auction rules. This allows the simulation of a wide variety

of market games. Intelligent auction agents are designed and tested within these markets to

study different buying and selling strategies.

During the TAC, each agent acts as a “travel advisor” whose goal is to assemble a travel

package for eight fictitious customers. A travel package consists of:

2http://tac.eecs.umich.edu
3http://tac.eecs.umich.edu/auction
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� a round-trip flight from TACtown to Boston,

� a hotel reservation, and

� tickets to certain entertainment events (a baseball game, the symphony, and the theater).

Each customer specifies preferences for the different aspects of his or her trip. For example,

customers will tell the agent which days they want to be in Boston, the type of hotel they prefer

(economy or luxury), and the entertainment events they want to attend. There are obvious

dependencies that must be met, for example, customers need hotel rooms for the duration of

their trip, and can only attend entertainment events during that interval. The goal of the agent

is to maximize the total satisfaction of its customers (i.e. the sum of their utility functions).

All three products (flights, hotels, and entertainment) are traded in separate markets with

different auction rules. For example, the auction for airline tickets runs as follows:

1. A single airline (TACAIR) operates a single flight every day between TACtown and

Boston; from the point of view of an agent, the supply of available seats is unlimited.

2. TACAIR runs a separate auction for each flight (i.e. for each day flights are being sold),

with prices ranging from $150 to $600 dollars; a stochastic function with a uniform

distribution permutes the price by�$10 every 20 to 30 seconds,

3. The auctions run continuously until the simulation ends.

4. A buy bid by an agent is held within an auction until: (1) a sell price at or below the

agent’s bid is issued for the given auction, or (2) the auction ends.

5. Agents can withdraw or revise their bids at any time prior to a bid being accepted.
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6. Agentscannotsell their own (previously purchased) tickets within the auction; only

TACAIR can sell tickets.

Other auctions run with slightly different rules. For example, two hotels are available during

the TAC: an economy hotel (Le FleaBag Inn) and a luxury hotel (Boston Grand Hotel). Both

hotels offer sixteen rooms for each evening, with every hotel-evening pair run as a separate

auction. The sixteen highest bids for an auction determine who receives rooms. An agent bids

for one or more rooms at a chosen price (obviously, this price must exceed a minimum bid

price, which is the sixteenth highest bid seen to date). Bids cannot be withdrawn, and only the

hotel can offer to sell rooms. An auction ends when: (1) the simulation ends, or (2) a randomly

chosen period of inactivity with no new bids passes (this was intended to penalize agents that

try to wait until the end of the simulation, check the minimum bid price, then bid slightly above

that price to secure the rooms they want). All the rooms are sold at the price of the sixteenth

bid (i.e. agents with the highest bids will often pay less than they offered for their rooms).

Finally, every agent receives an initial allotment of tickets for each entertainment event.

They can then buy and sell these tickets with other agents. As with hotels, a separate auction

is held for each evening-event combination. The auctions run in a manner similar to the stock

market: buy or sell requests that match an existing bid are executed immediately; otherwise

they are held within the auction until an appropriate bid is received, or until the auction ends.

Although certain aspects of the TAC are simplified, it still provides an excellent simulation

of a real-world e-commerce auction environment. Products are bought and sold in real-time,

both by external suppliers and by the agents themselves. Careful planning is needed to manage
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Table 6.2: Attributes from the TAC simulation visualized with ViA; each attribute’s domain type, spatial fre-
quency, analysis tasks to support, and relative importance as specified to ViA are listed in the table

Attribute Domain Frequency Task Importance

agent ID discrete (8 unique values) high search 1.0
price continuous low boundary 0.5
quantity discrete (10 unique values)high estimate 0.5

the cost of certain items versus their potential unavailability (e.g. hotel rooms). Different

auctions are run using different rules, requiring an agent to implement a variety of tactics to

guarantee overall success.

The TAC has been used to study different auction strategies through head-to-head compe-

titions. For example, teams of students in our undergraduate e-commerce course design and

implement TAC agents, then compete against one another at the end of the term. In July 2000,

twelve teams participated in a TAC run at the Fourth International Conference on Multiagent

Systems (ICMAS-00). The agents at ICMAS were selected from an initial group of twenty

teams from six countries that competed in a set of qualifying rounds conducted prior to the

conference.

6.2.1 E-Commerce Mappings

Visualizing the datasets generated by the auction agents would allow participants and observers

to track the performance of an agent as the simulation unfolds. Also, one would be able to

observe underlying strategies of the different agents.

Based on feedback from the TAC designers and participants, the following attributes were
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selected for visualization:time, auction ID, agent ID, priceandquantityfor every bid made

during the simulation. We chose to usetimeandauction ID to define a bid’sx andy position

on an underlying two-dimensional grid (where the columns corresponds to a specific time step,

and the rows corresponds to a specific auction). Table 6.2 shows the properties of the remaining

data attributes to be visualized. These properties are used by ViA to identify appropriate data-

feature mappings. For visualization purposes, and since the dimensionality of the dataset was

fairly small, hue and luminance were combined into a single visual feature color.quantity

was allowed to be re-discretized, if necessary, down to as few as three discrete ranges. The

attributesagent IDandquantitywere not changed in any way. It must also be mentioned that

hint chains were not incorporated into the version of ViA that was used for this application.

Hints were applied individually to search for improved results. In spite of this, ViA was still

able to suggest numerous effective mappings.

ViA evaluated a total of nineteen different mappings. This number was somewhat low,

due in part to the inflexibility in the initial constraints specified by the user (i.e. onlyquan-

tity was allowed to undergo any modification), and in part to the low number of attributes to

be visualized. Also, any mapping that included regularity was discarded, since experimental

results suggested that users would have difficultly distinguishing this feature in the visualiza-

tion. Based on the perceptual salience of the mappings it generated, ViA returned the following

promising candidates:

1. M1: agent ID! color,price! height,quantity! density, withquantityre-discretized

into four ranges of equal width; evaluation weight =0:841.
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2. M2: agent ID! color,price! density,quantity! height; evaluation weight =0:725.

3. M3: agent ID! height,price! density,quantity! color; evaluation weight =0:694.

For each of the above mappings, the evaluation engines generated warnings to highlight poten-

tial violations of the perceptual guidelines by different data-feature pairs within the mappings.

These violations produced a corresponding reduction in the overall evaluation weight of each

mapping. For example, evaluation ofM1 generated the following warnings and reductions:

1. agent ID! color: The number of uniqueagent ID is eight, but color only supports a

maximum of seven discrete values; penalty =�0:013.

2. agent ID! color: Color is not appropriate for high spatial frequency data; penalty =

�0:083.

3. quantity! density: Density is not appropriate for high spatial frequency data; penalty =

�0:063.

Figures 6.5a–6.5c show the visualizations forM1, M2, andM3, respectively. Pexels [HE98]

were used as the rendering model for visualizing these datasets.time is represented on the

horizontal axis, increasing from left to right. Each row corresponds to a specific auction (each

with a uniqueauction ID).

In Figure 6.5a (representingM1) viewers can identify the different colors representing the

different agents. The price of each bid is represented by the height its pexel. This allows a

viewer to compare the prices of different bids using height. Positive heights represent buy
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(a) (b) (c)

bidding war for hotels

high price/high quantity buy bids 
(tall and wide)

sell bids 
(negative height)time

auction

(d)

Figure 6.5: Student TAC data visualized with four differentM : (a)M1: agent ID! color, price! height,
quantity! density; (b)M2: agent ID! color,price! density,quantity! height; (c)M3: agent ID! height,
price! density,quantity! color; (d)Mfinal: agent ID! color,price! height,quantity! width
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bids (bids lying above the plane), and negative heights represent sell bids (bids lying below

the reference plane). Notice in the upper right-hand corner a group of pexels with steadily

increasing height. Since the upper rows of in the visualization represent hotel auctions, the

pexels in this area of the visualization show a bidding war for hotel rooms. Viewers can clearly

see the (poor) strategy of the agents as they repeatedly increase their bids in an attempt to

secure hotel rooms by out-bidding one another.

M2 andM3 evaluated lower thanM1. The lower evaluation weights for these mappings

resulted from slightly more severe violations of ViA’s perceptual guidelines withinM2 and

M3.

M2 had warnings identical toM1 for its agent ID! color pair. Two additional warnings

were generated:

1. price ! density: ViA cannot map a continuous attribute to a discrete visual feature,

unless the attribute is discretized; penalty == �0:083.

2. quantity! height: The number of uniquequantity is ten, but height only supports a

maximum of five discrete values; penalty =�0:033.

Re-discretization ofquantity to five or fewer ranges would eliminate the second violation in

M2, resulting in an improved evaluation weight of0:758.

Figure 6.5b shows a visualization of the same data, but withM2 as the data-feature map-

ping. In this representation different agents are still distinguished by different colors. However,

pricevalues are more difficult to differentiate, since they are now represented by the density of

the pexels. This shows one potential disadvantage ofM2. Certain advantages also result from
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this representation, however. Sincequantityis represented by height, we can now see constant

height values for each agent during the hotel bidding war. This shows that each agent was

continually bidding for a constant number of rooms. The same pattern was visible withM1 (in

Figure 6.5a) as a constant density of pexels, but it was much less noticeable. This shows that

there can be significant advantages to visualizing a dataset in more than one way.

M3 had a lower evaluation weight as compared to bothM1 andM2. This is due to the

following violations that were detected by ViA:

1. agent ID! height: The number of uniqueagent IDis eight, but height only supports a

maximum of five; penalty =�0:027.

2. agent ID! height: A less important attribute(quantity)is being displayed with a more

salient visual feature (color), which will cause visual interference; penalty =�0:083.

3. price ! density: ViA cannot map a continuous attribute to a discrete visual feature,

unless the attribute is discretized; penalty == �0:083.

4. quantity! color: The number of uniquequantity is ten, but height only supports a

maximum of seven; penalty =�0:030.

5. quantity! color: Color is not appropriate for high spatial frequency data; penalty =

�0:083.

Looking at Figure 6.5c representing the visualization with data-feature mappingM3, it is clear

why it was evaluated as perceptually less salient thanM1 or M2. Identification of the agents

using height is much more difficult than with color. Constant colors for each participating
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agent results from the fact that each agent only bids in a limited number of different quantities

as per its customers requirements. Since density reflects the price of each bid, it is difficult to

distinguish price ranges or compare differences in this value. The use of density would have

be more effective ifpricewere discretized into a small number of ranges.

A modified version ofM1 was chosen for final representation during live TAC sessions.

Pexel width was used to representquantity, rather than density. This allowedquantity to be

represented without re-discretizing. It also allows us to sue spatial density to represent areas

of high activity within the auction (i.e. specific time steps where numerous agents bid simul-

taneously in a common auction). Figure 6.5d shows a visualization with this mappingMfinal.

Since the visualizations were rendered in real-time as the TAC simulations unfolded,Mfinal

allowed viewers to track different agents and their strategies, giving them the ability to analyze

and explore the TAC in a rapid and effective manner.

Figure 6.6 shows a dataset from one of the ICMAS-00 TAC simulations. The sameMfinal

is used to visualize the data. Finalists at ICMAS used much more sophisticated agent strategies,

some of which are clearly visible in our visualizations. For example:

1. Some agents would periodically make very low buy bids for hotel rooms to ensure the

hotel auctions did not close prematurely.

2. Most agents deferred purchasing hotel rooms and airline tickets until just before the

simulation ended, since they felt there was no advantage to early purchase (particularly

for hotel rooms, where attempts at early purchase can drive up the final price).

3. If hotel rooms for a given customer cannot be found, the customer’s entire trip is can-
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hotel/airline purchase activity

"stay alive" bidstime

auction

penalty/cost tradeoff bids

Figure 6.6: ICMAS TAC data visualized withMfinal (agent ID! color, price! height,quantity! width);
more sophisticated agent strategies are visible in these displays

celled, and the agent is penalized the cost of any airline and entertainment tickets they

may have purchased on the customer’s behalf. Some agents estimated the costc of this

penalty, then made late bids for hotel rooms at a buy price ofc. These agents decided

that payingc for a hotel room was no worse than paying a penalty ofc for unused airline

and entertainment tickets. More importantly, there is a good chance that the hotel rooms

will sell for less thanc (that is, the sixteenth winning bid for a room is made by some

other agent with a buy price less thanc). If this happens, the agent will make a profit

relative to the scenario of not securing the hotel room.

This chapter discussed applying ViA to two real-world visualization environments: weather

datasets, and e-commerce auction agent datasets. We examined the different stages that make

up ViA’s execution, and discussed the construction of the various mappings that were built,
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evaluated, and suggested for use by ViA. We also identified the differences between these

mappings, and explained how these differences affected ViA’s evaluation procedures. The

Conclusions chapter summarizes our findings, and suggests potential improvements to ViA

that could result in a more effective and more efficient search process.
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Chapter 7

Conclusions and Future Study

Multi-dimensional dataset visualization is fast emerging as an important area in the study of

computer graphics and scientific visualization. The ability to explore and analyze large datasets

is a critical requirement in our efforts to continually manage rapidly expanding collections of

information from numerous problem domains. Supporting this need requires visual represen-

tations that aid users in comprehending and interacting with their data. Effective visualization

techniques can significantly enhance a user’s ability to conduct rapid, accurate, and effortless

analysis.

This thesis proposes a combination of guidelines from human vision and intelligent search

strategies to assist in constructing effective multidimensional visualizations. Our system, called

ViA, is a flexible visualization tool that is used to build perceptually salient visualizations for

multidimensional datasets. ViA supports a wide variety of dataset types and user-specified

constraints on the visualizations it suggests. Use of human perception as a foundation for
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design allows ViA harness the strengths and avoid the limitations of low-level human vision.

The result is a small collection of data attribute to visual feature mappings that best represent

the user’s data for the given analysis tasks.

ViA works by constructing candidate data-feature mappings, then evaluating the mappings

to produce evaluation weights and hints. An evaluation weight represents a measure of a map-

ping’s appropriateness for a given dataset and analysis tasks. Evaluation weights also allow us

to compare different mappings.

Hints offer suggestions on how to correct weaknesses in a mapping. Hints are used to

guide the search along paths that have the highest probability of producing better mappings.

Individual hints are combined into hint chains, and applied in a single step to a candidate

mapping. This produces rapid improvements in the mappings ViA generates. Results suggest

this strategy is effective at quickly moving ViA to areas of the search space with the best

possible mappings.

ViA was designed to be domain-independent. In particular, neither the perceptual guide-

lines nor the search algorithms depend on a particular type of dataset or problem environment.

We applied ViA to two different domain areas, weather datasets and e-commerce datasets, to

demonstrate this flexibility. In both cases ViA produced high-quality data-feature mappings

that support the exploration and analysis tasks specified by our viewers. We expect that ViA’s

use of perceptual guidelines and intelligent search strategies will be effective for a wide range

of real-world problem domains.

There are other promising areas of study that may further improve ViA’s ability to act as a
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flexible, robust visualization assistant. Two areas of particular interest are:

1. Research is currently underway to identify the perceptual properties of new visual fea-

tures (e.g.,properties of motion like flicker, direction, and velocity). Support for addition

features can easily be added to ViA through the addition of new evaluation engines. Hav-

ing access to more visual features would allow ViA to suggest higher-dimensional, and

potentially more effective visualizations.

2. We want to take advantage of a user’s domain expertise and understanding of context

to help ViA decide how to best relax constraints during the search for effective visual-

izations. In particular, we hope to implement a mixed-initiative strategy that asks about

changing the dataset’s properties or the user’s initial constraints. In order to be effective,

such a strategy must make only a very small number of queries, with each query result-

ing in a significant improvement in ViA’s ability to search for better mappings. Work

currently underway is building a theoretical framework to control user interactions in a

way that will satisfy these goals.

In summary, ViA represents the first step towards designing a domain-independent tool to assist

users in constructing perceptually salient multidimensional visualizations. Results to date have

been positive. We expect future work will only improve upon these successes.
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