
ABSTRACT

THOMAS, ASHLEY. Adaptive Real Time Intrusion Detection Systems. (Under the direc-
tion of Dr. Wenke Lee.)

A real-time intrusion detection system (IDS) has several performance objectives:

good detection coverage, economy in resource usage, resilience to stress, and resistance to

attacks upon itself. In this thesis, we argue that these objectives are trade-offs that must

be considered not only in IDS design and implementation, but also in deployment and in an

adaptive manner. A real-time IDS should perform performance adaptation by optimizing its

configuration at run-time. We use classical optimization techniques for determining an op-

timal configuration. We describe an IDS architecture with multiple dynamically configured

front-end and back-end detection modules and a monitor. The front-end does the real-time

analysis and detection and the less time-critical tasks may be executed at the backend. In

order to do performance adaptation, the front-end is modified to have two modules: perfor-

mance monitoring and dynamic reconfiguration. The IDS run-time performance is measured

periodically, and detection strategies and workload are dynamically reconfigured among the

detection modules according to resource constraints and cost-benefit analysis. The back-end

also performs scenario (or trend) analysis to recognize on-going attack sequences, so that

the predictions of the likely forthcoming attacks can be used to pro-actively and optimally

configure the IDS.

The adaptive IDS results showed better performance when the operating condi-

tions changed and the IDS was stressed or overloaded. By reconfiguring, the adaptive IDS

minimized packet drops and gave priority for critical attacks, with relatively higher damage

cost, thereby ensuring maximum value for the IDS. The overheads involved for monitoring

as well as reconfiguration was found to be negligible.

Keywords: real-time intrusion detection, performance metrics, performance adap-

tation, optimization.

ADAPTIVE REAL TIME INTRUSION DETECTION
SYSTEMS

by

ASHLEY THOMAS

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Computer Networking

Raleigh

2002

APPROVED BY:

Chair of Advisory Committee

ii

To Amma and Daddy.

iii

BIOGRAPHY

Ashley Thomas completed his Bachelor Degree in Electronics and Communications Engi-

neering in 1997 from the University of Calicut, India. Presently, he is pursuing a Master of

Science degree in Computer Networking at the North Carolina State University, Raleigh.

iv

ACKNOWLEDGEMENTS

My sincerest thanks to Dr. Wenke Lee for his guidance all through my research

work. It has been a pleasure working under his guidance. I also thank Dr. Douglas Reeves

and Dr. Peng Ning for agreeing to be on my thesis research committee and providing

valuable input.

I would also like to thank my friends Bobby George, Sunny, Niranjan, Vinay

Mahadik, Somani Ram for their help and support.

Finally, I would like to thank my family - Amma, Daddy, Milanchechi, Jewel,

Elsamma aunty, Philomma aunty, Mariette aunty, Anniemma aunty, Cama aunty and the

IMS group for their prayer and support which was and continues to be a tremendous source

of strength.

Thank you.

v

Contents

List of Figures vii

1 Introduction 1
1.1 Motivation . 2
1.2 Summary of remaining chapters . 4

2 Background 5
2.1 Intrusion Detection Systems . 5
2.2 Classification of Intrusion detection systems 6
2.3 Real-time NIDS . 7

2.3.1 Constraints and Bottlenecks in Real-time NIDS 7
2.3.2 Attacks on the IDS . 8

2.4 IDS Configuration . 9

3 Research Problem Statement and State of the art 11
3.1 Problem and its importance . 11

4 IDS Performance Analysis 14
4.1 Definitions and Preliminaries . 14
4.2 Performance Metrics . 16
4.3 Performance Optimization . 19
4.4 Static Configuration vs. Adaptation . 20
4.5 Practical Considerations . 22

5 Experiments with statically configured IDS 24
5.1 Snort . 24

5.1.1 Snort configuration used . 25
5.2 Bro . 25

5.2.1 Bro configuration used . 26
5.3 Experiment Testbed . 26
5.4 Background traffic . 27
5.5 Overload attacks . 28
5.6 Experiment results . 30

5.6.1 Attack scenario using udp flooding 31

vi

5.6.2 Attack scenario targeting alert channel bottleneck 32
5.6.3 Attack scenario targeting database channel 32

6 Performance Adaptation Architecture 35
6.1 Performance Monitoring . 36
6.2 Dynamic Reconfiguration . 37
6.3 Scenario Analysis . 38

7 Prototype System 39

8 Experiments on the Prototype Systems 45
8.1 IDS configurations and parameters . 45

8.1.1 Initial configuration for Adaptive Bro 45
8.1.2 Initial configuration for Adaptive Snort 45

8.2 Results of experiments with prototype IDSs 46
8.2.1 Attack scenario using udp flooding 46
8.2.2 Attack scenario targeting alert channel 49
8.2.3 Attack scenario targeting database bottleneck 50

8.3 Overhead of performance monitoring and reconfiguration 52
8.4 Important points while designing an Adaptive IDS 52

9 Conclusion 57

Bibliography 59

vii

List of Figures

4.1 The IDS Processing Flow. All events are directed to a common queue, but
the nature of the service performed on each event depends on event type. . 17

4.2 Processing of events of type i. That tasks include preprocessing, rule-checking,
and logging. They are applied sequentially. 18

5.1 Lariat Testbed . 27
5.2 Traffic profile . 28
5.3 UDP flooding to overload the IDS . 29
5.4 Ping flood to overload the IDS . 29
5.5 Overload attack targeting database bottleneck 29
5.6 Performance of IDS under stress (attack category 1): Bro 31
5.7 Performance of IDS under stress (attack category 1): Snort 31
5.8 Performance of IDS under stress (attack category 2): Bro 32
5.9 Performance of IDS under stress (attack category 3): Bro 33
5.10 Time for insertion to database . 33

7.1 Components of Adaptive IDS architecture 40
7.2 Rule structure and Priority list data structure 43

8.1 Behavior of adaptive Bro for overload attack category 1 47
8.2 Behavior of adaptive Snort for overload attack category 1 48
8.3 Detection rate during attack scenario 1 . 49
8.4 Change in value contributed by rules when IDS is overloaded 50
8.5 Change in Total value of the IDS (Bro) . 51
8.6 Behavior of adaptive Bro for overload attack category 2 54
8.7 Enlarged view of time t = 48 to t = 67 seconds 54
8.8 Detection rate during attack scenario 2 . 55
8.9 Behavior of adaptive Bro for overload attack category 3 56
8.10 Insertion time for adaptive Bro . 56

1

Chapter 1

Introduction

The ever increasing threat from hackers, competitors and other enemies has made

the security of computers and computer networks, a prime concern for any organization.

The main objectives of security is to protect the integrity, confidentiality and availability

of resources of the organization. The resources may be network bandwidth, computers, or

confidential corporate data. The most effective way to ensure security is by the layered

approach; also known as Defense-in-depth. This approach has basically three elements;

• Prevention.

• Detection.

• Response.

Prevention is usually done using perimeter control mechanisms like Firewalls or

Router access control lists (ACLs). Although perimeter control is the most important

element of the Defense-in-depth model, they cannot prevent 100 percent of the attacks.

This maybe due to human errors like misconfigurations of firewall or attacking through an

unfiltered port. It is the function of the Detection element to detect when the attacker is

successful in getting past the perimeter control. This is analogous to having burglar alarms

in our houses. Whether the house is locked, or is unlocked due to oversight, the burglar

alarm notifies the owner when there is any trespassing. The third element is concerned with

how the detection element reacts to an intrusion.

2

1.1 Motivation

An IDS is a “mission-critical” system that needs to be effective and available.

More specifically, its performance objectives include: real-time detection and notification,

good detection coverage, economy in resource usage, and resilience to stress [23]. Since

sophisticated adversaries may try to first evade or even subvert IDSs when launching their

intended attacks, another important performance objective is that an IDS must resist at-

tacks upon itself [22, 20]. These objectives can be conflicting goals. For example, for broad

coverage and high detection accuracy, an IDS needs to perform stateful analysis on a lot

of audit data and the number of rules or signatures also need to be large. This requires a

large amount of resources (in both memory and detection time). A resource-intensive IDS

is then vulnerable to stress and overload attacks. We therefore need to carefully consider

the trade-offs.

Current trend lays emphasis on fine tuning the IDS configuration to suit the envi-

ronment and operating conditions where the IDS will be deployed for better performance.

Some IDSs are carefully designed to be very “light weight” or are specially configured with

high-end hardware (e.g., RealSecure with AppSwitch [29]) to cope with high-speed and

high-volume traffic. However, as the results of the experiments in later sections show, as

long as an IDS is statically configured, it can be overloaded. If the overloaded situation

persists it might lead to the IDS dropping packets and consequently missing the attacks.

Such overloading scenarios may be completely unintentional, being the effect of fluctuations

in traffic load on the network. On the contrary an intelligent adversary can deliberately

overload the IDS to a point that it will miss the intended attack with high probability, in

order to avoid detection.

Overview of the solution

We advocate enabling an IDS to provide performance adaptation, that is, the best

possible performance for the given operation environment. It is extremely difficult, if not

impossible, for an IDS to be 100% accurate [2]. The optimal performance of an IDS should

be determined by not only its ROC (Receiver Operating Characteristics) curve of detection

rate versus false alarm rate, but also its cost metrics (e.g., damage cost of intrusion) and

the probability of intrusion [7]. Accordingly, performance adaptation means that an IDS

should always maximize its cost-benefits for the given (current) operational conditions. For

3

example, if an IDS is not able to keep up with the traffic on the network and therefore is

forced to miss some intrusions (that can otherwise be detected using its “signature base”),

due to stress or overload attacks, it should still ensure that the best value (or minimum

damage) is provided according to cost-analysis on the circumstances. As a simple example, if

we regard buffer-overflow as more damaging than port-scan (and for the sake of argument,

all other factors, for example., attack probability, detection probability, are equal), then

missing a port-scan is better than missing a buffer-overflow. The cost factors of various

intrusions are calculated according to site-specific security policies and priorities [7, 13].

The performance adaptation is achieved by continuous run-time performance mea-

surement and monitoring, and dynamic reconfiguration mechanisms. This ensures that de-

tection rules and analysis tasks of higher priority gets preference if the IDS is unable to do

all the analysis and detection. A knapsack optimization algorithm is employed to select the

most appropriate configuration, i.e. having maximum value, under the current constraints.

The performance adaptation is implemented on two IDSs: Bro [20] and Snort [25]; and

the results are compared against the original non adaptive version. These IDSs are chosen

because they represent the state of the art real-time NIDS technology and are open source.

The experiments are conducted using LARIAT traffic generation testbed.

Contribution to the field

Our research work is one of the pioneering work in the field of performance adap-

tation in Intrusion detection. We list some of the contributions:

• Prototype for a real-time adaptive IDS is provided derived from two different IDSs-

Bro, which is a stateful IDS and is event based; and Snort, which does packet based

analysis.

• Optimization algorithms are implemented for reconfiguration, to get the best possible

IDS configuration at run-time and the results are described.

• Results are provided to show how the prototype adaptive IDSs perform in different

overload scenarios compared to the traditional non adaptive ones.

• We suggest the various parameters or metrics that an IDS should maintain for per-

formance monitoring. Also, a model for a Real-time adaptive IDS is provided.

4

• From our experience with tailoring Bro and Snort, we suggest some features a model

performance adaptive IDS should have.

1.2 Summary of remaining chapters

Chapter 2 gives an overview of IDSs, their classification, their performance con-

straints or bottlenecks and various attacks on IDSs. Chapter 3 states the research problem

and discusses the importance of it. Chapter 4 deals with analysis of IDS performance issues,

objectives, and the need for performance adaptation. Chapter 5 describes the experiments

done on statically configured IDS and explains the results. Chapter 6 describes the architec-

ture for performance adaptation and also the various components. Chapter 7 discusses how

to enable performance adaptation in real-time IDS and describes the prototype real-time

adaptive IDSs. Chapter 8 has the results of the experiments performed on the developed

prototypes. It also lists some difficulties we faced while building the prototype adaptive

IDS and also shows a wish list for a model adaptive IDS and Chapter 9 concludes the thesis

with a summary.

5

Chapter 2

Background

This chapter gives a background on Intrusion detection systems (IDS) and the

various classifications of IDSs. Real time ID systems and their performance bottlenecks are

explored. It also gives an overview about the various attacks targeting the Real time IDS.

Finally, a discussion about general IDS configuration is included.

2.1 Intrusion Detection Systems

An Intrusion detection system is a Detection element and is an important part of

the Defense-in-depth strategy. Intrusion detection can be defined as: [1]

Intrusion detection is the process of identifying and responding to malicious activity targeted

at computing and networking resources.

The definition briefly lists the functions of an IDS; i.e.

• Identifying the malicious activity and

• Responding to it.

The means of identifying “malicious” activity differs from one IDS to another and

it can be done while the activity is going on or after it has occurred. The response that

an IDS takes also varies from reporting or logging into some database to making counter

attacks.

6

2.2 Classification of Intrusion detection systems

An IDS can be classified in various ways [9]; i.e. based on detection method,

detection timing, type of response and type of audit data used.

Based on the type of detection method used by the IDS, it can be classified into

the following types:

• Anomaly based IDS: This class of IDSs detects malicious activity on a host or on the

network by looking for large deviations from normal or acceptable behavior.

• Misuse based IDS: This class of IDSs detects malicious activity by monitoring the

audit data for misuse signatures or known attack patterns.

• Protocol based IDS: This is a class of IDS under the Network based IDS category.

This class of IDS detects malicious activity by doing analysis based on protocols.

Another classification of an IDS is based on the detection timing. The different

types are:

• Real time IDS: The real time IDS detects the attacks in real time, i.e when the attack

is unfolding, and reports them or takes appropriate action. The real time IDSs operate

under time constraints. The time available for analyzing an event is bounded.

• Offline IDS: The offline IDS operates on log files consisting of events. It does not have

time constraints and therefore can do a more thorough and detailed analysis but the

downside is that damage is already done.

The response of an IDS in the event of detecting a malicious activity also varies.

Accordingly they can be classified as:

• Passive IDS: Traditionally, IDS operates in a passive mode. In the event of detecting

an attack it just raises an alarm and logs the details.

• Active IDS: On detecting an attack, these IDSs take different actions which are spec-

ified. The actions can vary from bringing a misbehaving TCP connection down by

sending RST packets to either endpoint or interacting with the firewall to block certain

IP addresses or port.

Based on the type of audit data that it monitors, an IDS can be classified as:

7

• Host based IDS: A host based IDS monitors the host system events like what files

were accessed, what applications were executed, or the pattern of system calls made

by certain application.

• Network based IDS: A network based IDS monitors the network activities by capturing

and analyzing audit data (e.g., BSM [28] or libpcap [15] stream) to determine whether

there is an attack occurring.

• Network Node based IDS: This class of IDS resides on main network nodes and analyze

only the traffic directed to the node. These type of IDSs are implemented in the

TCP/IP stack of the host Operating system and are also called Stack-based IDS.

2.3 Real-time NIDS

A Network based IDS or NIDS operates on the raw packets seen on the network

that it is monitoring. As opposed to offline NIDS, a Real-time NIDS does the detection

in real-time; i.e. when the attack is occurring. This is really helpful especially when the

attack has multiple stages; detecting it at an early stage can help to prevent it from causing

damage. A NIDS is usually placed at strategic points on the network, for e.g. in the

Demilitarized zone (DMZ), where it can see all the traffic bound to the network. These

IDSs work in promiscuous mode, which enables them to capture all the traffic irrespective

of the destination address of the packet. The NIDS is like a surveillance tower, monitoring

all the nodes in a network. In order to analyze how a certain host will behave on receiving

a packet, the NIDS needs to do a minimum amount of processing like IP fragmentation

reassembly, TCP stream reassembly and keeping state of different active connections.

When NIDS operates as a real-time system, there are some additional design

requirements. While not compromising on the accuracy, the IDS functions have to be

done under time deadlines and with limited resources to provide a certain accepted level of

performance guarantee.

2.3.1 Constraints and Bottlenecks in Real-time NIDS

Like any other real-time system, a real-time IDS has many resource constraints

[16]. Some of the important resources of a real time IDS are CPU speed, memory size,

memory bus bandwidth, bus bandwidth for the network interfaces, long term storage etc.

8

Since the NIDS processes all the packets on the network, as the traffic volume increases,

the time available for packet processing becomes lesser.

Some of the common weak points or choke points of a Real time IDS are [16]:

• Alert or Alarm channel: One of the main responses of any IDS is to log to a non

volatile storage like disk. This is a time consuming operation and a high frequency of

alerts can act as a bottleneck.

• Critical Path: For every IDS there is an analysis path which takes much more than the

average CPU cycles. This path maybe due to detailed analysis tasks like IP fragmen-

tation reassembly or TCP reassembly, or due to a large number of signatures/rules

for a particular type of packet, or due to a computationally expensive operation like

pattern matching in snort.

• Stressing the database: For IDSs that do stateful analysis, as the number of concurrent

connections increases, the database accesses will take more time thus overloading the

IDS.

• Packet capture mechanism: As the network traffic goes higher and higher, the packet

capture mechanism can become a bottleneck.

2.3.2 Attacks on the IDS

While Intrusion detection systems are deployed to detect attacks on the network,

they themselves can be attacked. Some of the attacks that can be done on an IDS are

overload, crash or Evasion attacks. [22, 20, 27].

• Overload attacks: The strategy of the attacker in this type of attack is to identify

a weak spot or critical path in the IDS and overload it. The detection performance

cannot be guaranteed when the IDS is in stress and there is a non negligible probability

that the attacks during that time will go unnoticed.

• Crash attacks: These are the attacks in which the attacker tries to crash the IDS out

of operation. This maybe done by finding some loophole or bug after careful study of

the IDS code or functionality, especially with open source IDSs.

• IDS Evasion: Various IDS evasion techniques exist that takes advantage of the fact

that an NIDS does not have a topology knowledge of the network it is watching or

9

that certain IDS do not do IP fragmentation reassembly or TCP reassembly properly.

While crash attack and overload attacks are aimed at the IDS, similar to a DoS, IDS

Evasion is to get past the IDS, unnoticed.

Researchers are developing attack resistance techniques. Many evasion attempts

can be foiled if an IDS uses stateful analysis and employs a network traffic normalizer [10].

2.4 IDS Configuration

A set of parameters, whose values determine the an IDS performs constitute the

“Configuration” of an IDS. The values of these parameters at any instance of time deter-

mines the performance of an IDS, as well as its value. Some of the common IDS parameters

are:

• Set of detection rules: It is very critical that the rule set that one uses has to be

updated and tuned for the environment. Detection rules vary in complexity, the

criticality of the attack they detect etc.

• Analysis modules or tasks: Analysis modules in the form of plug-ins are common with

IDSs. The user specifies in the configuration file the ones to be loaded.

• Memory limits. These parameters sets the different memory limits an IDS should be

using for different modules like TCP stream reassembly, IP fragmentation reassembly

etc.

• Packet capture filter: This is a parameter that is specified to the packet capture mech-

anism to convey what packet the IDS is interested in. By eliminating the unwanted

packets at the earliest, the performance can be improved a lot.

• Different timer values: There are different set of timers associated with an IDS. Each

of them indirectly affects the performance of the IDS and also the amount of memory

the IDS needs etc. For example, the fragmentation timer of an IDS tells an IDS about

the duration it should keep an incomplete set of fragments before all of them arrives.

Ideally, this timer value should be exactly same as what the target hosts would be

having. But since the IDS is in a hot spot, it is trade off to be made what the timer

value needs to be.

10

It is a very critical factor for an IDS to have an optimal configuration. There is

a tendency among users to configure the IDS and get it running with the default

configuration that comes with the IDS distribution. This usually leads to non optimal

performance of the IDS and thereby reducing its value.

The next chapter states the problem we are interested in and some literature

reviews. The importance of the problem is discussed as well.

11

Chapter 3

Research Problem Statement and

State of the art

This chapter briefly states the research problem this thesis addresses. The im-

portance of the problem is discussed. Related work and why they fail to address the issue

completely, is discussed.

3.1 Problem and its importance

Current real-time IDSs are statically configured and do not have the features to

adapt their configurations and work load at run-time, according to the changing operational

conditions. Therefore, as the operating conditions change due to fluctuation in the traffic

profile or when under an overload attack, the original configuration becomes a non optimal

one and reduces the value of the IDS.

This problem is most often dismissed with the argument that it is okay if the IDS

drops some packets when there is a traffic spike. But the fact is that the attacker can

deliberately increase the traffic to “hide” the attack. In such cases the reason of deploying

the IDS itself is lost. The report from NSS group [9] shows that most of the current IDSs

are not capable of keeping up with high loads or moderate loads in some cases. The above

points suggests the need for an IDS to react to the changes in operating conditions and

adjust itself to give maximum benefit.

Under overloaded circumstances, IDSs do not provide guarantee whether an attack

traffic will be detected or not. Also, due to the site specific policies and rule set, the attacker

12

might not exactly know the traffic load needed to overload the IDS in order that his attack

may go undetected. Paxson [20] mentions that this uncertainty itself can be a defense

mechanism against the attacker. However, that is not a foolproof method and do not

guarantee detection of critical attacks. The uncertainty of the attack going undetected is

same for a critical attack as for a non critical one. Besides the attacker can make some

intelligent guessing regarding the traffic load needed or just go for a very high traffic flooding.

The other approaches mentioned in the previous chapter do not completely solve

the above problem. Although high end hardware platforms can be used for data capturing

to ensure “no packet filter drops” [20], an IDS, with the often site-specific ID logics imple-

mented as application-level software, can still be overloaded due to high volume of events

or large number of nuisance alarms. A few approaches are discussed below:

There are different approaches for tackling the overwhelming of IDS due to high

volume of traffic. Such overwhelming can be caused due to high spikes in traffic or due to

intentional overloading.

• Partitioning the traffic: Kruegel et al. proposed this approach for monitoring a high

speed network link [12]. Compared with simple load-balancing, this approach is to

partition the traffic meaningfully to a distributed set of sensors each equipped with a

set of detection rules. This approach is well suited for monitoring high speed traffic

links given the traffic distribution is more or less same. Even with this distributed

approach it is noted that the system is vulnerable if the configuration for splitting is

static, resulting in some of the sensors being overloaded unless some dynamic adap-

tation is incorporated.

• Load shedding: Paxson suggested that load-shedding may help a real-time IDS defend

against overload attacks [20]. For e.g. the IDS could stop analyzing HTTP to reduce

load. Load shedding definitely reduces the load of the IDS in stressed situations and

packet drops can be avoided. But when such load shedding is static it turns out to be

non-optimal. For example, when traffic load increases if the IDS always sheds HTTP

or any other protocol, the IDS will not be utilized well. Besides the attackers can take

advantage of the resulting “blindness” of the IDS.

• Distributed approach: Several enterprise-wide and Internet-wide distributed IDSs [21,

30] and agent-based architectures [4, 8] have been proposed to address the issues

13

of detection coverage and workload distribution. For example, in EMERALD [21],

ID modules are deployed and configured in a hierarchical fashion according to the

enterprise network topology.

Instead of placing a single IDS at a critical point where all the traffic can be seen,

say Demilitarized zone, this approach suggests placing a number of IDSs at different

strategic locations through out the network to do the monitoring. In this approach

there is additional problem of doing correlation of data seen at different parts of the

network and making a detection, especially when the attack is distributed. Besides,

this approach is still vulnerable to the intentional overload attack by a strategic at-

tacker. This happens when the flooding traffic is just specific to a subnet rather than

to different subnets.

Our research attempts compliments these research efforts because performance

monitoring and performance adaptation via dynamic reconfiguration are the necessary tech-

niques for an IDS to adaptively resist attacks. It is often more appropriate to evaluate an

IDS using the damages (costs) it has prevented [7, 13]. We use cost-benefit analysis to

determine the best IDS configurations given the resource constraints.

14

Chapter 4

IDS Performance Analysis

In this chapter, a model for the real time IDS (RTIDS) is discussed and its per-

formance trade offs are analyzed from an optimization and control perspective as described

in [5]. Statically configured IDS behavior is compared with Dynamically configurable IDS

behavior. Finally, the results of experiments of IDSs (Snort and Bro) having static config-

urations with an overload attack is explained.

The RTIDS can be seen as a queuing system with one or more servers serving

one or more queues. We analyze the single server single queue model since that models

all the present real time IDSs. The queue is the packet capture buffer; for e.g. the buffer

associated with the libpcap mechanism. The individual packets wait in the buffer until it is

processed by the server; i.e. the IDS. The following section explains some definitions needed

throughout the chapter.

4.1 Definitions and Preliminaries

Audit Records Audit records (or audit events, e.g., packets) are categorized accord-

ing to their types. Examples of (high level) types are tcp connection attempts, tcp

connection established, http requests, icmp echo request, etc. There are a total of

N record types that an IDS accepts. Each audit record is either part of a normal session,

or an attack of a certain label. We denote Ei as an arbitrary audit record of type i. Audit

record types are characterized by their prior probabilities πi, which denote the probability

that a given record belongs to type i.

15

Attacks There are a certain number of attacks associated with each audit event type.

For example, a tcp connection attempt can be part of a “port-scan” or “syn flood”; or

an icmp echo request can be part of a “ping scan” or “ping flood” or a “ping of death”.

Denote Ni as the number of “known” attacks associated with audit event type i. That is,

for type i, the IDS has analysis tasks and detection rules for only Ni attacks (other attacks

are “unknown” to the IDS). We denote the attacks as Aij , where j = 1, 2, · · · , Ni. We say

that Ei ← Aij when Aij is present in Ei, and Ei ← Ai0 when audit event Ei is normal.

There is a total of
∑N

i=1 Ni known attacks to the IDS. Attacks are characterized by the

following quantities:

• Prior Probability: The probability pij that an event of type i contains Aij, that is,

pij = (Ei ← Aij). Clearly, from the perspective of IDS,
∑Ni

j=0 pij = 1, i =

1, 2, · · · , N, j = 1, 2, · · · , Ni, where pi0 is the prior probability that an audit record of

type i is normal, that is, pi0 = (Ei ← Ai0). This value is not static and is updated

depending on the traffic and attack history. The initial value of this parameter can be

calculated based on some data set from the same network and is continuously updated

at run-time. The calculation of the initial value may be not very accurate (depend-

ing on the data set) but more accurate values are obtained when it is continuously

calculated at run-time.

• Damage Cost: The cost associated with attack Aij being missed by the IDS, denoted

as Cβ
ij. This value is decided according to site policies and damage level of the attack.

These values are static and do not change during run-time. It is a relative damage cost

with respect to the other attacks. These are calculated while doing the risk analysis

for the organization.

• False Alarm Cost: An alert detected by the IDS is called a False alarm, when a non-

intrusive event is classified as intrusive. The cost associated with a response triggered

by a false alarm that attack Aij is present, denoted as Cα
ij . This value is site dependant

and does not change with time, i.e. it is static. This value consists of the labor cost

involved when a false alarm is raised, as well as the cost involved with active responses,

like blocking a valid ip address.

Analysis Tasks Each audit record is subject to a number of analysis tasks in the IDS,

including data (pre)processing, rule checking (i.e.,intrusion detection), and logging. Denote

16

Ki be the (maximum) number of tasks for audit event type i. The tasks are denoted as Rij ,

where j = 1, 2, · · · ,Ki. The notation, Rij
r← Aij means that a Detection Rule Rij reports

the presence of attack Aij in audit event Ei. Similarly the notation Rij
r← Ai0 means that

Rij reports event Ei to be normal. The detection rules are characterized by the following

quantities:

• The False Alarm Rate of Rij denoted by αij is defined as αij = (Rij
r← Aij | Ei ← Ai0)

• The False Negative Rate of Rij denoted by βij is defined as βij = (Rij
r← Ai0 | Ei ←

Aij)

Each task Rij (regardless whether it is a detection rule or not) is also characterized

by its Computation Time tij.

System Configuration The run-time configuration of an IDS is characterized by the

collection (union) of its analysis tasks. That is, IDS configuration P =
⋃

i=1,···,N Pi, where

Pi is the collection of tasks for event type i, that is, Pi =
⋃

j=1,···,Ki
Rij (note that not all

tasks are detection rules). A statically configured IDS has a fixed set of tasks regardless of

changes in run-time conditions.

4.2 Performance Metrics

Expected Value The purpose of a real-time IDS is to detect intrusions and prevent

damages. Besides its statistical accuracy, as shown by the ROC curve, an IDS should be

evaluated according to its value (or cost-benefit). The value of an IDS is the cumulative

sum of individual values of all the detection rules For each attack Aij , an IDS equipped with

the detection rule Rij (and the necessary preprocessing and logging tasks) for Aij provides

the expected value:

Vij = Cβ
ijπipij(1− βij)− Cα

ijπi(1− pij)αij (4.1)

The first term is the loss (damage) prevented because of true detection, and the

second term is the loss incurred because of false alarms. The total value of an IDS depends

on its configuration, that is, its collection of analysis tasks and hence the attacks that it

“covers”. For the “default” configuration P that covers all known attacks, the value is

V(P) =
∑N

i=1

∑Ni
j=1 Vij .

17

Event
Stream

Type 1

Type 2

Type N

Normal

Attack

Normal

Attack

Normal

Attack

Event Queue

Per−type processing and detection

Figure 4.1: The IDS Processing Flow. All events are directed to a common queue, but the
nature of the service performed on each event depends on event type.

Response Time Figure 4.1 shows a generic IDS processing flow. Upon arrival in the

system, audit records are placed in a (common) queue (e.g., the libpcap buffer). The

queue has only one server, the audit data processing and intrusion analysis unit. The

nature of the service performed on an audit record item depends on its type; i.e. an icmp

packet will be following a different path of processing than a tcp or udp packet. That is,

records of type i are only subject to the tasks belonging to Pi. The processing and analysis

tasks for each audit record are applied sequentially, as depicted in Figure 4.2. That is, each

event goes through a sequence of analysis tasks. The processing of that event terminates

if a detection rule Rij determines that the event is (part of) an intrusion. Or the process

ends when all analysis is done and the event is deemed normal. The expected system time

(queuing time plus service time - [11]) for an audit record of type i′ that arrives in an IDS

with configuration P at a time when there are mi records of type i, i = 1, 2, · · · , N in the

queue is given by:

T (P) = (
N∑

i=1

miTi) + Ti′ (4.2)

where Ti denotes the expected service time for a record of type i. The first term,
∑N

i=1 miTi,

is the queuing time that the audit record i′ sees; and the second term,Ti′ , is its service time.

The system time corresponds to the time interval elapsed between an audit record entering

18

Ei
Ai0

Aij

A

R Ri1 i2
R

iKi

(Normal)

iKi

Figure 4.2: Processing of events of type i. That tasks include preprocessing, rule-checking,
and logging. They are applied sequentially.

the system and a decision being made about the presence or absence of an attack in the

event. That time is the response time of the IDS. In the case when the queue is close to

full,
∑N

i=1 miTi � Ti′ , that is, the queuing time dominates the service time for a typical

event. Equation (4.2) becomes:

T (P) =
N∑

i=1

miTi, where Ti =
Ni∑

j=0

pijTij , and Tij =
j∑

�=1

t′i� (4.3)

Tij denotes the service time of an event of type i which is matched by detection rule Rij .

Note that the time of common preprocessing and logging tasks for event type i is included

(“factored in”) into the time of the Ni detection rules (Ni ≤ Ki), one for each known attack

associated with event type i. Tij is computed as a sum of time of all previous tasks because

Ri1, Ri2, · · · , RiNi are applied sequentially. Each t′il is the sum of the time of detection rule

Ril (i.e., til), and the time of common preprocessing and logging tasks for event type i.

Recalling that
∑Ni

j=0 pij = 1, we have:

T (P) =
N∑

i=1

Ni∑

j=1

uijt
′
ij,

where qij = 1−
j−1∑

�=1

pi�, for j ≥ 1, qi1 = 1, and uij = miqij (4.4)

19

4.3 Performance Optimization

An IDS should provide broad detection coverage to maximize its V(P). This

requires that the IDS perform a thorough analysis (e.g., do stateful packet re-assembly and

analysis), and include many detection rules. This in turn requires a configuration P with

many complex tasks, resulting in a large T (P).

On the other hand, the main constraint in real-time intrusion detection is that

T (P) needs to be bounded. As audit events stream into the system queue (see Figure 4.1),

they need to be serviced (taken off) at a rate faster than the arrival rate. Otherwise, the

queue (with limited size) will be filled up, and remain so, with the not yet serviced events,

thus the newly arriving events cannot be placed in the queue. This phenomenon is referred

to as audit data “dropping”. The consequence is that the false negative rate(s) βij of some

detection rule(s) Rij will increase due to missing information (evidence). When the queue is

full, the IDS do not have control over which audit record is dropped; therefore false negative

rates of critical attacks (having higher cost) will become high. The IDS value Vij (see

Equation (4.1)) and hence V(P) will then also decrease. Therefore, in order to provide the

expected value, an IDS configuration should satisfy the constraint T (P) ≤ Dmax, where

Dmax is the mean audit event inter-arrival time.

The goal is then to configure an IDS to provide the best value while operating

under the above constraints. That is, if an IDS cannot accommodate all desirable analysis

tasks (without violating the constraints), it should just include the more valuable tasks

(we also assume that additional and orthogonal optimization techniques, such as rule-set

ordering, can be used). For example, an IDS should always detect “buffer-overflow” and

only analyze “slow scan” when time permits. More formally, the problem is to solve the

following equation:

max
xij
V(P) =

N∑

i=1

Ni∑

j=1

Vijxij

subject to T (P) =
N∑

i=1

Ni∑

j=1

uijt
′
ijxij ≤ Dmax

where xij = 1 if Rij is active in P and xij = 0 otherwise (4.5)

The solution is the set of xij values, which specifies an IDS configuration by in-

dicating which tasks should be included (active). This is known as the Knapsack problem

(e.g., [14, 18]) in the optimization literature. Note that preprocessing and logging tasks in

20

P are “factored in” (included in) the detection rules in the following ways: as long as a

detection Rij for event type i is active, the common preprocessing and logging tasks for

event type i are also included in P; otherwise, when all detection rules for event type i are

deactivated, these non-detection tasks for i can also be excluded from P (Alternatively, one

may still want to at least log type i events after some minimum amount of processing. For

simplicity sake, the time and value in such a situation is omitted).

Instead of requiring exact measurements of the parameter values (e.g., pij) when

solving Problem (4.5), a more meaningful approach is to allow a value range (with upper

and lower bounds) for each parameter. For a feasible IDS configuration P (specified by a set

of xij values), there is a range of V(P) values (while the constraint T (P) ≤ Dmax is always

satisfied) because of the ranges of parameter values. The “worst-case” is when V(P) is the

minimal. The optimization problem is then to find an IDS configuration that maximizes

the minimal value. In [5], we showed that we can convert the resulting robust max-min

problem into an equivalent Knapsack problem, with computational properties similar to the

original problem.

4.4 Static Configuration vs. Adaptation

An IDS configuration comprises of all the analysis tasks or modules (for e.g. http

analysis, tcp reassembly, ip fragmentation reassembly), the corresponding packet capture

filter used, and the set of signature rule set. The current IDSs are all based on static

configuration. There is no way to change the configuration once the IDS is running. The

current trend is still on fine tuning the IDS configuration to suit the environment where the

IDS is going to be deployed. The developers and on-site engineers often use knowledge

of threat models and assumptions on operation environments to make the appropriate

design and customization decisions so that the IDS provides the best performance under

the constraints. However, as examples in Section 5 show, current IDSs do not have the

mechanisms to continuously monitor its performance and the conditions of its run-time

environment. That is, they are usually statically configured in run-time. Such systems are

not optimal when run-time conditions change, and are vulnerable to attacks aimed to elude

IDS.

It is noted that a solution to Problem (4.5) (i.e., the optimal IDS configuration)

is only valid for a given set of parameter value ranges. Among them, πi, mi, and pij can

21

fluctuate with the operating conditions (e.g., network traffic). For example, when an IDS is

under “stress” (i.e., high speed and/or large volume of audit data), mi becomes much larger

and so does T (P). In overload or DoS attacks, an attacker first generates a lot of events

(that may include “nuisance” attacks) to overload the IDS, and then launches the intended

attack [22, 20], say Aij . The overloaded IDS may be “dropping” audit data, missing key

evidence, and hence failing to detect attack Aij . Or its detection is too late (slow) to prevent

the damage of Aij . In either case, V(P) will likely decrease by Vij.

In these “stress” and “overload attack” situations, while it is unavoidable that

IDS performance will suffer (i.e., the intended (original) V(P) cannot be guaranteed), it is

desirable that a new optimal V(P) (i.e., the best value possible under the new operating

conditions) be provided. For example, instead of having a high probability of missing a

more important attack Aij , the IDS can decide not to include the tasks for a less important

attack Akl so that there will be sufficient resources (queue space and service time) available

for the tasks detecting Aij . Decreasing V by Vkl rather than Vij is a better solution because

Vkl < Vij .

Performance adaptation can be defined as the process of dynamically reconfiguring

an IDS to provide the optimal value given the current run-time constraints. Note that

performance adaptation cannot prevent audit data dropping or prolonged detection delay

caused by stress or overload attacks, as long as the IDS has limited resources (e.g., bounded

queue size) and has no control over the volume and speed of the audit data stream. The

purpose of performance adaptation is essentially to manage the risk better. That is, instead

of having no control over how its performance is degraded (i.e., no control over which attack

will be missed) when stressed or under overload attacks, the IDS can quickly reconfigure to

provide the best detection value under the new conditions.

Performance adaptation relies on performance monitoring in run-time to detect the

conditions (e.g., “stress”) that cause performance degradation and to measure the param-

eter values needed for solving the optimization problem (4.5). Chapter 6, will discuss the

performance monitoring and adaptation techniques and their implementation in prototype

real-time IDSs.

22

4.5 Practical Considerations

For rules derived from anomaly detection schemes, βij and αij can be estimated

using suitable training data sets. Misuse detection rules for well defined attacks will have

well understood behavior, e.g., some may even have βij = αij = 0. πi can be estimated

on the basis of typical traffic statistics, and can updated periodically on basis of traffic

measurements. tij can be measured by controlled experiments. The instantaneous values

of mi reflect the traffic mixture of the incoming packets. In practice, the mean value

of mi can be selected within a suitable time window. A site-specific risk analysis can

provide the initial pij values, which can then be updated according to traffic and attack

history. Scenario analysis (see Section 6.3) can use information on attacks detected thus

far to predict the likely forthcoming attack(s) Rij along with its p′ij. We can use p′ij as

the updated (posterior) probability in place of pij . Note that as discussed in Section 4.3,

the performance optimization problem allows ranges in parameters, thus the parameters

need not be measured in absolute values. This relaxation should significantly simplify the

measurement tasks.

Estimating the costs Cβ
ij and Cα

ij also requires site-specific risk analysis. Although

it is difficult to measure exact costs, we can still learn the relative ordering of intrusions in

terms of their risks (or “damage cost”) [6, 17, 3]. One needs to first define a site-specific

attack taxonomy. The damage cost of various attacks can be estimated according to factors

like

• Criticality of the target: If the target is an organization’s DNS server or web server,

it is more critical than when the target is a normal host. [17, 13].

• Lethality of the attack: Attacks that give root access to the remote attacker is more

serious than a Denial of Service attack, which in turn is more sever than reconnaissance

probes.

• Other factors: Other factors that decide the damage cost is whether all the hosts or

servers in an organization is immune to a particular attack or is vulnerable, depending

on how recent the operating system and the patch level is.

A false alarm cost can be the penalty if an automated response is used. For example,

if a normal user session is terminated, then the cost can be the same as a DoS damage

23

cost [13]. If an investigation is initiated, it can be the labor cost involved (wasted). Again,

we can define the site-specific relative scales of false alarm costs. As discussion in a later

chapter will show, since the main purpose of cost-benefit analysis is to achieve performance

adaptation under resource constraint, such relative scales (not exact numbers) are sufficient

for determining which intrusion detection tasks should be given higher priorities.

The next chapter describes the test bed and environment where we tested the

statically configured as well as the adaptive IDS. Also the results of the experiments with

statically configured IDS is shown.

24

Chapter 5

Experiments with statically

configured IDS

This chapter explains the experiments performed to study the behavior of statically

configured IDSs under a stressed or overloaded scenario. The experiments were done using

Snort [24] Version 1.8.6 as well as Bro [20] Version 0.7a90. The chapter starts with a

brief overview of the architecture of both Bro and Snort, and their configurations for the

experiments. It also describes the test bed used and the background traffic profile. Finally,

the different types of overload attacks and their traffic profile is explained.

5.1 Snort

Snort is a light weight network IDS and can be classified as a signature based

IDS, although it does some minimal protocol analysis. The architecture of snort consists

of three sub-systems: the packet decoder, the detection engine, and the alert subsystem.

Snort depends on libpcap, a packet capture library, for sniffing the packets off the wire.

• Packet decoder: This subsystem deals with the decoding of the different headers a

packet might have, starting with the data link layer header, IP header, transport

layer header. Another feature of Snort is its architecture that supports plug-in mod-

ules. Various functionality like IP fragmentation reassembly, TCP stream reassembly,

HTTP decoding, Telnet decoding are provided as preprocessor plug-ins.

• Detection engine: Snort has a two dimensional linked list for the detection module.

25

One dimension of the list matches a packet with respect to its IP addresses and ports.

This set of list nodes are called Rule Tree Nodes or RTNs. The other dimension tries

to match based on other attributes like TCP flags, Payload size, Payload content etc.

This set of list nodes are called Optional Tree Nodes or OTNs. The various detection

rules or attack signatures are parsed at the time of initialization, and the rule tree or

linked list is populated. At run-time each packet after passing through the decoder

module goes through the list of RTNs, and if there is a match on a particular RTN,

the corresponding list of OTNs is traversed for a complete match. A complete match

triggers an alert and specifies the action specified in the rule.

• Alert and Logging system: This system does the various logging and alerting functions.

These are also included as plug-in modules called output plug-ins. Different output

plug-ins like logging the Alerts in text format, logging into a SQL database, sending

winpopup messages etc., are available.

5.1.1 Snort configuration used

The experiment setup has Snort version 1.8.6 with libpcap-0.6.2 on OpenBSD 2.9.

A subset of the latest rule set of the default rule set (277 rules) coming with the distri-

bution was used. The subset included exploit.rules, ftp.rules, telnet.rules, ddos.rules, web-

iis.rules, dns.rules, web-attacks.rules, misc.rules. The rules files were latest rules as of 14th

March 2002. The important preprocessors (i.e. frag2, stream4, portscan, http-decode,

unidecode, rpc-decode, telnet-decode)were also activated.

Snort was run with the recommended options “snort -c snort.conf -b -A fast’’

to make it run as fast as possible. These options makes the logging to be in binary format,

which is the most efficient.

5.2 Bro

Bro is also a real time NIDS. It is event based rather than packet based. Bro

performs full packet re-assembly, connection stateful analysis, and even keystroke editing.

Bro is divided into an event engine and a policy interpreter modules. Similar to Snort, Bro

also depends on libpcap library for sniffing the packet off the wire. The “event engine” is

responsible for processing packets and generate “events”, the “policy script interpreter” is

26

responsible for using the site-specific intrusion detection logics, coded as “event-handlers”

in the C-like Bro policy language, to analyze the events. The user can decide which all

event handlers are to be loaded using a configuration file. By carefully implementing the

event-handlers (i.e., determining what is an “event” and how to analyze it), and setting the

packet filters to decide what kind of audit data should be captured, one can customize Bro

to perform only the “important” tasks and as efficiently as possible.

5.2.1 Bro configuration used

Bro version 0.7a90 with libpcap 0.6.2 on OpenBSD 2.9 is used for the experiments.

Bro was run with the policy scripts that come with the distribution, plus a few additional

rules to detect the test attacks. The configuration file loaded the http, udp, icmp, ftp,

telnet event handlers. According to the loaded event handlers specified in the configuration

file, Bro sets the packet filter at the libpcap layer, thereby restricting the network traffic

that will be processed by its event engine. The filter can also be specified in command line

when starting up Bro. For example, in the experiments, “(tcp[13]&0x7!=0) or (port ftp)

or (port telnet) or (dst port 80 or dst port 8080) or (udp port 53) or (icmp)” was used,

to specify that only certain tcp packets (SYN, FIN, RST packets), or ftp, telnet, http,

DNS (udp), or icmp packets are to be captured, thereby limiting the traffic by a significant

amount. An adversary can still overload Bro by sending a huge amount of traffic that

matches the filter. The overload situation is more severe if the packets also result in Bro

events, thus overwhelming not only the packet processing and event engine level but also

the policy interpreter level.

5.3 Experiment Testbed

The experiments were conducted using LARIAT [26], an IDS testbed used in the

1999 DARPA ID evaluation. LARIAT provides a configurable test environment where

ID modules can be “plugged” in the testbed to capture audit data and invoke response.

The LARIAT testbed setup is shown in figure 7.1. It provides many ways to configure

background traffic and attack generation, and facilitates repeatable controlled experiments.

LARIAT software was obtained from MIT Lincoln Lab. The testbed, with several traffic

generators, can produce (simulate) intranet and (both in-bound out-bound) Internet traffic.

The LARIAT testbed helps to simulate (thousands of) virtual hosts and virtual sessions,

27

Figure 5.1: Lariat Testbed

and create high-speed and high-volume network traffic to test the algorithms and prototype

IDS. The IDS was run on an Intel Pentium-3, 1 GHz processor, 512 MBRAM, a built-in

Intel network interface card, and two hard disks of size 30 GB and 24 GB respectively.

5.4 Background traffic

The background traffic in the experiments was generated using LARIAT scripts

based on traffic profiles. The background traffic profile is a tcp dominated one, having 97%

tcp, 2% udp and 1% icmp.

Figures 5.2 shows the traffic profile in terms of connections per second. As can be

observed the http traffic has the maximum connections per second. According to the bytes

per second, tcp traffic occupied 99% of the data and udp,icmp sharing the 1%.

The importance is on how the IDS behaves when the traffic profile changes due

to traffic fluctuations or under overload attacks. The traffic profile described serves as the

background traffic and represents a tcp dominated network. The traffic profile varies widely

28

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 50 100 150 200 250 300 350 400 450

IC
M

P
 m

bp
s

Time (seconds)

icmp mbps

0

1

2

3

4

5

6

7

0 50 100 150 200 250 300 350 400 450

F
T

P
 c

on
ne

ct
io

ns
 p

er
 s

ec

Time (seconds)

FTP cps

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400 450

H
T

T
P

 c
on

ne
ct

io
ns

 p
er

 s
ec

Time (seconds)

HTTP cps

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 50 100 150 200 250 300 350 400 450
U

D
P

 tr
af

fic
 lo

ad
 in

 m
bp

s

Time (seconds)

UDP traffic in mbps

Figure 5.2: Traffic profile

over networks but usually they are tcp dominated.

5.5 Overload attacks

The overload attack experiments performed on the IDSs were done in two stages:

in the first stage, the IDS is overloaded; and in the second stage a critical attack is launched.

This attack which would have otherwise been detected will be missed by the IDS with a non-

negligible probability. There is an inherent uncertainty from the attacker’s point of view

whether the attack will go unnoticed by the IDS or not. But, by making some intelligent

guesses via trial-and-error, a determined attacker can still overload the IDS.

There are multiple ways to overload a resource intensive IDS, each targeting dif-

ferent bottlenecks in an IDS. Accordingly multiple experiments are performed showing the

IDS behavior in each case.

• Traffic flooding: Figure 5.3 shows the profile of the traffic used to overload the IDS.

29

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140

tr
af

fic
 in

 m
bp

s

Time (seconds)

traffic in mbps

Figure 5.3: UDP flooding to overload the IDS

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70

tr
af

fic
 in

 m
bp

s

Time (seconds)

traffic in mbps

Figure 5.4: Ping flood to overload the IDS

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70

tr
af

fic
 in

 m
bp

s

Time (seconds)

traffic in mbps

Figure 5.5: Overload attack targeting database bottleneck

Here the attacker tries to exhaust the CPU resource. This flood consisted of a (spikes)

combination of udp packets (to DNS port) and udp packets to a user port.

30

• Alert flood: This method targets the alert mechanism bottleneck. The attacker has

to make an intelligent guess as to whether this will cause the IDS to log an alert to the

secondary storage. This method requires much less traffic load as shown by figure 5.4.

The aim of the attacker is to send some nuisance attacks and increase the frequency

of IDS logging.

• Database bottleneck: IDSs that maintain state information for TCP connections or

for IP fragmentation reassembly can be subjected to this attack. Figure 5.5 shows

the profile for this overload attack. Fragmented IP packets were sent with varying

combinations of source IP address, and fragmentation id. Care was taken not to send

the whole fragment set so that the IDS will keep the fragments in memory expecting

to get the fragments needed to reassemble. As the number of fragments with different

source IP, destination IP, fragmentation id, and protocol are sent, the insertion of

another set into the database and accesses become a bottleneck.

Each of the above overload attack was followed by the attacker doing a critical

attack. WEB-IIS CMD.EXE attack described below was used in our experiments.

This kind of scenario works for the attacker especially when the attack involves

very few packets, for example a buffer overflow exploit or the WEB-IIS CMD.EXE attack1.

On the contrary, attacks like port-scan or guess-password that involve many more packets

are more likely to be detected by the IDS even when it is dropping some packets. Note

that overloading need not always be intentional or malicious. An IDS monitoring a heavy

network can be stressed at peak times. The attack packets were sent during the traffic

surge. All the above traffic were captured using tcpdump and replayed using tcpreplay2

version 1.1; thereby ensuring exactly the same traffic conditions for all experiments.

5.6 Experiment results

This section shows the results for each of the different scenarios described in 5.5.

31

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300 350 400 450 500

T
ra

ffi
c

V
ol

um
e

in
 M

bp
s

Time (seconds)

Traffic (Mbps)
Drop (Pkts/sec)

Figure 5.6: Performance of IDS under stress (attack category 1): Bro

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400 450 500

T
ra

ffi
c

V
ol

um
e

in
 M

bp
s

Time (seconds)

Traffic (Mbps)
Drop (Pkts/sec)

Figure 5.7: Performance of IDS under stress (attack category 1): Snort

5.6.1 Attack scenario using udp flooding

Figures 5.7 and 5.6, the results show that both Snort and Bro are stressed or

overloaded when the attack method 1 is used. When the traffic volume is increased to

a certain point (> 40 Mbps) both IDSs are overwhelmed and drop packets. While Snort

detected approximately 10% (2 out of 20 exploit packets sent) of the WEB-IIS CMD.EXE

attacks that were launched during the flooding, Bro detected 20% (4 out of 20) of them.

Both the IDSs were able to detect 100% of the exploit attempts when the traffic load was

low (< 10 Mbps).
1This is a single packet attack. The attacker sends a malicious GET request to a Microsoft IIS

Server. The request is as follows: “GET/scripts/..%5c%5c../winnt/system32/cmd.exe?/c+dir”. See
http://www.cert.org/advisories/CA-2001-26.html for details.

2See http://tcpreplay.sourceforge.net/ for details.

32

5.6.2 Attack scenario targeting alert channel bottleneck

0

5

10

15

20

25

30

0 50 100 150 200 250 300 350 400 450 500

tr
af

fic
 in

 m
bp

s

Time (seconds)

packet drops
traffic in mbps

Figure 5.8: Performance of IDS under stress (attack category 2): Bro

Figures 5.8 show the behavior of statically configured Bro to the attack described

in 5.5. A high frequency of “Ping flood” alerts were generated and the report was logged

each time to the disk. This being a very time consuming operation overwhelmed the IDS.

It can be seen from the figure that IDS dropped a lot of packets during the icmp flood,

which was between t = 55 secs to t = 110 secs. Similar to the previous scenario, 20 WEB-

IIS CMD.EXE attacks were attempted and in this case Bro detected none of them. This

experiment and the next was done only for the Bro IDS.

5.6.3 Attack scenario targeting database channel

This attack targets the database bottleneck of the IDS. The attack profile and

description is given in 5.5. The attack is done at time t = 50. The number of incomplete

fragments increases with time as the attack progresses and this stresses the database ac-

33

0

2

4

6

8

10

12

14

16

18

0 50 100 150 200 250 300 350 400 450 500

tr
af

fic
 in

 m
bp

s

Time (seconds)

packet drops
traffic in mbps

Figure 5.9: Performance of IDS under stress (attack category 3): Bro

0

5e-05

0.0001

0.00015

0.0002

0.00025

0.0003

0 50 100 150 200 250 300

in
se

rt
io

n
tim

e

Number of insertion (in thousands)

Insertion time in seconds

Figure 5.10: Time for insertion to database

cesses, for example, insertion. As can be seen from the figure 5.9, the drop starts slowly

after the attack begins and continues to increase.

A benchmarking was done on the IDS to see how the insertion time was affected

34

due to this traffic. Figure 5.10 shows the details. It can be noted that as the number of

insertions increases, the time for insertion increases. This overloads the IDS.

The WEB-IIS CMD.EXE attack was attempted 20 times along with this attack

also. Bro was able to detect 1 out of 20 attempts. This behavior is due to the fact that the

IDS takes sometime to get overloaded in this attack as compared to other scenarios.

The next chapter concentrates on the approach followed to develop performance

adaptive IDS architecture.

35

Chapter 6

Performance Adaptation

Architecture

In this chapter, we discuss how to enable real-time IDS to provide performance

adaptation. We describe prototype system models.

An adaptive IDS can include multiple intrusion detection (ID) modules, perform-

ing increasingly more complex and more time-consuming analysis, and sharing the IDS

workload. For example, a front-end module performs data gathering, pre-processing (e.g.,

packet re-assembly), and as much of the detection work as possible in real-time. A back-

end module may not have stringent real-time requirement because, for example, it uses

pre-processed audit data (sent from the front-end) to analyze attack trends. Its predictions

on forthcoming attacks can be used to help configure the IDS.

The front-end (real-time) module needs to provide performance adaptation. When-

ever it is stressed or overloaded, it computes a new optimal IDS configuration according

to the new operation conditions (see Problem (4.5)). The reconfiguration deactivates some

(less critical) tasks (e.g., port-scan analysis) and/or cease to capture some events. These ex-

cluded tasks can be carried out by the back-end if possible, for example, if they only require

pre-processed audit data and the front-end continues to capture and process the needed

audit data. We call the process of moving some analysis tasks from the front-end to the

back-end load-shedding. It essentially allocates the limited resources (i.e., buffer space and

service time) to the more critical tasks and events, thus ensuring that the front-end module

can provide optimal value while satisfying the constraint T (P) ≤ Dmax. The manager needs

36

to participate in monitoring the ID modules and initiating appropriate re-configuration be-

cause the ID modules can be under attacks (or even crashed) and thus may not be able

to self-monitor and self-reconfigure. An “active filtering” module, such as a firewall, is

desirable for first dropping the obvious offending packets, and thus cutting down the data

volume to the ID modules. It can also be used as “admission control”, for example, to slow

down the data stream (e.g., hold and delay the packets) under some extreme situations to

help the ID modules keep up with the traffic.

A popular approach to manage IDS workload is to have several front-end modules

and use load-balancing to “split” the traffic [29]. Our research is complimentary to IDS

load-balancing. First, performance adaptation is necessary because a front-end can still be

overloaded if each traffic portion (split) is in very high volume. Second, some distributed

(and network-based) attacks (e.g., port-scan) may be missed due to load-balancing because

the evidence gathered at each front-end module may be below the detection threshold.

We then need a correlator, which is essentially a back-end module in our architecture, to

detect these attacks. Third, there are complex analysis tasks that should be performed in

a back-end module rather than a front-end module because of their computational time

and space requirements. These tasks include attack scenario analysis (more in Section 6.3),

and alarm correlation and reduction, which are considered very important and desired IDS

features [27]. In our approach, the back-end can also carry out some analysis tasks shed

from the front-end.

6.1 Performance Monitoring

According to Problem (4.5), the IDS can provide the expected value V(P) only

when the constraint T (P) ≤ Dmax is satisfied. The IDS thus needs to self-monitor the

run-time conditions, and reconfigure itself to operate under the (new) constraints when

necessary. As discussed in Section 4.3, Dmax should be the mean audit event inter-arrival

time.

There are two approaches in monitoring T (P) ≤ Dmax. In internal measuring,

since the front-end ID module knows the arrival time and detection time of each audit

event, it can compute both Dmax and T (P) (and including mi, tij, πi, and pij) as a moving

average. Alternatively, to avoid the overhead, the front-end can periodically check (e.g., via

libpcap) whether it is dropping audit events, and if so, conclude that it needs to reconfigure.

37

In external testing, the manager periodically sends out a simulated attack that contains an

event marked “attack-simulation”. The front-end, upon “detecting” this simulated attack,

is required to reply to the manager the T (P) value along with the sequence number of the

simulated attack. The manager can detect the condition where the returned T (P) is out of

bound (according to historical data), and thus concluding that the front-end is overloaded.

If the manager receives no reply, it concludes that the front-end is at a “fault” state (e.g.,

crashed due to crash attacks [20], or an infinite-loop due to implementation errors), and

can take immediate action such as activating another (replacement) front-end module.

6.2 Dynamic Reconfiguration

As described in Section 4.1, an IDS configuration is characterized by its collection

of run-time analysis tasks. Although an IDS may have a very comprehensive set of tasks that

it can use, its optimal configuration, that is, the solution to Problem (4.5), may include only

a subset of these tasks because of run-time constraints. When performance adaptation is

enabled in the IDS, this subset (the active tasks) is dynamic, that is, re-computed whenever

necessary, rather than static. An implementation of the dynamic task set is to equip the

ID modules with a common and complete set of analysis tasks, and have non-overlapping

bit masks specifying which tasks are activated at each module.

In Section 4.5, we discussed the practical considerations in measuring the param-

eters needed to compute the optimal IDS configuration. We can use some heuristics to

improve the parameter estimations. The back-end can perform attack scenario analysis

(will be discussed in Section 6.3) and supply p′ij, the probability of an attack given the traf-

fic and attack conditions seen thus far. We can use p′ij as the updated (posterior) probability

of intrusion in place of pij when computing V(P) and T (P). However, we need to avoid

being fooled by an intelligent attacker who tries to divert IDS resource from his intended

attacks, e.g, by first launching (nuisance) attacks that seem to lead to some other possible

attacks so that they will have artificially (and falsely) much higher probabilities than his

intended one(s). One solution is to always capture audit data and perform analysis tasks

for the critical services. This is equivalent to always setting the values of these tasks the

highest and their required time the smallest.

38

6.3 Scenario Analysis

A scenario is a sequence of related attacks that together accomplish a malicious

end-goal. We can use scenario analysis to predict the likely forthcoming intrusions to make

better load-shedding decisions.

We can use site-specific threat models to form a base set of known scenarios. A

scenario graph is a directed graph where an edge from node ai to aj labeled with p′ij and

condition(s) condij specifies that after ai occurs, aj will occur next with probability p′ij
if condij is true. A path specifies an attack scenario. In run-time, each reported attack

is described by a set of attributes: name (type), time stamp, target IP, target port, etc.

The back-end “attaches” each attack to a node in the network topology graph using the

target attributes, and examines whether the attack is part of an existing scenario(s) there.

Based on the currently recognized (partial) scenarios, the back-end reports to the front-end

and the manager the possible attacks, their probabilities, and their likely targets. The

attack and probability information are used to compute V(P) and T (P) for load-shedding

decisions (see Section 6.2). The target information is very useful to determine (if necessary)

what portion of the audit data the front-end can stop capturing. We have a basic scenario

analysis module functioning, and are actively studying how to automatically update scenario

information and discover new scenarios.

The implemetation details of our approach is covered in the next chapter, covering

changes and modifications done to both Bro and Snort IDSs to make them adaptive.

39

Chapter 7

Prototype System

We next describe the prototype systems that were derived from Bro and Snort.

Our main goals here are to see how performance monitoring and dynamic configuration

mechanisms can be built into an IDS, and how such adaptive IDS performs in an overload

situation.

Adaptive Bro

Our adaptive IDS comprises of a front-end IDS, a back-end IDS and a manager

module. We use Bro version 0.7a90 (on OpenBSD 2.9) with our modifications as the front-

end IDS. The back-end module runs on a different machine and is connected to the front-end

on a private network. The manager runs on a third machine and is on the same network

that Bro is monitoring. Figure 7.1 shows the architecture of the adaptive IDS model. The

front-end IDS monitors the network and does the real-time detection by analyzing all the

traffic entering through the firewall. Front-end sends the performance information as well

as alert and reports periodically to the manager. Audit records and event details are passed

to the backend for extra analysis and for scenario analysis.

We modified Bro in two main areas. The first is in adding bookkeeping functions

for the purpose of performance monitoring. Note that a Bro “event” is different from an

“audit event” (an audit record arriving at IDS event queue) described in Section 4.1. The

latter is equivalent to a packet. In Bro, events are generated from the processing of packets,

and intrusion analysis (i.e., rule checking and logging) is performed on events rather than

on packets. We discussed the constraint T (P) ≤ Dmax in Section 4.3. T (P) is equivalent

40

Figure 7.1: Components of Adaptive IDS architecture

to the expected packet service time in Bro, and Dmax is equivalent to the mean inter-

packet arrival time. Clearly, this constraint must still hold for Bro, otherwise there will be

packet dropping (and the quality of event data will suffer) and detection performance can

suffer. To accommodate the notion of event-level (versus of packet-level) analysis in Bro,

we use T ′(P) to represent expected event service time, which is the interval between the

arrival of the first packet of the event to the completion of analysis of the last packet of the

event (also the completion of the event). We use D′
max to represent the mean inter-event

arrival (or generation) time. For Bro events, we should use the more meaningful constraint

T ′(P) ≤ D′
max. It is easy to see that using T ′(P) ≤ Dmax is incorrect, and T ′(P) > D′

max

will likely lead to T (P) > Dmax.

Our Adaptive Bro thus has the following measurements: number of packets re-

ceived per second, number of packets dropped per second, mean inter-event arrival time,

and a counter of each event. The packets received and dropped is available from the libpcap

pcap stats function and is already implemented in the Bro HeartBeat function. The in-

terval between two heart beats can be configured. We used 1 second in our experiments.

By recording the number of events generated within a time interval (which is 0.1 seconds),

mean inter-event arrival time is computed as an average. Bro initiates reconfiguration in

two cases: if it detects that there are dropped packets; or if it discovers that T ′(P) > D′
max.

41

The second area of changes to Bro is adding dynamic reconfiguration mechanisms.

Recall that the process of reconfiguration is to then compute a new optimal solution to

Problem (4.5) according to the new run-time constraints, and then deactivate some analysis

tasks and/or cease to capture certain audit data types according to the newly computed

configuration. The reconfiguration is implemented as a greedy algorithm. After ordering the

tasks in decreasing order of value/cost, the algorithm does the selection in a “greedy” way.

Unlike the classical knapsack approach, all the combinations are not tried, which makes

it computationally less expensive but may not come up with the most optimal solution.

The parameters associated with the event-level analysis tasks are initially measured using

benchmark experiments and stored in a system configuration file. For example, the service

time for a specific event is the average time taken by Bro to process packets, generate the

event, and analyze the event (e.g., match it against rules). The parameters are then loaded

in an array in Bro start-time, and can be dynamically updated. For example, πi and mi are

measured as moving averages in run-time, and p′ij from the scenario analysis function in the

back-end can replace pij. The computed configuration is represented as an array of flags

(Bro script variables). These flags are checked before the event analysis tasks (handlers)

are invoked. If all event analysis tasks for an audit type are disabled, then libpcap filter

is also reset to cease capturing such data. Since compiling and loading a new filter at the

libpcap layer incurs significant delay, we modified Bro to keep a set of pre-compiled filters

and load them when necessary. This reduces the time taken for reconfiguration. Changing

the filter applied at the libpcap layer to be a more specific one controls the amount of

traffic being processed ie. controlling the mi. This is the most effective way since the

control is at the lower most layer of the IDS system. Also, when changing packet filters, the

pcap setfilter function invokes the ioctl kernel function. It turns out that ioctl, while

changing the filters, clears out the packets that have not been passed to the upper layer. We

took out the code that clears the buffer to avoid losing those packets that might match the

new filter. Finally, Bro has an option to store (remember) the “default” configuration, the

start-up configuration which is considered as the ‘optimal” or desirable one under normal

situations, so that if it was reconfigured and has been stable (no need to reconfigure again)

for several heart beats (in our experiments, we used 10), it can switch back to run the

default configuration.

We briefly describe other modules in our system. The main functions of the

manager are to collect statistics and intrusion reports from the Bro and the back-end, and

42

create detailed logs and alerts. It sends a test periodically to Bro to measure delay. Bro also

sends the performance measurements (e.g., the numbers of packet received and drop) every

heart beat. If the manager does not receive Bro performance measurements and or a reply

from its test for a time threshold, it raises an alarm (to security staff) that Bro has probably

crashed. The policies on the firewall can be dynamically configured by the front-end. For

example, it can send RST segments to either end of a misbehaving connection, or block an

ip-address and/or port. It can also delay packets when instructed. The main functions of

the back-end module include: sharing analysis load, for example, probe (scan) detection

shed from the front-end, and performing attack scenario analysis. The scenario analysis

module is in its primitive stage of development and is not a contribution of this thesis.

Adaptive Snort

We also implemented an adaptive IDS using Snort version 1.8.6 with the latest rule

set, and with libpcap version 0.6.2 and OpenBSD version 2.9. Unlike Bro, Snort applies

intrusion detection rules on packet data directly rather than on “events” extracted from

packet data. Snort supports “plug-ins”, which can be pre-processors (e.g., fragmentation

reassembly) or detection rules. Snort is thus more loosely coupled and easier to customize.

We wanted to study how different IDS architectures influence the implementation of per-

formance adaptation mechanisms.

In Snort, packets go through first the pre-processors then the rule trees. A Rule-

TreeNode determines whether a packet is a “match” and hence needs to be examined by its

OptTreeNodes. In Bro, we can measure service time at the Bro event level and use event ser-

vice time to include preprocessing and event analysis time because each packet contributes

to a Bro event. For Snort, we need to measure the service time at the packet level. There

are two cases. First, for packets that match an OptTreeNode (i.e., they match or “belong

to” a particular Snort rule), the service time is preprocessing time plus rule checking time

(which is the time spent traversing the rule tree up to and including the OptTreeNode).

In this case, we call the service time TR and keep a measurement for each OptTreeNode

(i.e., each Snort rule). Second, for packets that do not match any of the RuleTreeNodes

(i.e., they do not belong to any Snort rule), the service time is the preprocessing time plus

the time traversing the RuleTreeNodes. In this case, we call the service time TP and keep

a measurement for packets of each protocol: http, telnet, ftp, ssh, finger, other-tcp,

43

Figure 7.2: Rule structure and Priority list data structure

icmp, and udp. We need to include TR and TP measurements when computing an optimal

Snort configuration. Since preprocessing is the main factor in TP , we need to consider

the “value” of preprocessing in addition to the values of the rules. We assign the highest

value to preprocessing because it is always needed. If TP is too high (e.g., when Snort is

overloaded by packets that do not necessarily match rules), the Knapsack algorithm can

output a configuration that does not include preprocessing. Such a configuration is not

acceptable. In such a case, the following iterative process is used: use Knapsack algorithm

to first determine what packet filters should be used (what protocols are allowed) in order

to keep TP low (e.g., half of the value in the previous iteration), using priorities among the

protocols; then use Knapsack to compute a Snort configuration, considering both TP and

TR; if a configuration including preprocessing is output, then terminate, otherwise, continue

to iterate.

Figure 7.2 shows the structure of the snort rule. We added an additional option

“pno” which represents the priority of the rule or importance of the corresponding attack. In

order to efficiently enable and disable Snort rules without having to traverse the entire rule

tree data structure, we implemented a direct access mechanism. It uses a two-dimensional

linked list as shown in figure 7.2. The head nodes in one dimension are the priorities of the

rules (i.e., rank orders in terms of their values), and the other dimension comprises of a list

44

of pointers to all the rules having the same priority. This data structure is populated when

parsing the rules at Snort start-up time.

In the next chapter we discuss the results of the experiments that were done on

the adaptive IDSs, both Bro and Snort.

45

Chapter 8

Experiments on the Prototype

Systems

This chapter gives the details of the set of experiments performed on our prototype

adaptive IDSs. These experiments are similar to those described in Chapter 5.

8.1 IDS configurations and parameters

The initial configurations for both the IDSs were exactly the same ones used for

the statically configured Bro and Snort.

8.1.1 Initial configuration for Adaptive Bro

For Adaptive Bro, the initial configuration is to detect all of its “known” attacks,

which include more than 100 detection rules on root access (e.g., imapd buffer-overflow),

user access (e.g., PHF), DoS (e.g., smurf, syn-flood), and probes (e.g., portsweep). The

initial libpcap filters were set to be “(tcp[13]&0x7!=0) or (port ftp) or (port telnet) or

(dst port 80 or dst port 8080) or (port imap) or (udp port 53) or (icmp)” as before.

8.1.2 Initial configuration for Adaptive Snort

For Adaptive Snort, the initial configuration consisted of a subset of the default

rule set (277 rules) coming with the distribution. The subset included exploit.rules,

ftp.rules, telnet.rules, ddos.rules, web-iis.rules, dns.rules, web-attacks.rules, misc.rules. The

46

rules files were latest rules as of 14th March 2002. Different priorities were given to each

rule using the “pno” option described in figure 7.2. For example, exploit rules were given

highest priority, followed by ftp rules and web-iis rules, followed by telnet rules. The alloting

of the priority should be according to site level policies. The important preprocessors (i.e.

frag2, stream4, portscan, http-decode, unidecode, rpc-decode, telnet-decode) were

also activated.

Regarding the parameter measurements, we assigned damage costs (Cβ
ij) of intru-

sions in relative scales: 100 for root access, 50 for user access, 30 for DoS, and 2 for probing,

according to analysis in [17, 13]. Since we use automatic intrusion responses (using the

firewall), we assign all false alarm costs (Cα
ij) the same as the DoS damage cost. Since we

do not have statistics on attack distribution yet, we assign the prior probabilities (pij) of

all intrusions to be the same (effectively, 1). As mentioned above, πi and mi are measured

in run-time.

The background traffic was also the same as used for the experiments and was

replayed using tcpreplay.

8.2 Results of experiments with prototype IDSs

8.2.1 Attack scenario using udp flooding

The profile of the attack is shown in 5.3, the background traffic being the same.

Figure 8.1 shows the behavior of the Adaptive Bro when the overload attack using

udp flood was used as in figure 5.3; the background traffic being the same. We describe some

details as follows. Initially when the traffic is low, the inter-event arrival time is high and

the systems can perform all the analysis tasks. When the traffic rises high, the inter-event

arrival time drops low and Bro discovers that T ′(P) > D′
max. It then invokes Knapsack

to compute a new optimal configuration for the current conditions. Also it can be noted

that there were initial packet drops due to the heavy load due to the udp flood, but the

quick reconfiguration avoided further packet drops. This happens at time t = 270. This

is different from the Original Bro, as shown in Figures 5.6 and 5.7, where the situation of

packet drops continues. Since the flood was caused by udp packets, the mi value of udp

increased a lot and so did the “weights” (time requirements) of their analysis tasks (see

Problem (4.5)). The reconfiguration ended up dropping all tasks for udp and hence the

47

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300 350 400 450 500

T
ra

ffi
c

V
ol

um
e

in
 M

bp
s

Time (seconds)

Traffic (Mbps)
Drop (Pkts/sec)

Figure 8.1: Behavior of adaptive Bro for overload attack category 1

filter for picking up udp traffic. Due to the reconfiguration the Adaptive Bro detected 95%

of the WEB-IIS CMD.EXE attacks that were done during the flood where as the statically

configured Bro was able to detect only 20% of them.

The overload attack using ping-flood is started at t = 57 seconds. WEB-IIS

CMD.EXE attack being an attack that gains “root” privileges, had been given a relative

damage cost 100. Therefore, by changing the configuration the adaptive IDS was able to

keep its false negative rate from going low, and thereby attaining a better IDS value.

It should be noted that by dropping all the udp related rules and changing the

filter, it will not be able to detect the attacks in that category, if they occur. So the IDS

value is lesser than the original value it had, but the aim is to get the next optimal value.

The dns rules (udp) had relatively much less damage cost compared to exploit rules like

WEB-IIS CMD.EXE, using which an attacker can potentially gain “root” access on the

target machine. Therefore, an optimum value for the IDS is obtained by skipping relatively

lower priority detection rules and ensuring the detection of attacks which have relatively

48

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400 450

T
ra

ffi
c

V
ol

um
e

in
 M

bp
s

Time (seconds)

Traffic (Mbps)
Drop (Pkts/sec)

Figure 8.2: Behavior of adaptive Snort for overload attack category 1

higher priority.

Figure 8.4 shows the reduction in value contributed by the critical rule (WEB-IIS)

for Original Bro. This is because of the decrease in detection rate (or increase in false

negative rate) as shown in figure 8.3 . Figure 8.5 shows the reduction in the total value of

the IDS. It can be noted that Adaptive Bro gives more value by giving priority to the higher

priority rules and controlling the false negative rates of critical attacks. The contribution

to the total value is more from http, ftp rules than from udp rules. By shedding all the udp

rules and filter, value of the IDS has changed only from 56.5 to 56 as shown in figure 8.5.

This is because UDP rules are given lesser relative damage costs and the πi is also low.

The false negative rate for all rules are assumed to be affected by the same amount

and that the false positive for all rules is unaffected.

Similarly, for Adaptive Snort, when the system is overloaded, it performs a quick

reconfiguration (disabling udp rules and packet filter) to avoid further packet drops. Adap-

tive Snort detected the WEB-IIS CMD.EXE exploits 100% of the time (20 out of 20).

49

Figure 8.3: Detection rate during attack scenario 1

8.2.2 Attack scenario targeting alert channel

The profile of the attack is shown in figure 5.4 and the background traffic is the

same. Figure 8.6 shows the behavior of adaptive to the overload scenario in which the

attacker loads the alert channel bottleneck. There was zero drops; therefore drops curve is

not included. The figure shows the variation of average inter-event-interval when the traffic

fluctuates. Especially figure 8.7 shows the details from time t = 48 secs to t = 67 secs.

At time t = 59, the average inter-event-interval, Dmax became very low and the equation

4.5 was not satisfied and the knapsack algorithm was invoked. A part of the icmp rules

including ping-flood, smurf, ping-scan was removed by the knapsack.

All the 20 WEB-IIS CMD.EXE attacks were detected by adaptive Bro during this

experiment; thereby having a detection rate of 100%. Statically configured Bro had zero

detection rate. Again we can note the selection of optimum value for the IDS by skipping

relatively lower valued detection rules for ensuring the detection of attacks which have

relatively higher damage costs. Ping flood and smurf comes under the DoS category and

ping scan comes under reconnaissance attack category, both relatively lower than exploit

attacks trying to attain “root” privilege on the target machine.

50

Figure 8.4: Change in value contributed by rules when IDS is overloaded

The change in detection rates for Adaptive Bro as compared to Original Bro can

be seen in figure 8.8. As described in the previous experiment, the reduction in detection

rate for the critical attack reduces the value of IDS for the non adaptive Bro. Since ping

flood and smurf does not contribute significant amount to the value of the IDS, Adaptive

Bro does not suffer much change from the original value.

8.2.3 Attack scenario targeting database bottleneck

The profile of the attack is shown in figure 5.5 and the background traffic is the

same. This attack tries to stress the IDS using the database bottleneck. The traffic profile

in figure 5.5 shows lot of fragmented IP packets are sent with varying combinations of

source IP address and fragmentation id, so that each time the IDS makes an “insertion” to

database. Figure 8.9 shows how adaptive Bro behaves in this scenario. As can be seen from

figure 8.10, the insertion time increases and causes some stress and adaptive Bro drops

some packets initially. The continuous increase in the number of fragmentation sets in

the database triggers the reconfiguration mechanism. It changes configuration by reducing

the IP fragmentation reassembly timer thereby controlling the non-stop increase of the

51

Figure 8.5: Change in Total value of the IDS (Bro)

insertion time. The timer was decreased by 50% (120 seconds to 60 seconds). This caused

the insertion time to come down to normal value after sometime. The fragmentation timer

is defined in the Bro configuration file and is implemented as a bro policy script variable.

This value is changed by the dynamic reconfiguration module. After a specified interval

(for example, 60 seconds), the value is changed back to original value.

A total of 19 out of 20 WEB-IIS CMD.EXE attacks were detected by adaptive

Bro during this experiment; thereby having a detection rate of 95%. Statically configured

Bro had only 5% detection rate.

Adaptive bro did not change any filter or shed any rules but still there is a reduction

in the value of the IDS due to the change in the timer value. Each rule depends on

fragmentation reassembly and therefore contributes some cost to it.

By reducing the timer to 50%, the fragments in memory which are not reassembled,

will be timed out sooner by a factor of 2. The insertion time correspondingly decreases.

Knapsack algorithm reduces the fragmentation timer till the equation 4.5 is satisfied. The

value by which the timer value is decreased is configurable. For this experiment the value

of 50 was used.

52

8.3 Overhead of performance monitoring and reconfigura-

tion

An important consideration when employing performance monitoring and dynamic

reconfiguration mechanisms is their overheads. We used micro-benchmark experiments to

compute these overheads. As for Adaptive Bro, at each “heart beat” (1 second in our exper-

iment), on average 0.0002 seconds are spent on computing the numbers of packets received

and drops, the mean inter-event arrival time, and the mean event service time, the overhead

is thus .02%. We believe the overhead is acceptable. Changing filters (using pre-compiled

filters) takes only an average of 0.00005 seconds each time, which is very fast. Running the

Knapsack algorithm takes an average of 0.0002 seconds each time. As for Adaptive Snort,

the “heart beat” function (which is a timer function invoked every 1 second), takes 0.00005

seconds. The corresponding overhead is thus 0.005%. Running the Knapsack algorithm

takes approximately 0.0002 seconds. The filter change (using pre-compiled filters) takes an

average of 0.00005 seconds. We believe the overheads are acceptable in both systems.

8.4 Important points while designing an Adaptive IDS

This section lists out some difficulties we faced while trying to implement adaptive

behavior on Bro and Snort, and try to list the features to consider if an IDS is developed

with adaptive behavior in mind.

The design goals of both Bro [19] and Snort [25] does not include this adaptive

behavior. Therefore, implementing performance adaptation in them was not staightforward.

Some of the difficulties we faced as well as some wish-list for a future adaptive IDS are listed

as follows:

• Analysis tasks was ingrained into the IDS functionality; especially in the case of Bro.

Different tasks, for example, TCP stream reassembly were not physically separate in

the code. So to shed the analysis tasks was difficult. The plug-in model in Snort

architecture was really good in this perspective. It is advised to have a modularized

architecture, especially with the costly and important analysis tasks. So that they can

be plugged-in only when needed.

• There was no way to check what percentage of the packet capture buffer was currently

full. We are modifying libpcap to have such statistics for the user, so that it can be

53

used to decide when to change the configuration.

• Libpcap packet capture library is the standard mechanism all the current IDSs use to

“sniff” the packets off the wire. This mechanism becomes a bottleneck with high speed

data acquisition. The fact that libpcap is written with portability in mind compromises

on the efficiency.

• It would be good to have some priorities associated with the analysis tasks as well as

the rules. The configuration of the IDS should be able to specify different priorities to

tasks and rules at run time, thereby controlling which tasks or rules are given more

importance.

54

0

5

10

15

20

25

0 50 100 150 200 250 300 350 400 450 500

tr
af

fic
 in

 m
bp

s

Time (seconds)

ave inter event interval
traffic in mbps

Figure 8.6: Behavior of adaptive Bro for overload attack category 2

0

2

4

6

8

10

12

14

16

46 48 50 52 54 56 58 60 62 64 66 68

tr
af

fic
 in

 m
bp

s

Time (seconds)

ave inter event interval
traffic in mbps

Figure 8.7: Enlarged view of time t = 48 to t = 67 seconds

55

Figure 8.8: Detection rate during attack scenario 2

56

0

2

4

6

8

10

12

14

16

18

0 50 100 150 200 250 300 350 400 450 500

tr
af

fic
 in

 m
bp

s

Time (seconds)

packet drops
traffic in mbps

Figure 8.9: Behavior of adaptive Bro for overload attack category 3

0

2e-05

4e-05

6e-05

8e-05

0.0001

0.00012

0.00014

0.00016

0 50 100 150 200 250 300

in
se

rt
io

n
tim

e

Number of insertion (in thousands)

Insertion time in seconds

Figure 8.10: Insertion time for adaptive Bro

57

Chapter 9

Conclusion

Providing performance guarantee (assurance) should be the key requirement of

IDSs, and security products in general. Critical attacks should be given more priority

when the IDS cannot keep up with the traffic. In this thesis, we discussed an analysis

of IDS performance metrics and constraints, and argued that an IDS should provide the

best value under operational constraints. This is essentially an optimization problem. We

showed that a statically configured IDS can be overloaded by adversaries to a point that

it will miss the intended attacks with high probability. We argued that an IDS should

at least achieve a weaker goal: providing performance adaptation, i.e., providing the best

possible performance for the given operation environment. We discussed that in order to

enable performance adaptation in real-time IDS, performance monitoring and reconfigu-

ration mechanisms are needed. We described prototype adaptive IDSs based on Bro and

Snort. Different overloading scenarios, each focussing on different performance bottlenecks

of a real-time IDS were used. Results showed that IDS performing adaptation at run-time,

gives optimal configuration and better performance. Packet drops are controlled thereby

controlling the false negatives of important rules and getting optimal IDS value. Results

from experiments thus far validate our motivation and approach. Finally, we discussed the

difficulties faced and listed some of the main features a performance adaptive IDS should

have.

As for future work, we will be conducting more extensive and realistic experiments.

We will refine the performance monitoring and adaptation mechanisms, focusing on lowering

the overheads and making them not only customizable but also dynamically configurable.

Although we were able to add performance adaptation mechanisms to Bro and

58

Snort, it was not without conceptual and architectural difficulties. We thus plan to follow

our formal framework to design and implement an adaptive real-time IDS with built-in

performance monitoring and dynamic optimization capabilities.

59

Bibliography

[1] Edward Amoroso. Intrusion Detection. Intrusion.net, 1999.

[2] S. Axelsson. The base-rate fallacy and the difficulty of intrusion detection. ACM

Transactions on Information and System Security, 3(3), 2000.

[3] R. Bace. Intrusion Detection. Macmillan Technical Publishing, 2000.

[4] J. S. Balasubramaniyan, J. O. Garcia-Fernandez, D. Isacoff, E. Spafford, and D. Zam-

boni. An architecture for intrusion detection using autonomous agents. Technical re-

port, COAST Laboratory, Department of Computer Science, Purdue University, West

Lafayette, IN, 1998.

[5] J.B.D. Cabrera, W. Lee, R. K. Prasanth, L. Lewis, and R. K. Mehra. Optimization

and control problems in real time intrusion detection. submitted for publication, March

2002.

[6] D. Denning. Information Warfare and Security. Addison Wesley, 1999.

[7] J.E. Gaffney and J. W. Ulvila. Evaluation of intrusion detectors: A decision theory

approach. In Proceedings of the 2001 IEEE Symposium on Security and Privacy, May

2001.

[8] R. Gopalakrishna and E. H. Spafford. A framework for distributed intrusion detection

using interest driven cooperating agents. In The 4th International Symposium on

Recent Advances in Intrusion Detection (RAID 2001), October 2001.

[9] The NSS Group. Intrusion detection systems group test(edition 3), June 2002.

[10] M. Handley, C. Kreibich, and V. Paxson. Network intrusion detection: Evasion, traffic

normalization, and end-to-end protocol semantics. In Proceedings of the 10th USENIX

Security Symposium, August 2001.

[11] L. Kleinrock. Queuing Systems, Vol. 1: Theory. John Wiley & Sons, Inc., 1975.

60

[12] C. Kruegel, F. Valeur, G. Vigna, and R. A. Kemmerer. Stateful intrusion detection

for high-speed networks. In Proceedings of 2002 IEEE Symposium on Security and

Privacy, May 2002.

[13] W. Lee, W. Fan, M. Miller, S. J. Stolfo, and E. Zadok. Toward cost-sensitive modeling

for intrusion detection and response. Journal of Computer Security, 2001. to appear.

[14] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implementa-

tions. John Wiley & Sons Ltd., 1990.

[15] S. McCanne, C. Leres, and V. Jacobson. libpcap. available via anonymous ftp to

ftp.ee.lbl.gov, 1994.

[16] Kevin Wiley Mike Hall. Capacity verification for high speed network intrusion detection

systems, 2002.

[17] S. Northcutt. Intrusion Detection: An Analyst’s Handbook. New Riders, 1999.

[18] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization - Algorithms and

Complexity. Prentice-Hall, Inc., 1982.

[19] V. Paxson. Bro: A system for detecting network intruders in real-time. In Proceedings

of the 7th USENIX Security Symposium, San Antonio, TX, 1998.

[20] V. Paxson. Bro: A system for detecting network intruders in real-time. Computer

Networks, 31(23-24), December 1999.

[21] P. A. Porras and P. G. Neumann. EMERALD: Event monitoring enabling responses

to anomalous live disturbances. In National Information Systems Security Conference,

Baltimore MD, October 1997.

[22] T. H. Ptacek and T. N. Newsham. Insertion, evasion, and denial of service: Eluding

network intrusion detection. Technical report, Secure Networks Inc., January 1998.

http://www.aciri.org/vern/Ptacek-Newsham-Evasion-98.ps.

[23] N. Puketza, K. Zhang, M. Chung, B. Mukherjee, and R. Olsson. A methodology

for testing intrusion detection systems. IEEE Transactions on Software Engineering,

22(10), October 1996.

[24] M. Roesch. Snort - lightweight intrusion detection for networks. In Proceed-

ings of the USENIX LISA Conference, November 1999. Snort is available at

http://www.snort.org.

61

[25] Martin Roesch. Snort - lightweight intrusion detection for networks, 1998.

[26] L. M. Rossey, R. K. Cunningham, D. J. Fried, J. C. Rabek, R. P. Lippmann, and

J. W. Haines. LARIAT: Lincoln adaptable real-time information assurance testbed. In

The 4th International Symposium on Recent Advances in Intrusion Detection (RAID

2001), October 2001.

[27] G. Shipley and P. Mueller. Dragon claws its way to the top. In Network Computing.

TechWeb, August 2001.

[28] SunSoft. SunSHIELD Basic Security Module Guide. SunSoft, Mountain View, CA,

1995.

[29] Top Layer Networks and Internet Security Systems. Gigabit Ethernet intrusion de-

tection solutions: Internet security systems RealSecure network sensors and top layer

networks AS3502 gigabit AppSwitch performance test results and configuration notes.

White Paper, July 2000.

[30] G. Vigna, R. A. Kemmerer, and P. Blix. Designing a web of highly-configurable intru-

sion detection sensors. In Proceedings of the 4th International Symposium on Recent

Advances in Intrusion Detection (RAID 2001), October 2001.

