

Abstract

SUNDARARAMAN, VISHWANATH

Development of ASIC technology library for the
TSMC 0.25µm standard cell library

(Under the direction of Dr. Paul D. Franzon)

The Synopsys synthesis tool generates the hierarchical netlist of a design using

worst-case and best-case ASIC technology libraries. The worst-case library checks for the

setup time violation and the best-case library checks for the hold time violations of the

design. The worst-case library is characterized by a supply voltage of 2.25V, operating

temperature of 125°C, and slow process corner. The best-case library is characterized by

a supply voltage of 2.75V, operating temperature of -55°C, and fast process corner. The

technology libraries are developed for the CMOS TSMC 0.25µm technology. The CMOS

nonlinear delay models are used for delay calculations. Variations in operating

temperature, supply voltage and manufacturing process causes performance variations in

electronic networks. Using different operating conditions, the timing of the design under

different environmental conditions can be evaluated. The delay values specified in the

cells for a technology specify a set of nominal operating condition. The worst-case and

best-case libraries are developed by running HSPICE simulations for all the 36 basic

cells. The technology library contains information used for the following synthesis

activities:

 Translation – functional information for each cell

 Optimization – area and timing information for each cell (including timing

constraints on sequential cells)

 Design rule fixing – design rule constraints on cells

Development of ASIC technology library for the

TSMC 0.25µm standard cell library

by

Vishwanath Sundararaman

A thesis submitted to the graduate faculty of

North Carolina State University

In partial fulfillment of the requirements of the degree of

Master of Science

COMPUTER ENGINEERING

Raleigh

2003

Approved by

Dr. Paul D. Franzon, Chair of the Advisory Committee

__________________________ _____________________________

Dr. Eric Rotenberg Dr. Griff Bilbro

 ii

Biography

Vishwanath Sundararaman was born on 5th April 1980 in Pune, India. He

graduated with a B.E (Honors) degree in Electrical and Electronics Engineering from the

Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India in June 2001.

He was an intern with Siemens Communication Software at Bangalore, India between

January and June 2001.

In fall 2001, he enrolled in the masters program in computer engineering at North

Carolina State University, Raleigh. He has been working under the guidance of Dr. Paul

D. Franzon in developing the ASIC technology library for the TSMC 0.25µm technology.

 iii

Acknowledgements

Graduate school at NC State has been a wonderful experience. I take this opportunity to

thank the people who enriched the two years that I spent here.

First and foremost, I would like to express my sincere thanks to my advisor Dr. Paul D.

Franzon, for his guidance, support, patience and his constant encouragement. Working

with him has been a fantastic learning experience. I also thank him for his confidence in

me, and for giving me an opportunity to explore a variety of topics.

I would like to thank the other members of my advisory committee, Dr. Eric Rotenberg

and Dr. Griff Bilbro, for reviewing my thesis, and for their valuable comments. I would

like to thank Dr. Rhett Davis for giving invaluable suggestions, guidance and

encouragement. I would like to thank all the other faculty members, for providing me

with such an excellent education.

I would like to thank Jos Sulistyo of Virginia Polytechnic Institute and State University

for his help in developing the cell library. I would also like to thank Hao Hua for being

patient and helping me run simulations whenever I had problems.

I would also like to thank all my friends who made my stay at NC State more enjoyable. I

am fortunate to have great friends like Aravindh Anantaraman, Lashminarayan

Venkatesan, Udayakumar Shanmugam, Mohammad Sheikh Nainar, Karthikeyan

Santhanagopalan, etc ... Thanks for your friendship. It means a lot to me.

 iv

Finally, I would like to thank my parents, Dr.Sundararaman and Sundari, for their

unconditional love and continual encouragement. I thank them for the active role they

played in my education and also guiding me whenever I needed their advice. I cannot

thank them enough.

My education here at NC State has been supported by the ECE department. I am truly

grateful for their support.

 v

TABLE OF CONTENTS

LIST OF FIGURES .. vii

LIST OF TABLES ... viii

Chapter 1 Introduction... 1
1.1 Organization of the thesis ... 2

Chapter 2 VTVT Standard Cell Library.. 4
2.1 Introduction... 4
2.2 Modification to the NCSU kit... 4

2.2.1 Modifications under the directory – techfile.. 5
2.2.2 Modifications under the directory – skill... 6

2.3 Cells contained in the Library... 6
2.4 Files for PNR .. 8

Chapter 3 Technology Library .. 9
3.1 Introduction... 9
3.2 Developing the Technology library .. 9

3.2.1 Library Group .. 10
3.2.2 General Library Attributes ... 10
3.2.3 Delay and Skew Attributes .. 10
3.2.4 Defining Units.. 12
3.2.5 Timing Group... 13
3.2.6 Three-State Timing Arcs.. 13
3.2.7 Edge-Sensitive Timing Arcs .. 14
3.2.8 Preset and Clear Timing Arcs .. 14

3.3 Delay Model ... 15
3.3.1 CMOS Nonlinear Delay Model ... 15
3.3.2 Delay Model Template .. 15
3.3.3 Cell Delay & Transition Delay .. 16
3.3.4 Setup and Hold time... 18

3.4 Library Compiler .. 18
3.5 Symbol Library ... 19
3.6 Synthesis with Design Analyzer ... 20
3.7 Post synthesis design library... 20

Chapter 4 Verification of the ASIC technology library 22
4.1 Introduction... 22
4.2 Checking Library Consistency.. 22
4.3 Verifying Functionality... 23

 vi

Chapter 5 Conclusion and Future Work.. 27
5.1 Future Work.. 27

5.1.1 Power ... 27
5.1.2 Operating Conditions ... 29
5.1.3 Modeling Wire Load.. 30

Bibliography .. 31

Appendix.. 32

 vii

LIST OF FIGURES

Figure 3-1: Delay modeling for falling signal. ... 11
Figure 3-2: Skew modeling... 12
Figure 4-1: Simulation waveforms for the 32-bit multiplier. ... 24
Figure 4-2: Layout of the 32-bit multiplier... 25
Figure 4-3: Simulation waveform for IP forwarding engine. ... 26
Figure 4-4: Layout of IP forwarding engine. .. 26

 viii

LIST OF TABLES
Table 2-1: New and modified files. .. 5
Table 2-2: Cells contained in the standard cell library. .. 7
Table 2-3: GDSII map files... 8

 1

Chapter 1 Introduction

The TSMC 0.25µm deep submicron technology cell library was developed by the

VTVT (Virginia Tech VLSI for Telecommunication) group. The ASIC technology

library for this CMOS TSMC 0.25µm technology is being developed to be used for

academic and research purpose at North Carolina State University (NCSU). The ASIC

technology library is an extension of the standard cell library developed by J.B. Sulistyo

and D.S. Ha [1] of the VTVT group and will be a part of the NCSU cadence design kit

(NCSU CDK).

The modifications necessary for the NCSU CDK to support this new deep

submicron TSMC 0.25µm technology is provided by the VTVT group. The new

technology library is compiled into the NCSU cadence kit along with the modifications

required. The TSMC 0.25µm deep submicron cell library contains a total of 37 cells. The

layouts of the cells are developed using the modified version of the NCSU kit version

1.1, which uses the MOSIS DEEP design rules.

The ASIC technology best-case and worst-case libraries are developed for the 36

basic cells. The 37th cell is a filler cell, which is an empty cell with power and ground

rails. The worst-case and best-case timing libraries are developed by running HSPICE

simulations for all the cells with different input transition times and different output

loads. The CMOS non-linear delay models are used for delay calculations. This uses

lookup tables for calculating the propagation delays and transition delays during

 2

synthesis using Synopsys synthesis tool. The validity of the library is verified by post

synthesis simulation and placement & routing of a test design.

An environment is set for doing “Placement and routing” (PNR) using Cadence

Silicon Ensemble. The Library Exchange Format (LEF) file, GDSII map file, used for

exporting the result of the PNR tool run to the design framework (dfII) environment,

needed for doing place and route is provided by the VTVT group.

Currently, the ASIC technology library is being developed only at NCSU. The

NCSU CDK has been downloaded by over 2000 organizations, mostly universities and

has won prizes and recognitions from Cadence, NSF and CUG.

In this thesis the Courier New font refers to the different

parameters specific to the technology files in the NCSU CDK

and the attributes specific to the ASIC technology library.

The Courier New font words in italics refer to the commands

in the Library Compiler shell interface.

1.1 Organization of the thesis

Chapter 2 describes the modifications necessary for the NCSU CDK and focuses

on the work done by the VTVT group in developing the standard cell library for the

TSMC 0.25µm technology with MOSIS DEEP rules. Chapter 3 describes the ASIC

technology library as developed from the standard cell library and gives a method of

 3

synthesizing a design using Synopsys Design Analyzer. Chapter 4 describes the

verification done to check the validity of the ASIC technology library. Chapter 5

summarizes the conclusions of this thesis and describes future work in enhancing the

ASIC technology library.

 4

Chapter 2 VTVT Standard Cell Library

2.1 Introduction

The VTVT group has developed the standard cell library kit based on the TSMC

0.25µm technology. The layouts were developed using a modified version of the NCSU

CDK version 1.1, which uses the MOSIS DEEP design rules. The kit, as distributed by

the VTVT group, includes the following:

- Modifications to the NCSU CDK to incorporate the new technology

- Layouts in GDSII and cadence dfII format

- Library Exchange Format (LEF) file for the PNR tool

The layouts include only simple cells such as two and three input combinational

cells, tri-state buffers, flip-flops, and latches. The VTVT standard cell library is intended

for use with Cadence Silicon Ensemble placement and routing tool. The layouts were

developed with Cadence Virtuoso custom layout tool and the MOSIS DEEP design rules

were followed.

2.2 Modification to the NCSU kit

The new and modified files for the NCSU cadence kit, to include the TSMC

0.25µm deep submicron technology, are provided by the VTVT group. The modifications

necessitate the creation of a new technology library. The new library is created by

following the directions in the help file local/doc/cdsmgr/technology_files.html#newlib in

 5

the NCSU kit installation directory. The new technology library is then compiled into the

NCSU kit after the required modifications have been performed.

Table 2-1: New and modified files.

Directory New File Modified File

<NCSU_kit_install_dir>/techfile

tsmc_03d.tf

divaDRC.rul, devices.tf,
physicalRules.tf,

layerDefinitions.tf
<NCSU_kit_install_dir>/skill globalData.il

2.2.1 Modifications under the directory – techfile

divaDRC.rul

This file is the DRC (design rule check) script of the NCSU kit. Modifications to

this file have been made to include the check for DEEP rule violations. In most cases the

DEEP and SUBM rules are identical and hence the conditional statement of

“submicronAvailable” is replaced by (submicronAvailable ||

deepAvailable), where the submicronAvailable and deepAvailable are

NCSU kit’s flag variables to identify MOSIS SUBM and DEEP rules respectively. For

cases where DEEP and SUBM rules are different, new conditional statements such as “if

(deepAvailable)” are introduced.

devices.tf

A new variable “deepAvailable” is defined and calculated. The conditional

statements using submicronAvailable is replaced by (submicronAvailable

|| deepAvailable).

 6

physicalRules.tf

The value of the variable deepAvailable is assigned as

deepAvailable = NCSU_techData[technology] -> deeprules .

Various new spacing rules are added for the DEEP rules.

layerDefinitions.tf

A new entry is created for the DEEP version of TSMC 0.25µm technology, using

the same values used by the SUBM version of the technology.

tsmc_03d.tf

This file has the description of the DEEP version of the TSMC 0.25µm

technology.

2.2.2 Modifications under the directory – skill

globalData.il

A new entry is added for the TSMC 0.25µm technology using the MOSIS DEEP

rules. The new entry is called TSMC_CMOS025_DEEP with design scaling unit

(lambda) set to 0.12µm. The NCSU_parasiticCapIgnoreThreshold parameter

is changed from 2fF to 1aF. This parameter refers to the largest value of the parasitic

capacitance that can be ignored during netlist extraction.

2.3 Cells contained in the Library

The cells in the VTVT standard cell library are listed in Table 2-2

 7

Table 2-2: Cells contained in the standard cell library.

Cell Name Function

buf_1 Noninverting buffer, drive strength 1
buf_2 Noninverting buffer, drive strength 2
buf_4 Noninverting buffer, drive strength 4
inv_1 Inverter, drive strength 1
inv_2 Inverter, drive strength 2
inv_4 Inverter, drive strength 4
and2_1 2-input AND gate, drive strength 1
and2_2 2-input AND gate, drive strength 2
and3_1 3-input AND gate, drive strength 1
and3_2 3-input AND gate, drive strength 2
or2_1 2-input OR gate, drive strength 1
or2_2 2-input OR gate, drive strength 2
or3_1 3-input OR gate, drive strength 1
or3_2 3-input OR gate, drive strength 2
nand2_1 2-input NAND gate, drive strength 1
nand2_2 2-input NAND gate, drive strength 2
nand3_1 3-input NAND gate, drive strength 1
nand3_2 3-input NAND gate, drive strength 2
nor2_1 2-input NOR gate, drive strength 1
nor2_2 2-input NOR gate, drive strength 2
nor3_1 3-input NOR gate, drive strength 1
nor3_2 3-input NOR gate, drive strength 2
xor2_2 2-input XOR gate, drive strength 2
mux2_2 2-to-1 multiplexer, drive strength 2
bufzp_2 Noninverting tri-state buffer, low-enabled, drive strength 2
Invzp_1 Inverting tri-state buffer, low-enabled, drive strength 1
Invzp_2 Inverting tri-state buffer, low-enabled, drive strength 2
cd_8 clock driver, drive strength 8
cd_12 clock driver, drive strength 12
cd_16 clock driver, drive strength 16
lp_2 high-active D latch
lrp_2 high-active D latch with asynchronous low-active reset
lrsp_2 high-active D latch with asynchronous low-active reset and

asynchronous high-active set
dp_2 rising-edge triggered D flip-flop
drp_2 rising-edge triggered D flip-flop with asynchronous low-active

reset
drsp_2 rising-edge triggered D flip-flop with asynchronous low-active

reset and asynchronous high-active set
filler filler cell (empty cell with power and ground rails)

 8

The standard cell library also contains layouts of some dummy pads. These

dummy pads are not intended for use with actual designs. They are created only for

convenience of creating the LEF file.

2.4 Files for PNR

The LEF file is generated for use with Silicon Ensemble. The LEF file includes

LEF descriptions of the VTVT standard cells as well as the LEF descriptions of the

dummy I/O power and corner cells. Actual pads are not used in creating the LEF

descriptions, as their size and complexity result in large LEF descriptions hence dummy

pads are used. The verilog template file contains no logic descriptions of the cells. It

simply provides a template of the cells (list of input, output, and power pins) needed for

the PNR tool. The GDSII map file is used for exporting the result of the PNR to the

design framework (dfII) environment. Table 2-3 has a list of GDSII map files developed

by the VTVT group.

Table 2-3: GDSII map files.

Map File Features / Intended Use

vtvt_df2mosis.map Following MOSIS layer numbering; for exporting from
icfb to GDSII file for fabrication by MOSIS

vtvt_df2abstract.map Importing the provided GDSII files to dfII; importing
layouts from the PNR tool to the layout tool.

vtvt_se2df2.map Exporting GDSII files from Silicon Ensemble. The
labeling layers use imaginary numbers.

 9

Chapter 3 Technology Library

3.1 Introduction

The ASIC synthesis libraries have been developed for the TSMC 0.25µm

technology as part of this thesis. This chapter provides an overview of the library

development and describes the general procedure followed in developing this library [2]

[3]. The technology library describes the structure, function, timing, and environment of

the ASIC technology. The technology library contains information used in the following

synthesis activities.

 Translation - functional information for each cell.

 Optimization - area and timing information for each cell.

 Design rule fixing - design rule constraints on cells.

 The library development consists of the following major activities.

 Describing the library in the text format (.lib and .slib).

 Compiling the binary form of the library (.db or .sdb).

3.2 Developing the Technology library

The library description identifies the characteristics of a technology library and

the cell it contains. The technology libraries are developed for both the worst-case,

characterized by a supply voltage of 2.25V, operating temperature of 125°C, and slow

process corner, and the best-case, characterized by a supply voltage of 2.75V, operating

temperature of -55°C, and fast process corner.

 10

3.2.1 Library Group

The library group contains description of the entire library. Attributes that

apply to the entire library are defined at the library group level, at the beginning of

the library description. The library description for an inverter is attached in Appendix A1

as an example. The library group statement defines the name of the library and is the

first executable line in the library.

3.2.2 General Library Attributes

The following attributes generally apply to the technology library.

 technology - The technology attribute identifies the technology tool used

in the library. The technology attribute is the first attribute defined and is

placed at the top of the listing. In this library the technology attribute is the

CMOS technology.

 delay_model - The delay_model attribute indicates the delay model used in

the delay calculations. The delay_model attribute follows the technology

attribute in the library description. The table_lookup (nonlinear delay model) is

used in this library.

3.2.3 Delay and Skew Attributes

This section describes attributes used to set the values of the input and output pin

threshold points. These points are used by the Library Compiler to model delay and skew.

 output_threshold_pct_fall: This indicates the 50% threshold point

when the output falls from 1 to 0

 11

 output_threshold_pct_rise: This indicates the 50% threshold point

when the output rises from 0 to 1

 input_threshold_pct_fall: This indicates the 50% threshold point when

the input falls from 1 to 0

 input_threshold_pct_rise: This indicates the 50% threshold point when

the input rises from 0 to 1

 The delay, for example, is the time it takes for the output signal voltage, falling

from 1 to 0, to fall to the threshold point (set by the output_threshold_pct_fall

attribute) after the input signal voltage falling from 1 to 0 has fallen to the threshold point

(set by the input_threshold_pct_fall attribute) as shown in Figure 3-1.

Figure 3-1: Delay modeling for falling signal.

Slew is the time it takes for the voltage value to fall or rise between two designated

threshold points on an input or on an output. The following two attributes designate

Input port

input_threshold_pct_fall

Output port

Output_threshold_pct_fall

50

50

V
O
L
T
A
G
E
(in V)

T I M E (in sec)

 12

the threshold points to model the transition time for voltage falling from 1 to 0 as

shown in Figure 3-2.

 slew_lower_threshold_pct_fall : 20.0%

 slew_upper_threshold_pct_fall : 80.0%

The following two attributes designate the threshold points to model the transition

time for voltage rising from 0 to 1 as shown in Figure 3-2.

 slew_lower_threshold_pct_rise : 20.0%

 slew_upper_threshold_pct_rise : 80.0%

Figure 3-2: Skew modeling

3.2.4 Defining Units

The Design Compiler tool is unit less. However, units are required to create

VHDL libraries and reports. The following library level attributes are specified in the

library to define units:

 time_unit : "1ps"

20 80

slew_upper_threshold_pct_fall

slew_lower_threshold_pct_fall

slew_upper_threshold_pct_rise

slew_lower_threshold_pct_rise

T I M E (in sec)

V
O
L
T
A
G
E
(in V)

 13

 voltage_unit : "1V"

 current_unit : "1mA"

 pulling_resistance_unit : "1kohm"

 capacitive_load_unit (1.0, "ff")

3.2.5 Timing Group

The timing group contains information that the design compiler needs in order to

model timing arcs and trace paths. Timing arcs are the paths followed by the path tracer

during path analysis. The timing group defines the timing arcs through the cell and the

relationships between clock and data input signals. The timing group describes the timing

relationship between an input and an output pin, timing arcs through a non-combinational

element, and setup and holds times on flip-flop and latch inputs. The related_pin

attribute defines the pin that is the starting point of the timing arc. This attribute is a

required component of all timing groups.

3.2.6 Three-State Timing Arcs

The three state output pin of a tri-state cell is described by the three-state timing

arc. The design compiler uses only the three_state_enable timing arcs. The

three_state_enable timing arc is designated by

- assigning related_pin to the enable pin of the three state function

- assigning timing_type as three_state_enable.

 14

The timing_type attribute distinguishes between combinational and sequential cells

by defining the type of timing arc, which is three_state_enable for tri-state cells like tri-

state inverters and tri-state buffers.

3.2.7 Edge-Sensitive Timing Arcs

Edge sensitive timing arcs from the clock on a flip-flop are identified by the

rising_edge on the timing_type attribute. Rising_edge identifies a timing arc whose

output pin is sensitive to the rising signal at the input pin. These arcs are path traced, i.e.,

the path tracer propagates only the active edge path values along the timing arc. The

related_pin attribute is set to the clock input for sequential cells.

3.2.8 Preset and Clear Timing Arcs

Preset timing arcs affect only the rise arrival time on the arc’s endpoint pin while

clear timing arcs affect only the fall arrival time. These timing arcs are used for

asynchronous reset and clear pins on the flip-flops and level sensitive latches.

Accordingly, a rise time is defined for the preset arc and a fall time is defined for the

clear arc. The rise time for the preset arc and the fall time for the clear arc are defined by

creating a rise delay table and a fall delay table, respectively as defined in Section 3.3.3.

For the preset arc, the timing_type attribute is set to preset and for the clear arc, the

timing_type attribute is set to clear. The related_pin attribute is set to the preset

pin or the clear pin accordingly.

 15

3.3 Delay Model

The Design Compiler uses timing parameters and environment attributes

described in the technology library to calculate timing delays of the design. The timing

parameters and environment attributes used in the timing delay calculations are

dependent on the delay model used. The CMOS nonlinear delay model is used in this

ASIC technology library.

3.3.1 CMOS Nonlinear Delay Model

The delay value predicted by the Library Compiler and the timing analyzer is

enhanced by the CMOS nonlinear delay model. The CMOS nonlinear delay model uses

lookup tables and interpolation to compute delays. The model is flexible enough to

provide close timing correlation for a wide variety of delay modeling schemes. The

nonlinear delay model is characterized by tables that define the timing arcs.

The library level lu_table_template group attribute is used to define

templates of common information to use in lookup tables. The lookup tables and the

corresponding templates used in this library are two dimensional.

3.3.2 Delay Model Template

Table templates store common table information that is used by multiple lookup

tables. The table template specifies the table parameters and the breakpoints for each

axis. Each template is assigned a name so that lookup tables can refer to it.

 16

3.3.2.1 Template Variables for Timing Delays

The table template (rise_delay_table, fall_delay_table) specifying timing delays

have two variables. The variables indicate the parameters used to index into the lookup

table along the first and second table axes. The parameters are the input transition time

and the output loading.

3.3.2.2 Template Variables for Load-Dependant Constraints

The table template (constraint_table) specifying load-dependant constraints have

two variables. The variables indicate the parameters used to index into the lookup table

along the first and second table axes. The parameters are the input transition time of the

constrained pin and the input transition time of the related pin.

3.3.2.3 Template Breakpoints

The index statements in the lookup tables define the breakpoints for an axis. The

breakpoints defined by index_1 correspond to the parameter values indicated by

variable_1 in the lu_table_template group. The breakpoints defined by index_2

correspond to the parameter values indicated by variable_2 in the

lu_table_template group.

3.3.3 Cell Delay & Transition Delay

Cell delay is defined as the time from the 50 percent input pin voltage to 50

percent output voltage when making a transition. It is a function of both output loading

and input pin transition time. Two groups in the timing group define cell delay tables.

 17

 cell_rise: This specifies the delay time for an output rise with respect to the input

transition. The input pin is specified by the related_pin attribute.

 cell_fall: This specifies the delay time for an output fall with respect to the input

transition. The input pin is specified by the related_pin attribute.

Transition delay is the time required for the output pin to change state. It is also

used to index into delay and transition tables at the next logic stage. Transition delay can

also be constrained as a design rule during synthesis. It is a function of both output

loading and input transition time. Two groups in the timing group define transition delay

tables

 rise_transition: This specifies the transition time for an output rise.

 fall_transition: This specifies the transition time for an output fall.

The cell delay times and transition times for all cells are obtained by running

HSPICE simulation with different output load capacitance and different input transition

times. The various output load capacitances considered for the clock driver cells are 0fF,

200fF, 1000fF, 5000fF as specified by the index_1 statement in the lookup table. The

output load capacitances considered for all the remaining cells are 0fF, 20fF, 50fF, 250fF

as specified by the index_1 statement in the lookup table. Different input transition times

are obtained by varying the load attached at the input pins. The different input loads

considered are 0fF, 20fF, 50fF, 150fF. The input transition times corresponding to these

loads are specified by the index_2 statement in the lookup table. A sample spice file used

for characterizing an inverter is attached in Appendix A2.

 18

3.3.4 Setup and Hold time

Setup time is defined as the time for which the data input of a sequential cell

should be constant before the active edge of the clock or the enable input. Hold time is

defined as the time for which the data input of a sequential cell should be constant after

the active edge of the clock or the enable input. Two groups in the timing group define

the setup (hold) time.

 rise_constraint: This specifies the setup (hold) time for an output rise.

 fall_constarint: This specifies the setup (hold) time for an output fall.

 The constraint pin is the input pin of the sequential cell whereas the related pin is

the clock/enable input. The setup and hold times are characterized using bisection in

HSPICE [4].

3.4 Library Compiler

The ASIC technology library in the text (.lib) format is compiled using the library

compiler shell interface. The read_lib command of the library compiler shell interface

loads the technology source file and compiles it to the Synopsys database (.db) format.

The write_lib command saves the library memory file to a disk file in Synopsys

internal database (.db) format. This compilation is done separately for both the worst-case

technology library file and the best-case technology library file. The worst-case and best-

case technology source files are named as ncsulib25_worst.lib and ncsulib25_best.lib

respectively. The compiled Synopsys database files for the worst-case and best-case are

named as ncsulib25_worst.db and ncsulib25_best.db respectively. The Synopsys database

 19

files are used in the synthesis of a design using the Synopsys Design Analyzer as

explained in section 3.6.

3.5 Symbol Library

The symbol libraries contain information that the design vision tools use to

generate and display the graphic representation of the design. The construction of symbol

library is technology-independent. The symbol library for the TSMC 0.25µm technology

is very similar to the 0.8µm cmosx symbol library currently used here at NC State

University. The 0.8µm cmosx symbol library is modified for use with the 0.25µm

technology. The symbol library shares the same fundamental structure and syntax as the

technology library. Each cell in the technology library has a corresponding cell (with the

same name) in the symbol library. However the symbol library also contains special

symbols that have no corresponding cell in the technology library. These special symbols

are used to draw the parts of the schematic that are not cells, such as connectors, template

borders and text. The symbol library is created by writing a text description of all the

cells in the technology library. The symbols library is named as ncsulib25_symbols.slib.

This is then compiled using the Synopsys Library Compiler to generate the Synopsys

database format file named ncsulib25_symbols.sdb.

The Design Compiler tool comes with a symbol library containing more than 170

of the most common cell functions (symbols). This symbol library is in the generic.sdb

file. The symbols defined in this generic symbol library include most boolean logic

 20

symbols. The design analyzer tool searches the library specified by the symbol_library

variable in the Synopsys setup file for the symbols required to draw the schematic.

3.6 Synthesis with Design Analyzer

The Synopsys synthesis tool, Design Analyzer, checks for timing violations in the

design using the worst-case and the best-case libraries. The worst-case library is used to

check for setup violations and the best-case library for hold violations in the design. The

synthesis tool takes in a high level verilog description of the design as an input. A sample

synthesis script and the required Synopsys setup file (.synopsys_dc.setup) needed to

synthesize any design are attached in Appendix A3. The search_path in the Synopsys

setup file specifies the path where all the necessary files, for example, the worst-case

library, best-case library and symbols library are located. The Design Analyzer tool is

directly linked to the worst-case technology library and the symbols library. This is done

by setting the target_library and the link_library attribute in the

.synopsys_dc.setup file to the worst-case Synopsys library ncsulib25_worst.db.

3.7 Post synthesis design library

Post synthesis simulation of the verilog netlist generated by the synthesis tool

requires a functional description of all the cells along with the user defined primitives.

The ncsu_mosis file has the input output definition and the functional description of all

the cells along with the timing arc specification. The ncsu_prims file has the user defined

primitives for all the sequential cells and the multiplexer. The user defined primitives are

defined as a table, useful for accelerated simulation and compiling a synthesis library. All

 21

the possible states are defined in the table. An example post synthesis design library with

an inverter and D-flip-flop is attached in Appendix A4. Post synthesis simulation is done

by compiling the verilog netlist with the above files.

 22

Chapter 4 Verification of the ASIC technology library

4.1 Introduction

The Design Compiler uses information from the technology libraries to drive its

optimization strategies and to check that solutions adhere to the designer’s specifications.

The results of optimization are only as accurate as the technology library used. To ensure

optimal results, the technology libraries have the following properties:

 Accuracy: The timing values and functional descriptions must be correct and

consistent.

 Completeness: All the cells available from the ASIC vendor must be described in

the technology library. A complete delay calculation model should be used.

 Consistency: All cells in the technology library must have an equivalent graphic

representation in the symbol library.

4.2 Checking Library Consistency

The compare_lib command compares a technology library and the

corresponding symbol library for consistency. These libraries are first loaded in the

Design Compiler. When the symbol library is loaded using the read_lib command the

following consistency checks are performed.

 Duplicate symbols and duplicate pins on a symbol.

 Existence of special symbols in the library. Special symbols include power and

ground symbols, as well as in, out, and inout ports.

 Invalid pin definitions. For example, two pins cannot have the same approach

direction (LEFT) and the same coordinate values (x, y).

 23

 Pin definitions that do not fall exactly on the grid.

 Duplicate layer definitions.

 Symbols with no name.

The compare_lib command performs two checks. First, it verifies that each

cell in the technology library has a corresponding symbol definition in the symbol library.

Second, it checks that the pin names of each cell in the technology library match the pin

names defined for the cell’s corresponding symbol. The list command displays the

libraries that are resident in the design compiler.

4.3 Verifying Functionality

There is no defined way of verifying the ASIC technology library. The functional

verification was carried out by post synthesis simulation and HSPICE simulation for a

test design. Post-synthesis simulation uses the output file produced by the synthesis tool.

The synthesis tool generates a gate level verilog netlist and a SDF (Standard Delay

Format) file using the ASIC technology library. The SDF file has the timing information

for all the cells in the design. The SDF description of a cell has the pin to pin timing

delays for all the possible timing arcs of that cell. The resulting file is compiled with the

post-synthesis design library, and then simulated to check for timing violations.

The test design chosen for verification is a simple 32-bit multiplier. The design is

done using Verilog Hardware Description Language. The design is then synthesized by

the Synopsys Design Analyzer synthesis tool. The output of this synthesis is the verilog

 24

netlist of the design and SDF files for the best-case and worst-case conditions. The post-

synthesis simulation of this verilog netlist did not generate any timing violation. The pre-

synthesis and post-synthesis output waveforms are shown in Figure 4-1 where X and Y

are the 32 bit inputs and P is the 64 bit output. The first P output in Figure 4-1 corresponds

to the pre synthesis simulation. The second P output is the post synthesis simulation for

the best-case and the third corresponds to the post-synthesis simulation for the worst-

case. The delay in the output P for the second and third waveform specifies the actual

best-case and worst-case delays of the design.

Figure 4-1: Simulation waveforms for the 32-bit multiplier.

Placement and routing of the above design is done in Cadence Silicon Ensemble.

Figure 4-2 shows the layout of the 32-bit multiplier as obtained from PNR. The layout is

then extracted to generate the transistor level netlist. The transistor level netlist is then

simulated in HSPICE with the same sequence of inputs. The result of the SPICE

simulation is in accordance with that of the verilog simulation.

 25

Figure 4-2: Layout of the 32-bit multiplier.

A simple design like the 32-bit multiplier was taken for testing because most of

the complex designs like microprocessors, IP forwarding engines have memory

associated with them. Since the memory block used for such designs is not synthesizable,

doing a HSPICE simulation on such designs become cumbersome. However post-

synthesis simulation was done to verify the functionality of the IP forwarding engine [5].

There were no timing violations reported. The pre-synthesis and post-synthesis output

 26

waveforms for the IP forwarding engine specifying the DRAM row and column number

is shown in Figure 4-3. The entry in the corresponding row and column of the DRAM

specifies the next hop address. Figure 4-4 shows the layout of the IP forwarding engine.

Figure 4-3: Simulation waveform for IP forwarding engine.

Figure 4-4: Layout of IP forwarding engine.

 27

Chapter 5 Conclusion and Future Work

The ASIC technology library has been developed for the TSMC 0.25µm standard

cell library provided by the VTVT group. The library includes all the basic cells that are

needed for synthesis of any design using the Synopsys synthesis tool. All the

modifications necessary to incorporate the new TSMC 0.25µm deep submicron

technology (provided by the VTVT group) has been made to the NCSU CDK. A tutorial

to do placement and routing using Silicon Ensemble has been written for academic use at

NC State University. A new Synopsys setup file has been created to link the synthesis

tool to the new technology and an example synthesis script has been provided to perform

synthesis using Synopsys Design Analyzer.

5.1 Future Work

The cells in the standard cell library were characterized for timing to enable the

synthesis tool to check for timing violations in a design. As an extension of this work, the

cells can be characterized for the power consumed, modeled for various operating

conditions, and modeled for wire loads.

5.1.1 Power

The CMOS technology library can be modeled for static and dynamic power. The

three components of power dissipation are leakage power, short-circuit power and

switching power.

 28

5.1.1.1 Leakage power

Leakage power is the static power dissipated when a gate is not switching. It is

important to model leakage power for designs that are in an idle state most of the time.

The leakage power information is represented with the cell level

cell_leakage_power attribute and the leakage_power group attribute. The

leakage_power group specifies the leakage power for all the possible steady states of

a cell. The cell_leakage_power attribute is the average of all the possible power

values for the different states. The power value is in the unit set by the power_unit

attribute. An example of the leakage_power group is shown below where ip1 and

ip2 are the inputs of a cell and the value refers to the total leakage power when (ip1, ip2)

is (0,0).

leakage_power (){

when: "ip1'*ip2'“;

value: 1.1766e-08

}

5.1.1.2 Internal Power

Internal power is the power dissipated within the boundary of the gate. It does not

distinguish between the short-circuit power and the switching power.

Short-Circuit Power

Short-circuit power is the power dissipated by the instantaneous short-circuit

connection between VDD and GND while the gate is in transition.

 29

Switching Power

Switching power is the power dissipated by the capacitive load on a net whenever

the net makes a logical transition. Power is dissipated when the capacitive load at the net

is charged or discharged. Switching power along with internal power is used to compute

the design’s total dynamic power dissipation.

The CMOS non-linear delay model can be used to describe the power dissipation,

in which case the power_lut_template group should be used to create templates of

common information that multiple lookup tables can use similar to the

lu_table_template for timing. The table template specifies the table parameters

and the breakpoints for each axis. The total power dissipated can be found by giving the

output pins a real capacitance, which cause them to be included in the switching power,

and modeling only the short-circuit power as the cell's internal power in the

internal_power group. The template variables should be the total output load

capacitance and the input transition time similar to the lu_table_template.

HSPICE simulations should be run to find the power dissipated for various output loads

and input transition times.

5.1.2 Operating Conditions

The cell library can be characterized for various operating conditions by defining

the operating_condition group. The operating_condition groups are

useful for testing timing and other characteristics of the design in predefined

environments. Temperature, voltage and process attributes can be specified in the

 30

operating_condition group and a number of groups can be created for various

operating conditions. The cell library should be characterized for every new operating

condition. Delay scaling factors (k-factors) should then be introduced for each cell to

scale the library values defined for nominal operating conditions.

5.1.3 Modeling Wire Load

The wire_load group and/or the wire_load_selection group is used to

provide information that the Design Compiler needs to estimate interconnect wiring

delays. These groups define estimated wire delays as a function of fanout when

determining wire resistance, capacitance, and area for a given length of wire. The wire

loads can be estimated using Donath's method [6].

 31

Bibliography

[1]J.B.Sulistyo and D.S.Ha: Developing standard cells for TSMC 0.25µm technology

under MOSIS DEEP rules, Department of Electrical and Computer engineering,
Virginia Tech, Technical Report VISC-2002-01, Jan 2002.

[2]Library compiler user guide, volume 1 & 2 v2001.08 Synopsys online documentation

[3]Library compiler reference guide, volume 1,2&3 v2001.08 Synopsys online
documentation

[4]Avant! Star HSPICE manual, chapter 27, release 1998.2, Jul 1998

[5]Pronita Mehrotra and Paul D. Franzon: Novel hardware implementation for fast
address lookup

[6]W. Donath: Placement and average interconnection lengths of computer logic, IEEE
Transaction on Circuits and Systems, vol. 26, no. 4, Apr. 1979, pp. 272-277

 32

Appendix

A1: Inverter worst case library file

/* NCSU TSMC 0.25um Synopsys(TM) library file for worst case. */

library(ncsulib25_worst){

technology (cmos);
delay_model : "table_lookup";

lu_table_template(rise_delay_table) {
 variable_1 : total_output_net_capacitance ;
 variable_2 : input_net_transition ;
 index_1("0.0, 20.0, 50.0, 250.0") ;
 index_2("34.7291, 146.3404, 368.0077, 872.8222") ;
 }

lu_table_template(fall_delay_table) {
 variable_1 : total_output_net_capacitance ;
 variable_2 : input_net_transition ;
 index_1("0.0, 20.0, 50.0, 250.0") ;
 index_2("30.2682, 119.7121, 306.7688, 727.2811") ;
 }

lu_table_template(rise_delay_table_cd) {
 variable_1 : total_output_net_capacitance ;
 variable_2 : input_net_transition ;
 index_1("0.0, 200.0, 1000.0, 5000.0") ;
 index_2("35.895, 306.09, 584.445, 1694.23") ;
 }

lu_table_template(fall_delay_table_cd) {
 variable_1 : total_output_net_capacitance ;
 variable_2 : input_net_transition ;
 index_1("0.0, 200.0, 1000.0, 5000.0") ;
 index_2("29.453, 258.413, 490.876, 1429.816") ;
 }

lu_table_template(constraint_table) {
 variable_1 : constrained_pin_transition ;
 variable_2 : related_pin_transition ;
 index_1("150.0, 600.0, 1200.0") ;
 index_2("150.0, 600.0, 1200.0") ;
 }

 default_inout_pin_cap : 5.0;
 default_input_pin_cap : 5.0;
 default_output_pin_cap : 0.0;
 default_fanout_load : 1.0;

 k_process_pin_cap : 0.0;

 33

 k_process_wire_cap : 0.0;
 k_process_wire_res : 1.0;
 k_temp_pin_cap : 0.0;
 k_temp_wire_cap : 0.0;
 k_temp_wire_res : 0.0;
 k_volt_pin_cap : 0.0;
 k_volt_wire_cap : 0.0;
 k_volt_wire_res : 0.0;

 input_threshold_pct_fall : 50.0;
 output_threshold_pct_fall : 50.0;
 input_threshold_pct_rise : 50.0;
 output_threshold_pct_rise : 50.0;
 slew_derate_from_library : 1.00;
 slew_lower_threshold_pct_fall : 20.0;
 slew_upper_threshold_pct_fall : 80.0;
 slew_lower_threshold_pct_rise : 20.0;
 slew_upper_threshold_pct_rise : 80.0;

 time_unit : "1ps";
 voltage_unit : "1V";
 current_unit : "1mA";
 pulling_resistance_unit : "1kohm";
 capacitive_load_unit (1.0, "ff");

 nom_process : 1.0;
 nom_temperature : 125.0;
 nom_voltage : 2.25;

cell(inv_1) {
 area : 41.9904 ;
 vhdl_name : "inv_1" ;

 pin(ip) {
 direction : input;
 capacitance : 4.9614;
 fanout_load : 1;
 }
 pin(op) {
 direction : output;
 max_capacitance : 250;
 max_fanout : 50;
 function : "ip'";

 timing() {
 related_pin : "ip";
 cell_fall(rise_delay_table) {
 values("34.069, 63.316, 58.809, 30.385",\
 "109.430, 142.350, 202.760, 209.830",\
 "214.060, 254.990, 312.630, 442.820",\
 "955.390, 992.520, 1065.800, 1286.200");}

 cell_rise(fall_delay_table) {
 values("31.295 55.569, 52.091, 84.112",\
 "110.060, 143.320, 172.680, 244.740",\
 "217.130, 253.810, 301.680, 495.930",\

 34

 "1099.200, 1043.100, 1109.600, 1192.400");}

 fall_transition(rise_delay_table) {
 values("30.382, 79.778, 138.530, 207.750",\
 "129.880, 157.380, 277.980, 365.840",\
 "297.480, 310.000, 341.100, 618.780",\
 "1510.200, 1486.000, 1410.300, 1480.800");}

 rise_transition(fall_delay_table) {
 values("37.353, 85.546, 83.193, 210.420",\
 "191.480, 166.800, 225.130, 553.980",\
 "418.230, 327.740, 377.490, 683.950",\
 "1810.500, 1541.000, 1630.700, 1636.200");}

 }
 }
 }
}

A2: Spice file for simulating inverter

* # FILE NAME: /AFS/UNITY.NCSU.EDU/USERS/V/VSUNDAR/CADENCE/SIMULATION/
* inv_1/hspiceS/extracted/netlist/inv_1.c.raw

.PARAM TD=10N PW=10N TRR=5N TRF=5N VDD=2.25
.GLOBAL VDD
.TEMP 125

.SUBCKT INPUT IN OUT

M111 IO IN VDD VDD tsmc25P L=240E-9 W=1.68E-6 AD=1.00799999857432E-12
+AS=1.10880000927377E-12 PD=2.88000001091859E-6 PS=3.00000010611257E-6
M=1
M311 IO IN 0 0 tsmc25N L=240E-9 W=840E-9 AD=503.999999287158E-15
+AS=554.400004636885E-15 PD=2.04000002668181E-6 PS=2.15999989450211E-6
M=1

C55 IN 0 148.06080331468E-18 M=1.0
C75 IN VDD 62.8559989100265E-18 M=1.0
C95 0 IO 296.788803894E-18 M=1.0
C115 VDD IO 165.215999823438E-18 M=1.0

EONE IN2 0 IO 0 1.0

M112 OUT IN2 VDD VDD tsmc25P L=240E-9 W=1.68E-6 AD=1.00799999857432E-
12
+AS=1.10880000927377E-12 PD=2.88000001091859E-6 PS=3.00000010611257E-6
M=1
M312 OUT IN2 0 0 tsmc25N L=240E-9 W=840E-9 AD=503.999999287158E-15
+AS=554.400004636885E-15 PD=2.04000002668181E-6 PS=2.15999989450211E-6
M=1

 35

C54 IN2 0 148.06080331468E-18 M=1.0
C74 IN2 VDD 62.8559989100265E-18 M=1.0
C94 0 OUT 296.788803894E-18 M=1.0
C114 VDD OUT 165.215999823438E-18 M=1.0

.ENDS

.SUBCKT INV IP OUT

M1 OUT IP VDD VDD tsmc25P L=240E-9 W=1.68E-6 AD=1.00799999857432E-12
+AS=1.10880000927377E-12 PD=2.88000001091859E-6 PS=3.00000010611257E-6
M=1
M3 OUT IP 0 0 tsmc25N L=240E-9 W=840E-9 AD=503.999999287158E-15
+AS=554.400004636885E-15 PD=2.04000002668181E-6 PS=2.15999989450211E-6
M=1

C5 IP 0 148.06080331468E-18 M=1.0
C7 IP VDD 62.8559989100265E-18 M=1.0
C9 0 OUT 296.788803894E-18 M=1.0
C11 VDD OUT 165.215999823438E-18 M=1.0

.ENDS

.lib "/tsmc025.l" SS
.lib "/tsmc025.l" NMOS
.lib "/tsmc025.l" PMOS

V0 VDD 0 VDD

VIP1 20 0 PULSE(0, VDD, 0, 2P, 2P, 10N, 20NS)
XIP1 20 30 INPUT
CinA 30 0 0fF
EA 40 0 30 0 1.0
XAND 40 50 INV
CL1 50 0 0fF

.MEASURE in_tran_fall TRIG V(40) VAL="0.8*VDD" FALL=2
+ TARG V(40) VAL="0.2*VDD" FALL=2
.MEASURE in_tran_rise TRIG V(40) VAL="0.2*VDD" RISE=2
+ TARG V(40) VAL="0.8*VDD" RISE=2

.MEASURE cell_fall TRIG V(40) VAL="0.5*VDD" RISE=2
+ TARG V(50) VAL="0.5*VDD" FALL=2
.MEASURE cell_rise TRIG V(40) VAL="0.5*VDD" FALL=2
+ TARG V(50) VAL="0.5*VDD" RISE=2

.MEASURE fall_transition TRIG V(50) VAL="0.8*VDD" FALL=2
+ TARG V(50) VAL="0.2*VDD" FALL=2
.MEASURE rise_transition TRIG V(50) VAL="0.2*VDD" RISE=2
+ TARG V(50) VAL="0.8*VDD" RISE=2

.TRAN 1N 50N

 36

********Cin = 0fF********
********CL = 20fF********

.ALTER
CL1 50 0 20fF
CinA 30 0 0fF

********CL = 50fF********

.ALTER
CL1 50 0 50fF
CinA 30 0 0fF

********CL = 250fF********

.ALTER
CL1 50 0 250fF
CinA 30 0 0fF

********Cin = 20fF********
********CL = 0fF********

.ALTER
CL1 50 0 0fF
CinA 30 0 20fF

********CL = 20fF********

.ALTER
CL1 50 0 20fF
CinA 30 0 20fF

********CL = 50fF********

.ALTER
CL1 50 0 50fF
CinA 30 0 20fF

********CL = 250fF********

.ALTER
CL1 50 0 250fF
CinA 30 0 20fF

********Cin = 50fF********
********CL = 0fF********

.ALTER
CL1 50 0 0fF
CinA 30 0 50fF

********CL = 20fF********

.ALTER
CL1 50 0 20fF
CinA 30 0 50fF

 37

********CL = 50fF********

.ALTER
CL1 50 0 50fF
CinA 30 0 50fF

********CL = 250fF********

.ALTER
CL1 50 0 250fF
CinA 30 0 50fF

********Cin = 150fF********
********CL = 0fF********

.ALTER
CL1 50 0 0fF
CinA 30 0 150fF

********CL = 20fF********

.ALTER
CL1 50 0 20fF
CinA 30 0 150fF

********CL = 50fF********

.ALTER
CL1 50 0 50fF
CinA 30 0 150fF

********CL = 250fF********

.ALTER
CL1 50 0 250fF
CinA 30 0 150fF

.OP
.save
.OPTION INGOLD=2 ARTIST=2 PSF=2 DCCAP POST PROBE=0
.END

 38

A3: Synthesis script and synopsys setup file

Example synthesis script

/**/
/* */
/* Basic NCSU Synthesis Script */
/* Set up for the 0.25u library */
/* */
/* Revision History */
/* 12/15/02: Author S. Vishwanath */
/* */
/**/
/**/
/* */
/* Read in Verilog file and map (synthesize) */
/* onto a generic library */
/* */
/**/

Read -f Verilog mult.v

/**/
/* */
/* Our first Optimization 'compile' is intended to */
/* produce a design that will meet hold-time */
/* under worst-case conditions: */
/* - slowest process corner */
/* - highest operating temperature and lowest Vcc */
/* - expected worst case clock skew */
/* */
/**/

/*--*/
/* Specify the worst case (slowest) libraries. */
/* The library has not been characterized */
/* for Operating conditions. */
/*--*/

target_library = {"ncsulib25_worst.db"}
link_library = {"ncsulib25_worst.db"}

/*--*/
/* specify a 5000 ps clock period with 50% duty cycle */
/* and a skew of 300 ps */
/*--*/

Create_clock -period 5000 -waveform {0 2500} clock
set_clock_skew -uncertainty 300 clock

/**/
/* */
/* Now set up the 'CONSTRAINTS' on the design: */
/* 1. How much of the clock period is lost in the */
/* modules connected to it */

 39

/* 2. What type of cells are driving the inputs */
/* 3. What type of cells and how many (fanout) must it */
/* be able to drive */
/* */
/**/

/*--*/
/* ASSUME being driven by a slowest D-flip-flop */
/* The DFF cell has a worst clock-Q delay of 900 ps */
/* Allow another 200 ps for wiring delay */
/* NOTE: THESE ARE INITIAL ASSUMPTIONS ONLY */
/*--*/

set_input_delay 1100 -clock clock all inputs() - clock

/*--*/
/* ASSUME this module is driving a D-flip-flip */
/* The DFF cell has a worst set-up time of 750 ps */
/* Allow another 200 ps for wiring delay */
/* NOTE: THESE ARE INITIAL ASSUMPTIONS ONLY */
/*--*/

set_output_delay 950 -clock clock all_outputs()

/*--*/
/* ASSUME being driven by a D-flip-flop */
/*--*/

set_driving_cell -cell "dp_2" -pin "q" all_inputs() - clock

/*--*/
/* ASSUME the worst case output load is */
/* 3 D-flip-flop (D-inputs) and */
/* and 0.5 units of wiring capacitance */
/*--*/

port_load = 0.5 + 3 * load_of (ncsulib25_worst/dp_2/ip)
set_load port_load all_outputs ()

/**/
/* */
/* Now set the GOALS for the compile */
/* */
/* In most cases you want minimum area, so set the */
/* goal for maximum area to be 0 */
/* */
/**/

set_max_area 0

/*--*/
/* During the initial map (synthesis), Synopsys might */
/* have built parts (such as adders) using its */
/* DesignWare(TM) library. In order to remap the */
/* design to our TSMC025 library AND to create scope */
/* for logic reduction, I want to 'flatten out' the */

 40

/* DesignWare components. i.e. Make one flat design */
/* 'replace_synthetic' is the cleanest way of doing this*/
/* */
/*--*/

replace_synthetic -ungroup

/*--*/
/* check the design before optimization */
/*--*/

check_design
check_timing

/**/
/* */
/* Now resynthesize the design to meet constraints, */
/* and try to best achieve the goal, and using the */
/* CMOSX parts. In large designs, compile can take */
/* a long time */
/* */
/**/

/*--*/
/* -map_effort specifies how much optimization effort */
/* there is low, medium, and high */
/* use high to squeeze out those last picoseconds */
/* -verify_effort specifies how much effort to spend */
/* making sure that the input and output designs */
/* are equivalent logically */
/*--*/

compile -map_effort medium -verify -verify_effort medium

/*--*/
/* Now trace the critical (slowest) path and see if */
/* the timing works. */
/* */
/* If the slack is NOT met, you HAVE A PROBLEM and */
/* need to redesign or try some other minimization */
/* tricks that Synopsys can do */
/*--*/

report_timing

/**/
/* */
/* Now resynthesize the design for the fastest corner */
/* making sure that hold time conditions are met */
/* */
/**/

/*--*/
/* Specify the fastest process corner and lowest temp */
/* And highest (fastest) Vcc */
/*--*/

 41

target_library = {"ncsulib25_best.db"}
link_library = {"ncsulib25_worst.db"}
translate

/*--*/
/* Set the design rule to 'fix hold time violations' */
/* Then compile the design again, telling Synopsys to */
/* Only change the design if there are hold time */
/* violations. */
/*--*/

set_fix_hold clock
compile -only_design_rule -incremental

/*--*/
/* Report the fastest path. Make sure the hold */
/* is actually met. */
/*--*/

report_timing -delay min

/*--*/
/* Write out the 'fastest' (minimum) timing file */
/* in Standard Delay Format. We might use this in later*/
/* verification. */
/*--*/

write_timing -output count_min.sdf -format sdf

/*--*/
/* Since Synopsys has to insert logic to meet hold */
/* violations, we might find that we have setup */
/* violations now. SO lets recheck with the slowest */
/* corner etc. */
/* */
/* YOU have problems if the slack is NOT MET */
/* 'translate' means 'translate to new library' */
/*--*/

target_library = {"ncsulib25_worst.db"}
link_library = {"ncsulib25_worst.db"}
translate

report_timing

/*--*/
/* Write out the resulting netlist in Verliog format */
/*--*/

write -f verilog -o count_final.v

/*--*/
/* Write out the resulting heirarchial netlist */
/* in Verliog format. We will need this */
/* for Silicon Ensemble */
/*--*/

 42

write -hierarchy -format verilog -output count_heirarchy.v

/*--*/
/* Write out the 'slowest' (maximum) timing file */
/* in Standard Delay Format. We might use this in later*/
/* verification. */
/*--*/

write_timing -output count_max.sdf -format sdf

Synopsys setup file: .synopsys_dc.setup

designer = "User Name" ;
company = "NCSU " ;

/* Search Path variables */
search_path = "/afs/eos.ncsu.edu/dist/cad445/local/TSMC025_deep
/afs/eos.ncsu.edu/dist/synopsys35a/packages/IEEE/lib" + search_path

/* Library Variables */
target_library = { ncsulib25_worst.db }
link_library = { ncsulib25_worst.db }
symbol_library = { ncsulib25_symbols.sdb basic.sdb }

/* IO Port variables */
edifin_lib_in_port_symbol = "ipin"
edifin_lib_out_port_symbol = "opin"
edifin_lib_inout_port_symbol = "iopin"
edifin_lib_in_osc_symbol = "iooff"
edifin_lib_out_osc_symbol = "ooff"
edifin_lib_inout_osc_symbol = "ioff"
edifin_lib_logic_1_symbol = "vdd"
edifin_lib_logic_0_symbol = "gnd"
edifin_lib_ripper_bus = "bus_end"
edifin_lib_route_grid = 1024
edifin_lib_templates=
{{A,landscape,Asize},{A,portrait,Asize.book},{B,landscape,Bsize},{C,landscape,Csize}
,{D,landscape,Dsize},{E,landscape,Esize},{F,landscape,Fsize}}

/* Power and Ground Variables */
edifin_ground_net_name = "gnd!"
edifin_ground_net_property_name = ""
edifin_ground_net_property_value = ""
edifout_ground_name = "gnd"
edifout_ground_net_name = "gnd!"
edifout_ground_net_property_name = ""

 43

edifout_ground_net_property_value = ""
edifout_ground_pin_name = "gnd!"
edifin_power_net_name = "vdd!"
edifin_power_net_property_name = ""
edifin_power_net_property_value = ""
edifout_power_name = "vdd"
edifout_power_net_name = "vdd!"
edifout_power_net_property_name = ""
edifout_power_net_property_value = ""
edifout_power_pin_name = "vdd!"
edifout_power_and_ground_representation = "net"

/* Net to Port Connection variables */
edifin_autoconnect_ports = "true"
single_group_per_sheet = "true"
use_port_name_for_oscs = "false"
write_name_nets_same_as_ports = "true"

/* Output variables */
edifout_netlist_only = "false"
edifout_target_system = "cadence"
edifout_instantiate_ports = "true"

A4: Part of post synthesis library file

The post synthesis library file for an inverter and D-Flipflop is shown
below.

/* ** */
/* FUNCTION: INV */
/* ** */

`celldefine

module inv_1(op, ip);

output op;
input ip;

specify

 specparam ip_op = 0;
 (ip=>op)=(ip_op);
endspecify

 not(op, ip);
endmodule
`endcelldefine

 44

/* ** */
/* FUNCTION: DFF */
/* ** */

`celldefine

module dp_2(q, ck, ip);

output q;
input ck, ip;

specify

 specparam ck_q = 0;
 specparam temp = 0;
 (ck=>q)= (ck_q);
 $setup(edge[01] ip, edge[01] ck, temp);
 $setup(edge[10] ip, edge[01] ck, temp);
 $hold(edge[01] ck, ip, temp);
 $width(negedge ck, temp);
 $width(posedge ck, temp);

endspecify

 prim_dff U1(q,ck,ip);
endmodule
`endcelldefine

/* ** */
/* FUNCTION : DFF Primitive table */
/* ** */

 primitive prim_dff(q,cp,d);
 output q;
 reg q;
 input cp,d;
 table
/* user defined primitive "prim_dff" as a table --useful for
 accelerated simulation and compiling a synthesis library */
// cp d : q : q+
// clocking data on the rising edge
 r 1 : ? : 1;
 r 0 : ? : 0;
// ignoring the falling edge of the clock
 n ? : ? : -;
// ignoring the edges on data
 * 0 : 0 : 0;
 * 1 : 1 : 1;
 ? * : ? : -;
 endtable
 endprimitive

