
ABSTRACT

MOHAN, RAMYA . Integration of Interconnect Models in a Circuit Simulator.
(Under the direction of Dr. Michael B. Steer.)

A novel approach is implemented for synthesizing equivalent circuits. The ap-

proach called the Foster’s approach finds its application in the transient simulation

of distributed structures. The implementation is analogous to that of a Voltage Con-

trolled Current Source, as it is a natural way to handle Admittance Matrix. The

two main features of this method are its guaranteed causality and good numerical

stability. The method is tested by simulating a six port power/ground plane and

comparing the results with measurements. Also, different analyses types are com-

pared and conclusions are made.



INTEGRATION OF INTERCONNECT MODELS

IN A CIRCUIT SIMULATOR

by

RAMYA MOHAN

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Master of Science

ELECTRICAL ENGINEERING

Raleigh

May 2003

APPROVED BY:

Chair of Advisory Committee



ii

To my parents who have been the most inspiring force of my life.



iii

BIOGRAPHY

Ramya Mohan was born in Coimbatore, India on 8th February, 1979. She received

the Electronics and Communication Engineering degree in June 2000 from Amrita

Institute of Technology and Science, affiliated to Bharathiar University, Coimbatore,

India. While pursuing her B. Engg. degree, she worked as a summer intern at

PRICOL (Premier Instruments and Controls Limited), Coimbatore, India, in the

field of Control Systems.

In Fall 2000 she was admitted into the masters program at North Carolina State

University. While working towards her masters degree she held a research assis-

tantship with the Electronics Research Laboratory in the Department of Electrical

and Computer Engineering. Her research interests include Computer Aided Circuit

Simulation, analog and RF Integrated Circuit Design. She is a member of the Insti-

tute of Electrical and Electronic Engineers.



iv

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my Advisor Prof. Michael B. Steer

for his guidance, patience and enthusiasm which were instrumental in motivating me

during my period of graduate studies. I would also like to express my sincere thanks

to Dr. Zhilin Li and Dr. Gianluca Lazzi for serving on my masters committee.

Also I would like to thank Dr. Carlos E. Christoffersen, for his knowledge and

patience in helping me understand fREEDA and programming. To Dr. Mete Ozkar

for the necessary inspiration. And to all my past and present student colleagues.



v

Contents

List of Figures vii

1 Introduction 1
1.1 Motivations and Objectives of This Study . . . . . . . . . . . . . . . 1
1.2 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Literature Review 3
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Asymptotic Waveform Evaluation . . . . . . . . . . . . . . . . 3
2.1.2 Convolution Based on Impulse Response . . . . . . . . . . . . 4
2.1.3 Numerical Inversion of Laplace Transform Technique . . . . . 4

2.2 Local Reference Terminal Concept . . . . . . . . . . . . . . . . . . . . 5
2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Background of Modified Nodal Admittance Matrix . . . . . . 5
2.2.3 Local Reference Terminal . . . . . . . . . . . . . . . . . . . . 7
2.2.4 Modified Nodal Admittance Matrix (MNAM) . . . . . . . . . 9

3 Implementation of Foster’s Model 11
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Implementation in fREEDA . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Technical Approach . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.2 Modified Nodal Admittance Matrix Representation . . . . . . 16
3.2.3 Filling of the MNA Matrix . . . . . . . . . . . . . . . . . . . . 16
3.2.4 Development of the MNA stamp . . . . . . . . . . . . . . . . 20

3.3 fREEDA Netlist format . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Simulations and Analysis 23
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Simulation and Measurement Results . . . . . . . . . . . . . . . . . . 24

4.2.1 AC Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.2 Transient Analysis . . . . . . . . . . . . . . . . . . . . . . . . 24



vi

5 Conclusion 31
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Bibliography 32



vii

List of Figures

2.1 Generic spatially distributed circuit. . . . . . . . . . . . . . . . . . . . 6
2.2 Equivalent circuit of a two-port distributed element. . . . . . . . . . . 7
2.3 Locally referenced groups that are isolated. . . . . . . . . . . . . . . 8
2.4 Illegal connection between groups. . . . . . . . . . . . . . . . . . . . . 9
2.5 Voltage source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Equivalent circuit realization for a complex pole pair in the self-admittance
term. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Equivalent circuit realization of a real pole term in the self-admittance. 13
3.3 Equivalent circuit realization of the contribution of a complex pole pair

to the trans-admittance term between ports i and j. . . . . . . . . . . 14
3.4 Equivalent circuit realization of the contribution of a real pole to the

trans-admittance term between ports i and j. . . . . . . . . . . . . . 14
3.5 Foster N -terminal network. . . . . . . . . . . . . . . . . . . . . . . . 18
3.6 Flow of linear circuit analysis program. . . . . . . . . . . . . . . . . 19

4.1 Structure of a 6-port interconnect. . . . . . . . . . . . . . . . . . . . . 23
4.2 AC analysis comparison at port 1. . . . . . . . . . . . . . . . . . . . . 25
4.3 AC analysis comparison at port 2. . . . . . . . . . . . . . . . . . . . . 25
4.4 AC analysis comparison at port 3. . . . . . . . . . . . . . . . . . . . . 26
4.5 AC analysis comparison at port 4. . . . . . . . . . . . . . . . . . . . . 26
4.6 AC analysis comparison at port 5. . . . . . . . . . . . . . . . . . . . . 27
4.7 AC analysis comparison at port 6. . . . . . . . . . . . . . . . . . . . . 27
4.8 Transient analysis comparison at port 1. . . . . . . . . . . . . . . . . 28
4.9 Transient analysis comparison at port 2. . . . . . . . . . . . . . . . . 28
4.10 Transient analysis comparison at port 3. . . . . . . . . . . . . . . . . 29
4.11 Transient analysis comparison at port 4. . . . . . . . . . . . . . . . . 29
4.12 Transient analysis comparison at port 5. . . . . . . . . . . . . . . . . 30
4.13 Transient analysis comparison at port 6. . . . . . . . . . . . . . . . . 30



1

Chapter 1

Introduction

1.1 Motivations and Objectives of This Study

Many techniques have been investigated for the transient simulation of distributed

structures as these are best modeled in the frequency domain where dispersive, radia-

tive and skin effects can be captured. Transient analysis based on frequency-domain

characterizations has been challenging because of convergence problems, non causality

in the transient simulation compliant transform of the frequency-domain character-

ization, aliasing problems in the conversion, the lengthy convolution and nonlinear

iterations and numerical ill-conditioning. Furthermore transient simulators have sig-

nificant problems with accuracy. It is not surprising therefore that harmonic balance

analysis has been critical to the modeling of microwave circuits with the dynamic

range required to model distortion with sufficient accuracy. Nevertheless, transient

analysis is important when analyzing large RF circuits, transient behavior including

electro-thermal effects are important and with the potential for oscillation and chaotic

behavior.

In this work, necessary developments are reported that make the simulation of N

number of ports with m poles numerically stable. The issue of robustness is addressed

by:

• Handling of local reference terminals.
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• Formulation of Modified Nodal Admittance Matrix Stamp.

• A methodology that uses Foster’s canonical form which facilitates the direct

synthesis of an equivalent circuit representation of the power distribution net-

works.

1.2 Organization of Thesis

There is a considerable amount of research related to the numerical stability of dis-

tributed circuits.

• Chapter 2 presents a review of previously published material on local reference

terminal and modified nodal admittance matrix formulation, with emphasis on

the recent developments.

• Chapter 3 presents the theory behind the application of Foster’s form and the

technical approach that was used in the implementation of the algorithm along

with an example.

• Chapter 4 presents the simulation results for a power/ground plane pair.

• Chapter 5 focuses on the direction of future research after the conclusions.
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Chapter 2

Literature Review

2.1 Introduction

Many techniques have been explored for incorporating distributed structure charac-

terizations including developing the impulse response and then convolution iterative

techniques. Asymptotic Waveform Evaluation (AWE) and Laplace Inversion are pow-

erful, but have limitations in applications. In addition to all of this Spice has a very

limited dynamic range corresponding to roughly a 1% accuracy or 20 dB dynamic

range. The most common SPICE transient analysis might also have simulation errors

as described in [7, 9].

2.1.1 Asymptotic Waveform Evaluation

As the network size gets larger conventional transient analysis techniques become less

efficient in producing results and AWE methods come into the scene with the sacrifice

of accuracy. AWE method reduces the dimension of the system of equations. Ac-

cording to [1], AWE is about 2 orders of magnitude faster than the regular transient

analysis methods. Modifications to AWE have been made for nonlinear circuits [1, 2].

Numerical inversion, convolution and piecewise linearization methods have been in-

troduced to use the AWE with nonlinear circuits. AWE technique can extract the low

frequency poles because the moments only carry information about the low frequency
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characteristics of the circuit. The higher frequency circuits cannot be modeled well

using AWE due to the infinite number of poles and a solution is described in [8]. Most

of the AWE methods use the Padé approximation and this and other approximations

used have stability problems as indicated in [6].

2.1.2 Convolution Based on Impulse Response

Unfortunately this technique suffers from two major limitations. One of these is the

aliasing problem associated with the inverse Fourier transform operation required to

extract the impulse response from frequency domain characterization. Many schemes

have been developed for extending the dynamic range but this has proved difficult to

apply in general. Causality has been a long running problem but has been alleviated

recently [3]. Even if the aliasing problem could be avoided, the convolution approach

suffers from excessive run times. The convolution integral, which becomes a convolu-

tion sum for the computer simulations, is O(N2
T ) when it is implemented (NT is the

total number of discrete time points used to divide the continuous time) [4].

2.1.3 Numerical Inversion of Laplace Transform Technique

This technique does not have aliasing problems since it does not assume that the

function is periodic. The inverse transform exists for both periodic and non-periodic

functions. There is no causality problem for double sided Laplace Transforms, either.

Unlike FFT methods, the desired part of the response can be achieved without doing

tedious and unnecessary calculations for the other parts of the response. Laplace

techniques suffer from the series approximations and the nonlinear iterations involved.

The advantages and the limitations of the Inverse Laplace Methods are discussed in

detail in [5].
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2.2 Local Reference Terminal Concept

2.2.1 Introduction

The distributed nature of many microwave and millimeter-wave circuits necessitates

electromagnetic modeling. Thus the full application of Computer Aided Engineering

(CAE) to these circuits requires the integration of electromagnetic models of dis-

tributed structures with conventional circuit analysis. In the formative stages of the

CAE of microwave circuits, ports were used in specifying the connectivity of net-

works. The utilization of ports avoided the issue of specifying reference terminals. In

analysis, using matrix manipulations or signal flow graphs, one of the terminals of a

port was used implicitly as a reference terminal and generally ignored in formulating

the mathematical model. The connection of discrete elements is specified nodally but

at the highest level of the hierarchy port-based descriptions are used. While it is pos-

sible to analyze any circuit with this arrangement it becomes increasingly difficult to

specify the connections of large spatially distributed circuits, and also to specify and

extract desired output quantities. The alternative to using port-only descriptions is

to exclusively use the terminal connectivity description; the only method used in gen-

eral purpose circuit simulators. The conventional terminal-based specification enables

circuit elements to be connected in any possible combination and only one reference

terminal (commonly called the global reference terminal or simply ground) is used

[14].

2.2.2 Background of Modified Nodal Admittance Matrix

Modified Nodal Admittance(MNA) Matrix analysis was developed to handle elements

that do not have nodal admittance descriptions. For each such element one or more

additional equations are added to the nodal admittance equations and these equations

become additional rows and columns in the evolving matrix system of equations. A

similar approach can be followed for the electromagnetic elements. The process is

a little more sophisticated, as it is no longer sufficient to add additional rows. In-

stead the concept of local reference terminals [12] was developed as a generalization
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of the compression matrix approach. This concept provides another way to incorpo-

rate alternate equations in the evolving MNA matrix. However, rather than adding

additional constitutive relations, the local reference terminal concept changes the way

the port-based parameters are used. Figure 2.1 shows a spatially distributed circuit

with local reference terminals indicated by the diagonal symbol. In a conventional

circuit only one reference terminal (ground) is possible so that application of KCL to

the global reference node introduces just one additional redundant row and column

in the indefinite form of the MNA matrix. For a spatially distributed circuit, KCL is

applied to each locally referenced group one at a time, as the local reference terminals

are electrically connected only through a spatially distributed element, each applica-

tion results in a redundant row and column in the MNA matrix. This is a particular

property of the port-based characterization of the spatially distributed element.
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Figure 2.1: Generic spatially distributed circuit.
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2.2.3 Local Reference Terminal

The basis of this approach is that in a multi-port element, the terminals of ports with

different local reference nodes can be considered isolated. For example, if we write

the equivalent circuit of a two-element derived from the port-based admittance (y)

parameters,


 i1

i2


 =


 y11 y12

y21 y22





 v1

v2


 , (2.1)

we obtain the equivalent circuit in Figure 2.2,

y11

y12 v2 y21 v1

y22v1 v2

1 2

3 4

Element

Figure 2.2: Equivalent circuit of a two-port distributed element.

Note that no current can flow between the two ports. This type of circuit model

can be generalized for a multi-port element where external and internal local reference

nodes are defined. The local reference shown in the Figure 2.2, are internal because

they are used internally in the element to measure the voltage at its ports. An external

local reference terminal, on the other hand, is an arbitrary chosen terminal from a

locally referenced group. In general, for any spatially distributed circuit, Figure 2.1,

there is no current between port groups inside the spatially-distributed element. Thus

the circuit can be divided into subcircuits, each with a local reference terminal, as

shown in the Figure 2.3. Each sub-circuit is isolated with respect to the others, so
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there is no change in the circuit behavior if all the reference nodes are connected

together. The difference is that now there is only one global reference node for all the

circuit, and standard model methods can be used to formulate the circuit equations.

Locally
Referenced

Group

Locally
Referenced

Group

Locally
Referenced

Group

Figure 2.3: Locally referenced groups that are isolated.

The problem becomes that of detecting violations to the assumption that each

locally referenced group is isolated from the others and that there is exactly one

reference terminal for each one. Such a situation is shown in the figure 2.4. The

effect of the connection of the lumped element between the two locally referenced

groups in the figure is the creation of a current loop that is non-physical since the

two circuits cannot be connected instantaneously. On the other hand, it is valid for

two subcircuits to be connected by more than one spatially distributed element. It is

also possible for two ports of a spatially distributed element to be connected to the

same locally referenced group (for example a delay line). In this case, the external

local reference teminal would be the same for both ports of the line, but internally,
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the line still has two local reference terminals. After all the checking is done, all the

local reference terminals are merged into a single global reference terminal, and the

solution of the circuit is found by standard procedures. The terminal voltages found

are coincident with the voltages referred to each local reference terminal.

Referenced
Locally

Group

Referenced
Locally

Group

lumped element

current loop

Figure 2.4: Illegal connection between groups.

2.2.4 Modified Nodal Admittance Matrix (MNAM)

The MNAM of the linear sub-circuit is formulated as follows: Define two matrices G

and C of equal size nm, where nm is equal to the number of non-reference nodes in

the circuit plus the number of additional required variables. Define a vector s of size

nm for the right hand side of the system. The contributions of the fixed sources and

the non-linear elements (which depend on the time t) will be entered in this vector.

All conductors and frequency-independent MNAM stamps arising in the formulation

will be entered in G, whereas capacitor and inductor values and other values that

are associated with dynamic elements will be stored in matrix C. The linear system

obtained is the following:

Gut + C
du(t)

dt
= s(t) (2.2)
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and the system matrix obtained for any s, is,

T = G + sC. (2.3)

For instance, consider a voltage source as in Figure 2.5. The nodes are denoted by

N+ and N−, and the voltage source enforces the condition,

VN+ − VN− = E. (2.4)

E

-

+N

N

Figure 2.5: Voltage source.

This constitutive equation is in terms of the terminal voltages and is appended to

the set of previously defined equations. In addition, a current I will flow between the

terminals N+ and N−. To unify the notation, the currents at either of the terminals

will be considered to be positive; thus for the voltage source IN+ = I, IN− = −I.

They are taken into account in the KCL as a new variable: I in the N+ th row and

−I in the N− th row. The matrix will have the following form:




1

−1

1 −1




. (2.5)

The increased size of the matrix is seen clearly from the extra row and column.
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Chapter 3

Implementation of Foster’s Model

3.1 Introduction

Foster’s representation of distributed circuits is adopted because its convenient to

synthesize equivalent circuits and it is also the output form of VectFit (Vector Fitting

Algorithm). Foster’s canonical representation is given as,

H(s) =
m∑

j=1

(
kj

s− pj

)
+

m∑

j=1

(
aj

s− bj

+
a∗j

s− b∗j

)
(3.1)

where kj/(s − pj) represents the real pole and aj/(s − bj) and a∗j/(s − b∗j) together

represents the complex conjugate pairs. This form is guaranteed to be causal and

circumvents the main problem with problem in implementing reduced order models

as was indicated in the literature at the beginning of this paper. Since in linear

analysis we want to use the Modified Nodal Admittance matrix technique we take

the Foster’s model as an N -port defined by an admittance matrix.

This is a methodology that facilitates the direct synthesis of an equivalent circuit

representation of the power distribution network in terms of lumped circuit elements

e.g., resistors, inductors, capacitors, dependent sources, etc and is demonstrated using

the approach of Joon and Cangellaris [13] and is described in the following pages.

The methodology begins with the extraction from the discrete model of a frequency-

dependent multi-port admittance representation of the power distribution network.

The ports of the power distribution network are defined as the physical locations at
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which the power distribution connects to the voltage regulator, the power and ground

pin connections at the die, as well as the pins at which decoupling capacitance will

be connected. As discussed in detail in [10], through the application of the passive

order reduction process [11], the closed-form admittance matrix representation of a

power distribution network with N ports can be written in pole-residue form as,

Y (s) =




M∑
k=1

R11
k

s−Pk
. . .

M∑
k=1

R1N
k

s−Pk

...
M∑

k=1

Rii
k

s−Pk

...

M∑
k=1

RN1
k

s−Pk
. . .

M∑
k=1

RNN
k

s−Pk




(3.2)

where all the elements share the same set of M poles, P1, P2, ... , PM . The poles

are in general complex and due to the passivity of the generated reduced model,

are all stable. Since complex poles occur in complex conjugate pairs, with their

corresponding residues being complex conjugates also, the expression for the current

at the ith port in terms of the N port voltages may be cast in the form,

I i =




MC∑

k=1

(
Ri1

ck + R̄i1
ck

)
s−

(
Ri1

ckP̄ck + R̄i1
ckPck

)

s2 −
(
Pck + P̄ck

)
s + |Pck|2

+
MR∑

k=1

Ri1
rk

s− Prk


 V 1 + · · ·




MC∑

k=1

(
Rii

ck + R̄ii
ck

)
s−

(
Rii

ckP̄ck + R̄ii
ckPck

)

s2 −
(
Pck + P̄ck

)
s + |Pck|2

+
MR∑

k=1

Rii
rk

s− Prk


 V i + · · ·




MC∑

k=1

(
RiN

ck + R̄iN
ck

)
s−

(
RiN

ck P̄ck + R̄iN
ck Pck

)

s2 −
(
Pck + P̄ck

)
s + |Pck|2

+
MR∑

k=1

RiN
rk

s− Prk


 V N (3.3)

where complex conjugation is indicated with the over bar, MC is the number of pairs

of complex poles and MR is the number of real poles. The synthesis methodology is

then based on the interpretation of each one of the terms in the equation above in

terms of an equivalent circuit.

Starting with the self-admittance term for the kth complex pole pair,

I ii
ck =




(
Rii

ck + R̄ii
ck

)
s−

(
Rii

ckP̄ck + R̄ii
ckPck

)

s2 −
(
Pck + P̄ck

)
s + |Pck|2


 V i. (3.4)

Its equivalent circuit realization is shown in the Figure 3.1, For the kth real pole,
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         term

   complex

−

+

self admittance

iV

C2r

L

1r

Figure 3.1: Equivalent circuit realization for a complex pole pair in the self-admittance
term.

Rii
k

s− Pk

V i (3.5)

The equivalent circuit realization for the real pole is shown in the Figure 3.2, For the

   real

−

+

self admittance
         term

iV
L

r

Figure 3.2: Equivalent circuit realization of a real pole term in the self-admittance.

equivalent circuit realization of trans-admittances it is noted that the contribution of

the j th port voltage to the current of the ith port through the kth complex pole pair,

I ij
ck, may be expressed in terms of the self-contribution of the j th port voltage to its
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current through the same (kth) complex pole pair, I ij
ck, as

I ij
ck =

(
Rij

ck + R̄ij
ck

)
s−

(
Rij

ckP̄ck + R̄ij
ckPck

)
(
Rij

ck + R̄jj
ck

)
s−

(
Rjj

ckP̄ck + R̄jj
ckPck

)I ij
ck. (3.6)

This form suggests an equivalent circuit realization in terms of a current-controlled

current source in the Figure 3.3, For the real pole it is very similar to the above and the

      complex      complex

i

                  
trans−admittance term

−

+
j

ij

trans−admittance terms

ij

dependent source for ijY

ckI
ckI

V

2
r

1
r

kV

C

L

Figure 3.3: Equivalent circuit realization of the contribution of a complex pole pair
to the trans-admittance term between ports i and j.

resulting equivalent is shown in Figure 3.4, In this way the equivalent circuit for the

realreal

ij

                  
trans−admittance term

−

j
+

i

ij

dependent source for 
trans−admittance terms

ijY

rkI

V

R

kV L

Irk

Figure 3.4: Equivalent circuit realization of the contribution of a real pole to the
trans-admittance term between ports i and j.

ith port resulting from the integration of all the equivalent sub-circuit realizations
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of each of the terms in the pole-residue representations of the self-admittance and

trans-admittance terms can be derived.

3.2 Implementation in fREEDA

The N -port Foster’s model is directly incorporated in the Modified Nodal Admittance

Matrix (MNAM) in the circuit simulator (fREEDA). The implementation is analo-

gous to that of a multi-terminal linear Voltage Controlled Current Sources (VCCSs)

although a direct implementation is preferred for simulation speed and robustness as

well as netlist robustness (that is specifying a single element rather than a complex

circuit of VCCSs).

The method followed here is the Pole−Residual method as it has good numerical

stability.

3.2.1 Technical Approach

Foster’s model describes an admittance matrix wherein each element in the multi-port

Admittance Matrix is represented as a rational function in pole− residue format. In

this format, different elements of the Admittance matrix may have different values

for the poles. However all the elements in the admittance matrix must have the same

set or number of poles although there can be any number of N -port Foster models,

each one having a different number of poles. The restriction on the number of poles

of the admittance matrix elements being the same comes about because time-domain

analysis requires derivatives of the modified nodal admittance matrix. (If only steady-

state analysis, as in Harmonic Balance analysis, then there would not be this pole

restriction but the key guiding principal we have followed is to use the same model in

all circuit analyses). The current widely accepted practice for incorporating models

in a simulator is to develop a stamp which in this case is the sub-matrix entry in the

MNA matrix of the linear network.
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3.2.2 Modified Nodal Admittance Matrix Representation

For the MNAMs, the Sparse matrix package Sparse1.3 is used. It is a flexible package

of subroutines written in C that quickly and accurately solves large sparse systems of

linear equations. It also provides utilities such as MNAM reordering and other utilities

suited to circuit analysis. There is one sparse matrix per frequency. The linear system

solving capability is used to calculate the matrices. The SuperLU package (C) is used

for general sparse matrix handling.

3.2.3 Filling of the MNA Matrix

The number of ports and number of poles (and also the data file set) are taken as the

required input parameters in the netlist.

Suppose we have a 2-port network, there could be either 1 or 4 instances of the

given ‘element’ (NPortFoster), that is, if

Y (s) = [H11(s) H12(s); H21(s) H22(s)] (3.7)

then each Hii(s) could be represented as an instance by this element, depending on

the way it is connected in the network.

In the data set, there is a real pole-residue value and a complex pole-residue

value. The complex pole-residue value is converted to real pole residue format and

then inserted in the matrix. In this way the element is created for each transfer

function and connected in the circuitry.

The is done using the function called fillMNAM function in fREEDA which fills

the modified nodal admittance matrix with the calculated transfer function values.

Six Port Network

Consider for example a six-port network where there can be any number of terminals

between 7 and 12 depending on the number of LRGs. For illustrative purposes,

consider that there is just one Local Reference Terminal. Thus there are 7 terminals

numbered from 0 to 6, with the terminal number 6 taken as the reference. A loop is

put with respect to the fillMNAM function. For each iteration of the loop, the transfer
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function is evaluated and inserted in the MNAM. Thus for a six port representation

in the frequency domain, the transfer function matrix would resemble the following,

i

→

j ↓




Y11 Y12 . . . Y16

Y21 Y22 . . . Y26
...

...
. . .

...
Y61 Y62 . . . Y66




.

(3.8)

Here Y11 to Y66 each would contain the given data set, meaning the number of

complex pole pairs and the real poles.

The representation for a N -terminal device defined by,

I(s) = H(s)V (s) (3.9)

and is shown in the Figure 3.5.

The transfer function that is calculated above for each real pole and complex pole

is filled in the MNAM using the setQuad function given by,

mnam -> setQuad ( getTerminal(i)->getRC(),

getTerminal(ports)->getRC(),

getTerminal(j)->getRC(),

getTerminal(ports)->getRC(),g)

wherein each admittance matrix element Yij has the Admittance matrix stamp


 g −g

−g g


 . (3.10)

Netlist

〈element name〉:〈instance name〉 〈〈port specification〉 local reference group

count as a vector〉 filename = 〈filename〉 ports = 〈number of ports〉 poles =

〈number of poles〉.
For example, for the multiport, multiple reference group, the format is,

NPortFoster:f1 1 0 2 0 3 0 4 0 5 0 6 0 filename = “transimtest.dat”

ports = 6 poles = 36
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Figure 3.5: Foster N -terminal network.
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*Local reference terminal

.ref 0

The algorithm is summarized in the flowchart, given in Figure 3.6.

START

READ CIRCUIT
DESCRIPTION

FORMULATE
MODIFIED NODAL

ADMITTANCE
MATRIX

REDUCE ADMITTANCE
MATRIX TO
TWO PORT

OUTPUT
RESULTS

STOP

Figure 3.6: Flow of linear circuit analysis program.
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3.2.4 Development of the MNA stamp

In this section the transfer function based on Foster’s model is solved and the MNA

stamp for the model developed. Time domain analysis involves complexity in the

calculation of the Modified Nodal Admittance Matrix as it involves the derivatives.

The transfer function H(s), voltage V (s) and the current I(s) are related as:

I(s) = H(s)V (s) (3.11)

and

H(s) =

(
kj

s− pj

)
+

(
ajs + bj

s2 + cjs + dj

)
(3.12)

where j varies from 1 to M .

The MNA stamp is built from stamps for the individual poles. Consider the real

pole, (kj/(s− pj)), first. Then

I(s) =

(
kj

s− pj

)
V (s). (3.13)

Taking the inverse Laplace transform and rearranging,

i +

(
kj

pj

)
v −

(
1

pj

)
di

dt
(3.14)

where v = vm−vn, the voltage difference between nodes m and n. The real pole adds

one extra row and column.

Then the MNA matrix stamp is

x :




1

−1

kj −kj pj




(3.15)

and its first derivative is

dx

dt
:




−1




. (3.16)

Next consider the complex conjugate pole pair in the term
(

aj

s− bj

)
+

(
a∗j

s− b∗j

)
. (3.17)
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When multiplied out this yields the real term

(
ajs +

bj

s2
+ cjs + dj

)
(3.18)

and so

I(s) =

(
ajs +

bj

s2
+ cjs + dj

)
V (s). (3.19)

Taking the inverse Laplace transform and rearranging,

d2i

dt2
+ cj

di

dt
+ dii− aj

dv

dt− bjv
= 0 (3.20)

Since this involves second derivative terms, we take an auxiliary variable, say x, and

define it as:

x =
di

dt
(3.21)

and so

x =
d2i

dt2
(3.22)

Then the MNA stamp is

x :




1

−1

−bj bj dj

1




(3.23)

and its first derivative is

dx

dt
:


 −aj aj cj 1

1




(3.24)

The number of extra rows and columns in the time domain implementation

(fillMNAM) function) analysis is given by,

Extra rows and columns = size of real pole + 2× size of complex pole

The factor of two is present here because of the complex conjugate pairs.
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3.3 fREEDA Netlist format

With respect to the Figure 2.1, for [(E1−1)+(E2−1)+ . . .+(Em−1)+ . . .+(EM −
1)] ports and p poles, the netlist format is,

NPortFoster:〈instance name〉
+ 11 E1 21 E1 . . . (E − 1)1 E1

+ . . . 1m Em 2m Em . . . em Em . . . (E − 1)m Em

+ . . . 1M EM 2M EM . . . eM EM . . . (E − 1)M EM

+ filename = “inputfile.dat′′

+ ports = [(E1 − 1) + (E2 − 1) + . . . + (Em − 1) + . . . + (EM − 1)] poles = p
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Chapter 4

Simulations and Analysis

4.1 Introduction

In this chapter we first describe a 6-port interconnect (power/ground plane). Then we

show the results of simulation and measurements on that system. Towards the end,

we compare the performance of the different types of transient analysis simulation

using different time stepping algorithms to solve the equations.

The structure involves the simple configuration of a 6-pin power/ground plane

pair as shown in the figure 4.1 The length of the planes is 8 cm, the width 4 cm

Figure 4.1: Structure of a 6-port interconnect.
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and the plane separation is 2 mm. The insulating material between the planes has a

relative dielectric constant of 2.33. The frequency bandwidth of interest is 4.5GHz.

The top plane is ground plane and the bottom plane is power plane. The six red

squares represent six power pins. The gap between the power pin and ground plane

is the port where external circuits are connected.

4.2 Simulation and Measurement Results

The following two figures are the result of the comparison between Spice and tran2

(Time-Marching Transient analysis) and tran3 (Time-Marching Transient analysis

with variable time step) analyses of fREEDA.

This result is that of a 6 - port network with 36 * 36 real poles and 36 * 36 complex

conjugate pairs.

4.2.1 AC Analysis

AC Analysis was carried out at a frequency of 4GHz with a 1V ac input in both

SPICE and fREEDA (for tran2-Time Marching Transient Analysis and tran3-Time

Marching Transient Analysis with variable Time step). The Figures 4.2, 4.3, 4.4, 4.5,

4.6, 4.7 show this comparison.

4.2.2 Transient Analysis

A square wave input of pulse width 100e-9 seconds with a rise and fall time of 0.1e-9

seconds was applied to the power pin. The Figures 4.8, 4.9, 4.10, 4.11, 4.12, 4.13

show the comparison between SPICE, tran2 and tran3 analysis of fREEDA at all the

ports.
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Figure 4.2: AC analysis comparison at port 1.
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Figure 4.4: AC analysis comparison at port 3.
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Figure 4.5: AC analysis comparison at port 4.
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Figure 4.6: AC analysis comparison at port 5.
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Figure 4.7: AC analysis comparison at port 6.
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Figure 4.8: Transient analysis comparison at port 1.
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Figure 4.9: Transient analysis comparison at port 2.
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Figure 4.10: Transient analysis comparison at port 3.
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Figure 4.11: Transient analysis comparison at port 4.
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Figure 4.12: Transient analysis comparison at port 5.
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Figure 4.13: Transient analysis comparison at port 6.
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Chapter 5

Conclusion

5.1 Conclusion

Foster’s canonical representation of the transfer characteristic of linear systems was

developed as it is the key to the causal, fully convergent, incorporation of distributed

structures in transient circuit simulators.

The main conclusion of this Thesis are:

• The model developed here is passive and hence is stable.

• Pole−Residual method followed here gives excellent numerical stability.

• The method serves as a good choice when robustness is given importance, as

it facilitates the direct synthesis of an equivalent circuit representation of the

power distribution networks and hence do not slow down the analysis.

This form is guaranteed to be causal and circumvents the main problem in imple-

menting reduced order models of distributed structures including interconnects and

electromagnetic modeled spatially distributed structures.
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