
ABSTRACT

HATTANGADY, SANDEEP K. Development of a Block Floating Point Interval ALU
for DSP and Control Applications. (Under the direction of Professor Willam W.
Edmonson).

With the advent of interval arithmetic, numerical analysis on real numbers has

come to be classified into theoretical analysis or analysis based on point-wise arith-

metic, and interval analysis or analysis based on interval arithmetic. With com-

putational reliability gaining importance, interval analysis has been proposed as a

technique to provide a certificate of reliability to the computations. However, soft-

ware implementations for interval arithmetic show poor execution rates. Therefore,

computationally intense applications in digital signal processing and control systems

resort to fixed-point hardware implementations, which provide better solutions to

these problems with high throughput. However, fixed point architectures are suscep-

tible to overflow errors leading to unreliable results, which cannot be tolerated with

interval operations in particular.

This work develops a Block Floating Point Interval ALU (BFPIALU) to attain

reliable interval arithmetic on fixed point architectures. BFP support is provided

through the ability to perform special BFP operations such as Exponent Detection

and Normalization in its command set. Overflow is handled by a need-based scaling

technique known as Conditional Block Floating Point Scaling (CBFS) technique.

The ability to perform point-wise computations is also included by incorporating

modifications in the interval architecture that allow it to function as two parallel

ALU units for such computations.

This work models throughput for the pipelined BFPIALU architectures in terms

of the clock rate, the number of pipeline stages and the number of overflows. It

presents a four-stage pipelined architecture that can provide a throughput of 86.1 M

samples per second and perform upto 258.4 million interval operations per second.

The architecture can also perform 516.8 million point-wise operations per second.
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Chapter 1

Introduction

Modern numerical analysis with real numbers includes the techniques of interval

analysis and theoretical analysis [1]. Interval analysis performs arithmetic on ranges of

real numbers known as intervals, whereas theoretical analysis performs arithmetic on

exact real numbers. Today, interval analysis is a mature discipline and finds use in not

only digital signal processing applications such as fuzzy adaptive filtering [2] and error

analysis [1] but also control applications such as decision systems [3]. Knowledge-

based systems employ intervals to model imprecise quantities such as knowledge [4].

Many interval-based algorithms have been developed to address more and more com-

plex problems such as solving systems of nonlinear equations, determining eigenvalues

and eigenvectors of matrices, finding roots of functions, and performing global opti-

mization [5].

Recognizing the growing importance of interval-based algorithms, software pack-

ages such as the Sun Forte Fortran 95 compiler, the GNU Fortran compiler, the Sun

C / C++ compiler, Frink programming language, Boost C++ package and many

others provide support for interval arithmetic. The complete list of software that

support interval arithmetic is available at [6]. However, software implementations of

the interval-based algorithms have fallen well short of expectations in terms of per-
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formance [7]. The cause for this is attributed to the overhead due to function calls,

memory management issues, error and range checking, changing rounding modes, ex-

ception handling and many others [8]. Furthermore, checking the sign of the input

interval endpoints for interval multiplication leads to a set of conditional statements.

This, in turn, could lead to frequent flushing of pipelines in a processor. These issues

are computationally costly and can be mitigated by providing hardware support for

interval operations.

Gupte, R. et.al. [9] implemented a fixed point Arithmetic Logic Unit (ALU) ded-

icated to interval computations for digital signal processing and control applications

to address the problem of slow program execution. While the interval ALU is compet-

itive in its throughput and power consumption, it is prone to overflow errors owing to

bit growth beyond the limits of the fixed point numeric representation. Overflow can

occur when frequently used operations such as multiply-accumulate are performed

successively a large number of times in this implementation. Interval arithmetic can

cease to be reliable and this defeats the main purpose of using it. Interval arithmetic

aims to provide reliable bounds on the results of point-wise evaluations, thereby pro-

viding a certificate of reliability to such computations.

This work explores the Block Floating Point (BFP) hardware scheme with condi-

tional output scaling to handle overflow errors and provide reliable interval arithmetic.

Superpipelining is applied to the basic architecture to obtain designs with a higher

degree of pipelining. The result is a set of designs that can operate at higher clock

rates. The choice of the optimal design from this design space is performed by pri-

oritizing throughput based on factors such as clock rate, number of overflows and

the number of pipeline stages for the intended application. Throughput is a very

important design criterion for signal processing and control applications.
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1.1 Description of the Problem

Fixed point implementations in hardware are found to be small in size, involve low

implementation costs and have low power consumption as compared to their floating

point counterparts when all factors such as the number of bits are kept identical. In

spite of these advantages, fixed point designs are plagued by the problem of small

dynamic range. A limited dynamic range leads to overflow errors when we represent

binary numbers whose bit length exceeds the limits imposed by the chosen number

format. In the normal overflow scheme for fixed point two’s complement arithmetic,

overflow results in wrap-around, where attempts to represent a positive number just

outside the representable range results in its interpretation as a large negative number,

and vice versa [10]. The consequence is that the computed result no longer represents

the true value and this makes wrap around a highly undesirable phenomenon.

Figure 1.1 depicts the case for overflow in two’s complement fixed point integer

arithmetic with a maximum value of +(N-1) and a minimum value of -N, where N is

the limit for number representation with a finite number of bits.
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Figure 1.1: Wrap around in two’s complement arithmetic.

The definition of an interval is violated when wrap around occurs in fixed point
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interval arithmetic. By definition, a closed finite real interval is defined as an or-

dered set of all real numbers {x ∈ < : a≤x≤b} lying between and including the

real endpoints a and b. Closed in this particular context means the endpoints are

included as a part of the interval. Therefore, an interval represents a range of real

numbers bounded and denoted by its endpoints. Interval operations are performed

on the interval endpoints which are represented using fixed point or floating point in

computer arithmetic. We present an example that clearly illustrates the outcome of

wrap around in the Q7.8 fixed point format, devoting 8 bits to integer representation

and 8 bits to the fractional part. By doing this, we aim to highlight the overflow

errors that beset the work of [9].

We choose the Q7.8 format in order to match the input data format of the interval

ALU of [9]. The interval ALU stored its intermediate interval endpoints in the 32-bit

Q15.16 fixed point format and a 16-bit integer output was obtained by performing

outward rounding on the fractional part of both interval endpoints. In this experi-

ment, we compute the sum of an interval divergent geometric series
N∑

n=0

an with a =

[1.10, 1.15] and N arbitrarily equal to 75 as if it were computed in the interval ALU.

Such a computation enables us to observe the fast growth in the magnitude of the

terms and wrap around can be observed better.

It is observed that when the magnitude of the upper bound exceeds +32767, it

wraps around the positive maximum and assumes a value which is less than the lower

bound. Therefore, the result is incorrect and a state of error has been entered since

the output interval does not enclose the true result. Figure 1.2 illustrates the incorrect

output intervals obtained after overflow.

The above mentioned experiment clearly indicates that an appropriate scheme is

needed so that the integrity of interval computations is maintained. We feel the need

for firm guidelines to formulate such a scheme and ensure that fixed point interval

arithmetic never falls into a state of error. Furthermore, we also feel the need to
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Figure 1.2: Wrap around in divergent interval series (Q7.8 format)

expand the capabilities of the interval ALU [9] so that exact or point-wise evaluations

may also be performed in the interval ALU and both theoretical and interval analysis

can be performed in the same ALU efficiently. All these factors have led to the

development of an interval ALU with Block Floating Point support.

1.2 Background

With the increasing importance of fast execution for interval-based algorithms,

the focus has shifted to the development of competitive interval hardware architec-

tures that match the performance of non-interval architectures. While floating point

implementations of interval hardware have been carried out previously [8] [11] [12] [13]
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as a solution to poor execution rates, there is only one dedicated fixed point interval

ALU for DSP and Control applications that has been designed and tested [9]. The

fixed point interval ALU has dedicated modules for computing the upper and lower

bounds of the interval output and is followed by a dedicated rounding module that

performs outward rounding on the interval result. This design has recorded a com-

petitive throughput on the order of 56 MIOPS (Millions of Interval Operations per

Second) for the non-pipelined design and about 307 MIOPS for a 7-stage pipelined

design [9]. A shortcoming of the design is that overflow errors are not taken into con-

sideration. Therefore, the accumulator overflows over a large time of accumulation

leading to unreliable results. The proposed interval ALU, developed in this work,

utilizes the skeleton of its architecture from the design of [9].

The proposed interval hardware will adhere strictly to certain criteria for reliable

results. The work of Van Emden [14] established these criteria as correctness, totality,

closedness, optimality and efficiency for floating point interval arithmetic. These

same criteria have been adopted for the fixed point implementation since the Block

Floating Point (BFP) operations using the proposed interval ALU are performed on

the underlying fixed point hardware. These criteria serve as a guideline for making

critical decisions pertaining to the hardware design such as the selection of appropriate

rounding modes and overflow handling techniques.

Our work explores the architecture of a BFP arithmetic-based interval ALU in

order to provide reliable interval operations. BFP arithmetic provides a dynamic

range higher than that provided by conventional fixed point representations. In a

typical BFP implementation, the input data is divided into non-overlapping blocks

along with an integer block exponent term associated with each block. It is possible

to detect the magnitudes of data samples in a block of data and then normalize

them to bring them all to a common exponent so that fixed point computations may

be performed. BFP arithmetic support for point-wise evaluations in most DSPs is

typically provided in the form of Exponent Detection and Normalization instructions

[15]. Exponent Detection, when applied to a data sample, provides the number of
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redundant sign bits present, thereby indicating its magnitude [16]. A small number

of redundant sign bits indicates a large magnitude for the sample, and vice versa.

Exponent Detection is performed over a block of data to identify the largest magnitude

among all samples and then all the data samples in that block are shifted left by this

number. Hence, all data samples in that block are normalized and carry the same

exponent. Therefore, fixed point computations can be performed. Normalization

implies Exponent Detection followed by left shifting in a single operation [15]. BFP

arithmetic has been successfully applied to digital filters [17] and the Fast Fourier

Transform [15] [18].

Most commercial DSPs today support BFP operations for point-wise evalua-

tions. Fixed point DSPs such as Analog Devices ASDP-21xx, Texas Instruments

TMS320C54x [15], SGS-Thomson D950-CORE, Zoran ZR3800x, DSP Group OakD-

SPCore and uPD7701x provide single cycle Exponent Detection. However, DSPs

from the AT&T DSP16xx family (other than DSP1602 and DSP1605) are the only

ones that provide single cycle Normalize instructions. Other DSPs such as the Texas

Instruments TMS320C2x, TMS320C5x, the DSP Group PineDSPCore, the Motorola

DSP5600x and DSP561xx provide iterative normalization instructions where an n-bit

number takes n-cycles to normalize [15]. However, these DSPs do not provide spe-

cialized interval arithmetic support with BFP, which is necessary while considering

the issues of reliability.

The information on BFP arithmetic is not complete without a mention of the

techniques that are used handle overflow errors. The choice of a good overflow han-

dling scheme that also meets the criteria mentioned above is essential to perform

reliable fixed point interval arithmetic. The overflow handling techniques are named

Input Scaling and Conditional Block Floating-point Scaling (CBFS) depending upon

whether data is scaled a priori or a posteriori respectively to mitigate the effect of

overflows [19] [20] [21]. Each technique is discussed in Chapter 3 in detail.
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1.3 Contribution

This thesis makes the following contributions to the current work on fixed point

interval hardware architectures. To the best of our knowledge, no other current

research has applied the concept of BFP arithmetic to intervals in order to achieve

reliable arithmetic.

1. We present an interval ALU with BFP arithmetic support and CBFS for han-

dling overflow errors in fixed point operations

2. We modify the interval architecture to facilitate both point-wise operations for

theoretical analysis and interval operations for interval analysis

3. We expand the command set for the interval ALU by introducing logical and

comparison operations

1.4 Thesis Organization

This thesis is organized in the following manner: Chapter 2 introduces interval

arithmetic and describes its operations. It also describes the criteria that serve as

a guideline to implement reliable arithmetic in fixed point hardware. Chapter 3

discusses Block Floating Point arithmetic. It describes two overflow handling tech-

niques associated with BFP arithmetic, namely Input Scaling and Conditional Block

Floating-point Scaling (CBFS). Chapter 4 presents the Q0.15 fixed point format and

illustrates how to perform fixed point arithmetic, logical, comparison and Block Float-

ing Point operations in this format. Chapter 5 describes the hardware architecture for

the interval ALU with detailed module descriptions. It also describes superpipelining

as a means of achieving higher throughput. Chapter 6 presents the results of simula-

tion, synthesis and power analysis for the hardware architecture of the BFP interval

ALU. Chapter 7 discusses the evaluation of throughput for the BFP interval ALU

as a function of the number of overflows, number of pipelined stages and the fastest

clock that can be applied to it. It describes the structural hazard observed while
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performing point-wise computations in the architecture. This chapter also describes

an experiment to perform error analysis on Input Scaling and CBFS to identify the

more accurate scheme. In the final chapter, conclusions are drawn from the results

obtained and future research is discussed.
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Chapter 2

Reliable Interval Arithmetic

Real numbers are of infinite precision while digital machines can only provide

limited accuracy on them. By definition, a computer represented set of real numbers

M is a quantized encoding of the elements of a set of real numbers <. The aim of an

optimal computer representation is to maximize the number of elements mapped from

< on to M [22] given a restricted number of bits for data representation. Floating

point and fixed point representations form two widely used discrete approximations

to <.

Interval arithmetic acknowledges limited precision in computer representation [14]

and provides bounds on the error accrued from computations involving discrete ap-

proximations. For this reason, it is important that computer arithmetic involving

intervals should stay reliable at all times and should not fall into a state of error due

to the limitations of number representation in the computer. This chapter discusses

the basic interval and set operations followed by a description of a set of criteria that

serve as a guideline in designing hardware to perform these operations reliably.
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2.1 Interval and Set Operations

The basic interval and set operations include addition, subtraction, multiplication,

division, union, intersection, width and midpoint. These operations are important for

many applications in signal processing, one example of which is global minimization

of cost functions for adaptive IIR filtering [23]. These operations are described below

for intervals I = [r,s] and J = [u,v].

A. Interval Addition

I + J = [ r + u, s + v ]

Interval addition involves adding up the corresponding end-points for the input

interval arguments. Therefore, the lower end-point for the output interval is the sum

of the lower end-points of the input intervals while the upper end-point for the output

interval is the sum of the upper endpoints of the input intervals. For example, [1,2]

+ [4,6] = [5,8]

B. Interval Subtraction

I - J = [ r - v, s - u ]

Interval subtraction involves subtracting the upper endpoint of the second inter-

val from the lower endpoint of the first interval to obtain the lower endpoint for the

output interval. Similarly, a subtraction of the lower endpoint of the second interval

from the upper endpoint of the first interval yields the upper endpoint for the output

interval. For example, [3,4] - [1,2] = [1,3]

C. Interval Multiplication

I *J = [ min (ru, rv, su, sv), max (ru, rv, su, sv) ]

This operation can be reduced to a set of conditional operations based upon the

signs of the endpoints of the input interval arguments. There are nine possible cases

and each of them is formed by a selection of the endpoints being multiplied to yield

the output interval endpoints. Table 2.1 shows the various cases associated with this

operation.
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Table 2.1: 9 cases of interval multiplication

Case Description Output Interval Bounds

1 xL ≥ 0; yL ≥ 0; [xLyL,xUyU ]

2 xL ≥ 0; yL < 0 ≤ yU ; [xUyL,xUyU ]

3 xL ≥ 0; yU < 0; [xUyL,xLyU ]

4 xL < 0 ≤ xU ; yL ≥ 0; [xLyU ,xUyU ]

5 xL < 0 ≤ xU ; yU < 0; [xUyL,xLyL]

6 xU < 0; yL ≥ 0; [xLyU ,xUyL]

7 xU < 0; yL < 0 ≤ yU ; [xLyU ,xLyL]

8 xU < 0; yU < 0; [xUyU ,xLyL]

9 xL < 0 ≤ xU ; yL < 0 ≤ yU ; [min( xUyL,xLyU), max(xLyL,xUyU )]

An example is [1,4] * [2,3] = [2,12] which is a case where none of the input intervals

enclose a zero.

D. Interval Division

Interval Division involves eight cases depending upon whether a zero is contained

in the denominator interval or not. The general algorithm used to perform this

operation is presented in Table 2.2 and Table 2.3 [7]. It can be implemented similar to

multiplication using a set of flags to indicate the choice of operands used in the division

operation. However, most DSPs do not provide the divide instruction because this

operation occurs very infrequently in signal processing applications. Alternatively,

dividing by powers of 2 reduces the operation of division to right shifting operations

in fixed point implementations.
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Table 2.2: Interval Division A/B with A,B ∈ <, 0 ∈ B

Case A = [xL,xU ] B = [yL,yU ] A/B

1 0 ∈ A 0 ∈ A (-∞,∞)

2 0 /∈ A B = [0,0] []

3 xU < 0 yL < yU = 0 [-xU/yL,+∞)

4 xU < 0 yL < 0 < yU (-∞, xU /yU ] ∪ [xU /yL, +∞)

5 xU < 0 0 = yL < yU (-∞, xU/yU)

6 xL > 0 yL < yU = 0 (-∞, xL/yL,)

7 xL > 0 yL < 0 < yU (-∞, xL /yL] ∪ [xL /yU , +∞)

8 xL > 0 [0 = yL < yU [xL /yU , +∞)

Table 2.3: Interval Division A/B with A,B ∈ <, 0 not in B

Case A = [xL,xU ] B = [yL,yU ]

xU < 0 [xL /yL, xU /yU ] [xU /yL, xL /yU ]

xL < 0 < xU [xL /yL, xU /yL] [xU /yU , xL /yU ]

xL > 0 [xL /yU , xU /yL] [xU /yU , xL /yL]

E. Interval Union

Given that I and J are not disjoint, interval union is denoted by

I ∪ J = [min(r, u), max(s, v)]

For example, given I = [2, 4] and J = [3, 6] yields I ∪ J = [2, 6]. This operation

is expensive for the case when the sets are disjoint. Throughput is affected if the

hardware is expected to put out each disjoint set individually. The ALU developed

in this work sets a disjoint flag at the end of the operation to indicate disjoint inputs.
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F. Interval Intersection

Given that I and J are not disjoint, interval intersection is denoted by

I ∩ J = [max(r, u), min(s, v)]

A null set results if the input intervals are disjoint and do not contain any real num-

ber elements in common. In this case, the ALU sets a disjoint flag at the end of the

operation to indicate disjoint inputs. For example, [1,5] ∩ [4,8] = [4,5]

G. Interval Width

W(I) = s-r

This operation is performed on a single interval. In the case of the interval I, the

width W is given by the difference of the upper bound and the lower bounds.

H. Interval Midpoint

This operation is also performed on a single interval. The midpoint M for the

interval I is given by

M(I) = (r + s)/2

I. Additional Operations

The command set for the interval ALU developed in this work also includes logi-

cal, comparison and Block Floating Point (BFP) operations. Logical operations such

as bitwise-AND, bitwise-OR and bitwise-XOR have been added from the perspective

of a computation engine that performs point-wise operations. Logical operations in

DSPs are used widely in applications such as error control coding [24]. The logical

operations in the interval ALU operate on the upper and lower bounds for an interval

argument. Thus, for interval I, these operations are performed as (s ∨ r), (s ∧ r)

and (s ⊕ r) for OR, AND and XOR operations respectively. Comparison operations

of two intervals are used to evaluate their minimum and maximum values simultane-

ously. Applications such as fuzzy adaptive filters based on interval Type-2 systems

require such computations [2]. Therefore, for intervals I and J mentioned above, the

operations is performed as follows:

min(I,J) = [min(r,u), min(s,v)]

max(I,J) = [max(r,u), max(s,v)]
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The command set also contains Block Floating Point operations. These are, however,

described later in Section 3.1.2 and 4.4.2.

It has been demonstrated in Section 1.1 that overflow can lead to unreliable in-

terval arithmetic. Overflow occurs when the result of an operation requires more bits

on the MSB side for true representation than what is available in the machine [25].

Overflow results primarily from the operations of addition and subtraction. Overflow

can also occur with the accumulation of products after multiplication. The cause of

overflow is traced to the operation of addition in this case. Having introduced the

operations to be performed in the interval ALU, we next discuss the criteria, which

when met, leads to reliable interval arithmetic.

2.2 Criteria for Reliable Interval Arithmetic

Van Emden [14] has proposed correctness, closedness, totality, optimality and ef-

ficiency for the criteria in evaluating interval hardware. We consider a fixed point

Interval arithmetic system, based on setting the interval endpoints to finite values,

that abides by this set of criteria summarized below:

A. Correctness

An interval operation is said to be correct when it yields an output interval contain-

ing all the results of point-wise evaluations based on point values which are elements

of the argument intervals. For example, if X = [1,2] and Y = [3,5], then this criterion

applied to the addition operation (+) implies that the resultant interval [4,7] must

contain the results of all point-wise additions (x+y) with x ∈ X and y ∈ Y.

B. Totality

A total interval operation is one that is defined for all possible input arguments.

For example, designers face a problem with defining the operation of division (/) when

the denominator contains 0. The most common work-around for this is to redefine
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the operation of division by excluding 0 from the denominator.

C. Closedness

A closed interval operation on the set of real numbers < is one that operates on

intervals whose endpoints are in < and yields an output interval whose endpoints are

also in <. For example, if the operation is multiplication and the input arguments

are [1,2] and [3,4], then the result of this operation is [3,8]. Since this operation re-

sults in an output interval whose endpoints are real values, we can say that interval

multiplication is closed on the set of reals.

D. Optimality

This criterion ensures that the operation is not performing any overestimation and

that the bounds are the most optimized ones for the type of representation chosen.

The arithmetic should be such that the resultant interval is not wider than necessary.

This is applicable to operations such as addition, subtraction, multiplication and di-

vision.

E. Efficiency

Efficiency is defined with respect to the implementation of the interval arithmetic

in hardware. One way to measure efficiency is through the execution speed which

can be improved by eliminating subroutine calls in software or by providing special

purpose hardware that deals with the same operation in a much faster way. Efficiency

can also be measured in terms of power dissipation or throughput.

It is absolutely essential that arithmetic in the chosen computer representation

adheres to the criteria mentioned above for reliable interval computations. The hard-

ware architecture to be presented in Chapter 5 will adhere to these criteria.
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Chapter 3

Block Floating Point Arithmetic

Block Floating Point (BFP) is a scaled number representation format similar to

floating-point, but its arithmetic operations are performed in fixed point. BFP arith-

metic provides a useful tradeoff between the large dynamic-range with the increased

hardware complexities of floating point implementations and the limited dynamic

range with the relative simplicity of fixed point implementations [26]. Applications

for signal processing such as digital filters, calculation of the Fast Fourier Transform

and Fast Hartley Transform utilize BFP arithmetic [19].

3.1 Block Floating Point Representation

BFP representation can be considered to be a special case of floating point repre-

sentation where a block of N numbers has a joint scaling factor corresponding to the

maximum magnitude of the numbers in the block. If xi represents the ith data sample

and γ represents the block exponent, then the BFP representation is denoted as

[x1, x2, ..., xN ] = [x̂1, x̂2, ..., x̂N ]·2γ where x̂i = xi · 2−γ

The block exponent γ is defined by

γ = b log2 M c + 1 + S
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where M = max(|x1|, ... ,|xN |), b.c is the floor function and |x̂i| ∈ [0,1]. The integer

S signifies a constant scaling term for the block exponent which is needed in certain

applications like filtering [19].

3.1.1 Data Representation

Data stored in the memory is grouped into non-overlapping blocks of ‘N’ consec-

utive samples to perform BFP arithmetic. Each block of data is separately quantized

for BFP representation and processed. Figure 3.1 shows the division of an arbitrary

data sequence into blocks of size 700.
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Figure 3.1: Dividing data into blocks

Data processing in BFP arithmetic is performed on a block basis. Within a

particular block, all data samples are associated with one common exponent term.

From the definition of BFP representation, it is evident that the block exponent γ

can be computed from the values of M and S. The use of S is optional and based upon

the application. The operation of determining the value of γ for a given data block



19

is known as Exponent Detection, and the operation of scaling all the data samples in

the data block by 2−γ is known as Normalization. Samples in a data block may be

distributed over a wide range of values. Normalizing a data block brings all samples

in the data block to a common exponent value and enables fixed point operations to

be performed on the samples. It is evident that Exponent Detection and Left shifting

by γ boosts the strength of the input data.

3.1.2 Normalization of a data block

Table 3.1 illustrates how to identify the value of γ for a block data size of 4. The

data samples are represented in the decimal number system and S is fixed at 0. We

assume that the dynamic range is [-1,1] and that all data samples are fixed point

values which share a pre-normalization common exponent value ‘C’. The updated

block exponent after normalization will be (C + γ).

Table 3.1: Exponent Detection in a data block of size 4

Data Samples (x) Normalized Data (x̂) γ = (b log10 M c + 1)

0.189 0.189

0.214 0.214
M = 0.333

-0.265 -0.265
γ = 0

0.333 0.333

0.087 -0.870

-0.096 0.960
M = 0.096

-0.0014 -0.014
γ = -1

0.000123 0.00123
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In each data block, the sample with the largest magnitude is chosen to compute

the block exponent γ. Therefore, M = 0.333 for the first data block and M = 0.096

for the second block. The value of γ post-normalization is equal to (C) and (C-1) for

the first and second data blocks, respectively.

A more intuitive approach to compute the value of γ for samples represented in

the decimal system is to assign it with the negated count of the leading zeros for the

sample with the largest magnitude in a data block. In the first data block, M = 0.333

does not bear a leading zero digit and hence γ = 0. For the second data block, M

= 0.096 bears one leading 0 and hence γ = -1. This scheme can be extended to the

binary system where each sample is represented in two’s complementary fixed point

representation. Here, data samples of small magnitude are fit to the available word

size by sign extension. The block exponent γ is assigned the least value of leading

redundant sign bits obtained by traversing through all the samples in the data block.

Evidently, this value will correspond to the sample with the largest magnitude in

the data block. The procedure to normalize the data entails left shifting of all data

samples in the entire block of data by γ positions to bring them all to a common

exponent value. Henceforth, fixed point operations can be carried out on data samples

from this block.

We now present an example that illustrates block normalization for samples repre-

sented in two’s complement fixed point arithmetic. Consider the example for a block

of data comprised of four samples 0.0000100, 0.0011000, 0.0000001 and 0.0001111 in

the Q0.7 format. The value of M is identified to be 0.0011000 because it has the least

number of leading sign bits. The value of γ is identified to be (-2). Hence, every

sample in that data block is left-shifted by two places to bring all samples to a com-

mon exponent. Therefore, the data samples bear the values of 0.0010000, 0.1100000,

0.0000100 and 0.0111100 and the number of shifts is (00000010) for an 8-bit expo-

nent. The updated block exponent will be (C-2). The same procedure is applicable

to negative numbers as well.
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3.1.3 Normalizing an interval data block

Every interval is represented by two endpoints and therefore, two data memory

banks must be considered while implementing it in hardware. In this work, we inves-

tigate the scenario where normalization is performed such that both endpoints of all

intervals in an interval block of data share the same block exponent. Therefore, fixed

point operations can be performed on the data directly.

The definition of BFP representation presented in Section 3.1 is extended for

interval data. If [xLi, xUi] represents the ith interval data sample and γ represents the

interval block exponent, then the BFP representation is denoted as

[ [xL1,xU1], [xL2,xU2], ..., [xLN ,xUN ] ] = [ [x̂L1,x̂U1], [x̂L2,x̂U2], ..., [x̂LN ,x̂UN ] ]·2γ

where [x̂Li,x̂Ui] = [xLi,xUi] · 2−γ

The block exponent γ is defined by

γ = b log2 M c + 1 + S

where M = max(|xL1|, |xU1|, ...,|xLN |, |xUN |) and |x̂Li| ∈ [0,1]; |x̂Ui| ∈ [0,1]. The

integer S signifies a constant scaling term for the block exponent and will effect both

endpoints in a similar way.

The procedure to identify the block exponent, γ, for a data block comprised of interval

data is described next. It is divided into three steps:

1. Identify the minimum number of redundant sign bits among the point-wise

data comprised of both endpoints of all the intervals in the block. This helps

to identify the largest magnitude-valued endpoint in the interval block.

2. Left-shift both endpoints of every interval in this block by this number.

3. If ‘C’ was the common block exponent pre-normalization, update the block

exponent to a value (C+γ). Store the block exponent in a single location for

the interval data block for future reference.

For example, consider two intervals [0.0000110, 0.0010000] and [0.0001101, 0.0001111].
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We detect that among these four endpoints, the minimum number of redundant sign

bits is present in 0.0010000 and is equal to 2. Therefore, all endpoints are left shifted

by 2 positions and the intervals are normalized to the same exponent. Therefore,

the normalized intervals are [0.0011000, 0.1000000] and [0.0110100, 0.0111100]. The

block exponent for this interval data block is decremented by 2 as compared to the

previous exponent.

3.1.4 BFP Hardware Environment

The Block Floating Point Interval Arithmetic and Logic Unit (BFPIALU) devel-

oped in this work is intended to be housed in an interval processor with the capability

to perform BFP operations. A rough sketch of the environment surrounding the BF-

PIALU is shown in Figure 3.2.

The data buses for this system are 16-bit bidirectional lines, labeled Data Bus

A and Data Bus B, dedicated to the lower and upper endpoints of the interval data

respectively. The instructions to be executed are stored in the Code Memory. The

Dual Port RAMs labeled A and B comprise the system data memory which are used

to store the lower and upper interval data endpoints respectively. They receive data

from system I/O data transfers. The Local RAMs, labeled A and B, constitute

the local storage for working interval data. These could be useful, for instance, to

store the data interval blocks between Exponent Detection and Normalization since

the complete procedure requires two traversals through the same data block. The

underlying assumption is that Local RAMs are much faster than the Dual Port RAMs.

The BFPIALU is the key data processing element in this architecture. It performs

arithmetic, logical and BFP operations in fixed point. The Register Files are used

for temporary data storage, such as intermediate results from the BFPIALU. They

are comprised of a set of high-speed data buffers dedicated to the lower and upper

endpoints of the results. The control mechanism is the most complex block in the

architecture. Its functions are listed below:
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Figure 3.2: Hardware environment for the BFPIALU

• It takes care of fetching instructions from the code memory, decoding them and

transferring the data to the appropriate destination.

• It interacts with the Dual Port RAMs and Local RAMs for reading and writing

data. It also generates addresses for these operations.

• It feeds the data, applies the necessary command and associated control signals

for the BFPIALU.

• It handles the data transfer to and from the Register files.
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• Optionally, it houses a DMA mechanism to handle memory interactions involv-

ing large amounts of data.

The hardware environment for the BFPIALU may be changed at a later stage

suitably to match the requirements of the processor designer. However, care must be

taken to ensure that the data feed mechanism and control signals to the BFPIALU

remain unchanged.

3.2 Overflow Handling Techniques

Reliability becomes a very significant issue when interval operations are performed

in the BFPIALU. The arithmetic performed should be able to cope with and not fall

prey to the errors caused by bit growth on the MSB side of the result. Fixed point

implementations especially have to deal with overflow errors owing to the availability

of a small dynamic range. Since BFP arithmetic is performed in fixed point, additional

care must be taken to avoid overflow in BFP arithmetic by adopting appropriate

techniques that can either prevent or correct overflow errors.

This work investigates the techniques of pre-operation input data scaling (or a

priori scaling) and post-operation output data scaling (or a posteriori scaling) for a

given fixed point operation. The former is known as Input Scaling, whereas the latter

is known as Conditional Block Floating-point Scaling (CBFS). A brief description of

each of these techniques is presented next.

3.2.1 Input Scaling

The technique of Input Scaling is based on the priciple of preventing the occurence

of overflow errors. From the definition of BFP provided in Section 3.1, Input Scaling

entails a scaling of the input data block using a constant scaling factor ‘S’ while

normalizing it. The value of S is chosen depending upon the number of operations to

be performed successively. Unconditional scaling is performed during normalization
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so that fixed point additions can freely be performed on the scaled data without any

concern of overflow during the actual operation. Input Scaling is fast and simple.

All data samples in an output block share the same block exponent, which is equal

to the block exponent of the normalized input. This technique is compared to the

Conditional Block Floating point Scaling (CBFS) scheme which is discussed next.

3.2.2 Conditional Block Floating-point Scaling

This technique is based upon the idea of correcting overflow errors. The output

block exponent is determined a posteriori without using the constant integer scaling

term ‘S’ during normalization. After normalization, the data samples are brought into

the fixed point hardware for computations. If no overflow occurs, then the output

block exponent is kept the same as the normalized input block exponent. However,

if overflow occurs, then a set of corrective actions are taken. These are listed below:

1. The hardware block scales the erroneous output down by a factor of 2. This is

performed by right shifting the result of the operation in fixed point.

2. The output block exponent is updated to the incremented value of the input

block exponent and the result is stored.

3. If the computations are iterative in nature and an intermediate overflow occurs,

then all inputs from that point onwards are scaled down by an additional factor

of 2. This process is repeated at each instance of overflow.

We next present a listing of the major differences between the techniques of Input

Scaling and CBFS:

1. CONSTANT SCALING FACTOR ‘S’

Input Scaling uses a preset constant scaling factor S in anticipation of overflow

during normalization. For evaluating dot products, the value of ‘S’ can be

chosen depending upon the number of additions to be performed on the data.

In short, the inputs are scaled prior to performing the operation. In contrast,
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CBFS implementations do not scale the input data during normalization and

set S = 0. Under this scheme, the operation is first performed and the output

is scaled down by a factor of two only in the event of overflow.

2. OVERFLOW DETECTION CIRCUITRY

Since Input Scaling is centered on the idea of preventing overflow errors by

pre-scaling of inputs, no overflow detection circuitry is required. CBFS imple-

mentations are based on the idea of correcting overflow errors and hence involve

overflow detection circuitry.

3. OUTPUT BLOCK EXPONENT

The exponent for the output of individual operations such as addition and sub-

traction for Input scaling is the same as that of the normalized input data. For

CBFS implementations that run long iterative operations such as computation

of dot products, the output block exponent will change depending upon whether

overflow occured or not. Thus, normalizing the output data could consume more

time leading to slower implementations.

4. ACCURACY

Input Scaling implementations record poor accuracy because they scale the in-

put data down unconditionally by a pre-determined factor ‘S’ before performing

the operations. Therefore, such implementations assume the worst-case scenario

for every operation - that overflow will occur after every addition. This uncon-

ditional scaling lowers accuracy. In contrast, CBFS implementations scale input

data by half from the point that overflow actually occurs. The output is scaled

only if overflow occurs. This need-based scaling approach leads to more accurate

results.

5. SPEED AND COMPLEXITY OF IMPLEMENTATION

Input Scaling technique is easy to implement and fast in performance. Since the

output is obtained at the same block exponent as the input, it can always be

fed directly as input to the next stage of computations. Iterative computations

such as the evaluation of dot products can be performed in a fast and simple
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way, namely through direct fixed point addition. On the other hand, CBFS

technique is more complex and involves overflow detection at the end of the

operation. Normalizing the output data block for the next stage of processing is

time-consuming because different output points may have been scaled differently

depending upon whether overflow occurred or not. This is attributed to the fact

that the output block exponent increments in value for each overflow that occurs

in evaluating the result of a computation such as the evaluation of a dot product.

Thus, the output is distributed into groups that share a common block exponent

at the end of the processing. Therefore, an additional step of normalizing all

data within a block to a common exponent has to be performed if the output

has to be fed into the next stage of data processing. When overflows occur very

frequently, the complexity of BFP arithmetic using CBFS approaches that of

conventional floating point arithmetic in which the results of the operations are

normalized after the operation. Therefore, CBFS is a computationally expensive

technique.

6. THE OPTIMALITY CRITERION

Input Scaling leads to an over-estimation of the output interval bounds. Scal-

ing the fixed point interval endpoints, performing outward rounding and then

shifting back to the original scale results in an interval wider than the original

one. Since scaling is performed in Input Scaling irrespective of the occurence

of overflow, a wider output interval results even if no overflow were to occur.

Therefore, the criterion of optimality described in Section 2.2 is not met by In-

put Scaling. In contrast, CBFS performs scaling and rounding only if overflow

is detected. Hence, it meets the criterion of optimality.

CBFS introduces the lesser distortion (noise) caused by finite word length [21]

than Input Scaling. This is advantageous for the BFPIALU since it is intended to

be used for signal processing and control applications. Furthermore, CBFS does not

over-estimate the output interval unnecessarily leading to optimal interval bounds.

Therefore, the design of the BFPIALU, proposed in this work, implements the CBFS

technique.
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Having decided upon the overflow technique, we next analyse a common overflow

scenario that can occur in the BFPIALU. The computation chosen for this example

is the evaluation of an iterative accumulation of terms.

3.2.3 BFP arithmetic with CBFS Example

We consider the evaluation of a series, S =
5∑

i=1

Xi, where Xi denotes the ith interval.

In order to study the sum obtained after each accumulation, we assume that the

individual terms of the accumulated interval sum obtained are written out to memory.

We describe the operations that are performed in order to compute the final sum of

the series using BFP arithmetic. An interval data memory comprised of two memory

banks is dedicated to storing the lower endpoint and the upper endpoint of the input

intervals. The output endpoints are written out to Register Files A and B. Figure 3.3

shows an overview of the scheme to perform this computation. Simultaneous readouts

from successive locations of the first data block from local memory A and B yields

input intervals X1, X2, X3, X4 and X5 in order for operation. The interval sum terms

obtained are labeled S1, S2 etc.

We assume that the input interval data X1-X5 in Block 1 is normalized to a block

exponent ‘C’ using the procedure outlined in Section 3.1.3. The sequence of opera-

tions performed to compute the sum of the series is presented below.

S1 = x1 + x2 : NO OVERFLOW

S1 is sent to the output memory bank. The output block exponent is C

S2 = S1 + x3 : NO OVERFLOW

S2 is sent to the output memory bank. The output block exponent is C

S3 = S2 + x4 : OVERFLOW!!

S3, which is half the overflowed result, is sent to the output memory bank. The
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Figure 3.3: Interval BFP system with CBFS

output block exponent is (C+1).

The next addition involves sum S3 which is scaled by a factor of 2 and x5 which has

not been scaled. Hence, x5 is scaled down by a factor of 2 and added to S3.

S4 = S3 + (x5/2) : OVERFLOW!!

The output block exponent is (C+2). The output is thus segmented into groups of

data that bear a common exponent and this scheme devotes one location to store the

block exponent per group as seen in Figure 3.3. This example clearly illustrates that

a new group of output sum intervals are obtained with each overflow that share a

common exponent of (c+γ+p) where p is the number of overflows.
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Table 3.2: Grouped Output Points Sharing a Common Exponent

OutputSum Block Scale Factor

S1 C

S2 C

1

S3 C+1

2

S4 C+2

It must be noted that whenever overflow occurs, the output block exponent is

incremented in value. Thus, the output points looks as shown in Table 3.2. Evi-

dently, the proposed hardware architecture should incorporate input scaling blocks in

addition to overflow detection circuitry so that iterative computations may be carried

out.

3.2.4 Saturation Arithmetic for Overflow Handling

Systems based on saturation arithmetic saturate the output value to the most

positive or the most negative value representable in the event of occurence of overflow,

rather than allow a two’s complement wrap-around effect to occur. When saturation is

applied to interval endpoints that have undergone overflow, the endpoints are clamped

to the corresponding maximum limits. Evidently, this leads to an underestimation for

the true result of the operation. As a result, the criterion for correctness as discussed

in section 2.2 is violated. Hence this scheme is not suited for implementing interval

arithmetic in hardware.
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Chapter 4

Design Specifications

The interval ALU is based on a two’s complement fixed point parallel architecture

that computes the upper and lower endpoint of the output interval simultaneously.

The goal of this chapter is to specify the design specifications and justify design

decisions such as the choice of fixed point format for the BFPIALU. This chapter

discusses the arithmetic, logical, comparison and BFP operations in the BFPIALU.

It also describes the technique of overflow detection for these operations followed by

a discussion on the rounding modes.

4.1 Fixed Point Data Format

Fixed-point fractions are denoted using the Q-format where Q denotes Quantity

of Fractional bits [27]. Qm.n indicates m bits for the integer while n denotes the

number of bits devoted to the fractional part. A 16-bit fraction is denoted by Q0.15

(or Q.15) while the 16-bit integer representation is Q15.0. There is a trade-off between

the dynamic range and precision of a fixed point representation. While Q0.15 has

the highest precision (2−15) and the least dynamic range (+1), Q15.0 has the highest

dynamic range (-32768 to +32767) and the least precision (1.0). Table 4.1 summarizes
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the dynamic range and precision of all possible Qm.n formats possible with 16-bit

representation [28].

Table 4.1: Dynamic Range/Precision chart for 16-bit Q-formats

Format Largest Positive value Least negative value Precision

Q0.15 0.999969482421875 -1 0.000030517578125

Q1.14 1.99993896484375 -2 0.00006103515625

Q2.13 3.9998779296875 -4 0.0001220703125

Q3.12 7.999755859375 -8 0.000244140625

Q4.11 15.99951191875 -16 0.00048828125

Q5.10 31.9990234375 -32 0.0009765625

Q6.9 63.998046875 -64 0.001953125

Q7.8 127.99609375 -128 0.00390625

Q8.7 255.9921875 -256 0.0078125

Q9.6 511.984375 -512 0.015625

Q10.5 1023.96875 -1024 0.03125

Q11.4 2047.9375 -2048 0.0625

Q12.3 4095.875 -4096 0.125

Q13.2 8191.75 -8192 0.25

Q14.1 16383.5 -16384 0.5

Q15.0 32767 -32768 1

The Q0.15 fixed point format is chosen for data representation in the BFPIALU

in order to obtain maximum precision. Figure 4.1 illustrates the Q0.15 two’s com-

plement fixed point binary format and the weights associated with each bit position.

The binary point is fixed just after the MSB and the remaining bits are devoted to
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represent the fraction.

� �������	


 �� ��


Figure 4.1: Two’s complement Q0.15 fixed point representation

4.2 Operations in the Q0.15 format

Operations using the Q0.15 data format are classified into

• Arithmetic operations

• Logical operations

• Comparison operations

• BFP operations

We discuss each category of operations in order starting with the basic arithmetic

operations of addition, subtraction and multiplication in the Q0.15 format. We then

follow it up with a discussion of Logical, Comparison and BFP operations.

4.2.1 Arithmetic Operations

Arithmetic operations of addition and subtraction face the problem of overflow.

The operation of multiplication does not result in bit growth on the MSB side because

the product of two fractions is also a fraction. However, overflow errors are faced in

the operation of multiply-accumulate. We illustrate these operations first for cases

that do not lead to overflow in order to retain focus on the operation performed. We

then follow it up with cases that do lead to overflow errors.
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A. Arithmetic Operations without Overflow

i) Addition

Addition in Q0.15 involves direct binary addition for the arguments involved.

EXAMPLE 1

1. (0.15625) + (0.78515625) = 0.94140625

0 . 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 (+0.15625) +

0 . 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 (+0.78515625)

————————————————————–

0 . 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 (0.94140625)

EXAMPLE 2

2. (-0.15625) + (-0.78515625) = -0.94140625

1 . 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 (-0.15625) +

1 . 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 (-0.78515625)

————————————————————–

���
ignore

1 1 . 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 (-0.94140625)

The MSB in Example 2 is ignored because the bit in the MSB position bears the

same sign as the inputs.

ii) Subtraction

Subtraction is done by computing the two’s complement of the subtrahend and

then adding it to the minuend in binary. The following examples illustrate this oper-

ation.
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EXAMPLE 1

1. (0.78515625) - (0.15625) = 0.62890625

0 . 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 (+0.78515625) +

1 . 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 (-0.15625)

—————————————————————–

���
ignore

1 0 . 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 (0.62890625)

EXAMPLE 2

2. (0.15625) - (0.78515625) = -0.62890625

0 . 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 (+0.15625) +

1 . 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 (-0.78515625)

—————————————————————–

���
ignore

0 1 . 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 (-0.62890625)

We ignore the MSB in the result of both these examples because the input arguments

to the addition operation bear different signs and therefore, they do not overflow.

iii) Multiplication

The multiplication of two N-bit two’s complement numbers always results in a

2N-bit result. Multiplying two f1,15 or Q0.15 numbers produces a product in the f2,30

format and this can be reduced to f1,31 format by introducing a 0 in the LSB and ig-

noring the extra sign bit in the actual product. With interval multiplication, outward

rounding is required on the interval product to ensure that all possible products for

point-wise evaluations with points drawn from the input intervals are contained [9].

Therefore, the excess bits of precision in the lower endpoint of the product are dis-

carded to fit the output word size. The upper endpoint is rounded to +∞ by adding

the ORed result of all discarded bits to the remaining bits of the upper end point [9].
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The following examples illustrate this operation.

EXAMPLE 1

0. 125 * 0.5625 = 0.0703125

0.001000000000000 * 0.100100000000000

= 00.000100100000000000000000000000

= 0.0001001000000000000000000000000

Upon rounding to 16-bits, the product would be 0.000100100000000.

EXAMPLE 2

0.9375 * 0.15625 = 0.146484375

0.111100000000000 * 0.001010000000000

= 00.001001011000000000000000000000

= 0.0010010110000000000000000000000

Upon rounding to 4-bits, the product would be 0.010.

The operation of multiplication is performed between positive values only. If any

argument is negative, it’s two’s complement value is taken and then the multiplication

is performed. The result is negated again if only one of the input arguments bore a

negative value. This step is not undertaken if both arguments are positive or if both

arguments are negative. An XOR between the sign bits of the arguments indicates

whether the last step is performed or not.

B. Arithmetic Operations with Overflow

Overflow occurs when the true representation of the result requires more bits

on the MSB side than the number of bits actually available. The following section

presents a method of overflow detection.
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i) Overflow Detection Scheme in Addition

Overflow is detected for the addition operation involving two arguments x and y

when both the following conditions are satisfied: [29]

• Both x and y bear the same sign

• The sign of the output is not equal to the sign of the inputs

The following examples illustrate overflow for addition. Consider two positive argu-

ments 0.75 and 0.5 under the Q0.15 fixed point format. Adding these arguments

should lead to an overflow since the sum 1.25 exceeds the highest representable value

of +(1-2−15).

EXAMPLE

0 . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (0.5) +

0 . 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 (0.75)

—————————————–

1 . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 (-0.75)

The sign of the result has changed with respect to the inputs; the sign of the

result is negative while both x and y are positive. This is a clear indicator of overflow

and the resulting value is -0.75 which is incorrect. In this case, the additional bit on

the MSB side must be captured by using a Guard bit and the whole result should

be right shifted by one position. The Guard bit is one additional bit provided to

capture single bit growth beyond the MSB of the result. Figure 4.2 shows the scheme

to capture the bit growth, This would yield the final result to be 0.101000000000000

which corresponds to 0.625 at half the original scale. An XOR between the signs of

the input arguments indicates if they are of the same sign or not. An XOR between

the signs of the output and any one of the inputs indicates if the second condition

is true or not. The ANDed result of these is used as the overflow flag. The overflow

flag is asserted high only if both the conditions are true.
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Consider the addition of two negative numbers (-0.5) and (-0.75).

EXAMPLE

1 . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (-0.5) +

1 . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 (-0.75)

———————————————————

1 0 . 1 1 0 0 0 0 0 0 0 0 0 0 0 0 (+0.75)

Wrap around about the negative extreme (-1) occurs since the result is less

than (-1), the smallest number representable. The value of the result is found to

be +0.75 which is wrong. Therefore, it is scaled down by a factor of 2 to yield

1.011000000000000 which is (-0.625).

������������������������������	�����
���� ���������
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Figure 4.2: Capturing bit growth

The multiply-accumulate instruction performs an addition to accumulate the

product terms. Therefore, similar logic for overflow detection is applied to this in-

struction as well. However, the register size in this case is 33 bits with one guard bit

and 32-bit product width.

ii) Overflow Detection Scheme in Subtraction

Given two arguments x and y, overflow is detected in (x-y ) if

• Both x and (-y) are of the same sign

• The sign of the result is different from that of x and (-y)

Consider the subtraction (0.75) - (-0.5).
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EXAMPLE

0 . 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 (+0.75) +

0 . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (+0.5)

—————————————————————–

1 . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 (-0.75)

In the example above, overflow is detected since the sign of the result is different

from that of the inputs. Therefore, the output needs to be scaled. The actual output

scaled by a factor of 2 will be 0.101000000000000 or 0.625 in decimal representation.

The value of (-y) is computed by subtracting it from 0. Overflow occurs when both

conditions are true, and each condition is verified by an XOR operation between the

sign bits if the relevant inputs.

4.2.2 Logical Operations

The logical command set includes the operations of OR, AND and XOR. These

operations are widely used for applications such as Error Control Coding. This is

demonstrated in the examples below.

EXAMPLE 1

OR operation

1 0 1 0 1 0 1 1 0 1 0 0 1 1 1 1

0 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0

—————————————

1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1

EXAMPLE 2

AND operation

1 0 1 0 1 0 1 1 0 1 0 0 1 1 1 1

0 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0

—————————————

0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0
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EXAMPLE 3

XOR operation

1 0 1 0 1 0 1 1 0 1 0 0 1 1 1 1

0 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0

—————————————

1 1 0 0 1 1 0 0 0 1 0 1 0 1 1 1

4.2.3 Comparison Operations

Comparison operations are encountered frequently in applications such as fuzzy

adaptive filtering [2]. They involve a comparison of corresponding endpoints of the

argument intervals. The method of comparing two Q0.15 numbers to identify the

minimum among them is discussed next. The other number is the maximum.

Between a positive number and a negative number, the minimum is identified as

the one with the sign bit ‘1’. Between two positive or two negative numbers, an

unsigned comparison of the numbers yields the minimum of the two.

EXAMPLE 1

min(1.010101101001111, 0.010001100001000) = 1.010101101001111

EXAMPLE 2

min(1.111000000000000, 1.010000000000000) = 1.010000000000000
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4.2.4 BFP Operations

The ALU provides BFP support in the form of Exponent Detection, Normalization

and Signed Left shifting operations. These instructions aid the processes of determin-

ing the block exponent and block normalization which have been described in Section

3.1.2. These are illustrated here.

A. EXPONENT DETECTION

This section illustrates the operation of Exponent Detection in which was described

in Section 3.1.2. Exponent Detection provides an integer result corresponding to the

count of the leading duplicated sign bits in the input. This helps us to identify the

magnitude of the largest sample in the data block being operated upon. The data

sample that provides the smallest integer as the output of this operation is identified

to be the sample with the largest magnitude, see examples provided below.

EXAMPLE

1. EXP DET(0.000 0000 0001 0110) = 10

2. EXP DET(1.111 1111 0100 1010) = 7

The duplicated redundant sign bits in each example considered are underlined. It

is seen that the magnitude of the data in Example 2 is more than the magnitude of

the value in Example 1. Therefore, the exponent detected for Example 2 is less than

the exponent detected for Example 1.

B. SIGNED LEFT SHIFTING

The process of normalizing a block is divided into two steps, namely Exponent De-

tection and Left Shifting. First, Exponent Detection is performed on all samples in

the data block as mentioned above. The least integer obtained is noted and then

all samples in the block are left-shifted by this number. The operation of signed left

shifting retains the sign of the value that is left shifted while shifting every other bit

left by the required amount. Consider the following examples.
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EXAMPLE

1. LEFT SHIFT BY 2 POSITIONS: 0.000 0100 0101 0110 = 0.001 0001 0101 1000

2. LEFT SHIFT BY 4 POSITIONS: 1.111 1111 1111 0101 = 1.111 1111 0101 0000

The block exponent for a data block is an integer. The same Q0.15 fixed point

format ALU developed in this work can also be used for integer operations. However,

the limit on the size of the exponent is 7FFF (hex) on the positive side and 8000

(hex) on the negative side. Moreover, scaling of inputs should be inhibited when this

operation is performed. Thus, the block exponent can be carried through the BFP

operations.

C. DIRECT NORMALIZATION

Normalization refers to the two-step process of Exponent Detection followed by left

shifting. Given the scenario where we must normalize a block of data knowing that

all samples in it have the same number of leading sign bits, we can avoid Exponent

Detection and perform Direct Normalization. This operation directly eliminates all

redundant sign bits in a sample when applied to it. This is illustrated in the examples

below:

EXAMPLE

1. NORM(0.000 0000 0001 0110) = 0.101 1000 0000 0000

2. NORM(1.111 1111 1100 1010) = 1.001 0100 0000 0000

The underlined bits are eliminated directly once Normalization is applied to these

data samples.

4.3 Outward Rounding

In most systems, fixed sized registers impose a constraint on the number of bits

that the output of an operation can occupy. The word length of the outputs should

be trimmed to fit the size of the registers. A proper choice of rounding scheme is
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essential to minimize errors since this implies the introduction of precision rounding

errors [9]. With interval arithmetic, it is of utmost importance that the selected

rounding scheme results in output intervals that do not under-estimate the true value

of the computation. One way to ensure this is to use Outward Rounding where the

Lower Bound is rounded towards -∞ and the Upper Bound is rounded to +∞ value.

This work retains the Outward rounding scheme as discussed in [9] because it

satisfies the property of optimality by not overestimating the interval bounds as stated

earlier in Chapter 2. The directed rounding scheme for interval arithmetic involves

rounding to -∞ on the lower bound endpoint and rounding to +∞ on the upper

bound endpoint [9].

4.3.1 Rounding to -∞

Rounding to -∞ is the method of representing a high precision value by its nearest

smaller value of lower precision in machine representation. The next lower number is

evaluated by simply dropping the excess bits of precision in two’s complement fixed

point arithmetic. The following examples illustrate rounding to -∞ for fixed point

data in the Q0.15 format.

EXAMPLE

0.001001011000000 is the binary equivalent of 0.146484375 in Q0.15 format. In Q0.7

binary format, it is represented as 0.0010010. This is the binary equivalent of 0.140625

and is obtained by discarding the latter 8-bits of precision.

EXAMPLE

1.1101010 is the binary equivalent of -0.171875 in Q0.7 format. In Q0.3 format, this

would be 1.110 or -0.25 in decimal representation.
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4.3.2 Rounding to +∞

Rounding to +∞ involves the addition of an LSB in the resultant Q-format to ac-

count for all the discarded bits which have a finite binary value. This rounding scheme

yields a quantity which has lower precision but is the smallest value representable in

the new Q-format bearing a value greater than or equal to the former value. It can

be applied to both positive as well as negative numbers. Using all discarded bits to

decide the addition of the LSB is better than normal rounding where only the MSB

of the discarded bits is used. This is because using all discarded bits provides more

preciseness in rounding than using merely the MSB.

EXAMPLE

0.0010010 is the binary equivalent of 0.140625 in the Q0.7 format. When rounded to

+∞ in Q0.3 format, we get 0.010 which corresponds to 0.25 in the decimal represen-

tation.

EXAMPLE

1.1010101 is the binary equivalent of -0.3359375 in Q0.7 format. When rounded to

+∞ in Q0.3 format, we get 1.110 which corresponds to -0.25 in the decimal repre-

sentation.
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Chapter 5

Hardware Architecture

This chapter provides a description of all the hardware modules that constitute the

BFPIALU. It describes the functions for the individual modules and the interactions

between them. The chapter also gives details of the logic design at the gate level for

each module. Several pipelined designs based on the proposed architecture are built

in order to attain higher throughput by reducing the logic depth of the critical path

in the design. The design is built at the Register Transfer Level (RTL) level using

Verilog [30]. This design conforms to the architecture of the non-pipelined version.

It is then pipelined to varying depth to attain higher throughput.

5.1 Overview of the Architecture

The architecture of the proposed BFPIALU comprises of four main modules,

namely the Flag Generator module, the Lower Bound module, the Upper Bound

module and the Scale Synchronizer module. The Flag Generator generates various

control signals which are used by the Lower and Upper Bound modules for execut-

ing the commands. As the names suggest, the Lower Bound and the Upper Bound

modules perform computations to evaluate the corresponding bounds of the output
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Figure 5.1: Top Level Block Diagram

interval. Both the modules scale their outputs down by a factor of 2 whenever over-

flow occurs. The Scale Synchronizer module performs the synchronization of the

scaling since the hardware has to output an interval whose bounds are all at the same

scale. It also updates the increment in the output block exponent value upon over-

flow. The modules Scale L and Scale U are minor logic blocks that perform shifting of

the inputs and are included as part of the Lower Bound and Upper Bound modules

respectively. These are discussed after the Scale Synchronizer has been described.

Figure 5.1 illustrates the interconnection of the modules in this architecture.

Table 5.1 shows the inputs to the interval ALU and their corresponding bit-widths.

The ALU takes two intervals X and Y with corresponding endpoints XL, XU , YL and

YU as inputs. The ALU has two modes of operation, namely the interval mode and

¯pointwise mode for interval and point arithmetic operations respectively. The choice
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of the mode of operation is dictated by the mode signal. Asserting this signal high

causes the ALU to function in the interval mode while asserting it low causes the ALU

to operate in the ¯pointwise mode of operation. In the interval mode of operation, both

the Lower Bound and Upper Bound modules operate on the same command. However,

in the ¯pointwise mode of operation, both modules can execute different commands

independently. This explains the presence of two copies of command entity cmd and

data / control lines such as maxexp, mac and permitscaling. The signals macexp1 and

maxexp2 are input lines that convey the amount of shifting to be performed on the

input data. Asserting the mac signals high results in an accumulation of products

as long as this signal is asserted high. Signal permitscaling indicates an iterative

operation when asserted high. For situations that demand iterative operations to

be resumed midway, signals loadL and loadU can be asserted to load the value of

the increment in the output block exponent. The input rnd mode is used to make

the choice of a rounding scheme in the Upper and Lower Bound modules when the

interval ALU is in the ¯pointwise mode of operation. Therefore, both modules can

function as two independent ALUs that can perform ¯pointwise operations in parallel.

Table 5.2 provides a description of the outputs of the interval ALU. Outputs ZL B

and ZU B signify the endpoints of the interval output interval. The output min L and

min U indicate the least exponent detected value among all samples of a data block.

These are updated alongside the process of Exponent Detection in the BFPIALU.

The outputs updt L and updt U indicate the increment in the output block exponent

compared to the input data block exponent. The signals rnd scale L and rnd scale U

are used to indicate a special case of scaling performed to account for overflow due to

rounding to +∞ in either the Lower Bound or the Upper Bound modules. A further

description of the output lines is provided while describing the individual modules.

Table 5.3 lists the various operations that can be performed in the interval ALU.

While commands 0-7 have been implemented in [9], commands 8-F represent the

extended set of operations in this ALU. The logic blocks that are used to perform

these extended operations are described later in the chapter. Both commands cmd1
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Table 5.1: Architecture Input Description

Input Description Bits

XL Lower bound of Interval X 16

XU Upper bound of Interval X 16

YL Lower bound of Interval Y 16

YU Upper bound of Interval Y 16

mode Operation Mode : Interval / ¯Pointwise 1

cmd1 Operation to be performed in the Lower Bound 4

cmd2 Operation to be performed in the Upper Bound 4

maxexp1 Positions to left shift XL in Lower Bound 4

maxexp2 Positions to left shift YL in the Upper Bound 4

mac1 Performs MAC operation in Lower Bound 1

mac2 Performs MAC operation in Upper Bound 1

permitscaling1 Iterative computations in Lower Bound 1

permitscaling2 Iterative computations in Upper Bound 1

loadL Load block exponent increment for the Lower Bound 1

loadU Load block exponent increment for the Upper Bound 1

rnd mode Rounding mode for ¯Pointwise mode 1

and cmd2 can assume these values at any point of time.

The MAC (multiply-accumulate) operation is performed as part of multiplication.

The corresponding mac signal is asserted high along with the multiply command to

perform this operation.
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Table 5.2: Architecture Output Description

Output Description Bits

ZL B Lower bound of Output interval 16

ZU B Upper bound of Output interval 16

min L Min Exponent Detected over a data block in the Lower Bound 1

min U Min Exponent Detected over a data block in the Upper Bound 1

rnd scale U Output Flag to indicate scaling to counteract overflow due to 1

rounding to +∞ in the Upper Bound module

rnd scale L Output Flag to indicate scaling to counteract overflow due to 1

rounding to +∞ in the Lower Bound module

The following sections describe each module of the interval ALU architecture in detail

shown in Figure 5.1.

5.1.1 Flag Generator Module

Figure 5.2 provides an overview of the Flag Generator module. It is comprised

of three independent functional blocks, namely Flag Generation for interval multipli-

cation, Disjoint flag generation for interval union and intersection and the Control

Distribution Unit. The functions of the Flag Generator module are listed below:

• Identifying the appropriate case of interval multiplication to be performed

• Identifying and flagging disjoint input intervals

• Distributing appropriate control signals to the Lower and Upper Bound modules

depending on the mode of operation

The following sections explain the functionality and logic in each of these blocks in

detail.
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Table 5.3: Command Set for the ALU

Command Description

0 ADDITION

1 SUBTRACTION

2 MULTIPLICATION / MAC

3 DIVISION

4 UNION

5 INTERSECTION

6 WIDTH

7 MIDPOINT

8 MIN

9 MAX

A OR

B AND

C XOR

D EXPONENT DETECTION

E NORMALIZATION

F SIGNED LEFT SHIFT

A. FLAG GENERATION FOR INTERVAL MULTIPLICATION

The actual endpoints to be multiplied for interval multiplication depends upon the

signs of the input interval endpoints. Interval multiplication consists of nine cases, as

listed in Table 5.6. A set of six flags are used to form a 4-bit signal mul which indicates

which case of multiplication is to be performed. Table 5.4 indicates the implication

for each flag when asserted high. Table 5.5 illustrates the relation between the flags

and mul.

The selection logic to implement the relation between the flags and mul in hard-



51

�����������	
���

����


�	������


��	
��
��	
��

���	����

�
�	�
��	
�����
	

�
���
�	������

������	
�������


�	��������
�������


�	�����	
��

��
��

��

��

��

��

��

��

���� �

�����

�

�

����

����

����

�

�� 

�!"#�!$%

���&�

���&�

���&�

���&�

��'�'(&�

��'�'(&�

�

�

�

�

�

�

�

�

�

�

����'(�

����'(�

�

�(�)�!%"�� !$*�

(�)�!%"�� !$*�

("�

("�

�

�

�

��'�'(&�

Figure 5.2: Flag Generation Module

Table 5.4: The Scheme of Flags

F lag OPERATION

flag1 XL ≥ 0

flag2 YL ≥ 0

flag3 XU < 0

flag4 YU < 0

flag5 XL < 0 and XU ≥ 0

flag6 YL < 0 and YU ≥ 0

ware is adopted from [9]. Changes are incorporated wherever ¯pointwise operations

are concerned. Table 5.6 illustrates the one-to-one mapping between various cases of

multiplication and the corresponding value of mul.
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Table 5.5: Deriving mul from the Flags

Combination of F lag mul

flag1 & flag2 1

flag1 & flag6 2

flag1 & flag4 3

flag5 & flag2 4

flag5 & flag4 5

flag3 & flag2 6

flag3 & flag6 7

flag3 & flag4 8

NONE 0

Table 5.6: mul signal for the different cases of interval multiplication

mul Description Output Interval Bounds

0001 xL ≥ 0; yL ≥ 0; [xLyL,xUyU ]

0010 xL ≥ 0; yL < 0 ≤ yU ; [xUyL,xUyU ]

0011 xL ≥ 0; yU < 0; [xUyL,xLyU ]

0100 xL < 0 ≤ xU ; yL ≥ 0; [xLyU ,xUyU ]

0101 xL < 0 ≤ xU ; yU < 0; [xUyL,xLyL]

0110 xU < 0; yL ≥ 0; [xLyU ,xUyL]

0111 xU < 0; yL < 0 ≤ yU ; [xLyU ,xLyL]

1000 xU < 0; yU < 0; [xUyU ,xLyL]

0000 xL < 0 ≤ xU ; yL < 0 ≤ yU ; [min( xUyL,xLyU), max(xLyL,xUyU )]
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B. FLAG GENERATION FOR DISJOINT INTERVAL OPERATION

The Flag Generation module houses the logic to identify if the input intervals are

disjoint or not. Two intervals [xL, xU ] and [yL,yU ] with real endpoints are disjoint if

either xU < yL or yU < xL. This is indicated in Figure 5.3.

�

� �
�
�

�
�

�
�

�
�

ℜ

Figure 5.3: Disjoint intervals X and Y

The design makes use of a comparison logic block to compare interval endpoints

which are in the Q0.15 format. Figure 5.4 depicts the hardware used to perform this

comparison. The block indicates whether or not a signed Q0.15 number x is less than

a signed Q0.15 number y. If x and y are of different signs and the sign of x is negative,

then the output is flagged 1. If not, it is flagged 0. However, if both x and y are of

the same sign, then they can be compared directly as unsigned binary numbers. In

this case, the output is flagged 1 if unsigned x is less than unsigned y. If not, it is

flagged 0.

The comparison logic block is used twice in this module, once to compare xU with

yL and then to compare yU with xL. The results of these comparisons are OR-ed to

produce the disjoint signal. Both the Upper Bound and the Lower Bound modules

utilize this signal during the execution of union and intersection operations. If disjoint

is high, then the output of these operations in the interval ALU is 0 while the flag is

sent out as an output status line.

C. CONTROL DISTRIBUTION UNIT

The Flag Generation module distributes proper commands and signals to both

Upper and Lower Bound modules depending upon the mode of operation of the
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Figure 5.4: Comparison Unit to compare two Q0.15 numbers

ALU. As mentioned earlier, the ALU has two command inputs, cmd1 and cmd2.

When the ALU operates in the interval mode, both Upper and Lower Bound modules

have to execute the same command. Hence, command cmd1 is supplied to both the

modules for an interval operation. When the ALU operates in ¯pointwise mode, both

the modules should work independently and hence should be able to take individual

commands. Thus, command cmd1 is supplied to the Lower Bound module while

command cmd2 is supplied to the Upper Bound module. The logic to handle the

selection of the command input to the Upper Bound module comprises of a simple

multiplexor which selects only one signal, cmd1 or cmd2, depending on the status of

the mode signal. This is illustrated in Figure 5.5.

Similar logic is applied to the selection of mac1 and mac2 signals. Since a MAC

operation in the interval mode implies a simultaneous accumulation of product in-

terval endpoints in both Upper and Lower Bound modules, a common mac signal

must be given to both the modules. In this case, signal mac1 is fed to both the

modules. However, in the ¯pointwise mode, signal mac1 is fed to the Lower Bound
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module and signal mac2 is fed to the Upper Bound module. Similar select logic is

also applied in the selection of maxexp2. Here, the signal macexp2 is fed to the Upper

Bound modules in both modes of ALU operation whereas the Lower Bound module

receives macexp2 if the ALU is in the interval mode and macexp1 if the ALU is in

the ¯pointwise mode of operation. The status of the mode input line forms the basis

for performing the selection of these signals for the Lower Bound and Upper Bound

modules. The hardware to perform this operation is depicted in Figure 5.5. A similar

scheme is also applied to the permitscaling1 and permitscaling2.
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Figure 5.5: Command, MAC and maxexp signal Select logic

5.1.2 Lower Bound and Upper Bound modules

The operations in both the Lower and Upper Bound modules are performed in

parallel with one logic path dedicated to each operation. The set of operations dis-

cussed here pertains to the collective union of the basic interval and set operations

described in Chapter 2 and the logical, comparison and BFP operations described

in Chapter 4. It is imperative that these operations be provided in this architecture

because this makes the architecture a suitable hardware platform to execute interval

algorithms efficiently. In addition to the new commands added to enhance the utility

of this architecture, changes in these modules as compared to the work of [9] include

elimination of the special multiplication block and the next signal for set operations.
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All these points are discussed in the ensuing sections. The overall block diagram of

the Lower Bound module is shown in Figure 5.6. Additional details pertaining to

each command are given below. The inputs to this module are the outputs of the

Scale L module and are denoted by XL, XU , YL and YU for convenience. Each of

these inputs represent scaled values of the original interval inputs.

A. Addition, Midpoint, Subtraction, Width

The computation of the midpoint of an interval requires an addition to be per-

formed. So the adder in the addition path is reused to perform this operation. A

multiplexor is used to feed the right inputs to the adder. A multiplexor selects either

a signed right-shifted version of the sum if the command is midpoint, or it selects

the sum directly if the command is addition. The only point to be noted is that the

overflow detection circuitry, which is modeled along the method mentioned in Section

4.3.1, halves the result in the case of overflow. Hence, depending upon whether over-

flow occurs or not, the input to the final multiplexor is either half the value of the

sum or the sum itself. The overflow detection circuitry following the adder outputs a

signal overflow add to flag overflow. When asserted high, it indicates overflow. The

reason for this is that the midpoint operation can never face overflow because the

result is always between the endpoints of the interval. Figure 5.7 illustrates the logic

design for this path.

A similar optimization is applied to the subtraction and width commands as well.

Figure 5.8 illustrate the logic in the addition/midpoint and subtraction/width com-

mand paths. Unlike the operation of midpoint, the operation of width is susceptible

to overflow. The output detection scheme is mentioned in Section 4.3.2.
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Figure 5.6: Lower Bound Module



58

���

��������
	
��



��

��

�
� �

	
�

����

�
�

���

����

����

���������

���������

���������	

�����

��� �

 

�
!"#��"���"����

���	
��

�
	
��

�
	
��

���	
��

$�%���������$&���

���	
��

���	
��

���	
��

Figure 5.7: Multiplexed Addition and Midpoint operation
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Figure 5.8: Multiplexed Subtraction and Width operation

B. Multiplication

Figure 5.9 illustrates the hardware for the multiplication path. In order to reduce

the period of execution for the special case of multiplication to one cycle, an addi-

tional multiplier is used. It plays a role only if signal mul from the output of the

Flag Generator module bears a value 0000. This corresponds to multiplication where

both intervals enclose 0 between them. Based on the value of mul, the selection logic

chooses the appropriate interval endpoints to be multiplied. The two’s complement

logic converts the negative operands to positive ones so that the multiplication takes

place between positive arguments. The result is again passed through the two’s com-

plement circuitry and the product is negated if any one of the operands was negative.
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In the normal case of multiplication, signal prod1 is sent to the accumulator. For the

special case however, the minimum of prod1 and prod2 is identified and sent to the

accumulator. Signal product L signifies the product of the multiplication operation.

The Multiply Accumulate Block

Figure 5.10 illustrates the hardware that performs the accumulation operation. In

the accumulation mode, the value stored in output register, denoted by zL in the

figure, is added to the current product, namely product L, and the sum thus obtained

is stored in zL again. This operation is known as accumulation. It is particularly

useful in the evaluation of dot products. If the ALU is not in the accumulation mode

(indicated by mac signal being low), then the product is passed on to zL. To perform

this operation, product L is added with zeros. A multiplexor selects out either the

value of zL or zeros depending on the status of the mac signal for the module. The

output of this path is denoted by signal mux mul ovfl.
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Figure 5.9: Hardware for Multiplication in Lower Bound module

Hardware for Overflow Detection

Addition, subtraction and multiply-accumulate incorporate overflow detection mod-

ules in their data paths. The method used to detect overflow in arithmetic operations
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Figure 5.10: Multiply-Accumulation scheme in hardware

is mentioned in section 4.2.1. Overflow detection for multiply-accumulate follows the

same rules as used for addition.

An extra zero is padded on the MSB side to capture the bit growth as a result

of these operations. The similarity or dissimilarity in input sign bits can be identi-

fied using xor logic between them. Overflow is detected by following the algorithm

mentioned in Section 4.2.1 for addition and subtraction. The multiply-accumulate

operation uses the same algorithm as that used by the operation of addition. If over-

flow is detected in the result of the operation, then it is shifted right to scale it down

by a factor of 2. A flag, OVFL L, is then asserted high to indicate the scaled status

of the output to the Scale Synchronizer module. The operations of addition, subtrac-

tion and multiply-accumulate have their own dedicated overflow flags. However, only

one overflow flag corresponding to the operation under execution is sent to the Scale

Synchronizer module using select logic to minimize communication between the mod-

ules. If no overflow is detected, then no flag is asserted high and the results are not

scaled down. This way, conditional scaling is performed on the output. Figure 5.11

illustrates the block diagram of this module. The Conditional Shift block represents
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the overflow detection schemes for addition, subtraction and multiply-accumulate. It

is a multiplexor that selects out a right shifted version of the output if overflow is

detected or simply passes the output through if no overflow occurs. The status of

overflow in the operation is denoted by the signal overflow detect and it is forwarded

to the Scale Synchronizer module as OVFL L. The Upper Bound module uses an

overflow flag OVFL U, similar to OVFL L.
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Figure 5.11: Hardware for overflow detection

C. Division, Union, Intersection, Min, Max, Left Shift

DSPs do not usually provide the general divide command because it occurs very

infrequently in signal processing applications and it can increase area significantly. A

limited divide operation is implemented by providing the facility to shift the input

data right, which corresponds to dividing the data by 2. This ALU also supports

division in powers of 2.

Union and intersection operations are performed using the comparison module

shown in Figure 5.4. Figure 5.12 illustrates the logic design for this path. Min and

Max operate on XL and YL. As the name of the command suggests, Min is used to find

the minimum of the lower bounds of two intervals [XL,XU ] and [YL,YU ]. Similarly,

Max is used to identify the maximum of the lower bounds of the two intervals. The
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Figure 5.12: Logic for interval Union and Intersection in Lower Bound module

logic design used for this path is shown in Figure 5.13. Left shifting is performed
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Figure 5.13: Logic for Min and Max commands in Lower Bound module
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using hardware that selects out the correct value from a set of left-shifted versions

of the input. The amount of shifting, in the case of interval operations, is specified

by the 4-bit input signal macexp2 for both Lower Bound and Upper Bound modules.

In the case of point-wise operations, macexp1 is given to Lower Bound module while

macexp2 is given to the upper bound module. This instruction is part of the BFP

support provided by the interval ALU.

D. OR, AND, XOR

From the perspective of an ALU, the command set is complete when the ability

to perform logical operations is included. Since the interval ALU has been modified

to function as two independent ALUs that perform point-wise computations, logical

operations such as OR, AND and XOR are added to enhance the capabilities of the

ALU. Figure 5.14 illustrates the hardware used to perform the XOR operation in the

Lower Bound. The operation of logical OR and AND are performed in the same way.
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Figure 5.14: Logical XOR operation

E. Exponent Detection and Normalization

These instructions are a part of the BFP support provided in the interval ALU.

They have been described in Section 4.4.2 of this work. Small-valued data is usually
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sign-extended to meet large word-size requirements. For positive values, the extension

comprises of 0’s while for negative values, the extension comprises of 1’s. Thus, the

number of redundant sign bits in a number directly indicates its magnitude. The

operation of Exponent Detection involves identifying the number of redundant sign

bits in a given data element. For a given data element, it is done by XORing successive

bits and then passing the result through an array of priority encoders. The output

is an integer corresponding to the number of redundant sign bits in the input data

element depending on where the first combination of 01 or 10 occurs in the input.

Table 5.7 shows the mapping of integers to the result of the XOR operation. Figure

5.15 illustrates the scheme to perform this operation.
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Figure 5.15: Exponent Detection scheme

Exponent Detection is a part of Normalization operation. Hence, Normalization

takes the integer output of Exponent detection and on the basis of this value, it

chooses the normalized value from a set of left-shifted input data elements. Figure

5.16 illustrates the hardware scheme chosen to perform this operation.

The procedure for updating the block exponent is always an integer operation.

The ALU can perform the operations of block exponent increment or decrement

through the addition and subtraction commands. Hence, the ALU supports the

block exponent operations completely.
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Table 5.7: Priority Encoder array for Exponent Detection

Priority Number of redundant sign bits

1xxxxxxxxxxxxxx 0

01xxxxxxxxxxxxx 1

001xxxxxxxxxxxx 2

0001xxxxxxxxxxx 3

00001xxxxxxxxxx 4

000001xxxxxxxxx 5

0000001xxxxxxxx 6

00000001xxxxxxx 7

000000001xxxxxx 8

0000000001xxxxx 9

00000000001xxxx A

000000000001xxx B

0000000000001xx C

00000000000001x D

000000000000001 E

000000000000000 F
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Figure 5.16: Normalization scheme
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Each operation is performed and the LSB side of the results is padded with zeros

so that the output of all operations is of 32-bits. The relevant result is selected out

by the Select Logic block, shown in Figure 5.6, based on the present command. This

final value is the output of the Lower Bound module indicated by ZL.

The Upper Bound module is very similar to the Lower Bound module at the

architectural level. The differences pertain mainly to the inputs that are operated

upon for various commands. The output of this module is ZU .

5.1.3 Scale Synchronizer module

The top-level view of the Scale Synchronizer module is shown in Figure 5.17. This

module contains mostly decision logic and hence it is mostly comprised of mutiplexors.
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Figure 5.17: Top Level View of the Scale Synchronizer module
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We first specify the inputs to this module. Input commands cmd1, cmd2, mode,

and rnd mode are delayed input signals to this module. Signals loadL and loadU

are used to load new block exponent increment values. Signal disjoint is the de-

layed output of the Flag Generator module. Signals psL and psU represent delayed

permitscaling1 and permitscaling2 respectively. Signals maxexp L and maxexp U rep-

resent delayed signals maxexp1 and maxexp2. The 32-bit outputs of the Lower and

Upper Bound modules zl and zu are fed into the Scale Synchronizer module.

The Scale Synchronizer module puts out the 16-bit output interval endpoints.

These output ports are labeled ZL B and ZU B. The feedback to the MAC in both

the Lower and Upper Bound modules is given through 16-bit output ports labeled

feedback zl and feedback zu. This module also stores the least number of redundant

sign bits while traversing through a data block. The minimum is stored in the 4-

bit min L and min U output registers. Rounding to +∞ can lead to overflow and

signals rnd scale L and rnd scale U indicate this condition by going high. A detailed

description of the module is provided in the ensuing lines.

A. Need for Scale Synchronization

Overflow can occur in either the Lower Bound module or in the Upper Bound

module or in both. In order to obtain a reliable result, the overflow detection circuitry,

housed within each of these modules, scales down the output of the operation by a

factor of 2. It is advantageous to set both output interval endpoints to the same

scaling level in hardware because this would enable both endpoints to bear the same

output exponent value. Performing this step in hardware avoids the time penalty

associated with checking the status of scaling of individual endpoints for each output

interval while normalizing the output interval data block for the next stage of block

processing.
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B. Main Functions of the Scale Synchronizer

The Scale Synchronizer block takes two 32-bit inputs, namely ZL and ZU from the

outputs of the Lower Bound and Upper Bound modules respectively. The functions

of this module are listed below:

• It rounds these 32-bit values to 16-bit outputs with the choice of the appropriate

rounding scheme.

• It synchronizes the scaling on ZL and ZU because both output interval endpoints

must be on the same scale. It also updates registers updt L and updt U, which

store the increment in output block exponent, depending upon the status of

overflow signals from the Lower Bound and Upper Bound modules.

• It stores the minimum exponent detected in a data block during Exponent

Detection, so that Left shifting can follow immediately for Block Normalization.

1. The Rounding Scheme

Before discussing the procedure for synchronizing the scale of the output interval

endpoints, it is important to understand the rounding scheme used in the BFPIALU.

A study of the rounding modes is important because it has a direct impact on the

method of applying synchronization to the intermediate interval outputs and updating

the output block exponent. Rounding to +∞ in either the interval or ¯pointwise mode

of operation can result in unintentional overflow since it entails the addition of an

LSB to account for discarded bits beyond the output precision.

Outward rounding is the default rounding scheme for interval operations. This

means that the 32-bit intermediate results from the Lower and Upper Bound modules

are truncated and rounded to +∞ respectively to reduce the 32-bit intermediate

interval result to a 16-bit output interval. Rounding to +∞ can lead to overflow

errors and this affects the process of output endpoints’ scale synchronization.
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In this work, we have incorporated modifications in the structure of the dedicated

interval ALU [9] to enable us to perform independent point-wise computations in the

Lower and Upper Bound modules. In order to address the issue of the selection of the

rounding scheme for point-wise computations, rounding to +∞ has been extended to

the Lower Bound module while truncation has been extended to the Upper Bound

module. Saturation arithmetic is not implemented in this architecture since it is not

suitable for intervals. This topic has been discussed in Section 4.3. The input line

rnd mode is asserted high to enforce truncation or rounding to +∞ in the Lower and

Upper Bound modules. No synchronization is required for the ¯pointwise mode of

operation in the BFPIALU since both the Lower and Upper Bound modules func-

tion independently. However, updating the increment in the output block exponent

requires that we be sensitive to whether rounding to +∞ can lead to overflow and

whether the computation is iterative.

Special Case of Rounding

As explained in section 4.3.2, rounding to +∞ entails the addition of an LSB to

account for the nonzero value of the discarded least significant 16-bits in the 32-bit

intermediate result. When the 32-bit value is positive and in the form 7FFFXXXX

(hex) with at least one X being non-zero, a ‘1’ (hex) is added to 7FFF (hex) to perform

the rounding. The resulting value is 8000 (hex) and wrap around is observed since it

exceeds the highest representable positive quantity in Q0.15 fixed point format. This

can lead to unreliable results if not handled properly. Such a situation can occur in the

Upper Bound result in either the interval mode or ¯pointwise mode and in the Lower

Bound result in the ¯pointwise mode of operation. This special case is addressed by

flags rnd scale L and rnd scale U which are asserted high by the Scale Synchronizer

module when such a situation is detected. Corrective action is taken by putting out

a result of 4000 (hex) and setting the relevant flag to indicate this situation. This

situation cannot arise with negative numbers because the addition of a positive LSB

to a negative number does not meet the condition for overflow mentioned in Section

4.2.1 B.
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Figure 5.18 illustrates the hardware structure to address this issue when the bit

pattern appears in the 32-bit output of the Upper Bound module. The same structure

is duplicated while rounding the result of the Lower Bound module.
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Figure 5.18: Hardware module to Handle the Special Case of Rounding

2. Synchronization and Updating the Output Block Exponent

The synchronization process depends upon the mode of operation of the BFPI-

ALU in addition to overflow and rounding schemes. Updating the increment in output

block exponent depends upon whether the operation is iterative or not. An iterative

computation is one that involves multiple operations so that any intermediate over-

flows will have to be handled carefully by updating registers updt L and updt U and

scaling the inputs for further computations. Section 3.2.3 has illustrated this clearly.

Whether a computation is iterative or not is indicated by asserting input lines

permitscaling1 and permitscaling2 high for operations in the Lower Bound and Upper
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Bound modules, respectively. For the interval mode of operation, permitscaling1 is

fed into both the Upper and Lower Bound modules. However, for point-wise mode

of operations, permitscaling1 is fed into the Lower Bound module and permitscaling2

is fed into the Upper Bound module. Signals permitscaling1 and permitscaling2 are

delayed by one by cycle and fed into the Scale Synchronizer module as psL and

psU, respectively. Updating registers updt L and updt U in the event of overflow for

iterative computations involves incrementing their previous values. For non-iterative

operations, the output block exponent increment is simply set to 1 when overflow

occurs. It is important to note that the input is scaled by a factor of the output

block exponent increments. We discuss the process of synchronization for intervals

and point-wise operations in detail next.

i) Synchronizing intervals

The synchronization of the interval output and the value of the updated registers

updt L and updt U is shown in Table 5.8. Both endpoints share common block ex-

ponent for an interval operation and the same value is loaded in the output registers

updt L and updt U. Care must be taken to clear these registers initially so that the

computations can proceed properly.

The overflow flags from the Upper and the Lower Bound modules are represented

as OVFL U and OVFL L respectively. They indicate the status of overflow in the

computations performed in their respective modules. For an interval operation, the

special case of rounding can only occur with the Upper Bound result. The signal

SplRnd is a special flag used to identify if the bit pattern of the 32-bit value from the

Upper Bound module matches 7FFFXXXX hex where XXXX is non-zero. Whenever

the special case of rounding is observed, the output is fixed at 4000 hex. Depending

upon the values of these flags, 16 different combinations are possible and Table 5.8

presents the actions associated with them all. This table indicates the operations to

be performed for a specific combination. For instance, when the flag combination is

0100 (binary) implying that overflow occurs only in the Lower Bound module, we
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recognize that the value of register zl obtained from the Lower Bound module is

halved as a result of overflow correction. Table 5.8 shows ZL B = zl instead of ZL B

= zl/2 suggesting that the result from the Lower Bound module is to be retained. On

the other hand, ZU B = zu/2 indicates that the intermediate output from the Upper

Bound module is to be scaled down by 2 for this case.

A special case to be noticed is when the flag combination is 0011 and 1011 for

non-iterative and iterative operations respectively. Both cases, however, essentially

indicate the same scenario. In the first case, the result of the operation in the Upper

Bound is halved due to overflow and then the result further qualifies for the special

rounding. This calls for a scaling of factor 4 for the result of the Lower Bound which

does not see any overflow. Yet another interesting case is 0110 and 1110. In both

these cases, only registers updt L and updt U need to be updated because both the

Upper and Lower Bound modules have undergone overflow.

ii) Pointwise Operations

In the case of pointwise operations, no synchronization of intermediate outputs is

necessary. The focus is on updating the updt L and updt U registers properly given

that the rounding modes can now either be truncation or rounding to +∞. At any

point of time, both the lower bound modules and the upper bound modules can either

truncate or round the results to +∞. At this point, the question arises as to why a

common rounding mode (either truncation or rounding to +∞) is enforced on both

the Upper and Lower Bound modules through the use of a common rnd mode signal.

The reason for not using two input lines to enforce different rounding schemes in the

Upper and Lower Bound modules is indicated in the ensuing lines.

The scale synchronizer module is essentially a large combinational logic block

whose outputs are registered in flip-flops at every active clock edge. It is mainly

comprised of a multiplexor that selects out a group of signals which indicate a specific

set of actions performed. The selection of a particular group of signals is also based
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Table 5.8: Scale Synchronization for Interval Operations

psL OV FL L OV FL U SplRnd ZL B updt L ZU B updt U

0 0 0 0 zl 0 zu 0

0 0 0 1 zl/2 1 4000 hex 1

0 0 1 0 zl/2 1 zu 1

0 0 1 1 zl/4 2 4000 hex 2

0 1 0 0 zl 1 zu/2 1

0 1 0 1 zl 1 4000 hex 1

0 1 1 0 zl 1 zu 1

0 1 1 1 zl/2 2 4000 hex 2

1 0 0 0 zl updt L zu updt L

1 0 0 1 zl/2 updt L+1 4000 hex updt L+1

1 0 1 0 zl/2 updt L+1 zu updt L+1

1 0 1 1 zl/4 updt L+2 4000 hex updt L+2

1 1 0 0 zl updt L+1 zu/2 updt L+1

1 1 0 1 zl updt L+1 4000 hex updt L+1

1 1 1 0 zl updt L+1 zu updt L+1

1 1 1 1 zl/2 updt L+2 4000 hex updt L+2

upon the rounding mode. Therefore, with an input line each to indicate the rounding

mode for the Upper and Lower Bound module, there is more selection to be done

than if a single rounding mode were enforced on both modules simultaneously.

Table 5.9 indicates the actions associated with obtaining the right output ZL B

and the updated block exponent increment value updt L when the rounding mode is

truncation. Similarly, Table 5.10 indicates the actions associated with obtaining the

right output ZU B and the updated block exponent increment value updt U when the

rounding mode is truncation for the Upper Bound module.
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Table 5.9: Scale Synchronization for Lower Bound module : Truncation

psL OV FL L ZL B updt L

0 0 zl 0

0 1 zl 1

1 0 zl updt L + 1

1 1 zl updt L + 2

Table 5.10: Scale Synchronization for Upper Bound module : Truncation

psU OV FL U ZU B updt U

0 0 zu 0

0 1 zu 1

1 0 zu updt U + 1

1 1 zu updt U + 2

Table 5.11 indicates the actions associated with obtaining the output ZL B and

the updated block exponent increment value updt L when we round to +∞ in the

Lower Bound module. Similarly, Table 5.12 indicates the actions associated with

obtained the right output ZU B and the updated block exponent increment value

updt U when the result of the Upper Bound module is rounded to +∞.

It may be noted from Table 5.12 and Table 5.11 that the output block exponents

are incremented with respect to 0 for non-iterative operations and with respect to the

previous value of the block exponent for iterative operations.

The Scale Synchronizer aids the accurate computation in the results of the MAC

operation by sending the synchronized and unrounded 32-bit intermediate outputs

back to the Upper and Lower Bound modules. The Upper Bound module is unaware

of the status of overflow in the Lower Bound module and vice versa. This could
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Table 5.11: Scale Synchronization for Lower Bound module : Rounding to +∞

psL OV FL L SplRnd ZL B updt L

0 0 0 zl 0

0 0 1 4000 hex 1

0 1 0 zl 1

0 1 1 4000 hex 2

1 0 0 zl updt L

1 0 1 4000 hex updt L + 1

1 1 0 zl updt L + 1

1 1 1 4000 hex updt L + 2

result in erroneous MAC output if the output is fed back directly. Instead, the Scale

Synchronizer synchronizes the 32-bit intermediate outputs and dispatches them to

their respective modules. By not performing rounding and retaining all 32-bits, the

feedback value is more accurate as opposed to dispatching the rounded value. This

results in accurate MAC. The hardware scheme is clearly illustrated in Figure 5.10.

iii) Loading registers updt L and updt U

This design also provides the ability to load 4-bit block exponent increment values

into the updt L and updt U registers. This is especially important when an iterative

operation must be stalled mid-way in order to perform higher priority operations

and then resumed. Consider the following hypothetical problem pertaining to the

multiply-accumulate (MAC) operation with Q0.15 numbers steadily decreasing in

magnitude. The problem is to perform the MAC operation a fixed number of times,

say 100, and then check if the interval width of the last computed term fell within a

predetermined value. If it did, then the operation is halted; otherwise the next 100

MAC operations are performed. In this scenario, the values of updt L and updt U

must be stored away after a set of 100 MAC operations. Then the output block
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Table 5.12: Scale Synchronization for Upper Bound module : Rounding to +∞

psU OV FL U SplRnd ZU B updt U

0 0 0 zu 0

0 0 1 4000 hex 1

0 1 0 zu 1

0 1 1 4000 hex 2

1 0 0 zu updt U

1 0 1 4000 hex updt U + 1

1 1 0 zu updt U + 1

1 1 1 4000 hex updt U + 2

exponent increment values must be cleared so that the inputs do not get scaled. This

must be followed by a width operation for the last interval product obtained and a

subtraction with the threshold fixed to perform the comparison. Assuming that the

threshold is smaller in value, the MAC operations must be resumed. Since the MAC

operations are iterative, the former values of updt L and updt U can now be restored

and the computations can be resumed.

The input lines loadL and loadU along with the 4-bit signals maxexp1 and maxexp2

are used to perform this loading operation. The mode and loadL signals are asserted

high and the block exponent increment value is applied to the 4-bit maxexp1 input

line to resume interval computations. The value of maxexp1 is loaded into updt L

and updt U in the next clock cycle. Signal mode is asserted low and signals loadL

and loadU are asserted low to resume point-wise computations. The block exponent

increment for the Lower Bound module is applied to the maxexp1 input line while

that for the Upper Bound module is applied to the maxexp2 input line. Therefore,

the value of maxexp1 is loaded into updt L and the value of maxexp2 is loaded into

updt U. The hardware corresponding to this is a register with a multiplexor to select

the value of maxexp1 or maxexp2 with loadL and load2 as select lines.
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3. Storing the minimum value of the Exponent Detected

As discussed earlier, the process of Exponent Detection results in the identification

of the value of γ based on the method of finding the least number of leading sign

bits. The Scale Synchronizer houses a logic block that stores the minimum exponent

detected during the process of Exponent Detection on a block of data in output

registers min L and min U. The size of these registers is only 4-bits each to account for

the exponent size. This module uses a large 4-bit value (F hex) for min L and min U

for operations other than Exponent Detection. The module successively replaces the

contents of these registers with the smallest values of exponents detected so far. When

the complete data block is traversed for Exponent Detection, the registers min L and

min U are left with the least values of exponents. Thus, left shifting to normalize

the block can be performed starting from the immediate next clock cycle in the case

of a non-pipelined design. Incorporating such a scheme helps avoid the use of a

min operation following each Exponent Detection operation and speeds up the BFP

operations.

5.1.4 Scale L and Scale U modules

As mentioned earlier, overflow in the intermediate stages of iterative computations

needs to be handled by scaling of the inputs so that the computations may proceed.

This calls for a scaling module that shifts the input values based on the current value

of the block exponent. For example, consider the evaluation of an interval summation

which has undergone three overflows already. Therefore, registers updt L and updt U

would have been incremented three times so that their value would be +3. Hence,

when the next term comes in for addition, the term is scaled down by right shifting

by 3 positions so that it can be added to the existing sum and the computation may

proceed.

This module consists of various signed right-shifted versions of the input subjected

to appropriate rounding to ensure that there is no underestimation of the input values.
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Truncation is performed on the shifted inputs in the Scale L module while rounding

to +∞ is performed on the shifted inputs in the Scale U module. The high-level

block diagram for this module is shown in figure 5.19.
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Figure 5.19: Scaling Modules for Iterative Computations

This completes the description of the hardware modules that constitute the basic

non-pipelined interval ALU architecture. The throughput obtained from this archi-

tecture can be improved by pipelining the architecture. Most of the logic is found

to be concentrated in the Lower Bound and Upper Bound modules of this design.

Hence, pipelining is done to split up the timing in these critical modules. The follow-

ing section describes this technique of improving the throughput.
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5.2 Pipelined Architecture of the Design

This section describes the pipelined architecture of the design in detail. Pipelining

is the technique of reducing the critical path in the design, thereby reducing the clock

rate. It is performed by splitting the critical path of the design into smaller paths by

inserting registers. Since the timing for a design is always calculated between registers,

more registers inserted uniformly into the critical path imply proportionately less

work to be performed between the clock edges, thereby increasing the maximum

clock frequency that this design can perform reliably. Evidently, the gain of higher

clock rate is obtained at the cost of higher area consumption and power dissipation.

Despite its associated disadvantages, pipelining is very relevant to signal processing

applications because it improves the throughput for the system.

When pipelining is performed on an already pipelined design, the process is known

as Superpipelining. Superpipelining is the technique of dividing major stages of a

pipeline into sub-stages [31]. It causes the work to be split into smaller logical divisions

that require reduced amount of computation time. While this indicates theoretically

that extremely high clock speeds can be achieved using this technique, in practice,

there are timing overheads to be considered that make superpipelining ineffective

beyond an optimal point.

5.2.1 Need for Pipelining

The non-pipelined architecture presented above has been synthesized in hardware.

The result from the timing report of design synthesis shows that the critical path

starts at input permitscaling2 in the Flag Generator module and then passes through

one of the two multipliers in the Upper Bound module. It then passes through the

accumulation logic and the final selection logic for the Upper Bound module. The

critical path then crosses over into the Scale Synchronizer module where it traverses

some combinational logic and eventually terminates in the output register ZU B.
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Figure 5.20 illustrates the critical path.
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Figure 5.20: Critical path in the non-pipelined design

This long logic path must be split into smaller parts so that the clock period can

be minimized. The multiplier is seen to be a prominent part of the critical path.

Hence, pipelined multipliers are used to split the critical path into smaller paths.

Pipelined Multipliers for Higher Levels of Pipelining

Pipelined multipliers are based on the principle that the sum of partial products

can be used to produce the final product. The Design Compiler tool from Synopsys

Inc. provides a library of pipelined multiplier IPs that can be used during synthesis

of the design. The multipliers based on combinational logic in the critical path of the

non-pipelined architecture are replaced with pipelined multipliers to break the long

critical path down into smaller parts.

The structure of the non-pipelined multiplier is as shown in Figure 5.21. With

higher levels of pipelining, more partial products are stored in intermediate registers.
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Figure 5.21: Combinational Multiplier

Figure 5.22 illustrates the abstract architecture of a three-stage pipelined multiplier

while Figure 5.23 shows the same for a five-stage pipelined multiplier [9]. Due to
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Figure 5.22: Three Stage Pipelined Multiplier
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Figure 5.23: Five Stage Pipelined Multiplier

the reduced logic depth between the registers, the clock period can now be minimized

further thereby yielding higher throughput.

5.2.2 Architectural Issues with Pipelined Designs

This section highlights the issues associated with pipelining the basic non-pipelined

design. Pipelining decisions include whether the design should be partially pipelined
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or fully pipelined and whether a pipelined MAC is a feasible solution to high clock

rates. The following sections discuss these issues in greater detail.

1. Partially Pipelined Designs

A partially pipelined design can be obtained from the non-pipelined design by

pipelining the multiplier path only. However, this can lead to collision between oper-

ations. This is illustrated in the following example.

We consider the example of a three-stage pipelined design based on a three-stage

pipelined multiplier. All other operations are assumed not to be pipelined because

they do not form part of the critical path. We construct a collision table that indicates

the pipeline stages for the operations with time as shown in Figure 5.24. Example

commands featured in it include multiply, add and subtract. The letter ‘I’ indicates

the application of the input to the BFPIALU while ‘O’ indicates the availability of the

final output. The subscript indicates the first letter of the operation being performed.
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Figure 5.24: Collision Analysis for the Partially Pipelined BFPIALU

Since the multiplier is a three-stage pipelined element, its output is expected in

time t3. However, the outputs corresponding to all other operations are available
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in the immediate next clock cycle because they are not pipelined. Hence, a collision

occurs when subtract is applied at time t2. The result of the operation is unpredictable

and this is highly undesirable. Therefore, only fully pipelined designs are considered

since it does not lead to collision. The collision table for a three-stage fully-pipelined

design is shown in Figure 5.25. Fully-pipelined designs are obtained by delaying the

inputs to the non-multiply paths by inserting registers.
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Figure 5.25: Collision Analysis for the Fully Pipelined BFPIALU

2. Pipelined MAC operation

A MAC operation uses an adder with one input being the current product and the

other input being the output of the previous operation. This constitutes a feedback

in the data path from the output to the adder. A multiplexor selects the output of

the previous operation in the case of MAC operations and a 0 in the case of non-MAC

operations for addition with the current product. The use of a pipelined multiplier

does not change the dynamics of product accumulation. However, introducing delays

in the feedback path creates problems of data dependency [32] because the product

is available every clock cycle and there is a finite delay before the output is available

in the feedback path for accumulation. The MAC will require special schemes to

generate the output in this case. This also implies additional burden on the compiler
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with regard to the MAC operation.

Different schemes can be used to obtain the MAC output when there is a delay in

the feedback path. One such scheme is where the inputs can be fed in every alternate

clock cycle. This is illustrated clearly in Figure 5.26. ‘Pi’ denotes the ith product and

N denotes the number of products to be accumulated. The example assumes N =

3. Intermediate operations used should provide a product of 0 so that the feedback

remains unaffected Quite evidently, such an operation would take twice the amount
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Figure 5.26: Scheme 1 : Multiply-Add pipeline

of time a normal MAC would take, even if there were no overflows. Therefore, such

a scheme is not desirable for MAC operations.

Yet another scheme, though complex to implement, is described next. Figure 5.27

and Figure 5.28 illustrate this scheme for a non-pipelined design with N=7.

We feed all the inputs in order to the MAC in every clock cycle to yield prod-

uct denoted by letter ‘P’. This results in the feedback path circulating two different
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TIME CYCLE t0 t1 t2 t3 t4 t5
FEEDBACK 0
PRODUCT P1
FEEDBACK 0
PRODUCT P2
FEEDBACK P1
PRODUCT P3
FEEDBACK P2
PRODUCT P4
FEEDBACK P1+P3
PRODUCT P5
FEEDBACK P2+P4
PRODUCT P6/2

OVFL!!
SUM P1 P2 P1+P3 P2+P4 (P1+P3+P5)/2 ERROR!!

Blk Exp + 1
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Figure 5.27: Scheme 2 : Multiply-Add pipeline

accumulated sums alternately corresponding to the accumulation of every alternate

product. These can be added separately at the end of accumulation. The difficulty

with the scheme pertains to the handling of overflow. This problem is highlighted

in Figure 5.27. Product P6 is scaled because of the overflow. However, due to the

delay in the feedback path, the input to the adder is not scaled and this leads to

erroneous results. Therefore, the MAC operation must be halted at the first instance

of overflow. This is detected by the increment in the output block exponent. The

corrective action in this case requires the storage of MAC outputs two cycles prior to

overflow. We refer to them as O1 and O2. In the example highlighted, O1 = (P1+P3)

and O2 = (P2+P4). The steps enumerated below summarize the actions to resume

the MAC operations:

1. Stop the MAC operation ; Clear the multiplication pipeline by multiplication

of zeros.

2. Load output block exponent with post-overflow value

3. Multiply O1 with 7FFF (hex) to re-introduce it into the MAC pipeline. Keep

mac signal asserted high during this operation.
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4. Multiply O2 with 7FFF (hex) to re-introduce it into the MAC pipeline. Keep

mac signal asserted high during this operation.

5. Resume MAC operation

The new block exponent increment value sees that the inputs into the system are

scaled down by the appropriate factor. Once O1 and O2 are in the MAC pipeline,

the normal course of inputs are applied and the MAC operation is resumed. The

corrective operation is shown in Figure 5.28. The exact timing is important when

throughput is to be evaluated. This is dealt with in Section 7.1.

TIME CYCLE
FEEDBACK 0
PRODUCT O1
FEEDBACK 0
PRODUCT O2
FEEDBACK O1/2 = (P1+P3)/2
PRODUCT P5/2
FEEDBACK O2/2 = (P2+P4)/2
PRODUCT P6/2
FEEDBACK (P1+P3+P5)/2
PRODUCT P7/2

O1/2 = O2/2 =
SUM (P1+P3)/2 (P2+P4)/2 (P1+P3+P5)/2 (P2+P4+P6)/2 (P1+P3+P5+P7)/2

Figure 5.28: Scheme 2 : Post-Overflow Multiply-Add pipeline

This example illustrated the scheme for the non-pipelined design. For pipelined

designs, however, the latency of the designs must be taken into account especially in

the case of updating the input scaling factors and loading the former sums into the

multiplication pipeline. Latency in pipelined designs leads to late detection of over-

flow. Section 7.1 discusses a scheme to handle overflows in normal MAC operations

with pipelined designs.
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5.2.3 Superpipelining for High Throughput

The term superpipelining may be used to describe the operation of inserting reg-

isters by observing the critical path in pipelined designs for levels of pipelining higher

than the second stage. The second stage of pipelining for the non-pipelined archi-

tecture described above may be obtained by replacing the combinational logic based

multiplier with a two-stage pipelined multiplier. This reduces the minimum clock

period considerably. The three-stage pipelined design is further obtained by using

a three-stage pipelined multiplier in place of the two-stage pipelined design because

the critical path is found to pass through the multipliers. All the higher pipelined

designs are obtained by using pipelined multipliers of greater pipeline depth. The

minimum clock period falls initially and then rises after hitting a minimum value

in the 7th stage of pipelining. This is attributed to the law of diminishing returns,

caused by fixed timing constraints of input and output delays associated with the

registers during the process of superpipelining.

The Highly Pipelined Architecture

The minimum clock period for pipelined designs generated solely through pipelined

multipliers is seen to fall till the third stage of pipelining. Beyond this stage, the tim-

ing is not seen to improve much as opposed to significant increase in area and power

consumption. This has been identified from synthesis runs on the RTL description of

the design. Furthermore, latency increases with increased level of pipelining. There-

fore, starting from the third stage of pipelining, registers are manually inserted in the

observed critical path. The critical path for the three-stage design passes through

the interface of the Upper Bound module and the Scale Synchronizer module with a

timing of 5.10ns. The critical path in the architecture for the three-stage pipelined

design is as shown in Figure 5.29. This design can to be used for applications such as

filtering that rely heavily on MAC operations. This records higher throughput than

the highly-pipelined design for MAC operations. The discussion for this presented in

section 7.1.
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Figure 5.29: Critical path and Architecture of the Three stage Pipelined Design

Inserting a register between the boundaries of the Lower and Upper Bound mod-

ules for the three-stage pipelined design results in a four-stage pipelined design with

significantly improved timing of 3.87ns. However, this also introduces a delay in the

feedback path of the MAC structure. This design is labeled Highly Pipelined design.

The critical path in the architecture of the highly-pipelined design is shown in

Figure 5.30. This utilizes the three stage pipelined multiplier and two registers at

the boundaries of the Lower and Upper Bound modules with the Scale Synchronizer

module each. This design records an improvement of 31.8% over the three-stage

pipelined design and 166.9% in timing over the non-pipelined design. For MAC

operations in the highly-pipelined design, schemes such as the one described above

must be used. Further results pertaining to area utilization and power consumption

are presented in Chapter 6.
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Figure 5.30: Critical path and Architecture of the Highly-Pipelined Design
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Chapter 6

Testing and Results

This chapter presents the results of simulation and synthesis in terms of timing,

area and power dissipation for different pipelined architectures of the interval ALU

discussed in Chapter 5.

Functional verification is performed first and then the results of synthesis and

power analysis are presented. This chapter aims to provide the results of synthesis

and power analysis on a design that is shown to be working correctly through simula-

tions. The first step in testing is to verify the correctness of the design functionality.

Simulations are conducted and the resulting waveforms are studied. Once the sim-

ulations establish the correct functionality of the designed hardware, the design is

synthesized and the area, timing and power dissipation values associated with it are

noted.

6.1 Simulation Results

The simulations were conducted using test vectors in Cadence 2004 version envi-

ronment. The behavior was captured in Verilog. The tests were performed for the
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ALU operating in both interval mode and ¯pointwise mode. Complete code coverage

was measured by inserting display routines in each line. In this section, we verify the

correctness of the design functionality. The simulation results presented pertain to

the non-pipelined architecture. The output of a particular pipelined design is simply

these waveforms delayed by the appropriate number of clock cycles to account for the

associated latency. The output values remain the same.

6.1.1 Interval mode of operation

Figure 6.1 illustrates Block Normalization for a block size of 5. First, Exponent

Detection is performed. The minimum value is observed in signal min L which latches

on to the smallest integer. The least number of redundant leading sign bits is identi-

fied to be 2. After the full block has been traversed, all the data samples are passed

through the BFPIALU once again to left shift all samples by 2 positions. The normal-

ized values are observed and found to be correct. Therefore, fixed point computations

may be performed on this data.

Figure 6.1: Simulation results for BFP commands (interval mode)

Figure 6.2 illustrates the results of the simulation for MIN, MAX and logical

operations when the ALU is in the interval mode. Command cmd1 is supplied to
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both Lower and Upper Bound modules and hence, irrespective of command cmd2,

cmd1 is executed in the Upper Bound module. An important point to be noted here

is that these operations do not lead to overflow.

Figure 6.2: Simulation results for Min, Max, OR, AND, XOR (interval mode)

Figure 6.3 illustrates the handling of overflow with CBFS. It is seen that after

the first addition in the iteration, the output is scaled down by a factor of 2 since

overflow occurs. Since permitscaling1 is high, it implies that the iterative operation of

summing is still in progress and hence all incoming data will be scaled down by a factor

of 2. The incremental block exponent is seen in output signals updt L1 and updt U1

which bear the latest values for the output. It may be noted that signals updt L1 and

updt U1 are aliases for updt L and updt U during the simulation runs. The scaling

is halted once the iteration has been completed which is signified by permitscaling1

asserted low. The results are verified to be correct. Additions performed as part of

non-iterative operations are found to result in a block exponent increment of 1. This

is also illustrated in Figure 6.3.
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Figure 6.3: Iteration of Summing a Series with Overflow (interval mode)

6.1.2 Pointwise mode of operation

It is evident that in the interval mode of operation, cmd1 is supplied to both the

Lower and Upper Bound modules. However, in the ¯pointwise mode of operation,

cmd2 is supplied to the Upper Bound module instead of cmd1. This is clear from the

simulation runs presented in Figure 6.4. As seen in the figure, the rounding performed

depends on the status of rnd mode. Hence the same operation of multiplication yields

0001 (hex) when the result is rounded to +∞ and 0000 (hex) when the result is

truncated. The pertinent outputs are encircled in Figure 6.4. Figure 6.5 highlights

the case of overflow in ¯pointwise operations. The upper bound faces overflow before

the iteration is over and hence its input is scaled. In contrast, the lower bound does

not overflow and its block exponent does not get incremented. This is evident from

the states of signals updt L1 and updt U1.

The special case of rounding for the BFPIALU in the ¯pointwise mode of operation

is illustrated in Figure 6.6. Here, a MAC operation is carried out over a large number
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Figure 6.4: Independent pointwise operation in the interval ALU

Figure 6.5: CBFS in an iteration with overflow in the Upper Bound
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of computations to observe the special case of rounding. Rounding to +∞ is enforced

in both ALUs to observe this. The isolation between the functioning of the Lower

and Upper Bound modules is evident from Figure 6.6.

Figure 6.6: Special case of Rounding in the ¯pointwise mode

6.2 Synthesis Results

In this section, the various pipelined designs discussed in the Chapter 5 are syn-

thesized using the 0.18µm standard cell library from Oaklahoma State University [33].

Synopsys Design Compiler [34] is used to perform the timing analysis for this design

while Synopsys Prime Power [35] is used to perform the power analysis. The organi-

zation of the results is as follows: First the results of synthesis for the non-pipelined

design are presented. Details of the individual modules of the architecture are men-

tioned. Then pipelined multipliers are synthesized in order to study their timing
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and area utilization. Then the results of synthesizing all pipelined architectures are

presented with area and timing.

6.2.1 The Non-pipelined Architecture

Table 6.1 shows the results of synthesis for the non-pipelined design. It highlights

the timing and area for individual blocks that comprise the proposed architecture.

The Scale L and Scale U modules are included with the Lower Bound module and the

Upper Bound module respectively. Figure 6.7 illustrates the area occupied by each

Table 6.1: Timing for Non-pipelined Design

Module Least Clock Period (ns) Area (µm2)

Flag Generator 2.49 15425

Lower Bound 9.56 198596

Upper Bound 9.76 223646

Scale Synchronizer 3.29 39500

Overall Architecture 10.33 473703

module in the design. The greatest concentration of logic is present in the Lower and

Upper Bound modules. This explains the higher area utilization and longer critical

paths in these modules. The overall non-pipelined design is synthesized for a timing

of 10.33ns and an area of 473703µm2.

6.2.2 Synthesis of Pipelined Designs

Pipelined multipliers with a pipeline depth of up to 10 stages were used to obtain

the pipelined designs. The results of synthesizing the pipelined designs are presented
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Area Utilization

Flag Generator

Lower Bound Module

Upper Bound Module

Scale Synchronizer

Figure 6.7: Area distribution between Modules

in Table 6.2. It shows the minimum clock period and area for every stage. The

trend for minimum clock period across various superpipelined designs is captured

in Figure 6.8. The least clock period is a value of 4.93ns in the seventh stage of

pipelining. Beyond the third stage of pipelining, no significant reduction in clock

period is observed and in fact, after the minimum value is obtained in the seventh

stage, it begins to increase due to timing overheads in the design. The trend for area

captured in Figure 6.9 is seen to increase with higher levels of pipelining. The growth

however, with deeper pipelining, is more with respect to the work of [9] because this

architecture utilizes four multipliers in all, two each in the Lower and Upper Bound

modules respectively to perform interval multiplication. Furthermore, this design has

more commands with a proportionally greater number of parallel paths in it. Since

each pipelined design is fully pipelined, each parallel path is delayed appropriately by

inserting registers with each level of superpipelining and this results in an explosion

in the area utilization.

The area and timing values for the highly-pipelined design described in Section

5.2.3 is presented in Table 6.3.
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Figure 6.8: Timing report for Superpipelined designs
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Figure 6.9: Area report for Superpipelined designs
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Table 6.2: Area and Timing Report for different Superpipelined designs

Stage of P ipelining Least T iming (ns) Area (µm2)

Nonpipelined 10.33 473703

2-stage 7.08 483855

3-stage 5.10 506727

4-stage 5.04 557637

5-stage 4.98 609097

6-stage 4.97 657818

7-stage 4.93 701750

8-stage 4.99 747659

9-stage 5.03 792890

10-stage 5.07 832750

Table 6.3: Area and Timing Report for the Highly-Pipelined Design

Highly − Pipelined Design Least clock period (ns) Area (µ m2)

Four-stage 3.87 527184

6.3 Power Analysis

Power consumption has become an important issue in recent times owing to the

high demand for battery powered devices such as mobile phones, Personal Digital

Assistants (PDA), etc. A large number of VLSI designers treat power dissipation as

an important metric while designing systems for such applications. In this section,

random input vectors are passed through the superpipelined designs and the dynamic
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power consumption is calculated using Synopsys PrimePower. PrimePower is a gate

level power analysis tool which can model and evaluate dynamic power dissipation

in multi-million gate designs. Its in-built algorithms consider cell state dependency,

multiple loads, partial swings and nonlinear dynamic ramp effects. They also take

into account glitches, multiple transitions, ‘unknown’ and high-impedance states [35]

The design is first synthesized using the Synopsys Design Compiler in order to

perform the power analysis. A test bench with random input vectors is written for

the netlist of the design generated during the synthesis. The input vectors are then

driven through the netlist and a Value Change Dump (VCD) file is obtained. The

VCD file is a dump of all signal transitions that occurred during the simulation and

affects the power dissipation directly. PrimePower is then used to compute the power

dissipation based on the VCD file and the synthesized design.

The SSHAFT tool [36] automates the process of evaluating power dissipation. A

large number of random test input vectors is necessary to obtain a good estimate of the

average power dissipation. All architectures were subjected to a power analysis with

1000 random input test vectors. The test bench was written in C. Fixed character

streams corresponding to the header information, top-level module signal declarations

and top-level instance creation were used to write fixed content to the output file.

The random cases were generated using the rand() function in C. Care was taken to

ensure that the upper endpoint of the intervals generated was greater in value than

the lower endpoint because the interval is an ordered set of real numbers. Figure 6.10

shows the code segment used to generate the random intervals. Table 6.4 shows the

power dissipation across various superpipelined architectures.

The trend for power dissipation across various superpipelined architectures is ev-

ident in Figure 6.11. With an increase in the number of pipelined stages, the power

dissipation also increases. This is because the area increases proportionately with the

number of pipelined stages and hence more bit toggles are encountered. The highly-

pipelined design consumes an average power of 0.1247 W for 1000 input vectors.
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Figure 6.10: Code Segment to Generate Random Intervals

Table 6.4: Power Dissipation for Pipelined Designs with 1000 input vectors

Stage of P ipelining Power Dissipation (W )

Nonpipelined 0.04918

2-stage 0.06978

3-stage 0.09033

4-stage 0.1032

5-stage 0.1166

6-stage 0.1300

7-stage 0.1418

8-stage 0.1528

9-stage 0.1625

10-stage 0.1697
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Figure 6.11: Power Dissipation for the Superpipelined designs with 1000 vectors
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Chapter 7

Architectural Insights

This chapter evaluates the expression for throughput in a pipelined design with

a known number of overflows and pipelined stages. It also describes a structural

hazard associated with point-wise computations in the BFPIALU and concludes with

a discussion of the impact of Input Scaling and CBFS techniques on accuracy of the

output.

7.1 Throughput for the BFPIALU

7.1.1 The Probability of Overflow in the BFPIALU

A study of the statistics of overflow is important while evaluating throughput for

the BFPIALU. The latency of a pipelined design and the number of overflows can

vary the throughput of the BFPIALU directly. Following each overflow, we scale the

inputs from that point forward down by an additional factor of 2 for the computations

to come. This is equivalent to doubling the dynamic range upon each overflow and

this reduces the probability for the next overflow to occur. In this section, we describe

a Monte Carlo simulation to determine the frequency of overflows for MAC operations
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performed in the BFPIALU.

We generated 20,000 datasets containing 4096 uniformly distributed samples each

in the range [-1, 1-2−15]. From the perspective of an ALU, the Uniform Distribution

is the most appropriate distribution that can be assumed on the input data. We

operated on two data sets at one time; the procedure is described next. Individual

data samples were pulled out of two unique data sets at a time, multiplied and the

product was accumulated. Each product was accumulated and upon overflow, the sum

and the inputs to the operation that point forward were scaled down by a factor of

2. After 4096 accumulations, we moved on to a different pair of data sets. Counters,

unique to each such dataset combination, were used to keep count of the number

of overflows. At each overflow, the corresponding counter was incremented. We are

aware of the fact that by scaling the inputs at each overflow, we reduce the probability

of the occurrence of the next overflow. Therefore, we expect to see a falling trend in

the frequency of higher number of overflows.

It was seen through simulation that at least one overflow occurred 10,000 times,

at least 2 overflows occurred 9,999 times, at least 3 overflows occurred 4502 times

and at least 4 overflows occurred once. We clearly see that the higher the number

of overflows is, the lower its frequency of occurrence is. We utilize this falling trend

to ignore the computation-cycle penalty associated with overflows as the number of

computations approaches infinity while evaluating throughput in the next section.

7.1.2 Evaluating Throughput for the BFPIALU

Throughput for an interval ALU is ideally defined as the number of interval oper-

ations performed per second [9]. While this provides a good measure for the efficiency

for the BFPIALU, practical usage demands that throughput be quantified in a more

useful way. This is especially true with a BFP implementation because throughput

depends upon many factors such as the number of cycles per output sample, the

time it takes to normalize a data block and the effect of overflow. In this section, we
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evaluate throughput for interval operations performed in the BFPIALU.

We define throughput (R) for the BFPIALU in terms of Output Samples per Sec-

ond.

R =
Number of Samples Processed

T ime to process the Samples

We assume a data block comprised of ‘N’ interval data samples to evaluate the

throughput for interval operations. Let the architecture to be evaluated for through-

put contain ‘k’ pipeline stages. Let ’p’ be the number of overflows faced in the

computation for each block. We evaluate the expression that denotes the time to

process all the N input samples. In addition to the number of overflows, number of

pipeline stages and the number of input samples to be processed, throughput also

depends upon the type of computation to be performed.

When overflow occurs in a design, the inputs that point forward should be scaled

down appropriately so that the computation can continue. However, very highly

pipelined designs have high latency and this leads to late updating of the input scale

factors. Therefore, some computations must be performed again and this leads to

higher cycle count. Specifically, operations of multiply-accumulate, addition and sub-

traction face this situation. Multiply-accumulate involves a MAC feedback path and

reintroducing the pre-overflow terms in the MAC pipeline consumes additional clock

cycles. It is referred to as a Type-1 operation. However, addition and subtraction do

not involve feedback in their data path. Successive addition or subtraction of inde-

pendent terms is not important from the standpoint of signal processing applications.

Furthermore, applications such as filtering rely on MAC operations to evaluate their

output terms of a difference equation, usually rely on MAC operations for the same.

Therefore, we do not analyze addition and subtraction for throughput when overflow

occurs. Instead, we combine them with operations such as division, union, intersec-

tion, midpoint, min, max, OR, AND, XOR, exponent detection, left shifting and direct
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normalization and analyze them when no overflow occurs. The operation of width is

also put into the same category. We refer to this category of operations as Type-2

operations. We next analyze throughput for these two categories of operations.

7.1.3 Type-1: MAC operations in Pipelined Designs

In this section, we assume that all the computations to be performed on the

input samples of the data block are interval multiply-accumulate operations. The

analysis is performed based on the assumption that we accumulate ‘N’ products as

part of the computation. The number of clock cycles to accumulate the products

is different depending upon whether or not there is a delay in the MAC feedback

path. Therefore, we analyze these two cases separately. Section 7.1.3 A analyzes

throughput for pipelined designs that do not involve delay in their feedback paths.

This applies to the MAC operations performed in the fully-pipelined designs formed

using pipelined multipliers as described in Chapter 5. Section 7.1.3 B analyzes the

throughput for a MAC operation that involves a delay in its feedback path. This

helps us estimate the throughput for the highly-pipelined design.

A. MAC with no delay in the Feedback Path

We compute the total number of clock cycles required to perform Exponent De-

tection, Left shifting and computations on the given data block. We require two full

traversals through the data block to perform normalization on the data block - once

to perform Exponent Detection and once again to left shift all data samples in it by

a factor of γ. Thus, for a data block of size N, we need (N+k-1) cycles for Exponent

Detection and (N+k-1) cycles again for left-shifting the samples.

We need not wait until the last data sample has been left-shifted to apply the

input data to perform computations with the samples. Instead, we start applying the

input samples immediately after applying the last data sample for left shifting. We

consider the example of a system with number of interval products N=6 and pipeline
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stages k=4 with no overflows as shown in Figure 7.1. Here each input numbered 1

to 6 is assumed to be a pair of numbers that generates a product for the process

of accumulation. Since the MAC operation takes only one cycle, we find that the

process of left-shifting the data samples and performing computations take (2N+k-1)

clock cycles together.
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3 2 1
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- 6 5 1+2+3+4
- - 6 1+2+3+4+5
- - - 1+2+3+4+5+6

Figure 7.1: Example to illustrate MAC computations with N=6 and k=4

In practical situations such as performing accumulation, it is not possible to know

in advance whether overflow will occur or not. When overflow occurs, the output

block exponent increments over its former value. However, the problem is that this

increment will be known only after the latency period for the k-stage pipelined design

has passed. Hence, the best strategy is to keep applying all the samples assuming no

overflow occurs.
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Figure 7.3 illustrates the case of no-overflow and one overflow in MAC operations.

The outputs are represented with letter ‘O’ and a number ‘i’ indicating that it is

the output corresponding to input ‘i’. For the scheme depicted in the example, the

corrective action involves the following steps:

• Clear the MAC pipeline by multiplying between 0s in the clock cycle after the

overflow as a non-MAC operation

• Ignore the (k+1) outputs after overflow because they correspond to the pre-

overflow block exponent

• Loading the new block exponent increment value

• Re-introduce overflowed interval output into the pipeline by multiplying it with

7FFF hex. Reapply the samples after those inputs that resulted in overflow

The sequence of operations post-overflow is indicated in Figure 7.2.
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Figure 7.2: Post-overflow Corrective Actions

The output block exponent increment is loaded so that the inputs that point

forward are scaled by this factor. Therefore, reliable results are obtained. For every

overflows, the penalty to be borne is (k+2) clock cycles. This is clearly illustrated in

Figure 7.3 which depicts the case of one overflow occurring. The times T0, T1, T2

and T3 from Figure 7.3 are to be matched with that in Figure 7.2.

The computation time is [(N+k-1)+p·(k+2)]. The time to process one block

completely, inclusive of normalization, is { (N+k-1) + [(2N+k-1)+ p·(k+2)]}. This

evaluates to [3N + 2(k-1) + p(k+2)] clock cycles per block. This is verified in Figure
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Figure 7.3: Illustration of MAC computations with one overflow for N=6 and k=4

7.3 where for N=6, k=4 and p=1, only the computation takes 15 clock cycles for one

overflow as opposed to 9 clock cycles when no overflow occurs.

Denoting the least clock period at which the hardware performs computations

reliably by ‘t’, the throughput is thus quantified as

R =
N

[3N + 2(k − 1) + p(k + 2)] · t
(7.1)

This expression is also used to denote the throughput for non-MAC operations exe-

cuted in the highly pipelined architecture.

B. MAC with unit delay in the Feedback Path

We next analyze the throughput for interval MAC operations performed in the

highly-pipelined design using scheme 2 described in Section 5.2.2 since it incorporates
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a delay in its MAC feedback path. Along the lines of the analysis for normal MAC

operations in pipelined designs, the scenario of overflow and the corrective action is

indicated in Figure 7.4.
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Figure 7.4: Post-overflow Corrective Actions : MAC pipelines with single delay

For a data block of size ‘N’, a pipeline design of ‘k’ stages and ‘p’ overflows, we still

require (N+k-1) cycles for Exponent Detection and (N+k-1) cycles for left shifting.

We may apply the inputs for MAC computations without waiting for the last sample

of the data block to be left shifted. This is accounted for by the subtracted term

(k-1) in the expression that denotes the time to process the samples. Each overflow

requires corrective action as mentioned in Section 5.2.2. Clearing the pipeline by

multiplication with 0s, loading the new output block exponent value, introducing

each accumulated term in the pipeline - all take one clock cycle each. The penalty

for every overflow that occurs is found to be (k+3) clock cycles - one more in than

that of MAC pipelines that do not incorporate delays in the feedback path. This

is attributed to the need for loading two terms in the MAC pipeline as opposed to

one term previously. Furthermore, since the partially accumulated sums circulate in

the feedback path alternately, they must be summed up in the end to yield the final

result. This requires one more clock cycle. Therefore, the total number of clock cycles

it takes to compute the output for the highly pipelined design is given by {(N+k-
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1)+[ (2N+k-1)+p(k+3)+1]} or [3N+2(k-1)+p(k+3)+1]. It must be noted that the

highly-pipelined design has k=4.

The throughput for MAC operations in the highly-pipelined design is quantified

as

R =
N

[3N + p(k + 3) + 2(k − 1) + 1] · t
(7.2)

We can assume that when N >> k, the penalty in computation time due to the

overflows can be ignored. Therefore, the limit of throughput as N → ∞ for both

Equation 7.1 and 7.2 is found to be

R =
1

3t

We can plug the values for t from the timing results and obtain the best throughput

of 86.1M samples/second for the highly pipelined design since its timing of 3.87ns is

the least among the designs considered.

7.1.4 Type-2 : Non-MAC operations in Pipelined Designs

Throughput for Type-2 operations in a k-stage pipelined design is evaluated based

on the assumption that Type-2 operations do not run into overflow. We devote

(N+k-1) clock cycles for Exponent Detection, (N+k-1) clock cycles for Left shifting

and [(N+k-1)-(k-1)] clock cycles for the computations. Therefore, the throughput is

denoted by

R =
N

[3N + 2(k − 1)] · t
(7.3)
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We can assume N>>k and take limits as N → ∞ to obtain the throughput as

1/(3t). This will also apply to addition and subtraction when overflow does not

occur. This is true for both pipelined designs formed using pipelined multipliers as

well as the highly pipelined design. The highly-pipelined design records the highest

throughput of 86.1M samples/second among all designs considered in the design space.

We observe that the expression for throughput for non-MAC operations is the same

as that obtained for the MAC operations.

Figure 7.5 shows a comparison of throughput across all the pipelined designs. The

black line joins the throughput points for designs obtained using pipelined multipliers

only, for breaking the critical path. The highest point in the plot corresponds to the

throughput of the highly-pipelined design which is superimposed on this plot. This

corresponds to a throughput of 86.1M samples/second. This is an improvement of

166.9% over the throughput of the non-pipelined design of 32.2M samples/second.
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Figure 7.5: Throughput Across Pipelined Designs
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Choice of Best Design

The best design in the available design space, comprised of different superpipelined

architectures, is identified on the basis of the maximum throughput value for the

intended application. The highly-pipelined design, with four pipeline stages, turns

out to be the design with the maximum throughput. Therefore, it is chosen as the

best design for signal processing applications.

7.2 Structural Hazards

This section describes dependencies associated with this architecture while per-

forming point-wise computations that result from the sharing of computational re-

sources. This section is of significance because it can affect the throughput of the

system directly. This hazard does not apply to interval computations. This depen-

dency exists irrespective of the stage of pipelining of the architecture. By definition,

a structural dependency occurs if two or more requestors want to share the same re-

source at the same time, also known as a collision. Structural dependency is observed

in this architecture when the ALU is in the ¯pointwise mode of operation. Both the

Lower and Upper Bound modules share the same input lines XL, XU , YL and YU , and

each command uses a specific set of inputs. Hence, this results in a input-line resource

dependency between the modules. This is illustrated in the following example. In the

¯pointwise mode, if the Lower Bound is performing subtraction (XL-YU), independent

operations can only be performed in the Upper Bound module that do not involve

XL and YU . Hence operations such as width and addition cannot be performed in the

Upper Bound module in parallel with subtraction in the Lower Bound module if the

intention is to perform independent operations on different data. Table 7.1 shows the

inputs that are involved with each command in the Lower and Upper Bound mod-

ules. The commands are shown as functions of specific inputs that they act upon.

The operation of multiplication has not been mentioned deliberately because it has

nine cases which are decoded at the time of execution. If we know a priori as to which
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case of multiplication will be performed, then the information regarding dependencies

may be extracted from Table 2.1.

Table 7.1: Commands Function Table (Point-wise Operations)

Command Lower Bound module Upper Bound module

ADD f(XL, YL) f(XU , YU )

SUB f(XL, YU) f(XU , YL)

DIV f(XL) f(YL)

UNION f(XL, YL) f(XU , YU )

INTERSECTION f(XL, YL) f(XU , YU )

WIDTH f(XL, XU) f(YL, YU)

MIDPOINT f(XL, XU) f(YL, YU)

MIN f(XL, YL) f(XU , YU )

MAX f(XL, YL) f(XU , YU )

OR f(XL, XU) f(YL, YU)

AND f(XL, XU) f(YL, YU)

XOR f(XL, XU) f(YL, YU)

EXP. DET. f(XL) f(YL)

NORMALIZATION f(XL) f(YL)

LEFT SHIFT f(XL) f(YL)

7.2.1 Dual MAC structure for pointwise computations

While structural hazards can lower throughput if we wish to perform independent

operations in parallel, they can be useful and actually provide speedup for applica-
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tions that can share input lines. Applications like filtering in signal processing utilize

dual MAC structures to attain higher throughput when compared to the single-MAC

structures. An estimate of the benefit from this structure may be obtained by ana-

lyzing the speedup for common applications such as filtering. This section illustrates

that structural dependency is not always undesirable and estimates the speedup from

sharing terms between dual parallel MACs in order to realize an FIR filter.

Sharing terms between the MACs

This section presents the evaluation of the speedup gained by sharing terms be-

tween parallel computations in a dual MAC structure. For an FIR filter with coeffi-

cients h and input x, the difference equation is given by

y(n) =
N−1∑

k=0

h(k)x (n − k)

This equation may expanded as shown in Figure 7.6.
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Figure 7.6: Difference Equation for an FIR filter

In a dual MAC structure, terms may be shared so that multiple computations can

be performed in parallel. In DSPs, this scheme is known as in time-based loop unrolling

[37]. The existence of two parallel MAC units in the Lower and Upper Bound modules

allows us to compute y(n) and y(n-1) at the same time with shared coefficients when

the ALU is in the ¯pointwise mode of operation. However, structural dependency
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must be kept in mind while scheduling operands to this ALU. For example, using the

a priori knowledge that the coefficient h(0) and input samples x(n) and x(n-1) are

positive, we may directly apply the inputs as shown in Figure 7.7. Such sharing of
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Figure 7.7: Feeding inputs to the Dual MAC structure for an FIR Filter

coefficient terms leads to twice the performance that could be obtained from a single

MAC system in the best case. This is shown analytically in the ensuing lines.

Consider, for example, the system of difference equations indicated in Figure 7.6.

For an FIR filter with N coefficients, an ALU with a single MAC structure would

require N multiply-accumulate operations to compute y(n) and another N multiply-

accumulate operations to compute y(n-1). Hence, on the basis of the assumption that

each computation requires only one clock cycle, the total computation time for this

is taken to be 2N.

With the dual MAC structure, we can compute the grouped terms indicated in

Figure 7.6 in each clock cycle. Hence, by the end of N clock cycles only, both y(n)

and y(n-1) are available. The speedup in this case is computed as
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Speedup =
2N

N
= 2

While the speedup factor of 2 corresponds to the case of no structural dependency,

situations may arise that require the structural dependency to be resolved. Delaying

the release of a command to the ALU until the dependency is no more applicable

is one solution. This however reduces the speedup obtained. This work does not

investigate the resolution of structural hazards due to this structural dependency.

In the ideal case where structural hazards do not occur, the throughput of the

BFPIALU is double the value estimated in Section 7.1.2 because the point-wise oper-

ations are performed in parallel. Therefore, MAC operations record best throughput

of 25.8x2 = 51.6M samples/second. Type-2 point-wise operations record a through-

put of 86.1 x 2 = 172.2M samples/second. The process of arriving at an exact value

of throughput for an application depends upon the distribution of commands in the

computer program to be executed. This completes the discussion of the structural

dependency associated with implementing point-wise operations in the BFPIALU.

7.3 Error Analysis

This section presents the investigation of the improvement in accuracy by using

the technique of CBFS as opposed to using Input scaling for point-wise computations.

Input Scaling involves scaling the samples in a data block for every Q0.15 fixed point

addition or subtraction, so that the result of these operations on the scaled data

will never result in an overflow. In contrast, CBFS performs the operation and then

checks for overflow. The result is scaled down only if there is overflow. We describe

the experiment that quantifies and compares the accuracy in both these methods of

overflow handling for a simple 2nd order filter.

Second order filter sections are important because they can be cascaded to yield
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higher order filters with better performance in terms of lower round off errors. In-

tuitively, we expect that CBFS should provide better accuracy than Input scaling

because the former performs conditional scaling and hence the loss of bits is subject

to the occurrence of overflow.

7.3.1 The Input Data Sequence

An input sequence of data quantized to 16-bits in the Q0.15 fixed point format

is taken into consideration to evaluate the accuracy of BFP computations with both

Input Scaling and CBFS. Figure 7.8 illustrates this input sequence. This data was

chosen due to the following characteristics:

• The samples bear values about both sides of 0 symmetrically. Hence both

positive and negative valued data are taken into account.

• The samples range in values that cover the full dynamic range available in Q0.15

fixed point format.

Division into Data Blocks

Before applying the input samples, data is divided into blocks. The number of

blocks in this case is chosen arbitrarily to be 2 based on an arbitrarily chosen block

size of N = 579. Data in Block 1 occupies the full dynamic range available in Q0.15

format. However, data in the second block has different amplitude ranges. Data is

distributed in this block between ranges of [2−4, -2−4], [2−8, -2−8] and [2−12, -2−12].

7.3.2 Input Scaling Error Analysis

The difference equation for a 2nd order FIR filter is given by :

y(n) = h(0)x(n) + h(1)x(n-1) + h(2)x(n-2)

Evidently, each output sample will require two additions to be performed. Therefore,
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Figure 7.8: Input sequence for Error analysis

the unconditional scaling factor S is chosen to be equal to 2 in anticipation of a bit

growth of 2 bits on the MSB side. It is applied to both blocks during normalization.

The filtered outputs are computed using direct fixed point additions of the three

product terms to realize the difference equations. The filter coefficients h(0), h(1)

and h(2) for the difference equation have been generated using the fir1 routine in

MATLAB. The filtered outputs of Block 1 and Block 2 are aligned and added to

obtain the final output values. To calculate the error, the input and the coefficient

values are quantized to the Q0.15 fixed point format first. Then, the convolution is

performed treating these quantized values as double values. The simulation is per-

formed with the ‘floor’ rounding mode in MATLAB. This gives the output expected

on a Q0.15 hardware implementation with both the Lower Bound module and Upper

Bound module in truncation mode. The experiment is repeated for different values
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of cutoff frequencies ω in order to verify that the results are stable. The error due to

Input Scaling technique is captured through the Mean Squared Error (MSE) shown

in Table 7.2. The MSE for ‘L’ output samples is evaluated as

MSE =

∑L

i=1
(Outputobtained − Outputideal )

2

L

Table 7.2: Error with Input Scaling

ω Error − Input Scaling (10−9)

0.1 6.068170216192682

0.2 6.206350510524984

0.3 5.955736161763485

0.4 5.784091325519226

0.5 5.771197428900149

0.6 5.669805529570784

0.7 5.916439896294861

0.8 6.845908393080973

0.9 6.561484764213056

7.3.3 CBFS Error Analysis

The CBFS scheme is evaluated for error in this section. Both the input data

blocks are normalized using S=0. Each output sample requires two additions in the

realization of its difference equation. The occurrence of overflow is checked for after

each operation of addition or subtraction. If overflow is detected, then a scaling is

performed on the output side and the next input is scaled down by half. The final
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filtered output is obtained by aligning and adding the two filtered outputs.

Under the CBFS scheme, we intuitively, expect better accuracy due to conditional

scaling. In order to measure the error in this case, the comparison is performed against

filtered output obtained in double format with the input and coefficients quantized to

Q0.15 format. Again, the ‘floor’ rounding mode is used in the MATLAB simulation

assuming that both the Lower Bound and Upper Bound modules are in the trunca-

tion mode. The MSE is quantified for different values of the cut off frequency ω as

shown in Table 7.3. The MSE is quantified for ‘L’ output samples as

MSE =

∑L

i=1
(Outputobtained − Outputideal )

2

L

Table 7.3: Error with CBFS

ω Error − CBFS (10−9)

0.1 0.3553081281486225

0.2 0.3541738510678708

0.3 0.3476477889902497

0.4 0.3322888835019018

0.5 0.3497997436420356

0.6 0.3737267276109385

0.7 0.3689648541008730

0.8 0.3745123327633928

0.9 0.3742518436654803
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7.3.4 Comparing Input Scaling and CBFS

Figure 7.9 illustrates the overlapping filtered outputs in the ideal case, Input

Scaling and the CBFS technique for ω = 0.5. The MATLAB code used to perform

this simulation is presented in the Appendix.
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Figure 7.9: Filtered output : Input scaling vs CBFS

The results from the experiments in the case of Input Scaling and CBFS is pre-

sented collectively in Table 7.4. Figure 7.10 illustrates the comparison of error for

the Input scaling and the CBFS techniques. The average factor of improvement in

accuracy is 17 when the technique of CBFS is used in place of Input Scaling. This

clearly justifies the use of CBFS in this architecture for pointwise operations since

this implies a better signal to noise ratio and the BFPIALU is intended to be used

in signal processing and control applications. The MATLAB code for the same is
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presented in the Appendix. Routines for Exponent Detection by XORing successive

bits of the input samples are not presented since it is trivial to code it up.

Table 7.4: Error Comparison of Input Scaling and CBFS schemes

ω Error:Input Scaling(10−9) Error:CBFS(10−9) Improvement Factor

0.1 6.068170216192682 0.3553081281486225 17.07861356

0.2 6.206350510524984 0.3541738510678708 17.52345774

0.3 5.955736161763485 0.3476477889902497 17.1315232

0.4 5.784091325519226 0.3322888835019018 17.40681561

0.5 5.771197428900149 0.3497997436420356 16.49857535

0.6 5.669805529570784 0.3737267276109385 15.1709929

0.7 5.916439896294861 0.3689648541008730 16.03523975

0.8 6.845908393080973 0.3745123327633928 18.27952725

0.9 6.561484764213056 0.3742518436654803 17.53227105

Error Plots: Input Scaling vs CBFS
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Figure 7.10: Error Plots for CBFS and Input Scaling
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

This thesis presents a 16-bit Block Floating Point Interval ALU (BFPIALU) ar-

chitecture for DSP and control applications to address the issue of small dynamic

range in dedicated two’s complement fixed point implementations of the same. The

BFP scheme is proposed in order to avoid wrap around in dedicated fixed point

architectures which can lead to unreliable bounds with interval arithmetic.

The design decisions for the proposed BFPIALU architecture are taken on the

basis of a set of criteria, namely correctness, closedness, totality, optimality, effi-

ciency that assure the reliability of interval operations. The BFP arithmetic scheme

is adopted as a means to achieve a dynamic range on the fixed point architecture

higher than the conventional fixed point would allow. BFP arithmetic is a mem-

ory based scheme and all data samples are read in from a memory (such as a Dual

Port RAM for system memory or even high speed local RAMs). BFP support in the

BFPIALU is provided through special commands such as Exponent Detection and

Normalization so that blocks of data can be normalized. Recognizing that overflow
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has to be handled properly, this work compares the techniques of Input scaling and

Conditional Block Floating point Scaling (CBFS) and chooses CBFS for implementa-

tion because it provides better accuracy and provides optimal interval bounds. The

experiment performed to determine the same involves a 2nd order FIR filter section.

Simulations are run on the filter for different sets of filter coefficients to collect statis-

tical results of accuracy. Overflow detection is performed for operations of addition,

subtraction and multiply-accumulate because they lead to bit growth on the MSB

side in the interval ALU as part of CBFS.

This work expands the command set mentioned in [9] to include the comparison

operations of MAX, MIN and logical commands of AND, OR and XOR. The ability to

perform logical operations is important for applications such as error control coding

and sensor control. Comparison operations find application in interval-based fuzzy

systems. Modifications to the architecture presented in [9] include a reduction in the

execution time for all operations in one clock cycle. The affected operations include

interval multiplication, interval union and interval intersection.

The proposed design can also function as two parallel ALU structures performing

point-wise computations. Logic is inserted to control the instructions dispatched

to the Lower and Upper Bound modules based on the mode of operation of the

ALU (interval or ¯pointwise mode). Thus, the interval architecture can be used for

both interval operations as well as for point-wise operations. The outward rounding

scheme is retained for interval operations. The point-wise mode of operation, however,

extends rounding to +∞ to the Lower Bound module and truncation to the Upper

Bound module. Owing to the fact that saturation arithmetic is not feasible for interval

arithmetic and that this work incorporates modifications from the existing rounding

schemes, the saturation scheme has not been considered for the point-wise operations.

Nevertheless, it forms part of the future developmental work in this area.

The non-pipelined architecture is synthesized and the least timing is found to be

as low as 10.33ns or about 96.8 Million Interval Operations per Second (MIOPS).
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This is extremely poor from the perspective of signal processing applications that

demand high throughput. Hence, the design is subjected to pipelining to increase

the throughput. Synthesis of the pipelined designs shows an increase in the area

occupied by the designs with higher levels of pipelining. This is to be expected because

more logic is inserted with the addition of every pipelined stage. The minimum

clock period is seen to fall till the seventh stage of pipelining at 4.93ns. Due to the

law of diminishing returns, the clock period then begins to increase after this stage.

Then, registers are inserted manually and the timing improvements are observed. The

highly pipelined architecture can perform reliably at a clock period of 3.87ns. This

corresponds to 258.4 MIOPS. Timing improves by 166.9% from the non-pipelined

design to the highly-pipelined design.

Throughput, however, cannot be quantified as operations per second because it is

a function of the number of pipeline stages, the number of overflows and clock rate.

A Monte-Carlo simulation of random product accumulation shows that with each

overflow, the probability of the next overflow decreases. Throughput is evaluated

for a large block size across different pipelined architectures. The highly-pipelined

design delivers the highest throughput of 86.1 M samples/second for interval oper-

ations whereas the non-pipelined architecture records a throughput of 32.2M sam-

ples/second. Evidently, throughput improves by 166.9% for the highly-pipelined de-

sign as compared to the non-pipelined design.

Given the ability of the BFPIALU to function as two individual ALUs that can

perform point-wise operations, this work identifies a structural dependency which oc-

curs due to the sharing of input lines between the Lower and Upper Bound modules of

the interval ALU. This is estimated to affect throughput adversely for point-wise op-

erations. It identifies a dual MAC structure within the architecture and estimates the

associated speedup in example applications due to it in order to turn it to advantage.

A simple FIR filter is evaluated for speedup. The best speedup is obtained when no

structural dependency exists between the operations performed in the Lower and Up-

per Bound modules or when sharing terms between operations is feasible. The speed
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of operation in this case is identified to be twice that of interval operations, equal

to 258.4x2 = 516.8 million point-wise operations per second. This is the peak value

and the deterioration in speedup is directly proportional to the amount of structural

dependency in the operations. The throughput is found to be 172.2 Msamples/second

for pointwise operations.

8.2 Future Work

This section lists the future work in this area by dividing them into short term

and long term goals.

8.2.1 Short Term Goals

1. Since structural dependency can affect throughput adversely, devising useful

methods to address this issue could be very useful. Architectural changes may

have to be employed in the interval ALU to resolve this dependency.

2. Adding the Saturation scheme when overflow is detected for point-wise opera-

tions only is also one of the goals.

8.2.2 Long Term Goals

Modern DSPs rely on pipelining and parallelism to attain higher throughputs. The

interval ALU developed in this work exhibits both these features. Hence, it could be

very useful in the execution units of superscalar or VLIW Multi- ALU Processors.

Development of the Instruction Set Architecture (ISA) for such a processor, the as-

sociated processor design and the construction of a compiler can help applications

based on interval arithmetic immensely.
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