
  

ABSTRACT 

DAVIS, OLGHA BASSAM. Refining an Elastic Constitutive Equation to Predict Pressure 
Distributions for Normotensive and Hypertensive Aortas. (Under the direction of Dr. Brooke 
N. Steele). 
 

Constitutive equations are used to mathematically represent arterial wall mechanical 

properties.  Accurate vascular wall models are crucial for providing acceptable simulation 

results of arterial blood pressure (ABP) wave propagation.   An important consideration 

when determining the constitutive equation is the effect of ABP on vessel wall compliance; 

the tendency of the arteries to expand and contract in response to ABP.  The goal of this 

work is to model the compliance of normotensive and hypertensive aortas to mathematically 

describe vessel distensibility.  While large vessels exhibit a viscoelastic characteristic, the 

determination of pure elastic modulus is a reasonable first approximation.  The arterial 

stiffness is expressed in terms of pressure-strain elastic modulus ( oE ) and stress-strain 

Young’s modulus ( E ).  The elastic modulus may be computed directly from gradients of 

pressure and diameter measurements.  In addition to strain and pressure, Young’s modulus 

requires the cross-sectional area of the vessel wall to compute stress.  Wall thickness ( h ) and 

vessel undeformed radius ( or ) vary due to numerous factors including, but not limited to age 

and morbidity.  In this work, three methods are used to approximate oEh r , compute the 

corresponding pressure for a given diameter, and compare the computed pressure to 

experimental data.  The first method uses an empirical model by Olufsen to approximate 

oEh r with a decaying exponential function of or  and a constant offset 3k .  This 3k  term is 

used to compute pressure using an elastic constitutive equation.  For the second method, it is 

noted that for large vessels ( 0.6or cm> ), including the aorta, the previous empirical method 



  

relies only on the constant offset term.  Therefore, this 3k  parameter is optimized for 

normotensive and hypertensive data using the Nelder-Mead method.  Lastly, the third method 

incorporates patient-specific pulse pressure and diastolic radii, which are readily available 

from clinical diagnostic data, with an approximation of the pulsatile change in radius ( rΔ ) as 

a percentage of or .  This percentage is different for normotensive and hypertensive models.   

All three methods are applied to data found in the literature including human and canine 

normotensive aortas and human hypertensive aortas.  Based on this work, using patient-

specific approach in estimating the pressure distributions for corresponding diameter 

measurements appears to be the best to approximate the normotensive pressure distribution 

for a given patient’s diameter measurements and pulse pressure readings.  However, no 

conclusive evidence was found to determine a best-fit model to approximate pressure 

distribution for hypertensive subjects. 
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Chapter 1.  Introduction 

 

1.1 Motivation 

According to the American Heart Association, Cardiovascular Disease (CVD) has been 

the number one killer disease in the United State since 1919 and the medical costs associated 

with its treatment are estimated to rise to $2.8 trillion by 2011.  CVD takes decades to 

develop, and manifests in many different ways including focal accumulation of plaques, and 

both focal and global changes in the arterial properties due to mechanically-driven forces [1].  

A better understanding of normal and abnormal arterial mechanics is vital in enhancing 

diagnostic techniques, understanding vascular disease progression, and refining surgical 

planning tools.  

Scientific literatures show strong indications that the mechanics of healthy arteries 

behave like viscoelastic solid materials [1-3].  As the arterial wall mechanical properties 

change with disease and age, the blood vessels become stiffer and respond differently to 

stress, strain, and shear mechanical forces.  As arteries become stiffer, they lose their 

viscoelastic properties and behave like an elastic material.  Although the number of 

technologies that measure arterial wall shear stress and strain are few, researchers have 

developed mathematical models to describe the mechanics of healthy and unhealthy vessels.  

Some of the common models are elastic pressure-diameter model, pseudoelastic strain energy 

functions, and the viscoelastic model [1, 4, 5].  While large vessels exhibit viscoelastic 

behavior, invasive techniques are required to measure simultaneous pressure and diameter 

data for loading and unloading.  Linear elastic models rely on absolute pressure and diameter 
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gradients, allowing non-invasive cuff pressure to be used with diameter gradients measured 

with non-invasive imaging techniques.  In this study; elastic pressure-diameter constitutive 

equations are used to model the mechanical properties of normotensive and hypertensive 

aortas.  

1.2 Specific Aims 

The goal of this research is to characterize normotensive and hypertensive aortic wall 

mechanics using a 1-D constitutive equation.  The outcome of this project address the first 

steps necessary to develop a parameter mapping of material properties of large arteries and 

produce more accurate predictions of blood pressure.  The specific aim of this work is to: 

 

Specific Aim 1:   Identify a mapping between mathematical representation of the 

arterial wall properties and their measurable mechanical properties.  The working 

hypothesis for this aim is that vessel properties will be characterized based on hemodynamic, 

environment and size characterize the viscoelastic behavior of the arteries.  This can be 

achieved by developing a linear 1-D model and mapping its parameters to the arterial wall 

responses due to hysteresis.  We expect that these parameters will have different 

mathematical values that map to the various mechanical properties of the arterial wall. 

 

Specific Aim 2:  Validate the derived elastic model with in vivo human and canine 

experiments.  In this specific aim, we will provide a comprehensive assessment of 

unexposed arterial wall stiffness based on measured radius and pressure.  We will validate 

the derived constitutive model with measured data for various vessel segments including the 
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thoracic aorta, ascending aorta, and the abdominal aorta from normal and hypertensive 

humans and normal canine subjects.   
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Chapter 2.  Background and Significance 

 

2.1 Overview 

The arterial mechanical properties are an important determination of hemodynamics.  

Larger arteries, such as aortas, are distended rapidly during systole and then relax during 

diastole.  Because of these dimensional changes, the viscoelastic properties of the walls of 

these large vessels are a factor in determining instantaneous pressure.  When the arteries are 

pressurized (deformed) they are subjected to distention in all directions.  In vivo, arterial 

motion occurs predominantly in the circumferential direction with very little movement in 

the longitudinal direction.  In this study, experimental data and analytical methods are limited 

to circumferential deformations. 

 

2.2 Physiology of the Arteries 

Blood vessel mechanical properties are strongly influenced by their location in the body 

and the elasticity of their walls [1-4, 6].  The wall’s elasticity is altered by concentrations and 

structural collections of elastin and collagen fibers. 

Arteries can be organized into two groups:  elastic and muscular groups.  The elastic 

arteries are more distensible, larger in size, and positioned near the heart, while the muscular 

arteries are less distensible, smaller in size, and are located away from the heart, near the 

arterioles [2].  The aorta, aorta branches, and the iliac are some examples of elastic arteries. 

While the coronary, the cerebral, the femoral, and the renal arteries are some examples of the 

muscular arteries.   Figure 1 shows the systemic circulation and the artery locations 
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throughout the body.  

 

Figure 1  Systemic Circulation Arteries 
This image was modified from an image found at www.medicalook.com. 
 

In this study, we treat the vessel wall as a homogenous material and consider the 

mechanical properties of its layers under quantitative parameters: the undeformed radius ( or ), 

the wall thickness ( h ), the radius oscillation ( rΔ ), and the Young’s modulus ( E ).  Ideally, 

the undeformed (unpressurized) arterial radius can only be measured ex-vivo.  However in 

vivo, or  is approximated as the diastolic radius, smallest measureable radii.  Although 

vascular wall structure and thickness variations have been noted along the aortic length, the 

vessel wall is generally assumed to deform and to have a uniform wall thickness ( h ) of 

approximately 10-15% of the undeformed vessel radius ( or ) [1, 7, 8].   The radius gradient 

( rΔ ) is the total difference between the systolic and diastolic radii.  The radius oscillation  
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( rΔ ) of unexposed healthy human and canine aortas is approximated as 9-12% of the 

undeformed vessel radius ( or ) [9, 10].   Strain is the fractional increase in dimension (i.e. 

radius or length), while stress is the force (i.e. internal pressure) per unit area exerted by the 

tissue at each level of strain. The Young’s modulus ( E ) is a measure of arterial stiffness and 

is the ratio of stress and strain.  

In addition to modeling healthy aortas, this study also attempts to model diseased 

(hypertensive) aortas.  Hypertension is a form of vascular disease that is characterized by a 

patient with chronic high blood pressure.  As a result of hypertension, the aortic wall 

remodels, losing its elastin fibers (increasing the vessel’s stiffness).  Simultaneously, the 

vessel wall stiffens and thickness due to the increased level of collagen [3, 11, 12].  

 

2.3 Pressure-Strain Elastic Modulus ( oE ) and Young’s Modulus ( E ) 

The mechanical property of any solid material is described using the modulus, a 

quantitative measurement that mathematically describes the material stiffness as the ratio of 

stress and strain.  Arterial wall stiffness is normally expressed in terms of the pressure-strain 

elastic modulus ( oE ) and the stress-strain Young’s modulus ( E ).  It is well-known that both 

moduli enlarge with age and hypertension to reflect the increase in the vessel wall stiffness.  

The elastic modulus is directly computed from systolic and diastolic measurements as follow:  

 ( ) *( )
( )

o
o

P rE
r

Δ
=

Δ
 (1.1) 

 
The pressure pulse ( PΔ ) is defined as the difference between systolic pressure and diastolic 

pressure, and the pulsatile change in radius ( rΔ ) is defined as the difference between systolic 
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radius ( maxr ) and diastolic radius ( or ).    In this study, the pressure-strain elastic modulus 

( oE ) is computed directly from experimental data, using diastolic and systolic pressure and 

radius measurements for both normotensive and hypertensive aortic pressures. 

The Young’s modulus ( E ) can be derived using equation (1.12) that relates E  to or  and 

h .  Note that in vivo or  is approximated as the diastolic radius, the smallest measurable 

radius. 

The vascular wall is made up of a combination of collagen, elastin fibers, and smooth 

muscle cells.  Collagen is known to be the stiffest wall component with a Young’s modulus 

of 8 9 210 10 /g s cm−  which is about two orders of magnitudes larger than the elastin 

component.  The elastin Young’s modulus ranges from 6 21 6 10 /x g s cm−  while smooth 

muscle cell E  ranges between 6 20.1 2.5 10 /x g s cm− .  It has been shown that E  for a 

thoracic aorta of a healthy human is 6 24.0 10 /x g s cm  which falls in the range of elastin fibers 

and smooth muscle’s moduli [7].   With aging and hypertension, the vessel stiffness 

approaches the stiffness of a rigid tube with E  approximately equal to the collagen elastic 

modulus ( 8 9 210 10 /g s cm− ) which is much higher than the normotensive E  

of 6 24.0 10 /x g s cm  [7, 13].  

 

2.4 Constitutive Equation 

Constitutive equations can be used to model the mechanical properties of the arterial 

wall by characterizing the stress-strain relationship.  The constitutive equation functional 

form choice depends on the mechanical behavior to be mathematically represented and the 
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availability of data to develop and validate the model.  Vascular walls have been treated as 

pseudoelastic, viscoelastic, or pure elastic materials [1, 5].  A pseudoelastic model uses two 

separate equations to describe the loading and unloading characteristics of the material.  

Despite its simplicity to fit empirical dataset, a pseudoelastic model may yield an unrealistic 

prediction of the pressure-diameter loop since it is not easily translated into other datasets.  In 

most invasive in vivo experiments, loading in one direction is generally accompanied by 

unloading in another, making a precise definition of pseudoelasticity a real challenge.  

Viscoelastic models include time-dependent responses and are useful for incorporating the 

viscoelastic behavior of large vessels (hysteresis, creep and stress relaxation).  While large 

vessels exhibit viscoelastic behavior, invasive and costly techniques are required to measure 

simultaneous pressure and diameter data for loading and unloading per patient basis.  Linear 

pure elastic models rely on absolute pressure and diameter gradients, allowing non-invasive 

cuff pressure to be used with diameter gradients measured with non-invasive imaging 

techniques.   

 In this study, we use an in vivo approach to derive the mechanical properties of 

healthy human, unhealthy human, and healthy canine specific vessels.  Then, the arterial wall 

is modeled as an elastic material.  An elastic material deforms due to applied force (internal 

blood pressure) and returns to its original undeformed state once this force is removed.  Since 

we are analyzing the vessel in the body, we assume that the undeformed state is at diastole; 

the minimum amount of internal pressure is applied to the arterial wall.  We assume that the 

arterial wall is a single homogeneous thin (with respect to the vessel radius) layer.  Since it is 

a 1-D model, residual stresses are not accounted for and wall stresses are average values, 
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where φφσ  represents the circumferential stress in the vessel wall.   

Assuming an axially symmetric vessel, ABP causes loading and deformation of the 

arterial walls.  This elastic deformation provides key characteristics of the mechanical 

properties of the blood vessels.  The mechanical response of the blood vessel is time 

dependent, therefore temporal and spatial domains will be considered.  The momentum 

equation for solid-state material, neglecting body and inertial forces is: 

 0σ∇• = , (1.2) 

  
in cylindrical coordinates ( , ,r zφ ), where σ is a vector of stresses (forces) in all three 

direction,   
σ rr ,σφφ ,σ zz  (Figure 2).  Due to symmetry, the only stress component that will be 

considered is the radial stress ( rrσ ).  Therefore the momentum equation reduces to the 

following:  

 
( )

0rrrrd
dt r

φφσ σσ −
+ =  (1.3) 

        
With the assumption that the boundary condition of 0=rrσ  at the vessel outer radius 

( outerr r= ), one can solve for the radial stress by integrating over the limits of the inner and 

outer radii as follow: 

 
1( ) ( )outerr

rr rrn

inner outer

n dr
r

r n r

φφσ σ σ= −

≤ ≤

∫  (1.4) 

 
The second boundary condition that plays a main role is at the inner radius, the internal 

pressure gradient is the negative of the radial stress,  rrp σΔ = −  at innerr r= , therefore: 
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 1 ( )outer

inner

r

rr rrr
p dr

r φφσ σ σΔ = − = −∫  (1.5) 

 

The vessel wall is assumed to be thin; therefore the radial stress can be neglected and the 

pressure gradient can be expressed as: 

 hp
r φφσΔ = , (1.6) 

where outer innerh r r= −  is the vessel wall thickness, r  is the deformed vessel radius, and φφσ  is 

the circumferential stress.  Equation (1.6) is known as ‘law of Laplace’ [11].  It illustrates 

that the pressure gradient required to distend a vessel against a given tension in the wall is 

inversely proportional to the radius of the vessel.  In the circulation, the law indicates that, 

relative to atmospheric pressure, the tension required to balance a certain distending pressure 

decreases as the radius of the vessel decreases.  

 

Figure 2  A Typical Arterial Wall with Three Stresses Acting on the Wall  
We are considering a thin wall thickness of outer innerh r r= − , where outerr  is the outer radius and innerr  is the 
inner radius. 
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A pure elastic model can provide a valuable contribution in representing the 

mechanical behavior of the arterial wall and in providing a more accurate prediction for 

blood flow and pressure waveforms.   In this study, we relate circumferential stress φφσ  with 

radial displacement components (radial strain) using a constitutive equation as follow: 

 
1 zz o

E r
r

φφ
φφ

φφ

σ
σ σ

Δ
=

−
 (1.7) 

 
where, 
 

o

r
r
Δ  is the radial strain 

( , ) or r z t rΔ = −  is the radius difference between the deformed and undeformed radii 

ro  is the undeformed radius 

r is the deformed radius 

Eφφ  is Young’s modulus in circumferential direction 

,zz φφσ σ  are Poisson ratios in circumferential and longitudinal directions 

Combining Equation (1.6) and Equation (1.7) yields the following constitutive equation: 

 
1 zz o

Er rp
h r

φφ

φφσ σ
Δ

Δ =
−

 (1.8) 

 
Setting 0.5zz φφσ σ= =  and rewriting equation (1.8) in terms of the pressure gradient, results 

in the following constitutive equation: 

 4
3 o

E h rp
r r
φφ Δ

Δ =  (1.9) 
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We assume that the blood vessel is initially stretched longitudinally and is inflated with the 

undeformed pressure, op .  The pressure gradient ( ) op p r pΔ = −  is defined as the difference 

between the deformed pressure, ( )p r , and the undeformed pressure, op .  Similarly, the 

pulsatile change in radius or r rΔ = −  is defined as the difference between the deformed 

radius r  and the undeformed radius or .   Therefore Equation (1.9) reduces to the following: 

 4 ( )( )
3

o
o

o

E h r rp r p
r r
φφ −

− =  (1.10) 

Dividing out the r  term, dropping the φ  subscript from the Circumferential Young’s 

modulus Eφφ , and rewriting equation (1.10) in terms of the deformed pressure ( )p r , the 

constitutive equation becomes: 

 4( ) (1 )
3

o
o

o

Eh rp r p
r r

= − +  (1.11) 

Equation (1.11) is the constitutive equation that is used in this work to describe the stress-

strain relationship and the compliance of any large artery.  It also includes a radius dependent 

modulus term ( E ) that was defined by Olufsen, et al [4] using an empirical decaying 

exponential function (
o

Eh
r

) shown in Figure 3 and is defined as follows: 

 1 2 3*exp( * )o
o

Eh k k r k
r

= +  (1.12) 
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where, 
 

7 2
1

1
2

5 2
3

2 10 /( )

22.53

8.65 10 /( )

k x g s cm

k cm

k x g s cm

−

=

= −

=

 

 
 

 

Figure 3  Radius-Dependent Young’s Modulus Graph 
This graph was reproduced from Olufsen, et al [4].  Young’s modulus (E) times the wall thickness (h) is divided 
by the undeformed radius (ro) is a function of ro.  The parameter k1 is 272 10 /( )x g s cm , the parameter k2 is 

122.53cm−−  and the parameter k3 is 5 28.65 10 /( )x g s cm .  Note that k3 is dominating for large vessels 
(ro>0.6cm) such as the aortas.  
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Chapter 3.  Methods 

 

3.1  Experimental Design 

The goal of this research was to characterize normotensive and hypertensive aortic wall 

mechanics using an elastic constitutive equation.  Three methods were prescribed and applied 

to experimental datasets of pressure-diameter cycles for aortas from normotensive and 

hypertensive subjects [14-20].  For all methods, internal blood pressures were computed for 

the corresponding experimental vessel radii.  The first method approximated internal blood 

pressures by utilizing an elastic constitutive equation (1.11) in conjunction with Olufsen’s 

equation (1.12).  The second method approximated the internal blood pressures using 

equation (1.11) and (1.12); however, it used an optimized 3k  parameter to best fit 

experimental datasets utilizing the Nelder-Mead optimization technique.  The third method 

computed the pressure distribution using the same constitutive equation as the first two 

methods, however the Olufsen’s equation (1.12) was not used to approximate the modulus.  

Instead it directly approximated the modulus from patient specific systolic and diastolic 

measurements using oE . 

 

3.2  Experimental Data from Literature 

Experimental internal blood pressure and aortic diameter datasets, collected from the 

literature, were used to derive the appropriate parameters for the constitutive equation [14-

20].  Datasets included six normotensive human, two hypertensive human, and five 
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normotensive canine subjects.  In all of the studied pressure-diameter curves, the diameter 

was smaller during loading (expansion) than during unloading (contraction) due to the aortic 

wall viscoelastic properties and accounts for each loop hysteresis.  The loading region is 

fairly linear while the unloading region is nonlinear.  This nonlinearity indicates that the 

vascular wall is more distensible at lower pressure than at higher pressure. 

The first human study was from three Stefanadis, et al studies[14-16] where the pressure 

and diameter measurements were instantaneously recorded for normotensive and 

hypertensive thoracic aortas, using a catheter-tip micromanometer and a Y-shaped 

intravascular catheter (developed using sonometry in Stefanadis’ laboratory) [14], 

respectively. In the first Stefanadis study, only three subject’s pressure-diameter loops were 

available in this paper and were used in all three methods [14].   

Figure 4.A and B show simultaneously recorded pressure-diameter loops during one cardiac 

cycle for two normotensive 50 year old subjects while Figure 5.A shows the hypertensive 52 

year old subject.  All three subjects were studied during a one day hospital stay, with a 

controlled room temperature of 20.0 1.0oC± .  In all three cases, the pressure-diameter curve 

is nonlinear and reveals gradual transition from distensible to stiff behavior at higher arterial 

pressure.  Furthermore, it exhibits hysteresis, that is, the diameter is smaller during expansion 

(loading) than during contraction (unloading).  During loading, the aortic diameter increases 

quickly in early systole because of the internal pressure increase.  While during diastole, 

diameter size is reduced in response to the drop in internal pressure.  Figure 5.A also shows 

the increase in steepness of the 52 year old hypertensive pressure-diameter curve compared 

to the two 50 year old normotensive thoracic aortas displayed in Figure 4.A and B, indicating 
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that the thoracic aorta becomes less distensible with hypertension and vascular wall 

remodeling with respect to the two 50 year old normotensive patients.  The second Stefanadis 

study [16] was of a normotensive thoracic aorta of unknown age.  Figure 4.C shows the 

pressure-diameter loop for this normotensive subject, where a small hysteresis is present with 

a distensible diameter range between 2.1 to 2.3 cm and a rather low pressure range between 

75 and 140 mmHg. Lastly, the third Stefanadis study [15] was of one normotensive subject 

and one hypertensive subject (Figure 4.C and Figure 5.B).  It is interesting to note that the 

hysteresis curve is wider in the hypertensive thoracic aorta (Figure 5.B) than the 

normotensive thoracic aorta (Figure 4.C).  This is mostly likely due to the aortic wall 

remodeling due to hypertension and exhibiting greater energy loss than the normotensive 

case. 

 
Another human study was from Sonesson et al [17] for two normotensive males:  a 24 

year old abdominal aorta and a 69 year old abdominal aorta.  The pressure measurements 

were collected invasively via a catheter while the inner diameter was measured non-

invasively using an echo-tracking system [17].  Figure 4.E and 5.F display the two abdominal 

aortic pressure-diameter loops.  Three important observations are seen here.  First, the 

hysteresis curve is wider in the 69 year old male abdominal aorta than the 24 year old male 

abdominal aorta.  This is mostly likely due to the aortic wall remodeling due to aging and 

exhibiting greater energy loss than the normotensive case.  Second, the percentage rΔ  for the 

younger abdominal aorta is greater than that of an older abdominal aorta (18.5% vs. 2.3%) 

agreeing with the fact that the vessel wall becomes less distensible with aging hypertension.  

Third, the vessel diameter is larger in the older abdominal aorta than the younger abdominal 
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aorta (almost double in diameter size). 

 

Figure 4  Human Thoracic and Abdominal Aortic Pressure-Diameter Loops 
The pressure-diameter loops from Stefanadis clinical studies [14-16, 21, 22] for normotensive and hypertensive 
thoracic and abdominal aortas.  A-D are pressure-diameter loops of thoracic aortas while E-F are pressure-
diameter loops of abdominal aortas.  (A) The blue loop represents a 50 year old male normotensive subject[14]. 
((B) The blue pressure-diameter loop is of another normotensive 50 year old thoracic aorta [15].  (C) The blue 
loop is of a normotensive thoracic aorta [16].  (D) The blue loop is of a normotensive thoracic aorta [15].  (E) 
The blue loop is of a 24 year old male abdominal aorta [17].  (F) The blue loop is of a 69 year old male 
abdominal aorta [17]. 
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Figure 5  Hypertensive Thoracic Aortic Pressure-Diameter Loops 
(A)  The pressure-diameter loop from clinical study [14] for hypertensive thoracic aorta of a 52 year old.  (B)  
The pressure-diameter loop is from Stefanadis clinical study [15] for hypertensive thoracic aorta of unknown 
age.   
 

 

The first normotensive canine study was from Yano et al [20] for an open-chested 

anesthetized mongrel dog, weighing 13-20 kg.  The thoracic aortic pressure was measured 

using micromanometer while the external diameter was measured using sonomicrometry.  

Figure 6.A shows the loading curve of this thoracic aorta with a diameter range between 1.3-

1.6cm and pressure range between 55-130 mmHg and rather linear characteristic.   

The second normotensive canine study was from Hardt et al [19].   Abdominal aortic 

pressure and diameter measurements were recorded from two anesthetized foxhound dogs 

using a pressure transducer and implanted sonomicrometer crystals, to record the diameter 

measurements, as seen in Figure 6.B and C. 

Lastly, the third canine normotensive study was previously published in Ferguson, et al 

[18].  In this study, two mongrel dogs, weighing between 25-35 kg, were anesthetized and 
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their ascending aortic pressures were measured using micromanometer catheters and their 

outer diameters were recorded using ultrasonic crystal catheters.  The first dog pressure-

diameter loop is depicted in Figure 6.D where the dicrotic notch (end systole) is clearly seen 

around the diameter measurement of 2.4 cm.  The second dog aortic pressure-diameter loop 

is displayed in Figure 6.E were the inferior vena cava (IVC) was occluded, hence the higher 

pressure end range. 
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Figure 6  Thoracic, Abdominal and Ascending Aortic Dog Pressure-Diameter Curves 
(A)  Pressure-diameter curve from dog study [20] for a normotensive thoracic aorta.  (B)  Normotensive 
abdominal aortic pressure-diameter curve from dog study [19].  (C)  Pressure-diameter curve from dog study 
[19] for a normotensive abdominal aorta.  (D)  In vivo pressure-diameter loop from dog study [18] for a 
normotensive ascending aorta is presented here.  (E)  In vivo pressure-diameter loop from dog study [18] for a 
normotensive ascending aorta where the IVC was occluded. 
 
 

3.3 Patient-Specific Elastic Modulus oE  

For a linear elastic model, the elastic modulus can be used to predict the pressure 

distribution for given diameter measurements.  This modulus is directly computed from the 

experimental dataset discussed earlier by utilizing the pulse pressure ( pΔ ), the diastolic  
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radius ( or ), and the difference between systolic and diastolic radii ( rΔ ) as follows: 

 ( ) *( )
( )

o
o

P rE
r

Δ
=

Δ
 (1.13) 

Rewriting Equation (1.13) in terms of the pressure gradient pΔ  yields the following: 

 

 o
o

rp E
r
Δ

Δ =  (1.14) 

 max
max

( )o
o o

o

r rp p E
r
−

− =  (1.15) 

Where maxp  is the systolic pressure, op  is the diastolic (undeformed) pressure, maxr  is the 

systolic radius, and or  is the diastolic (undeformed) radius.   

Using the constitutive equation (1.10) for maxr r= , one can derive the relationship between 

the elastic modulus ( oE ) and Young’s modulus ( E ) by substituting equation (1.10) into 

(1.15) as follow: 

 max max

max

( ) 4 ( )
3

o o
o

o o

r r Eh r rE
r r r
− −

=  (1.16) 

Simplifying Equation (1.16) describes the dependency of Elastic modulus on the Young’s 

modulus as follow: 

 
max

4
3o

EhE
r

=  (1.17) 

 
Therefore, the elastic constitutive equation (1.11) can be written in terms of oE : 
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 max( ) (1 )o
o o

o

r rp r E p
r r

= − +  (1.18) 

 
Figure 7 shows the pressure-diameter loops for the six normotensive human studies for 

thoracic and abdominal aortas, Figure 8 displays the two hypertensive human thoracic aortas, 

and Figure 9 depicts the five dog normotensive studies for thoracic, ascending and abdominal 

aortic pressure-diameter loops.  The blue doted lines are the experimental pressure-diameter 

curves and the straight black lines are the predicted pressures. 
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Figure 7  Normotensive Human Aortic Pressure-Diameter Loops Using Experimental oE  
(A-B)  The blue pressure-diameter loops from clinical study [14] for two normotensive 50 year old 
normotensive thoracic aortas.  The straight black lines are the constitutive equation approximations of the 
pressure values using oE  for all subjects.  (C)  The pressure-diameter loop from clinical study [16] for 
normotensive thoracic aorta.  The blue loop represents a normotensive subject and the straight black line is the 
constitutive equation predicted pressure values using oE .  (D)  The pressure-diameter loop from clinical study 
[15] for normotensive thoracic aorta.  The blue loop represents a normotensive subject and the straight black 
line is the constitutive equation predicted pressure values using oE .  (E)  In vivo pressure-diameter loop from 
clinical study {{; 2661 Sonesson,B. 1994; }} for a 24 year old normotensive abdominal aorta.  The blue loop 
represents a normotensive subject and the straight black line is its constitutive equation predicted pressure 
values using oE .  (F)  In vivo pressure-diameter loop from clinical study {{; 2661 Sonesson,B. 1994; }} for a 69 
year old normotensive abdominal aorta.  The blue loop represents a normotensive subject and the straight black 
line is its constitutive equation predicted pressure values using oE . 
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Figure 8  Hypertensive Aortic Pressure-Diameter Loops Using Experimental oE  
(A)  The pressure-diameter loop from clinical study [14] for hypertensive thoracic aorta of a 52 year old.  (B)  
The pressure-diameter loop is from another Stefanadis clinical study [15] for human hypertensive thoracic 
aorta.  (A-B)  The straight black lines are the constitutive equation approximations of the pressure values using 

oE  for all subjects.  
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Figure 9  Normotensive Dog Aortic Pressure-Diameter Loops Using Experimental oE  
(A)  In vivo pressure-diameter loop from dog study [20] for a normotensive thoracic aorta.  The blue loop 
represents a normotensive dog and the straight black line is its constitutive equation predicted pressure values 
using oE .  (B)  In vivo pressure-diameter loop from dog study [19] for a normotensive abdominal aorta.  The 
blue dotted curve represents a normotensive dog and the straight black line is its constitutive equation predicted 
pressure values using oE .  (C)  In vivo pressure-diameter loop from dog study [19] for a normotensive 
abdominal aorta.  The blue loop represents a normotensive dog and the straight black line is its constitutive 
equation predicted pressure values using oE .  (D)  In vivo pressure-diameter loop from dog study [18] for a 
normotensive ascending aorta where the IVC was occluded. The blue loop represents a normotensive dog and 
the straight black line is its constitutive equation predicted pressure values using oE . 
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3.4 Method #1: Elastic Constitutive Equation using Olufsen’s Function  

The first method used Olufsen’s empirical function to approximate
o

Eh
r

.  In vivo, we 

assume that the undeformed radius ( or ) is the smallest possible measurement of the vessel 

radius, hence the diastolic radius is used as an approximation.  From clinical data, op , or , and 

r  are given as inputs to the constitutive equation and the aortic pressure waveform is 

computed as follow: 

 4( ) (1 )
3

o
o

o

Eh rp r p
r r

= − +  (1.19) 

The pressure is calculated for both normotensive and hypertensive human aortas and for 

normotensive canine aortas.   

As seen in Figure 3, for undeformed aortic radius or  larger than 0.6 cm equation (1.12) can 

be deduced to: 

 3
o

Eh k
r

=  (1.20) 

  

3.5 Method #2: Elastic Constitutive Equation using Optimized 3k  

In this method, an optimized version of the function 
o

Eh
r

was used to compute 3k  for both 

normotensive and hypertensive aortas.  Parameters, 1k and 2k , were not modified since they 

did not play a role in computing the aortic pressure for the given radii greater than 0.6 cm.  

The fminsearch function, found in the MATLAB®’s Optimization Toolbox, was used to 
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optimize equation (1.12) 3k  parameter.  This nonlinear gradient-free method is a direct 

search technique that uses the concept of a simplex, or a Nelder-Mead method, to  

approximate the value for 3k  with tolerance of 10-10 (See appendix A for the MATLAB® 

code used to optimize the 3k  parameter for the normotensive and hypertensive datasets).  The 

N-fold cross-validation technique was used to estimate the optimized 3k  parameter.  The N-

fold cross-validation is a common statistical technique that treats one dataset from N number 

of samples as the validation dataset, and the remaining N − 1 samples are then used as the 

training datasets. The cross-validation is repeated N times, with each of the N samples used 

once as the validation dataset.  For example, for the human normotensive subjects, N is six 

and the cross-validation process is repeated six times, returning six optimized values for 3k . 

 

 3.6 Method #3:  Elastic Constitutive Equation using an Approximation of oE  

Recall that the elastic modulus is measured directly from the pressure pulse ( pΔ ), the 

diastolic radius ( or ), and the difference between systolic and diastolic radii ( rΔ ).  It is 

described as follows: 

 ( ) *( )
( )

o
o

P rE
r

Δ
=

Δ
 (1.21) 

Rewriting Equation (1.21) in terms of the pressure gradient yields the following: 
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pΔ  is the difference between the systolic pressure value ( maxp ) and the diastolic 

(undeformed) pressure value ( op ) and that rΔ  is the difference between the systolic radius 

( r ) and the diastolic (undeformed) radius ( or ), substituting the two terms into (1.22) leads to 

the following equation: 

 max
max

( )o
o o

o

r rp p E
r
−

− =  (1.23) 

Using equation (1.19) and equation(1.23), the elastic constitutive equation can be written in 
terms of oE as follows: 

 

 max( ) (1 )o
o o

o

r rp r E p
r r

= − +  (1.24) 

Note that the third proposed method does not require an optimization of any parameters since 

the overall modulus is approximated from oE .  More importantly, this method is patient 

specific because it uses diastolic and systolic pressure and radius measurements.   

In this method, we approximate rΔ  to be 10% of or  for the normotensive case [7, 9].  

Finding an approximation for rΔ  for the hypertensive case is rather challenging, because the 

vessel wall mechanics varies with remodeling.  However, we approximate rΔ  to be 6% of or  

by taking the average of the two hypertensive subjects seen in Figure 10 [14]. 

 



 

  29

 

Figure 10  Change in Pressure Versus Change in Radius for All Three Cases. 
In the normotensive human (subjects A-F) and canine cases (subjects A-E), found in the top two graphs, the 
change in radius is much greater than that of the hypertensive human case (subjects A and B), found in the 
bottom graph.  This supports the fact that the vessel wall becomes more rigid and less distensible with 
hypertension, hence a smaller rΔ . 
 

 

3.7 Deriving 3k Parameter from Elastic Modulus oE  

For or greater than 0.6cm, utilizing equation(1.20), and equation(1.17), one can derive a 

relationship between oE  and 3k .   First, divide both sides of equation (1.20) by maxr : 
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 3

max max
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Then, by rearranging equation (1.17) and substituting it into equation (1.25) the following 

equation is derived: 
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Rearranging equation (1.26) leads to the equation that relates oE and 3k  for or  greater than 

0.6cm: 

 max
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 Chapter 4.  Results and Discussion 

 

4.1 Overview of Results 

Using the abovementioned methods, six human and five canine normotensive aortas were 

found to have mechanical properties such that the relationship between the arterial blood 

pressure and the internal diameter can be described by a linear constitutive model.  Based on 

this study, using patient-specific elastic modulus oE  is a better linear representation for the 

normotensive human and canine aortas than the three prescribed methods.  However, there is 

no conclusive evidence that any of the methods or the patient-specific elastic modulus oE  

approach provide acceptable pressure approximations for hypertensive human aortas.   

 

4.2  Computed Pressure-Diameter Relations for Normotensive Human Subjects 

For the normotensive human case, the pressure-diameter loops of six subjects were fit 

using the constitutive equation previously discussed.  The first four subjects were in-vivo 

human thoracic aortas from various Stefanadis, et al clinical studies [14-16].  While the other 

two studies were of abdominal normotensive human subjects [17].  Figure 11 shows all of the 

subject’s compliance graphs, where the blue squares indicate the experimental 3k  values, the 

black straight lines depict the first method / oEh r  values,  the red dots display the second 

method 3k  results, and the green triangles represent the 3k  values using the third method.  
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This figure clearly shows (with the exception of the outliner, the 69 year old patient (subject 

F)), that the compliance curve needs to be shifted downward to better fit larger vessels such 

as the aorta (the remaining five subjects) / oEh r  value or 3k  value for ( 0.6or cm≥ ).    

 

 

Figure 11  Modulus Graph Comparing All Methods with Experimental Normotensive Humans 
This graph represents the Young’s modulus ( E ) times the wall thickness ( h ) divided by the undeformed radius 
( or ) as a function of or  for using oE and the three prescribed methods.  Experimental elastic modulus oE  
approach (blue squares) is depicted here for the six normotensive human subjects.  Method # 1 compliance 
graph is represented in the black straight line.  While method #2 (red asterisk) approach and method # 3 (green 
triangles) approach are presented here. 
 

Using the above compliance curve information and the internal diameter, the aortic 

pressures of each subject were computed by the constitutive models for all three methods and 

displayed in Figure 12.  The blue dotted loops represent the data for normotensive human 

aortas. The straight lines are the constitutive equations approximations of the pressure values 

using the experimental oE  and all three methods.  The black solid line is the computed 
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pressure values using experimental oE , the green line is the estimated pressure values using 

the first method (Olufsen’s equation), the red line is the second method in predicting the 

pressure values using the optimized 3k , and the third method (magenta line) uses the 

approximated oE  to compute the pressures.   

It is interesting to note that in all six subjects, there is a consistent trend where there is 

a necking effect around pressure value of 105 10±  mmHg.  This pattern is difficult to model 

with a single line, as seen in all cases.  A better linear fit may be achieved using a piecewise 

method, where one linear line is fit to the loading linear part and the unloading portion of the 

curve is modeled with two different linear lines.  In the unloading portion of the curve, the 

first part of the curve is fit to a linear line that is less steep than the curvilinear portion of the 

unloading pressure curve where the pressure exceeds threshold of 105 10±  mmHg.  Also 

note that the slope (modulus) at this curvilinear part is higher than the loading part, in spite of 

the fact that the pressure is larger at unloading for the same diameter value. 

As seen in Figure 12, in all six normotensive human subjects, the first method (green 

line) was not adequate in predicting the pressure distribution for thoracic and abdominal 

human aortas.  Using this method resulted in overestimation of pressure values for the first 

five subjects (A-E) and an underestimation in pressure values for the sixth subject (F).   

However, the second method (red line) seem to fit two (A and B) out of the six subject’s 

loading part of the pressure-diameter loop.  It also partially fit subject C unloading part of the 

pressure-diameter loop and underestimated the pressure values for subject D and subject F, 

and overestimated the pressure values for subject E.  Lastly, the third method (magenta line) 

fit subjects A-C loading component of the pressure-diameter loops.  While this method 
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partially fit subject D’s unloading component of the pressure-diameter loop.  However, this 

method overestimated subject E pressure values and underestimated the pressure values for 

subject F.  In summary, none of the three methods was an overall best fit for all subjects.  

However, using patient-specific modulus (black line) is the best linear line fit for the loading 

part of the pressure-diameter loop. 

 

Figure 12  Thoracic and Abdominal Aortic Pressure-Diameter Loops. 
The pressure-diameter loops from 6 clinical studies for normotensive thoracic and abdominal aortas [14-17, 21].  
(A-D) Blue dotted loops represent the data for normotensive human thoracic aortas.  (E-F) Blue dotted loops 
represent the data for normotensive human abdominal aortas. The straight lines are the constitutive equations 
approximations of the pressure values using the experimental oE , method #1 through method #3.  The black 
solid line is the computed pressure values using experimental oE .  The green line is the estimated pressure 
values using Method #1 (Olufsen’s equation).  Method #2 (red line) is the pressure values using the optimized 

3k .  Lastly, method #3 (magenta solid line) uses the approximated oE to compute the pressures. 
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Table (4.1) summarizes the computed 3k  values for the six normotensive subjects using and 

the patient-specific modulus (experimental oE ) and the three prescribed methods.  

Additionally, it displays the root mean squared error (RMSE) of the pressures in mmHg for 

the given range of diameters.  Based on the results of the normotensive studies, the patient 

specific approach is the best for the human thoracic and abdominal aortas, with the smallest 

RMSE and patient-specific values for 3k .  Tables (4.3) summarizes the six normotensive 

human subjects experimental Eo and the approximated oE  values using method #3.   

Table 4. 1  Computed 3k  for the six normotensive human subjects 

Subject  

Experimenta
l 3k   

RMSE 
[mmHg] 

Method #1 

3k  
RMSE 

[mmHg] 

Method #2 

3k  
RMSE 

[mmHg]

Method #3 

3k  
RMSE 

[mmHg] 
A 54.27x10  2.22 58.65x10 22.35 54.30x10 2.60 53.91x10  2.11 
B 55.54x10  4.57 58.65x10 23.08 54.25x10 5.46 55.50x10  4.40 
C 56.52x10  8.13 58.65x10 21.07 53.61x10 13.37 57.00x10  10.69 
D 57.33x10  4.29 58.65x10 8.92 53.58x10 11.51 55.11x10  6.84 
E 53.46x10  5.03 58.65x10 60.33 54.88x10 19.92 56.20x10  37.38 
F 61.74x10  8.29 58.65x10 11.97 54.40x10 18.99 56.07x10  16.82 

 
Table 4. 2  r-square values for the six normotensive human aortas  

Subject Experimental 2r  Method #1 2r  Method #2 2r  Method #3 2r  
A 0.97 0.96 0.96 0.97 
B 0.96 0.95 0.95 0.96 
C 0.93 0.92 0.92 0.93 
D 0.95 0.94 0.94 0.95 
E 0.96 0.95 0.95 0.96 
F 0.88 0.88 0.88 0.88 
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Table 4. 3  Computed and experimental  elastic moduli for normotensive human subjects 

Subject rΔ  Eo [g/(s2cm)] 
Method #3 

Estimated rΔ  
Method #3 Estimated Eo 

[g/(s2cm)] 
A 0.094 55.22x10  0.104 54.74x10  

B 0.095 56.72x10  0.096 56.67x10  

C 0.113 57.85x10  0.105 58.48x10  

D 0.073 59.15x10  0.108 56.20x10  

E 0.131 53.86x10  0.067 57.51x10  

F 0.036 71.42x10  0.109 57.36x10  
 

4.3 Computed Pressure-Diameter Relations for Hypertensive Human Subjects 

For the hypertensive human case, the pressure-diameter loops of two subjects were fit 

using the constitutive equation as discussed earlier.  The first two subjects were in-vivo 

human thoracic aortas from Stefanadis, et al clinical studies [15, 16].  Figure 13 shows the 

two hypertensive subjects compliance graphs, where the blue squares indicate the 

experimental 3k  values, the black straight lines depict the first method / oEh r  values,  the red 

dots display the second method 3k  results, and the green triangles represent the 3k  values 

using the third method.  This figure clearly shows that the compliance curve needs to be 

shifted upward to better fit larger vessels such as the aorta / oEh r  value or 3k  value for 

( 0.6or cm≥ ).    
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Figure 13  Modulus Graph Comparing All Methods with Hypertensive Human Datasets 
This graph represents the Young’s modulus ( E ) times the wall thickness ( h ) divided by the undeformed radius 
( or ) as a function of or  for using oE and the three prescribed methods.  Experimental elastic modulus oE  
approach (blue squares) is depicted here for the two hypertensive human subjects.  Method # 1 compliance 
graph is represented in the black straight line.  While method #2 (red asterisk) approach and method # 3 (green 
triangles) approach are present here. 
 
 

Using the above compliance curve information and the internal diameter, the aortic 

pressures of each subject were computed by the constitutive models for all three methods and 

displayed in Figure 14.  The blue dotted loops represent the data for hypertensive human 

aortas. The straight lines are the constitutive equations approximations of the pressure values 

using the experimental oE  and all three methods.  The black solid line is the computed 

pressure values using experimental oE , the green line is the estimated pressure values using 

the first method (Olufsen’s equation), the red line is the second method in predicting the 

pressure values using the optimized 3k , and the third method (magenta line) uses the 

approximated oE  to compute the pressures.   
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As seen in Figure 14, none of the three methods was adequate in predicting the 

pressure distribution for the two hypertensive thoracic aortas. However, using patient-

specific modulus (black line) is the best linear line fit for the loading part of the hypertensive 

pressure-diameter loop. 

 
 

 
Figure 14  Hypertensive Human Thoracic Aortic Pressure-Diameter Loops. 
(A)  The pressure-diameter loop from clinical study [14] for hypertensive thoracic aorta of a 52 year old.  (B)  
The pressure-diameter loop is from another Stefanadis clinical study [15] for human hypertensive thoracic 
aorta.  (A-B)  The straight lines are the constitutive equations approximations of the pressure values using oE , 
method #1 through method #3.  The black solid line is the computed pressure values using experimental oE .  
The green line is the estimated pressure values using Method #1 (Olufsen’s equation).  Method #2 (red line) is 
the pressure values using the optimized 3k .  Lastly, method #3 uses the approximated oE  to compute the 
pressures as seen in the magenta solid line. 
 

Tables (4.4) summarize the computed 3k  values for the two hypertensive subjects using 

and the patient-specific modulus (experimental oE ) and the three prescribed methods.  

Additionally, it displays the root mean squared error (RMSE) of the pressures in mmHg for  
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the given range of diameters.  Table (4.6) summarizes the computed values for all two 

subjects using the experimental oE  and the approximation of oE using method #3.    Due to 

the low number of subjects in this case, no conclusive evidence was found that any of the 

methods or the patient-specific elastic modulus oE  approach provide acceptable pressure 

approximations for the two hypertensive human thoracic aortas. 

 

Table 4. 4  Computed 3k  for the two hypertensive human subjects 

Subject  

Experimental 

3k   
RMSE 

[mmHg] 

Method #1 

3k  
RMSE 

[mmHg]

Method #2 

3k  
RMSE 

[mmHg]

Method #3 

3k  
RMSE 

[mmHg] 
A 61.09x10  8.05 58.65x10 7.75 61.38x10 19.10 61.31x10  15.85 
B 61.63x10  10.42 58.65x10 16.39 59.58x10 14.23 61.23x10  9.38 

 
Table 4. 5  r-square values for the two hypertensive human aortas  

Subject Experimental 2r  Method #1 2r Method #2 2r Method #3 2r  
A 0.94 0.93 0.93 0.94 
B 0.88 0.88 0.88 0.88 

 
Table 4. 6  Computed and Experimental Elastic and Young’s moduli for hypertensive subjects 

Subject rΔ  Eo [g/(s2cm)] 
Method #3 Estimated 

rΔ  
Method #3 Estimated Eo 

[g/(s2cm)] 
A 0.045 62.09x10  0.062 61.64x10  

B 0.076 61.36x10  0.061 61.55x10  

 

4.4 Computed Pressure-Diameter Relations for Normotensive Canine Subjects 

For the normotensive canine case, the pressure-diameter loops of five subjects were fit 

using the constitutive equation discussed in the previous section [18-20].  The first canine 

subject was in-vivo thoracic aorta [20], the second and third subjects were of normotensive 

abdominal aortas [19], and the last two subjects were of normotensive ascending aortas [18].  

Figure 15 shows the five normotensive canine subjects compliance graphs, where the blue 
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squares indicate the experimental 3k  values, the black straight lines depict the first method 

/ oEh r  values,  the red dots display the second method 3k  results, and the green triangles 

represent the 3k  values using the third method.  This figure clearly shows  that the 

compliance curve needs to be shifted slightly downward to better fit larger vessels such as 

the aorta / oEh r  value or 3k value for ( 0.6or cm≥ ).   

 
Figure 15  Modulus Graph Comparing All Methods with Normotensive Canine Datasets 
This graph represents the Young’s modulus ( E ) times the wall thickness ( h ) divided by the undeformed radius 
( or ) as a function of or  for using oE and the three prescribed methods.  Experimental elastic modulus oE  
approach (blue squares) is depicted here for the five normotensive canine subjects.  Method # 1 compliance 
graph is represented in the black straight line.  While method #2 (red asterisk) approach and method # 3 (green 
triangles) approach are presented here. 
 

Using the above compliance curve information and the internal diameter, the aortic 

pressures of each subject were computed by the constitutive models for all three methods and 

displayed in Figure 15.  The blue dotted loops represent the data for normotensive canine 

aortas. The straight lines are the constitutive equations approximations of the pressure values 

using the experimental oE  and all three methods.  The black solid line is the computed 
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pressure values using experimental oE , the green line is the estimated pressure values using 

the first method (Olufsen’s equation), the red line is the second method in predicting the 

pressure values using the optimized 3k , and the third method (magenta line) uses the 

approximated oE  to compute the pressures.   

It is interesting to note that in all five subjects, there is a consistent trend where there 

is a necking effect at pressure value of 105 10±  mmHg.  This pattern is difficult to model 

with a single line, as seen in all of the normotensive cases.  As noted earlier, a better linear fit 

may be achieved using a piecewise method.  Also note that the slope (modulus) at this 

curvilinear portion is higher than the loading portion, despite that the pressure is greater at 

unloading for the same diameter reading. 

As seen in Figure 16, in all five normotensive canine subjects, the first method (green 

line) was adequate in predicting the pressure distribution for the loading part of the pressure-

diameter loop for subject B and C.  However, this method overestimated subjects A, D and E.  

The second method (red line) seem to fit three (B, D, and E) out of the five subject’s loading 

part of the pressure-diameter loop.  However, this method overestimated the pressure values 

for subject A, and underestimated the pressure values for subject C.  Lastly, the third method 

(magenta line) fit subjects B and C loading component of the pressure-diameter loops.  

However, this method overestimated subjects A and E pressure values and underestimated 

the pressure values for subject D.  In summary, none of the three methods was an overall best 

fit for all subjects.  However, using patient-specific modulus (black line) is the best fit for the 

loading part of the pressure-diameter loop. 
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Figure 16  Thoracic, Abdominal, and Ascending Aortic Pressure-Diameter Loops. 
The blue dotted pressure-diameter loop from experimental studies [18-20] for normotensive dog aortas.  The 
straight lines are the constitutive equations approximations of the pressure values using oE , method #1 through 
method #3.  The black solid line is the computed pressure values using experimental oE .  The green line is the 
estimated pressure values using Method #1 (Olufsen’s equation).  Method #2 (red line) is the pressure values 
using the optimized 3k .  Lastly, method #3 uses the approximated oE to compute the pressures as seen in the 
magenta solid line. 
 

Table (4.7) summarizes the computed 3k values for the five normotensive canine subjects 

using and the patient-specific modulus (experimental oE ) and the three prescribed methods.  

Additionally, it displays the root mean squared error (RMSE) of the pressures in mmHg for 

the given range of diameters.  Based on the results of the normotensive canine studies, the 

patient specific approach is the best for thoracic, abdominal, and ascending aortas, with the 

smallest RMSE and patient-specific values for 3k .  Table (4.9) summarizes the five 
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normotensive canine subjects experimental oE  and the approximated oE values using method 

#3.   

Table 4. 7  Computed 3k  for the five normotensive dog subjects 

Subject 

Experimental 

3k   
RMSE 

[mmHg] 

Method #1 

3k  
RMSE 

[mmHg]

Method #2 

3k  
RMSE 

[mmHg] 

Method #3 

3k  
RMSE 

[mmHg]
A 55.29x10  5.77 58.65x10 44.44 56.66x10 22.29 59.62x10 61.71 
B 57.61x10  10.07 58.65x10 17.24 56.24x10 8.49 58.81x10  17.20 
C 58.87x10  7.49 58.65x10 7.89 54.93x10 19.04 58.93x10  7.74 
D 55.57x10  3.50 58.65x10 10.96 55.31x10 3.16 52.71x10 5.49 
E 55.31x10  7.88 58.65x10 30.16 55.55x10 10.22 56.20x10 15.17 

 
Table 4. 8   r-square values for the five normotensive canine aortas  

Subject 
Experimental 

2r  
Method #1 

2r  Method #2 2r Method #3 2r
A 0.99 0.98 0.98 0.99 
B 0.94 0.93 0.93 0.94 
C 0.97 0.97 0.97 0.97 
D 0.86 0.86 0.86 0.86 
E 0.93 0.92 0.92 0.93 

 
Table 4. 9  Computed and experimental Elastic and Young’s moduli for normotensive canines 

Subject rΔ  Eo [g/(s2cm)] 
Method #3 

Estimated rΔ  
Method #3 Estimated Eo 

[g/(s2cm)] 
A 0.130 55.88x10  0.065 61.17x10  

B 0.049 66.05x10  0.042 61.07x10  

C 0.043 61.07x10  0.043 61.08x10  

D 0.054 57.10x10  0.118 53.28x10  

E 0.138 56.30x10  0.112 57.76x10  
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4.5 Statistical t-test for Optimized 3k Parameter 

A statistical t-test was conducted for the optimized 3k  parameter computed in the third 

method for the normotensive and hypertensive cases.  The t distribution can be used to make 

significance tests for the true 3k  parameter.  The null hypothesis 0H is that the true 

parameter 5
3 8.65 10k x= .  If 0H is true, then the optimized 3k parameter is equal to Olufsen’s 

3k value of 58.65 10x .  However, if 0H is false, then we reject the null hypothesis and 

conclude that there is a significant difference in the optimized value of 3k in comparison to 

Olufsen’s constant value.  For the each subject, the following is the summary of the 

Statistical Test for 3k . 

5
0 3: 8.65 10H k x=  vs. 5

3: 8.65 10aH k x≠  

5
3 8.65 10. . : k xT S t

SE
−

=  

. . :R R  For 1df n= −  and Type I error 0.025α = , reject 0H  if 0.025| | 1.96t tα=> =  

where, 

 0H  is the null hypothesis 

aH  is the alternative hypothesis 

3k  is the optimized parameter value 

SE  is the standard error of 3k  

df  is the degree of freedom 

n  is the number of iterations used for the optimization of 3k  
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The following table lists the t-values for the normotensive human, hypertensive human, and 

normotensive canine studies: 

Table 4. 10   t-test values for normotensive and hypertensive subjects 

Subject 
| |t -Value for 

Normotensive Human 
| |t -Value for 

Hypertensive Human 
| |t -Value for 

Normotensive Canine 
A 38.9329 19.0721 33.1926 
B 30.4786 7.9215 27.8516 
C 40.17  47.147 
D 4.076  63.4128 
E 29.1023  38.8005 
F 6.5686   

 

Since all t-values are greater than 1.96, we do reject the null hypothesis that the parameter 

value of 3k  equals 58.65 10x .  In other words, there is a significance difference in the 

optimized 3k  (method #3) value and the average 3k  value used in Olufsen’s method (method 

#1) for the normotensive and hypertensive cases. 
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Chapter 5.  Conclusion 

 

5.1  Summary 

Using the aforementioned methods, six human and five canine normotensive, and two 

hypertensive human arteries were considered to have mechanical properties such that the 

relationship between aortic internal pressure and diameter can be described by a linear 

constitutive equation.  A significant reason for evaluating the parameters of a system lies in 

the fact that if the behavior of a system can be characterized, its parameters can be evaluated, 

and conversely, if a system’s parameters have been evaluated its behavior can be predicted.  

In this work, a linear constitutive model, together with its analytical derivations, has been 

presented which adequately agrees with the characterization of living aortas. 

The availability of the arterial pressure-diameter loops, capturing the viscoelastic 

characteristic of the vessels (hysteresis), are very limited and are often not readily accessible.  

Furthermore, in order to capture the hysteresis loop, invasive techniques are currently used to 

simultaneously record the patient’s pressure and diameter measurements with the use of 

catheters, as described in the methodology section.  This study shows that using the exact oE  

approach does not rely on the pressure-diameter loop (invasive) but rather uses systolic and 

diastolic pressure and diameter values.  Systolic and diastolic pressure and diameter 

measurements can be captured noninvasively using pressure cuff readings and 

radiographically (i.e. ultrasound) to measure the diameter.  Therefore, the method of using 

the exact oE  implements a patient-specific basis using existing medical technology without 

exposing the patient to any additional risk or medical expenses. 
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This study was limited to a handful of datasets from literature.   Therefore, there is a 

need for additional experimental datasets for multiple subjects to improve both normotensive 

and hypertensive models.   Based on the results of this study, using the exact Elastic modulus 

is a better linear representation for the normotensive case.  However, there is no conclusive 

evidence that any of the three methods that are proposed approximate the mechanical 

properties of normotensive or hypertensive aortas.  Linking age and disease with pressure-

diameter measurements is key in characterizing the mechanical properties of the arteries but 

it is a challenge to construct.   

 

5.2 Future Work 

In the future, we plan to expand this work by conducting large vessel studies 

including the thoracic aorta, the femoral arteries, and the iliac arteries.  In order to collect 

diameter and pressure data in animal and human subjects, a small device must be designed to 

instantaneously measure the two variables.  This device would include a micro catheter, to 

measure pressure, and an ultrasonic dimension gauge using piezoelectric crystals, to measure 

diameter changes during systole and diastole.  Once this device is built, it will be tested in 

vitro using elastic tubes, ex vivo, in vivo animal studies, and lastly in human studies.  By 

building, testing and validating this method, we hope to gain a more sophisticated 

understanding of normal and abnormal arterial mechanics.  We believe that with a better 

understanding of the vascular system we will be a step closer to improving cardiovascular 

disease outcomes, enhancing diagnostic techniques, and advancing surgical planning.   

Furthermore, we plan to implement a piecewise linear model to capture the 
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viscoelastic characteristics of normotensive living arteries larger than radius size of 0.6cm.  

As discovered in this study, there is a consistent trend in the hysteresis pressure-diameter 

loops of a normotensive subject, where there is a necking effect at pressure value of 105 10±  

mmHg.  As discussed earlier, this trend is difficult to model with a single linear fit (a single 

3k  parameter).  A better linear fit may be achieved using a piecewise method, where one 

linear line is fit to the loading linear part and the unloading portion of the curve is modeled 

with two different linear lines.  In the unloading portion of the curve, the first part of the 

curve is fit to a linear line that is less steep than the curvilinear portion of the unloading 

pressure curve where the pressure exceeds threshold of 105 10±  mmHg.  By using this 

method, three different 3k  values will be used to better prescribe the viscoelastic 

characteristics of large vessels using three linear fits.  This proposed method requires 

invasive measurement of data to capture the viscoelastic characteristic of the hysteresis 

loading and unloading pressure-diameter loop.  We predict that this approach will improve 

the accuracy of the pressure estimation. 
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Appendix A:  MATLAB Code for Data Training and Optimization 

 
1. M-File script for normotensive and hypertensive training datasets  
%% Run all cases 
%%clean up MATLAB Environment 
clear all 
close all 
clc 
%% Run the Normotensive Human Cases 
%%clean up MATLAB Environment 
clear global 
clc 
lineStyle='*'; 
N=6;    %Number of pressure-diameter loops Or Number of subjects 
type='normotensive'; 
kind='Human'; 
dataNormoHuman = runningTrainingMethods(type, kind, N,lineStyle); 
multilabel('Aortic Diameter (cm)','b',[],0.075) 
multilabel('Aortic Pressure (mmHg)',[],[],0.075) 
print('-djpeg', ... 
    strcat('C:\Research\Thesis\simulink\NewCode\Dec4th2007\figures\', ... 
    [type kind])) 
  
%% Run the Normotensive Dog Cases 
%%clean up MATLAB Environment 
clear global 
clc 
lineStyle='*'; 
N=5;    %Number of pressure-diameter loops Or Number of subjects 
type='normotensive'; 
kind='Dog' 
dataNormoDog = runningTrainingMethods(type, kind, N,lineStyle); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% plot results 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
figure(2) 
subplot(2,2,3) 
plot(dataNormoDog{4}.Experimental.diameter, ... 
    dataNormoDog{4}.Experimental.RawPressure, '*', ... 
        dataNormoDog{4}.Experimental.diameter, ... 
        dataNormoDog{4}.Method1.pressure, 'gx:',... %Method #1 Olufsen 
        dataNormoDog{4}.Experimental.diameter, ... 
        dataNormoDog{4}.Method2.pressure, 'ro-',... %Method #2 Optim k3 
        dataNormoDog{4}.Experimental.diameter, ... 
        dataNormoDog{4}.Method3.pressure, 'ms-',... %Method #3  
        dataNormoDog{4}.Experimental.diameter, ... 
        dataNormoDog{4}.Experimental.pressure, 'k',... %Experimental Eo 
        'LineWidth',1.5) 
grid on 
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axis([min(dataNormoDog{4}.Experimental.diameter) ... 
    max(dataNormoDog{4}.Experimental.diameter) ... 
    min(dataNormoDog{4}.Experimental.RawPressure) ... 
    max(dataNormoDog{4}.Experimental.RawPressure)]) 
title('D','Fontsize',12) 
subplot(2,2,4) 
plot(dataNormoDog{5}.Experimental.diameter, ... 
    dataNormoDog{5}.Experimental.RawPressure, '*', ... 
        dataNormoDog{5}.Experimental.diameter, ... 
        dataNormoDog{5}.Method1.pressure, 'gx:',... %Method #1 Olufsen 
        dataNormoDog{5}.Experimental.diameter, ... 
        dataNormoDog{5}.Method2.pressure, 'ro-',... %Method #2 Optimized 
k3 
        dataNormoDog{5}.Experimental.diameter, ... 
        dataNormoDog{5}.Method3.pressure, 'ms-',... %Method #3  
        dataNormoDog{5}.Experimental.diameter, ... 
        dataNormoDog{5}.Experimental.pressure, 'k', ... %Experimental Eo 
        'LineWidth',1.5) 
grid on 
axis([min(dataNormoDog{5}.Experimental.diameter) ... 
    max(dataNormoDog{5}.Experimental.diameter) ... 
    min(dataNormoDog{5}.Experimental.RawPressure) ... 
    max(dataNormoDog{5}.Experimental.RawPressure)]) 
title('E','Fontsize',12) 
multilabel('Aortic Diameter (cm)','b',[],0.075) 
multilabel('Aortic Pressure (mmHg)',[],[],0.075) 
print('-djpeg', ... 
    strcat('C:\Research\Thesis\simulink\NewCode\Dec4th2007\figures\', ... 
    [type kind])) 
%% Run the Hypertensive Human Cases 
%%clean up MATLAB Environment 
clear global 
clc 
lineStyle='*'; 
N=2;    %Number of pressure-diameter loops Or Number of subjects 
type='hypertensive'; 
kind='Human'; 
dataHyperHuman = runningTrainingMethods(type, kind, N,lineStyle); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% plot results 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
figure(3) 
subplot(2,1,1) 
plot(dataHyperHuman{1}.Experimental.diameter, ... 
    dataHyperHuman{1}.Experimental.RawPressure, '*', ... 
        dataHyperHuman{1}.Experimental.diameter, ... 
        dataHyperHuman{1}.Method1.pressure, 'g',... %Method #1 Olufsen k3 
        dataHyperHuman{1}.Experimental.diameter, ... 
        dataHyperHuman{1}.Method2.pressure, 'r-', ... %Method #2 Optim k3 
        dataHyperHuman{1}.Experimental.diameter, ... 
        dataHyperHuman{1}.Method3.pressure, 'm-', ... %Method #3  
        dataHyperHuman{1}.Experimental.diameter, ... 
        dataHyperHuman{1}.Experimental.pressure, 'k', ...  %Experimenal Eo 
        'LineWidth',1.95) 
grid on 
axis([min(dataHyperHuman{1}.Experimental.diameter) ... 
    max(dataHyperHuman{1}.Experimental.diameter) ... 
    min(dataHyperHuman{1}.Experimental.RawPressure) ... 
    max(dataHyperHuman{1}.Experimental.RawPressure)]) 
title('A','Fontsize',12) 
subplot(2,1,2) 
plot(dataHyperHuman{2}.Experimental.diameter, ... 
    dataHyperHuman{2}.Experimental.RawPressure, '*', ... 
        dataHyperHuman{2}.Experimental.diameter, ... 
        dataHyperHuman{2}.Method1.pressure, 'g',... %Method #1 Olufsen k3 
        dataHyperHuman{2}.Experimental.diameter, ... 
        dataHyperHuman{2}.Method2.pressure, 'r-', ...%Method #2 Optim k3 
        dataHyperHuman{2}.Experimental.diameter, ... 
        dataHyperHuman{2}.Method3.pressure, 'm-', ...%Method #3  
        dataHyperHuman{2}.Experimental.diameter, ... 
        dataHyperHuman{2}.Experimental.pressure, 'k', ...%Experimental Eo 
        'LineWidth',1.95) 
grid on 
axis([min(dataHyperHuman{2}.Experimental.diameter) ... 
    max(dataHyperHuman{2}.Experimental.diameter) ... 
    min(dataHyperHuman{2}.Experimental.RawPressure) ... 
    max(dataHyperHuman{2}.Experimental.RawPressure)]) 
title('B','Fontsize',12) 
multilabel('Aortic Diameter (cm)','b',[],0.075) 
multilabel('Aortic Pressure (mmHg)',[],[],0.075) 
print('-djpeg', ... 
    strcat('C:\Research\Thesis\simulink\NewCode\Dec4th2007\figures\', ... 
    [type kind])) 
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2. M-File Function for normotensive and hypertensive training datasets  
function data = runningTrainingMethods(type, kind, N, lineStyle) 
%% Run training data (starting point) 
global typeKind index N dirName 
% N=7; 
% type='normotensive'; 
% kind='Human'; 
typeKind=strcat(type, kind); %i.e. normotensiveHuman 
dirSubName=strcat('c:\research\thesis\simulink\NewCode\Dec4th2007\', ... 
    type, '\', kind); 
dirName=strcat(dirSubName, '\dataset'); 
%% Load Diameter and Pressure data for Aorta 
figure 
alphas={'A','B','C','D','E','F','G','H'}; 
for index=1:N; 
    load(strcat(dirName, num2str(index), '\', typeKind)) 
    variable=eval(typeKind); 
    diameter=variable(:,1)/10;  %[cm] 
    pressure=variable(:,2);   %[mmHg] 
    %Return the computed pressures for all methods along with approximated  
    %Eo and the new k3 value. 
    eval(['data{', num2str(index), ... 
        '}= trainingMethods(diameter, pressure, type, kind);']) 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %% plot results 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
    subplot(2,3,index) 
    plot(diameter,pressure, lineStyle, ...   %Normo experimental data 
        diameter,data{index}.Method1.pressure, 'gx:', ... %Method #1 
        diameter,data{index}.Method2.pressure, 'ro-', ... %Method #2 
        diameter,data{index}.Method3.pressure, 'ms-', ... %Method #3 
        diameter,data{index}.Experimental.pressure, 'k', ... %Exp. Eo 
        'LineWidth',1.5) 
    grid on 
    title(alphas{index},'Fontsize',12) 
    axis([min(diameter) max(diameter) min(pressure) max(pressure)]) 
end 
%% Write into an excel spreadsheet 
% xlswrite(dirSubName, data{1}, [type kind]) 
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3. M-File Function for normotensive and hypertensive training methods 
  
function [data]=trainingMethods(diameter, actualPressuremmHg, type, kind) 
%Applies the 4 methods discussed below to normotensive and hypertensive 
%training datasets and also optimzes k3 for method 2. 
% 
% Method #1:  uses Olufsen's equation with defined k1,k2,k3 parameters: 
%                       ro = min(r) 
%                       Eh/ro=k1*exp(k2*ro)+k3; 
%                       k1=2.00e7, k2=-22.53, k3=8.65e5 
%                       p(t)=(4/3)*(Eh/ro)*(1-(ro/r)) + po 
% Method #2:  uses above equations and k1 and k2 defined in method #1 
%             using a new optimized value for k3 
%             for both nomotensive and hypertensive: 
% 
%  Method #3   Uses both equations for Ep and p(t) however, 
%              it approximates deltaR to be 10% of rMax, therefore ro 
%              is also approximated as follow: 
%                       Rmax = (1+%)ro 
% 
% Experimental E, use Ep to approximate (4/3)*(Eh/ro): 
%                       rMax = max(r) 
%                       deltaR=(rMax-ro) 
%                       Ep=((pMax - po)*ro)/deltaR 
%                       p(t) = Ep*(1-(ro/r)) + po 
% 
%       Returns a structure call DATA with all of the pressures, moduli, 
%       k3s, deltaP, deltaR and RMSE for all 3 methods and experimental 
%       data 
  
%Setting up pressure to be in the right units 
data.Experimental.RawPressure=actualPressuremmHg; 
pressure=actualPressuremmHg*1.3332*10^3;   %Convert [mmHg] to [g/(s^2cm)] 
data.Experimental.diameter=diameter; 
r=diameter/2;   % deformed radii [cm] 
ro=min(r);      % undeformed radius [cm] at diastolic pressure 
rSystolic=max(r);    % radius [cm] at systolic pressure 
Po=min(pressure);          %Diastolic pressure 
pSystolic=max(pressure);   %Systolic pressure 
data.Experimental.deltaP=pSystolic-Po;       %Pressure gradient 
rSystolic=max(r);          %Systolic radius 
data.Experimental.deltaR=rSystolic-ro;       %radius difference 
h=0.12*ro;                 %Assume thickness is 12% of diastolic radius 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%uses Ep to approximate (4/3)*(Eh/ro):                      % 
%                       rSystolic = max(r)                             % 
%                       deltaR=(rSystolic-ro)                          % 
%                       Ep=((pMax - po)*ro)/deltaR                     % 
%                       p(t) = Ep*(1-(ro/r)) + po                      % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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data.Experimental.Eo = ...  %Peterson's modulus aka elastic modulus 
    (data.Experimental.deltaP*ro)/data.Experimental.deltaR;    
computedPressureEo=(data.Experimental.Eo).*((r./ro)-1)+Po; 
%convert to mmHg 
data.Experimental.pressure=computedPressureEo/(1.3332*10^3);  
  
%Approximate Eh/ro to compare to Compliance curve 
approximatedEh_ro = mean((3/4)*(r./ro)*data.Experimental.Eo); 
data.Experimental.E=approximatedEh_ro*(ro/h);  %Young's Modulus 
data.Experimental.RMSE = ... 
    sqrt(mean((actualPressuremmHg-data.Experimental.pressure).^2)); 
data.Experimental.k3 = (3/4)*rSystolic/ro*data.Experimental.Eo; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Method #1:  uses Olufsen's equation with defined k1,k2,k3 parameters: % 
%                       Eh/ro=k1*exp(k2*ro)+k3;                        % 
%                       k1=2.00e7, k2=-22.53, k3=8.65e5                % 
%                       p(t)=(4/3)*(Eh/ro)*(1-(ro/r)) + po             % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
k1=2*10^7; 
k2=-22.53; 
data.Method1.k3=8.65*10^5; 
Eh_ro=k1*exp(k2*ro)+data.Method1.k3; %[g/s^2cm] 
computedPressureOlufsen = (4/3)*(Eh_ro).*(1-(ro./r))+ Po;  %[g/(s^2cm)] 
%convert to mmHg 
data.Method1.pressure=computedPressureOlufsen/(1.3332*10^3);    
data.Method1.E=Eh_ro*(ro/h);  %Young's Modulus from Method1 
data.Method1.RMSE=sqrt(mean((actualPressuremmHg-
data.Method1.pressure).^2)); 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Method #2:  uses equation with defined k1,k2,k3 parameters: % 
%                       Eh/ro=k1*exp(k2*ro)+k3;                        % 
%                       k1=2.00e7, k2=-22.53,                          % 
%                       k3 is optimized         % 
%                       p(t)=(4/3)*(Eh/ro)*(1-(ro/r)) + po             % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
k1=2*10^7; 
k2=-22.53; 
%Optimize k3 
%Set optimization options 
options=optimset('TolFun',1e-10,'TolX',1e-3,'MaxFunEvals',2e5,... 
    'MaxIter',2e5); 
[k3o,fMin,exitflag,output]=fminsearch('optimizeK3New',sqrt(10^6),options); 
data.Method2.k3=k3o^2;  %k3 
Eh_ro=k1*exp(k2*ro)+data.Method2.k3; %[g/s^2cm] 
computedPressureK3New= (4/3)*(Eh_ro).*(1-(ro./r))+ Po;  %[g/(s^2cm)] 
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%convert to mmHg 
data.Method2.pressure=computedPressureK3New/(1.3332*10^3);     
data.Method2.E=Eh_ro*(ro/h);  %Young's Modulus from Method2 
data.Method2.RMSE=sqrt(mean((actualPressuremmHg-
data.Method2.pressure).^2)); 
data.Method2.fMin=fMin; 
data.Method2.output=output; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Method #3: approximates deltaR to be 10% of rSystolic, therefore ro   % 
%                       is also approximated as follow:                % 
%                       deltaR = %*rdiastolic                          % 
%                                                                      % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
if strcmp(type,'normotensive')    %Normotensive 
    percentage = 0.10; 
elseif  strcmp(type,'hypertensive')    %Hypertensive 
    percentage = 0.06; 
end 
rSystolic = (1+percentage)*ro; 
data.Method3.deltaR=rSystolic-ro;       %radius difference 
data.Method3.Eo = ... 
    (data.Experimental.deltaP*ro)/data.Method3.deltaR; %Approximation of 
Eo 
computedPressureEpNew=(data.Method3.Eo).*((r./ro)-1)+Po; 
%convert to mmHg 
data.Method3.pressure=computedPressureEpNew/(1.3332*10^3);     
data.Method3.avgE=mean((3/4)*(r./ro)*data.Method3.Eo)*(ro/h);   
data.Method3.stdE=std((3/4)*(r./ro)*data.Method3.Eo)*(ro/h);   
data.Method3.RMSE=sqrt(mean((actualPressuremmHg-
data.Method3.pressure).^2)); 
data.Method3.k3=(3/4)*rSystolic/ro*data.Method3.Eo;%k3 dependent on Eo 
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4. M-File Function for optimizing 3k  
function w = optimizeK3New(inputs) 
k3=inputs(1)^2; 
global index typeKind N dirName 
%Load Training Set:  diameter and pressure data of normotensive 
%aortic patients 
k1=2*10^7; k2=-22.53; 
for i=1:N 
    eval(['w', num2str(i), '=0;']) 
end 
w=0; 
for i=1:N; 
    %load the other datasets to train the index dataset 
    if index ~= i 
        load(strcat(dirName, num2str(i), '\', typeKind)) 
        variable=eval(typeKind); 
        diameter=variable(:,1)/10;  %[cm] 
        pressure=variable(:,2)*1.3332*10^3;   %[g/s^2cm] 
        r=diameter/2; 
        Po=min(pressure); 
        ro=min(r); 
        mSize=size(diameter,1); 
        Eh_ro=k1*exp(k2*ro)+k3;%[g/s^2cm] 
        for j=1:mSize; 
            solution= (4/3)*(Eh_ro)*(1-(ro/r(j)))+Po; 
            w=w+(solution-pressure(j)).^2/mSize^2; 
        end 
    else 
        w=0; 
    end 
    eval(['w', num2str(i), '=w;']) 
end 
for i=1:N 
    eval(['w=w+sum(w', num2str(i), ');']) 
end 


