
ABSTRACT

LIM, JUN BUM. RaPTEX: Rapid Prototyping Tool for Embedded Communication Sys-

tems. (Under the direction of Assistant Professor Mihail L. Sichitiu).

Advances in microprocessors, memory, and radio technology have enabled the

emergence of embedded systems that rely on communication systems to exchange infor-

mation and coordinate their activity in spatially distributed applications. Developing

embedded communication systems that are efficient and reliable, is a challenge due to

the trade-offs imposed by the conflicts between application requirements and hardware

constraints. In this thesis, we present RaPTEX, an integrated development environment

(IDE) for embedded communication systems. RaPTEX consists of three major subsys-

tems: a graphical module to facilitate component composition, code generation with access

to component-level parameters, and a performance estimation framework for allowing sys-

tem designers to explore what-if scenarios and clearly expose the trade-offs of their choices.

We also present two case studies of developing wireless sensor network applications using

RaPTEX.
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Chapter 1

Introduction

1.1 Wireless Sensor Networks

Wireless Sensor Networks (WSNs) are a promising sensing technology for large

geographical areas. A large number of inexpensive, small sensors are scattered in the

sensing area. Each sensor node is capable of taking samples from its sensors, send them to

its neighbors, and forward data from its neighbors toward a sink that collects the data and

send it to the end user(s) via Internet or satellite. Fig.1.1 illustrates the general sensor

network deployment [1].

Sensor networks can significantly improve the quality of the collected data and

correspondingly the resulting information. Sensor networks can help to collect high fidelity

information and enable sensing of hard-to-obtain information from the physical world.

Through WSNs, users can control information that is precisely localized in time and/or

space, according to the user’s needs or demands.

Although WSNs enable the dream of ubiquitous computing, they still face many

restrictions. Sensor nodes primarily rely on batteries and resource limited sensing devices,

require an energy and resource efficient process. Sensor networks are deployed in an ad

hoc fashion in remote, unattended, hostile environments, which require distributed and

self-organizing algorithm. While many research groups focus their efforts on WSNs, the

unique characteristics of WSNs make it difficult to productively optimize WSN systems.
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Figure 1.1: Sensor nodes scattered in a sensor field

1.2 Motivation

One of the biggest difficulties of developing WSN applications is the design of

efficient communication protocols given the application requirements and the constrained

resources of the sensor nodes. Although many WSN communication protocols [2–12] have

been designed for each network layer of WSNs, only a few network specialists can build a

protocol stack by assembling and customizing the parameters of the proposed protocols.

It is non-trivial and time-consuming task for application developers to find the

optimal composition of communication protocols that meets the application requirements

and WSN platform constraints. The problem is even more complicated for non-specialists

that are not familiar with the available communication protocols.

1.3 Goal

The main goal of the work presented in this thesis is to bridge the gap between

the need for WSN communication systems and the difficulty in their design. To achieve

this goal, we provide RaPTEX, an Integrated Development Environment (IDE) with code

generation for rapid prototyping featuring a performance estimation methodology that

allows for immediate feedback on the impact of the design decision.
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1.4 Contributions

The contribution of this thesis is the development of RaPTEX, which provides:

• a block composition Graphic User Interface (GUI) to facilitate development; the tool

provides a library of components; users assemble the communication system from

these components by simply dragging, dropping and wiring them;

• an automatic code generation with a component-level parameter passing scheme to

allow users to tune the parameters of each protocol.

• tool that allows users to quickly estimate the performance of the resulting networking

stack.

1.5 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 provides TinyOS

and WSN applications background and a summary of the related work. Chapter 3 de-

scribes the proposed IDE in detail. In Chapter 4, we present the generation sensor applica-

tion development process and two case-studies: a periodic data gathering WSN application

and an event-driven WSN application. Chapter 6 concludes the thesis.
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Chapter 2

Background and Related work

In this chapter, we provide an overview of TinyOS, which is the underlying system

platform for current version of RaPTEX. In addition, we classify sensor applications and

discuss their design considerations. We conclude the chapter by presenting an overview of

the related work.

2.1 TinyOS

TinyOS is by far the most popular operating system (OS) designed for wireless

sensor networks. As an open source OS, TinyOS has been successfully ported to numerous

hardware platforms, it is used by over 500 research groups and companies, and over 10,000

copies have been downloaded [13]. The design of TinyOS was driven by several challenges

specific to WSNs, including low-power operation, concurrent operation, robustness, and

flexibility [14,15].

For low-power, robust, concurrent operation, TinyOS adopts an event-driven

model that allows a sensor node to simultaneously execute several operations while only

using limited resources. In this model, program execution is triggered by hardware events

such as a fired timer, a sensor with new data, or a packet arrival at a communication

device. Instead of using blocking or spin loops, operations are split-phase: operation re-

quest and completion are separate functions. For example, to send a packet, a component



5

may call the send command to start the transmission; a signal is triggered by the commu-

nication device when packet transmission has been completed. Although this approach

increases the complexity of programming logic by mixing the sequence of operations, it is

a good strategy for low power concurrent operations, because concurrent operations can

be serviced on a single stack with very limited RAM. Also, if there are no tasks to be

executed, the system can put the system to sleep until the next interrupt.

The other choice of TinyOS is the component-based architecture (in some ways

similar to a object-oriented architecture). The modularity of the component-based ap-

proach allows application flexibility with respect to hardware diversity and application

requirements. Even the basic system modules of TinyOS that implement the basic func-

tionality such as basic I/O, timers, network stacks are components. Each application

hierarchy consists of a set of system components and application-specific components that

are written by the application developer, each component being interconnected through

commands and events. Commands initiate downward operations that flow from higher

level components to lower level ones. Events from lower level components are captured

and signaled upward to event handlers in higher level components.

TinyOS is implemented in nesC [16], an extension of the C language designed to

capture the structuring concepts and execution model of TinyOS. Applications are built

by composing, and configuring nesC components.

2.2 Wireless Sensor Network Applications

Although applications of sensor networks are diverse ranging and the design of

sensor networks is application driven, the existing applications can be broadly classified

into two categories: continuous monitoring and event-driven [17,18].

Continuous monitoring applications of sensor networks collect sensor data peri-

odically and report the reading to the sink via a multi-hop routing protocol. Generally,

this type of applications uses stationary networks that monitor the target area [19, 20].

For example, the mote-based tiered sensor network on Great Duck Island [19] monitors

the environment and behavior of nesting seabirds. In this experiment, 32 motes were

deployed in the area of interest, and transmitted their data to the gateways (CerfCubes)

that were responsible for forwarding the data to the remote base station that provided
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WAN connectivity and data logging. An important goal in this class of application is to

maximize the life time of the network in an unattended environment; often, longer delays

can be tolerated.

On the other hand, event-driven applications detect and/or track the occurrence

of interesting events such as movement of an object or a certain degree of change for some

sensor reading and report the occurrence of the event to the base station. There have

been several deployments of applications in this category [21–23]. For example, the goal

of TinyOS-based surveillance system [23] is to detect and track the positions of moving

vehicles in an energy-efficient and stealthy manner. The authors describes the trade-

offs between energy efficiency and system performance by adjusting the sensitivity of the

system. Generally, in this type of application, reliability and delay are significant goals

often as important as minimizing energy consumption.

Although applications in sensor network have specific goals, most applications

share common characteristics. Maximizing network lifetime is a common design objective

because in most case, the sensor nodes operate on limited battery power. Finally, due to

limited resources they often use simple, distributed algorithms.

2.3 Related Work

There have been several projects that aim to facilitate development of wireless

sensor network (WSN) applications. Some of them [24–26] provide an environment for

developing WSN applications. Others [27–31] enable a comparison of possible solutions

through simulation or emulation. Others [32] focus on developing WSN applications by

providing high level language, libraries, and compilers.

TinyDT [24], Viptos [25] and GRATIS [26] are design environments for WSN

applications based on TinyOS [14]. TinyDT is a TinyOS plug-in for the Eclipse platform

that implements an Integrated Development Environment (IDE). It focuses on providing

editing functionality such as syntax validation and highlighting, code navigation, auto-

matic build support and static wiring graph analysis. Although these IDE facilities help,

the graphical block composition of RaPTEX is much easier to use by non-specialists, as

in RaPTEX the applications can be built by wiring preexisting nesC components.

Both Viptos [25] and GRATIS [26] feature graphical block composition interfaces
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that provide a clear overview of the TinyOS application structure and make it possible for

non-specialists to easily develop WSN applications by simply choosing preexisting blocks.

However, they both limit the flexibility of the configuring the components. Designers may

want to change the parameters of each component to efficiently customize their code. For

example, a designer may choose SCP-MAC [5] as the MAC protocol and may want to

customize parameters such as the SYNC and channel polling interval that significantly af-

fect its performance (essentially providing a trade-off between power efficiency and delay).

Viptos and GRATIS do not allow such a configuration. In contrast, RaPTEX provides

a component level parameter passing scheme, allowing the designers to customize these

parameters to meet application-specific requirements.

Viptos provides support not only for code development but also a simulation

environment. Viptos integrates the TinyOS simulator, TOSSIM [33], and the network

simulator, VisualSense [34], through the Java Native Interface (JNI). Prowler [31] is a

probabilistic WSN simulator developed in Matlab. It provides deterministic and proba-

bilistic modes for simulating non-deterministic communications. SensorSim [27] is built

on NS-2 [28] and provides sensor channel models and power models. It offers a hybrid

simulation environment, in which real sensor nodes can participate in the simulation.

Simulation is one of the most popular methods for estimating the performance of

network systems. Several network simulators that can be also used for wireless networks

have been developed. NS-2 [28] is a discrete event simulator that provides support for

simulating many network protocols. The UCB Daedelus and CMU Monarch projects

added wireless extensions. OPNET [29] and OMNET++ [30] are also discrete event

simulators providing support for wired and wireless communications. The former uses

finite state machines (FSM) to define the protocols; while the latter defines component

modules and interfaces with an object-oriented approach.

The primary advantage of network simulation is that they can predict the per-

formance of network programs without expense in time and money required for a testbed.

On the other hand, the main drawback of network simulation is its scalability with the

number of nodes simulated. The performance estimation result of Viptos shows the sim-

ulation time linearly increases proportionally to number of nodes [25]. In contrast, the

performance estimation environment of RaPTEX leverages theoretical results, and thus

its running time is always small, constant and independent of the number of nodes.
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SNACK [32] is a sensor network application construction kit built on nesC and

TinyOS. The authors point out that the efficiency of WSN application is especially impor-

tant due to the limited hardware resources of the sensor platforms, which in turn results in

a high level of programming complexity (i.e., system-level code manipulation). To address

this problem, SNACK provides a new component composition language, application-level

service libraries and a new compiler. The component composition language of SNACK

helps users to develop efficient WSN applications; however, the graphical block compo-

sition environment of RaPTEX is much easier to use, especially by non-specialists. The

high-level libraries of SNACK make it possible for users to customize predefined parame-

ters; however it requires a significant effort to build the libraries for each component, and

the library interfaces are not intuitive. On the other hand, the parameter-configuration

in RaPTEX does not require additional libraries and is more intuitive because it is done

through a GUI.
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Chapter 3

Design

As an IDE, RaPTEX has a block diagram-based GUI environment, a code gener-

ation with component level parameter passing mechanism, and a performance estimation

framework, as shown in Fig.3.1. The details are discussed in following subsections. The

current version of RaPTEX was designed to work with TinyOS components, but can be

expanded to work with other component libraries. In this thesis, we focus on TinyOS 1.x

and nesC 1.2 as underlying platform and language.

3.1 Block Diagram-based GUI IDE

Figure 3.2 shows the RaPTEX graphical user interface (GUI). The main window

includes several panels (which can resized or detached if needed), each with a different

functionality. The component library (a) stores all nesC components available in TinyOS.

These components can be dragged in the diagram panel (b) where they can be connected

to each other, grouped into compatible components, and ungrouped into the constituent

components. Each component is shown in a different tab in the diagram panel. The

configuration panel (c) allows the users to change the parameters of any of the component

in the diagram panel to explore the influence of that parameters on the performance

metrics displayed in panel (d). Finally, feedback messages to the user are displayed in

panel (e).
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Figure 3.2: The RaPTEX user interface for Surge application.
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RaPTEX’s GUI allows the user to easily and efficiently handle code components

by manipulating graphical elements. The goal is to improve the programming environment

for sensor application and facilitate system design. The component-oriented organization

in nesC enables a graphical interface that is much more intuitive than text base envi-

ronments. The RaPTEX GUI allows the users to graphically display component wiring,

a TinyOS component library tree with available choice of components, and compilation

facilities for code generation.

The design of RaPTEX’s GUI is based on Model-view-control (MVC) architec-

ture [35] for flexibility. In RaPTEX, the nesC components are viewed as blocks, with the

application as a top level component that contains interconnected sub-components. To

represent the nesC components, we use the existing capability of nesC 1.2 of generating

outline information of nesC components in XML format by using the -fnesc-dump= option

of the compiler [36]. Viptos also uses this XML output feature; we improved the wiring

information by removing redundant language transformation process. In Viptos, which

works on top of Ptolemy II [37], the nesC file is converted to MoML [38], which is the

internal representation scheme of Ptolemy II for interconnectable components. For this

process, Viptos makes a two pass transformation: the nesC file is first transformed into

nesC XML, which is then transformed into MoML. However, as pointed out in [25], certain

type of nesC configuration cannot be expressed in Viptos when translating from nesC to

MoML because in Viptos multiple connections between components form a relation group

in which the relations involved are indistinguishable from each other and the connection

between relations are directionless. By using the nesC XML output directly as an underly-

ing data representation scheme, we eliminate information loss during translation and fully

captures nesC’s semantics. Figure 3.3 shows nesC XML which corresponds with original

nesC code in Fig. 3.4 and block diagram in Fig 3.2.(b).

The components available in RaPTEX are organized as a tree constructed from

the XML resulting from the nesC translation; this library tree mirrors the TinyOS source

directory structure. From the component library tree, users may choose components

for their application by dragging and dropping them into the diagram panel and make

connection by clicking on the interfaces of each component. The resulting diagram is

saved as nesC XML format and the code generation module uses this information to

generate nesC code (details in Section 3.2).
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<nesc xmlns="http://www.tinyos.net/nesC">
<components>
<component qname="Surge" loc="39:/opt/tinyos-1.x/apps/Surge/Surge.nc">
<configuration/>
<wiring>
<wire loc="51:/opt/tinyos-1.x/apps/Surge/Surge.nc">
<from><interface-ref name="StdControl" ref="0xb7de6c18"/></from>
<to><interface-ref name="Control" ref="0xb7d20c58"/></to>

</wire>
...
<wire loc="62:/opt/tinyos-1.x/apps/Surge/Surge.nc">
<from><interface-ref name="RouteControl" ref="0xb7db27f8"/></from>
<to><interface-ref name="RouteControl" ref="0xb7aab8a0"/></to>

</wire>
</wiring>

</component>
</components>

<interfaces>
<interface provided="0" name="StdControl" ref="0xb7de6c18" ..>
...

</interface>
...

<interface provided="0" name="RouteControl" ref="0xb7db27f8" ...>
<component-ref qname="SurgeM"/>
...

</interface>

</interfaces>

...

</nesc>

Figure 3.3: nesC XML for Surge.nc.
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configuration Surge {
}

implementation { components
QueuedSend,Bcast,SurgeM,GenericCommPromiscuous,TimerC,
Main,MultiHopRouter,Sounder,LedsC,Photo;

Bcast.ReceiveMsg[unique("ReceiveMsg")]
-> GenericCommPromiscuous.ReceiveMsg[unique("ReceiveMsg")];

SurgeM.Timer -> TimerC.Timer[unique("Timer")];
SurgeM.ADC -> Photo.PhotoADC;
SurgeM.Leds -> LedsC.Leds;
SurgeM.RouteControl -> MultiHopRouter.RouteControl;
SurgeM.Bcast -> Bcast.Receive[unique("Receive")];
SurgeM.Send -> MultiHopRouter.Send[unique("Send")];
SurgeM.Sounder -> Sounder.StdControl;
Main.StdControl -> SurgeM.StdControl;
Main.StdControl -> Photo.StdControl;
Main.StdControl -> MultiHopRouter.StdControl;
Main.StdControl -> GenericCommPromiscuous.Control;
Main.StdControl -> Bcast.StdControl;
Main.StdControl -> TimerC.StdControl;
Main.StdControl -> QueuedSend.StdControl;
MultiHopRouter.ReceiveMsg[unique("ReceiveMsg")]

-> GenericCommPromiscuous.ReceiveMsg[unique("ReceiveMsg")];

}

Figure 3.4: Generated nesC source code for Surge.nc.
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Some of the choices made during design phase do not translate directly in nesC

glue code, but rather in compile-time option. For example, for MAC protocols, there are

many choices with different energy consumption, delay, and throughput. However, many

sensor MAC protocols are wired through the same named RadioCRCPacket component

with different implementations to provide compatibility to the Active Message interface of

the network layer [15]. If users want to explore trade-offs among different MAC protocols,

the RadioCRCPacket of the considered MAC protocol should be dragged onto diagram

panel. RaPTEX will then change the library path during the compilation without any

change of the source code.

3.2 Automatic Code Generation with Parameter Passing

Mechanism

Automatic code generation has the potential to revolutionize application devel-

opment by allowing software system to easily generate error-proof code, rather than hand-

crafting each application [39]. RaPTEX provides a nesC code generator with a model-

driven design. In addition to code generation, we introduce a component level parameter

passing scheme.

The model-driven architecture of RaPTEX’s code generator has three submod-

ules: an importer, an internal object model, and an exporter. The importer reads the

user’s configuration information and constructs the internal object model, which is an

object-oriented design implementation of the nesC structure and the core of the code gen-

erator architecture. Each element of the internal object model corresponds with a part of a

nesC component model. The NCDiagram models nesC’s top-level component that defines

and connects the nesC subcomponents. The NCComponent corresponds to nesC sub-

components, and their interfaces are represented with the NCLinkableComponent, which

belongs to a NCComponent. By connecting two NCLinkableComponents with an NCLink,

NCComponents can be linked to other components through their NCLinkableComponent

object. To generate the code, the exporter extracts the relevant information from the

internal object model, and generates the code corresponding to the model. Figure. 3.4

shows nesC code for Surge generated by the RaPTEX code generator.
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RaPTEX also provides a component-level parameter passing mechanism. The

parameters in this context are public variables of a component that are tunable from the

GUI. By default, nesC does not explicitly support configuration-level parameters. Al-

though nesC supports a syntax for ”parameterized interfaces”, this is used to support

multiple instances of the same interface for a single component [16]. Therefore, parame-

ters are often set by #define or enums in header files. In other cases, a component such

as BMAC [4] provides predefined primitives to allow customization from outside the com-

ponent. However, all these schemes are source level approaches that have a steep learning

curve and preclude wide usage. To overcome this limitation, SNACK [32] generates nesC

code with configuration-level parameters through high level services and a proprietary

language. The high level services function like a template file of nesC containing marking

codes, and the language is used to glue the services and set parameters. When the SNACK

compiler processes the language, it replaces the marks with user’s configurations and gen-

erates nesC code by gluing the service files and copying the service files with replaced

strings. Within the boundary of high level services, SNACK facilitates application de-

sign, but the process of developing configurable services is not trivial. Moreover, SNACK

requires learning yet a new language and compiler-specific functionality.

During the design of RaPTEX, we defined the requirements of a parameter pass-

ing mechanism:

• The first and most important requirement is not to change the nesC code of TinyOS,

thus ensuring that RaPTEX can use future versions of TinyOS with no modification.

• Second, for efficient and compact execution in embedded systems, parameters should

be passed at compile time rather than at execution time.

• Finally, parameters should be explicitly exposed to users through the GUI.

To meet these requirements, RaPTEX uses several features of the nesC compiler.

To define parameters in a component, RaPTEX first use nesC’s annotation, which allows

simple language extensions without introducing new keywords and burdening the syntax.

Parameters are passed to a component through regular compile option (-D option). The

RaPTEX GUI interprets defined parameters of a component and exposes them to the users

(Fig. 3.2(c)). If configurable values are already defined by #define in the source code, pa-

rameters passed through the -D option override the values in the source code. However,
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if a component cannot work with -D option, we provide a wrapper component based on

nesC design patterns [40] such as Decorator and Facade with #ifdef statement. A wrapper

is just a regular nesC component which is responsible for defining configurable parame-

ters, discriminating parameters passed through -D option, and manipulating behaviors of

an encapsulated component by changing compositions or calling predefined primitives at

compile time. From the nonspecialists’ perspective, all the detail of the implementation

of the wrapper and the parameter passing processes are hidden by RaPTEX. Therefore,

they can easily explore trade-offs by changing the parameters through the GUI.

3.3 Performance Estimation Framework

Many WSN communication protocols have been designed for each network layer

of WSNs [2–12], and they can be composed into many different networking stacks. More-

over, the parameter-setting facility in RaPTEX dramatically increases the number of

possible instances of networking stacks. Several simulation-based estimation frameworks

for WSN [25–27,31] have been developed; however they are time-consuming, especially for

large networks; the direct consequence is that the designer is less inclined to explore a large

number of combinations of protocols and parameters to optimize the performance of his

or her application. RaPTEX provides an object-oriented performance estimation frame-

work based on theoretical analysis, in which designers can quickly and easily estimate the

performance of their current protocol stack.

As shown in Fig. 3.1, the RaPTEX estimation framework consists of four basic

software elements: the engine, the component, the pipe, and the analytical model:

• The engine acts as a controller that coordinates the estimation process.

• The component provides a template, as a super class for an analytical model for

each protocol, and it is implemented as a java class. For example, to implement

BMAC’s analytical model the estimation component for BMAC should extend the

base class (EvalComp) and a network system developer (see Section 4.1 for the

different types of users of RaPTEX) overrides the methods in EvalComp. Then,

the BMAC component can be used in RaPTEX’s performance estimation frame by

being connected with other models by the engine.
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• The input and output pipes are defined for each component and connect upper

layer components to lower layer components; they are used to pass the result of

calculations from one layer to the other.

• The analytical model for each protocol provides the mathematical formula that cap-

tures performance metrics such as power, delay, etc.; the model is implemented in

the component corresponding to the protocol implementation. In this thesis we do

not propose any new analytical models, but rather use existing models [41] either

developed specifically for RaPTEX, or published with the protocols themselves (e.g.,

the power consumption and delay models for B-MAC and SCP are available in [4]

and [5], respectively).

The performance estimation framework in RaPTEX has a separate GUI. The

engine is represented as an estimation diagram very similar to the nesC diagram, but not

identical. While the nesC diagram represents the relation between the nesC components,

the estimation diagram represents the relations between the analytical model components.

When developers import a nesC application, RaPTEX uses the wired nesC diagram of

the application to find the analytical model components that correspond to each nesC

component, and automatically builds the estimation diagram that reflects the network

stack of the imported application. Developers can set the values of the parameters for

each protocol. The engine starts the estimation from a user-defined start component and

finishes at an (again user-defined) end point component; in the process, each component

passes its input and output values through the pipes connecting them. The final value

of interest (e.g., power, delay, throughput, etc.) is saved in output pipe of the end point

component. If for any parameter the user specifies a range, the result is displayed as a

graph, as shown in Fig. 4.4.
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Chapter 4

Case study

In this section, we outline the general sensor application development process us-

ing RaPTEX, and present two case studies of developing WSN applications: a continuous

monitoring and an event-driven application.

4.1 The Development Process

We define three types of actors who are involved in a sensor application de-

velopment using RaPTEX, and, accordingly, divide the development process into three

phases. Fig. 4.1 illustrates the general development process in the context of actors and

development phases.

• Application developers that have basic knowledge about developing sensor ap-

plications, but do not understand network protocols in detail. They build the appli-

cation by composing and configuring existing components.

• Network system developers that understand the existing network protocols, the

role of the parameters and analytical models; they play a role in implementing

nesC wrapper components for parameter handling and estimation components in

the RaPTEX’s performance estimation framework.

• Protocol designers that devise new protocols and provide analytical models for
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Figure 4.1: Application development process and roles involved in using RaPTEX.
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each protocols.

Each box in Fig. 4.1 represents actions taken by either actors or RaPTEX mod-

ules. The first column shows the three phases of the development process: composition,

estimation, and execution. The remaining three columns correspond to the actions of the

corresponding actor.

RaPTEX provides tools to application developers with support from network

system developers and protocol designers. A network system developer is responsible for

implementing new library components, which can be imported into RaPTEX. In order

to provide application developers with configurable nesC components, a network system

developer needs to develop wrapper classes in RaPTEX. For performance estimation, a

protocol designer should provide analytical models for their protocols (most papers pro-

vide models for key performance metrics for the proposed protocols); the network system

developers implement the model by extending base classes of the RaPTEX performance

estimation framework. The following two case studies are primarily focused on the appli-

cation developers at each phase of the development process.

4.2 A Continuous Monitoring Application

In this section, we show the development of the simple periodic temperature

monitoring application, Surge [16], with emphasis on optimizing the performance of the

networking stack. The application samples the temperature every 600 seconds and uses

an ad-hoc multi-hop routing protocol to deliver samples to the sink. While there can be

many optimisation criteria that can be considered (e.g., lifetime, delay, fairness, reliability,

etc.), for this application we will focus on maximizing the network lifetime.

The three phases of the development process are as follows:

First, the developer goes through the composition phase: RaPTEX provides the

TinyOS component library tree (Fig.3.2 (a)) and the diagram panel (Fig.3.2.(b)). In this

case study, the developer start from empty diagram and builds the application by placing

TinyOS system components such as Main, TimerC, and LedsC from the component library

tree and assembling these components with each other and with the application logic

component (SurgeM) on the diagram panel. In this example, the developer will use the

timer component in the application logic component because the monitoring application
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Figure 4.2: Sub-components of the GenericCommPromiscuous component.

Figure 4.3: Default estimation diagram for Surge.
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Figure 4.4: Performance estimation for BMAC.

periodically initiates the sensor reading and packet transmission when the timer fires. In

the application logic, a timer device is manipulated through the Timer interface, but the

actual linkage between the interface and real hardware is deferred until wiring is performed.

By placing the TimerC component from the TinyOS library tree and wiring this component

with SurgeM through the Timer interface, the application logic in SurgeM is wired with

a timer device. Figure 3.2(b)) shows the completely wired component diagram for the

Surge application.

Because a sensor application is composed of several components in hierarchical

manner Due to the hierarchical structure of TinyOS applications, RaPTEX allows the de-

veloper to examine the content of any component by choosing explore on the pop-up menu

of each component. Figure 4.2 shows the sub-components of GenericCommPromiscuous.

While building nesC component diagram, RaPTEX automatically builds the estimation

diagram that reflects the protocol stack used by nesC. Figure 4.3 shows the default esti-

mation diagram of the Surge application, where the application developer choose B-MAC

at the MAC layer.
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Figure 4.5: Lifetime as a function of wakeup interval for SMAC

At the second step, the application developer proceeds with the performance

estimation phase, in which he or she estimates the resulting networking stack and changing

its parameters. The developer can set the values of the parameters of each protocol in

the property panel (Fig. 3.2.(c)). For example, the developer sets the range of wakeup

interval of B-MAC from 0.01 to 2 seconds to see its effect on the lifetime of the resulting

networking stack. Using the analytical model from [4], RaPTEX computes and displays

the figure presenting the variation of the lifetime as the function of wakeup interval (e.g.,

Fig. 4.4). The developer may change B-MAC to other MAC protocols such as S-MAC,

T-MAC and SCP-MAC, and obtain similar figures for these protocols.

From user’s configuration, RaPTEX plots the result of performance estimation

for each protocol: SMAC (Fig.4.5), TMAC (4.9), BMAC (4.7), and SCP-MAC (4.5),

respectively. For comparison purposes, we plot all result from RaPTEX’s estimation

data in Fig. 4.10, which shows the lifetime as a function of wakeup interval for all MAC

protocols. Because preamble-based MAC protocols such as BMAC send long preamble to

wake up receivers, the preamble size increases with the wakeup interval As a result, the

lifetime of a node decrease with an increase of the wakeup interval.
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Figure 4.6: Lifetime as a function of wakeup interval for TMAC

Figure 4.7: Lifetime as a function of wakeup interval for BMAC
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Figure 4.8: Lifetime as a function of wakeup interval for XMAC

Figure 4.9: Lifetime as a function of wakeup interval for SCPMAC
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Figure 4.10: Lifetime as a function of the wakeup interval for various MAC protocols.
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On the other hand, in synchronization-based MAC protocols such as SMAC,

TMAC, and SCP-MAC neighboring nodes wake up and sleep at the same time. Therefore,

nodes instead of sending long preambles they use periodic SYNC packets to maintain

synchronization with their neighbors. As the wakeup interval increases, sensor nodes

spend more time sleeping.

Using results from Fig. 4.10, the developer can explore trade-offs among different

MAC protocols while considering the application requirements. For example, if the lifetime

requirement is 2000 days, the developer may decide that SCP-MAC with a wakeup interval

larger than 0.2 second is the optimal MAC protocol that meet his requirement based on

Fig. 4.10. If the lifetime requirement is 100 days, the developer may choose anything

among SCP-MAC, B-MAC, S-MAC with a wakeup interval longer than 0.4 second, or

T-MAC with the wakeup interval longer than 0.3 second.

Finally, after deciding on the optimal composition of the networking stack, the

developer saves the composition and the parameter settings (e.g., SCP-MAC with 0.2

second of wakeup interval). To generate code, the developer may choose Run nesC in

main menu bar, then the nesC code is generated and can be saved for compilation.

4.3 An Event-driven Application

In this section, we the development process of an event-driven application, which,

we assume, detects a fire and reports the event to a remote base station. Unlike in the

case of a continuous monitoring application, the sensor nodes in event-driven application

do not generate data packets until event of interest occurs. The application in this case

study samples the temperature at the same rate as the continuous monitoring application

in Section 4.2. If the sensor reading is higher than a threshold, the sensor sends the tem-

perature (multi-hop) to the sink. We assume that this application requires a networking

stack that maximizes the lifetime of WSN but also provides an upper-bound on the delay.

Depending on the definition of the event, the two classes of sensor networks

share several implementation details: in many cases, a continuous monitoring behavior is

necessary to detect an event, and other underlying behaviors such as multi-hop routing

and hardware access are similar for both applications. Therefore, in the composition phase

of this case study, the developer reuses and modify the continuous monitoring application
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Figure 4.11: Inside of RadioCRCPacket for SMAC

in Section 4.2. The developer starts by importing the continuous monitoring application

and change only the application logic component from SurgeM to SurgeMEvent that

includes the event checking logic after reading the sensor. Fig.4.12 shows the scrap of

SurgeMEvent.nc. To meet the different application requirements, the developer may want

to change the protocols in the stack. To change protocol components, the developer can

directly change wiring for SendMsg and ReceiveMsg interface to other protocols or change

RadioCRCPacket in GenericCommPromiscuous (Fig. 4.2). For example, to change the

MAC protocol from BMAC to SMAC, the developer simply places the RadioCRCPacket

in SMAC directory over the BMAC’s RadioCRCPacket. The change is also reflected in

the estimation diagram. Fig.4.11 show inside of RadioCRCPacket that has wiring to

SMACWrapper.

To support an event-driven application scenario, we extend the analytical models

with three assumptions and one more parameter. We assume that:

(a) there is no in-networking process,

(b) events occur at a given event-rate
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async event result_t ADC.dataReady(uint16_t data) {
atomic {
if (!gfSendBusy) {
gfSendBusy = TRUE;
gSensorData = data;
//To support event-driven style ..
if(checkIfEvent(gSensorData)){

post SendData();
}

}
}
return SUCCESS;

}

Figure 4.12: nesC source code of SurgeMEvent.nc

(c) every node is exposed to see the same rate of events.

The event-rate is the probability with which the event occurs during the fixed

sample period. For example, if the event-rate is 0.5, then, on the average, one event occurs

during two sample periods.

From user’s configuration, RaPTEX plots the result of performance estimation

for each protocol: SMAC (Fig.4.13), TMAC (4.17), BMAC (4.15), and SCP-MAC (4.13),

respectively. For comparison purposes, we plot all result from RaPTEX’s estimation

data in Fig.s 4.18 and 4.19, which shows the lifetime of the network as a function of the

event rate for two per-hop delay bounds. As the event-rate increases, the number of data

packets during the (assumed fixed) sample period increase. As a result, the lifetime of the

preamble base protocol such as BMAC decreases because the total number of packet to be

sent increases. At very low event-rates and small wakeup intervals, the lifetime of BMAC

is relatively high because in this case nodes rarely send data packets and the preamble

size can be small.

On the other hand, at short wakeup intervals, the lifetime of SMAC and TMAC

is relatively low because the sleep period reduces and both protocols send SYNC packets

very often. However, the lifetime does not change as the event-rate increase because energy

for sending the data packet is compensated by the decrease in the idle listening time.
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Figure 4.13: Lifetime as a function of the event-rate with wakeup interval 1 sec for SMAC

Figure 4.14: Lifetime as a function of the event-rate with wakeup interval 1 sec for TMAC
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Figure 4.15: Lifetime as a function of the event-rate with wakeup interval 1 sec for BMAC

Figure 4.16: Lifetime as a function of the event-rate with wakeup interval 1 sec for XMAC
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Figure 4.17: Lifetime as a function of the event-rate with wakeup interval 1 sec for
SCPMAC

In the scenario, we assume that the application developer sets the per-hop delay

requirement to 600 ms. Figure 4.18 provides the lifetime as a function of event-rate when

the per-hop delay is 600 ms (assuming that the per-hop delay for every MAC protocol is

equal to the wakeup interval). Because SCP-MAC results in the longest lifetime regardless

of the event-rate, the developer can determine that SCP-MAC with 600 ms of wakeup

interval is the best MAC protocol for this case.

In contrast, Fig. 4.19 provides the lifetime as a function of event-rate when the

per-hop delay requirement is 15 seconds. When the event-rate is smaller than 0.5, SCP-

MAC provides the best lifetime among all MAC protocols. However, when the event rate

is larger than 0.5, T-MAC is better. Although the developer may not know accurately

the event-rate, if the expected the event-rate to be smaller than 0.5, SCP-MAC should

be chosen. If not, T-MAC. At this point developer has the optimal configuration of the

networking stack meeting the application requirements. He can generate and compile the

code for the application.



34

0 0.2 0.4 0.6 0.8 1
10

2

10
3

10
4

Event Rate

L
if

et
im

e 
(d

ay
)

 

 
S−MAC
T−MAC
B−MAC
SCP−MAC

Figure 4.18: Lifetime as a function of event-rate with 600msec of the per-hop delay
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Figure 4.19: Lifetime as a function of event-rate with 15sec of the per-hop delay
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Chapter 5

Support for Other Libraries

Although this version of RaPTEX supports nesC component for wireless sen-

sor applications running over TinyOS, RaPTEX can work with other underlying system

libraries. In this section, we discuss how to interface a new system library with the RaP-

TEX’s GUI by focusing on the data representation scheme.

Since RaPTEX provides the block diagram based component composition en-

vironment, the functionality of the underlying library should be modularized and repre-

sented as a set of components by defining a library specific data representation scheme.

A component in this context is a software element offering a pre-developed service and

interfaces. A system is built by gluing prefabricated components together through pre-

defined interfaces and configuring tunable variables. To include a set of components in

RaPTEX, a library specific data representation scheme should contain some information

about underlying system as follows:

• Module’s general description : although this type of information depends on the

library and code generator, in general, the code generator requires information such

as component names and paths of related source files. Information such as whether

the component contains main function or not also need to be included. In the case of

the TinyOS library, the general descriptions contain a component name, a file path

of a nesC source, version information and a flag whether the component is top-level

or not.
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• Explicit input and output interfaces : to connect components to each other

and provide black box based component interactions, input and output ports in a

component should be explicitly defined. An interface can be used for an invocation

of a function call with the proper parameters between different modules. In the case

of the TinyOS library, function calls between components are represented as nesC

interfaces, which contain information such as commands (downward function call)

and event handlers (upward function call).

• Component level parameter : a data representation scheme should contain infor-

mation about tunable valuables to allow users to change behaviors of a component in

the GUI. In the case of TinyOS library, component level parametersare defined using

nesC annotation in nesC code directly, and the nesC XML contains these values.

• Information about the interconnections between components : because

embedded communication systems in RaPTEX are basically built by composing

existing components, gluing information between components should be explicitly

saved in the data representation scheme. The code generator may use this infor-

mation to generate the source code and build a complete system. In the case of

TinyOS, a nesC XML file contains all involved interfaces with unique ID and wiring

information with separate XML tag, and the nesC code generator takes this file as

input to generate a nesC code.

Once a data representation scheme is decided for a given library, a proper adaptor

class should be implemented to bridge between new data representation scheme and GUI,

which can be done by extending base classes in GUI and overriding abstract methods such

as SimpleDiagram, SimpleNode, SimpleLink, etc. By reading the data representation files,

RaPTEX extracts outline information about the underlying system library and builds the

component library tree and the block diagram. A library specific code generator takes the

data representation file as user’s configuration files to generate real system code. The code

translation process should be convertible back and forth between user’s configurations in

GUI and real system codes based on a defined the data representation scheme.
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Chapter 6

Conclusion

6.1 Conclusion

Currently it is far from trivial to design efficient embedded communication sys-

tems. To bridge the gap between the need and the difficulty, we provide RaPTEX, an

IDE for embedded communication systems, which allows non-specialists to easily develop

and customize the networking stacks and to quickly estimate their performance. In this

thesis, we focus on WSN applications. RaPTEX provides three services. First, it provides

a block diagram based GUI environment that facilitates component composition. Using

this GUI, the application developer can assemble a sensor application by simply dragging,

dropping, and wiring existing nesC components. Second, it features an automatic code

generator with a parameter setting mechanism that can be used by the developers to

further customize the protocol stack. Last but not least, it provides a performance esti-

mation facility based on existing theoretical analysis, in which the developers can receive

immediate feedback on impact of their design decisions. We present two case studies of

developing WSN applications using RaPTEX.
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6.2 Future Work

RaPTEX aims to facilitate the software development process for embedded com-

munication systems. The current version has several limitation which we plan to address

in the near future.

First, RaPTEX uses as the component representation scheme the nesC XML,

which describes nesC components. Therefore, every nesC component in TinyOS source

directory is (automatically) translated to the XML format to be used in the RaPTEX

block diagram. However, because the translation is made by the nesC compiler, the

component has to compile without errors and cannot be translated to XML code if not

all dependencies are satisfied. A separate parse may avoid this drawback.

RaPTEX still require an application developer have some knowledge of TinyOS

components and compositions. To support true non-specialists, we plan to provide higher

programming abstractions such as template-based programming or highly configurable

components.

Finally, advanced developers may expect much more advanced nesC editing fa-

cilities when developing nesC components. The current version of RaPTEX focuses on

supporting wiring of existing components and estimate the performance of the composi-

tion. The development of new components must be done using a different environment

(e.g., TinyDT or Eclipse TinyOS).
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