
Abstract

LUNIYA, SONALI. SPICE Like Sparse Transient Analysis. (Under the direc-
tion of Michael B. Steer)

A state variable transient circuit analysis using sparse matrices is devel-

oped. The equations are formulated using time discretization based on New-

ton’s iterative method of equations of the nonlinear part of the circuit. The

system thus formed is an algebraic system of linear equations. The program

uses advanced numerical techniques, such as automatic differentiation for cal-

culating the Jacobian of the system. The program is tested by simulating a

Soliton line and a Wideband amplifier. The results of this analysis is compared

to those obtained from SPICE, and conclusions are made.
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Chapter 1

Introduction

1.1 Motivations and Objectives of this study

Time marching transient analysis is the most common type used in circuit

simulators. Research efforts are being made to extend this method to solve

large nonlinear circuits using state variables, as this improves robustness and

dramatically simplifies model development. One issue of concern with time

marching transient analysis using state variables, as implemented to date , is

that the analysis matrix is dense. This is due to the fact that the storage of

the Jacobian matrix, requires n2
s words, and its factorization time is O(n3

s),

where ns is the number of state variables used in the circuit [1]. For large

systems with more than a few hundred state variables the factorization of the

Jacobian matrix is expensive. So reformulating the transient analysis scheme

to obtain sparse matrices and eliminating the need to factor the Jacobian are

essential to efficiently handle large circuits. These sparse matrix equations can

be solved using a sparse-matrix solver, effectively improving the speed of the
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system.

This work has primarily focused on developing an efficient time marching

transient analysis using state variables for large systems. The approach used

was:

1. Using the minimum number of state variables and error functions to

reduce redundancy of the matrix.

2. Setting the entries of the matrix, whose magnitude is smaller than a

specific threshold, to zero.

3. Use time and Newton discretization of the nonlinear elements to convert

circuit analysis to successive analyses of linear resistive circuits.

4. Use sparse-matrix techniques to solve the linear system thus formed.

This approach was successfully implemented in f REEDATMand the results

using different time marching simulation techniques were compared. With

respect to memory requirements and simulation time, our program performs

about the same as commercial tools for medium and large size problems. How-

ever this is achieved with substantial increase in robustness and reduction in

modeling complexity.

1.2 Thesis Overview

Chapter 2 presents a review of the published material on transient analysis of

circuits. Chapter 3 discusses in detail the transient analysis formulation used

in f REEDATMfirst, and then the implementation of the algorithm. Chapter 4
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presents the results of the analysis for a 47 section Nonlinear Transmission

Line(NLTL) and a wideband amplifier.

The last chapter concludes and discusses future research in this area.

1.3 Original Contributions

Sparse matrix formulation are ideally suited for solving large system prob-

lems. The SPICE-like sparse transient analysis, presented in Chapter 3, is an

original contribution in this thesis. The formulation and implementation of

the equations for this analysis are an original contribution. It is shown that

this analysis is best suited for large systems as the matrix gets larger and

sparser with increasing number of circuit elements.
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Chapter 2

Literature Review

2.1 Introduction

The most widespread method of nonlinear circuit analysis is time-domain anal-

ysis [3] (also called transient analysis) using programs like SPICE. Such pro-

grams use numerical integration methods to determine the response at one

instance of time given the circuit’s response at a previous instance of time.

The success of SPICE is that the associated discrete modeling approach works

extremely well; whereby the analysis of a nonlinear dynamic circuits is con-

verted into successive analysis of linear resistive circuits developed from the

original circuit using time discretization based on Newton’s iterative method.

2.2 Nodal Analysis

In the nodal formulation of the network equations a matrix equation is devel-

oped that relates terminal voltages to external current sources. This formula-
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tion requires that elements have admittance descriptions such as i = vG for

a resistor, where i is the current flowing through the resistor, v is the voltage

(edge voltage) across it, and G is the conductance of the resistor. The edge

voltages in this description can be related to nodal voltages using network

topology.

2.2.1 Formulating Network Equations for Linear Cir-

cuits

Consider the general network N with N internal terminals in addition to the

reference terminal and E internal edges (not including the edges with external

current sources). In general the reference terminal is not part of the circuit.

All of the terminals of the network have external current sources J with Jn

being the external current source between the nth terminal and the reference

terminal. Formulation of the network equations requires

• knowledge of the network topology for which the incidence matrix is

used, and

• constitutive relations describing the element characteristics.

The admittance of an element relates the edge current through it to the

voltage across it which is the edge voltage. In matrix form the relation between

the edge currents (ie)and edge voltages (ve) is given by,

ie = Yeve (2.1)
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where Ye is the edge-admittance matrix and contains the required constitutive

relations of the network. To formulate the network equations the result that

external current sources can be related to node voltages is used. To begin

with, the relationship,

ve = ATvn (2.2)

is used, where AT is the transpose of the incidence matrix and vn is the vector

of node voltages. Now Aie is the vector of the net currents leaving a node so

that KCL requires that

Aie = Jn (2.3)

where Jn is the vector of the external current sources at each node. Combining

the above three equations, results in

Y = AYeA
T (2.4)

where Y is the nodal admittance matrix. This equation enables us to calculate,

using standard matrix solution techniques, the node voltages given the external

current sources. But as long as the grounded reference terminal is part of the

network there is a linear dependence of the rows of Y (|Y| = 0) and so Y

is called the indefinite Nodal Admittance Matrix (NAM). One row and one

column can be deleted from Y to yield the definite NAM. This approach

cannot be used with multi terminal elements as they do not have admittance

descriptions. Hence the modified nodal analysis technique is used.
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2.2.2 Modified Nodal Analysis

In this method each element that does not have a nodal-admittance description

is treated specially and the network equation matrix being formed is modified

to account for the new element. Solution of the network using the modified

nodal formulation comes down to solving a set of equations which in matrix

form is

Mx = y (2.5)

which in expanded form can be written as

(
Yn E

F D

)(
vn

in

)
=

(
J

K

)

(2.6)

where

vn is a vector of all of the terminal (or node) voltages in a circuit.

ik is a vector of edge currents but only those required to describe the

network equation for those elements that cannot be represented in nodal

admittance form.

Yn is the nodal admittance matrix.

E is similar to an incidence matrix and relates the variables ik to the

terminals. For the most part E contains only 0, +1, and −1. In the

special case of a current controlled current source the gain factor are

entries in E.
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F and D describe the constitutive relations of elements that do not have

nodal admittance representations. These are elements that have current

elements of ie as independent variables, and

J and K are source vectors. J is the vector of external current sources

that appears in the nodal admittance formulation as contains the con-

tributions of independent current sources. K contains the contributions

of independent current sources.

The major advantage of this technique is that the network equations are as

close to the nodal-admittance form as possible. The only additional equations

are those required to describe elements that can not be described by a nodal

admittance matrix. The resulting network equation matrix has a low sparsity

(for, say, circuits of less than 100 terminals) and is relatively small.

2.2.3 Nodal Analysis for Nonlinear Resistive Circuits

The analysis of nonlinear resistive circuits, or equivalently the analysis of cir-

cuits at dc is an important first step in the ac analysis of electronic circuits

and in transient analysis. In both cases nonlinear resistive analysis determines

the initial starting point for further analysis incorporating the energy storage

elements. To develop dc nonlinear nodal equations, each element is replaced

by a general element including the external sources. In the nodal approach all

elements are assumed to be voltage controlled current sources so that,

ik = gk(vj) (2.7)
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where, ik is the current through the k th element (or the k th edge), vj is the

voltage across the j th element (or j th edge), and gk is some function. For

a linear resistor gk is a constant. Applying the same approach used for linear

circuits with v̂k = vk + Ek we get the equation

f(vn) = A(g(AT vn + E)) = AJ = 0 (2.8)

This equation can be solved using some iterative method like Newton’s itera-

tion method.

2.2.4 State Variable Formulation

Let the nonlinear subnetwork be described by the following generalized para-

metric equations: [4]

vNL(t) = u[x(t),
dx

dt
, ...,

dmx

dtm
,xD(t)] (2.9)

iNL(t) = w[x(t),
dx

dt
, ...,

dmx

dtm
,xD(t)] (2.10)

where vNL(t), iNL(t) are vectors of voltages and currents at the common ports,

x(t) is a vector of state variables and xD(t) a vector of time-delayed state

variables, i.e., xDi(t) = xi(t− τi). The time delays τi may be functions of the

state variables. All the vectors in (2.9) and (2.10) have a same size nd equal

to the number of common (device) ports. This kind of representation is very

convenient from the physical viewpoint, because it is in fact equivalent to a

set of implicit integro-differential equations in the port currents and voltages.

The resulting system of nonlinear equations is generally much smaller than
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the nonlinear system resulting from formulations based on voltage controlled

current sources. More about this method is discussed in section 3.1

2.3 Time Marching Transient Analysis

The circuit equations for nonlinear resistive circuits are formulated using Kir-

choff’s laws, Tableau Analysis or Nodal Analysis [3]. These resistive circuit

elements form a system of nonlinear algebraic equations. These nonlinear

algebraic equations can be solved using Newton and Quasi-Newton iterative

techniques, as in resistive circuits the solution at one particular instant of

time does not depend on the solution at any other instant. However gen-

eral lumped circuits or distributed circuits also include circuit elements, like

capacitors and inductors, that cannot be defined by algebraic relationships

involving only their terminal voltages and currents. As these elements store

energy, their branch equations involve derivatives, and hence their circuits are

described by Ordinary Differential Equations (ODEs) or Partial Differential

Equations (PDEs). Like many time-domain nonlinear circuit simulators, the

equations are formulated considering only linear and nonlinear lumped ele-

ments and linear time-invariant distributed elements. This avoids having to

solve PDEs as these elements have their behavior described by “generalized”

ODEs, which in addition to derivatives, also include time-delayed variables

and convolution integrals.

The basic strategy in time-domain methods for integrating systems of

ODEs is to replace derivatives with respect to time by approximate expres-
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sions involving only values of variables at discrete time points. The solution

of the system of ODEs is then discretized and computed only at these time

points. The approximate equations for derivatives effectively turn ODEs into

finite difference equations [6]. These nonlinear algebraic equations are then be

solved iteratively at each time step.

Converting the differential equations describing the element characteris-

tics into nonlinear algebraic equations changes the network from a nonlinear

dynamic circuit into a nonlinear resistive circuit, thus this method is called

associated discrete modeling [7] (as used in SPICE). Effectively the ODEs de-

scribing the capacitors and inductors are approximated by resistive circuits as-

sociated with the numerical integration method. The term “associated” refers

to the model’s dependence upon the integration method while “discrete” refers

to the model’s dependence on the discrete time value.

2.3.1 Associated Discrete Model of a Linear Element

The development of the discrete model of a linear element begins with a time-

discretization of the constitutive relation of the element.The simplest inte-

gration algorithm, the Backward Euler algorithm, for solving the first order

differential equation x′ = f(x) with a step size of h is given by,

xn+1 = xn + hf(xn+1) = xn + hx′n+1 (2.11)

where the subscript n refers to the nth time sample.

LINEAR CAPACITOR
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For a linear capacitor

i(t) = C
∂v

∂t
= Cv′(t) (2.12)

or

v′(tn+1) =
1

C
i(tn+1). (2.13)

Using Backward Euler formula,

vn+1 = vn + hv′n+1 (2.14)

Equation (2.13) is an exact relationship, whereas Equation (2.14) is an ap-

proximate solution. Approximating the exact solutions v′(tn+1) and i(tn+1) by

v′n+1 and in+1 respectively and substituting in Equation (2.12),

in+1 =
C

h
vn+1 − C

h
vn. (2.15)

This equation is in the form

in+1 = geqvn+1 + ieq (2.16)

and so is modeled by a constant conductance geq = C/h in parallel with a

current source ieq = −(C/h)vn that depends on the previous time step, as

shown in Figure 2.1.

Similarly an associated discrete model of a linear inductor can be formulated

using the constitutive relation v(t) = L∂i/∂t, thus making geq = h/L and

ieq = in, that depends on the previous time step [7].
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vn+1

in+1

+

-
eq ieqg

Figure 2.1: Associated discrete model of a two terminal element obtained using
Backward Euler method.

2.3.2 Associated Discrete Model of a Nonlinear Ele-

ment

The development of the discrete model of a nonlinear element begins with a

time-discretization of the constitutive relation of the element [3]. The nonlin-

earity of this constitutive relation is solved using Newton iterations. Newtons

iterations for solving the equation, x = f(y), is given by

(j+1)x = f(jy) +
∂f(jy)

∂jy

(
(j+1)y − jy

)
(2.17)

NONLINEAR CAPACITOR

For a nonlinear capacitor

i(t) =
dq(v)

dt
(2.18)

where q(v) is a nonlinear function of voltage. Using the backward Euler al-

gorithm of Equation (2.11) leads to the following disctretized form of the

constitutive relation:

in+1 =
1

h
(qn+1 − qn) (2.19)
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where qn = q(vn) and qn+1 = q(vn+1) is evaluated using the Newton iteration

method of Equation (2.17). Through the iteration defined by

(j+1)qn+1 = jqn+1 +
∂jqn+1

∂jvn+1

(
(j+1)vn+1 − jvn+1

)
(2.20)

= jqn+1 + C(jvn+1)
(

(j+1)vn+1 − jvn+1

)
(2.21)

where

C(jvn+1) =
∂jqn+1

∂jvn+1

.

Combining Equation (2.19) and Equation (2.21) results in

(j+1)in+1 =
1

h

[
jqn+1 + C(jvn+1)

(
(j+1)vn+1 − jvn+1

)
− q(vn)

]
(2.22)

Rearranging

(j+1)in+1 =
1

h
C(jvn+1)

(j+1)vn+1 +
1

h

[
jqn+1 − qn − C(jvn+1)

jvn+1

]
(2.23)

which has a circuit representation of a conductance in parallel with a current

source as shown in Figure 2.1 with

geq =
C(jvn+1)

h
(2.24)

and

ieq =
1

h

[
jqn+1 − qn − C(jvn+1)

jvn+1

]
(2.25)

This associated discrete model is consistent with the associated discrete model

of the linear capacitor developed in the previous section. For a linear capacitor

C is independent of voltage and so q = Cv. Now Equation (2.23) becomes

(j+1)in+1 =
1

h
C(j+1)vn+1 +

1

h

[
jqn+1)− qn −j qn+1

]
(2.26)

=
1

h
C(j+1)vn+1 − 1

h
qn (2.27)
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Which is identical to the linear discretized model of Equation (2.15) except

that it is in iterative form.

Thus if all the energy storage elements in the circuit are replaced by their

associative discrete model, the resulting circuit becomes purely resistive, which

can be solved using any efficient method, such as nodal analysis. Hence the as-

sociated discrete models can be conveniently incorporated in a modified nodal

admittance formulation of the network equations. Solution of the network us-

ing the modified nodal formulation comes down to solving a Newton iterate

M(xj)x(j+1) = yj which in expanded form can be written as
(

Yn(xj) E(xj)

F(xj) D(xj)

)(
vj+1

n

ij+1
n

)
=

(
J(xj)

K(xj)

)

(2.28)

The modified nodal admittance matrix is reformulated and solved until the

changes of the voltages and currents are sufficiently small. The modified nodal

admittance matrix is filled by inspection based on the iterative associated

discrete models of individual elements.

2.3.3 Multi Terminal Elements

It is apparent from the above discussion that a problem can result from con-

vergence difficulties, particularly when the initial conditions are poorly chosen.

In the case of distributed elements with time delay, the voltage and current

samples must be kept at all time instants back to the delay, τ , of the longest

line. The state of the circuit may be represented at any time by its state vari-

ables, which define the memory of previous events. This set typically includes

the capacitor voltages, inductor currents, and the consecutive time samples of
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the voltages and currents at the ports of the distributed elements. When the

initial conditions selected correspond to the physical turn on of the circuit,

SPICE enables the build up of transients to be readily examined. However,

when only the steady-state response is desired, this can be a burden, particu-

larly in the case when the differential equations representing the network are

stiff.

2.4 Iteration Methods

The two basic approaches to the iterative solution of nonlinear network equa-

tions are the fixed point algorithm, and the Newton algorithm. The notation

xj is used to indicate the jth iterative of x.

2.4.1 Fixed Point Method

In the fixed point algorithm a function F(x) needs to be developed with the

special property that xj+1 = F(x) is a better estimate of the function than xj

for the solution of f(x). The standard method of defining F(x) is

F(xj) = xj −K(xj)f (xj) (2.29)

where K(x) is a matrix function of x. The speed of convergence and whether

or not the iteration scheme is divergent depends heavily on the choice of K(x).

Then the iteration algorithm is

xj+1 = xj −K(xj)f (xj). (2.30)
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The iteration terminates when the difference between xj+1 and xj is less than

some prescribed acceptable error. This method requires that the error reduces

monotonically. Generally this occurs only for a narrow range of x near the

solution. If the fixed point iteration scheme is convergent, then it is linearly

convergent so that the error of consecutive iterations reduces linearly.

2.4.2 Newton Method

This is a variation of the fixed point method but with a good estimate of K(x).

Newtons method uses K(x) = [J(x)]−1 where J(x) is the Jacobian of f(x).

The iteration algorithm now becomes

xj+1 = xj − [J(xj)]−1f (xj) (2.31)

• The Newton method has good convergence properties and, if it is con-

vergent, has quadratic convergence. That is, if xj is close to the solution

then the error of consecutive iterations reduces quadratically.

• Higher order, e.g. cubic convergent schemes, can be used only with a

very narrow class of problems and estimates of x must be very close to

the solution for the schemes to converge.

• There can be a substantial cost, however, in storing, calculating and

inverting the Jacobian and so a Newton iteration followed by several

fixed point iterations are sometimes used (and termed the Shamanskii

method). This iteration scheme will be superlinearly (that is, more than

linearly but not quadratically) convergent.
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2.5 Summary

The use of state variables for transient analysis help represent the state of

the circuit at any time instant, which define the memory of previous events.

The set of nonlinear equations representing the elements of a circuit can be

discretized in time to form a set of linear algebraic equations. These equations

can be solved recursively at every time step, to find the nodal voltages of each

element and current flowing through the element.
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Chapter 3

SPICE-Like Sparse Transient

Analysis

3.1 Nonlinear Equation Formulation

In this chapter the equations for the transient analysis are formulated with

the minimum number of unknowns starting from the nodal admittance matrix

of the linear part of the circuit. This approach has advantages that all the

flexibility of the modified nodal admittance matrix is maintained, and at the

same time has advantages given by the state variable approach.

The formulation of the system equations begins with the partitioned net-

work of Figure 3.1 with the nonlinear elements replaced by variable voltage

or current sources [8]. For each nonlinear element one terminal is taken as

the reference and the element is replaced by a set of sources connected to the

reference terminal. Both voltage and current sources are valid replacements

for the nonlinear elements, but current sources are more convenient because
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they yield a smaller modified nodal admittance matrix (MNAM).

3.1.1 Linear Network

The MNAM of the linear subcircuit is formulated as follows. Define two matri-

ces G and C of equal size nm, where nm is equal to the number of non-reference

nodes in the circuit plus number of additional required variables [5]. Define a

vector s of size nm for the right hand side of the system. The contributions

of the fixed sources and the nonlinear elements (which depend on the time t)

will be entered in this vector. All conductors and frequency dependent MNAM

stamps arising in the formulation will be entered in G, whereas capacitors and

inductor values and other values that are associated with dynamic elements

will be stored in matrix C. The linear system obtained is the following.

Gu(t) + C
du(t)

dt
= s(t), (3.1)
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where u is the vector of the nodal voltages and required currents, and s is

composed of of an independent component sf and a component sv that depends

on the state variables, as in HB case [8].

s(t) = sf(t) + sv(t). (3.2)

The sf vector id due to the independent sources in the circuit. The sv vector is

the contribution of the currents injected into the linear circuit by the nonlinear

network.

3.1.2 Nonlinear Network

The concept of state variable used in this work is the one defined in Section

2.2.4. The Equations (2.9) and (2.10) are rewritten here for convenience:

vNL(t) = u[x(t),
dx

dt
, ...,

dmx

dtm
,xD(t)] (3.3)

iNL(t) = w[x(t),
dx

dt
, ...,

dmx

dtm
,xD(t)]. (3.4)

The error function of an arbitrary circuit is developed using connectivity infor-

mation (described by an incidence matrix and constitutive relations describing

the nonlinear elements). The incidence matrix, T, is built as follows. The

number of columns is nm, and the number of rows is equal to the number of

state variables, ns. In each row, enter “+1” in the column corresponding to

the positive terminal of the row nonlinear element port and “-1” in the column

corresponding to the negative terminal (the local reference of the port). Then,

each row of T has at most 2 nonzero elements and the number of nonzero

elements is at most 2ns.
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The following equations are true for all t :

vL(t) = Tu(t) (3.5)

sv(t) = TT iNL(t) (3.6)

where vL(t) is the vector of the port voltages of the nonlinear elements calcu-

lated from the nodal voltages of the linear network.

3.1.3 Error Function Formulation

Now we have all the equations necessary to build a nonlinear error function

for the entire circuit. Combining Equations (3.1), (3.2) and (3.6), the general

equation for the linear network is obtained:

Gu(t) + C
du(t)

dt
= sf(t) + TT iNL(t). (3.7)

The reduced error function f(t) is defined as follows

f(t) = vL(t)− vNL(t) = 0. (3.8)

Replacing vL(t) from Equation (3.5)

f(t) = Tu(t)− vNL(t) = 0. (3.9)

Equations (3.3), (3.4), (3.7) and (3.8) confirm the generalized state variable

reduction formulation. The error function in Equation (3.8) only depends on

the state variables and the time derivatives:

f

[
x(t),

dx

dt
, ...,

dmx

dtm
,xD(t)

]
= 0. (3.10)
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The dimension of the error function and the number of unknowns are equal

to ns, and this number is the minimum necessary to solve the equations of a

circuit without any loss of information. To reduce the error function formu-

lation the differential equations in an algebraic system of nonlinear equations

are converted to nonlinear algebraic systems using time marching integration

methods.

First Equations (3.3) and (3.4) are expressed using discretized time

vNL(xn) = u[xn,x′n, ...,x(m)
n ,xD,n] (3.11)

iNL(xn) = w[xn,x′n, ...,x(m)
n ,xD,n] (3.12)

where xn = x(tn), x′n = x′(tn), (xD,n)i = xi(tn - τi) and tn is the current time.

Discretization of Equation (3.7) yields

Gun + Cu′n = sf,n + TT iNL(xn). (3.13)

The time marching integration approximation used is given by,

x′n = axn + bn−1 (3.14)

where a is a constant and bn−1 depends on previous history of x. Applying

this equation to calculate the u′n vector gives,

u′n = aun + bn−1 (3.15)

where bn−1 has the same dimension as un. Replacing u′n in Equation (3.13),

Gun + C[aun + bn−1] = sf,n + TT iNL(xn). (3.16)

The size of the resulting algebraic system of nonlinear equation is ns.
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3.1.4 Sparse Matrix Formulation

The solution to these nonlinear algebraic equations is transformed in the suc-

cessive solution of a sequence of linear circuits. This successive solution is

introduced by applying Equation (2.31) to calculate the iNL(xn) vector and

the vNL(xn)

iNL(x(j+1)
n ) = iNL(xj

n) + Ji[x
(j+1)
n − xj

n] (3.17)

vNL(x(j+1)
n ) = vNL(xj

n) + Jv[x(j+1)
n − xj

n]. (3.18)

Replacing iNL(xn) in Equation (3.16) results in,

[G+Ca]u(j+1)
n −TTJix

(j+1)
n = [sf,n−Cabn−1]+TT [iNL(xj

n)−Jix
j
n]. (3.19)

Replacing vNL(xn) in Equation (3.9) results in,

Tu(j+1)
n − vNL(xj

n)− Jv[x(j+1)
n − xj

n] = 0. (3.20)

From Equation (3.19) and Equation (3.20) it can be seen that there are two

equations and two unknowns, u(j+1)
n and x(j+1)

n . These equations can be solved

simultaneously. Since all the quantities in the two equations are vectors or

matrices, they can be put together giving a matrix equation of the form Ax =

B, where A is the coefficient matrix, x is the vector of unknown quantities

and B is the right hand side matrix.
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Combining Equation (3.19) and Equation (3.20) results in,




[G + Ca] −[TTJi]

T −Jv







u(j+1)
n

x(j+1)
n


=




[sf,n −Cabn−1] +TT [iNL(xj
n)− Jix

j
n]

vNL(xj
n) −Jvx

j
n




. (3.21)

From the above Equation it can be seen that an equivalent linear circuit

is formed for every nonlinear element. The circuit is only equivalent to the

nonlinear element at the jth iteration because its element values (but not

its topology) change by discrete amounts at every iteration. This circuit is

repeatedly solved with updated element values till convergence is achieved.

In the above Equation the following observations can be made:

• Matrix G + Ca is sparse

• Matrix T is sparse

• Matrices Ji and Jv are sparse and block diagonal

Hence the matrix A thus formed is sparse. The above Equation can be solved

using LU factorization technique [9]. After solving Equation (3.21), the value

of the state variable vector and un is known, so finding vNL and iNL is straight-

forward.

The size of the resulting algebraic system of linear equations is (nm+ns)x(nm+ns).

G + Ca is constant as long as the time step h is constant. T is constant. The

right hand side vectors, Ji and Jv change at every Newton iteration and every
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time step. Thus with every iteration the equivalent circuit of every element re-

mains same, as the topology remains the same, but the values of the elements

in the equivalent circuit change by discrete amounts at every iteration.

Note the matrices formed are sparse, so as the number of devices increase

nonlinear behavior of the elements is still handled the same way, unlike Har-

monic Balance where the nonlinear behavior is handled poorly as the number

of devices increase. As parameterized device models are used the DC bias

point for the circuit is calculated at the first time step with t = 0. These

voltages are set as the initial conditions for the transient analysis that follows.

3.1.5 Initial Operating Point

All circuits are biased at some dc operating point. This point should be

determined before the transient for better convergence. To determine the

dc operating point, all capacitors are opened, all inductors are shorted and

all controlled sources are set to zero. To realize this with the state variable

formulation, the derivatives of the state variables with respect to time are set

to zero.

3.2 Implementation in fREEDATM

Equation (3.21) resulted in a system of linear algebraic equations at every time

step and every Newton iteration. As the error function changes only slightly

from time step to time step, efficient matrix solving schemes can be used, as a

very good preconditioner is available from the previous time step. This system
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Figure 3.2: General flow diagram of the program.

is solved using LU factorization. The general flow of the analysis is shown in

Figure (3.2) and was implemented in f REEDATM.

After the netlist is parsed, the Time-Domain MNAM of the linear network

is created using the package Sparse 1.3 [9]. This MNAM is constant as far as

the time step h is constant.

The nonlinear voltage vector vNL is formed using the value of the state

variable evaluated in the previous iteration. After that, the Jacobians Ji and

Jv are created for every nonlinear element. The Jacobians are calculated using

the package Adol-C. As f REEDATM is an object oriented simulator, messages

are passed from one class to another. To calculate the Jacobians different

integration methods to calculate the time derivatives can be used. There is

an interface class that links the analysis class to the ADOL-C library. This

interface class is notified about which integration method, i.e. Backward Euler
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or Trapezoidal method, has to be used to calculate the time derivatives.

With all these vectors the matrices in Equation (3.21) are formulated.

These matrices are solved using the package SuperLU. From the evaluated

value of state variables xn and nodal voltages un the nonlinear currents iNL

and nonlinear voltages vNL are calculated and stored to be used for the next

iteration. If the values of xn, un, iNL, vNL are within the tolerance limit, the

analysis advances in time to the next time step.

Once the equations are solved for all time steps, the requested currents and

voltages are saved in files.

The results are displayed using gnuplot. All the graphs requested in the

input netlist are plotted.

3.3 Support Libraries

A large number of software libraries are available (many of them freely) and

a few of them are used in f REEDATM.

3.3.1 Solution to Sparse Linear Systems

Sparse 1.3 [9] is a flexible package of subroutines written in C used to nu-

merically solve large sparse systems of linear equations. The package is able

to handle arbitrary real and complex square matrix equations. Besides being

able to solve linear systems, it is also able to quickly solve transposed systems,

find determinants, and estimate errors due to ill-conditioning in the system of

equations and instability in the computations. Sparse also provides a test pro-
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gram that is able to read matrix equation from a file, solve it, and print useful

information (such as condition number of the matrix) about the equation and

its solution. Sparse was originally written for use in circuit simulators and is

well adapted to handling nodal- and modified-nodal admittance matrices.

SuperLU is used to solve the Equation (3.21) with LU factorization. It con-

tains a set of subroutines to numerically solve a sparse linear system Ax =

b. It uses Gaussian elimination with partial pivoting (GEPP). The columns

of A may be preordered before factorization; the preordering for sparsity is

completely separate from the factorization. SuperLU is implemented in ANSI

C. It provides support for both real and complex matrices, in both single and

double precision.

3.3.2 Vectors and Matrices

Most of the vector and matrix handling in f REEDATMuses MV++ [11]. This

is a small set of vector and simple matrix classes for numerical computing

written in C++. It is not intended as a general vector container class but

rather designed specifically for optimized numerical computations on RISC

and pipelined architectures which are used in most new computer architec-

tures. The various MV++ classes form the building blocks of larger user-level

libraries. The MV++ package includes interfaces to the computational ker-

nels of the Basic Linear Algebra Subprograms package (BLAS) which includes

scalar updates, vector sums, and dot products. The idea is to utilize vendor-

supplied, or optimized BLAS routines that are .ne-tuned for particular plat-

forms. The Matrix Template Library (MTL) is a high-performance generic
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component library that provides comprehensive linear algebra functionality

for a wide variety of matrix formats. It is used in the above transient anal-

ysis. As with the STL, MTL uses a five-fold approach, consisting of generic

functions, containers, iterators, adaptors, and function objects, all developed

specifically for high performance numerical linear algebra. Within this frame-

work, MTL provides generic algorithms corresponding to the mathematical

operations that define linear algebra. Similarly, the containers, adaptors, and

iterators are used to represent and to manipulate matrices and vectors.

3.3.3 Automatic differentiation

The analytic Jacobian is calculated in the routine using Adol-C [10]. This

is a software package written in C and C++ and performs automatic differ-

entiation. The numerical values of the derivative vectors (required to fill the

Jacobians) are obtained free of truncation errors at a small multiple of the run

time required to evaluate the original function with little additional memory

required. The implementation of automatic differentiation in f REEDATM is

shown in Figure 3.3. The eval() method of the nonlinear element class is exe-

cuted at initialization time and so the operations to calculate the currents and

voltages of each element are recorded by Adol-C in a tape which is actually an

internal buffer. After that, each time that the values or the derivatives of the

nonlinear elements are required, an Adol-C function is called and the values

are calculated using the tapes. This implementation is efficient because the

taping process is done only once (this almost doubles the speed of the calcu-

lation compared to the case where the functions are taped each time they are
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Figure 3.3: Automatic Differentiation

needed). The advantage in terms of rapid model development is significant.

The majority of the development time in implementing models in simulators,

is in the manual development of the derivative equations. Unfortunately the

determination of derivatives using numerical differences is not sufficiently ac-

curate for any but the simplest circuits. With Adol-C, full analytic accuracy

is obtained and the implementation of nonlinear device models is dramatically

simplified. Note that time differentiation, time delay and transformations are

left outside the automatic differentiation block. The calculation speed achieved

is approximately ten times faster than the speed achieved by including time

differentiation, time delay and transformations inside the block.
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3.4 Summary

The two aspects of the transient analysis of a nonlinear system are formula-

tion of the nonlinear equations and the method used to solve these nonlinear

equations. The nonlinear equations can be formulated as described in Section

3.1. This formulation keeps the flexibility of the modified nodal admittance

matrix, and has the advantages given by a state variable approach. The non-

linear equations thus formed can be solved as a sequence of linear equations

by applying Newton Raphson’s iteration method. The linear equations thus

formed can be represented in a sparse matrix, which can be solved using LU

factorization or any other efficient sparse matrix technique. The technique

discussed in this chapter can be efficiently applied to large systems.
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Chapter 4

Results

4.1 Introduction

This chapter discusses the results of the analysis described in Chapter 3,

which was implemented in f REEDATM. Section 4.2 presents the results for

a Wide Band Amplifier. The speed and accuracy of the results obtained from

f REEDATM are compared to those obtained from HSPICE. Section 4.3 describes

the soliton line netlist used to validate the Sparse Matrix claim. The results

in this section describe how the sparsity of the matrix varies with the number

of elements used to model the line. A comparison of speed and accuracy of

the results obtained from f REEDATMand SPICE is made.

4.2 Wide Band Amplifier

The circuit used is from the MCNC benchmark suite established around 1990.

The amplifier circuit consists of 11 Gummel-Poon Bipolar Transistors, see
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Sparse Transient Time Marching Transient SPICE(s)
in f REEDATM(s) in f REEDATM(s)

71 76 22

Table 4.1: Comparison of simulation times for the wide band amplifier.

Figure 4.1. This circuit was simulated to test the accuracy and speed of

the new transient analysis implemented in f REEDATM. The amplifier circuit

was simulated in f REEDATMand SPICE. The output waveforms and voltage

amplitudes were found to match, thus validating the accuracy of the new

transient analysis. The netlist for this circuit is provided in Appendix B.

This circuit was simulated for 50 ns with a fixed time step of 10 ps on a

Pentium III Xeon clocked at 500 MHz. Figures 4.2 and 4.3 show the voltages at

the nodes out16 and out17 of the amplifier, shown in Figure 4.1. In Figure 4.2

waveform (a) and (b) are the output voltages at the terminals out17 and out16

respectively. From the two figures it can be seen that the output waveforms

are in excellent agreement. During the simulation, a matrix of size 54 × 54

was formed and 33 state variables were used. 7.784% of the elements in the

matrix formed were non-zero, making the matrix approximately 92% sparse.

The simulation was completed in 71s.

From Table 4.1 it can also be seen that a time marching transient analysis

with state variables [1] is slower than the new analysis, but only marginally.

This is because the time marching transient analysis factorizes the Jacobian,

wherein maximum time is spent in inverting the Jacobian Matrix. The factor-

ization of the Jacobian is expensive for circuits with large number of nonlinear
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Figure 4.1: Wideband amplifier, from the MCNC benchmark suite with 11
Gummel-Poon Bipolar Transistors.
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Figure 4.2: Output voltages at terminals out17, curve (a), and out16, curve
(b), of the wideband amplifier simulated in f REEDATM.
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Figure 4.3: Output voltages at terminals out17, curve (a), and out16, curve
(b), of the wideband amplifier simulated in SPICE.
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devices. As the new analysis does not factorize the Jacobian, it is faster.

The improvement in speed will be significant for circuits with large number of

nonlinear elements (more than a few hundred).

This circuit was simulated in SPICE with a maximum time step of 10ps.

From Table 4.1 it can be seen that, the new analysis is slower than SPICE. This

can be explained as follows. Traditional circuit simulators like SPICE, must

perform the decomposition of a sparse matrix (size nm×nm) at each iteration

of the method to solve the nonlinear equations [3]. Here m corresponds to

the number of terminals with the voltage at each terminal being an unknown.

But as f REEDATMuses the idea of state variables to model its elements, the

new analysis has to decompose a sparse matrix of size (nm + ns)× (nm + ns),

where ns is the number of state variables used. Therefore size of the sparse

matrix is larger because the number of unknowns is more. The state variable

approach gives more accurate models and makes model development easier.

Therefore speed is traded off here, for accuracy and ease of development of

models. f REEDATM is an object oriented simulator [13], and uses many support

libraries. The object oriented approach speeds up the process of developing

models i.e. writing code for the models. During simulation messages are passed

and data is copied from one class to another. This is a little expensive than

procedural programming. The most significant impact on speed is because the

new analysis does not use variable time step control. Thus it cannot use long

time steps at the beginning of the simulation. A state variable based time

step control [12] can be easily implemented for the new analysis. This new

time step algorithm uses a predictor-corrector technique, with high accuracy
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Figure 4.4: 47 diode soliton line.

of results.

4.3 Soliton Line

4.3.1 Circuit

A nonlinear transmission line is regarded by many in the field as an extreme

test of the performance of transient and steady-state simulators. Nonlinear

transmission lines (NLTLs) find applications in a variety of high speed, wide

bandwidth systems including picosecond resolution sampling circuits, laser

and switching diode drivers, test waveform generators, and mm-wave sources.

They have three fundamental characteristics: nonlinearity, dispersion and dis-

sipation. The NLTL considered here consists of coplanar waveguides (CPWs)

periodically loaded with reverse biased Schottky diodes. A diode-based NLTL

used for pulse generation is an extremely nonlinear circuits and is used to test

the robustness of circuit simulators. The NLTL considered here was designed

with a balance between the nonlinearity of the loaded nonlinear elements and

the dispersion of the periodic structure which results in the formation of a

stable soliton. The nonlinearity of NLTLs is principally due to the voltage de-

pendent capacitance of the diodes and the dissipation is due to the conductor

losses in the CPWs.
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Figure 4.5: Comparison of the voltage at the last diode of the soliton line.

The NLTL was modelled using generic transmission lines with frequency

dependent loss and Schottky diodes. Skin effect was taken into account in the

modeling of the transmission lines. The NLTL model is shown in Figure 4.4

and is excited by a 9 GHz sinusoid. The NLTL was designed for a 24 GHz

initial Bragg frequency, 225 GHz final Bragg frequency, 0.952097 tapering rule,

and 120 ps total compression. It contains 48 sections of CPW transmission

lines and 47 diodes. The drive is a 27 dBm sine wave at −3 V dc bias. The

netlist for this circuit is provided in Appendix C.



CHAPTER 4. RESULTS 41

4.3.2 Results

This circuit was simulated with f REEDATMfor 0.55 ns. Figure 4.5 compares

the voltage at the last diode obtained using Backward Euler and Trapezoidal

integration method and the SPICE simulation. The fixed time step used was

0.01 ps for BE and 0.1 ps for Trapezoidal. The waveforms are in excellent

agreement. Note that even though a small time step is used, the numerical

damping introduced by BE method attenuates the small oscillations in the

waveform.

From Figure 4.6 it can be seen that as the number of nonlinear elements

in the circuit, here Schottky diodes, increases the sparsity of the matrix in-

creases ( i.e. the percentage of non-zero elements decreases). This is because,

the number of equations to be solved increases with the number of elements,

making the matrix larger and sparser. The efficiency of the LU factorization

technique improves with size and sparsity of the matrix.

In Figure 4.7 a comparison between the simulation time of a time marching

transient analysis and the new analysis is made. The new analysis considers

every element to be a nonlinear element. To make a fair comparison between

the two analysis, every element in the time marching transient analysis is con-

sidered as a nonlinear element, and the required simulation time is found. The

figure shows that the new analysis is faster. The new analysis is approximately

7.13 times faster than the time marching transient analysis.

From Table 4.2 it can be seen that SPICE is about 1.35 times faster than

the new analysis. This is because SPICE does not model its devices with state

variables, and hence and has relatively less number of unknowns than those in
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Sparse Transient SPICE(s)
in f REEDATM(s)

1795 1322

Table 4.2: Comparison of simulation times of a 47 diode soliton line.

f REEDATM. Therefore the size of the matrix to be solved in SPICE is smaller

than that in f REEDATM.

Note that the soliton line with 47 diodes, has 47 inductors and 48 trans-

mission lines. The transmission lines are modelled in f REEDATMas a set RLC

elements, i.e. a set of linear elements. Thus the total number of linear el-

ements in the circuit is 95, which is greater than two times the number of

nonlinear elements. This makes the incidence matrix (T) in Equation (3.21)

large, thus making the multiplication (TT × Ji) expensive for a circuit with a

large number of linear elements. Whereas, in the previous section, the Wide-

band Amplifier circuit has 12 resistors and 11 transistors, i.e. the number

of nonlinear elements is almost equal to the number of linear elements. This

makes the incidence matrix (T) smaller in size, effectively improving the speed

of the simulation. Thus from the above result it can be concluded that the

new analysis is best suited for circuits with large number of nonlinear elements

so ns À nm.
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4.4 Summary

The use of sparse matrix techniques improves the efficiency of a state variable

based transient analysis. The sparsity of the matrices increases with the size

of the circuits. The reduction in simulation time is significant in large circuits,

with large number of nonlinear elements. The comparison of output waveforms

of the wideband amplifier and soliton line with different transient analysis

techniques shows that, high accuracy is achieved with the new analysis.



46

Chapter 5

Conclusions and Future

Research

5.1 Conclusions

This analysis was successfully developed in f REEDATMand was found to be

robust and flexible. A sparse matrix approach is generally used in simulators

for the transient analysis of circuits. The challenge here was using universal

device modeling where the code defining the model of an element needs to be

written once and used in many different types of analyses.

The following conclusions are made:

• The equation formulation eliminates the need to factorize the Jacobian.

• Time and Newton discretization of the nonlinear elements results in an

algebraic system of linear equations.

• The sparsity of the matrix increases with circuit size, improving efficiency
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of the analysis.

• The analysis is best suited for circuits with large number of nonlinear

elements so that the number of state variables (ns) is much greater than

the number of terminals (nm).

5.2 Future Research

There are many improvements that can be made to the current implemen-

tation of the sparse transient analysis in f REEDATM.

The most important of them is use of efficient memory management to

manage the large sparse matrix formed. This large matrix is formulated and

factorized at every iteration. As for every iteration only some part of the ma-

trix changes, an efficient memory management technique, which uses pointer

to pointer dereferencing, would avoid reformulating the matrix for every iter-

ation. This would make the analysis faster.

As mentioned above, values of only some elements of the matrix change

with every iteration and the non zero structure of the matrix does not change at

every iteration. Some techniques, like chord iterations, take advantage of this.

These techniques, decompose the matrix once and update the decomposed

matrix at every iteration. This technique along with an efficient memory

management scheme will speed up the simulation significantly.

Also, currently the sparse transient analysis does not use time step control.

The use of variable time step, will allow the analysis to use long time steps at

the beginning of the simulation. Hence it would improve accuracy and speed
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of the analysis.
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Appendix A

Computer Code

Computer Code

This section contains the various functions in the C++ class of the sparse

transient analysis.

/***************************************************************************

*

* Contains the state variable based sparse transient analysis

*

****************************************************************************/

/*The include files*/

#include "SVTran21.h" #include "TimeMNAM.h" #include

"TimeDomainSV.h" #include "NLSInterface.h" #include "Euler.h"

#include "Trapezoidal.h" #include "iostream.h" #include

MV_P"/mvblasd.h"

extern int superLU_print_enable ; extern "C" { #include

"../inout/ftvec.h" #include "../inout/report.h"

}
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/*This routine develops the incidence matrix T.*/

void buildTIncidence(ElemFlag mask, Circuit*& my_circuit,

IntMatrix& T, ElementVector& elem_vec,

int& n_states, int& max_n_states);

// Element information

ItemInfo SVTran21::ainfo = {

"SVTran2",

"State-Variable-Based Time-Marching Transient Analysis with Newton Iterations.",

"Sonali R. Luniya",

DEFAULT_ADDRESS

};

/*Parameter information about the analysis.*/

ParmInfo SVTran21::pinfo[] = {

{"tstop", "Stop time (s)", TR_DOUBLE, true},

{"tstep", "Time step (s)", TR_DOUBLE, true},

{"nst", "No save time (s)", TR_DOUBLE, false},

{"deriv", "Approximate derivatives or use automatic diff.", TR_INT, false},

{"msv", "Use Msv flag", TR_BOOLEAN, false},

{"im", "Integration method", TR_INT, false},

{"savenode", "Save node voltages", TR_BOOLEAN, false},

{"permc_spec", "Permutation ordering to factor Msv (0, 1 or 2)",

TR_INT, false},

{"out_steps", "Number of steps skipped for output simulation progress",

TR_INT, false},

{"gcomp", "Compensation network conductance (S)", TR_DOUBLE, false}

};

/*Constructor to set the default values of the analysis

parameters.*/
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SVTran21::SVTran21() : Analysis(&ainfo, pinfo,n_par), ls_size(0),

superLU(false)

{

// Parameter stuff

paramvalue[0] = &(tf);

paramvalue[1] = &(h);

paramvalue[2] = &(nst = zero);

paramvalue[3] = &(deriv = 0);

paramvalue[4] = &(use_msv = true);

paramvalue[5] = &(int_method = 1);

paramvalue[6] = &(savenode = true);

paramvalue[7] = &(permc_spec = 2);

paramvalue[8] = &(out_steps = 200);

paramvalue[9] = &(gcomp = 0);

}

/*The main analysis routine.*/

void SVTran21::run(Circuit* cir) {

/* Build time domain MNAM */

TimeMNAM mnam(cir, mnam_mask);

/*Build T matrix and nonlinear element vector.*/

buildTIncidence(mask, cir, T, elem_vec, n_states, max_n_states);

/*Setup simulation variables (use circular vectors).*/

SparseMatrix *M ;

/*Set the type of integration method to be used Trapezoidal or

Backward Euler.*/

/*Copy the MNAM to sparsematrix M1.*/

l_im->buildMd(M1, h);
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M = new SparseMatrix(ls_size+n_states,ls_size+n_states);

/*Formulate the incidence matrix from the condensed incidence

matrix.*/

for(int k =0 ; k < n_states ; k++ )

{

if (T(0,k))

{

tmpidx =T(0,k) -1 ;

myT[k][tmpidx] = 1;

}

if(T(1,k) )

{

tmpidx =T(1,k) -1 ;

myT[k][tmpidx] =-1;

}

}

/*Add the MNAM to Sparse matrix M. The sparse matrix stores only

the nonzero values in vector elem_val[] and their row and colummn

indices in vectors row_index[] and col_pointer[] respectively.*/

/*Add incidence matrix T to Sparse Matrix.*/

/*Number of time steps.*/

n_tsteps = int(tf / h + 1);

/*Create a Time domain interface. This class has data structures

that store the values of the state variables, nodal voltages and

currents at every time step.*/

tdsv = new TimeDomainSV(&(cX->getCurrent()[0]),

&(cVnl->getCurrent()[0]),

&(cInl->getCurrent()[0]),max_n_states);



APPENDIX A. COMPUTER CODE 53

/*Start the simulation from time =0.*/

for ( nt=0; nt < n_tsteps; nt++)

{

/*Build the vector of independent sources.*/

l_im->buildSf(sf, ctime);

/*Start Newton Iterations.*/ do

{

/*For every element formulate the Jacobians.*/

elem_vec[k]->svTran(tdsv);

elem_vec[k]->deriv_svTran(tdsv); // Call element evaluation

/*Multiply the Jacobian by T’ and add to the Sparse Matrix M.*/

/*Add or subtract the value of the Jacobian according to a +1 or a

-1 in the Jacobian.*/

elem_val[i]+=Ji_elem(j,m);

elem_val[i]= -Ji_elem(j,m);

/*Add Ju to the sparse matrix M.*/ /*Multiply Ju by cX i.e the

state variable vector and add it to the RHS vector.*/

elem_val[scount]= -Ju_elem(i,m);

row_index[scount]=ls_size+i+ibase;

scount++;

rhs_Jv_X[i+ibase]+=Ju_elem(i,m)*cX->getCurrent()[m+ibase];

/*Multiply T’JiXi.*/

multiply(rhs_temp , xtmp1, tmp_vec1);

/*Multiply T’*Inl.*/ /*Prepare the RHS vector.*/ /*LU factorize

the matrix.*/
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superLUFactor(M,ssv);

/*Check for error between the two Newton iterations.*/

if(error > 0.001)

{ continue }

/*Update the values of the nodal voltages and currents.*/

updateVInl(&(ssv[0]));

if(iteration >= 40)

{

sprintf(msg , "Newton Raphson didn’t converge |%f \t|",error);

report(MESSAGE, msg);

}

} while (error > 0.001 && iteration <40) /*End Newton

iterations.*/

/*Update previous derivatives in integration method (if

required).*/

/*Store state variables for next time step.*/

cX->getCurrent()[i] =ssv[ls_size+i];

/*Write outputs .*/

doOutput();

}

void SVTran21::superLUFactor(SparseMatrix*& M, DenseVector& ssv) {

/*Create the matrix A to be factorized.*/

/*Create the RHS vector B.*/ /*Create resultant matrix X.*/ /*get

the Permutations.*/

get_perm_c(permc_spec, &A, perm_c);
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/*Factorize and solve the matrix. The factors are stored in L and

U and the result in stored in ssv[].*/

dgssvx(&fact, &trans, &refact, &A, ftp, perm_c, perm_r, etree, &equed, r, c,

&L, &U, work, lwork, &B, &X, &recip_pivot_growth, &rcond,

&ferr, &berr, &mem_usage, &info);

}

void SVTran21::freeSuperLU() { /*Delete the storage required for

the LU factorization.*/ }

/*Simple matrix multiplication.*/

void SVTran21::multiply(DoubleMatrix& a , ExtVector& b ,

DoubleVector& c) {

}

void SVTran21::updateVInl(double* x_p) { /*Copy new value of U

into the Circ Vector.*/

for(int j=0 ; j< ls_size; j++)

cU->getCurrent()[j] = x_p[j];

/*Copy new value of X into Circ Vector.*/

for (int j=0; j < n_states; j++)

cX->getCurrent()[j] = x_p[ls_size+j];

}

/*Write the data to the output vectors.*/

void SVTran21::doOutput() { /* First check if the result

matrices contain any data.*/

/*Create temporary storage.*/

/*Now fill currents and port

voltages of time domain devices.*/ /*For every element do the

following.*/
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/*For the current, decompensate while copying.*/

for (int tindex=0; tindex < out_size; tindex++) {

tmp_x[tindex] = cX->getPrevious(out_size - tindex)[j+i];

tmp_i[tindex] = cInl->getPrevious(out_size - tindex)[j+i];

tmp_u[tindex] = cVnl->getPrevious(out_size - tindex)[j+i];

}

elem_vec[k]->getElemData()->setRealX(j, tmp_i);

elem_vec[k]->getElemData()->setRealI(j, tmp_i);

elem_vec[k]->getElemData()->setRealU(j, tmp_u);

}

if (savenode) {

/* For each terminal, assign voltage vector.*/

/* Set the terminal vector.*/

term->getTermData()->setRealV(tmp_u);

}

}
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Appendix B

Wideband Amplifier Netlist

Wideband Amplifier Netlist

This section contains the netlist for the wideband amplifier, discussed in

section 4.2.

*rca netlist

* Wide Band Amp.

r:rs1 30 1 r=1k r:rs2 31 0 r=1k r:r1 5 3 r=4.8k r:r2 6 3 r=4.8k

r:r3 9 3 r=811 r:r4 8 3 r=2.17k r:r5 8 0 r=820 r:r6 2 14 r=1.32k

r:r7 2 12 r=4.5k r:r8 2 15 r=1.32k r:r9 16 0 r=5.25k r:r10 17 0

r=5.25k bjtnpn:q1 2 30 5 0 model="qnl" bjtnpn:q2 2 31 6 0

model="qnl" bjtnpn:q3 10 5 7 0 model="qnl" bjtnpn:q4 11 6 7 0

model="qnl" bjtnpn:q5 14 12 10 0 model="qnl" bjtnpn:q6 15 12 11 0

model="qnl" bjtnpn:q7 12 12 13 0 model="qnl" bjtnpn:q8 13 13 0 0

model="qnl" bjtnpn:q9 7 8 9 0 model="qnl" bjtnpn:q10 2 15 16 0

model="qnl" bjtnpn:q11 2 14 17 0 model="qnl"

*****************************************bjt model

statement********************** .model qnl bjtnpn(bf=80 rb=100

tf=.3ns tr=6ns rb=100 cje=3pf cjc=2pf vaf=50)

************************************************************************************
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vsource:vin 1 0 vdc=0. vac=.1 f=50e6 phase = -90 delay = 1ns

vsource:vcc 2 0 vdc=15 tr=10ps vsource:vee 3 0 vdc=-15 tr=10ps

*******************************************Transient

Analysis********************** .tran21 tstop=50ns tstep=10ps im=0

out_steps=500

************************************************************************************

.out plot term 1 vt in "out.vt1" .out plot term 16 vt in

"out.vt16" .out plot term 17 vt in "out.vt17"

.end
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Appendix C

Soliton Line Netlist

Soliton Line Netlist

This section contains the netlist for the soliton line discussed in section 4.3.

Figures 4.6 and 4.7 show how the sparsity of the matrix and the simulation

time vary with the number of diodes, respectively. To get these results the

netlist given below was modified, such that the number of L-sections in the

circuit is equal to the number of diodes. For example, for a soliton line with 1

L-section, the netlist included , diode d1, transmission line t1 and the inductor

i1. Off course, the source (rs) and load (rl) resistors and the transmission line

(t0) in series with the source resistor were always included. Similarly for higher

number of diodes the necessary elements were included. The tapering rule was

kept constant at 0.952097.

*Soliton using good parameters

* Transim file for NLTL with 24.00 GHz initial Bragg frequency,
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* 225.00 GHz final Bragg frequency and 0.952097 tapering rule,

* and 120.00 ps total compression.

.options freq=9.GHz nonlin=4 rtol=1e-4 ftol=rtol maxit=100

.tran21 tstop=.55e-9 tstep=.1ps msv=1 im=1 savenode=0

*

* For 27dBm input use vac = 14V

* vsource:1 201 0 vac = 14. vdc = -6. f = freq phase=90 tr=.1e-9

r:rs 201 202 r=50.

*

* Diode parameters

*

* From thesis: js=2.24e-12, alfa=21.13

*

* From Libra netlist: js=51e-15, alfa=default

* .model carlos diode ( js=2.24e-12 alfa=21.13 e=10

ct0=1.32767e-15 r0=171.9 + fi=1.27517 gama=0.810205 jb=1.e-5

vb=-16. )

*

* Transmission line parameters

* .model c_line tlinp4 ( z0mag=75.00 k=7 fscale=10.e9 alpha = 59.9

+ nsect = 20 fopt=10e9)

*

* Diodes

* diode:d1 101 0 model = "carlos" area=271.64 diode:d2 102 0 model

= "carlos" area=258.63 diode:d3 103 0 model = "carlos"

area=246.24 diode:d4 104 0 model = "carlos" area=234.45 diode:d5

105 0 model = "carlos" area=223.21 diode:d6 106 0 model =

"carlos" area=212.52 diode:d7 107 0 model = "carlos" area=202.34

diode:d8 108 0 model = "carlos" area=192.65 diode:d9 109 0 model

= "carlos" area=183.42 diode:d10 110 0 model = "carlos"
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area=174.63 diode:d11 111 0 model = "carlos" area=166.27

diode:d12 112 0 model = "carlos" area=158.3 diode:d13 113 0

model = "carlos" area=150.72 diode:d14 114 0 model = "carlos"

area=143.5 diode:d15 115 0 model = "carlos" area=136.63 diode:d16

116 0 model = "carlos" area=130.08 diode:d17 117 0 model =

"carlos" area=123.85 diode:d18 118 0 model = "carlos" area=117.92

diode:d19 119 0 model = "carlos" area=112.27 diode:d20 120 0

model = "carlos" area=106.89 diode:d21 121 0 model = "carlos"

area=101.77 diode:d22 122 0 model = "carlos" area=96.89 diode:d23

123 0 model = "carlos" area=92.25 diode:d24 124 0 model =

"carlos" area=87.83 diode:d25 125 0 model = "carlos" area=83.63

diode:d26 126 0 model = "carlos" area=79.62 diode:d27 127 0

model = "carlos" area=75.81 diode:d28 128 0 model = "carlos"

area=72.18 diode:d29 129 0 model = "carlos" area=68.72 diode:d30

130 0 model = "carlos" area=65.43 diode:d31 131 0 model =

"carlos" area=62.29 diode:d32 132 0 model = "carlos" area=59.31

diode:d33 133 0 model = "carlos" area=56.47 diode:d34 134 0

model = "carlos" area=53.76 diode:d35 135 0 model = "carlos"

area=51.19 diode:d36 136 0 model = "carlos" area=48.73 diode:d37

137 0 model = "carlos" area=46.4 diode:d38 138 0 model =

"carlos" area=44.18 diode:d39 139 0 model = "carlos" area=42.06

diode:d40 140 0 model = "carlos" area=40.05 diode:d41 141 0

model = "carlos" area=38.13 diode:d42 142 0 model = "carlos"

area=36.3 diode:d43 143 0 model = "carlos" area=34.56 diode:d44

144 0 model = "carlos" area=32.91 diode:d45 145 0 model =

"carlos" area=31.33 diode:d46 146 0 model = "carlos" area=29.83

diode:d47 147 0 model = "carlos" area=28.4

*

* Parasitic inductors

* l:i1 1 101 l=21.8pH l:i2 2 102 l=21.8pH l:i3 3 103 l=21.8pH

l:i4 4 104 l=21.8pH l:i5 5 105 l=21.8pH l:i6 6 106 l=21.8pH

l:i7 7 107 l=21.8pH l:i8 8 108 l=21.8pH l:i9 9 109 l=21.8pH

l:i10 10 110 l=21.8pH l:i11 11 111 l=21.8pH l:i12 12 112 l=21.8pH

l:i13 13 113 l=21.8pH l:i14 14 114 l=21.8pH l:i15 15 115 l=21.8pH

l:i16 16 116 l=21.8pH l:i17 17 117 l=21.8pH l:i18 18 118 l=21.8pH
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l:i19 19 119 l=21.8pH l:i20 20 120 l=21.8pH l:i21 21 121 l=21.8pH

l:i22 22 122 l=21.8pH l:i23 23 123 l=21.8pH l:i24 24 124 l=21.8pH

l:i25 25 125 l=21.8pH l:i26 26 126 l=21.8pH l:i27 27 127 l=21.8pH

l:i28 28 128 l=21.8pH l:i29 29 129 l=21.8pH l:i30 30 130 l=21.8pH

l:i31 31 131 l=21.8pH l:i32 32 132 l=21.8pH l:i33 33 133 l=21.8pH

l:i34 34 134 l=21.8pH l:i35 35 135 l=21.8pH l:i36 36 136 l=21.8pH

l:i37 37 137 l=21.8pH l:i38 38 138 l=21.8pH l:i39 39 139 l=21.8pH

l:i40 40 140 l=21.8pH l:i41 41 141 l=21.8pH l:i42 42 142 l=21.8pH

l:i43 43 143 l=21.8pH l:i44 44 144 l=21.8pH l:i45 45 145 l=21.8pH

l:i46 46 146 l=21.8pH l:i47 47 147 l=21.8pH

*

* Transmission lines

* tlinp4:t0 202 0 1 0 model = "c_line" length=501.29u tlinp4:t1 1

0 2 0 model = "c_line" length=978.57u tlinp4:t2 2 0 3 0 model =

"c_line" length=931.69u tlinp4:t3 3 0 4 0 model = "c_line"

length=887.06u tlinp4:t4 4 0 5 0 model = "c_line" length=844.57u

tlinp4:t5 5 0 6 0 model = "c_line" length=804.11u tlinp4:t6 6 0

7 0 model = "c_line" length=765.59u tlinp4:t7 7 0 8 0 model =

"c_line" length=728.92u tlinp4:t8 8 0 9 0 model = "c_line"

length=694.00u tlinp4:t9 9 0 10 0 model = "c_line" length=660.75u

tlinp4:t10 10 0 11 0 model = "c_line" length=629.10u tlinp4:t11

11 0 12 0 model = "c_line" length=598.97u tlinp4:t12 12 0 13 0

model = "c_line" length=570.27u tlinp4:t13 13 0 14 0 model =

"c_line" length=542.96u tlinp4:t14 14 0 15 0 model = "c_line"

length=516.95u tlinp4:t15 15 0 16 0 model = "c_line"

length=492.18u tlinp4:t16 16 0 17 0 model = "c_line"

length=468.61u tlinp4:t17 17 0 18 0 model = "c_line"

length=446.16u tlinp4:t18 18 0 19 0 model = "c_line"

length=424.79u tlinp4:t19 19 0 20 0 model = "c_line"

length=404.44u tlinp4:t20 20 0 21 0 model = "c_line"

length=385.06u tlinp4:t21 21 0 22 0 model = "c_line"

length=366.62u tlinp4:t22 22 0 23 0 model = "c_line"

length=349.05u tlinp4:t23 23 0 24 0 model = "c_line"

length=332.33u tlinp4:t24 24 0 25 0 model = "c_line"

length=316.41u tlinp4:t25 25 0 26 0 model = "c_line"
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length=301.26u tlinp4:t26 26 0 27 0 model = "c_line"

length=286.83u tlinp4:t27 27 0 28 0 model = "c_line"

length=273.09u tlinp4:t28 28 0 29 0 model = "c_line"

length=260.00u tlinp4:t29 29 0 30 0 model = "c_line"

length=247.55u tlinp4:t30 30 0 31 0 model = "c_line"

length=235.69u tlinp4:t31 31 0 32 0 model = "c_line"

length=224.40u tlinp4:t32 32 0 33 0 model = "c_line"

length=213.65u tlinp4:t33 33 0 34 0 model = "c_line"

length=203.42u tlinp4:t34 34 0 35 0 model = "c_line"

length=193.67u tlinp4:t35 35 0 36 0 model = "c_line"

length=184.39u tlinp4:t36 36 0 37 0 model = "c_line"

length=175.56u tlinp4:t37 37 0 38 0 model = "c_line"

length=167.15u tlinp4:t38 38 0 39 0 model = "c_line"

length=159.14u tlinp4:t39 39 0 40 0 model = "c_line"

length=151.52u tlinp4:t40 40 0 41 0 model = "c_line"

length=144.26u tlinp4:t41 41 0 42 0 model = "c_line"

length=137.35u tlinp4:t42 42 0 43 0 model = "c_line"

length=130.77u tlinp4:t43 43 0 44 0 model = "c_line"

length=124.51u tlinp4:t44 44 0 45 0 model = "c_line"

length=118.54u tlinp4:t45 45 0 46 0 model = "c_line"

length=112.86u tlinp4:t46 46 0 47 0 model = "c_line"

length=107.46u tlinp4:t47 47 0 48 0 model = "c_line"

length=52.41u

res:rl 48 0 r=50.

*.out plot element "diode:d1" 0 ut in "diode1.v" *.out plot

element "diode:d1" 0 it in "diode1.i" *.out plot element

"diode:d1" 0 xt in "diode1.x"

*.out plot element "diode:d2" 0 ut in "diode2.v" *.out plot

element "diode:d2" 0 it in "diode2.i" *.out plot element

"diode:d2" 0 xt in "diode2.x"

*.out plot element "diode:d3" 0 ut in "diode3.v" *.out plot

element "diode:d3" 0 it in "diode3.i" *.out plot element
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"diode:d3" 0 xt in "diode3.x"

.out plot element "diode:d2" 0 ut in "diode2_tran2.v" .out plot

element "diode:d2" 0 it in "diode2_tran2.i" .out plot element

"diode:d2" 0 xt in "diode2_tran2.x"

*.out plot element "diode:d22" 0 ut in "diode22.v" *.out plot

element "diode:d22" 0 it in "diode22.i" *.out plot element

"diode:d22" 0 xt in "diode22.x"

*.out plot element "diode:d32" 0 ut in "diode32.v" *.out plot

element "diode:d32" 0 it in "diode32.i" *.out plot element

"diode:d32" 0 xt in "diode32.x"

*.out plot element "diode:d46" 0 ut in "diode46.v" *.out plot

element "diode:d46" 0 it in "diode46.i" *.out plot element

"diode:d46" 0 xt in "diode46.x"

*.out plot element "diode:d47" 0 ut in "diode47.v" *.out plot

element "diode:d47" 0 it in "diode47.i" *.out plot element

"diode:d47" 0 xt in "diode47.x"

.end
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