
ABSTRACT

KIM, KYOUNG HWA. Query Size Estimation through Sampling. (Under the direction of

Rada Y. Chirkova).

Current Database management systems (DBMS) handle huge amounts of data

and need fast query response time. DBMSs apply several strategies to execute user queries.

Query optimizer in DBMSs compare costs for these strategies and choose the cheapest one.

Materialized views are suggested to enhance query response time as one of the strategies

in DBMSs. Cost of each strategy has to be accurately estimated to choose right strategy.

Because the materialized view is stored as a one table, we consider that sequential scan

is used for executing of the materialized view. Therefore, I/O and CPU costs to execute

materialized views depend on the number of tuples for the result. Hence, Our focus will be

the accuracy of estimation of the number of tuples in materialized views; that is a query-size

estimation. Many researches have been proposed to find methods to estimate the cost of

query. This thesis reviews these researches and compares good and bad aspects for each

cost estimation method. We choose size estimation methods that are more accurate than

others to implement. We suggest various query environments for experiments. We suggest

a guideline by experimental results.
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Chapter 1

Introduction

1.1 Overview of Research

Most companies that use database management systems (DBMS) work with large

amounts of data and want to use it efficiently. In particular, Data Warehousing that collects,

organizes and makes data available for the purpose of analysis has to handle huge amounts

of data with fast query response time. The amount of data maintained by DBMSs has

grown enormously and the research to improve query response time has been proposed over

the past decade [8, 18, 17, 5, 13].

In general, a SQL statement can be executed using various strategies such as

full table scan, nested loops and hash joins. A query optimizer estimates the costs of

executing a query using various strategies. The query optimizer then compares these costs

and determines the strategy with the lowest cost. Most of the current commercial DBMSs

[1, 2, 3] have introduced the concept of a materialized view to improve performance of the

database. A materialized view is a set of copies or replicas of data based on SQL queries

created in the same manner as dynamic views. Both materialized and dynamic views

are created as a single table that is derived from other base tables or predefined views [10].

Although dynamic views and materialized views are similar concepts, dynamic views do not

exist in physical form; it is considered a virtual table. On the other hand, a materialized

view is pre-computed and physically stored as a table.
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Cost of materialized view is decided by the number of tuples for the query result,

I/O, and CPU costs to execute a query. Because materialized view is stored as a one table,

we consider that sequential scan is used for executing of the materialized view. Therefore,

I/O and CPU costs to execute materialized views depend on the number of tuples for

the result. Hence, Our focus will be the accuracy of estimation of the number of tuples in

materialized views; that is a query-size estimation. For the purpose of query size estimation,

several methods have been studied in the past decade. In the beginning, query size is

estimated using the number of distinct values and total tuples in the system R [6]. This

method has been commonly used until now. However, this method may not be able to get a

correct result because of the skewed data in tables. Histogram methods have been proposed

to prevent the above problem. Moreover, there is another problem in practice. Most of

tables contains a large number of tuples. If we look through all tuples in the tables to

construct a histogram, we may encounter a time consuming problem. A good approach to

solve time consuming problem is to use a sampling method. In particular, several different

methods have been suggested for histogram and sampling. Through this thesis, we review

the concepts of these methods, implement promising methods that we have selected, and

suggest a guideline for choosing the best method in various environments using experimental

results.

1.2 Thesis Contributions

In this thesis, we evaluate the best methods to estimate query sizes using various

query types. We use reliable and promising techniques that have been researched so far.

We recommend the absolutely most accurate and optimal methods in each query condition.

The results have been reported after several experiments. We can flexibly apply these

recommended size estimation methods by query types whenever materialized views are

used. Using these results, we can believe that the estimated view size is accurate and an

optimizer can correctly choose the cheapest strategy to execute queries.
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1.3 Thesis Organization

Chapter 2 suggests related works to our research. Chapter 3 reviews the back-

ground of query size estimation methods discussed in chapter 2. It suggests several es-

timation techniques that has been researched in this area. In chapter 4, the selectivity

estimation algorithms that we have implemented are explained. It introduces pseudocode

and procedures with examples for selection and join conditions. Chapter 5 shows experi-

mental results with graphs for the implemented methods. Finally, chapter 6 concludes this

thesis and suggests recommended methods in various query environments.
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Chapter 2

Related Work

A large number of researchers have studied query or view size estimation methods

in database management systems. This work can be classified into three categories namely

parametric [26, 6, 22, 27], histogram [19, 24, 16, 17], and sampling [11, 14, 15, 20, 21, 29]

methods. We describe each of them briefly.

Parametric methods are based on underlying data distribution assumptions such

as uniform, normal, poisson, zipf and so on. Selinger et al. [26, 6], Makinouchi et al. [22] and

Swami and Schiefer [27] proposed parametric method for the uniform distribution assump-

tion and Christodoulakis [9] relies on the Normal and Pearson Type 2 and 7 distributions

for query size estimation of selections and joins. The drawback of this method is that we

can not get accurate results if the model is not fit for the actual distribution because we

can not know a priori the distribution of data.

A histogram is built by partitioning data distribution into mutually disjoint sub-

sets called buckets and approximates data frequencies in each bucket. Several types of

histograms have been proposed and evaluated for their accuracy using equi-width and

equi-height [19, 24], maxdiff, compressed, end-biased and v-optimal histograms [17, 25].

Histograms are easy to implement and do not require underlying data distribution assump-

tions.

Sampling is one of the most recent size estimation method. Sampling estimates

query size by collecting and processing random samples of the data. Lipton and Naughton

[21] and Hass and Swami [11] proposed adaptive sampling and systematic sampling has
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been proposed by Harangsri et al [23]. These researches show high accuracy on quality of

estimation.

Since the purpose of our thesis is coming up with good guidelines for finding

the absolutely most accurate size estimation methods in various environments, we review

in more detail parametric, histogram and sampling methods in chapter 3 and we choose

promising methods to implement and analyze.
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Chapter 3

Basic Concepts of Query Size

Estimation

The most important factor on query size estimation is the number of tuples for

the result of a given query. Hence, we will focus on methods to estimate the number of

tuples. In this chapter, we describe terminology, definitions and notations for the database

systems and query size estimation. We then suggest our criteria to choose techniques to

implement. We then explain basic concepts in order to understand techniques. We finally

show several methods that have been studied for several years.

3.1 Terminology in Database Systems

Example 3.1

Suppose we have User table with name and ssn like following.

NAME SSN
Alice 555-55-5555
Bob 222-22-2222
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• Tuple : a row in a table. In example 3.1, we have two tuples : “Alice, 555-55-5555”

and “Bob, 222-22-2222”.

• Attribute : a column head for a table. In example 3.1, we have two attributes :

Name and SSN.

Example 3.2

Q1 : SELECT S.NATIONKEY, N.REGIONKEY

FROM SUPPLIER S, NATION N

WHERE S.ACCTBAL = 3.78

AND S.NATIONKEY = N.NATIONKEY;

This query asks for nation key and region key of supplier where account balance of

supplier is 3.78 and all nation keys in supplier table are in nation table.

• Selection : In example 3.2, S.ACCTBAL = 3.78 in the WHERE clause is a selection

operation. It means that we want to get acctbal values from the supplier table that

satisfy the value is 3.78.

• Join : In example 3.2, S.NATIONKEY = N.NATIONKEY in the WHERE clause is

join operation. It means that we want to get nationkey values that are same in both

of supplier and nation tables.

• Projection : In example 3.2, projection operations are S.NATIONKEY and N.REGIONKEY

in SELECT clause. It means that we want to get nationkey in supplier table and re-

gionkey attribute in nation table that satisfy conditions in WHERE clauses.

3.2 Definitions and Notations for View Size Estimation

• Frequency : the number of times an attribute value of R.b occurs in relation R. We

use the term data distribution as a synonym for the term frequency distribution.
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• Size : The term “size” used throughout the thesis is equivalent to a number of tuples.

• Selectivity : the term is the ratio of the size of the output relation due to a join or

selection operation over cartesian product of sizes of all the relations which participate

in a query.

3.3 Problem Statement

We consider materialized view a physical table and the table is sequentially scanned.

Therefore, I/O and CPU costs are based on the number of tuples for the result of a query

that consists of a materialized view. For our results to get the best methods in various con-

ditions, we take many types of queries that are comprised of selection, join and projection

conditions as a input. Query types are described in chapter 5. Then, we estimate sizes

for input queries by several methods which are selected by our criteria. All size estimation

methods depend on selectivities for selection, join and projection operations as described

in section 3.4. We have four criteria to decide useful methods for our implementations

in several studied techniques. The first criterion is the absolutely most accurate methods

among all categories by several studied researches. The second thing is data distribution

without uniform distribution assumption. The third thing is easy to implement. The forth

thing is that we have to handle all kinds of data types as well as integer types. We inves-

tigate advantages and disadvantages for query size estimation methods that are explained

in chapter 2 and compare methods for each category. Our implementations take accurate

methods by these results. Finally, we get query result sizes for each method as a output.

3.4 Selectivity Calculation

Query size estimation methods are based on selectivities for selection and join op-

erations first. The result size of projection operation is estimated after selection and join

operations are applied. In the example 3.2, a selection condition “S.ACCTBAL = 3.78”

and a join condition “S.NATIONKEY = N.NATIONKEY” in the WHERE clause are se-

quentially estimated and then the output of the projection operations “S.NATIONKEY

and N.REGIONKEY” are estimated. In order to know the number of tuples for outputs
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of selection and join operations, we have to calculate selectivities. The selection selectivity

is the ratio of the result that satisfies selection operation over the total number of tuples

of a given relation. The join selectivity is the ratio of the result that satisfies join opera-

tion over the cartesian product of two participated relations. When a query has both of

selection and join operations, an input for estimation of join selectivity is the output of

the selection operations. Table 3.1 shows definitions for selectivities for selection and join

operations. Example 3.3 shows how the selectivities for selection and join operations are

sel(selection) : the number of tuples that satisfy selection condition
selection selectivity = sel(selection)

NR

sel(join) : the number of tuples that satisfy join condition

join selectivity = sel(join)
NR∗NS

Table 3.1: Selectivity Definitions (NR : the number of tuples in the relation R, NS : the
number of tuples in the relation S)

calculated. When there are several selection and join operations, each size is resulted in

previous operation. In the example 3.3, the final size after selection and join operations is

estimated to (0.05 * 10000) * (0.2* 200)* 500* 0.0000025 = 2.5 ≈ 2.

Example 3.3

Table Schema : R(i,j,k), S(a,b), T(m,n)
The number of tuples : R(1000) , S(500), T(200)
Query : SELECT i,a

FROM R,S,T
WHERE j = 3
AND m = 2
AND k = b;

The number of tuples that satisfy j = 3 for selection operation is 50.
selection selectivity = 50

1000 = 0.05

The number of tuples that satisfy m = 2 for selection operation is 100.
selection selectivity = 100

500 = 0.2

The number of tuples that satisfy k = b for the join operation is 25.
join selectivity = 25

1000∗10000 = 0.0000025

The projection operation is different from selection and join operations. The out-

put sizes of projection operations need bytes for each data type. In general, this information
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is stored in the system catalog. The final query size depends on the number of tuples for the

results of selection and join operations and the bytes of data type for projection operations.

The final size is the sum of number of bytes for all data types in projection operations times

the number of tuples after selection and join conditions. In the example 3.3, if bytes for

both of i and a are 4, the final size is (4 * 2) + (4 * 2) = 16 bytes.

3.5 Query Result Size Estimation Methods

There are various methods for query result size estimation. We separate these

methods into three categories. The first category is the parametric method. The second is

histogram and the third is sampling method.

3.5.1 Parametric Method

As we have explained in chapter 2, parametric methods have been studied by

Selinger et al. [26, 6],Makinouchi et al. [22], and Swami and Schiefer [27]. We now describe

the idea of the parametric method using uniform distribution assumption [26, 6]. A query

result size is estimated as explained in example 3.4. The example explains the number of

tuples in query result uses the number of tuples in a table and the number of distinct values

for an attribute as inputs.

Example 3.4

Let there be the total number of values in table R is 1000 and the number of distinct

values for attribute a in table R is 100.

The total number of values in table S is 2000 and the number of distinct values for



11

attribute a in table S is 50.

If we have a selection operation : R.a = 20 then this size is estimated that is 1000
100 = 10.

If we have a join operation : R.a = S.a, then this size is estimated that is 1000∗2000
100 =

20000.

The main advantage of parametric method is that it can reduce elapsed time

because it just need to look at the number of distinct values of each attribute and the

number of tuples for each relation. In contrast, it assumes that underlying data is uniformly

distributed. This assumption can not guarantee accuracy of size estimation. Therefore, we

disregard parametric methods in this thesis.

3.5.2 Histogram Methods

Histogram methods have been studied in many literatures [19, 24, 17, 25] as we

explain in chapter 2. We can mainly divide the methods into traditional and advanced

histograms. Traditional histograms contain equi-width and equi-height histograms. This

method is studied by Kooi, Piatetsky-Shapiro and Charles Connell [19, 24]. Advanced his-

tograms contain maxdiff, compressed, end-biased and v-optimal histograms [17, 25]. The

good aspect for histogram methods is it need not consider underlying data distribution.

Therefore, we can handle skewed data easily. The disadvantage is that all histogram meth-

ods need to sort data and it takes too much time to sort. Moreover, because join operations

need to merge histograms for two participating attributes and construct new histogram, it is

complex to build histograms. Finally, multidimensional histograms for co-related attributes

are difficult to construct.

Many database systems store a huge amount of data in their relations. They have

storage and time complexity problems to construct and maintain histogram information.

Also most methods need to consider data types that are used in query operations. A

solution to solve this problems is histogram construction using sampling methods. There

are several sampling methods that can be used with histogram methods. Sampling methods

are described in the section 3.5.3. Also we can find that advanced histograms can handle all
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data types that are matched in our forth criterion in section 3.3. In the advanced histograms

category, the research [25] has proved that v-optimal and maxdiff histograms performed

better than compressed histograms. In addition, they have proved maxdiff histogram is the

best histogram. Moreover, it is important to reduce construction time. We also suggest

maxdiff histogram with sampling method is the best to reduce construction time. The

detailed histogram information is described in chapter 4.

3.5.3 Sampling Methods

Sampling methods are the most famous methods in the size estimation field. Sam-

pling methods prevent looking through all the data in each relation. The basic idea behind

sampling methods is that each tuple in a relation has the same probability to be selected into

sample values. The query result size is estimated by sampled values. The most important

issue in the sampling method is to decide stopping point. Sampling methods are classified

by the stopping conditions. In general, sampling methods which are used for query size

estimation are Simple Random Sampling with and without Replacements and systematic

samplings. There are common advantages like below.

• They are simple to implement.

• They do not use stored statistical information.

• They do not depend on underlying data types.

• They do not use the system catalog information.

Sampling methods are basically simple to implement and does not need to consider

underlying data types as we explained above. In addition, researches in chapter 2 explain

these sampling methods have relatively accurate results. Therefore, sampling methods are

very preferred methods and we choose two sampling methods; simple random sampling and

systematic sampling. The detail implementation is explained in chapter 4.

3.5.4 Summary

The main problem related to query result size estimation is that it is hard to

investigate all attribute values in a relation. To find good estimation methods, several
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methods have been suggested. The parametric method is easy to implement but it cannot

guarantee the accuracy when data is not evenly distributed. Histogram methods can handle

data skew problems. We selected maxdiff histogram method with sampling by all satisfying

criteria. Finally, sampling methods are preferred because they have several apparent good

aspects such as no extra storage and convenience of implementations. In summary, we

choose maxdiff histogram and simple random sampling and systematic sampling methods

by considering the accuracy, construction time and underlying data distribution and data

types.
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Chapter 4

Implementations

In chapter 3, we discussed representative techniques of query size estimation. We

can find good methods with advantages and disadvantages in each technique. By analyzing

these factors, we can choose methods to implement. Because the purpose of this thesis is to

find the best method in environments with varying degree of skew, sizes of tables and so on,

we have to select better methods which are more accurate than others. In chapter 3, we can

find sampling method is the best with many aspects. Also we know histogram and sampling

methods are better than a parametric method because parametric method need to consider

data distribution. Therefore, we choose two sampling methods; simple random sampling [21,

11] and systematic sampling [23]; and one histogram method [25]. We have investigated that

histogram methods have some restrictions such as underlying data types. We choose maxdiff

histogram among all histogram methods to solve this problem. Because all histogram

methods need to sort values with a specific parameter, we use sampling method to reduce

construction time. In this thesis, we implement all methods using postgresql [3] that is a

relational database and open-source database. In this chapter, we first review concepts of

each algorithm that we implement. We then describe pseudo codes and procedures. Finally,

we suggest examples for each algorithm.
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4.1 Simple Random Sampling Method

4.1.1 Overview

Simple random sampling can be subdivided into two methods. They are with

and without replacement. The sampling with replacement is called SRSWR [12]. In this

method, the tuple which has already been selected can be selected again. The method

without replacement is called SRSWOR [12] which can not select same tuples again. In this

implementation, we use SRSWR instead of SRSWOR.

Simple random sampling, called adaptive sampling, has been proposed by Lipton

and Naughton [21]. This method is based on values sampled so far. They estimate the mean

and variance for sample values and stop when stopping conditions are true. The main focus

is choosing the stopping condition correctly. The stopping conditions are suggested by Peter

J.Haas and Arun N.Swami [11] in Algorithm S2. We begin by defining the notation. In this

notation, R is used for table name.

Notation

• N : the cardinality of a table R.

• n : the cardinality of samples R’ from R.

• s : the number of tuples that satisfy the input query.

• Ȳ : population mean that is defined with selectivity for complex query predicates.

Ȳ =
PN

i=1 yi

N where yi = 1 if the ith tuple in table R satisfies the query;otherwise

yi = 0.

• ˆ̄Y : sample mean that is defined with selectivity for complex query predicates.
ˆ̄Y =

Pn
i=1 yi

n where yi = 1 if the i th tuple in R satisfies the query;otherwise

yi = 0.

• S2 : population variance

S2 =
PN

i=1(yi−Ȳ )2

N−1 .

• S2
n : sample variance

S2
n =

Pn
i=1(yi− ˆ̄Y )2

n−1 .

• ε : the relative error that is between 0 and 1.

• ψ : sanity bound to prevent oversampling.



16

• t : the abscissa of the normal curve that cuts off an area α at the tail and α is a

risk of error not within the relative error ε given.

• β : the fraction of a table size to limit maximum sample size.

This method has three subconditions to stop sampling. These conditions are based on the

variance and mean for sample values which are updated whenever a sample is acquired.

With updated mean and variance, we apply the stopping conditions like below.

Stopping Conditions

1. n ≥ 1 : the number of sample values is greater than 0.

2. S2
n > 0 : the sample variance is greater than 0.

3. ε max(s,nψ) ≥ t(nS2
n)1/2

This condition finds the number of tuples that have to be sampled within rel-

ative error max(s,nψ). It assumes when sample size n is large, it follows from

the Standard Central Limit Theorem. It prevents to exceed error bound by a

new sample value. The reason why it is a better method than previous similar

methods where parameters for stopping conditions are decided before starting

sampling procedures is the values in parameters are decided by the mean and

variance whenever a sample is obtained. The condition follows Algorithm S2

by Peter J.Haas and Arun N.Swami [11]. It assumes that when sample sizes are

large, the distribution for samples follows the normal distribution. This condition

means we take sample values within reliable areas in the normal distribution. A

sanity bound(ψ) is proposed to prevent oversampling problem. The meaning of

oversampling is that the size of selected sample(n) is too large. For example, if

the number of values(s) that satisfy the query condition is too small, the sample

size n can reach the allowed maximum size of sample (by β value). In this case,

the oversampling problem occurs. The solution for this problem is applying san-

ity bound ψ in max(s,nψ). The value ψ restricts the sample size by terminating

this algorithm.

4.1.2 Assumptions

In order to get tuples which are selected from simple random sampling, we have

to know the physical position of each record on the disk. That means that a tuple is
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stored in a physical block and offset in this block. Postgresql [3] checks the block number

whenever a tuple is acquired by sequential scan and increments the number of tuples. When

a block number is different from previous block number, we assume that one block contains

the number of tuples that is obtained so far. If the block number is not changed even if

sequential scan is reached at the end of table, we assume the table size is so small and we

do not need to sample tuples because it is enough to consider all tuples for size estimation.

In this case, we take all values in the table and estimate selectivities within these values.

4.1.3 Size Estimation for Selection Operation

As we discussed earlier, the size is based on selectivity estimation. We estimate

selectivities for sample values and then estimate cardinality for whole table. We take sample

values until stopping conditions which are discussed earlier become true. Selection oper-

ations contain five predicates (=, >, <, ≤, ≥). Whenever we take a sample value, we

compare this value and constant value in selection operation by the given predicate and

n is incremented by 1. If the sample value satisfies the condition, s is incremented by 1.

We have two options to determine whether we use this sampling method. If the number of

tuples in a table is small enough to sequentially scan whole table, we do not process simple

random sampling. This decision factor is that if all tuples in a table are in one block, we

scan all tuples in the table instead of using sampling method. Otherwise, we start to take

sample values. The simple random sampling uses updated s and n values to calculate new

variance S2
n whenever new sample is obtained. The updated variance is used for decision of

the point to stop. When the sampling is terminated by any of the stopping conditions, we

estimate the final selectivity by s
n . This final selectivity is applied to the size of a actual

table to approximate the size of a given query. If the selectivity at the end is 1
2 and the

cardinality for a table in query is 1000, the final query size is approximately 500. Figure 4.1

is a pseudocode for selection size estimation. From line 2 to 9, we explain the selectivity

estimation if table size is small enough to sequentially scan whole table. From line 11 to 29,

simple random sampling is processed until stopping conditions are true. In line 29, if the

number of tuples in samples are greater than or equal to the maximum number of tuples,

the sampling procedure is stopped. If updated variance S2
n satisfies the condition in line 25,

the sampling procedure is stopped where variance S2
n is w

n−1 in line 21 and w = (n−1)
n w +

(s−ny)2

(n+1)n in line 19.
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1 if all tuples are in one block then
2 repeat
3 Sequentially Scan a whole table
4 n++;
5 if the tuple satisfies query predicate then
6 s++;
7 endif
8 until the value in the table is NULL
9 return s

n
10 else
11 repeat
12 y = 0;
13 z = randomly sampled value;
14 if the z th attribute satisfies query then
15 s++;
16 y = 1;
17 endif
18 n = n + 1;
19 w = (n−1)

n w + (s−ny)2

(n+1)n

20 if n > 1 then
21 S2

n = w
(n−1)

22 else
23 S2

n = 0
24 endif
25 if S2

n > 0 and ε max(s,nψ) ≥ t(nS2
n)

1
2

26 then
27 return s

n
28 endif
29 until n ≥ d(β ∗N)e
30 endif

Figure 4.1: Pseudo Code for selectivity for selections

Example 4.1

The figure 4.1 illustrates when simple random sampling is stopped.

Query Q : select i from R where i = 5.

Size of table R : 10000.
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The fraction β = 0.1. By this fraction, the maximum sample size is limited to 1000.

The relative error ε = 0.1.

The sanity bound ψ = 0.1.

For the value t, we select α is 0.05. By the t table for standard normal distribution, we

can pick t value to 1.645.

No. value n s y w S2
n ε max(s,nψ) t(nS2

n)1/2

1 5 1 1 1 0 0 0.01 0
2 13 2 1 0 0.167 0.167 0.01 0.949
3 9 3 1 0 0.194 0.097 0.01 0.883
4 5 4 2 1 0.346 0.115 0.02 0.758
5 40 5 2 0 0.41 0.103 0.02 1.178
6 21 6 2 0 0.347 0.069 0.02 1.061
7 5 7 3 1 0.583 0.097 0.03 1.355
8 5 8 4 1 0.73 0.104 0.04 1.5
9 5 9 5 1 0.827 0.103 0.05 1.584

10 5 10 6 1 0.889 0.099 0.06 1.629
11 5 11 7 1 0.929 0.093 0.07 1.663
12 41 12 7 0 1.166 0.106 0.07 1.856
13 5 13 8 1 1.213 0.101 0.08 1.885
14 5 14 9 1 1.245 0.096 0.09 1.907
15 5 15 10 1 1.266 0.09 1.00 1.911
16 5 16 11 1 1.277 0.085 1.1 1.918
17 5 17 12 1 1.284 0.08 1.2 1.918
18 5 18 13 1 1.286 0.076 1.3 1.925
19 5 19 14 1 1.284 0.071 1.4 1.91
20 5 20 15 1 1.28 0.067 1.5 1.9
21 5 21 16 1 1.274 0.0637 1.6 1.9
22 5 22 17 1 1.266 0.06 1.7 1.89
23 5 23 18 1 1.256 0.057 1.8 1.88
24 5 24 19 1 1.245 0.054 1.9 1.87

Table 4.1: Selection Selectivity Example for Simple Random Sampling

As we can see in the table 4.1 in example 4.1, ε max(s,nψ) is 1.9 and t(nS2
n)1/2 is 1.87. By

the line 25 in figure 4.1, the stopping condition is satisfied because 1.9 is greater than 1.87.

After terminating this algorithm, we get the selectivity as 19
24 . This example is terminated
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very early rather than looking through most of tuples in the table R. The reason is the value

5 appears 19 times among 24 tuples. It means data is skewed and the variance is getting

smaller. Therefore, we can meet the stopping condition earlier than the number of tuples

that satisfy query condition is small.

4.1.4 Join Selectivity Algorithm

We assume the number of tables that are used in each join condition is two. For

example, a join condition has the format of “R.a = S.i”. The total number of tuples

(n) in the sample is approximated by the product of the number of tuples in each table.

The number of tuples (s) that satisfy the join condition is accumulated whenever each

sample value is acquired. For example, if the sample sizes are 100 and 200 for table r

and s respectably and the number of tuples that satisfy the join condition is 15, the final

selectivity is approximated by 15
100∗200 ; that is 0.00075. The join selectivity algorithm follows

same stopping conditions with selection conditions in section 4.1.3. In figure 4.2, line 2-8

illustrate the estimation procedures for small table sizes. From line 10 to 20, simple random

sampling procedures are processed. Whenever we get sample values, s and n are updated.

The selectivity and variance are thereby changed by updated s and n where variance S2
n is

estimated by n
n−1 µ̂(1− µ̂) (line 9-21).

Example 4.2

Query Q : select i from R,S where R.i = S.j.

Table Sizes of R : 10000 , S : 15000.

The fraction β = 0.1. By this fraction, the maximum sample sizes are 1000 for table R

and 1500 for table S.

The relative error ε = 0.1.

The sanity bound ψ = 0.1.

For the value t, we select α is 0.05. By the t table for standard normal distribution, we

can pick t value to 1.645.



21

1 if all tuples are in one block then
2 repeat
3 sequentially scan two whole tables that participate in join condition
4 n = NR′1 ∗NR′2 ;

5 s =
∑NR′1

i1=1

∑NR′2
i2=1(ti1 1 ti2);

6 µ̂ = s
n

7 until the values in two tables are NULL
8 return µ̂
9 else

10 repeat
11 obtain random sample value from R1 and R2

12 s =
∑NR′1

i1=1

∑NR′2
i2=1(ti1 1 ti2);

13 n = NR′1 ∗NR′2 ;
14 µ̂ = s

n ;
15 S2

n = n
n−1 µ̂(1− µ̂);

16 if S2
n > 0 and ε max(s,nψ) ≥ t(nS2

n)
1
2 then

17 return µ̂;
18 endif
19 until any of NR′i ≥ d(β ∗NRi)e becomes true, where i = 1 and 2
20 return µ̂
21 endif

Figure 4.2: Pseudo Code for selectivity for joins

The example 4.2 shows how the join selectivity algorithm works. Because the variance for

step number 1 and step number 2 is 0, the algorithm is continued. When we reach at

20th step, the value of ε max(s,nψ) becomes greater than the value of t * (nS2
n)

1
2 . This

satisfies the stopping condition at line 19 in Figure 4.2. Thus, this algorithm is stopped

and returns the estimated selectivity. In this example, the estimated selectivity whenever

new sample is obtained is not small and the variance is gradually incremented. Therefore,

the total number of sample values at the end of the sampling procedures is not large. If the

estimated selectivity is very small (e.g,0.01), it takes a long time and needs a large number

of sampled values to meet the stopping conditions and stopping condition needs the sanity

bound (ψ) to solve the oversampling problem.
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Step value in R value in S n s µ̂ S2
n ε max(s,nψ) t * (nS2

n)
1 1 1 1 1 1 0 0.1 0
2 1 1 4 4 1 0 0.4 0
3 2 2 9 5 5

9 0.28 0.5 2.6
4 1 2 16 8 1

2 0.27 0.8 3.4
5 3 2 25 9 9

25 0.24 0.9 4.03
6 2 3 36 13 13

36 0.24 1.3 4.84
7 1 1 49 19 19

49 0.24 1.9 5.64
8 3 2 64 22 11

32 0.24 2.2 6.3
9 2 2 81 29 29

81 0.24 2.9 7.1
10 3 3 100 33 33

100 0.22 3.3 7.72
11 2 1 121 42 42

121 0.23 4.2 8.69
12 2 3 144 50 25

72 0.23 5 9.46
13 1 1 169 59 59

169 0.23 5.9 10.24
14 1 1 196 70 70

196 0.23 7 11.03
15 1 1 225 83 83

225 0.23 8.3 11.83
16 1 1 256 98 98

256 0.24 9.8 12.34
17 1 1 289 115 115

289 0.24 11.5 13.7
18 1 1 324 134 134

324 0.24 13.4 14.48
19 1 1 361 155 155

361 0.25 15.5 15.63
20 1 1 400 177 177

400 0.25 17.7 16.12

Table 4.2: Join Selectivity Estimation Example

4.2 MaxDiff Histogram Method

4.2.1 Overview

As mentioned in section 3.5.2, we have several types of histogram methods. Among

known histogram methods, we have chosen maxdiff histogram method to implement. This

method is based on value and frequency pair which is represented as a MaxDiff. The

goal of MaxDiff histogram is to prevent values with vastly different frequencies are in the

same bucket. It inserts bucket boundaries between adjacent frequencies. The construction

procedures are first sorts values in the table and finds frequencies in each value. We then

insert bucket boundaries as many as a given histogram numbers which are defined in the

system catalog from the highest frequency differences. In each histogram bucket, we store

the number of distinct values, frequency and an average frequency. As the histogram is built

with the closest frequencies, the size of query can be estimated more correctly. Because the
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histogram method takes too much time to run a whole huge data-set, we have used sampling

method to construct. In the following example, we can see the way how to insert bucket

boundaries and to make a maxdiff histogram.

Example 4.3

Let X = (4,133), (2,97), (3,89), (5,62), (6,52), (7,43), (1,39), (8,37), (9,12). The first value

is value set and the second value is frequency set in each pair.

The the number of bucket boundary in system catalog(β) = 3.

The bucket boundaries are inserted like below.

1 2,3,4 5,6,7,8,9
39 97,89,133 62,52,43,37,12

The histogram is constructed like below.

Average Freq. Values
39 1
106.3 2,3,4
41.2 5,6,7,8,9

4.2.2 Random Sampling Algorithm

In this section, we describe a sampling algorithm that is commonly used in selection

and join selectivity algorithms. We first determine how many rows have to be sampled. This

algorithm is based on the paper by Surajit Chaudhuri [7]. The corollary 1 to theorem 5

in the paper explain that the minimum random sample r = 4 * k * ln(2∗n/γ)
f2 where k is

histogram size,n is table size,f is maximum relative error in bin size and γ is error probability.

We take f is 0.5, γ is 0.05 and f is 0.01. The table size n and histogram size k follow system

catalog information. We then start sampling procedures by Algorithm Z from Jeff Vitter’s

paper [28].It works by repeatedly computing the number of the next tuple we want to fetch,

which will replace a randomly chosen element of the reservoir (current set of tuples). At

all times the reservoir is a true random sample of the tuples we have passed over so far, so

when we fall off the end of the relation we are done. The sampling procedures run before

starting selection and join selectivity estimation algorithms.
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4.2.3 Selection Selectivity Algorithm

Histograms basically take a look at a stored average value in each bucket to esti-

mate query size. The basic idea is that we compare selection operation and starting and

ending values in the bucket. When we meet starting and ending values that satisfy selection

operation, we pick an average value in this bucket. The final number of tuples that satisfy

a given operation is this average value in the bucket. Figure 4.3 is the pseudocode for

estimation of selection selectivity. We first determine the number of buckets to construct

histogram. In postgresql [3], the reasonable bucket numbers are stored in the system cat-

alog. We take this information to construct histogram. Because the maxdiff histogram is

based on frequency difference by sorted values, we should sort sample values by quick sort

or mergesort to determine boundaries (line 1). From line 2 to 5, we find frequencies for

all distinct values for samples.While we look each value for samples, we can find a distinct

value and how many times each distinct value occur. Because maxdiff histogram depends

on frequency differences, we find frequency differences between distinct values. In order to

insert bucket boundaries, we need to know sorted frequency differences. From the largest

frequency differences, we insert a boundary within values for this difference (line 6-9). Then

we maintain average frequency, starting and ending values and the number of distinct values

for each bucket (line 10-13). Finally, for a given selection operation, we look through start-

ing and ending values in each bucket. If we find these values which satisfy constant values

in selection operation, the final selectivity is estimated by accumulated average values.

Example 4.4

Let query = “select i from r where i = 3;”

Sample Values = {1,5,3,1,9,4,3,1,1,10,11,10,11,15,1,3,3,4,1,6}

Histogram Size = 3

Step 1 : Sort Sample Values

{1,1,1,1,1,1,3,3,3,3,4,4,5,6,9,10,10,11,11,15}

Step 2 : Calculate Frequencies

{1,6}, {3,4}, {4,2}, {5,1}, {6,1}, {9,1}, {10,2}, {11,2}, {15,1}
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1 Sort by Quick or MergeSort method for sample values

2 repeat
3 Find distinct values
4 Find frequencies for all distinct values
5 until sample value is not NULL

6 repeat
7 Calculate differences between distinct values
8 until distinct value is not NULL

9 Sort for the calculated frequency differences

10 repeat
11 insert a bucket boundary between two values for this difference
12 histogram count++;
13 until histogram count doesn’t exceed histogram size.
14 repeat
15 find satisfying ranges for selection operation
16 until histogram is not NULL

Figure 4.3: Selection Selectivity Pseudo Code

Step 3 : Calculate Frequency Differences

{2,2,1,0,0,1,0,1} ==> Sort by Descending Order: {2,2,1,1,1,0,0,0}

Step 4 : Include Bucket Boundaries and Make a histogram

Average Freq. Values
6 1
4 3
1.43 4,5,6,9,10, 11,15

4.2.4 Join Selectivity Algorithm

The histogram for join selectivity merges histograms for each attribute. The con-

struction mechanism and procedures histogram for each attribute are same with the case

of selection operation. The reason why we have to merge histograms is that we need to

make same bucket boundaries to improve the accuracy of the estimation. For example, we

have a join operation R.i = S.a. In this case, we first make each histogram for R.i and
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S.a separately by the same procedures with selection operation. We then merge these his-

tograms and estimate frequencies again. We illustrate pseudocode in Figure 4.3. Line 5 in

this figure makes histograms for each attribute for join operation. Then we merge these two

histograms from line 6 to 12. We make new starting and ending values so as to have same

bucket boundaries (line 12). We estimate new frequencies and the number of distinct values

within each bucket in new histogram. There is no guaranteed method to estimate these

values well. In our implementation, we used containment assumption. It explains that if

the number of distinct values in histogram A is smaller than that of histogram B with same

range, all distinct values in histogram A are contained in those of histogram B (line 13-15).

We finally calculate the selectivity of join operation. The selectivity is estimated by sum

of total frequencies for all buckets. Let R’ is the sample size of R, S’ is the sample size of

S and s is the sum of total frequencies for all buckets. From line 16 to 18, we estimate the

number of values that satisfy join operation in sample. Then, we estimate selectivity; that

is s
R′∗S′ .

Example 4.5

Let query = “select i,a from R,S where R.j = S.b”

We have histograms for R.j and S.b like below.

Step 1 : Make histograms for attributes in join operation(Table 4.4). This table

maintains value ranges and average frequencies.

Step 2 : We align the histogram buckets so that their boundaries are same. For

instance, the first bucket in Table 4.4 share starting value but ending value is different.

We split the first bucket for attribute j into (1 - 3) and (4 - 6). With same manner, we

update histograms like Table 4.5.

Step 3 : Constructs new histogram with new value ranges. The average frequencies in

new histogram are estimated by the product of average frequencies in attribute j and b.

For example, the average frequencies in the first bucket of new histogram is 2 * 2 from (1 -
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1 newHis = new histogram structure
2 R’ = sample size R, S’ = sample size S;
3 s = total size that satisfies operation;
4 n = the product of R’ and S’;

5 Make Histograms for join attributes

6 repeat
7 newHis = Add bucket
8 until Histogram bucket is NULL for attribute1

9 repeat
10 newHis = Add bucket
11 until Histogram bucket is NULL for attribute2

12 Make new bucket boundaries for new histogram

13 repeat
14 Estimate frequencies for each new bucket
15 until newHis is not NULL

16 repeat
17 s = s + total frequencies
18 until newHist is not NULL

19 return s
n

Table 4.3: PseudoCode for join selectivity algorithm

3) bucket in Table 4.5. The Table 4.6 is a final constructed histogram.

Step 4 : Estimate join selectivity

s = (4 * 3) + (12 * 3) + (2000 * 2) + (400 * 1) = 4448.

Sample size R’ : 412, Sample size S’ : 84.

µ̂ = 4448
34608 = 0.129.
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Attribute j Attribute b
Ranges Average Frequencies Ranges Average Frequencies

1 - 6 (6) 2 1 - 3 (3) 2
7 - 8 (2) 100 4 - 6 (3) 6
9 - 9 (1) 20 7 - 9 (3) 20

Table 4.4: Histograms for join operations

Attribute j Attribute b
Ranges Average Frequencies Ranges Average Frequencies

1 - 3 (3) 2 1 - 3 (3) 2
4 - 6 (3) 2 4 - 6 (3) 6
7 - 8 (2) 100 7 - 8 (2) 20
9 - 9 (1) 20 9 - 9 (1) 20

Table 4.5: Aligned Histograms for join operations

4.3 Systematic Sampling Method

Systematics sampling method is proposed by Harangsri et al [23]. Systematic

sampling takes tuples with k interval from a relation with size N whose tuples are sorted in

ascending or descending order. Because this method is based on sorted values, we do not

need to use the method unless underlying data is sorted. If data is not sorted, we have to

sort first. However, we can look through all data during sorting procedure. Therefore, we

handle only sorted data for this method. Suppose that N tuples in the table are numbered

from 1 to N in some order. To select a systematic sample of n samples, if k = dN
n e then

every k -th tuple is selected commencing with a randomly chosen number between 1 to k.

For instance, N = 2000, n = 200 therefore k = 2000 / 200 = 10. Therefore, every 20th

tuple from randomly chosen number 5. Systematic sampling method has a same procedure

and code to gather samples and only selectivity estimation is different. We will describe

common procedures and codes. Figure 4.4 illustrates the procedures for the systematic

sampling. We first calculate a sample size n = β * N. The β means a sampling fraction

(0 < β ≤ 1). We then calculate an interval k = dN
n e (line 3). If attributes for selection

and join operations are not sorted, sort these attributes. (line 5-7). The first value to be

sampled is an initial value within k value (line 8). We continue this procedures until sample

size obtained so far is β * N.
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Ranges Average Frequencies
1 - 3 (3) 4
4 - 6 (3) 12
7 - 8 (2) 2000
9 - 9 (1) 400

Table 4.6: Final merged histogram for join operations

1 N = table size;
2 β = sampling fraction;
3 k = N

n ;
4 i = initial number

5 if(attribute is not sorted)
6 sort tuples in the relation;
7 endif

8 i = a randomly generated number within k;
9 get a i-th tuple

10 repeat
11 get tuple with an interval k;
12 until n = β * N

Figure 4.4: PseudoCode for systematic sampling

Example 4.6

↓←− k −→ ↓←− k −→ ↓←− k −→ ↓←− k −→↓
Values : 1 1 1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 3 4 4 5 5 5 5 5

Figure 4.5: Systematic Value Sets

Let query : select i from R where i = 3;

Table Size N : 25.

Sample fraction β : 0.2.
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Sample Size n : 25 * 0.2 = 5 by sample fraction.

We can get an interval k by 25
5 = 5.

Initial randomly generated number i : 3.

Based on Figure 4.5, we get sample values by k interval from the initial value.

Then we get sample values ; {1,1,2,3,5}

In this samples values, we can find that the number of value 3 is one.

Then we can estimate selectivity; µ = 1
5 = 0.2.

Finally, the query size is 0.2 * 25 = 5.

The result is very similar to real value 4.
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Chapter 5

Experimental Results

In this chapter, we describe the several experiments that we have conducted to

study the accuracy of various methods in estimating query sizes. We evaluate proper meth-

ods using various experimental conditions as well as performance.

This chapter starts out with experimental setup with various aspects and move on

to the results with implication.

5.1 Notations and Definitions

• Simple predicate : A simple predicate on a relation is a condition specified on a

single attribute to select the tuples of the relation which satisfy the condition.

• Complex predicate : A complex predicate on a relation is formed by any combina-

tion of conjunctive and disjunctive simple predicate on the relation.

5.2 Experimental Setup

The algorithms in this thesis were implemented by extending and modifying Post-

greSQL version 7.3.4 [3] which are open-source relational data-management system. The

tests were performed on a single processor 2.8 GHz Pentium-IV machine with 512MB mem-

ory and 80GB hard space running RedHat 9 Linux. The workload for the experiments is



32

Name Size
Region 5
Nation 25
Supplier 10,000
Customer 150,000
Part 200,000
PartSupp 800,000
Orders 1,500,000
Lineitem 6,001,215

Table 5.1: TPC-H Tables

based on the TPC-H benchmark at scale of 1 (i.e., 1 GB total size). The schemas and sizes

(i.e.,the number of tuples) of TPC-H [4] tables are shown in Table 5.1. We have conducted

experiments with following techniques and query types. In each category, we have used at

least 30 queries for experiments using integer, varchar, char, decimal and date types.

• Techniques : The parameters for the simple random sampling (Section 4.1) are sanity

bound (ψ), relative error (ε), t value which is the abscissa of the normal curve off an

area α at the tail and α is a risk of error within relative error and maximum sampling

fraction (β). In this thesis, we used that ψ, ε and β are all 0.1 and t value is 1.645 or

0.1. When α value is 0.05 and query sizes are infinite, t value is 1.645. Otherwise, if

query sizes are less than 100, t value is 0.1. The parameters for the maxdiff histogram

with random sampling method (Section 4.2) are histogram size k, maximum relative

error in bin size f and error probability γ to decide minimum random sample size.

In this thesis, k depends on system catalog in PostgreSql that is target number of

histogram bins to create. f value is 0.5 and γ value 0.01. The parameter for the

systematic sampling (Section 4.3) is the sampling fraction (β). β is set to 10% for

each relation participating in the selections and joins.

• Table Sizes : Several different table sizes are modeled using TPC-H tables. As we

can see in the Table 5.1, table sizes are various. We divide TPC-H data into small,

medium and large size of tables. When the number of tuples for the table are greater

than 0 and less than or equal to 10,000, it is considered as a small-size table. When

the number of tuples for the table is greater than 10,000 and less than or equal to

800,000, it is considered a medium-size table. When the number of tuples for the



33

table is greater than 800,000 and less than or equal to 6,001,215, it is considered a

large-size table. We used queries that have single and mixed sizes of tables for the

experiments. The first query type is small size of table where table names are region,

nation and supplier. The second query type is medium size of table where table names

are Customer, Part and PartSupp. The third query type is large size of table where

table names are Orders and Lineitem. The forth query type is small and medium

pair where Region, Nation, Supplier, Customer, Part and PartSupp tables are mixed.

The fifth query type is medium and large table pair where Customer, Part, PartSupp,

Orders and Lineitem are mixed. The sixth query type is small and large table pair

where Region, Nation, Supplier, Orders and Lineitem tables are mixed. The eighth

query type is small, medium and large tables are participated where all tables are

used. We have conducted 45 times to estimate query sizes.

• Data Distribution : Experiments are conducted using several degrees of skew for the

attributes. The degrees of skew for the experiments varied between 0 and 6. The

degree of skew is decided by Excel application. The equation for skewness is defined

as :

n
(n−1)(n−2)

∑
(xi−x̄

s )3,

where n is the number of data, xi is value, x̄ is an average value and s is standard

deviation.

We categorize the degrees of skew into four groups in Table 5.2. When the degrees

of skew is 0, it means data is uniformly distributed. In contrast, the degrees of skew

have high value, it means data distribution is highly skewed. Furthermore, when data

is evenly distributed, we can apply one more option. In our experiments, we also

separately apply non-key case on non-skew results. We have conducted 30 times to

estimate query sizes.

• Selectivities : Experiments are conducted using two different types of selectivities for

45 times. If the selectivity for queries is distributed between [0,0.2], it is considered

a low-selectivity. If the selectivity for queries is distributed between [0.8,1], it is

considered a high-selectivity. We ignored selectivities between 0.2 and 0.8 because the

probabilities to be selected are almost same. We would like to estimate extreme two

cases.
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Range Group
0 Non-Skew

(0-1] Low Skew
(1-2] Medium Skew
(2-6] High Skew

Table 5.2: Degrees of Skew

• Query Conditions : In this experiments, query conditions allow simple Selection,

join and projection operations. For the accurate result for each case of condition,

equality and range query (>, <, ≥, ≤) for selection operation and join operations are

considered. We have conducted 100 times.

• Sample Sizes : In our experiments, we investigate the accuracy of query result using

various sample fractions. We use 5%, 10% and 15% of sample fraction to the number

of tuples in a table. In common, we can get more accurate result when we apply more

sample values. However, simple random sampling method is adaptively stopped by

updated variance by new sample value. Therefore, we do not need to consider simple

random sampling for this experiments. We conduct 30 times to estimate query sizes.

• Elapsed Time : We show elapsed time when various table sizes and various sampling

fractions are applied. Taken time is different by table and sample sizes. Therefore, we

use 10% of sampling fraction to all TPC-H tables to estimate taken time for various

table size conditions. Because stopping conditions for simple random sampling do

not depend on table sizes, taken time does not based on table size. Therefore, this

method is ignored for this experiment. Moreover, ‘Nation’ and ‘Region’ tables are

omitted because they are too small to estimate to estimate elapsed time. In addition,

we use ‘Orders’ table by 5%, 10% and 15% of sampling fraction to estimate taken

time for various sampling fraction conditions. We conduct 30 times to estimate query

sizes.

• Mean Relative Error : All experimental results are based on mean relative error. It

is defined as following :

∑S
i=1

100∗abs(µ̂iN−µN)

µN

S
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where S is the number of samplings, µ is the actual selectivity, µ̂ is the estimated

selectivity which results from the ith sampling, µ̂iN is the result size estimate of the

query with the ith sampling and µN is the actual result size of query.

5.3 Experimental Results

5.3.1 Effect of Table Size

Figure 5.1 shows the average relative error between actual and the result of each

method as the categories of table sizes. We denote small size tables to S, medium size tables

to M, large tables to L and other cases to combinations of S, M and L by experimental setup

Section 5.2 in Figure 5.1. Overall, systematic sampling is better than maxdiff and simple

random sampling methods. Systematic sampling method shows almost stable results for all

cases except small table size. We explain more detail for the specific cases. In the case of

small table sizes, maxdiff histogram method shows very accurate result that is approximately

0% relative average error. In other cases, systematic sampling is the best method. In

particular, if large size of tables are used, systematic sampling has a great accuracy with a

big difference to simple random sampling and maxdiff histogram. In summary, we can use

maxdiff histogram when table size is greater than 0 and equal to 10,000. In other cases, it

is better to use systematic sampling than other methods.
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Figure 5.1: Table Size Set Estimation
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5.3.2 Effect of Frequency skew

Figure 5.2 shows the average relative error as categories of the degree of skews of

frequency set. We denote non skew frequency to Non, low skew to Low, medium skew to Mid

and high skew to High by experimental setup Section 5.2 in this figure. Overall, results for

all methods depict that the more frequencies are skewed, the more accurate the results are.

MaxDiff and systematic sampling methods show similar results which have more accurate

results than simple random sampling. Two methods show less than 5% average relative

error. When frequencies are highly skewed, all three methods perform essentially no error

(i.e.,within 3%). In summary, when data frequencies are highly skewed or not skewed, we

can choose any of three methods because the average errors are almost same. On the other

hand, simple random sampling is not a good method when data frequencies are low-skewed

or medium-skewed.
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Figure 5.2: Frequency Set Estimation

We show another result for uniformly distributed data. In our experiments, data

for this case is almost primary key in each table. Therefore, we suggest another result for

non-key values. As we can see in Figure 5.3, we can get different result from Figure 5.2. A

reason for the different result is that primary key just has low probability to be selected as a

sample because same value does not exist. Moreover, because we use selectivity to predict a

result for a whole table, the estimated result is larger than actual result although matching

value exist in sample value. Therefore, when we mix primary key and non-primary key for

experiments, estimated relative error is worse than the case of non-primary key. When we
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Figure 5.3: Non-Skew Data without primary key

see only values on non-primary key, systematic sampling shows the absolutely most accurate

result than those of two methods with a low relative error.

5.3.3 Effect of Selectivity

Figure 5.4 demonstrates the average relative error as categories of selectivities. In

the low selectivity environment, Maxdiff histogram and systematic sampling methods have

relatively small errors. In contrast,high selectivity environment show opposite results. That

means that simple random sampling performs slightly better than systematic sampling and

maxdiff histogram. In brief, when a query has a low selectivity, it is better to choose system-

atic sampling than two other methods. Otherwise, we can choose simple random sampling

rather than Maxdiff histogram and systematic sampling although all three methods have

low errors.

5.3.4 Effect of query conditions

The average relative errors for various query conditions are plotted in Figure 5.5.

For the equal conditions, systematic sampling has shown almost no error. Moreover, MaxD-

iff histogram has better result than simple random sampling method. The results for the

range queries have demonstrated excellent accuracies in three methods. Finally, systematic

sampling method has lower relative error than other two methods. The reason for accurate



38

�
�
�
�
�
�
�
�
�
	
��


�� 
��

�������������������������������� ������������

��������
��������
��������
����
������������
��������  �!"
# $%&'�!

(%)*�++ ,-.#!%.�/

Figure 5.4: Selectivity Estimation

results in range queries is that we have many candidate samples. Therefore, if many same

values are in the table, they can be selected with high probabilities. Consequentially, the

best method for equal query conditions is systematic sampling. We also choose all three

methods for range queries and systematic sampling for join operations.
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Figure 5.5: Query Condition Estimation
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5.3.5 Effect of Sampling Fraction

We applied 5, 10 and 15% of sampling fraction for maxdiff and systematic sampling

methods. For this experiments, maxdiff histogram set the number of sample to given

sampling fraction instead of using Chaudhuri’s algorithm. Maxdiff histogram in Figure 5.6

shows that we can get more accurate result when we apply 10% of sampling fraction than

the case of 5%. However, we get worse result when we apply 15% of sampling fraction than

the case of 10% of sampling fraction. It shows that it is not a good guideline to use too

many sample values. Therefore, appropriate sampling sizes are applied rather than many

sample values are used. Systematic Sampling in Figure 5.6 shows whenever we sample many

values, we can get more accurate result. Therefore, the number of samples are affected on

the accuracy of results.
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Figure 5.6: Accuracy by Sampling Fraction

5.3.6 Elapsed Time

We can estimate taken time to execute each of three methods by various table

and sample sizes. We ignored simple random sampling method for the case of table sizes

because it can be terminated when many sample values are matched early. Therefore,

maxdiff and systematic sampling methods are estimated. In Figure 5.7, we can know

systematic sampling method takes too much time to find specific position for sampled

tuple. In contrast, because maxdiff histogram randomly choose sample values, it does not
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take much time to sample although elapsed time is exponentially growing when table size

are larger.
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Figure 5.7: Elapsed time by Table sizes

Another experiments is estimation of taken time for sample sizes. Figure 5.8 shows

that simple random sampling method takes more time than other methods. When many

sample values are taken in simple random sampling, it takes much time to compare and

re-calculate mean and variance whenever new sample value is taken. Systematic sampling

and maxdiff histogram show same patterns with the case of elapsed time for table sizes.
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5.3.7 Summary

We have analyzed the accuracy of given queries by simple random sampling, maxd-

iff histogram and systematic sampling techniques. The accuracy of queries is based on the

difference between actual sizes and size of each method. We estimate query sizes by our

implemented methods and actual SQL statement. We then estimate relative error between

actual query size and each of three methods. Finally, we compare average relative errors

among three our methods. The purpose of our implementations is to suggest guidelines

in various query environments. We have proposed these environments by table size, de-

gree of skew, selectivity, query predicates and sample size fractions. Moreover, we estimate

taken time to run each of methods by table sizes and sample sizes because elapsed time

depends on these two sizes. The category for table size is divided by small, medium and

large sizes. We used these sizes separately and combined sizes. As we can see in figure 5.1,

we can recommend maxdiff histogram when table size is small where small size is between

0 to 10,000. In other sizes, systematic sampling method gives us relatively better result

than other two methods. The second category consists results by the degree of skew. In

section 5.3.2, we compare average relative errors among three our techniques. We have

non-degree, low, medium and high skews of data frequency set. In table 5.2, we can see the

range of the degree of skew that defines each set. As we can see in figure 5.2, we can not

guarantee accurate query result size in all three our methods when data is evenly distributed

(non-skew). In this case, we mixed values for primary key and non-primary key. Therefore,

we can not get accurate result. For this reason, we apply non-key values for non-skewed

separately. In this case, systematic sampling, maxdiff histogram and simple random sam-

pling methods show sequentially the more accurate result. However, maxdiff histogram and

systematic sampling methods have very accurate results that average relative errors are less

than 5%. When the degree of skew of frequencies is high, simple random sampling also can

be recommended. The third category is separated by query selectivity. Our experiments in

this category are conducted by low and high selectivities. When the selectivity is between

0 to 0.2, it is considered low selectivity. In this case, maxdiff histogram and systematic

sampling have a good result. In particular, systematic sampling method has relatively no

error. When the selectivity is between 0.8 and 1, all three methods show accurate results.

In particular, simple random sampling result shows almost no error. Then, we can rec-

ommend simple random sampling in this case. The final category contains various query
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conditions with equality and range selection predicates and join operation. When we use

systematic sampling and maxdiff histogram methods for equality conditions, we can get

accurate results and systematic sampling method has better result than the result of maxd-

iff histogram. For range queries, all three methods show very accurate results. However,

maxdiff histogram is not a good method to recommend for join operation. It has really big

difference with actual query sizes. We can also recommend systematic sampling method

for join operations. When we apply 5%, 10% and 15% of sampling fraction on maxdiff and

systematic sampling methods, we can get more accurate result for 10% of sampling frac-

tion than that of 5% of sampling fraction. However, 15% of sampling fraction shows worse

result than 10% of sampling fraction. It means appropriate sampling fraction is needed

for maxdiff histogram construction. The more sampling fraction on systematic sampling

method shows more accurate results than less sampling fraction. Therefore, the accuracy

of systematic sampling depends on sampling fraction. When we investigate taken time by

table and sample sizes, the time for systematic sampling is exponentially growing by table

and sample sizes. However, the time for maxdiff histogram is slowly growing. Overall, the

systematic sampling is the best method in almost of our experimental cases if data is sorted

and elapsed time is ignored. The maxdiff histogram method is preferred when table size

is small and the degree of frequency skew is (1-2]. Finally, the simple random sampling is

preferred when query selectivity is distributed between 0.8 and 1. When data is not sorted,

systematic sampling is not a good method because this method look at all tuples in a table.

In this case, we can not find a reason to sample because all values in a table are already

checked in sorting procedure. Moreover, systematic sampling method is not good if elapsed

time is also considered because it takes too much time to find specific positions. By tested

results, an acceptable relative error is decided by user requirements.
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Chapter 6

Conclusion

Decision whether materialized views will be used for a strategy for executing a

query is based on the number of tuples for the query result. If a materialized view is more

expensive than other available strategies, the view may not be able to be used to execute a

query. When we estimate view sizes, one of the factors is a query size that consists of the

view; that is the number of tuples. If the number of tuples are not correctly estimated, con-

suming CPU and I/O costs may be more expensive than actual costs. Therefore, estimation

of the number of tuples is a basic factor to be considered.

In this thesis, we presented three approaches for estimation of query result sizes.

They are simple random sampling, maxdiff histogram and systematic sampling methods.

We have used efficient methods for query size estimation in the current researches and we

evaluated the accuracy of these methods in several environments. The results can be used

as guidelines to choose the best method in each condition.

Our experimental results show that systematic sampling is the absolutely most

accurate and stable method. When we consider taken time and sorting procedure, system-

atic sampling method has to be ignored because it takes too much time to choose specific

positions by table and sample sizes. In addition, we can look at all tuples when sorting pro-

cedure is applied. Therefore, we can choose the best method without systematic sampling

method in this case. We can summarize the recommended methods in each category when

sorting procedure and taken time are ignored as follows :
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• Size : We can recommend MaxDiff histogram with sampling if the table sizes are small

where small is between 0 and 10,000. Otherwise, systematic sampling is preferred with

approximately 10% average relative error.

• Degree of skew : In this category, results show promising differences by degrees of

skew. Overall, we can choose any of the three methods if the degree of skew is high

or none where high is between 2 and 6 and none is between 0 and 1. In other cases of

estimations, MaxDiff histogram and systematic sampling methods are preferred.

• Selectivity : We can recommend systematic sampling if query selectivities are distrib-

uted between 0 and 0.2 and simple random sampling if selectivities are distributed

between 0.8 and 1.

• Condition : We can recommend systematic sampling in all kinds of query conditions.

In specific, we can select any of three methods in range queries because all methods

have slight differences and there are essentially no error.

• Sampling fraction : We can recommend systematic sampling in all 5, 10 and 15% of

sampling fractions. Maxdiff histogram shows appropriate sampling fraction is needed

because the accuracy of result does not depend on sample sizes.
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Appendix A

A.1 TPC-H Table Layout

In this section, we explain layouts for TPC-H tables. We indicate column names,

data types, sizes and primary keys.

PART Table

Column Name Data Type
PARTKEY identifier
NAME variable text, size 55
MFGR fixed text, size 25
BRAND fixed text, size 10
TYPE variable text, size 25
SIZE integer
CONTAINER fixed text, size 10
RETAILPRICE decimal
COMMENT variable text, size 23
Primary Key PARTKEY

SUPPLIER Table

Column Name Data Type
SUPPKEY identifier
NAME fixed text, size 25
ADDRESS variable text, size 40
NATIONKEY identifier
PHONE fixed text, size 15
ACCTBAL decimal
COMMENT variable text, size 101
Primary Key SUPPKEY



49

PARTSUPP Table

Column Name Data Type
PARTKEY identifier
SUPPKEY identifier
AVAILQTY integer
SUPPLYCOST decimal
COMMENT variable text, size 199
Primary Key PARTKEY, SUPPKEY

CUSTOMER Table

Column Name Data Type
CUSTKEY identifier
NAME variable text, size 25
ADDRESS variable text, size 40
NATIONKEY identifier
PHONE fixed text, size 15
ACCTBAL decimal
MKTSEGMENT fixed text, size 10
COMMENT variable text, size 117
Primary Key CUSTKEY

ORDERS Table

Column Name Data Type
ORDERKEY identifier
CUSTKEY identifier
ORDERSTATUS fixed text size, size 1
TOTALPRICE decimal
ORDERDATE date
ORDERPRIORITY fixed text, size 15
CLERK fixed text, size 15
SHIPPRIORITY integer
COMMENT variable text, size 79
Primary Key ORDERKEY

NATION Table

Column Name Data Type
NATIONKEY identifier
NAME identifier
REGIONKEY identifier
COMMENT variable text, size 152
Primary Key NATIONKEY



50

REGION Table

Column Name Data Type
REGIONKEY identifier
NAME identifier
COMMENT variable text, size 152
Primary Key REGIONKEY

LINEITEM Table

Column Name Data Type
ORDERKEY identifier
PARTKEY identifier
SUPPKEY identifier
LINENUMBER integer
EXTENDEDPRICE decimal
DISCOUNT decimal
TAX decimal
RETURNFLAG fixed text, size 1
LINESTATUS fixed text, size 1
SHIPDATE date
COMMITDATE date
RECEIPTDATE date
SHIPINSTRUCT fixed text, size 25
SHIPMODE fixed text, size 10
COMMENT variable text, size 44
Primary Key ORDERKEY, LINENUMBER

A.2 Queries for Experiments

In this section, we explain representative queries for each category to use experi-

mental results.

A.2.1 Size Category

This category has small, medium, large, small-medium, small-large, medium-large,

small-medium-large set. For each set of table sizes, we illustrate queries for experiments.

1. SMALL TABLE : Table sizes are less than or equal to 10,000.

select regionkey from nation where regionkey = ’3’;

select nationkey from nation where nationkey = ’12’;
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select regionkey from region where regionkey = ’4’;

select nationkey from supplier where nationkey = ’21’;

select acctbal from supplier where acctbal = 8091.65;

select suppkey from supplier where suppkey = ’3942’;

select r.regionkey, n.nationkey from nation n,region r
where n.nationkey = ’17’ and r.regionkey = ’4’
and n.regioney = r.regionkey;

select * from nation n,region r where r.regionkey = n.regionkey;

select r.regionkey from nation n,region r
where n.regionkey = ’1’ and n.regionkey = r.regionkey;

select * from supplier s,nation n
where s.nationkey = ’8’ and s.nationkey = n.nationkey;

2. Medium Table : Table sizes are greater than 10,000 and less than or equal to 800,000.

select custkey from customer where custkey = ’7204’;

select acctbal from customer where acctbal = 1228.24;

select mktsegment from customer where mktsegment = ’HOUSEHOLD’;

select partkey from part where partkey = ’4941’;

select mfgr from part where mfgr = ’Manufacturer#3’;

select brand from part where brand = ’Brand#43’;

select type from part where type = ’PROMO ANODIZED STEEL’;

select * from part p,partsupp ps where p.partkey = ps.partkey;

select * from part p,partsupp ps
where p.partkey = ’32’ and p.partkey = ps.partkey;

select brand from part where brand >= ’Brand#20’;

select availqty from partsupp where availqty > 50;
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3. Large Table : Table sizes are greater than 800,000 and less than or equal to 6,001,215.

select orderstatus from orders where orderstatus = ’F’;

select orderdate from orders
where orderdate = date ’1992-01-23’;

select orderpriority from orders
where orderpriority = ’5-LOW’;

select partkey from lineitem where partkey = ’32012’;

select linenumber from lineitem where linenumber = 4;

select orderstatus from orders o,lineitem l
where o.orderkey = l.orderkey and o.orderkey = ’1000097’;

select orderstatus from orders where orderstatus <= ’O’;

select orderdate from orders
where orderdate <= date ’1992-10-25’;

select * from lineitem where linenumber <= 5;

select * from lineitem where commitdate > date ’1992-06-21’;

4. S-M Tables : Mixed type of small and medium sizes of tables.

select * from partsupp ps,supplier s where ps.suppkey = s.suppkey;

select * from partsupp ps,supplier s
where ps.availqty >= 670 and s.suppkey = ’7310’
and ps.suppkey = s.suppkey;

select * from partsupp ps,supplier s
where ps.supplycost < 1000.00 and s.acctbal < 3000.00
and ps.suppkey = s.suppkey;

select * from customer c,supplier s
where c.nationkey = s.nationkey;

select * from customer c,supplier s
where c.acctbal <= 3000.00 and s.acctbal <= 0.00
and c.nationkey = s.nationkey;
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select * from nation n,region r,part p
where p.retailprice >= 935.00 and r.regionkey = n.regionkey;

select * from part p,partsupp ps,customer c,nation n
where p.container = ’JUMBO BOX’ and ps.supplycost = 1.00
and p.partkey = ps.partkey
and n.nationkey = c.nationkey;

select * from part p,partsupp ps,customer c,nation n
where p.partkey = ps.partkey and c.acctbal <= 4000.00
and c.nationkey = n.nationkey;

select s.nationkey,p.size,ps.supplycost
from supplier s,customer c,part p,partsupp ps
where s.nationkey = ’10’ and s.nationkey = c.nationkey
and p.size > 50 and ps.supplycost <= 12.00
and p.partkey = ps.partkey;

select r.name,p.size,ps.availqty
from region r,nation n,supplier s,part p,partsupp ps,customer c
where r.regionkey = n.regionkey and n.regionkey = ’4’
and s.nationkey = n.nationkey
and p.size < 150 and ps.availqty >=1000
and p.partkey = ps.partkey
and c.acctbal = 6853.37
and c.nationkey = n.nationkey;

5. S-L Tables : Mixed type of small and large sizes of tables

select n.name, o.orderstatus
from nation n,orders o
where n.name = ’JAPAN’ and o.orderstatus = ’F’;

select n.nationkey, o.orderpriority
from nation n,orders o
where n.nationkey = ’12’ and o.orderpriority > ’3-MEDIUM’;

select clerk
from nation n,orders o
where clerk = ’Clerk#000000039’ and n.nationkey = ’22’;

select n.nationkey, l.returnflag
from nation n,lineitem l
where n.nationkey = ’4’ and l.returnflag = ’R’;
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select o.orderpriority
from orders o,region r
where o.orderpriority <= ’4-NOT SPECIFIED’
and r.regionkey < ’3’;

select n.nationkey, o.orderpriority
from nation n,orders o,supplier s
where n.nationkey = s.nationkey
and o.orderpriority = ’5-LOW’;

select o.orderdate,n.nationkey
from orders o,nation n,supplier s
where o.orderdate >= date ’1992-09-10’
and n.nationkey = s.nationkey;

select o.clerk,n.nationkey
from orders o,nation n,supplier s
where o.clerk = ’Clerk#000000028’
and n.nationkey = ’4’ and s.acctbal > 10200.00
and s.nationkey = n.nationkey;

select *
from lineitem l,nation n,region r
where l.quantity <= 1000.00 and n.regionkey = r.regionkey;

select n.regionkey, l.quantity
from nation n,region r,lineitem l
where n.regionkey = r.regionkey and l.quantity > 500.00;

6. M-L Tables : Mixed type of medium and large sizes of tables.

select c.custkey, c.mktsegment
from customer c,orders o where c.custkey = o.custkey;

select o.custkey, c.acctbal
from customer c,orders o where o.orderkey = ’79999’
and c.acctbal >= 8000.00 and c.custkey = o.custkey;

select c.custkey, c.mktsegment from orders o,customer c
where c.mktsegment = ’MACHINERY’ and o.clerk = ’Clerk#000000010’
and c.custkey = o.custkey;

select p.brand from part p,orders o
where p.brand = ’Brand#55’ and o.totalprice <= 300000.00;
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select ps.supplycost from partsupp ps,orders o
where ps.supplycost >= 10000.00 and o.custkey = ’108290’;

select l.linenumber from lineitem l,customer c
where l.linenumber >= 7 and c.phone = ’32-363-455-4837’;

select l.partkey, p.type from lineitem l,part p
where l.quantity < 100 and p.type = ’ECONOMY ANODIZED STEEL’
and l.partkey = p.partkey;

select p.partkey, l.returnflag from lineitem l,part p
where size >= 50 and l.returnflag = ’A’
and l.partkey = p.partkey;

select l.suppkey,l.returnflag
from partsupp ps,lineitem l where ps.suppkey = l.suppkey;

select * from partsupp ps,lineitem l
where ps.availqty > 1000000 and l.linenumber < 4
and ps.suppkey = l.suppkey;

7. S-M-L Tables : Mixed type of small, medium and large sizes of tables.

select n.nationkey,c.custkey from nation n,customer c,orders o
where n.nationkey = ’3’ and c.custkey = o.custkey
and n.nationkey = c.nationkey;

select c.custkey, c.mktsegment
from customer c,orders o, nation n
where c.mktsegment = ’HOUSEHOLD’
and n.nationkey = ’13’ and o.orderpriority = ’3-MEDIUM’
and c.custkey = o.custkey
and n.nationkey = c.nationkey;

select o.custkey from customer c,orders o,nation n
where c.custkey = o.custkey and n.nationkey = ’11’
and c.nationkey = n.nationkey;

select o.custkey, o.clerk
from nation n,customer c,orders o
where o.clerk = ’Clerk#000000002’ and n.nationkey = c.nationkey
and o.custkey = c.custkey;

select r.regionkey,p.size
from orders o,part p,region r
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where r.regionkey = ’4’ and p.size < 16
and o.orderpriority = ’5-LOW’;

select s.nationkey, l.suppkey, l.linenumber
from lineitem l,supplier s,customer c
where l.linenumber = 3 and s.nationkey = c.nationkey
and l.suppkey = s.suppkey;

select * from nation n,part p,orders o
where n.name = ’JORDAN’ and p.type = ’ECONOMY BRUSHED NICKEL’
and o.orderdate = date ’1992-11-30’;

select * from orders o,partsupp ps,supplier s
where o.orderkey = ’208321’ and ps.supplycost < 47000.00
and s.suppkey = ’5311’
and ps.suppkey = s.suppkey;

select ps.partkey,ps.suppkey,o.orderstatus
from partsupp ps,supplier s,orders o
where ps.suppkey = s.suppkey and o.orderstatus = ’F’;

select n.regionkey,l.linenumber
from nation n,customer c,lineitem l
where n.regionkey = ’1’ and c.custkey = ’32000’
and l.linenumber <= 3
and c.nationkey = n.nationkey;

A.2.2 Skew Category

This category has non-skew, low-skew, mid-skew and high-skew queries.

1. Non Skew : Degree of skew is 0.

select regionkey from region where regionkey = ’3’;

select regionkey from nation where regionkey = ’4’;

select mfgr from part where mfgr = ’Manufacturer#5’;

select suppkey,acctbal from supplier where acctbal = 4641.48;

select p.partkey, ps.suppkey
from partsupp ps,supplier s where ps.suppkey = s.suppkey;
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select n.regionkey,s.phone from region r,nation n,supplier s
where r.regionkey = n.regionkey and s.phone = ’14-144-830-2814’
and s.nationkey = n.nationkey;

select ps.suppkey from supplier s,part p,partsupp ps
where ps.suppkey = s.suppkey and p.mfgr = ’Manufacturer#2’
and p.partkey = ps.partkey;

select * from region where regionkey > ’1000’;

select * from nation where nationkey > ’11’;

select * from supplier where acctbal < 3393.08;

2. Low Skew : Degree of skew is greater than 0 and less than or equal to 1.

select * from orders where clerk = ’Clerk#000000028’;

select * from orders where orderdate = date ’1992-02-22’;

select * from part where type = ’ECONOMY PLATED TIN’;

select * from part where size = 29;

select * from part where mfgr = ’Manufacturer#4’;

select * from lineitem where linenumber = 6;

select l.partkey, s.nationkey, l.shipmode
from lineitem l,part p,supplier s
where l.shipmode = ’MAIL’ and p.container = ’WRAP BOX’
and l.partkey = p.partkey
and l.suppkey = s.suppkey
and s.nationkey > ’10’;

select c.custkey from customer c,part p
where c.mktsegment = ’MACHINERY’ and p.size = 30
and c.custkey = o.custkey;

select discount from lineitem where discount > 0.04;

select discount from lineitem where discount = 0.05;

3. Mid Skew : Degree of skew is greater than 1 and less than or equal to 2.
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select * from orders where orderstatus = ’P’;

select * from orders where orderpriority = ’4-NOT SPECIFIED’;

select tax from lineitem where tax = 0.02;

select orderkey,partkey,suppkey from lineitem where returnflag = ’A’;

select orderkey,partkey,suppkey,tax from lineitem where tax <= 0.03;

select * from lineitem l,orders o
where o.orderstatus = ’F’ and l.tax > 0.00
and l.orderkey = o.orderkey;

select * from orders o,lineitem l
where o.orderpriority = ’3-MEDIUM’ and l.returnflag < ’N’
and l.orderkey = o.orderkey;

select * from lineitem l,orders o
where o.orderstatus < ’O’ and l.returnflag = ’A’
and l.orderkey = o.orderkey;

select orderstatus from orders where orderstatus > ’F’;

select * from lineitem l,orders o
where o.orderpriority > ’1-URGENT’ and l.tax = 0.06
and o.orderkey = l.orderkey;

4. High Skew : Degree of skew is greater than 2 and less than or equal to 6.

select * from lineitem where shipdate = date ’1992-02-22’;

select * from lineitem where commitdate = date ’1992-04-20’;

select * from lineitem where shipdate > date ’1992-02-29’;

select * from lineitem where commitdate > date ’1992-06-22’;

select * from lineitem where shipdate < date ’1992-02-13’;

select * from lineitem where commitdate < date ’1992-05-31’;

select * from lineitem where shipdate <= date ’1992-02-24’;

select * from lineitem where commitdate <= date ’1992-04-26’;
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select * from lineitem where shipdate >= date ’1992-06-14’;

A.2.3 Selectivity Category

In this section, we suggest queries for experiments in selectivity category.

1. Low Selectivity : Selectivity is between 0 and 0.2.

select * from region where regionkey = ’3’;

select * from nation where nationkey = ’11’;

select * from customer where nationkey = ’19’;

select * from orders where clerk = ’Clerk#000000038’;

select * from supplier s,nation n where s.nationkey = n.nationkey;

select * from part p,partsupp ps where p.partkey = ps.partkey;

select * from supplier s,nation n,region r
where n.regionkey = r.regionkey and s.acctbal > 0.00
and s.nationkey = n.nationkey;

select * from customer c,nation n,orders o
where c.nationkey = n.nationkey and o.orderdate > date ’1992-01-03’
and o.custkey = c.custkey;

select * from customer where mktsegment = ’AUTOMOBILE’;

select * from lineitem where discount = 0.04;

2. High Selectivity : Selectivity is between 0.8 and 1.

select * from orders where shippriority = 0;

select * from orders where clerk > ’Clerk#000000014’;

select * from lineitem where quantity > 10.00;

select * from lineitem l,partsupp ps,supplier s,nation n
where l.quantity > 8.00 and s.nationkey = n.nationkey
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and ps.availqty > 10;

select * from part where brand < ’Brand#52’;

select * from partsupp ps,lineitem l,part p,customer c
where ps.availqty > 5 and linenumber < 7
and mfgr > ’Manufacturer#1’ and c.mktsegment >= ’AUTOMOBILE’;

select * from orders,lineitem
where linenumber > 1 and orders.orderdate > date ’1992-01-03’;

select * from lineitem where extendedprice > 910.00;

select * from orders o,nation n,region r
where o.shippriority = 0 and n.nationkey > ’0’ and r.regionkey > ’0’;

A.2.4 Query Conditions

In this section, we suggest queries for equality, range and join conditions for ex-

periments.

1. Equality Conditions

select partkey from part where partkey = ’10’;

select supplycost from partsupp where supplycost = 1.26;

select availqty from partsupp where availqty = 32;

select suppkey from partsupp where suppkey = ’1001’;

select type from part where type = ’ECONOMY PLATED COPPER’;

select size from part where size = 21;

select * from orders where totalprice = 112986.49;

select * from orders where orderdate = date ’1992-01-18’;

select * from orders where orderstatus = ’P’;

select * from lineitem where linenumber = 3;

2. Range Conditions
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select * from region where regionkey > ’3’;

select * from supplier where acctbal < 10000.00;

select * from supplier where acctbal <= 30000.00;

select * from part where brand > ’Brand#34’;

select * from part where brand <= ’Brand#15’;

select * from part where size > 21;

select * from part where size <= 39;

select * from partsupp where supplycost > 20000.00;

select * from orders where totalprice < 15000.00;

select * from lineitem where linenumber >= 2;

3. Join Queries

select * from supplier s,nation n where s.nationkey = n.nationkey;

select * from supplier s,partsupp ps where s.suppkey = ps.suppkey;

select * from customer c,nation n where c.nationkey = n.nationkey;

select * from orders o,customer c where o.custkey = c.custkey;

select * from orders o,lineitem l where o.orderkey = l.orderkey;

select * from lineitem l,supplier s where l.suppkey = s.suppkey;

select * from customer c,supplier s where c.nationkey = s.nationkey;

select * from lineitem l,part p where l.partkey = p.partkey;

select * from lineitem l,partsupp ps where l.suppkey = ps.suppkey;

select * from region r,nation n where r.regionkey = n.regionkey;
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A.2.5 Sampling Fractions

In this section, we suggest queries for various sampling fractions. All queries are same

with all sampling fractions for the accurate comparison.

select * from supplier where nationkey >= ’3’;

select * from supplier where nationkey = ’21’;

select * from partsupp where suppkey = ’1015’;

select * from partsupp where supplycost >= 100.00;

select * from part where brand = ’Brand#55’;

select * from customer where nationkey = ’21’;

select * from customer where mktsegment = ’FURNITURE’;

select * from orders where custkey >= ’108284’;

select * from orders where clerk <= ’Clerk#000000006’;

select * from lineitem where linenumber = 7;


