ABSTRACT

HARVIE, DAVID PAUL. Knowledge Sharing Mechanism (KSM):A Framework
for Software Engineering and Command and Control. (Under the direction of Dr. Thomas

L. Honeycutt).

The Knowledge Sharing Mechanism (KSM) is a framework to develop solutions to
the complex problems faced in both software engineering and command and control. The
environments of software engineering and military command and control systems are very
similar because they are both instances of complex problem solving. The common nemesis
to successfully developing solutions in these environments is change. Our understanding
of the problem and the requirements needed to solve the problem as well as the problem
environment itself undergo change. The challenge for any complex problem solving method-
ology is the balance of adapting to multiple changes while keeping focused on the overall
desired solution.

The KSM is an iterative method for understanding a complex problem, developing
a framework for solving that problem, creating, developing, and refining the parts of the
solution for the problem, and then reassessing those partial solutions and overall framework
until the complete solution has been fully developed. The KSM is based on the integration
of Christopher Alexander’s unfolding and differentiation processes with the image theory of
command and control. In image theory, there are two perspectives in developing a solution.
The first is topsight which is an overall general picture of the situation, and the second is
insight which is a focused detailed view of a portion of the solution. Use of topsight and
insight must be balanced in order to enable the solution’s success. Alexander’s unfolding
process is the basis for understanding the complex interactions of both the software engi-
neering and command and control environments. The KSM uses Alexander’s differentiation
process to achieve the correct balance of topsight and insight.

The KSM also uses the Knowledge Management discipline as another perspective
in learning how to solve complex problems. The KSM uses the Knowledge Insight Model
(KIM) in which there are four roles or patterns in Knowledge Management: the Framer, the
Maker, the Finder, and the Sharer. The Framer is concerned with establishing the overall
architecture for solving the problem, the Maker is responsible for developing innovative

solutions for the problem, the Finder searches for resources to assist the Maker in developing

solutions, and the Sharer is responsible for managing the whole process by ensuring that
the Framer, the Finder, and the Maker sharer their knowledge. Of the four roles, the Sharer
is the most critical to the success of the solution. This knowledge sharing is the basis for
the Knowledge Sharing Mechanism.

This paper will then analyze the KSM against evaluation criteria in both software
engineering and command and control. The purpose is to demonstrate the validity of KSM
as a framework to solving the complex problems in both environments. Finally, the paper
will introduce ways that the KSM can be practically implemented in both software engi-
neering and command and control. The KSM is a beneficial framework for an organization
to develop software or manage their command and control systems because the KSM has
the ability to ably respond to change while keeping the organization focused on achieving

its desired goals

Knowledge Sharing Mechanism (KSM):A Framework
for Software Engineering and Command and Control

by
David Paul Harvie

A thesis submitted to the Graduate Faculty of
North Carolina State University
in partial fulfillment of the
requirements for the Degree of
Master of Science

Computer Science

Raleigh
2006

Approved By:

Dr. Matthias Stallmann Dr. Laurie Williams

Dr. Thomas L. Honeycutt
Chair of Advisory Committee

ii

To my loving and beautiful wife, Stephanie, and to our wonderful daughter, Paula Beth,
for all your love, support, and patience.
To my dad and mom for raising my brother, Jonathan, and me in a Christ-honoring house
and instilling the importance of character.
Ultimately, to the Lord Jesus Christ who has given me love, life, grace, and mercy that 1
could never repay.

“The fear of the LORD is the beginning of knowledge.” Proverbs 1:7 (NIV)

iii

Biography

David Paul Harvie was born in El Paso, Texas, on May 24, 1974. He attended
Eastwood High School in El Paso (1988-1992) and the United States Military Academy at
West Point, New York (1992-1996), where he received a Bachelor of Science in Computer
Science and was commissioned a Second Lieutenant in the United States Army. After West
Point, David successfully completed Airborne School at Fort Benning, Georgia, and gradu-
ated on the Commandant’s List from the Field Artillery Officer Basic Course at Fort Sill,
Oklahoma. He then completed Ranger School at Fort Benning en route to his assignment
at Fort Bragg, North Carolina. In 1997, David was assigned to the 3-319th Airborne Field
Artillery Regiment, 82nd Airborne Division. During his tour at Fort Bragg, he performed
the duties of Company Fire Support Officer, Battery Fire Direction Officer, Battery Exec-
utive Officer, and Battalion Fire Direction Officer. David graduated from the Jumpmaster
Course in 1998, and he deployed in 1999 to Kosovo for six months as part of Task Force
Blue Devil (3-504 PIR). Shortly after returning from Kosovo, David returned to Fort Sill
where he graduated as the Distinguished Honor Graduate of the Field Artillery Captains
Career Course.

In 2001, was assigned to 1-39 Field Artillery (Multiple Launch Rocket System),
3rd Infantry Division at Fort Stewart, Georgia. David served as the Battalion Maintenance
Officer and Battalion Assistant Operations Officer. On January 7, 2003, he deployed with
the battalion to Kuwait as part of Operation ENDURING FREEDOM. This operation
transitioned to Operation IRAQI FREEDOM on March 19, 2003, and 1-39 FA (MLRS)
fired six missiles and over 600 rockets in combat operations from the Kuwaiti border to

Baghdad. On May 1, 2003, David assumed command of Battery C, 1-39 FA (MLRS) at the

iv

Baghdad International Airport. The battalion redeployed to Fort Stewart on June 3, 2003,
and David continued his duties as Battery Commander until November 24, 2004.

Selected to teach Computer Science at West Point, David is an Active Duty Cap-
tain who began pursuing a Master of Science in Computer Science at North Carolina State
University at Raleigh, North Carolina, in January 2005. His awards and decorations include
the Bronze Star Medal, Meritorious Service Medal, Army Commendation Medal with Oak
Leaf Cluster, Army Achievement Medal with 2 Oak Leaf Clusters, Kosovo Campaign Medal,
Iraq Campaign Medal, Global War on Terrorism Expeditionary Medal, Global War on Ter-
rorism Service Medal, National Defense Service Medal with Bronze Star Device, NATO
Medal, Senior Parachutist Badge, Air Assault Badge, and Ranger Tab. David is married to
the former Stephanie Eaton of Fayetteville, North Carolina, and they have one daughter,
Paula Beth.

Acknowledgements

I wish to thank Dr. Thomas L. Honeycutt for his inspiration and guidance that
sparked my interest in this subject in his Software Engineering class. I have learned so much
from conversations with Dr. Honeycutt, both in and outside the classroom. Thank you for
guiding me along the way. I also want to thank my committee members, Dr. Matthias
Stallmann and Dr. Laurie Williams, for their insight and knowledge.

I wish to also thank David R. Wright for his knowledge and insight as often we dis-
cussed various topics with Dr. Honeycutt outside of Daniels Hall and Engineering Building
II. T greatly appreciate David’s expertise and assistance in building the I¥TEXfiles necessary
for this thesis.

Finally, and most importantly, I wish to thank my wife, Stephanie, and our daugh-
ter, Paula Beth, for being my biggest supporters. Your love, understanding, and acceptance

have made this endeavor possible. You two are the biggest blessings in my life.

Contents

List of Figures

1 Introduction

1.1 Research Motivation,
1.2 Statement of the Problemo L.
1.3 Goals for This Thesis i
1.4 Objectives of This Thesis
1.5 Thesis Layout
2 Problems of Complexity in SE and C2
2.1 SE Environment
2.1.1 In The Beginning
2.1.2 Along Comes the Waterfall
2.1.3 The Spiral Model - It’s All About the Risk
2.1.4 The Agile Revolution
2.1.5 Attempting to Balance Agile and Plan-Driven Methods
2.2 C2 Environment
2.2.1 What is Command and Control
2.2.2 The Rise of Industrial Age C2
2.2.3 The Failure of Industrial Age C2
2.2.4 C2in the Information Age
2.3 Agility is the Winner oL oL
3 Complexity and the Unfolding Process
3.1 The Universe of Centers
3.2 The Nature of Centers
3.3 The Fifteen Properties o L
3.4 Unfolding e

4 A Tale of Two Images
4.1 The Value of Images
4.2 Topsight Versus Insight

4.3 Achieving Balance Through Differentiation

5 The Knowledge

Sharing Mechanism

5.1 The Knowledge Insight Model (KIM)
5.2 The Four Roles
5.3 Topsight and Insight Using KIM
5.4 The Importance of the Sharer
5.5 The Knowledge Sharing Mechanism (KSM)
5.6 The Existence of KSM in Software Engineering
5.7 The Existence of KSM in Command and Control

6 Analysis of the KSM
6.1 Purpose for the Analysis
6.2 Analysis of the KSM in Software Engineering
6.3 Analysis of the KSM in Command and Control

7 Integration of the KSM
7.1 Purpose for Integration Lo
7.2 Integrating KSM into Software Engineering
7.3 Integrating KSM into Command and Control

8 Conclusion and Future Work

8.1 Conclusion
8.2 Future Work

Bibliography

vii

27

31
31
34
36
37
38
41
42

45
45
45
47

50
50
50
52

55
55
56

58

viii

List of Figures

2.1 Royce’s Waterfall Model[30] 6
2.2 Boehm’s Spiral Model [9]o Lo 8
2.3 Scrum Lifecycle [15]o 10
2.4 Boehm-Turner’s Model for Balancing Agile and Plan-Driven Methodologies[10] 11
3.1 Alexander’s 15 Properties[4] 21
4.1 Alexander’s Differentiation Process[5] 30
51 PDCA Cycle[22] . . oo 32
5.2 Hoshin and Kaizen PDCA Cycles[22] 33
5.3 PDCA Cycle Stages of an Organization[22] 34
5.4 Knowledge Insight Model (KIM)[22] 35
5.5 The Framer Role[22] 36
5.6 The Maker Role[22] 37
5.7 The Finder Role[22] 38
5.8 The Sharer Role[22] Lo 39
5.9 Knowledge Sharing Mechanism (KSM) 40
5.10 MCS Light Project Development Process[36] 44
7.1 Military Decision Making Process (MDMP)[19] 52
7.2 Mission Analysis Tasks[19] L oL 53

Chapter 1

Introduction

1.1 Research Motivation

What is software engineering? One of the first usages of the term ‘software en-
gineering’ occurred in 1968 during a North Atlantic Treaty Organization (NATO) Science
Committee conference. The NATO Science Committee chose the term ‘software engineer-
ing’ as the title of their conference in order to provoke discussion on the need for software
development and production to be based on theoretical and practical disciplines similar
to other engineering fields. The NATO Science Committee recognized a growing crisis in
the ability to develop and produce large scale software for an ever-increasing computerized
society. There was an obvious need to formalize the software development process in order
to manufacture good software that met the needs of the customer. This, however, would
be easier said than done[25].

Why is software engineering hard? Software engineering is hard because it involves
developing an abstract solution to a complex and ever-changing problem. Fred Brooks[13]
stated that “the hardest part of building software is the specification, design, and testing
of abstract concepts that are the essence of software.” Compounding the difficulty in this
problem solving endeavor is the inevitability of change. Brooks[12] also noted that “not only
are changes in the objective inevitable, changes in the development strategy and technique

are also inevitable.” Thus, software engineering can be viewed as complex problem solving

on a problem that constantly changes.

By viewing problem solving as a higher order abstraction of software engineering,
one can look to other fields that are derivatives of problem solving for possible insight.
One such field is the military command and control systems. In fact, the problem solving
dilemmas faced by software engineering are very similar to the decision making challenges
faced by military command and control systems. The Army defines command and control as
“the exercise of authority and direction by a properly designated commander over assigned
and attached forces in the accomplishment of a mission. Commanders perform command
and control functions through a command and control system.” [18] The missions faced by
commanders vary widely and greatly from combat operations, civil assistance, and nation
building in Iraq and Afghanistan to Hurricane Katrina disaster relief in Louisiana and
Mississippi. These are complex problems in which the problem environments and often the

problems themselves change very rapidly.

1.2 Statement of the Problem

The common challenge to both software engineering and command and control is
how to deal with change. One way to deal with change is to reject it. Once a plan has been
made, stick to the plan. This has the benefit of adhering to an overall vision from start to
end. Nonetheless, this approach is very prone to failure if the original plan did not take
into account all potential problems. The second approach is to constantly react to change
whenever it occurs. The most apparent benefit is the ability to be flexible and adjust to
unforeseen changes and challenges. However, this approach can also fail if during all the
adjustments to change, the overall goal of the initial plan is lost. Obviously, there must
be some middle ground between these two extreme approaches that will allow us to adjust
to change while simultaneously staying focused on the overall solution. The problem is to
develop a methodology that is responsive to the inevitable changes while staying focused

on achieving the goals of the overall solution.

1.3 Goals for This Thesis

The purpose of this paper is to introduce the Knowledge Sharing Mechanism
(KSM) as a framework for adapting to change in both the software engineering and mili-
tary command and control environments. First, the paper will demonstrate the need for
the KSM in both software engineering and command and control. The characteristics of the
desired KSM will be revealed using Christopher Alexander’s Unfolding Process[4]. Then,
the paper will describe the KSM in detail which uses as a foundation Alexander’s Differen-
tiation Process[5]. Finally, the paper will show how the KSM can and should be integrated

in the software engineering and military command and control environments.

1.4 Objectives of This Thesis

The objectives for this paper are as follows:

1. Review relevant literature regarding the historical problems of dealing with change in

the software engineering and command and control environments.

2. Demonstrate the need for and the characteristics of a knowledge sharing mechanism

in both environments.
3. Introduce the Knowledge Sharing Mechanism (KSM) in detail.
4. Analyze the effectiveness of the KSM.

5. Demonstrate the integration of KSM in both the software engineering and command

and control environments.

1.5 Thesis Layout

This paper will begin with historical perspectives of both software engineering and
command and control. These two histories parallel each other in that hierarchical, special-
ized systems were developed to bring order out of chaos. However, these systems failed to
adjust to the increasingly complex and uncertain environments of the software engineering

and command and control worlds. The paper will then introduce Christopher Alexander’s

unfolding process, a discussion about image theory, and Alexander’s differentiation process
as the foundations for the KSM. Then, the KSM will be introduced in detail. Finally, the
paper will analyze the KSM using appropriate performance evaluations and propose sug-
gested implementation of the KSM in both the software engineering and military command

and control communities.

Chapter 2

Problems of Complexity in SE and

C2

2.1 SE Environment

2.1.1 In The Beginning

As computing was in its infancy during the 1950’s and early 1960’s, the effort was
almost entirely focused on hardware. Software was treated as an afterthought that was
only necessary to make the hardware work. In fact, most software was coded, maintained,
and fixed by one individual for a specific piece of hardware[29]. There was no underlying
strategy or development concept that guided these early programmers. Robert Graham|[25]
compared the practices of software developers in 1968 to that of the Wright brothers trying
to build a flying machine. Programmers would “build the whole thing, push it off the cliff,
let it crash, and start all over again.” Obviously, these haphazard and random means of
developing software would soon prove inadequate.

It was in this state of affairs, that the North Atlantic Treaty Organization (NATO)
Science Committee held an international conference in 1968 to address their growing con-

cerns with software development. In this conference, NATO coined the phrase “software

engineering” in order to prescribe an engineering methodology and mind set to the world
of software engineering[25]. This conference was important because the experts in the com-
puter and software development fields recognized a growing crisis with developing future

software reliably and within budget. However, they did not offer any solutions to this crisis.

2.1.2 Along Comes the Waterfall

The first software development model was developed by Winston Royce in 1970.
He first detailed that the requirements for a piece of software must be methodically analyzed
before actual code could be written. Royce further refined this process into seven steps.
The process would begin with the system requirements which would translate to software
requirements. These requirements would be analyzed, and from this analysis the program
design would take shape. The program design would then be translated into code which
would be tested until finally it was operational. These seven steps flowed down from top
to bottom like a waterfall[30]. Thus, Royce’s methodology of software development became

forever known as the “Waterfall Model.”

SYSTEM

REQUIREMENTS v

SOFTWARE

REQUIREMENTS \y

ANALYSIS -w

PROGRAM
DESIGN -\y

CODING _\y

TESTING '\y

OPERATIONS

Figure 2.1: Royce’s Waterfall Model[30]

The Waterfall Model was essentially a derivative of the traditional production
method approach. The requirements for a product would be analyzed, translated into
design, built along an assembly line, tested, and then marketed. Nevertheless, Royce in
his seminal article recognized that discoveries made in successive steps in model may force
developers to revisit previous steps in order to make changes to the design of the software.
Hopefully, this revisiting of previous steps could be limited to immediately preceding steps.
Royce also recommended that a first product, or prototype, software product should be
developed in order to learn about an original product before developing the second product
for the customer|[30].

The fundamental flaw with the Waterfall Model is its inability to accommodate
change. As early as 1975, it became obvious that certain changes in a software system goals
and implementation were inevitable. Fred Brooks[12] noted that “not only are changes
in the objective inevitable, changes in the development strategy and technique are also
inevitable.” In fact, he advocated that a software developer plan to throw away the first
design or prototype because the software developer would have to anyway due to changing
requirements and implementations. Thus, software developers continued to look for a better

model.

2.1.3 The Spiral Model - It’s All About the Risk

The Waterfall Model was the dominant software development model until the
mid-1980’s. Then, Barry Boehm, working at TRW Defense Systems Group, proposed an
alternative, risk-based software development model known as the Spiral Model.

The Spiral Model is an iterative software development model consisting of multiple
concentric cycles that spanned four quadrants. This was an evolutionary model that pro-
duced more complex prototypes upon the completion of each circuit of the four quadrants
until the final product is delivered to the customer. In the first quadrant, the software
developer in conjunction with the customer determined the objectives for the upcoming
release. The software developer also determines alternative methods of accomplishing these
objectives and what constraints are placed on those methods. In the second quadrant,
the software developer evaluates the alternative methods by identifying and resolving their
inherent risks. The developer then enters the third quadrant using the method with the

least residual risk remaining and implements that method. At the conclusion of the third

quadrant, the software developer conducts a review with the customer to determine how
well that release accomplished its stated objectives. The fourth quadrant is then used to
plan for the next iteration and release (unless you have just delivered the final release)[11].
A later version of the Spiral Model added three more activities (or sectors) to the beginning
of each cycle. Those three activities were identifying the key stakeholders in the customer
organization, identifying those stakeholders win conditions for the system, and then recon-
ciling any conflicting win conditions among the stakeholders that results in a final set of

negotiated win conditions before identifying objectives[9].

2. ldentify Stakeholders’
win conditions

. Reconcile win conditions.
Establish next level
objectives, constraints,
alternatives

1. Identify next-level
Stakeholders

4. Ewvaluate product and
process alternatives.
Resolve Risks

7. Review, commitment

6. Validate product
and process
definitions

5. Define next level of
product and process -
including partitions

Figure 2.2: Boehm’s Spiral Model [9]

The weakness of this model is the ability of the software developer to accurately
identify, assess, and mitigate risks during each iteration. This ability to manage risk is
entirely hinged upon the developer’s knowledge of the product and the environment into
which it is being developed for. It is apparent that such complete knowledge will not be
available at the onset of the project. There will be new knowledge gained not only by the

software developer, but by the customer during the course of the project.

2.1.4 The Agile Revolution

Many in the software engineering community saw the current software development
methodologies as too rigid and incapable to deal with the inevitable changes associated with
producing software. These people began to develop what were later called Agile Methods.
The motivation behind the Agile Methods is to embrace the inevitability of change and to

then adeptly use the change to produce successful software[7]. Two of the most dominant
of the Agile Methods are eXtreme Programming (XP) and Scrum.

XP was developed by Kent Beck in the late 1990s. The classic model of the cost of
implementing changes is that it follows an exponential path. A change implemented later
in software development will cost much (perhaps exponentially) more in resources than if
the change was implemented sooner. The driving principle behind XP is to flatten the cost
of change so that a change implemented late in the development of the software system is
little more or even the same as if the change was implemented at the very beginning in of
the development cycle[7].

XP seeks to achieve this flattened cost of change curve by adhering to five fun-
damental principles. The first principle is rapid feedback. In the ideal XP environment,
a customer representative is positioned on-site with the XP development team in order to
answer questions and give immediate feedback on the progress of the system. The second
principle is to assume simplicity. XP developers solve the current problem as simply as pos-
sible instead of devising a much more complex solution to handle potential future problems.
The third principle is incremental change. The idea is that any problem can be solved in a
series of little steps as opposed to trying one giant step. The fourth principle is to embrace
change since it is inevitable. The fifth and final principle is to do quality work. Developed
code is evaluated to see if there is a better or more efficient way to implement the same
solution. By achieving the simplest solution possible, the developer gives himself or herself
more flexibility to add to that code or change it[7].

Another agile software development methodology is Scrum which was developed
by Ken Schwaber in the early 2000’s. Scrum attempts to control the software development
process using an empirical approach. This empirical approach expects the unexpected
and uses frequent inspection and adaptation in order to respond to the uncertainties that
develop. This is very similar to the XP approach except that Scrum deals more with the
managing of the software development process whereas XP deals more with the mechanisms
of coding and testing the software[32].

The Scrum process begins with the Product Owner developing and prioritizing the
Product Backlog for the desire software product. The Product Backlog is a prioritized list of
all the product requirements. The Scrum Team, which is a self-organizing and autonomous
group of about seven programmers led by a Scrum Master, takes as many requirements

from the Product Backlog that can be met in 30 days and creates a Sprint Backlog. The

10

cruny 15 minute daily meeting.
. Teams membar respand 1o basics;
1) Whai did you do since lasl Scrum

Meetin
2) Do you have any ob#acies?
Spanf Backiog: Backiog 3y What will you do bafore naxt
Faaluraiz) iems 30 days meefing?
assigned expanded
10 sprnt by teain
=] ¥=7 7
. ! —up’/
Mew functionality
BE . |5 demenstrated
- at end of sprint

Froduct Backiog.

Prinzitizad praduct features desirad by lhe customer

Figure 2.3: Scrum Lifecycle [15]

Scrum Team then has a 30 day Sprint in which to write and test the code to fulfill all the
requirements outlined in the current Sprint Backlog. During this 30 day Sprint, the Scrum
Master facilitates a daily 15 minute meetings called the Daily Scrum. At the Daily Scrum,
each member of the Scrum team brief each other on what he or she has done since the last
Scrum meeting, what he or she plans to do between now and the next Scrum meeting, and
what issues he or she encountered that prevented him or her from accomplishing the desired
goals. A key concept in Scrum is that the Scrum team has autonomy and be left alone
during this Sprint process. At the end of the Sprint, the Product Owner and the Scrum
team conduct a Sprint Review to cover how the Scrum Team fulfilled the requirements

outlined in the Sprint Backlog and to help develop the next Sprint Backlog|[32].

2.1.5 Attempting to Balance Agile and Plan-Driven Methods

Some have attempted to create a hybrid of the agile and plan-driven software
development models. One such hybrid is the model proposed by Barry Boehm and Richard

Turner. Three of their top six conclusions are that:

1. Agile and plan-driven methods have home grounds where one clearly dominates the

other.

2. Future trends are towards application developments that need both agility and disci-

pline.

11

3. Some balanced methods are emerging.

Boehm and Turner thus attempt to create a balance model using a five axis polar plot using
risk analysis as the basis of determining the mix of agile and plan-driven methodologies to
use given a particular software project[10].

Personnel
(% Level 1B) (% Level 2&3)

0 T 15
a0 T 20
20 -+ 26
Criticality Dynamism
Loss due to impact of defects; T
(P) R (% Requiremenis-change/month)
M
Livee Single
Uk

Size
(# of personnel) Culture
(% thriving on chaos vs. order)

Figure 2.4: Boehm-Turner’s Model for Balancing Agile and Plan-Driven Methodologies[10]

2.2 C2 Environment

2.2.1 What is Command and Control

As previously mentioned, the Army[18] defines command and control (C2) as “the
exercise of authority and direction by a properly designated commander over assigned and
attached forces in the accomplishment of a mission. Commanders perform command and
control functions through a command and control system.” Similarly, the Marine Corps[34]
defines C2 as “the means by which a commander recognizes what needs to be done and
sees to it that appropriate actions are taken.” In other words, C2 is a systemic framework
by which an organization, such as the military, identifies problems, develop solutions to
those problems, and then implement those solutions. It is important to note that while the

remaining discussion with regards to C2 will have a military flavor, C2 is not limited to

12

the armed forces. Businesses, organizations, sports teams, and other groups of people that
strive to achieve goals by working together use some form of C2. Otherwise, only individual

accomplishments would be possible.

2.2.2 The Rise of Industrial Age C2

Command and control has existed in military forces since the earliest recordings
of history. However, command and control used to be referred as only command with the
obvious emphasis on the ability of the military commander. Prior to the advent of the
Industrial Revolution in the 1800’s, the predominant method of C2 was detailed command.
The commander would position himself in a strategic location where he could see the entire
battlefield, the majority of his forces, and the most enemy forces as possible. The com-
mander would then formulate a battle plan to defeat the enemy and send instructions to
his subordinate commanders on what their assigned tasks were. This centralized problem
solving approach to C2 generally worked because the battlefield and the military forces
involved were small enough to be effectively seen by one person. In addition, most battles
lasted only one day[18].

Detailed command is a plan-driven approach that stems from the belief that success
on the battlefield comes from imposing order and certainty. The commander gave detailed
and explicit orders to his subordinates who were expected to carry them out with strict
obedience. In this model, information flows up from subordinate to superior levels all the
way to the commander. The commander develops a grand plan and then transmits the
necessary orders to accomplish that plan back down to his subordinates to carry out.[18]
The commander was the pivotal, and many times the only, decision-maker on the battlefield.
Success or failure rested with his ability to comprehend the situation and develop an effective
battle plan.

As armies and battlefields grew larger and more complex, it became impossible for
one commander to be able to visualize the entire battlefield and thereby develop an effective
battle plan. During the Industrial Age, military theorists began to see armies as simply
machines of the nation-state. Armies could then be optimized for success on the battlefield
based on elaborate mobilization and deployment algorithms and schedules, similar to an
industrial production plant[27]. The military, as a result, began to adopt some Industrial

Age production principles. These principles were decomposition, specialization, hierarchical

13

organizations, centralized planning, decentralized execution, and optimization[2].

Decomposition is taking a “divide and conquer” approach to a problem. A mili-
tary staff responsible for assisting the commander in developing the battle plan would be
decomposed into various functional areas. Different staff officers were assigned to analyzing
intelligence, keeping track of personnel data, monitoring logistics, developing a scheme of
maneuvering units, and developing a plan of using artillery and mortar fires. This decom-
position into specific functional areas led to the second principle, specialization. Since these
staff officers and their soldiers were assigned to perform a specific task, such as monitoring
logistics, they became specialists in their fields. We still see this specialization today as
soldiers are assigned to different functional organizations called branches (e.g. Infantry,
Field Artillery, and Transportation)[2].

Militaries are by their nature hierarchical organizations. The importance of hier-
archy during the Industrial Age deals with span of control, which is the amount of people
that one person can adequately supervise. A general rule of thumb is that one person can
have a span of control between three and seven people. If there are only seven people in an
organization then it is no problem for the leader to supervise. However, if the organization
has more people, for example 20 people, then the leader can divide the organization into
four groups of five people each and appoint a leader within each of those groups. Now
the organization leader only has to supervise four group leaders who each supervise four
people under them. Thus, you begin to grow a bureaucracy in the organization, civilian
and military[2].

Hierarchical organizations by nature gravitate toward centralized planning and
decentralized execution. Sensory information flows upward from the worker at the lowest
rung up through a bureaucracy of middle management to the leader (or his staff) who
analyze it and develop a plan based on that information. The final plan is then transmitted
back down through the middle management until it is disseminated to the lowest level.[34]
One key weakness in this approach is that there is little to no cross communication between
elements in the organization if they do not share a common hierarchy. The other key
weakness is the assumption that the higher up a person is in the organization, the more
informed and the better able he or she is to develop an appropriate solution given the
current situation. Unfortunately, many people have learned that “higher does not mean
smarter[8].”

The purpose behind decomposition, specialization, hierarchical organizations, cen-

14

tralized planning, and decentralized execution was optimization. Military planners sought
to deal with the complexity of warfare by iteratively dividing it down into multiple small
problems that could be easily solved. They believed that not only did solutions exist to
these small problems; there existed an optimal solution for each problem. The thought was
the optimal solutions of these small problems would then result in an aggregate optimal

solution for the large scale problem (i.e. the battle at hand)[2].

2.2.3 The Failure of Industrial Age C2

Centralized planning has two nemeses: change and uncertainty. In the late 1800’s,
Helmuth von Moltke, Chief of the Prussian General Staff recognized the inability of the C2
philosophy developed during the Industrial Age to handle change. Von Moltke stated that
“no plan of operations extends with any degree of certainty beyond the first encounter with
the enemy main force.” As a result, von Moltke developed a concept called Auftragstaktik
(which is translated “mission tactics”). Auftragstaktik emphasized decentralized initiative
within the overall strategic design[18]. This was the start of the move away from Industrial
Age C2 to Information Age C2.

The German Army, which directly descended from the Prussian Army, did im-
mediately heed von Moltke’s warning. The German General Staff, under the leadership of
Alfred von Schlieffen, developed a detailed battle plan to wage a two-pronged war against
France and Russia. This plan, later named the Schlieffen plan, became the blueprint for
Germany’s actions during World War 1. Likewise, the Schlieffen plan is one of the clear-
est examples of the failure of strictly adhering to a plan-driven approach. The Schlieffen
plan called for the mobilization and deployment of German forces to attack France first.
The Germans planned to conduct a flanking attack through neutral Belgium. The German
General Staff made the critical assumption that it would take six weeks to defeat France.
This was pivotal because those German forces attacking France would need to be quickly
deployed to the east to take on the Russians. The General Staff assumed that it would
take Russia much longer than France to mobilize its forces, and the General Staff planned
to quickly defeat France first in order to prevent fighting a war against France and Russia
simultaneously on two fronts[27]. The General Staff calculation of victory in France in six
weeks did not materialize during World War I, and the German Army had to fight the entire

war on two fronts.

15

The inability of the German Army’s Schlieffen plan to deal with change (i.e. it
would take longer than six weeks to defeat France) clearly demonstrated the failure of
Industrial Age C2. The goal of Industrial Age C2 was to discover the globally optimal plan
to achieve victory through decomposition and specialization. This focus on optimization
created two major weaknesses: lack of communication and lack of agility[2].

The first major weakness was the lack of communication. The hierarchical struc-
tures of Industrial Age militaries created “stovepipes” of information. Information acquired
at the lowest level would travel up a specific chain-of-command until it reached its desti-
nation at the highest level of the organization. Any individuals not in this particular chain
would not be privy to that information. Thus, stovepipes of information transported infor-
mation vertically between higher and lower levels of the organization, but never horizontally
between adjacent levels of the organization. David Alberts[2] states that “Industrial Age
organizations create fixed seams through which information is lost.” This placed an enor-
mous amount of reliance on the centralized planning of the highest level in the organization
because this was the only entity in the organization privy to all the information being
transmitted.

The second major weakness was the lack of agility. In order to achieve the optimal
solution, there have to be tradeoffs. The Industrial Age military chose the “best” solution
that presented the best results only if very specific conditions were met over a “good”
solution that presented slightly less, but still acceptable, results given a much wider range
of conditions. The “best” solution worked tremendously if all the conditions could be met,
however the “best” solution also failed miserably if one just of those conditions could not
be satisfied. This “best” solution was rigid and could not successfully adapt to change[2].

This lack of communication and agility meant that the Industrial Age C2 model
could neither handle complex situations nor adapt to changes. This led the military to look

for a new paradigm for command and control.

2.2.4 C2 in the Information Age

Today’s military environment is far more complex and ever-changing than in von
Moltke’s era. General Charles Krulak, former Commandant of the United States Marine

Corps, best summarized today’s complex military environment when he stated in 1999 that,

in one moment in time, our service members will be feeding and clothing dis-

16

placed refugees - providing humanitarian assistance. In the next moment, they
will be holding two warring tribes apart - conducting peacekeeping operations.
Finally, they will be fighting a highly lethal mid-intensity battle. All on the
same day, all within three city blocks. It will be what we call the three block
war[23].

In 2006, we clearly see our military operating in this environment in Iraq and Afghanistan
in addition to disaster relief missions following Hurricanes Katrina and Rita.

Command and control in the Information Age must be able to quickly respond to
fluid, rapidly changing military situations. This means that the C2 system must be able to
rapidly obtain and assess information about the environment and then quickly determine
and communicate the appropriate response. This C2 system must accomplish this while
dealing with some level of uncertainty and to fulfill the mission under time constraints[34].
These demands of the Information Age C2 model can be articulated in the following essential

capabilities|2]:
1. The ability to make sense of the situation.
2. The ability to work in a coalition environment including nonmilitary partners.
3. The ability to orchestrate the means to respond in a time manner

While it is clear what tasks a successful command and control system in the
Information Age must accomplish, there is currently not an obvious scheme on how to

accomplish those tasks.

2.3 Agility is the Winner

The histories and experiences of software engineering and military command and
control bear an uncanny resemblance of one another. The genesis of software engineering
and C2 came from the desire to bring some type of order to a previously chaotic process. This
was the rise of the plan-driven approaches to both areas. In the beginning, this plan-driven
approach had a measure of success because the programs and battles were small enough
and simple enough for one person to visualize and plan. Nonetheless, both the software
environment and the military environment grew too large in scale and complexity for one

person to visualize and plan, which led to the birth of organizations and bureaucracies

17

whose goal was to gain control of these increasingly difficult processes. These plan-driven
organizations likewise failed because they could not handle uncertainty and change.

The desired goals of both software engineering and C2 are the abilities to deal
with uncertainty and change. Both the software engineering and the military C2 commu-
nities have independently concluded that the key to dealing with uncertainty and change is
through agility. The software engineering community codified this importance of “respond-
ing to change over following a plan” in the Agile Manifesto which was signed by numerous
developers and practitioners of agile software development methods[1].

Likewise, the United States Department of Defense has recognized the imperative
for it to be more agile. Secretary of Defense Donald Rumsfeld expressed this need for change

in a speech at the Pentagon. Rumsfeld[31] said,

The topic today is an adversary that poses a threat, a serious threat, to the
security of the United States of America. This adversary is one of the world’s
last bastions of central planning. It governs by dictating five-year plans. From a
single capital, it attempts to impose its demands across time zones, continents,
oceans and beyond. With brutal consistency, it stifles free thought and crushes
new ideas. It disrupts the defense of the United States and places the lives of
men and women in uniform at risk. ... The adversary’s closer to home. It’s the
Pentagon bureaucracy. Not the people, but the processes. Not the civilians,
but the systems. Not the men and women in uniform, but the uniformity of
thought and action that we too often impose on them. ...It demands agility
— more than today’s bureaucracy allows. And that means we must recognize
another transformation: the revolution in management, technology and business
practices. Successful modern businesses are leaner and less hierarchical than ever
before. They reward innovation and they share information. They have to be
nimble in the face of rapid change or they die.

Ironically, these words were uttered the day before the events of September 11, 2001. The
United States Department of Defense has now formalized this need for agility in the 2006
Quadrennial Defense Review[16] when it stated “given the dynamics of change over time,

we must develop a mix of agile and flexible capabilities to mitigate uncertainty.”

18

Chapter 3

Complexity and the Unfolding

Process

3.1 The Universe of Centers

Software engineering and military command and control are not the only disciplines
that deal with complex problem solving. Structural architecture is another field that also
seeks to create a solution to a complex and changing situation. A pivotal architect of our
time is Christopher Alexander. Alexander is not a stranger to the software engineering
community. In fact, he gave the keynote address to the 1996 ACM Conference on Object-
Oriented Programs, Systems, Languages, and Applications (OOPSLA). Alexander tied in
the similarities of architecture and software engineering by identifying both as creative
disciplines. Alexander[3] said to the OOPSLA attendees that “the idea of generative process
is natural to you. It forms the core of the computer science field.”

Alexander[6] states that, “architecture presents a new kind of insight into com-
plexity because it is one of human endeavors where we most explicitly deal with complexity
and have to create it.” Alexander’s comments are based upon 35 years of experience in
architecture that culminated in his Nature of Order series. The Nature of Order deals with

understanding the characteristics of good designs, natural and man-made, with the intent

19

of using this knowledge to produce future good designs. It is therefore insightful to apply
this discovery about design to both the software engineering and military command and
control environments since they, like architecture, are creative endeavors of complexity.

A building that has “life”, according to Alexander, must have a high degree of
“wholeness.” The building is not an isolated structure that exists; it is part of a larger
world consisting of trees, grass, streets, and other buildings that are part of the building’s
environment. Within the building itself, there is a sense of wholeness consisting of the shape
of the walls, the windows, and the doors. To the degree that there is a harmonious blend
of these entities, there is the corresponding amount of wholeness. Alexander[4] states that
“wholeness is the important thing: the local parts exist chiefly in relation to the whole, and
their behavior and character and structure are determined by the larger whole in which
they exist and which they create.”

In defining “wholeness” we do so in terms of entities that contribute to the whole-
ness of a design or a structure. These entities are called “centers.” The defining mark of
each center is that each “appears to exist a local center within a larger whole.” Alexander
further refines his definition of a center as not a specific point, but “a physical set, a dis-
tinct physical system which occupies a certain volume in space, and has a special marked
coherence.” These centers create the wholeness of a design, and paradoxically the wholeness
of the design creates these centers[4]. Thus, understanding the power and interaction of
centers to create wholeness is key to good design. Even a whole design can be thought of
in the context as just a center of an even larger scale design.

There is a clear benefit in viewing entities as centers because it gives us greater
insight into the true nature of those entities. It is also less problematic to view an entity
as a center rather than a whole. Alexander uses the example of describing a fishpond as a
whole or as a center. If we describe the pond as a whole then we have the unenviable and
very difficult task of establishing distinct boundaries that encapsulate all the components of
a pond and exclude those that are not components of the pond. For example, do we include
the air above the water or the ground below the water as part of the pond? Both of the
air and the ground can be considered critical components of the pond. If we then include
them, how much air and ground should we encapsulate in our boundary? A better way is
to view the pond as a center. This perspective recognizes the “existence of the pond as a
coherent entity” while allowing it to have “fuzzy” boundaries. We can now deal with the

existence and the effect of the pond instead of trying to establish artificial boundaries[4].

20

The final benefit of viewing an entity as center rather than a whole is the perspective that
no one thing exists in isolation. We must understand not only the entity but its interactions

with its environment and vice versa.

3.2 The Nature of Centers

With the existence of centers firmly established, it becomes important to under-
stand the nature of centers. Alexander[4] proposes the following four ideas regarding centers.
It is important to note that according to Alexander the better a design or structure is, the

more that it has “life.”

1. Centers themselves have life.

2. Centers help one another; the existence and life of one center can intensify
the life of another.

3. Centers are made of centers (this is the only way of describing their com-
position).

4. A structure gets its life according to the density and intensity of centers
which have been formed in it.

There are two critical characteristics of centers found in these ideas. First, is the
idea that “Centers are made of centers.” This gives the center a recursive characteristic in
which we can further identify supporting centers. Alexander uses the example of a tree as
a center. A tree consists of a trunk, branches, and leaves, each of which can be viewed
as centers themselves. You could then view an individual leaf as a center and identify its
supporting centers such as the stem and the minor ribs of the leaf. The recursive nature of
centers is not only in the decomposition of an entity but in its composition. When we see
the centers of a trunk, branches, and leaves positioned in a particular way, it creates the
center that we call a tree[4].

The second critical characteristic comes from the ideas that “Centers help one
another; the existence and life of one center can intensify the life of another,” and “A
structure gets its life according to the density and intensity of centers which have been
formed in it.” These ideas give centers the characteristic of a field-like structure. There is
a force emanating from the center toward other centers that help strengthen those centers.

Likewise, there is a corresponding force pulling from other centers towards the one center

21

to help strengthen it[4]. Similar to gravitational forces, each center exerts an influence on

other centers and itself is influenced by other centers.

3.3 The Fifteen Properties

What makes a design a good design? Through his years of studying various designs,
both natural and man-made, from the ancient era through the modern era, Alexander has

recorded 15 properties present in good designs. These 15 properties are listed in Figure 3.1.

1. Levels of Scale 9. Contrast

2. Strong Centers 10. Gradients

3. Boundaries 11. Roughness

4. Alternating Repetition 12. Echoes

5. Positive Space 13. The Void

6. Good Shape 14. Simplicity and Inner Calm
7. Local Symmetries 15. Not-Separateness

8. Deep Interlock and Ambiguity

Figure 3.1: Alexander’s 15 Properties[4]

These properties of good design are not independent, discrete characteristics.
Rather, these properties are interwoven[4]. For example, Alternating Repetition and Gra-
dients work together to define Strong Centers. It is important not only to understand the
15 properties individually, but also how these properties interrelate.

According to Alexander, the reason that these 15 properties are present in good
design is because these are the 15 principal ways in which centers can be strengthened by
other centers. Since we can view complex environments as a system of centers, we can use
our understanding of these 15 properties to understand the interaction of these centers.
More importantly, we can use the understanding of these interactions in order to improve
(or strengthen) these centers in order to improve the system as a whole. The following are
the interactions of the 15 properties with regards to centers:

1. Levels of Scale — “the way that a strong center is made stronger partly

by smaller centers contained in it, and partly by its larger strong centers
which contain it.”

10.

11.

12.

13.

14.

15.

. Strong Centers — “requires a special field-like effect, created by other cen-

ters, as the primary source of its strength.”

. Boundaries — “strengthens the field-like effect of a center by the creation

of a ring-like center, made of smaller centers which surround and intensify
the first.”

. Alternating Repetition — “centers are strengthened when they repeat, by

the insertion of other centers between the repeating ones.”

. Positive Space — “a given center must draw its strength, in part, from the

strength of centers immediately adjacent to in in space.”

Good Shape — “the strength of a given center depends on its actual shape,
and the way this effect requires that even the shape, its boundary, and the
space around it are made up of strong centers.”

Local Symmetries — “the intensity of a given center is increased by the
extent to which other smaller centers which it contains are arranged in
locally symmetrical groups.”

Deep Interlock and Ambiguity — “the intensity of a given center can be
increased when it is attached to nearby centers through a third set of centers
that ambiguously belong to both.”

Contrast — “a center is strengthened by the sharpness of a distinction be-
tween its character and the character of surrounding centers.”

Gradients — “a center is strengthened by a graded series of different-sized
centers which then point to the new center and intensify its field effect.”

Roughness — “the field effect of a given center draws its strength, neces-
sarily, from irregularities in the sizes, shapes, and arrangements of other
nearby centers.”

Echoes — “the strength of a given center depends on similarities of angle
and orientation and systems of centers forming characteristic angles thus
forming larger centers, among the centers it contains.”

The Void — “the intensity of every center depends on the existence of a still
place - an empty center - somewhere in its field.”

Simplicity and Inner Calm — “the strength of a center depends on its sim-
plicity - on the process of reducing the number of centers which exist in it,
while increasing the strength of these centers to weigh more.”

Not-Separateness — “the life and strength of a center depends on the extent
to which that center is merged smoothly - sometimes even indistinguishably
- with the centers that form its surroundings.” [4]

22

23

3.4 Unfolding

The 15 properties occur not only in human designed structures, but more impor-
tantly in nature. One can see the importance of Boundaries in the structure of a plant cell,
and the relevance of local symmetries found in the wings of a bee. There are so many more
examples of the 15 properties in nature, that Alexander devotes much of The Phenomenon
of Life to categorizing and analyzing the emergence of these properties[4].

The 15 properties however represent much more than a description of a design.
They are also the means by which one design evolves, or unfolds, into a stronger design. We
see this especially in nature. An example that Alexander gives is in the development of an
embryonic mouse forelimb. Eleven days after conception, the mouse’s forelimb is nothing
more than a circular blob of cells. Within the next four days, however, that circular blob
of cells will begin to differentiate in both shape and substance. At the end of 15 days,
the forelimb and foot of the mouse have evolved to the point that the individual digits,
forelimb bones, and joints are clearly present. This radical transformation does not happen
instantaneously. The unfolding of the mouse forelimb from cell blob to well-defined structure
occurs as a step-by-step transformation of the previous structure. We see the development
of Strong Centers as the forelimb bones and digits begin to emerge. We also see Alternating
Repetition in the space between the digits. In this unfolding process, we see one or more
of the 15 properties being used as structure-preserving transformation. The reason that
this is structure-preserving is that at no time in the evolution of the forelimb is there only
part of a forelimb. The forelimb exists as a whole at day 11 just as it does on day 15.
The difference between these two days is that the whole forelimb of day 11 has undergone
numerous transformations that result in a much stronger and more clearly defined whole
forelimb of day 15[5].

In observing this unfolding process in nature, we see a step-by-step change in the
whole of a design. The vehicle for this change is the employment of one or more of these
15 properties as a structure-preserving transformation. It is from this insight into nature’s

unfolding process, that Alexander will later develop his method for replicating this process.

24

Chapter 4

A Tale of Two Images

4.1 The Value of Images

Images provide an invaluable means to communicate. It is often said that “a
picture is worth a thousand words.” People normally do not think in terms of data or
words. They naturally think in terms of mental pictures. Also, people are more adept at
assimilating information in the form of a picture as opposed to information in the form of
text or numbers. Images can be created for the purpose of more accurately describing a
problem or situation. Also, images can be developed to communicate the solution to the
problem|34].

Images, obviously, are a powerful tool for communicating thoughts, conditions, and
ideas. In fact the U.S. Army Operations field manual[17] clearly dictates that commanders,
assisted by their staffs, must first visualize the situation before determining and directing a
course of action. It is in creating this mental image (or visualizing) that a commander can
more adeptly understand his or her environment and the dynamics of that environment.
Words and data alone can not create such a rich context as an image can.

There is a methodology to visualizing. Commanders, with the support and input

of their staffs, must focus on the following three factors when visualizing[18]:

e Foreseeing an end state.

e Understanding the current state of friendly and enemy forces.

25

e Visualizing the dynamics of operations leading to the end state.

In other words, the commander assesses the unit’s current situation, envisions a desired
goal for the unit to obtain, and then formulates a way to move from the current situation
to the desired goal. While this may seem rather simple, it is in fact a profound cycle that
does not end until the commander and his/her unit achieve the desired end state. This
visualization must be continuously updated and validated because the current states of
friendly and enemy forces are dynamic, not static. As a result, the dynamics of operations
leading to the end state must also be fluid enough to respond to changing friendly and
enemy situations. Finally, it is very possible that the desired end state may also change
based upon the changing environment.

The value of images is not limited to the battlefield. Software developers also
attempt to harness the power of an image. One of the 12 practices in XP is Metaphor.
In this case, the XP team is using a metaphor, or a word picture, in order to guide the
overall project. The metaphor becomes a tool that communicates the basic elements of the
project. The reasoning behind developing and using a metaphor is to create a simple design
architecture that is easy to communicate and elaborate[7]. Even though a metaphor may
not be a physical drawing, it still conveys a mental image. In fact, Christopher Alexander|[5]
contends that “word pictures are better than actual pictures to give a sense of the whole

because actual pictures contain too much (and usually arbitrary) information.”

4.2 Topsight Versus Insight

Military commanders must visualize the situation using three different perspectives[18].

Those three perspectives are:

e A close-up view of the situation gained through personal observation and experience.
e An overview of the situation and overall progress of the operation.

e A view of the situation from the enemy’s perspective.

In a general problem-solving context, we use just the first two perspectives for our visual-
ization.
The first perspective is “insight.” This insight provides the most detailed picture

of a situation. The individual using insight selects a part of the situation and focuses

26

on the specific part. Then, the individual is able to exploit his or her own observations,
experiences, and tacit knowledge to gain understanding as to what progress or action is
taking place. It is often said that the person using insight gets a “feel” for the situation
since he or she is relying so heavily on his or her sensory and thinking abilities. Insight is
similar to using a magnifying glass on a picture. The benefit of the magnification is the
ability to see the details of the picture more clearly and perhaps understand how they work
together. Magnification, though, comes at a price. Insight, by its definition, can only look
at a portion of the whole picture. The viewer is restricted to a narrow scope, and similar to
the laws of optics, the greater the level of magnification the smaller the field of view. Thus,
one who uses too much insight is at risk of losing sight of the big picture[34].

The second perspective is “topsight.” Topsight provides a view of the entire sit-
uation similar to a bird’s eye view of a piece of land. The individual using topsight looks
at the entire situation and tries to understand the overall unfolding situation. The viewer
sees what the current state of the environment is and compares it to the desired end-state.
Using topsight, one can constantly comprehend the entire situation. However, there is a
danger too with relying just on topsight. In order to see the entire picture, the viewer
must settle on the perspective with the least detail. The patterns we see at this large-scale
level may give a false impression of the true situation. Critical details to the success of the
situation may fall well below the resolution of the overall picture. Thus, one who uses too
much topsight is at risk of losing touch with reality[34].

The concepts of insight and topsight can be found in software engineering too,
though they are not specifically mentioned as such. In Scrum, the team works with a
Product Backlog and multiple Sprint Backlogs. The Product Backlog is a prioritized list of
features, functions, technologies, and enhancements that are to be created during the entire
project. While the Product Backlog is not a true image in the sense of a picture or metaphor,
it does convey the sense of an image. The Product Backlog is an attempt to capture an
overview of the entire project. In that sense, the Product Backlog is akin to topsight. The
Sprint Backlog is a specifically chosen subset of the Product Backlog. The Scrum team
in conjunction with the Product Owner determines which features, functions, technologies,
and enhancements from the Product Backlog can be implemented in the upcoming 30 day
Sprint. The Sprint Backlog, like the Product Backlog, is not a true image. Nonetheless, the
Sprint Backlog provides a detailed, magnified view of a portion of the entire project. The

Spring Backlog is therefore similar to insight[32].

27

Scrum is not unique in conveying the ideas of insight and topsight; XP also suggests
these two perspectives in the practice of Pair Programming. Pair Programming is defined
as “a style of programming in which two programmers work side by side at one computer,
continually collaborating on the same design, algorithm, code, or test.” One programmer is
called the driver. The driver is responsible for physically typing in the code or drawing the
design. The other programmer is called the navigator, and the navigator is responsible for
observing the work of the driver, looking for tactical or strategic defects. A tactical defect
could be a typo, invoking the wrong procedure, or syntax error. On the other hand, a
strategic defect is when the driver begins to deviate away from the system’s design[35]. The
driver is entirely focused on the tactical design of the code. Once again, this is a detailed,
magnified view of a portion of the entire project which relates to insight. The navigator has
to maintain a strategic perspective with the motivation of keeping the driver from heading
down the wrong path. In order to have this strategic perspective, the navigator must be able
to have the topsight necessary to view the project as whole. Only then can the navigator

ensure that the driver is following the right path.

4.3 Achieving Balance Through Differentiation

In both command and control systems and software development methodologies,
there definitely exist the concepts of insight and topsight. One must use both perspectives
in order to evaluate and determine solutions to a particular situation. However, it is im-
possible to simultaneously view a situation from the tactical and strategic perspectives. As
previously cited, a person who spends too much time using insight runs the risk of being so
detailed and action oriented that he or she loses sight of the grand design. Likewise, one who
spends too much time assessing the overall scheme can easily overlook critical details that
will have a tremendous impact on the entire situation. Thus, the problem is the balance
between these two perspectives.

In Christopher Alexander’s unfolding process, two concepts are at work in any
structure: wholeness and centers. The wholeness and strength of a structure are dependent
upon the strength and interaction of the centers that are present in the structure. The
wholeness of the structure can be viewed as a topsight perspective, and the view of a

specific center within that structure is equivalent to an insight perspective. The interaction

28

of these centers with the wholeness of a structure led Alexander to discover the 15 properties
and the unfolding process in nature.

Alexander did not stop with observation of the unfolding process in nature. He
wanted to replicate it. This led him to develop the differentiation process by which a
structure or design is consciously strengthened and improved. The differentiation process
uses knowledge of the 15 properties of the unfolding process to derive 15 structure-preserving
transformations. Figure 4.1 outlines this differentiation process.

This differentiation process gives us a framework for balancing the topsight and
insight perspectives of a given design or structure. Differentiation begins with the topsight
view in steps 1 through 4 by recognizing the complex interaction of the centers that comprise
the whole and analyzing the strength of the whole in terms of these centers. The purpose
is to identify a latent (or weak) center that needs to be strengthened in order to strengthen
the entire design. Then, there is a transition to the insight perspective in steps 5 through
9 as the differentiation process focuses on the chosen latent center and performs structure-
preserving transformations to strengthen that latent center. Finally, the process returns to
the topsight view in steps 10 and 11 to verify that the strengthening of the center is the
simplest possible and reexamines the whole structure now that this once latent center has
been strengthened. It is important to note that this differentiation process is a continuous
cycle that switches back and forth between the topsight and insight perspectives.

The differentiation process does not exist in a vacuum. There are four necessary
conditions that must be present in order to successfully differentiate a design. Alexander][5]

identifies those four conditions as:
e Awareness of the whole
e Step by step adaptation
e Unpredictability
e Feedback

Awareness of the whole is best described in step 1 of the differentiation process.
It involves understanding the entire design in terms of a system of partially evolved centers
that are nested relative to one other. Without awareness of the whole, the differentiation

process can easily veer off course from the desired end state. Step by step adaptation is a

29

gradual, continuous process that allows assessments, corrections, and improvements. This
evolutionary process is necessary because the interactions and relationships of the centers
in a structure are too complex to be understood and changed simultaneously. The step by
step adaptation can be seen in the development of the embryonic mouse forelimb from a
clump of cells to a clearly differentiated structure. The process obviously followed a step
by step transformation as the cells took shape; the change did not happen instantaneously.
Unpredictability recognizes that the differentiation process must be open-ended. Changes
will occur, and there is a clear danger in fixing a design too early in the process before
recognizing and dealing with those changes. Finally, feedback is necessary throughout
the design process. Feedback enables us to check and correct, if necessary, our progress.
Feedback only after the design process is complete is useless because we are now committed
to that design, whether it is good or bad[5].

Alexander has developed an amazing model in his differentiation process. This
differentiation process recognizes the two perspectives of topsight and insight and the im-
portance of balancing the two throughout the design process. Military command and con-
trol and software engineering also have recognized the existence of topsight and insight and
the importance of their balance. Therefore, it is logical to use the differentiation process
to improve or enhance military command and control systems and software development

methodologies.

10.

11.

. At any given moment in a process, we have a certain partially evolved state

of a structure. This state is described by the wholeness: the system of
centers, and their relative nesting and degrees of life.

We pay attention as profoundly as possible to this wholeness - its global,
large-scale order, both actual and latent.

We try to identify the sense in which this structure is weakest as a whole,
weakest in its coherence as a whole, most deeply lacking in feeling.

We look for the latent centers in the whole. These are not those centers
which are robust and exist strongly already; rather, they are centers which
are dimly present in a weak form, but which seem to us to contribute to or
cause the absence of life in the whole.

We then choose one of these latent centers to work on. It may be a large
center, or middle-sized, or small.

We use one or more of the fifteen structure-preserving transformations,
singly or in combination, to differentiate and strengthen the structure in
its wholeness.

As a result of the differentiation which occurs, new centers are born. The
extent of the fifteen properties which accompany creation of new centers
will also take place.

. In particular we shall have increase the strength of certain larger centers; we

shall also have increased the strength of parallel centers; and we shall also
have increased the strength of smaller centers. As a whole, the structure
will now, as a result of this differentiation, be stronger and have more
coherence and definition as a living structure.

We test to make sure that this is actually so, and that the presumed increase
of life has actually taken place.

We also test that what we have done is the simplest differentiation possible,
to accomplish this goal in respect of the center that is under development.

When complete, we go back to the beginning of the cycle, and apply the
same process over.

Figure 4.1: Alexander’s Differentiation Process[5]

30

31

Chapter 5

The Knowledge Sharing

Mechanism

5.1 The Knowledge Insight Model (KIM)

Another discipline that deals with complex problem solving is knowledge manage-
ment. Knowledge management is defined as “helping people create knowledge and share
and act upon information in ways that will measurably improve the performance” of the
organization[24]. Knowledge takes two forms: explicit and tacit. Explicit knowledge can be
easily communicated and shared because it can be expressed in words and numbers. Tacit
knowledge, on the other hand, is highly personal and very difficult to express and share[26].
The difficulty of knowledge management is finding an effective means of not only manag-
ing the voluminous amount of explicit knowledge in a organization, but more importantly
capturing and sharing the tacit knowledge in the organization.

One method of creating, sharing, and managing knowledge is the Knowledge In-
sight Model (KIM). The KIM begins with the Plan-Do-Check-Act (PDCA) Cycle as its
approach to problem solving. The four stages of the PDCA Cycle shown in Figure 5.1
are[22]:

e Plan to improve your operations first by finding out what things are going

32

wrong (that is identify the problems faced), and come up with ideas for
solving these problems.

e Do changes designed to solve the problems on a small or experimental scale
first.

e Check whether the small scale or experimental changes are achieving the
desired result or not.

e Act to implement changes on a larger scale if the experiment is successful.

Check

Figure 5.1: PDCA Cycle[22]

There are numerous iterations of the PDCA Cycle with each cycle having two
potential outcomes. First, if the small scale changes implemented during the Do stage are
verified as successful during the Check stage then the cycle progresses naturally to the Act
stage for large scale implementation and finally back to the Plan stage for the next problem
to be solved. However, if the small scale changes are determined to be unsuccessful during
the Check stage then the cycle skips the Act stage and moves directly to the Plan stage in
order to make modifications to the plan based upon the unsuccessful results and begin the
cycle again[22].

The PDCA Cycle can be used in one of two purposes: discovery and refinement.
In discovery, we are planning to be innovative and create something new. This could be

the creation of new knowledge, a new process, or a new invention. This innovation is also

33

called hoshin, the Japanese word for innovation or breakthrough. In refinement, we are
taking an existing piece of knowledge, process, or artifact and seeking to improve upon it.
This refinement is called kaizen, the Japanese word for continuous improvement process.
With each PDCA Cycle, we can either be in a hoshin or a kaizen mode depending on our
purpose. Additionally, a successful innovation achieved during a hoshin PDCA Cycle can
directly lead to a new kaizen PDCA Cycle because the innovation has allowed us to improve
an existing process or artifact. A kaizen PDCA Cycle, likewise can directly lead to a hoshin

PDCA Cycle[22]. The relationships between these two types of PDCA Cycles are shown in

Figure 5.2.
Discover
Plnn \\‘\
A
: e ct
? " Check
A
< * Plan|

)

8

Refine

Figure 5.2: Hoshin and Kaizen PDCA Cycles[22]

An organization can use PDCA Cycles to either discover or refine its systems.
Another dimension of these PDCA Cycles is where the systems operate. A system is
external if it interfaces between the organization and its environment. An example could

be a product that a business markets to its customers. Similarly, the system could be

34

internal if the system is encapsulated within the organization. An example would be the
process that produces the item marketed by the organization. These opposite dimensions
of discover and refine versus external and internal lead to the development of a 2 x 2 matrix
showing the stages that an organization can be in when executing a PDCA Cycle, shown

in Figure 5.3[22].

Discover Internal | External
Discover | Discover

Internal External | ¢
Internal | External

Refine Refine Refine

Figure 5.3: PDCA Cycle Stages of an Organization[22]

Transitions from discovery to refinement occur in solution increments since we
can only refine a portion of a system at a time. Transitions from refinement to discovery
represent the consolidation and synthesis of what has been refined and learned back into the
creative process. There can be numerous iterations between the discovery and refinement
modes. Transitions between the external and the internal depend on the state of creative
knowledge. External forces dictate the need for internal innovation. During this internal
innovation, we learn more about the system. A result of this learning is the need for
additional external input. This new external information is then rationalized and allowed
to refine the creative internal innovation. As a result, a mature product or process is
returned to the external environment[22]. Incorporating the PDCA Cycle with this 2x2

matrix, we have the KIM shown in Figure 5.4.

5.2 The Four Roles

There are four roles that emerge from the KIM. These four roles are the Framer,
the Maker, the Finder, and the Sharer, and they represent the four stages of the PDCA

Cycle in the following manner: the Framer corresponds to Plan, the Maker corresponds to

35

INTERNAL DISCOVER 1

EXTERNAL DISCOVER 1

1) INNOVAT|ON

EXTERNAL DISCOVER 2

4) LEARNING

5) SOLUTION INCREMENT

EXTERNAL REFINE 1

EXTERNAL REFINE 2

6) RATIONALIZATION

Act

7) MATURITY 8) CONSOLIDATE

Figure 5.4: Knowledge Insight Model (KIM)[22]

Do, the Sharer corresponds to Check, and the Finder corresponds to Act. The Framer and
the Sharer are complementary roles in that the combination of the two roles generates the
entire KIM. Likewise, the Maker and the Finder are complementary roles. It is imperative
to understand these four roles to gain further understanding from the KIM.

The Framer is responsible for understanding the problem and designing an overall
architecture (or framework) that will solve the problem. The Framer sees the problem as
a whole, determines the requirements needed for a solution to solve the problem, and then
guides the process for developing the solution[21]. The Framer role in the KIM is shown in
Figure 5.5.

The Maker is responsible for creating an innovative solution to the problem using
the framework outlined by the Framer[21]. The Maker corresponds to the Hoshin (or
breakthrough) process because the Maker is creating (or making) a new product or process
that did not exist before[22]. The Maker role in the KIM is shown in Figure 5.6.

The Finder is responsible for finding resources to supplement the Maker’s efforts.
If the Finder is able to “find” the solution to a problem that the Maker is attempting
to solve, then the Finder has saved the Maker from needlessly using his or her resources
to create the solution from scratch[21]. The Finder also corresponds to the Kaizen (or
continuous improvement process) by taking an existing product or process and refining it

into a better product or process[22]. The Finder role in the KIM is shown in Figure 5.7.

36

Metaphor prototypes

PLAN

e TATIoN

Framer
mij T .b;| hu‘"h‘nh‘"‘l
INTRESMAL BEFET
TMATURITY iy A COMSOLDATE
Pl e

Figure 5.5: The Framer Role[22]

The Sharer is responsible for ensuring that the Framer, Maker, and Finder roles
work together by sharing information. The Sharer provides feedback on the development of
the overall framework and the specific portion of the solution that is currently being devel-
oped or refined[21]. The knowledge gained by the other three roles needs to be disseminated
among them in order to enable a success process. The Sharer role in the KIM is shown in

Figure 5.8.

5.3 Topsight and Insight Using KIM

The perspectives of topsight and insight are also present within the KIM. The
Framer must use topsight in order to design an overall architecture for solving the problem.
Without the ability to see the problem in its entirety, the Framer could only construct a
partial framework around the problem and would be doomed to failure. The Maker and
the Finder both use insight, because they are working with subsets of the entire problem.
However, the Maker and the Finder use insight for different purposes. The Maker focuses
on a subset of the entire problem in order to manufacture a new product or process that will
assist in the solving of the overall problem. The Finder focuses on an already constructed

portion of the solution with the intent of strengthening and improving it in order to better

37

shell vaker NOSHIN

|HNOWATION

LEARMNING

Figure 5.6: The Maker Role[22]

solve its portion of the overall problem.

5.4 The Importance of the Sharer

The Sharer is unique among the roles in that it is not confined to topsight or
insight. Instead, the Sharer ensures that knowledge gained by the Framer, the Maker, and
the Finder is shared among everyone. This means that the knowledge gained by topsight
perspective of the Framer flows into the Maker and the Finder. Similarly, the insight
perspectives of the Maker and the Finder are pushed back to the Framer. The Sharer is
then involved with both topsight and insight perspectives, and the successful Sharer will
balance these two perspectives. The Sharer is thus the most important role in the KIM
because the Sharer keeps the Framer, the Maker, and the Finder working together. A
Sharer that can not balance the topsight and the insight perspectives will inevitably result
in a system dominated by the one perspective or the other. As previously mentioned, an

imbalance of topsight and insight seriously jeopardizes the success of a system.

38

imitator Finder

meme

10V
dayajewl
=

%

-

2 D
= A=y)
Q\‘ AT OMALLEAT O

C o

| MATURTY / A CONEDLIDATE

Figure 5.7: The Finder Role[22]

5.5 The Knowledge Sharing Mechanism (KSM)

The sharing of knowledge between a topsight perspective and insight perspective
is critical to the designing of a successful system. The question then becomes how do
we share the knowledge. As previously stated, there is tremendous power in the value of
images to communicate effectively and efficiently. A vision can more succinctly convey a
complete idea than merely listing facts and data regarding that idea. That is why a system
metaphor is so important in XP, and why military commanders must visualize the situation
and communicate that visualization using the commander’s intent. Therefore, knowledge
sharing must involve the use of image.

Nonetheless, the sharing of images is not sufficient to develop a solution to a com-
plex problem. Action must be taken to craft and refine a good design. This action, however,
is not haphazard or without thought. It must be undertaken with the understanding of how
complex problems can be solved. This is where the power of Christopher Alexander’s dif-
ferentiation process comes into place. The differentiation process is based off the unfolding
process of good design that Alexander observed over and over in both nature and historical
architecture. The viewing of the problem and the problem’s domain through the lens of
wholeness and centers enables the development of a good solution.

It is this synthesis of images and Alexander’s differentiation process that produces

39

working sharer fail-safe

A BT AP

SOLUTION RCREMEHT
. C

D |
CI-iECK

Al

AT IHHALIEATIOH

operational

Figure 5.8: The Sharer Role[22]

the Knowledge Sharing Mechanism (KSM). The KSM is an iterative method for under-
standing a complex problem, developing a framework for solving that problem, creating,
developing, and refining the parts of the solution for the problem, and then reassessing
those partial solutions and overall framework until the complete solution has been fully
developed. The KSM is outlined in Figure 5.9.

The first step is to clarify what the problem is and what factors will affect the
problem and it solution. The Solution Vision in the second step is used to communicate the
overall architecture of the solution. The desired end-state is the vision of the environment
upon the successful implementation of the solution. The critical tasks are those tasks that
must be accomplished in order to achieve success. The number of tasks should be limited
to no more than seven tasks. Too many critical tasks will clutter the overall vision. The
purpose is the reason why we are implementing the solution, and it gives motivation to the
team developing the solution.

Viewing each critical task in step three as a center enables the solution to be more
holistic. Most likely each critical task will impact or be related to the other critical tasks.
Using typical decomposition techniques to tackle these tasks does not allow for the solution
design to account for these complex interactions. Conversely, viewing the tasks as centers
allows us to explore and anticipate these interactions.

Step four begins the iteration process. At the beginning of each iteration, we select

40

Strengthened
Center
(Iteration) 4\
. 9. Assess lteration 4. ldentify Constraints
10. Inte.grate'vx'/lth Vision T l and Relationships 3. Choose Critical
Solution Vision -
Iteration Center
—™ vision [- -
8. Evaluate Correctness 5. Differentiate
and Simplicity Sub—Task: to Centers
[
Assess Assess Centers Centers
\ /
7. Integrate with 6. Strengthen
; - Strengthened
Iteration Vision — Ce?lters < Centers
11. Evaluate Correctness 2. Differentiate Tasks
and Simplicity into Centers
Solution | __—
Vision
12. Assess Solution 1. Analyze Problem
Vision in Space and Time
Problem

Figure 5.9: Knowledge Sharing Mechanism (KSM)

the most critical center to strengthen. The basis of the selecting the most critical center
depends on each particular situation. This center could be the weakest center, it could be
the center that must developed first, or both conditions could apply. The Iteration Vision is
developed and has the same components as the Solution Vision. Since the Iteration Vision
is patterned exactly like the Solution Vision, the KSM ensures that both the topsight and
the insight view of the solution can be easily communicated and understood.

Once the chosen center has been improved or strengthened, we conduct an as-
sessment on whether our improvements have achieved the Iteration Vision. In addition,
we check to make sure that the improvements we have implemented are the simplest im-
provements as possible. This requires removing any extraneous and unnecessary steps and

modifications. This assessment gives us feedback to the iteration process that corresponds

41

to the Check stage of the PDCA Cycle. We also assess the Iteration Vision as to whether
it supports the Solution Vision and if the Iteration Vision is still valid. It is possible that
vision formulated at the beginning of the iteration is no longer valid due to either changing
requirements, changing knowledge about the problem, or both. This feedback is critical to
ensuring the proper growth of the solution.

In addition to assessing each Iteration Vision at the end of each iteration cycle,
we also assess the Solution Vision. The Solution Vision can change based off knowledge
gained during the solution development process. The desired end-state envisioned at the
beginning of the process may differ from the final desired end-state of the solution. This

feedback builds the necessary flexibility into the system in order to deal with uncertainty.

5.6 The Existence of KSM in Software Engineering

This knowledge occurs in successful software development, even though it may not
be explicitly identified. One such successful software project is the U.S. Army’s Maneuver
Control System (MCS) Light program. MCS Light is a command and control program that
operates on a notebook or desktop Windows platform. MCS Light is used for monitoring
the movements and operations of subordinate and adjacent units within a command, as
well a planning tool for future operations|[36].

The development of MCS Light began with an initial, but flexible, architecture
based on an analysis of the systems goals and requirements. The program then went into
a series of iteration cycles. The MCS Light development team would issue a release every
three months. At the beginning of the three month cycle, the team would determine which
objectives of the overall architecture were to be implemented. These objective were then
translated into user stories that started a four-week iteration cycle of design, coding, testing,
and system integration. After three iteration cycles, the team had a deliverable release. It
is important to note that the deliverable release provided feedback to the overall mission
analysis with the goals of adapting and clarifying those goals and the overall architecture
as shown in Figure 5.10[36].

The KSM is present, even though it is not identified in the MCS Light project. The
overall mission analysis and resulting mission goals and architecture correspond beautifully

to the Solution Vision of the KSM. A subset of the mission goals, called the release objec-

42

tives, is then chosen to implement in the three month release window. This corresponds
to selecting of a critical center and the development of an Iteration Vision which supports
the Solution Vision. The feedback of the knowledge gained during the three month release
process correlates well to the idea of assessing the validity of the Iteration Vision and the
Solution Vision. The knowledge sharing occurs with the mission goals translating into the
release objectives, and the feedback of knowledge back into the mission goals.

The MCS Light project development team gained feedback regarding each release
through interactions with the customers (i.e. soldiers) who use the system. The project
team participated in training exercises in both garrison and field environments, and some
even deployed with combat units to Afghanistan and Iraq in order to get feedback on the
current release and what was needed for the next release (and ultimately the system as a
whole). The MCS Light is considered a success by the fact that as of 2004, nine of the
ten active duty U.S. Army divisions had adopted the MCS Light program as their chief
planning and operations command and control software system. Lieutenant General John
Vines, former commander of the 82nd Airborne Division and 18th Airborne Corps, credited
the MCS Light program as the best command and control tool available at the present
time[36].

This example shows how knowledge sharing enables successful software develop-

ment. The KSM is a framework for instituting and enabling this knowledge sharing.

5.7 The Existence of KSM in Command and Control

Knowledge sharing is also a critical component to the success of military command
and control. One such successful example of knowledge sharing took place during the Allied
invasion of Normandy, France, on D-Day, June 6, 1944.

The Normandy invasion involved amphibious landings on five beaches code-named
Omaha, Utah, Gold, Sword, and Juno. The American 4th Infantry Division was the lead
division under VII Corps to land on Utah beach. The 4th Infantry Division’s mission was to
conduct an amphibious landing at Utah beach, secure the beachhead, and push inward along
the causeways in order to expand the beachhead. The control mechanism for coordinating
this complex movement and landing of troops, tanks, and other vehicles consisted four

control vessels (two primary vessels and two secondary vessels). During the conduct of the

43

landings, the two primary vessels were destroyed and one of the secondary vessels had to
be diverted away from the beach in order to guide in the amphibious tanks. In addition,
the troop landing crafts missed their intended locations, and soldiers from the 4th Infantry
Division ended up 2,000 yards south of their objectives[14].

This great error in the location of the actual landings could have created tremen-
dous confusion. Each assault unit had detailed orders that they were to execute immediately
upon landing. Those orders were no longer valid because the units were in the wrong place.
It was at this time that Brigadier General Theodore Roosevelt, Jr., the assistant division
commander, recognized the error and took action. General Roosevelt conducted an indi-
vidual reconnaissance of a route from where the division landed at to the causeways, the
division’s objectives. General Roosevelt then coordinated with and directed two battalion
commanders to neutralize the enemy immediately facing the division and lead the division
north toward the causeways. General Roosevelt’s recognition of the problem and quick
adaptation of the battle plan resulted in the rapid landing of the division and its subse-
quent movement inward toward its objectives. As a result, the entire 4th Infantry Division
(minus one battalion) successfully landed at Utah beach in the first 15 hours[14].

In this example, the 4th Infantry Division had developed a Solution Vision with
an end-state of a secure and expanded beachhead. The critical tasks were to conduct an
amphibious landing, secure the beachhead, and secure the causeways. Each of those critical
tasks can be viewed as sequential Iteration Visions. Bad fortune through the loss of the
control vessels and errant landings invalidated the current Iteration Visions. Without feed-
back about the changing environment, these plans were doomed to fail. General Roosevelt
acted as knowledge sharing mechanism. Knowing the desired end-state and their current or-
ders, General Roosevelt recognized the disparity, adapted the orders based on the division’s
current state, and provided feedback to both his subordinates and his superiors regarding
the change in plans. The overall end-state of the Solution Vision did not change, but the
supporting Iteration Visions had to adapt to the challenging circumstances. This successful
knowledge sharing enabled the rapid movement of the division through the beachhead and

onto the designated causeways.

| Product Development I

l Release - 3 Months l
[o Version of Coda
Mission Deliver - r
Analysis |__ gy I——I— | lteration - 4 Weeks I

P, TEM. avad
[
User Storigs |Tom Dussin
Release
Musion Gooly | Planning Lo
-Reg'is Anslvsi -
é -Scar{edde- and Design
Rarsource Review SCode Struchure
i E r User Interface
e
2
Architecture B
“Risiquiremi nts R =WVite Boand Diegrarms =
-Arch. Developman and Dopunanss’ %
Az gament T L it
| arh Eval Construct
-Eh'alualim :l?::ddiﬂ Integration [
Frololyping UnitTest »
Architedure i
-Birlt Code i
it of Changes i
Syslem
Integration |_
-Build
=System Ties1

Mole: "Documen s are crembsd for crisical, high=risk, unchesar, complicated tasks, and exdemal ifalaces

Figure 5.10: MCS Light Project Development Process[36]

45

Chapter 6

Analysis of the KSM

6.1 Purpose for the Analysis

The preceding chapters established the case for and outlined the proposed KSM
as a means for solving complex problems in software engineering and command and control.
In addition, previous text detailed how knowledge sharing contributed to the success of a
software project and pivotal battle during World War II. The purpose of this chapter is
to analyze the KSM in regards to both software engineering and command and control.
Proposing a solution is not sufficient to ensure that problem of balancing topsight and
insight has been adequately addressed. The proposed solution must be evaluated within
the environments that it must operate in order to determine the worth of the proposed

solution.

6.2 Analysis of the KSM in Software Engineering

Software engineering methodologies can be evaluated against two standards: vali-
dation and verification. IEEE[33] defines validation as “the process of evaluating a system
or component during or at the end of the development process to determine whether it
satisfies the specified requirements.” Another way to phrase validation is “Did we build the

right product?” Validation is ultimately in the eyes of the customer. Does the delivered

46

software product meet the expectations of the customer? The customer’s expectations are
formalized as requirements, but these requirements will inevitably undergo changes as the
software naturally develops and evolves. IEEE[33] defines verification as “the process of
evaluating a system or component to determine whether the products of a given develop-
ment phase satisfy the conditions imposed as the start of that phase.” Verification can also
expressed as, “Did we build the product (or component) correctly?” Verification is based
upon mathematical proof and facts. If the purpose of the software component is to sort
a group of records alphabetically, then verification asks, “Does the software component
correctly sort the records?”

The KSM addresses validation in the Solution Vision. The Solution Vision com-
municates the customer’s expectations by constructing a word image. This image consists
of the customer’s purpose for the software product, the most critical tasks for the software
product, and the desired end-state of the customer’s environment as a result of the software
product. These three components of the Solution Vision provide a concise image that can
be readily understood, negotiated, and communicated between the developer and the cus-
tomer. This type of vision and understanding is just not possible with an enormous laundry
list of detailed technical requirements.

KSM also allows the validation process to be, in fact, valid. The IEEE definition
of validation referred to the satisfaction of specified requirements. If the requirements for
the product do not change throughout the software development process then this definition
is sufficient. Changing requirements, however, are a fact of life in software development.
One reason, according to Fred Brooks[13] is that customer “usually does not know what
questions must be answered, and he has almost never thought of the problem in detail for
specification.” The feedback mechanism in the KSM enables the Solution Vision to grow
and evolve as both the customer and the developer acquire knowledge about the software’s
requirements and how the software will achieve the desired end-state for the customer’s
environment.

The KSM addresses verification in the Iteration Vision. The Iteration Vision, like
the Solution Vision, consists of purpose for the chose software component, critical tasks for
that component, and a desired end-state of the software product as a result of the develop-
ment of the specific component. Verification occurs during the assessment of the Iteration
Vision. The feedback mechanism forces the developer to verify the correctness of the de-

veloped component in regards to achieving the specified critical tasks. The KSM has an

47

additional benefit in that during the assessment phase the developer not only checks for cor-
rectness, but also to simplify the code. This simplification of the code is akin the XP practice
of refactoring which Kent Beck|7] defines as “a change to the system that leaves its behavior
unchanged, but enhances some nonfunctional quality—simplicity, flexibility, understandabil-
ity, performance.” The KSM not only satisfies the traditional definition of verification, but
takes it to the next level by improving the design of code through simplification.

The Solution Vision and Iteration Vision of the KSM correspond very well to the
standards of validation and verification. The KSM not only achieves these two standards in
the traditional sense, but it also enhances them. The KSM enables flexibility and growth
in customer expectation in regards to validation, and it incorporates a form of refactoring

into the area of verification.

6.3 Analysis of the KSM in Command and Control

One of the most important characteristics in today’s military command and control
system is agility. This is not only true of the United States military, but in other countries’
militaries such as the United Kingdom. What does it mean for a command and control
system to be agile? Dr. David Alberts[2] defines the six attributes of an agile command

and control system as the following:

1. Robustness: the ability to maintain effectiveness across a range of tasks,
situations, and conditions.

2. Resilience: the ability to recover from or adjust to misfortune, damage, or
a destabilizing perturbation in the environment.

3. Responsiveness: the ability to react to a change in the environment in a
timely manner.

4. Flexibility: the ability to employ multiple ways to succeed and the capacity
to move seamlessly between them.

5. Innovation: the ability to do new things and the ability to do old things in
new ways.

6. Adaptation: the ability to change work processes and the ability to change
the organization.

In order to be relevant for today’s command and control environment, the KSM

must display those six attributes of an agile command and control system.

48

The first attribute to evaluate KSM against is robustness. KSM is a robust system
because it built around solving complex problems, not just specific instances of those prob-
lems. Traditional military command and control systems focused on engaging an enemy
force in combat operations. Today’s environment is dramatically different. A military unit
today is expected to decisively engage and destroy an enemy in combat operation, pro-
vide civil assistance in rebuilding a country’s infrastructure, and assisting in disaster relief.
Furthermore, these tasks can take place simultaneously or in very rapid succession. From
my personal experience, the 1st Battalion, 39th Field Artillery (MLRS) had to transition
quickly from providing rocket and missile fires to the 3rd Infantry Division during Oper-
ation IRAQI FREEDOM to providing checkpoint security for the Baghdad International
Airport and assisting the local population within the airport complex with meeting their
basic needs. By viewing military command and control as a subset of complex problem
solving, the KSM can be quickly and ably applied to these varied missions.

The second attribute is resilience. Plans will not always proceed as expected and
bad fortune will occur. The KSM is resilient because of the feedback mechanism built into
both the Solution Vision and the Iteration Vision. The feedback mechanism allows the
KSM to adjust, if necessary, the Iteration Vision and/or the Solution Vision based off the
current situation. The KSM is also resilient in the fact that the assessment of the Iteration
Vision looks to see if the vision could have been implemented better (i.e. simpler). If there
is a better way, then that better way is implemented. This enables the command to learn
from the experience of that Iteration and apply the lessons learned toward the future.

The third attribute is responsiveness. The uncertainty and unpredictability of
today’s environment demand that a military be agile, and an organization can not be
agile if it can not respond to its environment. The continuous assessment and evolution,
if necessary, of the Solution Vision enables the KSM to be responsive to changes in its
environment and to changes in the organization’s understanding of the environment. The
KSM is not locked into a detailed plan that becomes invalid shortly after the implementation
of that plan begins.

The fourth attribute is flexibility. The use of vision statements for the overall so-
lution and for each iteration of a solution component instills a great deal of flexibility. The
destination of each iteration is established, but not the journey to reach that destination.
People are then able to use their initiative and tacit knowledge to develop innovative solu-

tions to the problems. This idea is in-line with General George S. Patton, Jr.’s[28] directive

49

to “never tell people how to do things. Tell them what to do and they will surprise you
with their ingenuity.”

The fifth attribute is innovation. As just mentioned, the KSM’s flexibility encour-
ages innovation on the part of individuals. KSM also encourages innovation by viewing crit-
ical tasks as centers and not discrete objects. A center is not isolated from its environment;
a center interacts and is a part of that environment. The use of centers enables people from
various backgrounds and expertise to analyze and develop solutions for a problem instead of
assigning to the problem to a specific staff element. This idea of using an inter-disciplinary
approach to solving problems has already taken root in the U.S. Army. Lieutenant General
David McKiernan, Commander of the Combined Forces Land Component Command during
Operation IRAQI FREEDOM, restructured his staff around operational functions instead
of the traditional vertical staff stovepipes. Other Army units also organized their staffs into
multi-discipline functional cells][20].

The sixth and final attribute is adaptation. Step-by-step adaptation is at the
heart of the KSM. This adaptation along with awareness of the whole, feedback, and uncer-
tainty constitute the enabling conditions for Alexander’s differentiation process and form
the foundation of the KSM.

The KSM possesses the desired attributes of an agile command and control system.
Therefore, the KSM can be utilized as framework for command and control for today and

tomorrow’s military.

50

Chapter 7

Integration of the KSM

7.1 Purpose for Integration

The preceding chapter analyzed the KSM in regards to both software engineering
and command and control. As a result of the analysis, KSM was shown to satisfy the soft-
ware engineering components of validation and verification, as well as satisfy the attributes
of an agile command and control system. Based on that knowledge, the purpose of this
chapter is to demonstrate how to integrate the KSM in both environments. It goes beyond

a theoretical discussion and addresses practical implementations of the KSM.

7.2 Integrating KSM into Software Engineering

Integration of the KSM into software development does not mean creating a new
process from scratch. The KSM can be adapted into an already existing agile software
development methodology such as Scrum[32]. A key attribute of the KSM is agility, and
thus it is logical that the KSM can be more readily adapted to an agile methodology rather
than a plan-driven methodology.

There are two key deficiencies with the current implementation of Scrum. First,
the Product Backlog does not address design. The Product Backlog represents a laundry

list of items to be accomplished. There is, however, not a method to the development of

o1

the Product Backlog. Each derived Sprint Goal and corresponding Sprint Backlog is simply
based on what the Scrum Team believes that it can accomplish in the next 30-day Sprint
cycle. At the completion of the Sprint, there is only a four hour Sprint Review meeting,
immediately preceding the next Sprint cycle, allocated to capture the lessons learned from
the completed Sprint. There is no mechanism to capture the feedback learned through the
conduct of the Sprint to shape the overall Product design.

The second deficiency is that there is no feedback between the customer (also
called the Product Owner) and the Scrum team for 30 days at a time. The customer can
attend the Daily Scrums, but he/she does not have a part in them. The following is a
description of how the KSM can be incorporated into Scrum.

The Scrum Master works in conjunction with the customer to create a Product
Vision. The Product Vision entails the customer’s purpose for the product, the key func-
tionalities (or tasks) of the product, and the desired customer’s environment as a result
of the product. The Product Backlog of requirements must support this Product Vision.
Prior to each Sprint cycle, the customer and the Scrum Master identify the product tasks
that are the most critical at the moment. The Scrum Master and the Scrum Team then
develop a Sprint Vision that will support the Product Vision. The Sprint Vision entails
the Scrum Team’s purpose for the current Sprint, the critical tasks that must and can be
accomplished during the Sprint, and how the resulting Product end-state as a result of the
Sprint. The Scrum Team will then derive the Sprint Backlog from the Sprint Vision.

Fach Scrum Team member will brief how their work supports the Sprint Vision
during the Daily Scrums. This is in addition to the already required briefing items of
what has been accomplished since the last Scrum, what will be accomplished prior to the
next Scrum, and what obstacles they are facing in accomplishing their stated goals. Also
during the Daily Scrum, each member will have the opportunity to address whether the
Sprint Vision or even the Product Vision needs to be changed or refined. It is critical that
everyone has a clear understanding of the Product Vision and the current Sprint that is
supporting it. On a weekly basis, the Scrum Master will meet with the customer to note the
progress, as well as the hindrances, of the Scrum Team in relation to the Sprint Vision and
the Product Vision. During this weekly meeting, the Scrum Master can address proposed
changes to the Sprint Vision and/or Product Vision with the customer prior to the end of
the Sprint.

At the end of the Sprint, the delivered increment is compared to the Sprint Vision

52

and the Product Vision. This is where the customer will most likely alter the Product Vision
based on knowledge gained from the delivered increment and knowledge gained through the
development process. Another critical component of the Sprint Review process is to identify

if the solutions implemented during the Sprint can be done in a simpler way.

7.3 Integrating KSM into Command and Control

Army command and control is currently implemented using a process called the

Military Decision Making Process (MDMP). The MDMP is a seven-step process that pre-
scribes the manner in which Army commanders with their staffs develop operational orders.
The seven steps are listed in Figure 7.1.

Step 1: Receipt of Mission

Step 2: Mission Analysis

Step 3: Course of Action Development

Step 4: Course of Action Analysis(War Game)

Step 5: Course of Action Comparison

Step 6: Course of Action Approval
Step 7: Orders Production

Figure 7.1: Military Decision Making Process (MDMP)[19]

Arguably, the most important step in the MDMP is Step 2: Mission Analysis.
Mission analysis is important because “both the process and the products of mission analy-
sis help commanders refine their situational understanding and determine their vision.” In
addition, the mission analysis will be the foundation for developing, analyzing, and com-
paring the Courses of Action that will ultimately be implemented as result of this MDMP.
Mission analysis consists of 17 tasks which are generally, though not necessarily, done in
sequential order[19]. Those tasks are shown in Figure 7.2.

Mission analysis Tasks 1 through 11 in Figure 7.2 must be completed before Task
12, Deliver a Mission Analysis Briefing. Following the conclusion of the staff’s mission
analysis briefing to the commander, the commander personally completes Tasks 13 through
15 and the staff, in turn, then completes Tasks 16 and 17.

All of the mission analysis tasks are necessary, but they are organized in a focused

93

Analyze the Higher Headquarters Order

Perform Initial Intelligence Preparation of the Battlefield
Determine the Specified, Implied, and Essential Tasks
Review Available Assets

Determine Constraints

Identify Critical Facts and Assumptions

Perform Risk Assessment

® NS e

Determine Initial Commander’s Critical Information Requirements and Es-
sential Elements of Friendly Information

9. Determine the Initial Intelligence, Surveillance, and Reconnaissance Plan
10. Update the Operational Timeline
11. Write the Restated Mission
12. Deliver a Mission Analysis Briefing
13. Approve the Restated Mission
14. Develop the Initial Commander’s Intent
15. Issue the Commander’s Planning Guidance
16. Issue a Warning Order

17. Review Facts and Assumptions

Figure 7.2: Mission Analysis Tasks[19]

fashion. The most important part of communicating the vision of the operation, developing
the commander’s intent, is not performed until the end of the mission analysis brief. In
addition, the commander alone formulates this intent instead of allowing input from the
staff which then the commander can approve, disapprove, or modify.

The KSM can help guide the mission analysis process by focusing the staff to vi-
sualize the mission through an overall Solution Vision. During Task 1, Analyze the Higher
Headquarters Order, the staff should visualize the Solution Visions developed by their su-
perior unit and their superior’s superior unit. This will help the staff visualize how the
Solution Vision they are developing supports the Solution Visions of their higher head-
quarters. Specifically, it is critical for the staff to develop the End State for the Solution
Vision. Task 2, Perform Initial Intelligence Preparation of the Battlefield, helps to define

the problem environment.

54

The essential tasks identified in Task 3 become the Critical Tasks for the Solution
Vision. The staff then transforms these Critical Tasks into centers and performs successive
iterations developing an Iteration Vision for each and subsequently developing and strength-
ening each. The staff can either perform the iteration cycles in the chronological order that
each Solution Vision Critical Task must be executed or they can start on the most Critical
Task in regards to the overall success of the mission.

Tasks 4 through 11 naturally will be developed as the staff performs the successive
iteration cycles and assessing them against their respective Iteration Visions and the overall
Solution Vision. During the mission analysis briefing, the staff would present the developed
Solution Vision along with its strengthened centers to the commander. The commander can
then approve, modify, or even disapprove the Solution Vision at the conclusion of the mission
analysis briefing. It is very unlikely the commander will flat out disapprove the Solution
Vision because this would signify a major miscommunication between the commander and
his/her staff. Most likely, the commander will have small adjustments to the Solution Vision
based on his/her experience.

The benefit of the KSM in the mission analysis is that now the knowledge of the
problem, in this case the unit’s mission, is being developed and communicated in a high
level picture between the staff and commander instead of the staff presenting facts to the
commander for the commander to visualize on his/her own. Thus, there is more knowledge

sharing taking place between the commander and staff which help facilitate unit success.

95

Chapter 8

Conclusion and Future Work

8.1 Conclusion

Software engineering and command and control will continue to grow more and
more complex. As such the only constants that we can count on are change and unpre-
dictability. We can not eliminate the change and unpredictability. Instead, we must accept
these realities and deal with them.

In this thesis, we have illustrated the parallel histories and complexities that both
software engineering and command and control systems face. Both can be viewed as in-
stances of complex problem solving. By tying these two diverse fields to a higher level
abstraction, we could then gain insight into each environment by the lessons learned from
the other environment. We were also able to incorporate other philosophies of dealing with
complex problem solving to further our understanding. These philosophies were Alexander’s
unfolding and differentiation processes, military image theory, and the Knowledge Insight
Model. The result of bringing all of these perspectives together was the Knowledge Sharing
Mechanism (KSM).

After laying the foundation for the KSM, this thesis articulates what the KSM
consists of. The next step was to take a critical look of the KSM and analyze it using
evaluation criteria from both software engineering and command and control. The KSM

passed both evaluations. Finally, this paper outlined two practical ways to incorporate

56

the KSM into the software engineering and command and control communities. These are
not the only ways to integrate KSM, but ultimate the KSM must be translated from the
theoretical to the practical in order to be of any benefit.

The KSM provides a framework for acknowledging and addressing the change and
uncertainty that are inevitable in any complex problem solving. By using this framework,
one can better mitigate the risks and challenges of change and uncertainty and increase the

chances of a successful solution in whatever field it may be.

8.2 Future Work

The next logical step would be to collect empirical data on a software engineering
project and a military command and control problem using the KSM. A possible way to
test the KSM in software engineering is to introduce it in an advanced undergraduate or
graduate computer science course and have the experimental group use the KSM on a
semester project and the control group use an agile method such as XP or Scrum. Through
the conduct of the experiment, survey both groups on their understanding of the software
problem, their proposed solutions, and how their specific methodology (KSM or Scrum)
helps or hinders their understanding. Finally, the delivered product and its results can
provide feedback to both methodologies.

In order to test the KSM in a military environment, it would be best to incorporate
it into a maneuver (infantry or armor) battalion. Train the staff to use the KSM in order to
modify the battalion’s particular MDMP. Use and evaluate the KSM as the battalion con-
ducts unit level training, brigade field exercises, and ultimately during a Combat Training
Center(CTC) rotation such as the National Training Center at Fort Irwin, California, or
the Joint Readiness Training Center at Fort Polk, Louisiana. The battalion staff’s feedback
and the feedback of the observer/controllers at both home station and the CTC would be
invaluable to compare to the typical results of using MDMP at both home station and at
the CTC.

The Department of Defense is currently in the midst of transforming itself. It
is pushing forward an idea called Net-Centric Warfare that acknowledges the importance
of networks and information sharing. These networks are not only technological networks

that we would think of in computer science, but they are also social networks were people

o7

communicate with one another. In today’s environment, the actions of a sergeant and
private at a checkpoint could have more ramifications on the success of a mission than
decisions made by generals and colonels. Being a member of the Department of Defense, I
will be actively involved in this transformation and hopefully can be of some benefit to it.

I believe that the KSM is one of those tools that can benefit this transformation.

o8

Bibliography

1]

[2]

AGILE ALLIANCE. Manifesto for agile software development, 2001.

http://www.agilemanifesto.org, accessed February 17, 2006.

ALBERTS, D. S., AND HAYES, R. E. Power to the Edge, Command Control in the
Information Age. Information Age Transformation Series. Department of Defense Com-

mand and Control Research Program, 2003.

ALEXANDER, C. The origins of pattern theory: The future of the theory, and the
generation of a living world. IEEE Software 16, 5 (Sep—Oct 1999), 71-82. Keynote
speech given by Christopher Alexander in October 1996 at OOPSLA ’96 in San Jose,
CA.

ALEXANDER, C. The Phenomenon of Life: An Essay on the Art of Building and the
Nature of the Universe, vol. 1 of Nature of Order. Center for Environmental Structure,

Berkeley, CA, 2002.

ALEXANDER, C. The Process of Creating Life: An Essay on the Art of Building and the
Nature of the Universe, vol. 2 of Nature of Order. Center for Environmental Structure,

Berkeley, CA, 2002.

ALEXANDER, C. New concepts in complexity theory, May 2003.
http://www.natureoforder.com/library /scientific-introduction.pdf, accessed Feb-

ruary 14, 2006.

Beck, K. eXtreme Programming Ezxplained: Embrace Change. Addison-Wesley Pub-
lishing Company, Boston, MA, 1999.

8]

[9]

[10]

[11]

[12]

[17]

18]

99

BENIGNO, K. W., 2003. Quote by MAJ Kenneth W. Benigno, Operations Officer for
1-39 FA (MLRS), 3d Infantry Division, during Operation Iraqi Freedom.

BoenwMm, B., EGYED, A., PorT, D., SHAH, A., KwWAN, J., AND MADACHY, R. A
stakeholder win-win approach to software engineering education. Annals of Software

Engineering 6, 1 (Mar 1998), 295-321.

BoenM, B., AND TURNER, R. Balancing Agility and Discipline: A Guide for the
Perplexed. Addison-Wesley Publishing Company, Boston, MA, 2003.

BoeaMm, B. W. A spiral model of software development and enhancement. ACM
SIGSOFT Software Engineering Notes 11, 4 (Aug 1986), 21-42.

BrooKks, JR., F. P. The Mythical Man-Month. Addison-Wesley Publishing Company,
Reading, MA, 1982.

Brooxks, Jr., F. P. No silver bullet: Essence and accidents of software engineering.
Computer 20, 4 (April 1987), 10-19.

CENTER OF MILITARY HISTORY. Utah Beach to Cherbourg (6 June - 27 June 1944).
Armed Forces in Action. United States Army, 1990. http://www.army.mil/cmh-
pg/books/wwii/utah/utah3.html, accessed March 3, 2006.

CONTROL CHAOS. What is scrum?, January 2001.

http://www.controlchaos.com/about/, accessed January 31, 2006.

DEPARTMENT OF DEFENSE. Quadrennial defense review report.
Tech. rep., Department of Defense, Washington, DC, February 2006.
http://www.defenselink.mil /pubs/pdfs/QDR20060203.pdf, accessed February 27,
2006.

DEPARTMENT OF THE ARMY. Field Manual 3-0, Operations. Department of the Army,
Washington, DC, June 2001.

DEPARTMENT OF THE ARMY. Field Manual 6-0, Mission Command: Command and

Control of Army Forces. Department of the Army, Washington, DC, August 2003.

DEPARTMENT OF THE ARMY. Field Manual 5-0, Army Planning and Orders Produc-

tion. Department of the Army, Washington, DC, January 2005.

[20]

[25]

[26]

[27]

28]

[29]

[30]

60

FonTENOT, G., DEGEN, E. J., AND TOHN, D. On Point: US Army in Operation
IRAQI FREEDOM. Combat Studies Institute Press, Fort Leavenworth, KS, 2004.
Operation IRAQI FREEDOM Study Group mandated by GEN Erik K. Shinseki, US
Army Chief of Staff, on April 30, 2003.

Honevcut, T. L., AND KOCHERLAKOTA, S. M. A knowledge insight framework for

knowledge discovery and data mining. North Carolina State University, 2002.
HoneycuTT, T. L. Knowledge enabling organon: Knowledge executive officer, 2001.

KruLak, C. The strategic corporal: Leadership in the three block war. Marine Corps
Gazette 83, 1 (January 1999), 18-22.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION. What is knowledge manage-
ment?, 2004. http://km.nasa.gov/whatis/index.html, accessed February 28, 2006.

NAUR, P., AND RANDELL, B., Eds. Software Engineering (Garmisch, Germany, Oc-
tober 1968), NATO Science Committee, North Atlantic Treaty Organization.

NoNAKA, 1., AND TAKEUCHI, H. The Knowledge-Creating Company. Oxford Univer-
sity Press, New York, NY, 1995.

PaparoNE, C. R. U.S. Army decisionmaking: Past, present, and future. Military
Review 81, 4 (July—August 2001), 45-53.

PatToN, Jr., G. S. War As I Knew It. Houghton Mifflin Company, Boston, MA,
1947.

PrRESSMAN, R. S. Software Engineering: A Practioner’s Approach, 4th ed. The
McGraw-Hill Companies, Inc., New York, NY, 1997.

Royce, W. W. Managing the development of large software systems. In Proceedings
of IEEE WESCON (New York, NY, August 1970), IEEE Computer Society Press,

pp-1-09.

RuMSFELD, D. DOD acquisitions and logistics excellence week kickoff - bureacracy
to battlefield, September 2001. http://www.defenselink.mil/speeches/2001/s20010910-
secdef.html, accessed February 27, 2006.

[32]

[33]

[34]

[35]

[36]

61

SCHWABER, K., AND BEEDLE, M. Agile Software Development with Scrum. Prentice
Hall, Upper Saddle River, NJ, 2001.

STANDARDS COORDINATING COMMITTEE OF THE COMPUTER SOCIETY OF THE
IEEE. IEEE Standard Glossary of Software Engineering Terminology, December 1990.
IEEE Std 610.12-1990 (Revision and redisignation of IEEE Std 792-1983).

UNITED STATES MARINE CORPS. Marine Corps Doctrinal Publication 6, Command
and Control. Department of the Navy, Washington, DC, October 1996.

WiLLiAMS, L., AND KESSLER, R. Pair Programming Illuminated. Addison-Wesley
Publishing Company, Boston, MA, 2002.

WILLISON, J. S. Agile software development for an agile force. Crosstalk (April 2004),
16-19.

