
ABSTRACT

KOSHUTE, PHILLIP. A Model and Optimal Schedule Design for a Fixed Bus Route.
(Under the direction of Xiuli Chao.)

Transit passengers' average total trip time can be minimized by employing the

schedule that achieves the optimal balance between initial delay (tardiness) and layover time

(earliness). To compare different proposed schedules, we carry out a deterministic simulation

which uses link times taken from historical data in the order that they originally occurred.

The simulation’s arrival and departure times, in general, are not the same as those in the

original data because a different schedule is in place. We measure total trip time by tracking

deviations between the scheduled and simulation departure times and computing an

appropriately weighted sum (reflecting the number of passengers affected by a given

deviation).

We consider the number of vehicles serving the route, the number of time-points N,

and the scheduled cycle length to be fixed. Schedules are represented by 1-by-N solution

vectors whose elements correspond to intervals between scheduled departure times of

consecutive time-points. A Modified Steepest Descent (MSD) algorithm is used to search for

the optimal solution.

Throughout the project, North Carolina State University's Werewolf A bus route is

used as a test case. Twenty-four days of historical data are utilized. Empirical results suggest

that the space of feasible solutions may be convex. An optimal solution is identified and

verified by a brute force search of all feasible solutions.

A MODEL AND OPTIMAL SCHEDULE DESIGN FOR A FIXED BUS ROUTE

by

PHILLIP KOSHUTE

A thesis submitted to the Graduate Faculty of

North Carolina State University

In partial fulfillment of the

Requirements for the degree of

Master of Science

OPERATIONS RESEARCH

Raleigh, NC

May 12, 2007

Approved by:

_________________________ _________________________

Salah Elmaghraby Billy Williams

Xiuli Chao

Chair of Advisory Committee

Dedication

To the people of St. Joseph’s Catholic Church in Raleigh, whose generosity, if re-

peated universally, would put public transit out of business. Without their friendship,

encouragement, and prayerful support, my time as a master’s student would have been

far more difficult and far less meaningful.

ii

Biography

Phillip Koshute was born in Beaver, Pennsylvania. Beginning in August 2001, he

studied at Case Western Reserve University in Cleveland, Ohio, where he rode many

buses. In May 2005, he received his Bachelor of Science degree in Mathematics. In May

2007, he will receive his Master of Science degree in Operations Research from North

Carolina State University. He hopes to use his skills and experiences to serve the less

fortunate.

iii

Acknowledgements

I would like to express thanks to my professors, especially Dr. Xiuli Chao, Dr. Salah

Elmaghraby, and Dr. Billy Williams, for their assistance and patience. Dr. John Baugh

also shared numerous helpful ideas, including suggestions which directly led to the use of

deterministic simulation and the Modified Steepest Descent search algorithm. Dr. Ralph

Smith’s encouragement was crucial to the development of my ability to type this report

in LATEX. Likewise, without our department secretary, Barbara Walls, I may never have

kept all of the administrative details straight.

Slade McCalip, Tom Kendig, and Starr Wimberly from the North Carolina State

University Department of Transportation offered a generous amount of time and corre-

spondence helping me to understand the intricacies of the Wolfline system. They were

also instrumental in my acquisition of data from TransLoc Incorporated’s Dominique

Bischof, who also deserves thanks for his eager replies to all of my questions.

Most significantly, I would like to thank my family: Throughout the sometimes-

frustrating thesis process, Mom, Dad, Maria, Gina, Nick, and Missy gave constant re-

assurance and timely humor that always helped me keep an appropriate perspective.

Likewise, the positive effects of their unconditional love and committed prayers cannot

be overestimated.

Still, Blessed Pier Giorgio Frassati (1901-1925), a young Italian who used his engi-

neering talents to serve the poor and share his love for the Gospel should not be forgotten.

His joyful example of combining technical know-how with a servant’s heart continually

brought me inspiration.

Praise God for His many gifts. Only by His blessings, often bestowed through the

generosity of others, have I been able to complete this project.

iv

Contents

List of Tables vii

List of Figures viii

List of Symbols ix

Glossary xi

1 Introduction 1

2 Project description 3

2.1 Objective . 3

2.2 Assumptions . 3

2.3 Overview . 4

3 Test case description 5

4 Data description 6

5 Literature review 7

6 Optimizaton 8

6.1 Model formulation . 9

6.1.1 Notation for decision variables . 9

6.1.2 A deterministic simulation . 10

6.1.3 Explicit calculation . 12

6.1.4 Calculation with weighted deviations 14

6.1.5 Discussion on using weighted deviations 17

6.2 Modified Steepest Descent search algorithm 18

7 Results 20

8 Sensitivity analysis 20

v

8.1 Dwell time . 21

8.2 Starting solutions . 22

8.3 Cycle length . 22

9 Alternative methods, verification, and convergence 24

9.1 Exhaustive enumeration . 24

9.2 Random simulation . 25

9.3 An alternative search algorithm: One-Up-One-Down 27

10 Recommendations 29

11 Conclusions 29

12 Avenues for future research 30

References 33

Appendices 34

Appendix 1: Map and current schedule of Werewolf A 35

Appendix 2: Sample data . 36

Appendix 3: Matlab codes . 38

Appendix 4: Proof of Equation (27) . 51

vi

List of Tables

1 An example of the deterministic simulation. 11

2 Summary of a single iteration of the Modified Steepest Descent algorithm. 19

3 Searching for the optimal schedule with the Modified Steepest Descent

algorithm. 20

4 Sensitivity analysis for alternative dwell time assumptions. 21

5 Sensitivity analysis for different starting solutions. 22

6 Sensitivity analysis for different cycle lengths. 23

7 Ten lowest objective function values, with C ≡ 40, among all feasible

solutions. 24

8 Ten different optimization runs using random simulation. 26

9 Summary of a single iteration of the One-Up-One-Down algorithm. . . . 28

10 Searching for the optimal schedule with the One-Up-One-Down algorithm. 29

11 Current and recommended schedules for the Werewolf A route. 30

vii

List of Figures

1 Formulation of a mathematical program that minimizes average total trip

time using explicit calculation. 13

2 Calculation of total trip time from separate components. 14

3 Formulation of a mathematical program that minimizes average total trip

time using weighted deviations. 16

4 The Modified Steepest Descent (MSD) algorithm. 19

5 The One-Up-One-Down (OUOD) algorithm. 28

viii

List of Symbols

For symbols that represent time, lowercase symbols generally correspond to interval

lengths, while uppercase symbols generally correspond to clock instances.

Ak,m,y : simulation arrival time at sk during cycle m on day y.

Dk,m,y : simulation departure time from sk during cycle m on day y.

dk : dwell time at sk.

ek : earliness weight for sk.

f(·) : objective function value for explicit calculation measurement method.

fwd(·) : objective function value for weighted deviations measurement method.

hk : layover time at sk.

i : time-point index.

j : time-point index.

lk : link time from sk−1 to sk.

M : total number of cycles.

m : cycle index.

N : total number of time-points on a route.

pij : proportion of passengers with origin si and destination sj; typically, i 6= j.

Sk,m,y : scheduled departure time from sk during cycle m on day y.

sk : a time-point.

tij : total trip time from origin si to destination sj.

tk : tardiness weight for sk.

ix

wk : initial delay for a passenger waiting to board at sk.

x : solution vector of decision variables, adjusted during the minimization of average

total trip time.

xcurrent : the solution vector corresponding to the current route schedule.

xi : an individual element of x; the interval between scheduled departure times of time-

points si−1 and si.

xinit : an initial solution, used at the start of the search algorithm.

Y : total number of days.

y : day index.

x

Glossary

Ahead-of-schedule policy : If a bus arrives at a time-point ahead-of-schedule, it

should not depart from this time-point until its scheduled departure time.

Alight : To depart from the bus.

Cost : The objective function value, typically expressed in minutes.

Cycle : Progression from an initial time-point, to all time-points on a given route, and

back to the initial time-point.

Destination : The time-point at which a passenger ends his trip and alights.

Dwell time : The time necessary for passengers to board and alight at a particular

time-point (Dj,m,y − Aj,m,y). Also referred to as “non-layover dwell time.”

Headway : The time interval between consecutive departures from a given time-point;

that is, scheduled cycle length divided by the number of buses serving the route.

Initial delay : The time that a passenger waits at a stop before boarding the bus.

For punctual passengers, initial delay is actual departure time minus scheduled

departure time.

Layover time : The time that an ahead-of-schedule bus idles at a stop, in conformity

with the ahead-of-schedule policy.

Link time : The travel time between consecutive time-points (Aj,m,y −Dj−1,m,y).

Natural departure time : The time when a bus would depart from a time-point if

the ahead-of-schedule policy were not in place; that is, the sum of arrival and dwell

times at that time-point.

Origin : The time-point at which a passenger begins his trip and boards the bus.

Scheduled cycle length : The time interval between scheduled departure times for

the same time-point on consecutive cycles; that is, the frequency with which the

schedule repeats.

xi

Time-point : A special type of of bus stop distinguished by its available physical space,

within which a bus arriving ahead-of-schedule can and must wait until the scheduled

departure time.

Total trip time : The time between the passenger’s arrival at the trip origin and the

arrival of the bus at the passenger’s trip destination.

xii

1 Introduction

A challenge faced by any transit system is maintaining an efficient schedule. Planners

seek to minimize both the time that boarding passengers must wait before a bus arrives

and, once the passengers have boarded, the amount of time required to reach their re-

spective destinations. This challenge is made more complex by the conflict into which

these two objectives come.

Further complexity arises from the stochastic character of link times (travel times

between consecutive time-points1). In practice, these link times depend on a variety of

factors, including traffic congestion, number of stops made, driver behavior, signalized

intersections, and weather. Consequently, to accurately reflect the system, link times

must be represented with a distribution, rather than a fixed time amount. In practice,

this distribution can be obtained directly from historical data by considering a discrete

number of exact values of past link times, or indirectly by fitting a more conventional

continuous distribution (e.g., skewed normal).

By gathering and applying appropriate information from the distribution, arrival

times can be made arbitrarily reliable; that is, the probability that a bus will arrive

late can be made arbitrarily small. The intervals between scheduled departure times of

consecutive time-points simply must be set sufficiently large. For instance, if the link time

between two time-points, sn−1 and sn, is a random variable with cumulative distribution

function Gl(t), minimum lmin, and maximum lmax, and the dwell time (departure time

minus arrival time) at time-point sn is a random variable with cumulative distribution

function Gd(t), minimum dmin, and maximum dmax, the probability that a bus will be able

to depart on-time from time-point sn will be high if the interval between the scheduled

departure times of these two time-points is set to be lmax + dmax.

However, standard transit policy mandates that if a bus arrives at a time-point ahead-

of-schedule, it should not depart from this time-point until its scheduled departure time.

Herein, allotting large intervals between scheduled departures times has a major draw-

1A time-point is a special type of bus stop distinguished by its available physical space, within which

a bus arriving ahead-of-schedule can and must wait until the scheduled departure time. Other terms are

similarly defined in the Glossary on page xi.

1

back. The layover time during which buses that arrive ahead-of-schedule must idle at a

time-point sn can significantly increase total trip times for passengers that have boarded

before sn and will alight at sn+1 or later. Therefore, this practice of allotting large

intervals between scheduled departure times must be moderated.

On the other hand, the probability of a bus arriving soon enough at a time-point that

it must idle until the scheduled departure time can be made arbitrarily small by making

the interval between scheduled departure times of consecutive time-points sufficiently

short. For instance, for the same example cited above, if the interval between scheduled

departure times of the two time-points is set at lmin+ dmin, a bus will avoid incurring a

layover at time-point sn on nearly every cycle.

However, when a bus arrives late at time-point sn, the initial delays (and therefore

the total trip times) for passengers that have arrived punctually to board at time-point

sn will increase. Moreover, a late arrival at time-point sn increases the probability of a

late arrival at time-point sn+1, and along a route, delay at a single time-point can lead

to delays at multiple subsequent time-points. For passengers boarding at each of these

time-points, the later that a bus arrives, the more that their total trip times will increase.

This effect creates a need for the practice of allotting short intervals between scheduled

departure times to also be moderated.

It is reasonable to expect that the optimal schedule, that is, the schedule which

minimizes passengers’ average total trip time2 will lie somewhere in between these two

extremes. However, neither the schedule that achieves this optimal balance nor the means

by which such a schedule can be determined is immediately clear.

Provided that no significant changes have been made to the surrounding transporta-

tion network, it is reasonable to assume that historical data is a relatively accurate

predictor of future transportation system behavior. Herein, historical data can be a key

component to the search for an optimal schedule.

2Total trip time is the time between the passenger’s arrival at his or her trip origin and the arrival

of the bus at the passenger’s trip destination.

2

2 Project description

2.1 Objective

The objective of this project is to develop a process by which the schedule that

minimizes passengers’ average total trip time (and therein achieves the optimal balance

between the two extremes described above) can be identified. Historical data will be used

to evaluate potential schedules. Improvement to schedule efficiency and minimization

of passengers’ average total trip time will be sought by varying the intervals between

consecutive time-points’ scheduled departure times.

The test case for this project will be the Werewolf A bus route which provides evening

service to North Carolina State University (NCSU) as part of the Wolfline bus system.

This route, served by a single bus, runs thirteen full forty-minute cycles each evening.

2.2 Assumptions

Our assumptions for this project can be summarized by the following:

• All boarding passengers arrive promptly at exactly the scheduled departure time

from the time-point at which they are boarding the bus. Therefore, the arrival

of all passengers boarding at a given time-point during a given cycle on a given

day is simultaneous. Though, in practice, passengers’ arrival times may vary, this

assumption allows initial delay to be measured from the scheduled departure time.

• Moreover, passengers board and alight only at the designated time-points. Though

this is unrealistic in practice, passengers boarding at a stop between time-points

sn and sn+1 still must arrive at their stop by the scheduled departure time of the

preceding time-point sn to ensure that they do not miss their bus.

• Origin-destination trip pairs are uniformly distributed; that is, a passenger that

boards the bus at a given time-point is equally likely to alight at any other time-

point. The distribution of origin-destination pairs can be expressed as a matrix P ,

3

where pij gives the probability that a passenger will board at si and alight at sj.

Variations of this assumption are discussed in Sections 6.1.5 and 12.

• Non-layover dwell times are constant, which reflects the limited variability exhib-

ited by non-layover dwell times in the historical data and is consistent with our

assumption that origin-destination trip pairs are uniformly distributed.

• The number of vehicles serving the route (one) is fixed.

• The number of time-points on the route (six) is fixed.

• According to the preferences of the NCSU Department of Transportation, the sched-

uled cycle length3 (forty minutes) is fixed. This assumption is relaxed in Section

8.3.

• The transportation network including and surrounding the Werewolf A route will

not undergo significant changes in the near future and therefore this route’s histor-

ical data is a reasonably accurate predictor of its link times in the future.

2.3 Overview

The remainder of this report is organized as follows. Section 3 contains a more

detailed description of the test case. Section 4 explains the acquisition and organization

of the route’s historical data. Section 5 reviews past developments in the modeling

of and optimal schedule design for bus routes. Section 6 considers several methods to

measure total trip time and gives an algorithm that uses one of these methods to search

for the optimal schedule. Results are summarized in Section 7. The report concludes

with sensitivity analysis (Section 8), comparison with alternative methods that provide

verification (Section 9), recommendations (Section 10), conclusions (Section 11), and

avenues for future research (Section 12).

3Scheduled cycle length is the interval between scheduled departure times for the same time-point on

consecutive cycles.

4

3 Test case description

In all, NCSU and its surrounding areas are served by thirteen Wolfline bus routes,

some of which are simultaneously served by multiple vehicles. Two evening routes, Were-

wolf A and Werewolf B, provide supplementary service to areas that are served by com-

binations of the Wolfline’s eleven other routes during the day. The Werewolf A route

operates seven days a week and its current first and last scheduled departure times are

5:55 PM (from D.H. Hill Library) and 2:27 AM (from Fraternity Court, returning to

D.H. Hill Library a final time).

During each of its thirteen forty-minute cycles, the Werewolf A route has numerous

designated points at which passengers may board or alight the bus. Six of the eight stops

currently listed on the route schedule exist outside the flow of traffic and have layover

capacity (physical space within which a bus arriving ahead-of-schedule can wait until the

scheduled departure time). At these time-points, the buses must abide by the ahead-of-

schedule policy described in Section 1. Our analysis focuses on the scheduled departure

times at these six time-points.

Though the current Werewolf A schedule includes two additional stops, they are

located in the middle of the flow of traffic and therefore do not have the layover capacity

necessary for buses to adhere to the ahead-of-schedule policy described in Section 1.

Herein, scheduling the departure times for these non-time-point stops is simple: each

scheduled departure time is set as the sum of the preceding stop’s scheduled departure

time and the minimum conceivable link time for the preceding link. In contrast, setting

the scheduled departure time as any later time creates the risk that passengers that arrive

on-time to board at this stop will miss their bus.4 Because of the different process by

which their scheduled departure times are determined, we exclude these two non-time-

point stops from our analysis.

4For routes with small headways, it is possible for passengers that have missed their intended bus

to board a subsequent bus without incurring large delay. In such cases, planners may knowingly select

a schedule that can give rise to buses departing ahead-of-schedule because it nevertheless minimizes

average total trip time. The forty-minute headway of the Werewolf A route, however, seems to be

significantly beyond the threshold below which such practice is realistic.

5

The Werewolf A route traverses urban arterial, residential, and campus roads, in-

cluding numerous signalized and unsignalized intersections. Though passenger demand

may vary throughout the evening (with higher volumes typically occurring earlier), the

purposes of the majority of trips can be presumed to be relatively similar. Werewolf A

passengers likely consist largely of students or faculty leaving campus to return to their

apartments or homes or traveling to a parking lot to retrieve their cars.

The Werewolf A route includes several significant sources of variability for link times.

Buses arrive at the signalized intersections on Western Boulevard, Avent Ferry Road,

and Gorman Road at different points during their signal cycles, some of which exceed

90 seconds. Earlier in the evening, many students and faculty are still departing from

campus, and therefore passenger demand is higher during that time and boarding and

alighting occurs at a greater proportion of stops. The route’s initial cycles may also

experience the effects of rush-hour congestion.5

In turn, the Werewolf A route experiences many deviations from the scheduled de-

parture times. As illustration, for the days described by the historical data used in this

project, over a quarter of all buses arrived more than three minutes before the scheduled

departure time (2.3 %) or departed more than five minutes after the scheduled departure

time (23.8 %).

4 Data description

TransLoc Incorporated, developer of the real-time bus locating system used by the

NCSU Department of Transportation, provided historical data for the Werewolf A route

from August 23, 2006, to October 24, 2006. Information, recorded through TransLoc’s

Transit Visualization System, included bus number, stop identification, date, arrival time,

and departure time for every visit to a designated stop along the route. From this, dwell

times at a stop and link times between consecutive stops are easily calculated.

To reduce the effect of missing information, the first and last two of each day’s thir-

teen cycles are truncated. Still, some cycles or days have incomplete information, and

5Additional schedule information, including a route map, can be found in Appendix 1.

6

not all of the data can be utilized. In some cases, measurements have been missed as

a result of malfunctions of the detection system. In other cases, malfunctioning vehi-

cles or dispatcher errors have caused the bus to miss a stop or multiple stops and no

measurements were taken. In theory, interpolation can be used to estimate this missing

information, but because of its additional requisite assumptions, we reject this option.

In the end, twenty-four days with complete ten-cycle data sets have been identified for

use. A sample of the data is available in Appendix 2.

5 Literature review

Ceder (2002) classifies setting a departure schedule as one of the four basic compo-

nents of transit operational planning, preceded chronologically by network route design

and followed by vehicle scheduling and driver assignment. Additionally, Ceder asserts

that, although the components should be considered simultaneously to increase overall

efficiency, setting a departure schedule deserves particular attention because of its role

as “one of the predominant bridges between the operator (and/or the community) and

the passengers” [3].

Numerous objectives have been considered for the design of departure schedules, with

varying assumptions about number of routes and number of transfer points, and passen-

ger arrival rates and preferences. Chakroborty et al. (1998) consider origin-destination

pairs spanning multiple routes and attempt to minimize the sum of initial delay and

transfer time. Focusing on the departure times for a single stop on a single route, Palma

and Lindsey (2001) assume that riders have different times at which they prefer to travel

and seek to minimize the corresponding “penalties” incurred when the bus departs at

another time (which by their assumption is exactly the scheduled departure time). Like-

wise, Wirasinghe (2003) includes a weight for initial delay and an additional penalty

corresponding to the inconvenience created by the delay. Hickman (2001) investigates

routes with small headways, assumes that passenger arrival rates are uniform, and seeks

to determine the holding policy (whereby departures are intentionally delayed) that min-

imizes initial delay for passengers boarding at subsequent stops. Similarly, Hall et al.

7

(2001) study the optimal holding policy at transfer points when connecting buses have

yet to arrive. In the results of both of the latter cases, total trip time will be increased

for some passengers in return for the reduction of the total trip times of other passengers.

Furthermore, various techniques to search for optimal schedules have been employed.

Genetic algorithms are among the most common. For instance, Chakroborty et al. (1998)

adjust headway and holding times using a genetic algorithm that allows both cross-over

and mutation. Alternatively, Palma and Lindsey (2001) extend models from location

theory and think of passengers’ preferred departure times and the scheduled departure

times as physical “points,” an approach that allows the optimal schedule (that which

minimizes total “distance”) to be determined analytically.

Studying transit systems requires assumptions about vehicle behavior. Many authors,

including Chakroborty et al. (1998), assume link times to be constant. On the other

hand, in their model, Anderson and Scalia-Tomba (1981) consciously include the vari-

ability inherent to link times, reflecting trends based on day of the week, time of day, and

driver behavior, as well as incorporating an allowance for additional random variation.

Historical data has been utilized to more accurately represent the stochastic character

of a transit system by Anderson and Scalia-Tomba (1981), Strathman et al. (2002), and

Bertini and El-Geneidy (2004), among others. These studies, though, use the historical

data to estimate input parameters for continuous distribution models, rather than apply-

ing the discrete values of the historical data directly. To our knowledge, no comparable

attempt has been undertaken to compare proposed schedules, and thereby search for an

optimal schedule, by using historical data in the order that it originally occurred.

6 Optimizaton

This section describes the development of the two steps of the optimization process:

(i) a method to measure a passenger’s total trip time, which corresponds to a mathemat-

ical formulation of the process; and (ii) a search algorithm which uses the measurement

method to seek the optimal solution. For the measurement method and corresponding

objective function, we first present an intuitive approach, then an alternative but equiv-

8

alent formulation that reduces computational complexity and gives rise to additional

observations.

6.1 Model formulation

6.1.1 Notation for decision variables

For a route with N time-points in a cycle, a schedule can be represented as a 1-by-N

solution vector, where each element gives the interval between the scheduled departure

times of consecutive stops. For instance, for solution vector x = [x1, x2, . . ., xN], xi is

the interval between the scheduled departure times of time-points si−1 and si.
6

By selecting these intervals, rather than departure times, as decision variables, we are

able to use a single solution vector, coupled with an initial scheduled departure time S0,

to uniquely determine an entire schedule. For example, the current Werewolf A schedule

can represented with xcurrent = [5, 11, 4, 7, 5, 8] and S0 = 5:55 PM. Now, with C as the

total scheduled cycle length and M as the number of cycles per day, we can express the

resulting schedule as an M -by-N matrix X of scheduled departure times,7

X =



S0 S0 + x1 . . . S0 +
∑N−1

i=1 xi

C + S0 C + S0 + x1 . . . C + S0 +
∑N−1

i=1 xi

...
...

. . .
...

C(M − 1) + S0 C(M − 1) + S0 + x1 . . . C(M − 1) + S0 +
∑N−1

i=1 xi


.

Additionally, the schedule departure time Sj,m,y for time-point sj during cycle m on day

y is given by

Sj,m,y = C(m− 1) + S0 +
j∑

i=1

xi. (1)

For this project, we restrict all times to integers, reflecting the industry standard of

publishing transit schedule times exclusively with integer numbers of minutes.

6It should be noted that the time-points are indexed from s0 to sN−1 and that xN gives the interval

between scheduled departure times for SN−1 and S0.
7This example can be compared with the current Werewolf A schedule reproduced in Appendix 1.

9

6.1.2 A deterministic simulation

The basis for our measurement of total trip time is a deterministic simulation that

combines historical data and the schedule constructed from the current iteration’s solu-

tion vector. For this simulation, link times are taken directly from the historical data

in the order that they originally occurred. In general, though, arrival and departure

times in the simulation are not the same as those in the original data because a different

schedule is in place, causing buses to arrive ahead-of-schedule (and therefore to idle until

the scheduled departure time) at different time-points. In turn, for each new solution

vector, the deterministic simulation yields a new data set of arrival and departure times.

Because buses that arrive ahead-of-schedule incur artificially increased dwell times

caused by layovers, historical data does not afford an ordered list of dwell times compa-

rable to that of link times. Because we have assumed that boarding passengers arrive

exactly at the scheduled departure time, the number of passengers waiting to board an

arriving bus is independent of the arrival time of the bus. Therefore, as a simple compro-

mise, we assume that dwell times are constant. Since dwell time is directly related to the

number of boarding and alighting passengers [1], this is consistent with our assumption

that trips are uniformly distributed over all origin-destination pairs (which implies that

the number of boarding and alighting passengers is constant over all time-points).8 The

85th-percentile of a distribution of dwell times recorded at a Werewolf A stop without

layover capacity (dj,m,y ≡ 0.8 minutes) is employed.

Table 1 gives an example of the deterministic solution for a single cycle. Here, link

times l̂i have been taken from historical data from August 27, 2006, beginning at 7:15

PM. The arrival times (“AT”) and departure times (“DT”) resulting from two different

schedules, corresponding to x1 = [6, 7, 7, 7, 7, 6] and x2 = [5, 12, 3, 10, 6, 4], have been

calculated. In Table 1, “Simulation AT” gives the arrival time which would occur if

the given schedule were in place and the link times were the same. “Natural DT” gives

the sum of the simulation arrival time and the dwell time needed for passengers to

board and alight. According to the ahead-of-schedule policy described in Section 1,

8If information about passenger behavior is available, in addition to updating the origin-destination

pairs matrix P , it can be used to modifye the assumed values for dwell times accordingly.

10

“Simulation DT” gives the maximum of the scheduled and natural departure times. In

the “Deviation” column, early arrivals are indicated by negative numbers, and tardy

departures are indicated by positive numbers. Dwell times are assumed to be constant

at 0.8 minutes (0:00:48).

Table 1: An example of the deterministic simulation.

time-point i 1 2 3 4 5 0

link time l̂i 0:06:10 0:09:13 0:04:27 0:07:10 0:02:49 0:05:57

x1 Scheduled DT 7:21:00 7:28:00 7:35:00 7:42:00 7:49:00 7:55:00

Simulation AT 7:21:10 7:31:11 7:36:26 7:44:24 7:48:01 7:54:57

Natural DT 7:21:58 7:31:59 7:37:14 7:45:12 7:48:49 7:55:45

Simulation DT 7:21:58 7:31:59 7:37:14 7:45:12 7:49:00 7:55:45

Deviation +0:00:58 +0:03:59 +0:02:14 +0:03:12 -0:00:11 +0:00:45

x2 Scheduled DT 7:20:00 7:32:00 7:35:00 7:45:00 7:51:00 7:55:00

Simulation AT 7:21:10 7:31:11 7:36:27 7:44:25 7:48:02 7:56:57

Natural DT 7:21:58 7:31:59 7:37:15 7:45:13 7:48:50 7:57:45

Simulation DT 7:21:58 7:32:00 7:37:15 7:45:13 7:51:00 7:57:45

Deviation +0:01:58 -0:00:01 +0:02:15 +0:00:13 -0:02:10 +0:02:45

It is important to note that the total trip time tijmy is a function of the current solution

x = [x1, x2, . . ., xN] by the following: The current solution gives rise to a schedule.

Because the link times lj,m,y and dwell times dj,m,y are pre-set, the schedule determines

the time-points at which layovers occur (indicated in Table 1 by negative deviations), as

well as the time-points at which the bus departs behind-schedule (indicated in Table 1 by

positive deviations). The length of these layovers and the extent of the late departures

significantly affect a passenger’s total trip time. The nonlinear relationship between

arrival times Aj,m,y and solution vector x is described in (2) and (3).

Aj,m,y = max (Aj−1,m,y + dj−1,m,y, Sj−1,m,y) + lj,m,y (2)

where

11

Sj,m,y = C(m− 1) + S0 +
j∑

i=1

xi. (3)

6.1.3 Explicit calculation

Following an intuitive approach, the total trip time tijmy during cycle m on day y

is then computed by subtracting the most recent scheduled departure time from origin

time-point si from the simulation arrival time at destination time-point sj. We can

express this computation as

tijmy =

 Aj,m,y − Si,m,y, if i < j

Aj,m+1,y − Si,m,y, if i > j,
(4)

where Ai,m,y is the simulation arrival time at si and Sj,m,y is the scheduled departure

time from sj, both during cycle m on day y.

Using this approach, we formulate a mathematical program to minimize the average

total trip time for passengers over all possible origin-destination pairs. This formulation,

presented in Figure 1, involves the explicit calculation of total trip time given in (4).

Here, Y is the number of days being considered, M is the number of cycles considered

from a single day, tijmy is the total trip time from si to sj beginning in cycle m on day

y, and pij is the probability that a given passenger travels from si to sj.

The relationship between the solution vector and the objective function is recapped

in (8) through (10). A fixed cycle length, which may in some cases be desirable in order

to preserve a schedule that yields times that allow the schedule’s minute component to

repeat, is specified in (11).9 The decision variables are limited to feasible solutions in (12)

and (13). It is significant to note that the objective function value for this formulation

corresponds to the average total trip time (in minutes) over all origin-destination trip

pairs.

For this test case, we assume that all origin-destination trip pairs are uniformly dis-

tributed, and therefore

9Relaxation of this constraint is discussed in the Section 8.3.

12

pij ≡
1

N(N − 1)
∀ i, j. (5)

Also, our historical data has Y = 24 and M = 10. We retain C = 40 minutes, the current

cycle length for the Werewolf A route.10

min
x

f(x) (6)

where

f(x) =
1

Y MN

Y∑
y=1

M∑
m=1

N−1∑
i=0

N−1∑
j 6=i

tijmy × pij, (7)

tijmy =

 Aj,m,y − Si,m,y, if i < j

Aj,m+1,y − Si,m,y, if i > j,
(8)

Aj,m,y = max (Aj−1,m,y + dj−1,m,y, Sj−1,m,y) + lj,m,y, (9)

and

Sj,m,y = C(m− 1) + S0 +
j∑

i=1

xi. (10)

subject to

N∑
i=1

xi = C, (11)

xi ≥ 0, for i = 1, ..., N, (12)

and

xi integer, for i = 1, ..., N. (13)

Figure 1: Formulation of a mathematical program that minimizes average total trip time

using explicit calculation.

10The Matlab code for this measurement process can be found in Appendix 3.

13

A drawback of this formulation is its requisite computational complexity. Upon each

arrival, the scheduled departure times of all other time-points must be considered. There-

fore, a single evaluation of the objective function has complexity O(Y MN2).11 Though

this process is still manageable for small routes, such as our test case (N = 6), for

longer routes, computational demands increase significantly, particularly when combined

with a search algorithm. When evaluating networks consisting of multiple routes, where

transfers must be considered, the process could become computationally infeasible.

6.1.4 Calculation with weighted deviations

To reformulate this problem in a way that reduces computational demands, we sep-

arate total trip time into individual components: initial delay; link times; non-layover

dwell times; and layover times. This separation is shown in Figure 2.

tijmy = wi +
j∑

k=i+1

lk +
j−1∑

k=i+1

(dk + hk) for m = 1, . . ., M and y = 1, . . ., Y , (14)

where

tijmy is total trip time from origin si to destination sj during cycle m on day y,

wi is initial delay at si,

lk is the link time from sk−1 to sk, and

dk and hk are the non-layover dwell time and layover time at sk.

Figure 2: Calculation of total trip time from separate components.

Two of these quantities, link times and non-layover dwell times, are independent of

the schedule: assuming that short-term traffic changes are negligible, the necessary time

for a bus to travel from time-point sk−1 to time-point sk and for passengers to board and

alight at sk is independent of the interval between scheduled departure times of these

consecutive time-points. For a given cycle and day, changing xk will not affect the link

time lk or non-layover dwell time hk. Therefore, we simply need to track initial delays

11Recall that N = number of time-points, Y = number of days, and M = number of cycles.

14

and layover times, each of which involves deviation from the scheduled departure time.12

Simple minimization of the deviations from the scheduled departure times, though,

fails to reflect the difference between the two quantities. A passenger will experience at

most one initial delay. However, depending on the length of his or her trip, a passenger

may experience multiple layover times.

Nevertheless, we can utilize the deviations from the scheduled departure times to

measure total trip time by applying appropriate weights that reflect the number of pas-

sengers affected by the deviation at a particular time-point. The weights for a particular

time-point come from the distribution of origin-destination pairs pkj: the tardiness weight

tk is simply the proportion of all passengers whose trip originates at stop sk; the earliness

weight ek is the proportion of passengers that are continuing on-board at sk but neither

board nor alight at sk. This new measurement method gives rise to the formulation in

Figure 3.

The constraints in (23) through (25) are the same as in the previous formulation. The

quantities, Sk,m,y, Ak,m,y, and Dk,m,y, are the scheduled departure, simulation arrival,

and simulation departure times at stop sk in cycle m on day y. The quantity dk,m,y is a

reasonable estimate of what the non-layover dwell time would have been had the layover

not occurred (for our analysis, dk,m,y ≡ 0.8), while Ak,m,y +dk,m,y is the natural departure

time. The deviations from the scheduled departure times in (17) are described by the

following notation

z+ =

 z, if z ≥ 0

0, if z < 0.
(15)

It should be noted that the new objective function value corresponds to the sum of the

average initial delay and average layover time delay per passenger trip.

Computationally, this weighted deviations measurement method only needs to con-

sider the current time-point and its comparison to the corresponding scheduled depar-

ture time, reducing the requisite complexity of evaluating the objective function from

12Recall that initial delay is the difference between actual and scheduled departure times. Layover

time is the difference between natural and scheduled departure times.

15

min
x

fwd(x) (16)

where

fwd(x) =
1

Y M

Y∑
y=1

M∑
m=1

N−1∑
k=0

ek × (Sk,m,y − Ak,m,y − dk,m,y)
+ + tk × (Dk,m,y − Sk,m,y)

+,

(17)

tijmy =

 Aj,m,y − Si,m,y, if i < j

Aj,m+1,y − Si,m,y, if i > j,
(18)

Aj,m,y = max (Aj−1,m,y + dj−1,m,y, Sj−1,m,y) + lj,m,y, (19)

Sj,m,y = C(m− 1) + S0 +
j∑

i=1

xi. (20)

ek =
N−1∑
i=2

i−1∑
j=1

p
(k+i) mod N,(k+j) mod N

, (21)

and

tk =
N∑

j=1

pkj, (22)

subject to

N∑
i=1

xi = C, (23)

xi ≥ 0, for i = 1, ..., N, (24)

and

xi integer, for i = 1, ..., N. (25)

Figure 3: Formulation of a mathematical program that minimizes average total trip time

using weighted deviations.

16

O(Y MN2) to O(Y MN).

6.1.5 Discussion on using weighted deviations

Both Sk,m,y −Ak,m,y − dk,m,y (earliness) and Dk,m,y −Sk,m,y (tardiness) correspond to

deviations from the scheduled departure times. The multiplication of these deviations

from the scheduled departure times by the weights, ek and tk, points to the different

effects of earliness and tardiness. In general, being one minute early and being one

minute late are not equivalent, because a different number of passengers are affected by

earliness and tardiness respectively. If a deviation from the scheduled departure time is

to occur, it is preferable for the deviation to affect the smallest number of passengers as

possible. For instance, if ek > tk (that is, at time-point sk, the number of passengers

continuing on-board exceeds the number of passengers boarding), more passengers will

be affected by earliness, and therefore tardiness is preferable to earliness.

When origin-destination trip pairs are assumed to be uniformly distributed, the earli-

ness and tardiness weights, ek and tk, both depend on the route’s number of time-points

N . In such a case, the definition of tk in (22) illustrates that

tk =
1

N
, for k = 0, ..., N − 1. (26)

It can also be shown that

ek =
N − 2

2N
, for k = 0, ..., N − 1. (27)

Further explanation of (27) is included in Appendix 4.

For our test case, since N = 6, (5), (26), and (27) give pij ≡ 1
30

, tk = 1
6
, and ek = 1

3
.

Since ek > tk, if a deviation from the scheduled departure time is to occur, we prefer

tardiness to earliness. At first glance, it seems as though we may now be able to conclude

that the scheduled cycle length corresponding to the optimal schedule will be less than

the sum of the means of the link and dwell times. However, the scheduled cycle length

constraint in (23), as well as this rationale’s failure to consider the detrimental effects

of tardiness at the beginning of a cycle, prevent us from making definitive conclusions

17

about such a relationship.

When origin-destination trip pairs are not assumed to be uniformly distributed, calcu-

lation of pij, tk, and ek at individual time-points can suggest which deviation is preferred

at those time-points. As in the previous case, for an individual time-point, if ek > tk,

tardiness is preferred to earliness. Likewise, if ek < tk, earliness is preferred to tardiness.

6.2 Modified Steepest Descent search algorithm

Using the weighted deviations method to measure total trip time for a given solution

and thereby to compare different solutions, we seek the optimal solution by applying a

modification of the Steepest Descent algorithm developed by Curry (1944). Instead of

finding the direction which yields the greatest local improvement (the gradient) as Curry

originally proposed, we find the adjacent solution13 that yields the greatest improvement.

We continue until we reach a solution whose objective function value is lower than that of

all adjacent solutions (a local, possibly global minimum) or until a predetermined max-

imum number of iterations are performed. Figure 4 summarizes this Modified Steepest

Descent (MSD) algorithm.

In cases where historical data is available, it is likely that a schedule will already

be in place. It is natural, when possible, to initialize the algorithm with the solution

corresponding to this existing schedule.

Table 2 summarizes a single iteration of the Modified Steepest Descent (MSD) al-

gorithm. In the “Solution” column, italics are added to the adjusted elements. In the

“Cost” column, italics are added when a new best cost is achieved.14 This iteration began

with xinit = [5, 11, 4, 7, 5, 8]. In Table 2, the iteration progresses from left to right, then

down.

The combination of the weighted deviations measurement method and the MSD

13Adjacent solutions have exactly two elements that differ by exactly one minute with each solution

having exactly one element that is greater than the same element in the other solution. An adjacent

solution can be obtained by lowering xi by one minute and increasing xj by one minute, where i 6= j.

For instance, x1 = [x1, x2, ..., xi,xj , ...xn] and x2 = [x1, x2, ..., xi + 1,xj − 1, ...xn] are adjacent.
14Costs, describing the average sum of initial delay and non-layover dwell times per passenger, are

given in minutes.

18

(1) Select initial solution xinit and measure its objective function.

(2) Evaluate the objective function at all feasible adjacent solutions.

(3) Keep the solution xnew which has the lowest objective function.

(4) If fwd(xnew) > fwd(xprevious), stop. Select xprevious as the best solution.

(5) Otherwise, return to step 2.

Figure 4: The Modified Steepest Descent (MSD) algorithm.

Table 2: Summary of a single iteration of the Modified Steepest Descent algorithm.

Solution Cost Best Previous Cost Solution Cost Best Previous Cost

[6, 10, 4, 7, 5, 8] 2.450 2.450 [6, 11, 3, 7, 5, 8] 2.830 2.450

[6, 11, 4, 6, 5, 8] 2.664 2.450 [6, 11, 4, 7, 4, 8] 2.519 2.450

[6, 11, 4, 7, 5, 7], 2.438 2.438 [4, 12, 4, 7, 5, 8] 2.708 2.438

[5, 12, 3, 7, 5, 8] 2.933 2.438 [5, 12, 4, 6, 5, 8] 2.767 2.438

[5, 12, 4, 7, 4, 8] 2.621 2.438 [5, 12, 4, 7, 5, 7] 2.541 2.438

[4, 11, 5, 7, 5, 8] 2.513 2.438 [5, 10, 5, 7, 5, 8] 2.353 2.353

[5, 11, 5, 6, 5, 8] 2.396 2.353 [5, 11, 5, 7, 4, 8] 2.291 2.291

[5, 11, 5, 7, 5, 7] 2.260 2.260 [4, 11, 4, 8, 5, 8] 2.669 2.260

[5, 10, 4, 8, 5, 8] 2.510 2.260 [5, 11, 3, 8, 5, 8] 2.715 2.260

[5, 11, 4, 8, 4, 8] 2.446 2.260 [5, 11, 4, 8, 5, 7] 2.415 2.260

[4, 11, 4, 7, 6, 8] 2.775 2.260 [5, 10, 4, 7, 6, 8] 2.616 2.260

[5, 11, 3, 7, 6, 8] 2.861 2.260 [5, 11, 4, 6, 6, 8] 2.695 2.260

[5, 11, 4, 7, 6, 7] 2.520 2.260 [4, 11, 4, 7, 6, 9] 2.824 2.260

[5, 10, 4, 7, 5, 9] 2.665 2.260 [5, 11, 3, 7, 5, 9] 2.945 2.260

[5, 11, 4, 6, 5, 9] 2.779 2.260 [5, 11, 4, 7, 4, 9] 2.633 2.260

algorithm has the advantage of easily adapting to non-uniform distribution of origin-

destination pairs by making appropriate changes in the calculation of the earliness and

tardiness weights, ek and tk.

19

7 Results

Table 3 shows the progression of the MSD algorithm when the solution corresponding

to the existing Werewolf A schedule is used as xinit = [5, 11, 4, 7, 5, 8]. In the “Solution”

column, italics are added to the elements that have been adjusted relative to the previous

iteration.

Table 3: Searching for the optimal schedule with the Modified Steepest Descent algo-

rithm.

Iteration Solution Cost Best Previous Cost

0 [5, 11, 4, 7, 5, 8] 2.549 N/A

1 [5, 11, 5, 7, 5, 7] 2.260 2.549

2 [6, 10, 5, 7, 5, 7] 2.161 2.260

3 [6, 10, 6, 7, 4, 7] 2.092 2.260

4 [7, 9, 6, 7, 4, 7] 2.074 2.092

5 [7, 10, 6, 7, 4, 6] 2.085 2.074

In this instance, we identify a best solution, x = [7, 9, 6, 7, 4, 7], after just five iter-

ations. Assessment of the optimality of this solution can be found in Section 9.1. As

Figure 4 specifies, the algorithm terminates when the new cost exceeds the best previous

cost.

8 Sensitivity analysis

It is desirable to have a robust algorithm whose results do not change significantly

when the parameters are altered slightly. With this in mind, we investigate the separate

effects of altering three different parameters.

20

8.1 Dwell time

To this point, we have assumed constant non-layover dwell times of dj,m,y ≡ 0.8

minutes.15 In practice, though, different estimates may be deemed more appropriate.

Table 4 gives the solution identified as best and its corresponding objective function

value for different values of constant dwell time, as well as for a scenario where dwell

times are assumed to be constant for a given time-point but are different from time-point

to time-point. The dwell times for the latter case are obtained from the 85th-percentiles of

the historical distributions of dwell times at each of the respective time-points, excluding

instances where a layover occurred due to the bus arriving ahead-of-schedule.

Table 4: Sensitivity analysis for alternative dwell time assumptions.

Dwell Time (min) Best Solution Cost

0.50 [7, 9, 6, 7, 4, 7] 2.400

0.60 [7, 9, 6, 7, 4, 7] 2.259

0.70 [7, 9, 6, 7, 4, 7] 2.139

0.80 [7, 9, 6, 7, 4, 7] 2.074

0.90 [7, 9, 6, 7, 4, 7] 2.067

1.00 [7, 9, 6, 8, 4, 6] 2.142

1.10 [7, 9, 6, 8, 4, 6] 2.356

[1.83, 1.30, 1.32, 0.75, 0.85, 0.80] [8, 10, 6, 7, 4, 5] 2.504

Though a different solution is identified as best when dwell time is assumed to be one

minute or greater, only 7 % of dwell times from a non-time-point stop in the historical

data reach this length. On the other hand, when lower and more common dwell times

are assumed as the constant value, the solution identified as best remains unchanged.

Because dwell times at a given time-point are directly related to the number of board-

ing and alighting passengers, the distribution of origin-destination trip pairs can be used

to estimate dwell times for different time-points. The results corresponding to the latter

15Please refer to Section 6.1.2 for the justification.

21

set of assumed dwell times in Table 4 illustrate that passenger information should be

utilized when it is available.

8.2 Starting solutions

When there is a risk of converging to a non-global local optimum, the starting solution

has a significant effect on the optimality of the solution that the algorithm identifies as

best. Therefore, we repeat the MSD algorithm using a diverse set of starting solutions.

The results are summarized in Table 5.

Table 5: Sensitivity analysis for different starting solutions.

Starting Vector Best Solution Iterations

[40, 0, 0, 0, 0, 0] [7, 9, 6, 7, 4, 7] 34

[0, 0, 0, 0, 0, 40] [7, 9, 6, 7, 4, 7] 34

[10, 10, 0, 0, 10, 10] [7, 9, 6, 7, 4, 7] 14

[6, 6, 7, 7, 7, 7] [7, 9, 6, 7, 4, 7] 5

[11, 5, 7, 4, 8, 5] [7, 9, 6, 7, 4, 7] 10

[0, 0, 20, 20, 0, 0] [7, 9, 6, 7, 4, 7] 28

[10, 3, 5, 5, 7, 10] [7, 9, 6, 7, 4, 7] 10

We note that for our Werewolf A test case, the MSD search algorithm identifies the

same solution, x = [7, 9, 6, 7, 4, 7], as best for all attempted starting solutions. Though

demonstrating the convergence properties of the MSD search algorithm is beyond the

scope of this project, this sample of empirical results suggests that the space of feasible

solutions may be convex.

8.3 Cycle length

Heretofore, we have set the cycle length to forty minutes, which matches the current

Werewolf A route scheduled cycle length. This cycle length has the benefit of repeating

the minute components of scheduled departure times every two hours (every three cycles),

22

desirable for a transit schedule serving a diverse clientele. Still, it is of interest to compare

the results obtained when different cycle lengths are considered. If a significantly lower

objective function value is achievable with a different cycle length, it may be worthwhile

to consider relaxing our constraints. Computationally, we can evaluate this situation

simply by modifying the constraint in (23). Table 6 summarizes the results.

It is significant to note that, for our test case, the objective function value corre-

sponding to a forty-minute cycle length is the lowest even when other cycle lengths are

permitted.

Table 6: Sensitivity analysis for different cycle lengths.

Cycle Length Best Solution Cost

35 [7, 9, 5, 7, 4, 3] 8.492

36 [7, 9, 5, 7, 4, 4] 5.494

37 [7, 9, 5, 7, 4, 5] 3.489

38 [7, 9, 6, 7, 4, 5] 2.492

39 [7, 9, 6, 7, 4, 6] 2.095

40 [7, 9, 6, 7, 4, 7] 2.074

41 [7, 9, 6, 8, 4, 7] 2.213

42 [7, 10, 6, 8, 4, 7] 2.439

43 [8, 10, 6, 8, 4, 7] 2.721

44 [8, 10, 6, 8, 4, 8] 3.030

45 [8, 11, 6, 8, 4, 8] 3.347

The MSD search algorithm could be adjusted to allow non-specified scheduled cycle

lengths or any of a set of scheduled cycle lengths. “Adjacency” could be redefined to

describe solutions differing by one minute at one element, rather than at two elements.

In turn, each iteration would check only 2N solutions rather than N(N − 1) solutions,

reducing the computational complexity of the search component of each iteration to

O(Y MN).16 However, by decreasing the set of alternative solutions tested at each it-

16This reduction in computational complexity is a natural reasonable consequence of relaxing the

scheduled cycle length constraint in (23).

23

eration, we increase the chance that the algorithm will terminate at a non-global local

optimum. For instance, under these modified constraints, with xinit = [5, 11, 4, 7, 5, 8],

the algorithm terminates at x = [5, 11, 5, 7, 5, 7] with fwd(x) = 2.261, which exceeds

fwd([7, 9, 6, 7, 4, 7]) = 2.074.

9 Alternative methods, verification, and convergence

9.1 Exhaustive enumeration

These test case results can be verified by evaluating the objective function at all

feasible solutions. A simple program17 identifies the entire set of feasible solutions, as

determined by the constraints listed in (23) through (25). For the Werewolf A route, the

optimal solution identified by this exhaustive enumeration or “brute force” approach is

the same as the best solution that MSD identifies. Therein, the optimality of the solution

identified by MSD is established.

Table 7 gives the solutions with the ten smallest objective function values. Inci-

dentally, the solution corresponding to the current schedule yields the 1809th smallest

objective function out of 1,221,759 total feasible solutions.

Table 7: Ten lowest objective function values, with C ≡ 40, among all feasible solutions.

Rank Solution Cost Rank Solution Cost

1 [7, 9, 6, 7, 4, 7] 2.074 8 [6, 9, 6, 8, 4, 7] 2.112

2 [7, 10, 6, 7, 4, 6] 2.084 9 [7, 9, 6, 7, 5, 6] 2.112

3 [7, 9, 6, 8, 4, 6] 2.086 10 [6, 10, 5, 8, 4, 7] 2.115

4 [6, 10, 6, 7, 4, 7] 2.092
...

...
...

5 [8, 9, 6, 7, 4, 6] 2.100 1809 [5, 11, 4, 7, 5, 8] 2.549

6 [7, 10, 5, 8, 4, 6] 2.100
...

...
...

7 [7, 9, 5, 8, 4, 7] 2.109 1221759 [40, 0, 0, 0, 0, 0] 18.329

17Please see Appendix 3 for the Matlab code used for exhaustive enumeration.

24

This exhaustive enumeration approach is guaranteed to identify the global optimum.

However, for a route with N time-points, it has computational complexity O(Y MNCN),

which may be prohibitive for some routes or networks.

9.2 Random simulation

By considering the distributions of link times given by the historical data independent

of the order in which they occurred, arbitrarily many days can be simulated. In the

same manner as in previous total trip time measurement methods, a schedule can be

constructed from the given solution vector, link times can be applied to the schedule,

and layovers can be identified. Now, though, rather than utilizing the historically ordered

list, link times are randomly selected. For instance, rather than considering all link times

from a given cycle and day from the historical data in succession, the simulation may

select the link time from cycle 3 on day 5 as l1,1,1 and the link time from cycle 7 on day

12 as l2,1,1.

A drawback of this process is that the correlation of link times near each other with

respect to time of day is discarded, rendering the simulation less valid. Moreover, though

this random simulation can evaluate the objective function in the same manner as the

deterministic simulation, comparisons of objective function values are not necessarily re-

peatable. For instance, the random nature of the link times may yield fwd(x1) < fwd(x2)

in one instance, but fwd(x1) > fwd(x2) in another. Consequently, even when identi-

cal starting solutions and historical data are used, the solution that a search algorithm

identifies as best may not always be the same.

In theory, increasing the number of simulated days can decrease the probability of

contradicting results like those mentioned in the previous paragraph by narrowing the

range of possible objective function values for a given solution. The extent to which this

range’s width is decreased depends on the variance of the distribution of link times that

is used. However, as Table 8 shows, even when 600 days are simulated at each iteration,

the algorithm may identify different solutions as best on different runs.

It should be noted that this observation alone does not imply that random simulation

causes the algorithm to not reach the global optimum. Applying different link times

25

on each run has the effect of creating new system behavior, different each time from

the actual historical behavior. Therefore, using random simulation leaves the search

algorithm equally likely to find the solution corresponding to the optimal schedule as

when deterministic simulation is used. The unavoidable difficulty, however, is that the

resulting schedule will be optimal for a system corresponding to behavior that has never

actually occurred.

Nevertheless, comparisons with search algorithm results obtained when the random

simulation is employed can provide verification to the search algorithm results obtained

with the deterministic simulation. Table 8 summarizes results obtained by using the

MSD algorithm and the random simulation for Y = 600 days. In each case, xinit =

[5, 11, 4, 7, 5, 8] is used as the initial solution. The “Iteration Index” column gives the

iteration during which the solution identified as best first appears.

Table 8: Ten different optimization runs using random simulation.

Best Solution Cost Iteration Index

[7, 9, 6, 7, 4, 7] 1.878 5

[7, 9, 6, 7, 4, 7] 1.872 5

[6, 10, 6, 7, 4, 7] 1.876 6

[7, 9, 6, 7, 4, 7] 1.872 5

[7, 9, 6, 7, 4, 7] 1.871 5

[7, 9, 6, 7, 4, 7] 1.879 5

[7, 9, 6, 7, 4, 7] 1.871 5

[7, 9, 6, 7, 4, 7] 1.877 5

[6, 10, 6, 7, 4, 7] 1.876 4

[7, 9, 6, 7, 4, 7] 1.885 5

The significant proportion (eight out of ten) of the runs using random simulation

where the solution identified as best matches x = [7, 9, 6, 7, 4, 7] adds verification to the

weighted deviation and MSD process.

The occurrence of cost functions that are lower than those measured by deterministic

26

simulation may arise from the loss of correlation of link times near each other with

respect to time of day. With random simulation, longer link times that had previously all

occurred during the earlier rush-hour cycles may now be distributed uniformly throughout

the evening.

9.3 An alternative search algorithm: One-Up-One-Down

Computational complexity for each iteration can be decreased by checking less than

every adjacent feasible solution (as the MSD algorithm does). For instance, we can limit

our search to identifying the element with the greatest one-sided weighted deviation (early

or tardy). This information can be implemented into an algorithm which maintains cycle

length by adjusting that element (decreasing the element if the bus has been generally

early or increasing it if the bus has been generally tardy) and a randomly-selected comple-

mentary element. The search component of each iteration of such a One-Up-One-Down

(OUOD) algorithm has computational complexity O(Y MN). Additionally, because mea-

surement is performed in series with the search component rather than as a part of a

loop, each iteration’s overall complexity is reduced from O(Y MN3) to O(Y MN). The

OUOD algorithm is described in further detail in Figure 5.

By randomly determining the complementary element, this algorithm has the po-

tential to avert non-terminal periodicity around non-global optima. Moreover, because

of its random component, the OUOD algorithm avoids the possibility of permanently

converging to a non-global local optimum possessed by the MSD algorithm.

Table 9 summarizes a single iteration of this OUOD algorithm. Italics are added to

the element corresponding to the greatest one-sided weighted deviation.

Table 10 shows the progression of the OUOD algorithm when the existing Werewolf

A schedule, x = [5, 11, 4, 7, 5, 8], is used as the initial solution xinit. In the “Solution”

column, italics are added to the adjusted elements. In the “Cost” column, italics are

added when a new best cost is achieved. We note that the OUOD algorithm yields the

same best solution, x = [7, 9, 6, 7, 4, 7], as the MSD algorithm.

The OUOD algorithm’s major drawback, however, is that because it does not check

all adjacent solutions, it is possible that the optimal solution will never be reached even

27

1. Set bestcost to be a sufficiently large number (e.g., 1000).

2. Select initial solution xinit.

3. Carry out deterministic simulation.

4. Identify the time-point si with the greatest weighted deviation (earliness or tardiness).

5. If bus is tardy to time-point si , xi = xi + 1. Randomly determine 1− i < j < N − i

but j 6= 0 for xi+j = xi+j − 1.

Else (if bus is early to time-point si), xi = xi−1. Randomly determine 1− i < j < N − i

but j 6= 0 for xi+j = xi+j + 1.

6. Evaluate fwd(xnew). If fwd(xnew) < bestcost, set bestcost = fwd(xnew).

7. Return to step 1, using xinit = xnew.

8. Repeat for a fixed number of iterations, keeping track of the overall lowest objective

function value and the corresponding solution.

Figure 5: The One-Up-One-Down (OUOD) algorithm.

Table 9: Summary of a single iteration of the One-Up-One-Down algorithm.

Starting vector [5, 11, 4, 7, 5, 8]

Corresponding cost 2.549

Weighted earliness vector [0.015, 0.739, 0.000, 0.044, 0.223, 0.609]

Weighted tardiness vector [0.206, 0.067, 0.269, 0.220, 0.105, 0.052]

New solution vector [5, 10, 5, 7, 5, 8]

Corresponding cost 2.353

if a solution adjacent to the optimal solution is reached. In these cases, the elements that

need to be changed in order to move to the optimal solution from an adjacent solution

do not possess the greatest weighted deviation. Therefore, the algorithm never gets any

closer than the adjacent solution.

28

Table 10: Searching for the optimal schedule with the One-Up-One-Down algorithm.

Solution Cost Best Previous Cost Solution Cost Best Previous Cost

[5, 11, 4, 7, 5, 8] 2.549 N/A [5, 10, 5, 7, 5, 8] 2.353 2.353

[5, 10, 5, 8, 5, 7] 2.293 2.293 [5, 9, 5, 8, 5, 8] 2.435 2.293

[5, 10, 5, 8, 5, 7] 2.293 2.293 [5, 9, 6, 8, 5, 7] 2.324 2.293

[5, 9, 6, 8, 4, 8] 2.308 2.293 [5, 9, 6, 9, 4, 7] 2.307 2.923

[6, 9, 6, 8, 4, 7] 2.112 2.112 [6, 9, 7, 7, 4, 7] 2.134 2.112

[6, 10, 6, 7, 4, 7] 2.092 2.092 ∗[7, 9, 6, 7, 4, 7]∗ 2.074 2.074

[7, 8, 6, 8, 4, 7] 2.112 2.074 [8, 8, 6, 7, 4, 7] 2.179 2.074

[7, 9, 6, 7, 4, 7] 2.074 2.074 [7, 8, 6, 8, 4, 7] 2.123 2.074

[7, 8, 7, 7, 4, 7] 2.130 2.074 [8, 8, 6, 7, 4, 7] 2179 2.074

[7, 8, 6, 7, 5, 7] 2.167 2.074 [8, 8, 6, 7, 6, 6] 2.180 2.074

10 Recommendations

Our results suggest the revisions to the Werewolf Route A schedule given in Table

11.18 Italics are added to the recommended schedule times. Whereas the current schedule

yields an objective function value of f(xcurrent) = 2.549 minutes, the recommended

revisions yield an objective function value of f(xopt) = 2.074 minutes, an improvement

of over 18 %. Furthermore, our analysis shows that if the recommended schedule were in

place for the days considered, the proportion of buses arriving more than three minutes

early or departing more than five minutes late would decrease from 26 % to 6 %.

11 Conclusions

Using historical data, we have created a method by which the efficiency of differ-

ent schedules can be measured. Furthermore, in this project, we have implemented an

algorithm capable of identifying the optimal schedule for the NCSU Wolfline Werewolf

18It should be noted that S0 corresponds to D.H. Hill

29

Table 11: Current and recommended schedules for the Werewolf A route.

Talley Textiles EC Lot Gorman/Kings Frat Ct DH Hill

N/A N/A N/A N/A N/A 5:55 PM

N/A N/A N/A N/A N/A 5:55 PM

6:00 PM 6:11 PM 6:15 PM 6:22 PM 6:27 PM 6:35 PM

6:02 PM 6:11 PM 6:17 PM 6:24 PM 6:28 PM 6:35 PM

6:40 PM 6:51 PM 6:55 PM 7:02 PM 7:07 PM 7:15 PM

6:42 PM 6:51 PM 6:57 PM 7:04 PM 7:08 PM 7:15 PM
...

...
...

...
...

...

A route. Assuming uniformly-distributed origin-destination trip pairs, to minimize pas-

sengers’ average total trip time, the intervals between scheduled departures times of

consecutive stops should be set to 7, 9, 6, 7, 4, and 7 minutes. An exhaustive enumera-

tion approach establishes this solution’s optimality. Moreover, sensitivity analysis shows

that this solution is optimal even when different cycle lengths are permitted. Verification

checks suggest that this measurement method and search algorithm may be able to be

applied to any single fixed bus route with N time-points.

12 Avenues for future research

Various extensions of this project come to mind:

1. Non-uniform origin-destination distribution: Computationally, non-uniform

origin-destination distributions can be considered. The distribution could be explicitly

determined by tracking passengers or could be estimated from other demographic infor-

mation. Furthermore, knowing specifically where an alighting passenger had boarded

would not be necessary; simply having a count at each stop of passengers who are con-

tinuing on-board (and therefore are affected by layover delays) would be sufficient.

Additionally, it could be of interest to investigate the robustness of the optimal solu-

tion with regard to changes in the origin-destination distribution.

30

2. Networks with multiple routes: Networks with multiple routes that afford pas-

sengers the opportunity to transfer between routes can be considered. Origin-destination

pairs can be broadened to include origins and destinations on different routes, total trip

time can be generalized to include transfer time, a solution vector can be formed by

concatenating the vector of intervals between scheduled departure times for each of the

routes, and a deterministic or random simulation can be simultaneously carried out for

each of the routes. Within the search algorithm, the pairs or elements to be adjusted

should be restricted to those from the same route.

Cases where there exist multiple paths to complete the trip determined by a single

origin-destination pair introduce greater intricacy, possibly confronted by dynamically

calculating trip proportions and earliness and tardiness weights.

A practical example of a multi-route network is the NCSU Wolfline Evening Service,

consisting of the Werewolf A and Werewolf B routes. For instance, to travel from the

College of Textiles to Carter-Finely Park and Ride, a passenger needs to transfer from

the Werewolf A route to the Werewolf B route at D.H. Hill Library.

3. Non-uniform dwell times: In practice, dwell times are not constant. If no

passengers are waiting to board or alight, the dwell time, even at a stop with layover

capacity, may be zero. On the other hand, if a large number of passengers are boarding

or alighting, dwell time may grow quite large. Therefore, benefit may be gained from

investigating the effects upon our results of including variable dwell times. For instance,

non-constant historical distributions of dwell times can be utilized during random sim-

ulation. Additionally, assumptions of constant dwell times can be varied to reflect and

accommodate common phenomena such as drivers taking a break at the end of each

cycle.

4. Drivers that do not follow policy: In practice, some drivers may not follow

the standard policy to wait until the scheduled departure time before departing from a

time-point. The extent to which this should be considered in schedule design is debatable.

Some may argue that drivers simply need increased education about policies or increased

accountability to adhere to policies. It is possible, however, to reflect this uncertainty by

having the simulation, deterministic or random, randomly not follow the policy a certain

31

proportion of the time. It is also possible to restrict policy non-adherence to a subset of

time-points.

5. Routes served by multiple buses: In the case where sufficiently large headways

are maintained, our process will apply equally well to routes served by multiple buses.

Historical data for a single bus can be isolated and the process carried out as if there

were only one vehicle. Then, the schedule identified as best for this single bus can be

repeated periodically to reflect the additional buses.

Additionally, in cases where headways are small enough that it is possible for an

optimal schedule to coincide with instances where buses fall one headway or more behind-

schedule, the measurement method can be adjusted, such that deviations are calculated

by considering the soonest-arriving bus after a scheduled departure time, rather than

assuming a one-to-one relationship between passengers arriving at particular scheduled

departure times and actual bus arrivals.

6. Modification of the search algorithm: The two algorithms proposed by this

project, Modified Steepest Descent (MSD) and One-Up-One-Down (OUOD), each have

different advantages. MSD has a greater probability of identifying the global optimum,

while for each iteration, OUOD is computationally less complex. Combinations of these

two algorithms may yield increased performance. For instance, OUOD could be run,

then MSD applied to ensure that the search has not stalled at a solution that is adjacent

to the optimal solution.

32

References

[1] Anderson, P. and Scalia-Tomba P. (1981). “A mathematical model of an urban bus

route.” Transportation Research B, 15B(4), 249-266.

[2] Bertini, R. and El Geneidy, A. (2004). “Modeling transit trip time using archived

bus dispatch system data.” Journal of Transportation Engineering, 56-67.

[3] Ceder, A. (2002). “Urban transit scheduling: framework, review and examples.”

Journal of Urban Planning and Development, 225-244.

[4] Chakroborty, P., Deb K., and Srinivas B. (1998). “Network-wide optimal scheduling

of transit systems using genetic algorithms.” Computer-Aided Civil and Infrastruc-

ture Engineering, 13, 363-376.

[5] Curry, H. (1944). “The method of steepest descent for non-linear minimization prob-

lems.” Quarterly of Applied Mathematics, 2, 259-261.

[6] Hall, R., Dessouky, M., and Lu, Q. (2001). “Optimal holding times at transfer

stations.” Computers and Industrial Engineering, 379-397.

[7] Hickman, M. (2001). “An Analytic Stochastic Model for the Transit Vehicle Holding

Problem.” Transportation Science, 35(3), 215-237.

[8] Palma, A. and Lindsey, R. (2001).“Optimal timetables for public transportation.”

Transportation Research B, 35B, 789-813.

[9] Strathman, J. et al. (2002). “Evaluation of transit operations: data applications of

Tri-Met’s automated Bus Dispatching System.” Transportation, 29, 321-345.

[10] Wirasinghe, S. (2003). “Initial Planning for Urban Transit Systems.” Advanced Mod-

eling for Transit Operations and Service Planning, W. Lam and M. Ball, eds., Else-

vier, Oxford, 1-29, ISBN 0-08-044206-4.

33

APPENDICES

34

 35

Appendix 1: Map and current schedule of the Werewolf A route

These images were obtained from the North Carolina State University website:
http://www2.acs.ncsu.edu/trans/transportation/wolfline/images/Spring/Werewolf.pdf.

 36

Appendix 2: Sample data (Taken from August 27, 2006)

Stop
Stop
Index Date

Arrival at
Current

Stop Departure

Arrival at
Next
Stop

Dwell
Time

Travel
Time

Most Recent
Scheduled
Departure

Time

Founders Dr at DH Hill Library 0 8/27/2006 18:37:15 18:38:06 18:42:30 0:00:51 0:04:24 18:35:00

Cates Ave at Talley Student Center 1 8/27/2006 18:42:30 18:43:40 18:50:28 0:01:10 0:06:48 18:40:00

Main Campus Dr at College of Textiles 2 8/27/2006 18:50:28 18:50:55 18:55:23 0:00:27 0:04:28 18:51:00

Centennial Parkway EC Lot (2nd shelter) 3 8/27/2006 18:55:23 18:56:05 19:00:33 0:00:42 0:04:28 18:55:00

Gorman St at Kings Ct (Inbound) 4 8/27/2006 19:00:33 19:01:45 19:04:51 0:01:12 0:03:06 19:02:00

Fraternity Ct at Varsity Dr (Inbound) 5 8/27/2006 19:04:51 19:05:55 19:12:25 0:01:04 0:06:30 19:07:00

Founders Dr at DH Hill Library 0 8/27/2006 19:12:25 19:15:38 19:21:48 0:03:13 0:06:10 19:15:00

Cates Ave at Talley Student Center 1 8/27/2006 19:21:48 19:22:36 19:31:49 0:00:48 0:09:13 19:20:00

Main Campus Dr at College of Textiles 2 8/27/2006 19:31:49 19:33:17 19:37:44 0:01:28 0:04:27 19:31:00

Centennial Parkway EC Lot (2nd shelter) 3 8/27/2006 19:37:44 19:38:26 19:45:36 0:00:42 0:07:10 19:35:00

Gorman St at Kings Ct (Inbound) 4 8/27/2006 19:45:36 19:46:00 19:48:49 0:00:24 0:02:49 19:42:00

Fraternity Ct at Varsity Dr (Inbound) 5 8/27/2006 19:48:49 19:49:25 19:55:22 0:00:36 0:05:57 19:47:00

Founders Dr at DH Hill Library 0 8/27/2006 19:55:22 19:56:20 20:02:32 0:00:58 0:06:12 19:55:00

Cates Ave at Talley Student Center 1 8/27/2006 20:02:32 20:03:53 20:11:27 0:01:21 0:07:34 20:00:00

Main Campus Dr at College of Textiles 2 8/27/2006 20:11:27 20:12:00 20:16:34 0:00:33 0:04:34 20:11:00

Centennial Parkway EC Lot (2nd shelter) 3 8/27/2006 20:16:34 20:17:19 20:24:14 0:00:45 0:06:55 20:15:00

Gorman St at Kings Ct (Inbound) 4 8/27/2006 20:24:14 20:25:29 20:28:45 0:01:15 0:03:16 20:22:00

Fraternity Ct at Varsity Dr (Inbound) 5 8/27/2006 20:28:45 20:29:42 20:35:28 0:00:57 0:05:46 20:27:00

Founders Dr at DH Hill Library 0 8/27/2006 20:35:28 20:37:34 20:43:26 0:02:06 0:05:52 20:35:00

Cates Ave at Talley Student Center 1 8/27/2006 20:43:26 20:44:35 20:54:03 0:01:09 0:09:28 20:40:00

Main Campus Dr at College of Textiles 2 8/27/2006 20:54:03 20:54:30 20:59:04 0:00:27 0:04:34 20:51:00

Centennial Parkway EC Lot (2nd shelter) 3 8/27/2006 20:59:04 20:59:52 21:05:07 0:00:48 0:05:15 20:55:00

Gorman St at Kings Ct (Inbound) 4 8/27/2006 21:05:07 21:05:55 21:09:38 0:00:48 0:03:43 21:02:00

Fraternity Ct at Varsity Dr (Inbound) 5 8/27/2006 21:09:38 21:10:23 21:17:33 0:00:45 0:07:10 21:07:00

Founders Dr at DH Hill Library 0 8/27/2006 21:17:33 21:18:24 21:23:25 0:00:51 0:05:01 21:15:00

Cates Ave at Talley Student Center 1 8/27/2006 21:23:25 21:24:37 21:34:08 0:01:12 0:09:31 21:20:00

Main Campus Dr at College of Textiles 2 8/27/2006 21:34:08 21:34:53 21:39:12 0:00:45 0:04:19 21:31:00

Centennial Parkway EC Lot (2nd shelter) 3 8/27/2006 21:39:12 21:39:54 21:45:31 0:00:42 0:05:37 21:35:00

Gorman St at Kings Ct (Inbound) 4 8/27/2006 21:45:31 21:46:16 21:49:07 0:00:45 0:02:51 21:42:00

Fraternity Ct at Varsity Dr (Inbound) 5 8/27/2006 21:49:07 21:49:43 21:54:47 0:00:36 0:05:04 21:47:00

Founders Dr at DH Hill Library 0 8/27/2006 21:54:47 21:56:11 22:00:42 0:01:24 0:04:31 21:55:00

Cates Ave at Talley Student Center 1 8/27/2006 22:00:42 22:02:00 22:08:52 0:01:18 0:06:52 22:00:00

Main Campus Dr at College of Textiles 2 8/27/2006 22:08:52 22:09:16 22:13:43 0:00:24 0:04:27 22:11:00

Centennial Parkway EC Lot (2nd shelter) 3 8/27/2006 22:13:43 22:14:28 22:20:38 0:00:45 0:06:10 22:15:00

Gorman St at Kings Ct (Inbound) 4 8/27/2006 22:20:38 22:21:05 22:23:48 0:00:27 0:02:43 22:22:00

Fraternity Ct at Varsity Dr (Inbound) 5 8/27/2006 22:23:48 22:25:00 22:29:46 0:01:12 0:04:46 22:27:00

Founders Dr at DH Hill Library 0 8/27/2006 22:29:46 22:38:47 22:43:29 0:09:01 0:04:42 22:35:00

Cates Ave at Talley Student Center 1 8/27/2006 22:43:29 22:44:48 22:51:27 0:01:19 0:06:39 22:40:00

Main Campus Dr at College of Textiles 2 8/27/2006 22:51:27 22:51:54 22:56:25 0:00:27 0:04:31 22:51:00

Centennial Parkway EC Lot (2nd shelter) 3 8/27/2006 22:56:25 22:57:28 23:03:26 0:01:03 0:05:58 22:55:00

Gorman St at Kings Ct (Inbound) 4 8/27/2006 23:03:26 23:04:08 23:07:14 0:00:42 0:03:06 23:02:00

Fraternity Ct at Varsity Dr (Inbound) 5 8/27/2006 23:07:14 23:07:57 23:14:12 0:00:43 0:06:15 23:07:00

Founders Dr at DH Hill Library 0 8/27/2006 23:14:12 23:17:01 23:21:34 0:02:49 0:04:33 23:15:00

 37

Cates Ave at Talley Student Center 1 8/27/2006 23:21:34 23:22:43 23:28:35 0:01:09 0:05:52 23:20:00

Main Campus Dr at College of Textiles 2 8/27/2006 23:28:35 23:28:59 23:33:45 0:00:24 0:04:46 23:31:00

Centennial Parkway EC Lot (2nd shelter) 3 8/27/2006 23:33:45 23:34:27 23:39:07 0:00:42 0:04:40 23:35:00

Gorman St at Kings Ct (Inbound) 4 8/27/2006 23:39:07 23:39:55 23:43:04 0:00:48 0:03:09 23:42:00

Fraternity Ct at Varsity Dr (Inbound) 5 8/27/2006 23:43:04 23:43:43 23:48:53 0:00:39 0:05:10 23:47:00

Founders Dr at DH Hill Library 0 8/27/2006 23:48:53 23:56:42 0:00:42 0:07:49 0:04:00 23:55:00

Cates Ave at Talley Student Center 1 8/28/2006 0:00:42 0:02:37 0:08:47 0:01:55 0:06:10 0:00:00

Main Campus Dr at College of Textiles 2 8/28/2006 0:08:47 0:09:17 0:14:17 0:00:30 0:05:00 0:11:00

Centennial Parkway EC Lot (2nd shelter) 3 8/28/2006 0:14:17 0:15:05 0:21:21 0:00:48 0:06:16 0:15:00

Gorman St at Kings Ct (Inbound) 4 8/28/2006 0:21:21 0:22:12 0:25:01 0:00:51 0:02:49 0:22:00

Fraternity Ct at Varsity Dr (Inbound) 5 8/28/2006 0:25:01 0:25:40 0:30:29 0:00:39 0:04:49 0:27:00

Founders Dr at DH Hill Library 0 8/28/2006 0:30:29 0:38:18 0:42:24 0:07:49 0:04:06 0:35:00

Cates Ave at Talley Student Center 1 8/28/2006 0:42:24 0:43:06 0:48:58 0:00:42 0:05:52 0:40:00

Main Campus Dr at College of Textiles 2 8/28/2006 0:48:58 0:49:25 0:54:04 0:00:27 0:04:39 0:51:00

Centennial Parkway EC Lot (2nd shelter) 3 8/28/2006 0:54:04 0:54:53 0:59:26 0:00:49 0:04:33 0:55:00

Gorman St at Kings Ct (Inbound) 4 8/28/2006 0:59:26 0:59:50 1:03:00 0:00:24 0:03:10 1:02:00

Fraternity Ct at Varsity Dr (Inbound) 5 8/28/2006 1:03:00 1:03:36 18:40:22 0:00:36 0:05:00 1:07:00

 38

Appendix 3: Matlab codes

% assess_tt.m

% This function implements the Total Trip Time measurement method, using historical data
% to measure total trip time for all origin- destination pairs

% A given solution vector, consisting of differences between scheduled departure times of
% consecutive time-points (sched_bst), is used to construct a schedule.

% Link times in between stops are taken from historical data, in the order that they
% originally occurred. Dwell times are assumed to be constant.

% The link, dwell, and schedule times form a deterministic simulation.

function cost = assess_tt(sched_bst, dwell_time);

% Initializing quantities

num_loops = 10;
num_stops = 6;
num_days = 24;

cost = 0;

% Retrieving and organizing data

data = load('K:\thesis\Travel Times 124578.txt');

for k = 1:num_days,
 for j = 1:num_loops,
 for i = 1:num_stops,
 travel_times(j,i,k) = data((num_stops*num_loops)*(k-1) + num_stops*(j-1)+i);
 end;
 end;
end;

% Beginning the deterministic simulation

for k = 1:num_days,

 % Resetting the schedule and clock at the beginning of each day
 sched = 0;
 time = 0;

 % Keeping track of recent arrival and schedule times

 sched_current = zeros(1,length(sched_bst));
 arrivals_current = zeros(1,length(sched_bst));

 % Beginning a new day

 for j = 1:num_loops,
 for i = 1:num_stops;

 % Updating schedule vector

 %(kept one ahead of arrivals to make cost function calculation easier)
 sched_current(1:length(sched_bst)-1) = sched_current(2:length(sched_bst));

 % Assuming passengers arrive at time-point (start trip) at scheduled time
 sched_current(length(sched_bst)) = sched;

 % Identifying scheduled time for next time-point
 sched = sched + sched_bst(i);

 % Bus travels from time-point i-1 to time-point i
 time = time + travel_times(j,i,k);

 % Updating arrivals vector

 arrivals_current(1:length(sched_bst)-1) = arrivals_current(2:length(sched_bst));

 39

 % Passengers alight when bus arrives
 arrivals_current(length(sched_bst)) = time;

 % Bus dwells at time-point i
 time = time + dwell_time;

 % If the bus is early, bus leaves at scheduled time
 if time < sched,
 time = sched;
 end;

 % Measuring travel time

 % For a given passenger, their trip starts at the scheduled
 % departure time for their origin time-point and ends when the bus
 % arrives at their destination time-point

 % One loop must be complete before costs are recorded

 if j > 1 || i == length(sched_bst),
 for n = 1:length(sched_bst)-1,
 cost = cost + arrivals_current(n) - sched_current(1);
 end;
 end;
 end;
 end;

 % Measuring cost for trips begun on last loop

 for m1 = 2:length(sched_bst)-1,
 for m2 = m1+1:length(sched_bst),
 cost = cost + arrivals_current(m2) - sched_current(m1);
 end;
 end;
end;

% Final cost is average trip time (= cumulative cost / number of total trips)

cost = cost/((((num_loops-1) * num_stops + 1) * (num_stops-1) + (num_stops * (num_stops +
1)/2)) * num_days);

 40

% weights.m

% This function calculates the earliness and tardiness weights e_k and t_k.
% It is used by assess.m, which measures total trip time.

function [weights_early, weights_tardy] = weights(p, sched_bst);

N = length(sched_bst);
weights_early = zeros(1,N);
weights_tardy = zeros(1,N);

for i = 1:N,
 for j = 1:N,
 if i ~= j,
 if i < j,

 % If passenger is on-board at stop k, increase weights_early(k)
 for k = i+1:j-1,
 weights_early(k) = weights_early(k) + p(i,j);
 end;

 else
 for k = i+1:N,
 weights_early(k) = weights_early(k) + p(i,j);
 end;
 for k = 1:j-1,
 weights_early(k) = weights_early(k) + p(i,j);
 end;
 end;

 % Increase weights_tardy(k) for passengers boarding at time-point k
 weights_tardy(i) = weights_tardy(i) + p(i,j);
 end;
 end;
end;

 41

% assess.m

% This function implements the Weighted Deviations measurement method, using historical
% data to measure total trip time as a sum of weighted deviations from the scheduled
% departure time.

% A given solution vector, consisting of differences between scheduled % departure times
% of consecutive time-points (sched_bst), is used to construct a schedule.

% Link times in between time-points are taken from historical data, in the order that they
% originally occurred. Dwell times are assumed to be constant.

% The link, dwell, and schedule times form a deterministic simulation.

function [cost, early, tardy] = assess(sched_bst, dwell_time);

% Initializing quantities

num_loops = 10;
num_stops = 6;
num_days = 24;

% Determining origin-destination proportions for uniform distribution

for i = 1:6,
 for j = 1:6,
 if i~=j,
 p(i,j) = 1/((length(sched_bst)*(length(sched_bst)-1));
 end;
 end;
end;

% Using O-D proportions to calculate deviation weights

[weights_early, weights_tardy] = weights(p, sched_bst);

% Allowing for different dwell time for each stop

dw = [1.83, 1.30, 1.32, 0.75, 0.85, 0.80];

% Retrieving and organizing data

early = zeros(1, length(sched_bst));
tardy = zeros(1, length(sched_bst));

data = load('K:\thesis\Travel Times 124578.txt');

for k = 1:num_days,
 for j = 1:num_loops,
 for i = 1:num_stops,
 travel_times(j,i,k) = data((num_stops*num_loops)*(k-1) + num_stops*(j-1)+i);
 end;
 end;
end;

% Carrying out the deterministic simulation

for k = 1:num_days,
 sched = 0;
 time = 0;
 for j = 1:num_loops,
 for i = 1:num_stops;

 % Identifying scheduled time for next stop
 sched = sched + sched_bst(i);

 % Bus travels from time-point i-1 to time-point i
 time = time + travel_times(j,i,k);

 % Counting early arrivals
 if time + 3 < sched,

 42

 before = before + 1;
 end;

 % dwell_time = dw(i);

 % Bus dwells at time-point i
 time = time + dwell_time;

 % Counting tardy arrivals
 if time > sched + 5,
 after = after + 1;
 end;

 % If the bus is late . . .
 if time > sched ,
 tardy(i) = tardy(i) + weights_tardy(i) * (time - sched);
 end;

 % If the bus is early . . .
 if time < sched,
 early(i) = early(i) + weights_early(i) * (sched - time);

% Bus leaves at scheduled time
 time = sched;
 end;
 end;
 end;
end;

% Calculating cost per trip
cost = (sum(tardy) + sum(early))/(num_loops * num_days);
early = early/(num_loops * num_days);
tardy = tardy/(num_loops * num_days);

 43

% optimsd.m

% This function implements the Modified Steepest Descent search algorithm.

% Given a fixed number of maximum iterations, it searches for the solution that minimizes
% total trip time by evaluating all adjacent solutions.

function [best_solution, best_cost, run_index] = optimsd(sched_bst, dwell_time, num_runs);

% Initializing quantities

best_next_cost = 10000; % set high so that it's immediately replaced
sched_summary = [];

[cost, early, tardy] = assess(sched_bst, dwell_time);
best_solution = sched_bst;
best_cost = cost;
run_index = 1; stop_indicator = 0;

% Search algorithm begins

for i = 1:num_runs,

 % Continuing only if a minimum hasn’t already been found
 if stop_indicator ~= 1,

 % Trying all feasible adjacent points, keeping the one yielding lowest cost

 start_solution = sched_bst;
 best_next_cost = 1000000;

 for j = 1:length(sched_bst),
 for k = 1:length(sched_bst),
 if j~=k && sched_bst(k) > 0,
 sched_bst(j) = sched_bst(j) + 1;
 sched_bst(k) = sched_bst(k) - 1;
 [cost, early, tardy] = assess(sched_bst, dwell_time);
 end;

 % updating the best next step
 if cost < best_next_cost,
 best_next_step = sched_bst;
 best_next_cost = cost;
 end;

 sched_bst = start_solution;

 end;
 end;

 sched_bst = best_next_step;

 % Keeping track of iterations
 sched_summary = [sched_summary; sched_bst, best_next_cost, best_cost];

 % Comparing with past iterations
 if best_next_cost < best_cost,
 best_solution = sched_bst;
 best_cost = best_next_cost;
 run_index = i + 1;

 % Identifying if a minimum has been found
 else
 stop_indicator = 1;
 end;
 end;
end;

% Reporting a summary of the iterations
sched_summary

 44

% optimsd2.m

% This function implements the version Modified Steepest Descent search algorithm that
% does not restrict solutions to a fixed scheduled cycle length.

% Given a fixed number of maximum iterations, it searches for the solution that minimizes
% total trip time by evaluating all adjacent solutions.

% In this version, “adjacent” solutions differ by one minute at exactly one element.

function [best_solution, best_cost, run_index] = optimsd(sched_bst, dwell_time, num_runs);

% Initializing quantities

best_next_cost = 10000; % set high so that it's immediately replaced
data = [];
sched_summary = [];

[cost, early, tardy] = assess(sched_bst, dwell_time);
best_solution = sched_bst;
best_cost = cost;
run_index = 1;
stop_indicator = 0;

% Search algorithm begins

for i = 1:num_runs,

 % Continuing only if a minimum hasn’t already been found
 if stop_indicator ~= 1,

 % Trying all feasible adjacent points, keeping the one yielding lowest cost

 start_solution = sched_bst;
 best_next_cost = 1000000;

 for j = 1:length(sched_bst),
 sched_bst(j) = sched_bst(j) + 1;
 [cost, early, tardy] = assess(sched_bst, dwell_time);

 % Updating the best next step
 if cost < best_next_cost,
 best_next_step = sched_bst;
 best_next_cost = cost;
 end;

 sched_bst = start_solution;

 end;

 for j = 1:length(sched_bst),
 sched_bst(j) = sched_bst(j) - 1;
 [cost, early, tardy] = assess(sched_bst, dwell_time);

 % Updating the best next step
 if cost < best_next_cost,
 best_next_step = sched_bst;
 best_next_cost = cost;
 end;

 sched_bst = start_solution;
 end;

 sched_bst = best_next_step;

 % Keeping track of iterations
 sched_summary = [sched_summary; sched_bst, best_next_cost, best_cost];

 % Comparing with past iterations
 if best_next_cost < best_cost,
 best_solution = sched_bst;

 45

 best_cost = best_next_cost;
 run_index = i + 1;

 % Identifying if a minimum has been found
 else
 stop_indicator = 1;
 end;

 end;

end;

% Reporting a summary of the iterations
sched_summary

 46

% brute.m

% This function implements the exhaustive enumerative approach, measuring the total trip
% time for all feasible solutions using the Weighted Deviations measurement method

function [best_solution, best_cost, y, percentiles] = brute(bounds);

y = possibles(bounds);

length(y)

best_cost = 10000000;
dwell_time = 0.8;

for i = 1:length(y(:,1)),
 [cost, early, tardy] = assess(y(i,1:6), dwell_time);
 y(i,7) = cost;

 % Keeping track of the best solution
 if y(i,7) < best_cost,
 best_solution = y(i,1:6);
 best_cost = y(i,7);
 end;
end;

y = sortrows(y, 7);

% Reporting the best ten and worst solutions

y(1:10,:)
y(length(y),:)

% Reporting the rank of the solution corresponding to the existing schedule

for j = 1:length(y),
 if y(j,1:6) == [5, 11, 4, 7, 5, 8],
 current_solution_rank = j
 end;
end;

percentiles = prctile(y(:,7), [0 10 25 50 75 90 100]);

 47

possibles.m

% Given a set of bounds – one for each element in a solution vector - this function
% identifies all feasible solutions

% A feasible solution must also have cycle length the appropriate cycle length C

function y = possibles(bounds);

x = zeros(1, length(bounds(:,1)));
y = [];
C = 40;

for k1 = bounds(1,1):bounds(1,2),
 x(1) = k1;
 for k2 = bounds(2,1):min(bounds(2,2), C - k1),
 x(2) = k2;
 for k3 = bounds(3,1):min(bounds(3,2), C - k1 - k2),
 x(3) = k3;
 for k4 = bounds(4,1):min(bounds(4,2), C - k1 - k2 - k3),
 x(4) = k4;
 for k5 = bounds(5,1):min(bounds(5,2), C- k1 - k2 - k3 - k4),
 x(5) = k5;
 for k6 = bounds(6,1):min(bounds(6,2), C - k1 - k2 - k3 - k4 - k5),
 x(6) = k6;
 if sum(x) == C,
 y = [y;x];
 end;
 end;
 end;
 end;
 end;
 end;
end;

 48

% simulation.m

% This function measures the total trip times using the Weighted Deviations measurement
% method and a random simulation.

% A given solution vector, consisting of differences between scheduled departure times of
% consecutive time-points (sched_bst), is used to construct a schedule.

% Link times in between stops are randomly selected from distributions taken from
% historical data, ignorant of the order in which they originally occurred. Dwell times
% are assumed to be constant.

function [cost, early, tardy] = simulation(sched_bst, dwell_time);

% Initializing quantities

num_loops = 10;
num_stops = length(sched_bst);
num_days = 600;
t = []; costs = [];
s = [];

% Determining origin-destination proportions for uniform distribution

for i = 1:6,
 for j = 1:6,
 if i~=j,
 p(i,j) = 1/((length(sched_bst)*(length(sched_bst)-1));
 end;
 end;
end;

% Using O-D proportions to calculate deviation weights

[weights_early, weights_tardy] = weights(p, sched_bst);

% Retrieving and organizing data

n_days = 24;

data = load('K:\thesis\Travel Times 124578.txt');

for j = 1:num_loops*n_days,
 for i = 1:num_stops,
 travel_times(j,i) = data((num_stops)*(j-1) + i);
 end;
end;

% Beginning the random simulation

early = zeros(1, length(sched_bst));
tardy = zeros(1, length(sched_bst));

for d = 1:num_days,
 sched = 0;
 time = 0;
 for j = 1:num_loops,
 for i = 1:num_stops;

 % Identifying scheduled time for next stop
 sched = sched + sched_bst(i);

 % Bus travels from time-point i-1 to time-point i
 x = ceil(length(travel_times(:,i))*rand(1));
 time = time + travel_times(x,i);

 % Bus dwells at time-point i
 time = time + dwell_time;

 % If the bus is late . . .
 if time > sched ,

 49

 tardy(i) = tardy(i) + weights_tardy(i) * (time - sched);
 end;

 % If the bus is early, bus leaves at scheduled time
 if time < sched,
 early(i) = early(i) + weights_early(i) * (sched - time);
 time = sched;
 end;
 end;
 end;
end;

% Calculating total costs

cost = (sum(tardy) + sum(early))/(num_loops * num_days);
early = early/(num_loops * num_days);
tardy = tardy/(num_loops * num_days);

 50

% optimization.m

% This function implements the One-Up-One-Down search algorithm

% Given a fixed number of maximum iterations, it searches for the solution that minimizes
% total trip time by adjusting the element corresponding to the stop at which the
% greatest delays are incurred and a complementary element.

function [best_solution, best_cost, run_index] = optimization(sched_bst, dwell_time,
num_runs);

% Initializing quantities

sched_summary = [];

[cost, early, tardy] = assess(sched_bst, dwell_time);
best_solution = sched_bst;
best_cost = cost;
run_index = 1;

% Search algorithm begins

for i = 1:num_runs,

 % Randomly choosing the complementary element
 r = floor((length(sched_bst) - 1)*rand(1));

 % Identifying the element corresponding to the stop adding the greatest delay

 [y, index] = max([early, tardy]);

 % Making schedule changes
 % By adding and subtraction the same amount, the route length is kept
 % ensures adjustments don't yield negative times

 if index < 1 + length(sched_bst) && sched_bst(index) > 0 || sched_bst(1 + mod(index + r,
6)) > 0,

 % If schedule is too late . . .
 if index < 1 + length(sched_bst) && sched_bst(index) > 0,
 if sched_bst(index) > 0,

 sched_bst(index) = sched_bst(index) - 1;
 sched_bst(1 + mod(index + r,6)) = sched_bst(1 + mod(index + r, 6)) + 1;
 end;

 % If schedule is too early . . .
 else
 sched_bst(1 + mod(index - 1, 6)) = sched_bst(1 + mod(index - 1, 6)) + 1;
 sched_bst(1 + mod(index + r, 6)) = sched_bst(1 + mod(index + r, 6)) - 1;
 end;
 end;

 % Measures cost for current solution vector
 [cost, early, tardy] = assess(sched_bst, dwell_time);

 % If this cost is less than all others, it's the new best_cost
 if cost < best_cost,
 best_solution = sched_bst;
 best_cost = cost;
 run_index = i + 1;
 end;

 % Keeps track of iterations
 sched_summary = [sched_summary; sched_bst, cost, best_cost];

end;

% A summary of the iterations is reported

sched_summary

Appendix 4: Proof of Equation (27)

Claim: For a route with N time-points, if the origin-destination trip pairs are uniformly

distributed, then

ek =
N − 2

2N
, for k = 0, ..., N − 1. (28)

Proof:

Recall that

pij ≡
1

N(N − 1)
∀i, j, (29)

since each passenger has N possible origins and N − 1 possible destinations. This is also

stated in (5).

Additionally, we know that

ek =
N−1∑
i=2

i−1∑
j=1

p
(k+i) mod N,(k+j) mod N

(30)

from (21).

Likewise, we know that
N∑

i=1

i =
N(N + 1)

2
. (31)

Now,

ek =
N−1∑
i=2

i−1∑
j=1

1

N(N − 1)
(32)

=
1

N(N − 1)

N−1∑
i=2

i−1∑
j=1

1 (33)

=
1

N(N − 1)

N−1∑
i=2

i− 1, (34)

and we let m = i− 1, such that,

51

=
1

N(N − 1)

N−2∑
m=1

m, (35)

and using (32),

=
(

1

N(N − 1)

)(
(N − 1)(N − 2)

2

)
(36)

=
N − 2

2N
. (37)

Corollary:

We also note that

lim
N→∞

ek = lim
N→∞

N − 2

2N
=

1

2
, (38)

while

lim
N→∞

tk = lim
N→∞

1

N
= 0. (39)

52

