
 

ABSTRACT 

DURHAM, CHRISTINA LOUISE. Spatial Dynamics in an Estuarine System: Modeling 

Biophysical Components and Interactions to Advance Blue Crab Fishery Management. 

(Under the direction of David B. Eggleston.) 

Estuaries are dynamic ecosystems with abiotic environments that exhibit extreme 

space-time variability.  Cyclic variation is somewhat predictable, but hurricanes and large-

scale atmospheric disturbances can rapidly and drastically alter anticipated conditions.  These 

disturbances can induce rapid biological responses across large spatial scales and frequently 

shift distribution patterns of mobile species.  Physical conditions recover relatively quickly 

from climactically driven perturbations, and most physically-induced animal migrations are 

also temporary and reversible.  Nevertheless, in the case of a commercially valuable fish 

species, even short-term alterations can change their vulnerability (i.e., catchability) to 

fishery-independent surveys, which provide valuable data used in population assessment.    

We examined the effects of salinity and other physical forcing mechanisms on the 

spatial distribution of ecologically and economically important blue crabs (Callinectes 

sapidus) in Pamlico Sound, NC.  Pamlico Sound is the second largest estuary in the U.S. and 

is prone to hurricane activity.  The blue crab fishery, North Carolina‘s most important, is 

managed using indices of spawning stock biomass (SSB) and catch-per-unit effort generated 

from a fishery-independent trawl survey that does not sample shallow (< 2 m deep) regions.  

If environmental conditions affect the proportion of the population located within the survey 

region at a given time, then these indices are susceptible to bias resulting from variations in 

crab catchability.  When the majority of the population is distributed in the Pamlico Sound 

survey area, a relatively high catchability would inflate estimates of relative population size.  



 

Likewise, when the population is less aggregated in mainstem Pamlico Sound and distributed 

further up in shallow water tributaries, relative population size would be underestimated by a 

relatively low catchability.  Our objectives, to investigate the potential existence of 

aggregations and their environmental causes and to develop ways to account for 

environmental variability to obtain unbiased estimates of relative population abundance, 

were accomplished in two parts using three different statistical models.   

First, we modeled salinity observations collected in Pamlico Sound over the past 20 

years as a function of recent and long-term freshwater influx from four rivers, distance to 

nearby inlets, and hurricane incidence.  Maps of salinity predictions generated by this model 

illustrated changes in spatial salinity patterns during 40 survey time periods that 

encompassed a variety of climatic conditions.   

Salinity predictions were used to characterize the relationship between salinity and 

the presence and spatial distribution of blue crab SSB to predict historic distribution patterns.  

Observed survey SSB was modeled as function of space-time variable environmental factors 

that likely affect crab catchability in order to estimate time period-specific SSB means that 

were adjusted for these environmental effects.  The time series of estimated means comprise 

an environmentally-adjusted SSB index that is more suitable for tracking relative population 

size over time than the index currently used to manage the fishery.  This adjustment validated 

conclusions drawn from previous analyses and field observations that blue crab SSB has 

decreased over the past 20 years, most notably since 1999. 

A second model, including factors that did not change over time but likely affected 

crab spatial distribution, allowed us to predict SSB at a given space-time location.  



 

Predictions revealed consistent SSB spatial distribution patterns over successive monthly 

time periods and under variable environmental conditions.  This information could help 

managers station no-take marine reserves to better conserve the blue crab spawning stock.   

In addition to yielding results that will better inform blue crab fishery managers, this 

research significantly increases the knowledge base regarding the effects of abiotic forcing 

events on mobile estuarine species.  Furthermore, these methods provide a rigorous and 

robust analytical template to create future adjustment indices to manage mobile species that 

change their spatial distribution in response to environmental variables.  
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CHAPTER 1: 

Developing process-based statistical models of bottom salinity in Pamlico Sound, NC 
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ABSTRACT 

 

Estuarine salinity varies over both space and time, and this variation routinely alters both 

biotic and abiotic system components. Anticipating this variability is challenging; salinity at 

a specific location is the result of interactions among physical forcing mechanisms that 

control the amount of fresh and salt water present at that site.  Here we develop and evaluate 

two space-time statistical models of bottom salinity in Pamlico Sound, NC, and we provide a 

methodological template for modeling salinity in other estuaries.  Both models consist of a 

process-based component and a random component, where the process component is a 

function of recent and long-term fresh water influx from four rivers, distance to nearby inlets, 

and hurricane incidence.  For one of the models we also use a different intercept for each 

point in time to account for any time-varying quantity that might affect but has not been 

adequately represented by the other terms in the model. In both models, the random error 

component has a different spatial correlation structure for each time period.  We build these 

models using observational data collected by the North Carolina Division of Marine Fisheries 

over a 2.5 week time period each June and September from 1987 to 2006. The final process-

only model explains 89% of the variability in salinity in a withheld dataset, and generates 

time-period-specific spatial predictions with an overall root mean squared error of 2.0 units 

of salinity.  Similarly, the process plus time model explains 87% of the withheld-dataset 

variability and has an overall root mean squared error (RMSE) of 2.1.  We map process-only 

predictions to visually examine changes in estuarine salinity distribution patterns across 20 

years of variable climatic conditions and to identify any consistent patterns that would aid in 
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future salinity forecasting.  With careful selection of system-specific explanatory variables, 

the outlined procedure and supplemental code can be used by anyone to model and predict 

estuarine salinity or any other normally-distributed quantity over space and time.       



4 

1. INTRODUCTION 

1.1. Background 

Estuarine salinity is a direct response to dynamic meteorological, hydrological, and 

chemical processes, and it exhibits large space/time variability (Cloern and Nichols 1985).  

Salinity affects the physiological functioning of all resident organisms (Kinne 1964); abrupt 

or persistent changes in typical salinity patterns can alter species composition, distribution, 

and abundance, which can in turn affect habitat quality, fisheries catches, and ecosystem 

resilience (Tabb and Jones 1962; Anderson et al. 1973; Russell 1977; Knott and Martour 

1992; Sklar 1998; Mallin and Corbett 2002, 2006; Burkholder et al. 2004; Paerl et al. 2001, 

2006; Rome 2005; Balthis 2006).   

Pamlico Sound (PS), North Carolina is the largest lagoonal estuary in the U.S.  The 

range of salinities across PS at any given time is typically greater than 15, as measured using 

the Practical Salinity Scale (Schwartz and Chestnut 1973, Giese et al. 1979, Pietrafesa et al. 

1986, Buzzelli et al. 2003, Reyns 2004, this study).  Salinities in a single area can vary by 

more than 5 units daily (Buzzelli et al. 2003), semi-monthly (Reyns 2004), seasonally (Giese 

et al. 1979, Molina 2002), interannually (Pietrafesa et al. 1986, Stanley and Nixon 1992), and 

episodically.  Record floods experienced after the landfall of three sequential hurricanes 

(Dennis, Floyd, and Irene) in fall 1999 depressed observed bottom salinities in PS by more 

than 50 percent (Paerl et al. 2001).  This reduction caused a mass migration of blue crab 

(Callinectes sapidus) out of upriver tributaries to escape freshening conditions and resulted in 

a more concentrated population that was increasingly susceptible to fishing pressure 

(Eggleston et al. 2004).  Similar down-estuary displacements of juvenile Atlantic croaker 



 

5 

(Micropogonias undulates) have been noted after large rainfall events, with fish moving from 

primary nursery areas protected from trawling to secondary non-nursery areas vulnerable to 

fishing pressure (Searcy et al. 2007).  Given that global climate change is predicted to 

increase the frequency of extreme weather events (e.g. floods, droughts, hurricanes; Webster 

et al. 2005), the need to accurately predict the spatiotemporal dynamics of salinity is 

unprecedented.   

The main goal of this work was to predict estuarine bottom salinity at any location in 

space and time under a variety of freshwater influx conditions using PS as an example 

system.  PS is a shallow estuary with wind-driven currents and low tidal forcing that is 

frequently subject to both droughts and floods, the latter of which is often due to hurricanes.  

Bottom (as opposed to surface) salinity was chosen as the variable of interest because it 

characterizes habitats of demersal species that are important both as members of benthic food 

webs and as targets of valuable commercial and recreational fisheries.  (Hereafter, the term 

‗salinity‘ will always refer to bottom salinity unless otherwise noted.)  In future work, we 

will use these predictions to characterize the relationship between salinity and the presence 

and spatial distribution of commercially-viable fish populations to predict distribution 

patterns under various salinity regimes.   

1.2. Previous work 

Models of estuarine salinity in the literature are based on either (i) differential 

equations or (ii) statistical principles.  Both constructs characterize a dependent variable of 

interest in space and time using relationships with state variables; they differ in the way that 

these relationships are modeled.  The first models the dependent variable directly using 
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differential equations that are derived from physical laws and solved through a series of 

approximations and assumptions.  The second uses a sample of direct observations of the 

dependent variable to probabilistically model the population of observations of the dependent 

variable as a function of multiple covariates; the equation of the relationship between them is 

the one whose function minimizes uncertainty given the data.  In the context of this work, 

there are two key differences between the constructs: data requirements and spatial 

resolution.  Although statistical models can require more observational data than differential 

equation models, they can also generate predictions over a finer spatial resolution.  

Predictions from differential equation models are grid-cell averages, whose spatial resolution 

ranges from square kilometers to thousands of square kilometers.  Statistical model 

predictions can be for specific coordinates in space.     

Most models of PS salinity are differential-equation-based models.  A number of 

investigators (Lin et al. 2007, 2008a; Xia et al. 2007) have modified the Environmental Fluid 

Dynamics Code (EFDC; Hamrick 1996) to customize it to PS by incorporating freshwater 

influx (FWI) from major tributary rivers as well as tide and wind effects on circulation 

patterns.  These authors used visual inspection to compare maps of PS surface and bottom 

salinity predictions from their models to monthly average salinity contour maps generated 

from historical observations (Schwartz and Chesnut 1973) and found the two to be similar, 

but none of them compared their predictions to observations directly to quantify uncertainty.   

Xu et al. (2008) predicted surface and bottom salinity and temperature in Pamlico 

River Estuary (PRE), a tributary of PS, using the model in Xia et al. (2007) modified to 

account for differential river flow and wind patterns resulting from environmental forcing 
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events.  Salinity predictions generated at 30 second intervals over a spatial grid with varying 

cell size (range: 200-800 m
2
) compared well to observations from eight long-term PRE 

monitoring stations (R
2
 between predictions and observations at the surface: 0.85; at depth: 

0.79).  Although these authors incorporated environmental variation in a model that produced 

salinity predictions suitable to assess long-term space-time trends, the PRE is a fraction 

(18%) of the total aerial extent of PS.  To predict salinity across the entire sound, the model 

would need significant spatial domain expansion and re-parameterization, and such 

extensions are not currently planned (J. Lin, pers. comm. on behalf of Xu et al. 2008.). 

Few statistical models have been constructed to describe space-time distributions of 

water quality features in PS (but see Reed et al. 2008), but many exist for use in both 

proximal and distant estuarine systems.  Table 1 lists a few references along with both the 

parameter being modeled in each study as well as the system of interest.  Notably, Rathbun‘s 

(1998) multiple linear regression model with spatially-correlated errors predicted salinity and 

dissolved oxygen (DO) within Charleston Harbor, SC over a two week time period in 1988 

as a function of spatial coordinates and distance to the estuary mouth.  The applications of 

this model are restricted, however, because Rathbun did not model the processes that affect 

salinity.  This model can thus only predict salinity and DO under similar climatic conditions 

to those present when samples were collected.  In addition, Rathbun only reported standard 

errors of the kriging predictor.  He made no comparison of model-generated predictions to 

salinity observations that were not included in model fitting to investigate prediction error of 

the overall method. 
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After reviewing the literature, it was clear that no existing model accomplished our 

goal.  We chose to construct two space-time statistical models of salinity: one with only 

process-based explanatory variables and another that considered time as an additional 

explanatory variable.  The ―process-based‖ variables are based on short- and long-term 

freshwater influx data, hurricane landfall data, distance between the site of interest and each 

of four tributary rivers, and distance between the site and each of three inlets.   To the best of 

our knowledge, these are the only process-based models constructed for lagoon-type 

estuaries like PS that produce a salinity prediction at a specific point in space and time.  In 

addition, the methods used here could be modified to construct process-based space-time 

statistical models for salinity in other estuarine systems if data were available.  

 

2. METHODS  

Models were built in several steps.  Through literature reviews and discussions with 

colleagues, we identified physical forcing mechanisms believed to affect PS salinity over 

space and time.  We searched for data that could be used directly or indirectly to represent 

these mechanisms, and then developed meaningful explanatory variables from this data in 

Sections 2.1 through 2.9.  The choices we made reflected our modeling context and thus 

might differ in an alternate modeling context.  When we use the phrase ―modeling context,‖ 

we refer to the modeling objectives, the geographical features of the region being modeled, 

and the spatial and temporal coverage and resolution of the data.    We describe the variable 

selection process in Sections 2.10 through 2.12, first using ordinary least squares (OLS) 

linear regression to select the mean trend and then modeling the spatial correlation in the 
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deviations from this mean trend.  The two models, ―process‖ (containing process-based 

variables only) and ―time‖ (with process variables and a variable corresponding to time 

period), were compared in terms of their ability to predict salinity in a withheld dataset of 

observations.  We used the better model to create maps of salinity predictions for 40 2.5-

week time periods from 1987-2006 to make generalizations about salinity patterns under 

different, highly variable FWI conditions. 

2.1. Data sources 

2.1.1. Salinity observations in Pamlico Sound  

The Pamlico Sound Trawl Survey Program 195 (or ‗the survey‘ within this work) has 

been monitoring stocks of dominant estuarine species in PS since 1987.  The North Carolina 

Division of Marine Fisheries (NCDMF) conducts survey sampling in June and September to 

assess species abundance in relatively deep water (>2 m) habitats using a weighted stratified 

random sampling design based on area.  PS is divided into seven areal strata that are further 

subdivided into one square minute (or one square nautical mile) grid cells.  A total of 54 core 

sampling station locations, one per grid cell, are designated within the seven strata, with 

more stations assigned to larger strata.  Thirty stations are located in main-stem PS, and eight 

stations each are located in the Neuse, Pamlico, and Pungo rivers.  Coordinates of specific 

trawling sites at each station location are randomly generated to occur within the grid cell.  

Measurements of surface and bottom temperature, salinity, and dissolved oxygen are 

collected using a YSI-85 multi-function meter at the beginning of each trawl and recorded 

along with depth and spatial reference coordinates.  Figure 1 depicts depth contours across 

the survey‘s overall spatial domain S, or the area of PS > 2 m deep.     
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During data pre-processing, salinity observations at individual sites were discarded if 

they fell outside of a plausible salinity range for PS (0-35) or if their spatial coordinates 

erroneously placed them outside of PS entirely (i.e. over land or in the Atlantic Ocean).   Site 

coordinates, as well as all other latitude and longitude coordinates used in the remainder of 

this analysis, were converted from decimal degrees to northings (y-direction) and eastings (x-

direction) in nautical miles (nmi) from a reference point located southwest of S at 34.6 N,     

-77.1 W to ensure that they were positive in both the x- and y-directions.     

This work uses June and September survey data from 1987-2006, which will 

henceforth be called the temporal domain (T).  Forty time periods, or specific month/year 

combinations in which survey samples were collected, exist in the temporal domain (P=40).  

Time period is indexed using the subscript t, where t=1, ..., P.  A single time period is 

approximately 2.5 weeks long:  the amount of time it takes NCDMF to sample the 54 core 

stations within S.  Occasionally not all 54 core stations are sampled, so nt refers to the 

number of sites in time period t.  Site refers to a specific spatial location nested within a 

particular time period, sites are indexed using the subscript i where i =1, ..., nt.  The dataset 

includes N =2100 total observations of salinity, where 
T

t

tnN
1

.  Salit refers to salinity at 

site i in time period t. 

2.1.2. Freshwater influx (FWI) 

Since the watersheds of the Neuse, Pamlico, Roanoke, and Chowan rivers encompass 

80% of the total land drainage area into PS (Bales 2003), FWI from these four tributaries was 

assumed to account for the majority of riverine freshwater delivered to the estuary.  FWI 
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observations are average daily river discharge rates collected by one US Geological Survey 

(USGS) gauge station per tributary (from S-N):  (i) Neuse River station in Kinston, NC 

(Station #02089500) gauging Neuse River inflow, (ii) Tar-Pamlico River station in Tarboro, 

NC (Station #02083500) gauging Pamlico River inflow, (iii) Roanoke River station in 

Roanoke Rapids, NC (Station # 02080500) gauging Roanoke River inflow, and (iv) Ahoskie 

Creek station in Ahoskie, NC (Station # 02053500) gauging Chowan River inflow.  These 

particular stations were chosen because they were the closest gauge stations to PS on their 

respective rivers that recorded data throughout T.  Discharge rates were downloaded from the 

USGS Water Resources website for the state of North Carolina (USGS 2009b) in ft
3
/sec and 

were converted to m
3
/sec. 

2.2. Explanatory variable creation and evaluation 

Six key factors are known to affect estuarine salinity (Pritchard 1954, 1967); three 

(FWI from rivers, evaporation, and direct precipitation) describe the amount of freshwater at 

a given location, one (saltwater input from the ocean) describes the amount of saltwater at a 

given location, and the remaining two (winds and tides) describe the mixing processes that 

unite the two water masses.  Spatial coordinates of sample sites have been used as 

explanatory variables in other statistical salinity models (Little et al. 1997, Rathbun 1998) 

and here they might serve as surrogates for causal factors not included.  Land-falling 

hurricanes have also had significant impact on observed PS salinities (Ramus et al. 2003, 

Paerl et al. 2005).  In the following sections, we address each of these eight factors in more 

detail.   
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2.3. Freshwater from rivers: calculating relative freshwater influx index (FWII) 

After obtaining daily average river discharge rates from the four gauge stations for 

every day during T (7,305 days total), we created short- and long-term indices to describe the 

influence of freshwater over the previous week (7 days) and the previous two months (61 

days) from a given river on a given salit as a function of the distance that separates site i from 

the source of the FWI.  We expect that salinity in PS is affected by both a long-term average 

FWI to the system, as well as a short-term average FWI, the latter representing changes in 

freshwater delivery rates resulting from extreme FWI events immediately prior to survey 

sampling.  To describe long-term conditions, we calculated separate 2mo_FWIrt metrics for 

each river r (r =1,…,4) in time period t by averaging daily discharge rates in the 61 days prior 

to mt, the first day of the survey in t.  This length of time was chosen to correspond to the 

average freshwater residence time of the rivers (Bales and Robbins 1995, Lilly 1998, Paerl et 

al. 2001) and to provide a temporal lag between the upriver gauging of freshwater and the 

delivery of that water to S.  Ramus et al. (2003) calculated a seven-day residence time for the 

Neuse and Pamlico Rivers after Hurricanes Dennis and Floyd deposited 1 m of rainfall in 

eastern NC four days before the September 1999 survey.  We thus created short-term FWI 

metrics, or 1wk_FWIrt, by averaging daily discharge rates in the 7 days prior to mt. [As a side 

note, river residence times may not be appropriate to use in every system to calculate a 

temporal duration of freshwater influx that affects observed salinity.  No rule exists requiring 

their usage; they were simply selected as plausible ranges based on the information above.]   

To include these metrics in the model, a unique measure of the influence of 1wk_ 

FWIrt and 2mo_ FWIrt, was required for each space-time location.  Since freshwater from 
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river r in time period t should have more of an effect on salit the closer site i was to the river 

itself, we calculated both a one-week and two-month freshwater influx index (FWII) by 

dividing each FWIrt by distrit, or the distance between the gauge station on river r and a given 

it sample location as follows:  

(1)  
rit

rt

rit
dist

FWIwk
FWIIwk

_1
_1   

 

  
rit

rt

rit
dist

FWImo
FWIImo

_2
_2  

 

As was the case with calculating the appropriate time duration for short- and long-

term FWI, there were no rules to govern the calculation of distrit. The coordinates of each 

river gauge station were used to calculate distance (as opposed to using the coordinates of the 

mouth of each river) because the gauge station was the specific location of FWI data.  Distrit 

was calculated using Euclidian distance (i.e. distance as the crow flies) after considering 

Little et al. (1997) whose work compared the relative accuracy of predictions of numerous 

water quality parameters generated from two different multiple linear regression models that 

contained the explanatory variable ―distance to inlet mouth.‖  Predictions from models that 

used water-path distance (i.e. distance along the path of a river) to calculate this variable 

were found in most cases to be no more accurate than those produced by models that used 

Euclidean distance.  Neither Little et al. (1997) nor Rathbun (1998) drew a clear conclusion 

regarding the best method to use in all situations to calculate estuarine distances, and because 

calculating water-path distances between 2100 space-time locations and each of four river 
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gauge stations would be cumbersome, Euclidean distance was used in this study to calculate 

distances between two points.   

The 320 FWIrt values (1wk_ and 2mo_FWIrt for each of four rivers across 40 time 

periods) generated 16,800 different values of FWIIrit indices, or eight FWIIrit explanatory 

variables (one for each river and time duration) per it location.  We additionally considered 

as explanatory variables all possible pair-wise interactions between the eight 1wk_ and 

2mo_FWIIrit from different rivers (24 interactions in all), as we expected that the effect of 

FWIIrit on salinity from river r could change based on the FWIIrit from another river during 

the same time period.  

2.4. Evaporation and direct precipitation 

Annual mean PS evaporation is less than annual mean direct precipitation, indicating 

a net gain of freshwater (Giese et al. 1979).  This analysis ignored evaporative processes, 

assuming that direct precipitation more than accounted for the amount of freshwater 

removed.  Direct precipitation was also ignored due to a lack of spatial resolution in the data.  

Because direct precipitation constitutes only 8% of the total mean freshwater volume 

delivered to PS, with FWI from tributary rivers accounting for the other 92% (Giese et al. 

1979), we felt that riverine FWI adequately approximated the total freshwater delivery to the 

system. 

2.5. Saltwater from the ocean 

Mean Atlantic Ocean salinity in the vicinity of PS is typically around 35 (Molina 

2002).  Although inner continental-shelf salinity exhibits some spatial variability (Pietrafesa 

et al. 1994), we followed the modeling efforts of Xie and Pietrafesa (1999) and assumed 
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constant open ocean salinity.  This assumption makes the volume of saltwater at site i in time 

period t a function only of distsit, or the Euclidian distance between site i and s, the 

geographic center of one of PS‘s major inlets (from N-S:  Oregon, Hatteras, and Ocracoke) 

where s=1,2,3.  We later decided that saltwater entering from the inlet closest to site i might 

approximate the total amount of saltwater reaching that site and thus perhaps explain the 

same proportion of variability in salinity as the group of three distsit variables.  Using one 

explanatory variable instead of three would create a more parsimonious model, so distance to 

the nearest inlet, or closest_inlet_distit, was considered separately; equal to the smallest of the 

three distsit.   

2.6. Wind speed and direction 

A prevailing wind field that is north/northeastward from March to August and 

south/southwestward from September to February is the primary driver of currents in PS 

(Pietrafesa and Janowitz 1986, Xie and Eggleston 1999, Eggleston et al. in press).  While 

wind speed and direction could play a role in determining a particular salit on time-scales of 

hours to days (Reed et al. 2008, Reynolds-Fleming et al. 2008); on timeframes of 2-3 weeks, 

the moving average of wind speed in PS is relatively invariant except when hurricanes are 

present in the system (Eggleston et al. in press; G. Janowitz, pers. comm.).  To examine the 

effects of seasonal wind patterns on the spatial distribution of salinity, we created the 

categorical indicator variable monthit, corresponding to the month in which site i in time 

period t was sampled.  A different variable represents the effect of land-falling hurricanes on 

salinity (see Section 2.9).   
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2.7. Tides 

Though the physical mixing of water from surface to depth during tidal cycling 

should influence estuarine salinity, tidal signal in PS is almost entirely lost at distances 

greater than 10 km from the inlets (Pietrafesa et al. 1986, Molina 2002).  Therefore, the 

influence of tidal motions on salinity was included only by way of the distance-to-inlet 

variables. 

2.8. Spatial coordinates (northing and easting) 

Estuarine salinity varies over space, so it was logical to consider spatial coordinates 

as explanatory variables.  Although spatial coordinates do not clarify the process by which 

salinity varies over space and time, as they could explain variability in salinity not accounted 

for by other model variables.  In scatterplots, salinity appeared quadratic in easting and cubic 

in northing.  The quadratic function of easting can be explained by tracing a path along the 

35º 16‘ N parallel (A on Fig. 1):  salinity should initially increase when traveling east across 

PS, reach a maximum at the saltwater plume near Ocracoke and Hatteras Inlets, and decrease 

again on the other side of the plume in the waters on the western shore of Hatteras Island 

near Buxton, NC.  The cubic function of northing is best described near the mouth of Croatan 

Sound at a longitude of 75º 42‘ W (B on Fig. 1), where salinity should increase traveling 

south from Albemarle Sound and reach a local maximum near Oregon Inlet, decrease 

continuing past the saltwater inlet plume, and increase again as the Hatteras Inlet saltwater 

plume is reached.  For this reason, eastingit, eastingit
2
, northingit, northingit

2
, northingit

3
, and 

the interactions northingit*eastingit, northingit
2
*eastingit, and northingit*eastingit

2
 were all 
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considered as explanatory variables.  All coordinates were centered before they were squared 

or cubed by subtracting the mean over all observations. 

2.9. Hurricane landfalls 

Hurricanes can rapidly introduce large volumes of freshwater to estuaries via riverine 

influx, push large volumes of saltwater in through inlets, and alter circulation patterns 

through abrupt changes in wind speed and direction.  Off the coast of North Carolina, they 

have also been known to open new inlets to PS, which can additionally alter current flow and 

increase saltwater intrusion (Paerl et al. 2005).  1wk_FWIIrit should capture the majority of 

the variability in PS salinity attributed to hurricane-produced FWI, but the presence of a 

hurricane immediately prior to the survey should affect other physical mixing processes that 

could, in turn, affect salinity.  Three additional explanatory variables account for non-FWI 

related variability in salinity due to hurricane landfalls.  These variables are unique to a given 

time period t but not a given site i within t.  

 inverse_days_surveyt = continuous variable that represents the inverse number of 

days between mt and the most recent hurricane landfall in NC.  If no hurricanes 

made landfall in the 61 days prior to mt, this variable=0. 

 

 categoryt = category of the most recent hurricane landfall in NC rated on the 

Stafford-Simpson scale (1,…,5).  If no hurricanes made landfall in the 61 days 

prior to mt, this variable=0. 

 

 no_stormst = total number of hurricanes making landfall in NC in the 61 days 

prior to mt. 

 

2.10. Variable selection 

We identified a total of 49 potential explanatory variables:  eastingit, eastingit
2
, 

northingit, northingit
2
, northingit

3
 and interactions (9 variables); 1wk_FWIIrit and 2mo_FWIIrit 
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(8) and pair-wise interactions (24); closest_inlet_distit; distsit (3); monthit; and three hurricane 

variables (inverse_days_surveyt, categoryt, and no_stormst).  We chose to use an ordinary 

least squares (OLS) linear regression approach with an adjusted R
2
 variable selection 

criterion to select the optimal combination of these variables (i.e., the one that explained the 

most variability in the response using the fewest number of variables) by creating multiple 

candidate models.  Adjusted R
2
, a modified version of R

2
 that introduces a penalty for the 

number of model explanatory variables by dividing each sum of squares by its associated 

degrees of freedom (df), was used because candidate models contained different numbers of 

explanatory variables.  While R
2
 increases as more explanatory variables are added to a 

model, adjusted R
2
 only increases if the added variable decreases the model‘s error sum of 

squares enough to offset the loss in error df.   

Because closest_inlet_distit and the set of three distsit variables contained redundant 

information, we decided that it was inappropriate for the model to include both.  To choose 

between them, we regressed salit on the set of three distsit and closest_inlet_distit separately 

and obtained adjusted R
2
‘s of 0.38 and 0.34, respectively.  To determine whether the modest 

gain in percent variability explained by the three distsit would still hold when variables that 

also described the physical location of location it were included, we added three different 

combinations of candidate easting and northing variables to each model. Table 2 reports the 

values of adjusted R
2
 for the eight linear regression models.  Once models included easting, 

northing, and their interactions, the model with the set of three distsit variables explained no 

more variability in salinity than did the model with closest_inlet_distit (adjusted R
2
=0.43 for 

each). Closest_inlet_distit was thus used in the remainder of analyses. 
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To decide what additional variable combinations to include in the model, we used an 

iterative procedure similar to forward selection.  Salit was regressed against five independent 

explanatory variables (closest_inlet_distit, monthit, inverse_days_surveyt, categoryt, and 

no_stormst) and two sets of FWII metrics (the 1wk_FWIIrit set and the 2mo_FWIIrit set) 

separately.  The four FWII metrics from each time duration were always included as a group 

because collinearity among these metrics produces inflated standard errors that make it 

difficult to use p-values to determine which are needed in the model. Table 3 ranks the eight 

regression models in order of decreasing adjusted R
2
.  The 2mo_FWIIrit set had the largest 

adjusted R
2
 (0.38); it became the base of the mean trend process model.  The mean trend 

model was then built up from this foundation: variables or sets of variables whose individual 

models had the next largest adjusted R
2
 were sequentially added to the base and the adjusted 

R
2
 of the resultant model was compared to that of the base model without the addition.  If the 

new model showed no improvement over the previous (i.e. adjusted R
2
 did not increase after 

the variable addition), the newly added variable was removed; otherwise, it was retained.  

We continued to add variables in the order in which they are listed in Table 3 until no 

additional variables remained; at which point the base mean trend process model contained 

10 total explanatory variables (the 2mo_FWIIrit set, closest_inlet_distit, the 1wk_FWIIrit set, 

and inverse_days_surveyt) and had an adjusted R
2
 of 0.57.   

Next, we evaluated the addition of the pair-wise interactions between 1wk_FWIIrit 

and 2mo_FWIIrit to the model.  These 24 interactions were also considered a set based on the 

aforementioned rationale, and their inclusion was evaluated using the same selection 

procedure.  Even though the addition of the interactions decreased error df by 24, adjusted R
2
 



 

20 

of the model with interactions (0.66) was larger than that of the model with no interactions 

(0.57), so the set was retained.   

Spatial coordinate variables were evaluated in groups according to their polynomial 

order as a final step, with squared and cubic terms added before interactions.  Table 4 lists 

the results of this stepwise addition process to the existing base mean trend model.  We 

considered these variables last, because we only wanted to include them if they explained 

additional variability in the response after other, more process-based variables were 

examined.  Upon examination, we determined that including all variables except 

northingit
2
*eastingit

2
 continued to increase adjusted R

2
.  The final mean trend process model 

(below) included 42 explanatory variables and had a final adjusted R
2
 of 0.73. 

Variables included in final mean trend process model: 

2mo_FWIIrit, closest_inlet_distit, 1wk_FWIIrit, inverse_days_surveyt,, 

(2mo_FWIIrit*2mo_FWIIrit), (1wk_FWIIrit* 1wk_FWIIrit), (2mo_FWIIrit* 1wk_FWIIrit), 

eastingit, northingit, eastingit
2
, northingit

2
, northingit*eastingit, northingit

3
, 

northingit*eastingit
2
, and northingit

2
*eastingit 

 

During model construction, we noted in scatter plots between salit and 2mo_FWIIrit 

that there appeared to be several groups of observations with different slopes (Fig. 2).  Upon 

closer examination, it was determined that each group corresponded to the 2mo_FWIIrit 

values within a set of time periods.  To incorporate this apparent time-period effect on 

salinity, we created a second mean trend model by repeating the analysis process described 

above that included time period as a factor and the interactions between time period and the 

2mo_FWIIrit as continuous explanatory variables.  We discuss the utility of each model, 

which we name, respectively, process and time, in Section 4.2.   
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The initial linear regression model of salit vs. time_period had an adjusted R
2
 of 0.41, 

making it the base of the new mean trend model (refer to Table 3 for comparison).   Before 

evaluating interactions, the mean trend time model ultimately contained 48 explanatory 

variables (the set of 39 time_period variables, the 2mo_FWIIrit set, closest_inlet_distit, and 

the 1wk_FWIIrit set) and had an adjusted R
2
 of 0.78.  When the set of interactions between 

time_period and 2mo_FWIIrit was added, the model was not of full rank (i.e., not all columns 

in the design matrix were linearly independent) and thus not uniquely estimable.  Because we 

were originally motivated to create this alternate model to evaluate these interactions, we 

removed the 1wk_FWIIrit set to include the time_period*2mo_FWIIrit interaction set.  This 

new model (salit = time_period + 2mo_FWIIrit + closest_inlet_distit + 

time_period*2mo_FWIIrit) was of full rank, and it became the new base, as its adjusted R
2
 

(0.89) was larger than that of the previous mean trend time model that included 1wk_FWIIrit 

(0.78).  After investigating spatial coordinate variables, the final mean trend time model 

(below) had an adjusted R
2 
of 0.91 using 204 variables: 

Variables included in final mean trend time model: 

time_period, 2mo_FWIIrit, closest_inlet_distit, (time_period*2mo_FWIIrit), eastingit, 

northingit, eastingit
2
, and northingit

2
 

 

 

2.11. Statistical theory 

In matrix notation, the regression models we have fit up to this point are of the 

following form: 

(2)   tt Xsal   ),0(~ 2 INt  
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Salt is an nt x 1 vector of all salinities observed in time period t.  X is an nt x p matrix where p 

is the total number of explanatory variables in the model plus the intercept.  Each column in 

X corresponds to a single explanatory variable in the model (with all 1‘s in the first column 

for the intercept) while each row corresponds to a particular it location.   is a p x 1 vector of 

unknown regression coefficients to be estimated for each explanatory variable.  (X  is the 

mean trend portion of this model).  The deviations between salinity observed at every site i in 

time period t and the mean salinity in t are included in t, an nt x 1 column vector of errors.  

We assume that these errors are distributed normally with mean 0, represented by the nt x 1 

vector of zeros, and variance σ
2
.  Multiplying σ

2
 by the identity matrix (I) of size nt, indicates 

that errors are independent and identically distributed (iid).   

  Spatial data, however, is often found to exhibit correlation over space, and the 

presence of this correlation would violate the previous assumption of independent errors.  To 

incorporate this spatial structure into the model, the error distribution in Equation 2 is 

modified:    

(3)   tt Xsal   ),0(~ tt N  

 Notice in Equation 3 that the mean trend portion of the model remains the same; the 

difference lies in the modeling of the error distribution.  Here, the expected value of each 

element in t is still zero, but the variance is instead described by the nt dimensional square 

matrix Σt.  The i
th
 diagonal element of Σt is the variance of εit, which we assume equals σ

2
 for 

all i.  The element in the i
th
 row and the j

th
 column of Σt is the covariance between εit and εjt 
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(where j = 1,…, (i-1)).  These covariances (Cov) are a function of dij, the distance that 

separates locations i and j, and they can be calculated using the general formula 

 (4)   2*)(},{ ijjtit dfCov  

 

Covariance is a measure of similarity, and it typically decreases with increasing dij. 

Depending on the rate and pattern of decay, spatial covariance can be modeled by one of a 

number of theoretical functional forms, most of which are characterized by three parameters.  

Figure 3 illustrates a sample covariogram (dots) of observed data from June 1994 overlaid by 

the modeled Exponential covariance function (smooth curve).  The sill is the overall or 

maximum variance of the process and is equal to 
2 
+ 

2
n.   The nugget (

2
n) is a measure of 

the discontinuity at the origin; it represents measurement error or variability at a scale smaller 

than the minimum distance separating two sites in the dataset.  The range (ρ) is the distance 

at which the covariance decays to zero; the practical range (θ) observed here is the distance at 

which the covariance has reached 5% of 
2
, which is considered to effectively equal zero.  

Certain functional forms (Exponential, Gaussian) use θ while others (Spherical) use ρ.   

Modeling spatial correlation when it is present is important because it leverages 

previously unused information contained in residual error structure to generate more accurate 

predictions of the response at unsampled locations. Models that ignore existing spatial 

correlation produce estimates of regression coefficients that are unbiased, but the standard 

errors, confidence intervals, and p-values for these estimates are not trustworthy (Kitanidis 

1997).  This unreliable information could alter the interpretation of model results.   
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2.12. Modeling spatially correlated error 

Throughout this section, we describe the modeling of the spatial correlation among 

deviations from the mean trend at sites within a single time period using the process model as 

the example.  Although observations are collected over time, we assume that no temporal 

correlation exists between time periods because the separation between June and September 

is probably greater than the time period within which temporal correlation is present.   

We examined covariograms created from mean-trend process-model residuals for 

each time period (40 covariograms in all) to look for possible spatial patterns in error 

distribution as an exploratory exercise, and noted that residuals in every time period appeared 

to exhibit some form of spatial structure (Fig. 3).  To determine the functional form that best 

described this structure, we re-fit the mean trend process model separately for each time 

period a total of eleven times (40 time periods x 11  = 440 total evaluations) using restricted 

maximum likelihood estimation (REML).  The first ten evaluations each included one of ten 

covariance functions (Exponential, Gaussian, Spherical, Linear, and Power, each with and 

without a nugget).  The eleventh contained no spatial covariance function and was the final 

mean trend model run for one time period at a time.  We chose REML over maximum 

likelihood (ML) because it generates less bias when estimating variance and covariance 

parameters (Patterson and Thompson 1971).   

We used the Bayesian information criterion (BIC) to select the best-fitting model 

given the data (i.e. the one with the smallest BIC) in each time period.  BIC is appropriate for 

comparing likelihood models with different numbers of explanatory variables because it 

penalizes model complexity (i.e. the number of parameters in model; Schwarz 1978).  From 
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this exercise, we confirmed the presence of spatial correlation in residuals by observing that 

individual time period evaluations of the mean trend process model that incorporated spatial 

covariance functions had lower BICs than those where error was modeled as iid in the 

majority (39) of time periods.  (The mean trend time model performed similarly with 

majority equaling 33 time periods).   

To correctly account for spatial covariance, we needed to determine the most 

appropriate parameterization for Σ based on our modeling context.  Because of software 

limitations (SAS Proc Mixed), we needed to specify a single functional form in all time 

periods.  Exploratory work indicated that each time period had unique estimates for the range 

and the sill depending on the proportion of variability in salinity unexplained by the mean 

trend.  We therefore wanted a model with different range and sill estimates for each time 

period group.  This translates mathematically to a N by N block diagonal covariance matrix 

(5), where off-diagonal elements are zero matrices and diagonal elements (Ε1, Ε2, … ΕT) are nt 

x nt matrices with element ij of ΕT given by the equation in Table 5 that corresponds to the 

particular covariance function used. 

(5)     

T



00

00

000

000

2

1

 

  

Cross-validation was used to select the best spatial covariance function by comparing 

the predictive accuracy of the mean trend process model with iid errors to predictions 

generated by the process model with each of six spatial covariance functions (Exponential, 
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Gaussian, and Spherical both with and without nuggets).  Because the Power and Linear 

functions were infrequently selected as best fitting in exploratory analyses, they were 

excluded from consideration here.  To cross-validate, each of the candidate models was fit to 

a base dataset that contained a randomly-chosen 90% of the total number of observations 

(NB=1890).  The nugget estimate was the same for all time periods again because of software 

constraints.  However, this seemed a reasonable assumption because measurements were 

collected following the same protocol for the entirety of the survey, which should make 

measurement error in the method constant over time.  Regression coefficient estimates were 

used to predict salinity in a test dataset containing the remaining 10% of the observations that 

were withheld from model fitting procedures (NE=210).  The test dataset did not contain the 

same number of observations from each time period, but it did contain at least three 

observations per time period.   

Four different selection criteria were used to evaluate model fit.  We first computed 

the root mean squared error (RMSE) of the test dataset predictions for each model run.  

RMSE in units of the response variable and is a measure of standard error for unbiased 

estimators.  It is calculated using the formula  
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 where yit corresponds to the actual observed salinity at station location it and itŷ  is the 

salinity predicted by the model at location it.  A lower RMSE indicates more accurate model 



 

27 

predictions.  We should note that if the model predicted salinity at a location to be less than 

zero, we manually set the prediction equal to zero before calculating RMSE.  It is not 

possible to have a negative salinity value, although Proc Mixed occasionally predicted them 

because we were not able to specify a truncated normal distribution.  We also examined the 

values of the slope, intercept, and coefficient of determination (R
2
) of the regression of 

observed salinity on predicted salinity in the test dataset.  If the model predictions were 

perfect, the regression would have a slope equal to one, an intercept equal to zero, and an R
2
 

equal to 1.  In Table 6, we compared candidate models and selected the model whose 

predictions best satisfied these four criteria (minimum RMSE, slope close to one, intercept 

close to zero, and R
2
 as close to one as possible).  Table 6 additionally reports three base 

dataset model fit statistics: –2 log likelihood, Akaike‘s information criterion (AIC), and BIC.  

The model selected in this step was the end model. 

From Table 6, it is clear that salinity predictions were better (based on the above 

criteria) when either model, process or time, included any spatial covariance function.  Of the 

time models, including an Exponential spatial covariance function with a nugget produced 

predictions with the lowest RMSE (2.1), the slope closest to one (0.92), and the intercept 

closest to zero (1.55).  When examining process models, four models (Exponential and 

Spherical both with and without a nugget) performed equally well, and better, in terms of the 

selection criteria, than all of the time models.  Of the four best process models, the model 

with an Exponential covariance function with a nugget had the lowest AIC (7580.0) and BIC 

(7711.7) and for this reason it was chosen as the best model to predict salinity in PS; it 

explained 89% of the variability in salinity in the test dataset and generated predictions with 



 

28 

RMSE of 2.0.  We now fit this model using the full dataset, interpolated salinity at evenly 

spaced 1 nmi (1.85 km) increments across the spatial domain, and created retrospective maps 

of salinity predictions and their corresponding standard errors for each time period.   

 

3. RESULTS: EVALUATING FRESHWATER INFLUX SCENARIOS 

Overall, predicted salinities ranged from –4.9 to 29.3, which is similar to the range of 

overall observed salinities (0.1 to 30.7).  Forty-two salinity predictions, less than 0.1% of the 

total number of predictions, were negative and set to zero.  Within each time period, 

prediction standard errors were typically lowest in the neighborhood of observations.  The 

range of standard errors, however, varied among time periods.  The overall standard error 

range was 0.22 to 6.25, but more than 90% of prediction locations had standard errors less 

than 2.5.    

To look for systematic patterns of salinity under similar FWI, we examined 16 

possible freshwater influx scenarios (Table 7) spanning drought conditions to average 

freshwater influx conditions to flood conditions.  Each scenario consisted of different 

combinations of classes of FWI for both one-week and two-months prior to the survey.  1wk_ 

and 2mo_FWIrt was considered ‗low‘ if it was below the 25
th
 percentile of observed FWI 

across all time periods for that river, ‗moderate‘ if it was between 25
th

 and 75
th

 percentile of 

observed FWI, ‗high‘ if it was between the 75
th
 and 95

th
 percentile, and ‗flood‘ if it was 

above the 95
th
 percentile.  Overall one-week and two-month FWI for the entire time period 

was considered low or high if at least two rivers in that time period exhibited low or high 

inflow, moderate if at least three rivers in that time period exhibited moderate inflow, and 
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flood if at least one river exhibited extremely high inflow.  Table 7 shows that the majority of 

these scenarios are represented by time periods within the observed dataset.  The first and 

second columns give the 16 combinations of two-month and one-month flow class, the third 

tells which time periods exemplify this scenario.  Time periods were also ranked 1-40 by 

mean predicted salinity (1=lowest mean salinity; 40=highest); those rankings are listed in 

column four.  We selected three scenarios to detail in the remainder of this section:  one to 

describe an average case (moderate to moderate FWI) and one to describe each extreme case 

(low to low FWI and flood to flood FWI) in order to demonstrate the possible range of 

variability in salinity patterns.  Time period maps illustrating these selected scenarios are 

reproduced here; the remainder will be available online during late summer 2009.  

3.1. Moderate to moderate FWI  

June 2005 provides an example of salinity distributions resulting from moderate FWI 

to PS in both the two months and one week prior to the survey.  Within the left pane of 

Figure 4, we note that predicted salinity in this time period was less than 9.6 in both the 

Neuse and Pamlico Rivers.  The transition of the color ramp from cool to warm colors 

illustrates that predicted salinity increased moving east across PS, reaching a maximum just 

south of Oregon Inlet.  The eight legend color categories are based on percentiles (%) of the 

distribution of observed salinity across all time periods:  minimum value to 5%; 5-10%; 10-

25%; 25-50%; 50-75%; 75-90%; 90-95%; and 95% to maximum value.  Comparing this map 

to the map of observed salinities in the top right pane, the same east-west salinity gradient 

exists in the observations.  The area of highest predicted salinity corresponds to a lone purple 
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observation just south of the inlet.  We know that observed salinity at that site was greater 

than 25.7 because both maps share the same legend (actual salinity observed: 26.5).  

Comparing the map of prediction standard errors in the lower right pane of Figure 4 

to the other two maps, we make the same observation here that we will in all subsequent time 

periods: standard errors are lowest for predictions near observations and increase with 

increasing distance from observations.  This transition is indicated through a color gradient 

shift from cool colors surrounding sites where salinity was observed (low SE) to warm 

(higher SE) colors farther away from sample sites.  The same eight percentile groups are used 

to classify colors on the SE map legend, here based on the distribution of prediction standard 

errors across all time periods, where standard errors are in the same units as salinity. 

In this time period as in all others, salinity predictions are only generated for locations 

within the spatial domain, which does not extend either to Albemarle Sound or to the heads 

of the Neuse and Pamlico Rivers.   

3.2. Low to low FWI 

To examine the effects of both prolonged and abbreviated low FWI on PS salinity 

patterns, we compared maps of June 1999 (Fig. 5A) and June 2002 (Fig. 5B).  These time 

periods occurred at the beginning and end, respectively, of North Carolina‘s 1998-2002 

drought (Weaver 2005).  As in the previous scenario, patterns in the predictions mirror those 

seen in the observations.  Comparing these maps to our map of predicted salinity under 

moderate FWI, we observe in all three a similar west-east salinity gradient with higher 

salinities along the sound‘s eastern coast than on the western shore near the Outer Banks.  

Overall predicted salinity is higher in both June 1999 and 2002, where the majority of 



 

31 

salinity predictions were greater than 20, than in June 2005, where predicted salinities are 

mainly between 9 and 18.  This is undoubtedly due to decreased FWI observed in June 1999 

and 2002 relative to June 2005.  For June 2002, as was the case for June 2005, mixing near 

the inlets is evident in both the observations and predictions, though this time we see the 

mixing at the southern inlets as well.  Mixing near the inlets is not evident for June 1999, 

possibly due to differences in current circulation. 

Observed and predicted salinities were much higher in mainstem PS in June 2002 

than in June 1999, despite the fact that both had similar values for 1wk_ and 2mo_FWI 

variables from three of the four tributary rivers (1wk_ and 2mo_FWI from the Roanoke River 

in June 1999 was twice what it was in June 2002).  Different historical system states likely 

produced this result.  As noted, June 1999 was more than a year into a four-year drought:  

weekly average stream flow conditions for the 30 weeks prior to mt were each between the 

6
th

 and 20
th
 percentile of average FWI measured for that week over the last 30 years (USGS 

2009a).  By June 2002, NC had been experiencing drought conditions for four years (186 

weeks).  Thus salinity was probably higher in June 2002 than in June 1999 due to a 

cumulative FWI deficit that became more pronounced over time.  

It is interesting to note that June 2002, the time period with both the larger range of 

observed salinity and the higher predicted overall salinity of the two, had overall lower 

predicted standard errors.   In June 2002, the majority of standard errors are less than 1.01, 

while for June 1999; they fall between 1.01 and 1.81 at almost all prediction locations. These 

results demonstrate the fact that the magnitude of the prediction standard error at space-time 

location it is a function of both the certainty and variability of the deviations from the mean 
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trend.  Predictions are associated with greater certainty when they are closer to observations, 

but at the same time, mean trend portion of the model explains more variability in salinity in 

some time periods than in others, resulting in overall less variability in residual errors in that 

time period and thus a lower 
2

t.  When 
2

t is lower, standard errors at individual prediction 

locations are also lower. 

3.3. Flood to flood FWI—with and without hurricanes 

To examine the effects of extremely high freshwater inflow on PS salinity patterns, 

we compared maps created for September 1999 and June 2003 (Fig. 6A and B, respectively).  

FWI was extremely high in September 1999 as a result of the 500-year floods produced by 

Hurricanes Dennis (25 d. pre-survey) and Floyd (11 d. pre-survey), while in June 2003, 

extremely high FWI was due to an eight-month series of above-average precipitation totals 

prior to the survey (a.k.a. the end of the 1998-2002 drought).  Again, model predictions 

mirrored observations, and prediction standard errors were larger in one time period 

(September 1999) than in the other (June 2003).  Compared to each other, salinity was much 

lower in June 2003, with more than 99% of predicted salinities less than 14.5, than in 

September 1999, where over two-thirds of predicted salinities were greater than 14.5.  

Compared to our example of moderate FWI, predicted salinity in PS is lower in June 2003, 

most likely due to its increased 1wk_ and 2mo_FWIrt.  Predicted salinity in September 1999, 

however, was higher than it was in June 2005, despite the increased influx of freshwater.  In 

June 2003, salinities were similar across the main-stem of PS, while in September 1999, 

mixing near Hatteras Inlet was evident.  
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Differences in overall magnitude of predicted salinity between these two time periods 

can potentially be explained by differences in historical system state.  Severe flooding 

conditions resulted from hurricane rainfall in 1999; however, that rainfall was deposited onto 

a watershed that had been in a state of severe drought for the previous 44 weeks (see Section 

3.2, above).  Flooding, albeit less severe, was also noted in June 2003, but these floods 

resulted from consistent, above-average precipitation and stream flow that began 25 weeks 

prior to mt.  By June 2003, the PS system likely contained more freshwater overall than it did 

in September 1999, resulting in lower salinities even in the absence of a large FWI pulse.   

Differences in spatial salinity patterns observed in this FWI class could also have 

resulted from the presence or absence of hurricanes in the system.  Predicted salinity varied 

greatly between these two time periods in the vicinity of Ocracoke and Hatteras Inlets: in 

September 1999, predicted salinity ranged from 18.5 to 24.7 in this region, while in June 

2003, only two prediction locations had salinities greater than 14.5.  This area of saltier water 

in September 1999 likely resulted from the forcing of Atlantic Ocean water through the inlets 

by the west/northwestward hurricane-force winds that accompanied Dennis and Floyd.  

Seasonal winds in June 2003 were north/northeastward with an average speed of 10 mph, 

which would have resulted in a smaller influx volume of salt water (see Xie and Eggleston 

1999). 

 

4. DISCUSSION 

Although the direct effects of climate change on coastal environments (e.g. sea-level 

rise) are visually apparent, many indirect effects can also impact the structure (e.g., plant and 
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animal composition) and function (e.g., plant and animal production, nutrient cycling) of 

estuarine and wetland ecosystems across the Southeastern US.  Because water exchange 

between lagoonal estuaries and the open ocean is particularly restricted, there is greater 

potential in systems like PS for changes in precipitation patterns (increased or decreased 

rainfall) and storm frequencies to result in major alterations to the ecosystem.  Changes in 

precipitation will affect the amount and timing of river and stream flow, which will in turn 

impact nutrient delivery and cycling and estuarine flushing rates.  Increased storm activity 

may open new inlets, which would undoubtedly alter current flow in the system, increase 

tidal action, and allow a greater influx volume of seawater that carries with it both different 

chemical signals and mobile species.  Salinity is therefore a practical estuarine characteristic 

to use to study the impacts of these changes, as both effects include enhanced water exchange 

that will impact overall estuarine salinity content (Brinson et al., 1985, 1995; Corbett et al., 

2007). 

Our process-based statistical model explained 89% of observed variability in salinity 

in Pamlico Sound over 20 years of variable climatic conditions between 1987-2006.  Among 

our candidate variable set, most of the variability in salinity was explained by variables 

created to approximate the amount of fresh or salt water at a particular it location; however, 

one hurricane predictor variable, inverse_days_surveyt, was present in the final model.  Its 

parameter estimate was positive, reflecting that strong hurricane winds push more saltwater 

into PS through inlets than would enter under typical seasonal wind conditions (e.g., Xie and 

Eggleston 1999).  When hurricanes make landfall immediately before mt, little time is 

available for riverine FWI to reach sites in eastern PS to counteract this hurricane-driven 
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saltwater influx.  The ability to predict salinity changes in response to hurricane presence is 

particularly important in PS given that (i) 12% of all tropical cyclonic events recorded in the 

Atlantic Ocean have passed through North Carolina, (ii) NC is second to Florida in terms of 

recorded number of land-falling hurricanes (State Climate Office of North Carolina 2009a), 

(iii) the frequency of Atlantic hurricanes has increased over the last 10 years, and (iv) this 

increase is expected to persist over the next 10 to 40 years (Paerl et al. 2001, Goldenberg et 

al. 2001).  Our model is the only one known to incorporate hurricane variables into a 

predictive model of salinity for an estuarine system. 

4.1. Model selection and spatial correlation 

Our modeling goal was to accurately predict salinity at unsampled locations in PS, 

thus, the process model with an Exponential spatial covariance function with a nugget was 

the best for our modeling context because it optimized test dataset criteria.  It is important to 

let individual modeling context dictate which model selection criteria are used.  For example, 

time-based models as a whole exhibited smaller BICs than did process models (Table 6).  If 

we were exclusively using BIC as our selection criterion, we would have selected the time 

model with spherical spatial covariance functions without a nugget as our best model, but 

this was not the criterion that satisfied our goals.   

If our objective had been solely to predict salinity in hypothetical FWI scenarios, it 

might have been helpful to withhold an entire time period of observations in our test dataset 

in addition to a number of observations from each time period.  This approach would have 

allowed a more thorough examination of model accuracy by generating test dataset 

predictions using a different combination of values for explanatory variables than was used 
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to fit the model.  If an entire time period is withheld, care should be taken to ensure that the 

value of each explanatory variable in the withheld time period was not the most extreme 

value for that variable in the observed dataset.  This guarantees that predictions are 

interpolations and not extrapolations, as predictions of the latter type are often less 

meaningful and subject to greater uncertainty. 

Models that included spatial correlation produced predictions that, according to test 

dataset criteria, were better than models that did not (Table 6), but the mean trend alone 

explained a large portion of the variability in salinity in both process and time models.  In 

many geostatistical analyses, data are only spatially de-trended (i.e. Leecaster 2003, Ping et 

al. 2004, Guan et al. 2005, Jensen and Miller 2005, Lloyd 2006, Paretzke et al. 2006, 

Gundogdu and Guney 2007 and others).  Using additional explanatory variables in a mean 

trend model, however, can explain bigger proportions of both the spatial structure over both 

large and small distances and could result in deviations from the mean that no longer exhibit 

spatial patterns (M. Fuentes, pers. comm.).  In our process model, 18 time periods had range 

parameter estimates that were not significantly different from zero (α=0.05).  Observations in 

each of these time periods were thus spatially independent, likely because two-thirds of the 

variability in salinity was already explained by the mean trend.      

The two-step process used here (i.e. selecting variables for the mean trend and then 

modeling spatial covariance) is not ideal in all situations.  Overall variable selection results 

may have differed slightly if explanatory variables had been selected concurrent to modeling 

spatial covariance.  This does not, however, invalidate the variable selection procedure used 

in this work.  We wanted to create a model that explained as much variability in salinity as 
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was possible using interpretable explanatory variables because we were primarily interested 

in the process that affects salinity at a given space-time location, and we only wanted to 

incorporate spatial covariance if it improved the fit of this pre-existing model.  Adjusted R
2
 

favors more complex models than either AIC or BIC, so we used it to select the mean trend, 

reasoning that it should include all variables that in any way help to explain portions of 

response variability.  While (i) specific variables in the mean trend might have been slightly 

different using an alternate model construction process and (ii) we admit that if performing 

this analysis again we might have used different variable selection procedures, we are still 

satisfied with the end result, as the final model predicted salinity in a withheld data set with a 

considerable degree of accuracy.   

4.2. Process model vs. time model applications 

We chose the process model over the time model to generate salinity predictions to 

satisfy our objectives, but a different set of objectives might result in a different decision.  

Each model type has different applications based on the explanatory variables included, and 

they should ultimately be used to address different questions.   

Because the majority of the process model‘s candidate predictor variables are 

processes known to affect salinity, positing causal relationships is more appropriate here than 

with other predictive models that contain many variables that are not process-based.  Even 

though our model is based on data collected from two different months, monthit was not 

included as a predictor variable in our final model; we thus have the ability to predict and 

map salinity distributions in any past, present or future PS time period.  This omission allows 

for a variety of practical applications.  For example, physical oceanographers can use process 
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model predictions to ground-truth PS hydrodynamic models that also predict salinity (e.g. 

Xie and Pietrafesa, 1999, Xia et al. 2007, Lin et al. 2007; 2008).  Marine ecologists interested 

in the effects of salinity on the distribution and abundance of estuarine organisms, and the 

response of mobile organisms to changes in salinity, can use process model predictions to 

guide sampling design, and to predict ecological responses to future conditions.  Finally, our 

process model could be used by NCDMF scientists to evaluate trawl site placement in future 

surveys, both P195 and others, especially if they are interested in further examining the effect 

of salinity on species distribution.  Before now, salinity could not be predicted in advance of 

the P195 survey.  Using the output from this model, sites could be systematically relocated 

within strata prior to sampling to evaluate fisheries abundance across the entire salinity 

gradient within a given month and year time period.  Ensuring that all salinities of interest are 

represented in the survey allows for a more rigorous test of the relationship between an 

organism‘s distribution and its physical environment.   

We originally constructed our time model after observing multiple time-period-

specific relationships between salinity and 2mo_FWIIrit (Fig. 2); hypothesizing that a model 

that included time period as a predictor variable would produce the most accurate 

retrospective predictions of salinity according to our criteria.  This was not the case, but it is 

important for others who might use this type of model to realize that the inclusion of the 

time_period variable instantly limited the possible applications of the model.  A time-based 

model can only be used to retrospectively predict salinity in previously sampled time periods 

and it would only be useful here for those who wanted to examine PS salinity patterns during 

June or September 1987-2006.  For instance, if a researcher wanted to examine the effect of 
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salinity on Atlantic croaker distribution after Hurricane Fran in 1996, and samples were 

collected only in the weeks after the hurricane and at no other time, they could use the 

September 1996 salinity map and predictions generated from our time model to inform their 

analysis.  Unlike the process model, the time model is unable to predict future salinity 

distributions; one could only generalize what salinity distributions might look like if 

hypothetical future Year X had values of predictor variables, namely 1wk_ and 2mo_FWIrt, 

similar to those in one of the time periods present within the data series.  

4.3. Model improvement 

To improve upon our model in the future, a more exhaustive attempt could be made 

to incorporate wind speed and direction, since this forcing mechanism drives the majority of 

water movement and mixing within PS (Pietrafesa and Janowitz 1986).  Although the spatial 

resolution of our wind data is limited (two wind gauges exist within S that have collected 

data throughout T), it has recently been demonstrated that wind speed and direction are 

spatially coherent along the main axes of PS (Eggleston et al., in press).  This finding 

suggests that it is possible to decompose vector wind speed data from a single weather station 

to calculate an effective wind speed metric for each survey site based on the distance and 

compass orientation of location it relative to the weather station.  Such an effort would 

require a thorough exploratory analysis to identify the temporal duration over which wind 

speed was thought to affect PS salinity to determine the number of days before mt to use to 

calculate an average wind speed per time period.   

PS‘s freshwater residence time is approximately 11 months (Molina 2002), so 

creating a variable to represent the total amount of freshwater present in the sound prior to mt 
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using a time duration longer than 61 days might explain more variability in salinity.  This 

variable would differ from our FWI metrics because it would correspond to a volume of 

water as opposed to a rate of influx.   Because it could potentially account for differences in 

salinity patterns seen in time periods with similar one week and two month FWI conditions, 

such a variable warrants future investigation.  

The 1wk_ and 2mo_FWIIrt variables might have explained larger proportions of 

variability in salinity if they had been constructed using different FWI sources and/or 

different distance calculation methods.  For example, FWII metrics might have better 

reflected freshwater conditions within the survey‘s spatial domain if it had been possible to 

obtain freshwater inflow data at locations on each river that were closer to observed sample 

locations.  We chose to use the furthest downstream gauge station on each river that also 

recorded data over the entirety of the temporal domain.  Likewise, using water-path distance 

as opposed to Euclidean distance might have better represented the effect of the FWI from 

each river on salinity at a given it sample location.  The argument supporting the use of 

water-path distances when modeling water quality parameters in stream and estuarine 

systems is logical, however, results from studies that directly compared these two distance 

methods are inconclusive.  Gardner et al. (2003) noted more accurate predictions of stream 

temperatures when models incorporated water-path distance, but only when this distance was 

further modified and weighted by stream order.  Peterson et al. (2006) predicted various 

nutrient concentrations in 17 Maryland rivers and concluded that water-path distances 

worked well when predicting concentrations of certain nutrients but not others and that 

Euclidean distance appeared to be the most suitable distance measure overall.  Because 
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neither these two studies nor those discussed in Section 2.3 (Little et al. 1997, Rathbun 1998) 

demonstrated marked predictive improvement using water-path distance in all cases, we 

could not justify spending the time needed to hand-calculate 4,800 water-path distances in 

this analysis.  However, since this issue lacks definitive resolution, it would be interesting in 

future work to compare differences in Pamlico Sound salinity predictions using both distance 

methods.  Such an examination would be possible if water-path distances could be calculated 

using an automated procedure similar to the one used in Jensen et al. (2006).  

4.4. Applications of the model-building process to other estuaries 

This study developed and evaluated space-time predictive models of salinity for 

Pamlico Sound, NC and generated the methods necessary to replicate this modeling effort in 

other systems to create similar salinity predictive models.  To apply this methodology to 

another system, one needs to consider the effects of important forcing mechanisms 

(described in Sections 2.2 through 2.9) that dictate the value of salinity observed at a given 

site in space and time.  Once process-relationships are defined, all that remains is data 

acquisition and design of appropriate predictor variables to include before model fitting and 

evaluation can begin.  For example, like PS, the northern Gulf of Mexico (GoM) off the coast 

of Louisiana is another area highly prone to hurricanes and sea level rise that could benefit 

greatly from a predictive salinity model.  A number of modifications should be made to our 

PS salinity predictor variables to reflect the forcing mechanisms that govern bottom salinity 

in the GoM.  One such modification involves the directionality of the outflow of the 

Mississippi and Atchafalaya rivers, which combined discharge approximately 90% of the 

freshwater that enters the GoM continental shelf (Cochrane and Kelly 1986).   Sixty percent 
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of Mississippi River freshwater inflow flows west to initially form the strong Louisiana 

Coastal Current (LCC); the remaining 40% flows east.  Almost all of the Atchafalaya River 

inflow is entrained in the LCC and flows west from its point-source entry (Dinnel and 

Wiseman 1986).  The same general formula can be applied to calculate short and long term 

FWIIrit (equation 1).  To incorporate directionality into these FWII metrics, indicator 

variables (directrit) could be created that correspond to the orientation of sample location it 

from point-source locations of either Mississippi or Atchafalaya River inflow onto the 

continental shelf.  Directrit for the Mississippi River should, for example, equal 0.6 for 

stations west of the Balize delta and 0.4 for stations east of the delta.  Similarly, directrit for 

the Atchafalaya River should equal zero for stations east of Atchafalaya Bay, and one for all 

western stations.  Incorporating the interaction between these indicator variables and their 

respective FWIIrit variables into a GoM salinity model will more appropriately characterize 

the dynamics of the system and thereby possibly create a better predictive salinity model.    

 

5. CONCLUSIONS 

We created a model to hindcast and forecast salinity in a lagoonal estuary, with the 

latter becoming increasingly important in the face of global climate change.  This model can 

generate predictions of bottom salinity for Pamlico Sound, NC, that are more spatially-

resolute than any previous bottom salinity predictions encountered in the literature for this 

system.  We used model predictions to generate maps of salinity distributions in PS for 40 

time periods over the last 20 years will that allow other researchers to observe changes in 

isohaline locations under variable freshwater influx conditions.  Our salinity predictions can 
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be used to inform future analyses including, but not limited to: (1) the examination of 

historical distribution patterns of estuarine species relative to salinity variability, (2) the 

evaluation of existing sampling designs for field trawl survey programs, and (3) the 

prediction of salinity changes under various global climate change scenarios. 
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Table 1.  Studies in which statistical models have been constructed to describe spatial 

distributions of water quality features with the system of interest and the parameter being 

modeled. 

 

Reference Model System Response Variable 

Little et al. (1997) Murrells Inlet, SC Nutrient Concentrations 

Rathbun (1998) Charleston Harbor, SC Salinity and Dissolved Oxygen 

Dent and Grimm (1999) Verde River, AZ Nutrient Concentrations 

Gardner et al. (2003) Beaverkill River, NY Temperature 

Cressie et al. (2006) rivers across Southeast 

Queensland, Australia 

Dissolved Oxygen 

Peterson et al. (2006), 

Peterson and Urquhart (2006) 

17 different rivers, MD Nutrient Concentrations 

Chehata et al. (2007) Chesapeake Bay, VA Salinity and Dissolved Oxygen 
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Table 2.  Adjusted R
2
 for eight linear regression models containing distsit or 

closest_inlet_distit with different combinations of spatial coordinate variables.  Distsit is 

calculated using Euclidian distance between location it and s, the geographic center of one of 

PS‘s major inlets.  Closest_inlet_distit is equal to the smallest distsit variable and represents  

distance to the closest inlet) 

 Model: salit = Adjusted R
2
 

distsit 0.3839 

distsit + eastingit + eastingit
2
 0.3994 

distsit + northingit + northingit
2
+ northingit

3
 0.4229 

distsit + eastingit + eastingit
2
+ northingit + northingit

2
+ northingit

3 
+ 

northingit*eastingit+ northingit
2
*eastingit+ northingit*eastingit

2
 

0.4251 

closest_inlet_distit 0.3389 

closest_inlet_distit + eastingit + eastingit
2
 0.3440 

closest_inlet_distit + northingit + northingit
2
+ northingit

3
 0.4082 

closest_inlet_distit + eastingit + eastingit
2
+ northingit + northingit

2
+ 

northingit
3
+ northingit*eastingit+ northingit

2
*eastingit+ 

northingit*eastingit
2
 

0.4250 
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Table 3.  Adjusted R
2
 for the seven linear regression models between salinity and each main 

effect explanatory variable or set.   

 

Model: salit = Adjusted R
2
 

2mo_FWIIrit set 0.3760 

closest_inlet_distit 0.3389 

1wk_FWIIrit set 0.2694 

categoryt 0.0491 

inverse_days_surveyt 0.0347 

no_stormst 0.0286 

monthit 0.0147 
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Table 4.  Adjusted R
2
 for the seven linear regression fits to evaluate the addition of spatial 

coordinates as explanatory variables to the overall salinity model.  Each row lists the terms 

added to the model in that step, and includes all previously modeled terms in rows above.     

 

Model: salit = Adjusted R
2
 

2mo_FWIIrit + closest_inlet_distit +1wk_FWIIrit + inverse_days_surveyt 

+ all FWIIrit interactions  

0.6601 

     + eastingit+ northingit 0.6963 

     + eastingit
2
+ northingit

2
 0.7204 

     + northingit*eastingit 0.7262 

     + northingit
3
 0.7295 

     + northingit*eastingit
2
+ northingit

2
*eastingit 0.7298 

     + northingit
2
*eastingit

2
 0.7297 
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Table 5.  Formulas for the three isotropic spatial covariance functions used in this analysis 

(Exponential, Gaussian, and Spherical).  For all: 2

tn , 2

t
, θ ≥ 0, and -∞< ρ <∞. 

 

Covariance 

Function 

Equation for element ij of ΕT 

Exponential 

22

tnt
 

 

t

ij

tn

d

t
exp22      

if dij = 0  

 

 

if dij > 0 

Gaussian 

22

tnt
 

 

2

2

22 exp
t

ij

tn

d

t
 

if dij = 0  

 

 

if dij > 0 

Spherical 

22

tnt
 

 

3

3

22

2

3

2

3
1

t

ij

t

ij

tn

dd

t
 

if dij = 0  

 

 

if dij > 0 
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Table 6. Summary statistics of cross-validation analyses for salinity predictions generated by 

two OLS models, process and time, when one of three spatial covariance functions was 

included.   Each spatial covariance model was evaluated with and without a nugget effect.  

The symbol ―
2

n‖indicates that a nugget was included.  Stars (*) indicate rejection of the 

appropriate null hypothesis at the α=0.05 level of significance: H01: 
2

n=0;  H02: β1=1;      

H03: β0=0.  The exponential plus nugget process model is highlighted as it was chosen as the 

best model of PS salinity for our modeling context.     

 

 

Model Type 

-2 log 

likelihood 

AIC BIC RMSE 

(psu) 

Slope/ 

β1 

Intercept/ 

β0 R
2
 

 IID 9935.9 9937.9 9943.5 2.9 0.98 0.84 0.74 

Exponential 7430.7 7584.7 7714.7 2.0 0.95 1.03 0.89 

Exponential + 
2

n* 7424.0 7580.0 7711.7 2.0 0.96 0.96 0.89 

Gaussian 8198.0 8356.0 8489.5 2.3 0.94 1.37 0.84 

Gaussian + 
2

n* 7532.0 7686.0 7816.0 2.1 0.94 1.15 0.87 

Spherical 7570.0 7722.0 7850.4 2.0 0.95 1.07 0.88 

Spherical + 
2

n* 7571.6 7727.6 7859.3 2.0 0.96 0.93 0.89 

 IID 7077.5 7079.5 7084.9 2.6 0.83* 3.47* 0.83 

Exponential Infinite       

Exponential + 
2

n 6217.1 6367.1 6493.7 2.1 0.92* 1.55* 0.87 

Gaussian 6281.0 6433.0 6561.3 2.2 0.90* 1.98* 0.86 

Gaussian + 
2

n* 6214.0 6366.0 6494.4 2.2 0.91* 1.90* 0.86 

Spherical 6199.6 6315.6 6479.9 2.2 0.91* 1.86* 0.86 

Spherical + 
2

n 6201.3 6357.3 6489.1 2.2 0.91* 1.86* 0.86 
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Table 7.  Sixteen possible FWI scenarios derived from all combinations of 1wk_ and 

2mo_FWIrt and corresponding time periods that exhibit each set of conditions. Only time 

periods that fit each scenario as defined in Section 3 are listed, the remaining 7 time periods 

were not classified.  Boldfaced time periods are those in which hurricanes were present 

within 61 days of the survey. Time periods were ranked 1-40 by mean predicted salinity 

(1=lowest mean salinity; 40=highest). 

 

2-month  

average  

FWI 

1-week 

average 

FWI 

Time period 

(mmyy) 

Mean  

Salinity 

Rank 

flood flood 0603 1 

  0999 11 

 high   

 moderate 0687 13 

  0689 14 

 low   

high flood 0903 2 

  0690 12 

 high 0904 9 

 moderate 0698 3 

  0693 5 

  0697 6 

 low   

moderate flood 0996 8 

 high 0696 15 

  0900 17 

 moderate 0605 4 

  0989 10 

  0601 15 

  0600 19 

  0604 20 

  0688 25 

  0990 28 

  0692 31 

 low 0694 24 
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Table 7 Continued 

 

2-month  

average  

FWI 

1-week 

average 

FWI 

Time period 

(mmyy) 

Mean  

Salinity 

Rank 

low flood 0987 23 

 high 0695 35 

 moderate 0905 21 

 low 0997 26 

  0699 29 

  0901 33 

  0902 34 

  0993 36 

  0602 37 

  0988 38 

  0994 40 
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FIGURE LEGENDS 

 

 

Figure 1.  Map of Pamlico Sound, NC and depth of the survey sampling area.  The P195 

trawl survey samples areas within Pamlico Sound only that are greater than 2 m deep.  This 

map also shows the locations of PS‘s inlets:  OR-Oregon Inlet, HA-Hatteras Inlet, and OC-

Ocracoke Inlet.  Parallel A is located at 35º 16‘ N latitude and meridian B is at 75º 42‘ W 

longitude, as referenced in Section 2.8.  The green star is the location of Buxton, NC. 

 

Figure 2.  Observed bottom salinity vs. two-month relative freshwater influx index 

(2mo_FWIIrit) from the Roanoke River.  This figure includes all salinity observations from 

our temporal domain 1987-2006 and influx is in units of m
3
 sec

-1
 km

-1
.   Circles were drawn 

around four groups of values within the same time period that the researchers thought 

exhibited relationships with different slopes. 

 

Figure 3.  Sample covariogram calculated from OLS process model residuals for June 1994.  

Covariance is always in units of the response variable squared and is only examined for 

approximately half of the maximum lag distance separating any two pairs of sites.  Here lag 

distance = 2.12 and max lag = 20.  
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Figure 4.  Map images of (clockwise from upper left) predicted salinity from June 2005 as 

generated from our best-fitting model, observed salinity from the P195 June 2005 survey, 

and standard error (SE) of model-generated salinity predictions.  June 2005 was considered 

to have moderate freshwater inflow in both the two-months and one-week prior to the survey. 

 

Figure 5.  Map images of (clockwise from upper left) predicted salinity as generated from 

our best-fitting model, observed salinity from the P195 survey, and standard error (SE) of 

model-generated salinity predictions for A:  June 1999 and B: June 2002.  Both time periods 

were considered to have low freshwater inflow in both the two-months and one-week prior to 

the survey. 

 

Figure 6.  Map images of (clockwise from upper left) predicted salinity as generated from 

our best-fitting model, observed salinity from the P195 survey, and standard error (SE) of 

model-generated salinity predictions for A:  September 1999 and B: June 2003.  Both time 

periods were considered to have extremely high freshwater inflow in both the two-months 

and one-week prior to the survey.  In addition, September 1999 was associated with two 

land-falling hurricanes in close temporal proximity to the P195 survey. 
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Figure 1.  Map of Pamlico Sound, NC and depth of the survey sampling area.  
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Figure 2.  Observed bottom salinity vs. two-month relative freshwater influx index from the 

Roanoke River.
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Figure 3.  Sample covariogram calculated from OLS process model residuals for June 1994.
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Figure 4.  Map images of (clockwise from upper left) predicted salinity from June 2005, 

observed salinity from the P195 June 2005 survey, and standard error (SE) of model-

generated salinity predictions. 
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Figure 5.  Map images of (clockwise from upper left) predicted salinity, observed salinity 

from the P195 survey, and standard error (SE) of model-generated salinity predictions for A:  

June 1999 and B: June 2002.  

A. 

B. 
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Figure 6.  Map images of (clockwise from upper left) predicted salinity, observed salinity 

from the P195 survey, and standard error (SE) of model-generated salinity predictions for A:  

September 1999 and B: June 2003.   

B. 

A. 
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CHAPTER 2: 

 

Environmental effects on blue crab spatial dynamics in Pamlico Sound, NC: 

implications for improving the accuracy of fishery-independent survey indices 

 

 

 

 



 

67 

ABSTRACT  

 

Highly variable environmental conditions can alter spatial distribution patterns of estuarine 

species over time.  These alterations can change fish catchability in survey and commercial 

gear, potentially biasing abundance estimates and masking or inflating the effects of 

overfishing.  In this study, we created two statistical models to better account for potential 

environmental effects on fishery-independent indices of mature female blue crab spawning 

stock biomass (SSB) over space and time.  These models will aid management efforts geared 

toward sustaining North Carolina blue crab spawning stock, which has declined to historic 

lows since 2000.  Model output will providing relatively (1) accurate indices of SSB over 

time, which is important for establishing catch limits, and (2) accurate maps of the spatial 

distribution of SSB over time, which is important for identifying important estuarine habitat 

and potential migration corridors.  We also employ new analytical methods to correctly 

model the probability distribution of blue crab (Callinectes sapidus) SSB as zero-inflated 

gamma, due to excessive zeros that are characteristic of trawl survey data. 
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1. INTRODUCTION 

 

Amidst concern over the ecological repercussions of global climate change, the 

number of studies documenting spatial shifts in population distributions in response to 

environmental variation continues to grow (Kareiva et al. 1993, Southward et al. 1995, 

Walther et al. 2002).  For managers of commercially valuable species, even temporary 

distribution shifts can be problematic.  Environmental change can cause larger proportions of 

a population to concentrate or aggregate within certain areas of preferred habitat (Loneragan 

and Bunn 1999).  Inadvertent over- or under-sampling of aggregations by fishery–

independent assessment surveys can bias stock abundance estimates and mask underlying 

trends in population size (Beverton and Holt 1957, Hilborn and Walters 2003).  Directed 

overexploitation of animal aggregations by harvesters can result in rapid population declines 

(e.g. Peruvian anchovy: Csirke 1989; Atlantic Cod: Rose and Kulka 1999).   

In North Carolina, blue crab (Callinectes sapidus) not only support the state‘s most 

profitable fishery, valued at $28 million in 2008 (NCDMF 2009a), but they also have 

considerable impact on estuarine community structure, serving as dominant predators in 

benthic environments (Hines et al. 1990, Mansour and Lipcius 1991).  Immediately 

following the landfall of two sequential hurricanes (Dennis and Floyd) in September 1999, a 

mass migration of crabs out of upriver tributaries resulted in a population that was more 

concentrated in mainstem Pamlico Sound (Eby and Crowder 2002, Eggleston et al. 2004).  

That same fall, a 369% increase in mean statewide blue crab commercial catch efficiency 

was noted relative to the previous 12-year average (Burkholder et al. 2004).  A 70% 
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reduction of adult and post-larval abundance between 2000 and 2005 (Eggleston et al. in 

press) and continued declines in annual landings from 2000-2007 (NCDMF 2009b) both 

suggest that blue crab population abundance is historically low.  To facilitate species 

recovery, the NC Marine Fisheries Commission (MFC) designated protection of the 

spawning stock, the subpopulation of all sexually mature female crab, as a ―primary concern‖ 

in the 2004 revision of the Blue Crab Fishery Management Plan (BC FMP) (NCDMF 2004).     

For successful natural resource management of species like the blue crab, it is critical 

to establish target amounts of removable biomass and levels of exploitation that are 

sustainable.  To set these respective targets, estimates of relative population size over time 

and population distribution patterns over space are essential.  The objective of this analysis is 

to better inform these two estimates by accounting for variability in a species‘ physical 

environment.  To accomplish this task, we created two statistical models that account for the 

effects of environmental factors on SSB and spatial dynamics of blue crab in Pamlico Sound 

(PS), NC as an example.  The analytical methods used in this study can be applied to a wide 

range of mobile species and ecosystems in which mobile fishery species alter their spatial 

dynamics in response to environmental conditions. 

To correct for environmentally induced bias in stock abundance estimates generated 

from a fisheries-independent trawl survey, we modeled the expected value of the probability 

distribution of blue crab spawning stock biomass (SSB) at each space-time sample location 

as function of environmental factors.  Changes in these factors over time affect the 

proportion of the population available to be caught in the survey.  We used output from this 

model to calculate annual means of environmentally-adjusted SSB that are more suitable to 
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track relative population size over time than estimates of SSB not adjusted for physical 

conditions.   

To investigate potential spatial shifts in the population distribution of mature female 

blue crabs, we again modeled the mean of the probability distribution of blue crab SSB at a 

given space-time location.  This second model, however, included additional environmental 

factors that did not change over time, but could still affect the spatial distribution of crab 

within the survey area.  If we can identify locations or conditions with a high probability of 

observing an aggregation, adaptive management options that include select-area fishery 

closures could be a plausible approach in conserving SSB.  Given the general difficulties in 

estimating population size of mobile marine animals (Hilborn and Walters 2002), the 

potential for continued environmental change (Goldenberg 2001, Weaver 2005), and the 

number of currently overexploited stocks (Rosenberg 2006), results of this study should be 

applicable to a wide range of mobile fishery species and ecosystems.       

1.1. Model species 

Blue crab can be found throughout estuaries on the East and Gulf Coasts of the 

United States.  Their physiological tolerance for a wide range of salinities (Guerin and 

Stickle 1992), temperatures (Tagatz 1969), and dissolved oxygen concentrations (Bell 2008) 

permits survival across the spectrum of physical conditions observed in these dynamic 

systems.  Despite this tolerance, blue crab acclimation to abrupt environmental change can 

still take several weeks and incurs substantial metabolic cost (Tagatz 1969, Levinton 2001).  

Both Bell et al. (2003) and Paerl et al. (2006) have noted that in PS, rapid environmental 

change typically stimulates crab movement, which can result in large-scale temporary 
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displacements at the population level.  In other estuaries, rapid environmental change 

associated with hurricane-induced freshwater influx has drastically altered observed blue 

crab spatial distribution patterns (Anderson et al. 1973, Knott and Martore 1991).   

Blue crab spatial distribution also varies by life history stage.  In theory, the annual 

down-estuary spawning migration of mature females should be a fairly predictable shift in 

spatial distribution of this portion of the population; however in practice, many details 

surrounding the migration process remain unclear.  It is known that inseminated females 

travel across PS after mating in mesohaline and oligohaline upriver regions during summer to 

release larvae near inlets (Millikin & Williams 1984, Tankersley et al. 1998).  This process 

facilitates the offshore transportation of larvae, which is necessary to minimize osmotic stress 

during development (Carr et al. 2004).  The factors or conditions that prompt migration, 

however, are still under debate.  Anguilar et al. (2005) hypothesized that down-estuary 

migration is triggered in an individual female either after a pre-determined temporal lag 

following insemination or by biotic or abiotic cues.  Potential abiotic cues include seasonal 

decreases in temperature (Anguilar et al. 2005), salinity (Tankersley et al. 1998), or 

photoperiod (Hench et al. 2004).     

1.2. Current fishery regulations  

The NC blue crab fishery is managed through limits on effort, gear, and landings, but 

two regulations specifically address spawning stock protection.  In 1965, spawning 

sanctuaries closed to commercial crabbing from March 1 to August 31 were established at 

the five major inlets connecting Pamlico Sound to the Atlantic Ocean: Oregon, Hatteras, 

Ocracoke, Bardens, and Drum. These spatial closures, intended to protect females during 
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clutch maturation and larval release, still stand despite reports that they are both infrequently 

enforced and too small to protect a significant proportion of the spawning population (Medici 

et al. 2006, Eggleston et al. 2009). 

Managers were prompted to consider additional methods of spawning stock 

conservation following the large decline in post-1999 crab abundance and the significant 

spawning stock-recruitment relationship documented by Eggleston et al. (2004).  As a result, 

the 2004 revision of the BC FMP included a provision that granted the MFC the right to 

invoke a female upper size limit of 6 ¾ inches (17.15 cm) between September 1 and April 30 

as an emergency rule should annual catch-per-unit-effort (CPUE) of mature females by the 

September NCDMF PS Trawl Survey Program 195 (―the survey‖) fall below the 90% 

confidence interval (CI) of mean CPUE from 1987-2003 for two consecutive years (NCDMF 

2004).  Since larger crabs produce more eggs per brood than smaller mature females and are 

thought to contribute more to successive generations (NCDMF 2004), annual CPUE for this 

regulation was calculated by averaging the per-station sum of carapace widths (CWs) of 

individual mature females, thus creating an index of relative abundance that was ―adjusted‖ 

for crab size.  Figure 1 depicts this highly-variable annual mean ―adjusted CPUE‖ index from 

1987-2003.  The upper size limit was implemented for the first time in January 2006, and 

because adjusted CPUE has yet to rise above the lower the 90% CI for two consecutive 

years, the limit remains in effect despite a general lack of enforcement (S. McKenna, 

NCDMF, pers. comm. 2009).   
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1.3. Survey catchability and previous work 

Because total fish biomass is often unobservable, blue crab is one of many 

commercial species managed using fishery-independent CPUE as a relative index of 

population size.  This assumes that CPUE is proportional to biomass and that this 

proportionality, or catchability, is constant over time (Arreguin-Sanchez 1996).  A number of 

researchers (Harley et al. 2001, Walters and Martell 2002, Francis et al. 2003, and others) 

have questioned this assumption.  They argue that, because assessment surveys frequently do 

not cover the full spatial range of the targeted stock, catchability is actually a function of the 

proportion of the population that is in the survey area at the time of the survey.   

Due to sampling limitations, the NCDMF P195 survey excludes many regions of 

viable crab habitat immediately adjacent to the survey sample area.  These include both 

shallow (< 2 m deep) areas on the western shore of PS and in upriver tributaries known to be 

important crab nursery habitats (Etherington and Eggleston 2003) and the entirety of 

Albemarle Sound where over a quarter of NC‘s annual blue crab commercial harvest is 

caught (NCDMF 2009b).  We know from previous work that (i) spatial patterns of many 

abiotic variables in PS (temperature: C. Durham, unpublished data; salinity: Chapter 1 of this 

work; dissolved oxygen: Bell 2008) are highly variable over successive annual surveys, (ii) 

mature female crabs are especially responsive to abiotic change (Tagatz 1969, 1971), and 

they may require certain abiotic conditions in order to extrude a clutch (Rittschof et al., in 

submission), and (iii) crab movement between survey and non-survey areas is not restricted 

(Medici et al. 2006).  In light of this evidence, it is illogical to assume that the same 

proportion of the mature female population resides within the survey area every June or 
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September, regardless of environmental conditions.  More than likely, the survey area 

contains a greater population proportion during time periods when conditions are 

―favorable,‖ resulting in increased catchability, increased CPUE for the survey overall, and 

an inflated estimate of relative population size.  Under less favorable conditions, the opposite 

should be true, causing relative population size to be underestimated. 

Observing that the spatial distribution of crab shifts with changes in the distribution 

of PS salinity, Eggleston et al. (2004) proposed replacing adjusted CPUE with a new index of 

annual ―salinity-adjusted SSB‖ to monitor relative blue crab spawning stock size over time.  

Annual salinity-adjusted SSB means for this index were obtained through an analysis of 

covariance (ANCOVA) where per-station SSB, calculated by converting crab CW lengths to 

biomass weights, was modeled as a linear function of salinity with normally distributed 

errors.  It is apparent when comparing annual mean salinity-adjusted SSB from 1987-2003 to 

mean unadjusted SSB from 1987-2006 (Figure 2) that overall variability across the time 

series of annual estimates decreases when mean SSB is adjusted for salinity.  When both 

adjustment indices are directly compared (Figures 1 and 2), it is clear that they depict slightly 

different trends in relative spawning stock size over time, and that these slight differences 

have a sizeable impact on resulting management decisions (e.g., using the salinity-adjusted 

SSB index in 2004 would have resulted in immediate implementation of the upper female 

size limit regulation).  Ultimately, managers chose not to adopt the salinity-adjusted SSB 

index, citing its failure ―to incorporate other factors (water temperature, rainfall, storm 

events, etc.) also thought to affect the annual spatial distribution of mature female crab‖ 

(NCDMF 2004).   
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In preparation for the next BC FMP revision (scheduled for 2010), we model blue 

crab SSB at a given space-time (it) location (hereafter, SSBit) as a function of salinity and 

other abiotic variables to address the MFC‘s concerns about including all pertinent variables 

in an adjusted index to monitor the spawning stock.  We improve Eggleston et al.‘s (2004) 

salinity-adjusted index by correctly modeling the probability distribution of SSB as zero-

inflated gamma (ZIG), allowing a non-linear relationship between salinityit and SSBit, and 

considering additional variables that are dynamic over both time and space (e.g. temperature, 

dissolved oxygen) that could also affect survey catchability.  We will refer to this as the 

―adjustment‖ model.  We created a second model of SSBit to provide the MFC with the 

ability to identify areas for spatial closures that might conserve larger proportions of the 

spawning population than do current sanctuaries.  This model, which we refer to as the 

―aggregation‖ model, includes additional variables that might affect the spatial distribution of 

SSB but are temporally static (e.g. depth, distance from a survey site to the nearest inlet), and 

therefore do not affect survey catchability.  With the aggregation model, we map the mean of 

the conditional probability distribution of SSB at unsampled locations across PS during each 

survey time period.  With these maps, we identify areas where there is a greater chance of 

observing either high SSB or an SSB hyper-aggregation (i.e. extremely high SSB) in a given 

time period and show whether there is consistency in the locations with a high probability of 

an aggregation.  If consistent locations are observed, these areas could be considered as 

potential sanctuary sites.  Information gained from these models will greatly assist PS blue 

crab management efforts, and natural resource managers in other systems could perform 

similar analyses by using these general methods. 
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2. METHODS 

Both models of SSBit were constructed similarly.  In Section 2.1, we describe the data 

and choose an appropriate probability distribution to model SSB.  In Sections 2.2 and 2.3, we 

identify abiotic factors that at a given time are thought to affect either the proportion of the 

population of mature females within the survey area or the probability distribution of SSBit, 

create variables to represent each factor, examine relationships between each and SSBit, and 

explain decisions regarding whether or not to consider them in either model.  (A summary of 

these decisions can be found in Table 5.)  Factors were grouped according to temporal 

variability, and time was considered its own group.  We describe the variable-selection 

procedure for the adjustment model in Section 2.4 and for the aggregation model in Section 

2.5, reporting the results of each final model in Section 3. 

2.1. Data sources 

The primary objective of NCDMF‘s PS Trawl Survey Program 195 (―the survey‖) is 

to assess the abundance of blue crab, shrimp, and resident finfish species at every space-time 

sample location.  A description of survey sampling design can be found in Chapter 1; Section 

2.1.1 along with a list of environmental variables measured at each site and the notation used 

to represent various scales of space and time in the data series.  We continue to use 

previously defined reference notation in this chapter because blue crab and salinity were both 

collected at the same space-time locations.  Figure 3 depicts both the measured depth at all 

2,100 space-time locations in our observed dataset and the extent of the survey area‘s spatial 

domain.   
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A double-rigged 9.1 m Mongoose trawl with a 1.9 cm mesh cod end is used to collect 

biological samples at each survey site.  After a standard 20-minute tow time, the size (mm) of 

all individuals caught is recorded.  Blue crabs are sexed, and females are rated for maturity 

(e.g. immature, mature, sponging).   To calculate biomass, the CW of all female crabs, except 

those rated as ―immature females,‖ was converted to a weight (g) using a ratio established by 

Miller and Houde (1999).  SSBit is the sum of these weights per site i in time period t. 

To later predict the mean of the probability distribution of SSB at unsampled 

locations, we created a lattice data set of latitude and longitude coordinate pairs at evenly 

spaced 1 nmi (1.85 km) increments across the survey area‘s spatial domain.  The value of 

salinity at each pair of coordinates was predicted using the salinity model documented in 

Chapter 1.  To obtain predictions of temperature and depth at each coordinate pair, we 

preformed ordinary kriging using observed survey data.  We employed a SAS macro 

(%uk_optimal_cov) that fits 10 theoretical spatial covariance functions (Exponential, 

Gaussian, Spherical, Linear, and Power, all with and without a nugget) to the data in each 

time period using restricted maximum likelihood estimation (REML).  The macro then 

selects the best-fitting model given the data from each time period and uses corresponding 

spatial covariance parameter estimates to interpolate the response variable at designated 

prediction locations. 

2.2. Statistical theory and general modeling assumptions 

 Because the objectives of this work are similar to those of Eggleston et al. (2004), we 

examined the salinity-adjusted SSB model in more detail.  We document this investigation 
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for the reader as it exemplifies the importance of identifying and examining key assumptions 

made when fitting certain models. 

 The ANCOVA model used to calculate salinity-adjusted SSB can be written as a 

regression of the following form: 

(1)  itittit salSSB *    ),0(~ 2Nit  

where αt denotes the intercept, which is specific to an individual time period t,  β is the 

regression coefficient for salinity estimated by the model, salit is the value of salinity at site i 

in time period t, and it is the error at a space-time location.  Errors are modeled as normally 

distributed (N) with mean zero and variance σ
2
.  Here, mean SSB ( SSB ) is modeled as a 

linear function of explanatory variables.  Each SSBit observation is adjusted for salinity by 

subtracting β* sal , or the global mean salinity over all sites and time periods.  Annual 

salinity-adjusted means shown on Figure 2 are the time period-specific means of the adjusted 

observations.  With this model construction, both SSBit and it are assumed, conditional on 

the values of the explanatory variables, to be normally distributed with constant variance for 

all values of it.  It is also assumed that the relationship between SSBit and salit is linear.   

We performed an exploratory data analysis (EDA) to decide if these assumptions 

were satisfied.  A frequency histogram of the response variable invalidated the assumption of 

normality.  As illustrated in Figure 4, the probability distribution of SSBit is not symmetric 

and bell-shaped; rather, it is zero-inflated and skewed right.  Because this distributional non-

normality made it difficult to determine the functional form for the relationship between SSBit 

and salit using a scatter plot, we binned month-specific SSBit by salinity and calculated the 
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mean and variance in each bin both including and excluding zeros (Table 1).  Focusing on 

September bins, mean SSBit appears to increase and then decrease with increasing levels of 

salinity, thus violating the assumption of a linear relationship.  The constant variance 

assumption is violated by a similar trend in the variance of SSBit across bins (Table 1).  (We 

refer to this use of binning to learn about functional forms as a ―tabular EDA‖ and we use it 

to examine relationships between SSBit and other explanatory variables in subsequent 

sections.) 

 In light of the above analysis, we expand upon the work of Eggleston et al. (2004) 

by reconsidering these three assumptions when modeling the conditional probability 

distributions of blue crab SSB in this work.  The term ―conditional probability distribution‖ 

means that as opposed to modeling a single zero-inflated skew right probability distribution, 

we actually model multiple zero-inflated skew right probability distributions of SSB 

conditional on (that is, as a function of) the values of explanatory variables.  This conditional 

modeling accounts for the fact that under some temperature and salinity combinations, for 

example, there may be a higher probability that zero crabs are present.  To give another 

example, there may be certain locations in the sound where crabs are more likely to 

aggregate in large numbers.  Probability distributions at these locations would in general be 

more skew right.   

 We account for SSB non-normality by using a generalized linear model (GLM), in 

which the expected value of the response (SSBit) is related to a linear combination of 

explanatory variables though a link function, and by specifying a zero-inflated gamma (ZIG) 

mixture distribution for SSBit.  With any mixture, the distribution of the random variable is a 
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weighted sum of multiple probability density functions (pdfs or ―mixture components‖) that 

each has an assigned a probability weight, with the sum of all weights equal to one.  A ZIG 

mixture joins a degenerate zero distribution (ZI) with weight π, with π interpreted as the 

probability that SSB is zero, to a gamma (Γ) distribution with probability 1- π.  (Appendix 1 

contains a complete derivation of the ZIG pdf.)  Using a ZIG mixture in a GLM allowed us 

to examine the effects of multiple explanatory variables on both mixture components by 

modeling the linear predictor of π, the logistic transform of the probability that SSBit is 0, and 

the linear predictor of μ, the inverse transform of the expected value of all non-zero SSBit 

observations, as separate functions.  (During variable selection, explanatory variables in the 

―ZI component‖ are used to model the linear predictor of π.  Variables in the ―Γ component‖ 

will model the linear predictor of μ.).  To permit non-linearity in the relationship between 

SSBit and any explanatory variable (including salit), we performed additional tabular EDAs 

and included variables of higher polynomial order when SSBit increased and then decreased 

(or decreased and then increased) across bins.   

It is worth noting that equation 1 additionally necessitates the assumption that, 

conditional on the values of the explanatory variables, both SSBit and it are independently 

distributed for all values of it.  This assumption is also likely violated because observations 

of SSBit are collected over space and time, and space-time data frequently exhibits spatial or 

space-time correlation.  The models constructed in these analyses do not account for spatial 

correlation because at this time the SAS
®
 software package does not have procedures that 

allow the modeling of spatial random effects in zero-inflated mixture models.  In modeling 

the mean of the conditional probability distribution of SSB as opposed to an individual 
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observation of SSBit, this omission should not seriously affect results, since spatial correlation 

in this analysis should be present only in error structure to more accurately estimate 

deviations from the mean.   

2.3. Explanatory variables considered: 

2.3.1. Group 1: Time period and month 

 The probability distribution of SSBit likely varies temporally on inter- and intra-

annual scales.  This variability results from space-time differences both in the factors 

described below as well as in other factors, abiotic or biotic (e.g. year class strength, fishing 

mortality rate), not considered in this study.  To account for factors not considered, we 

included the effect of time period in the model as a set of 40 binomial random variables, one 

for each time period in the temporal domain. Time_periodit thus represents spatial differences 

in mean SSB per time period after accounting for the effects of other explanatory variables in 

the model and similar to Eggleston et al.‘s (2004) ANCOVA model, provides a different 

intercept for every time period.  We additionally considered the interaction of monthit with 

other explanatory variables (discussed below), because it appeared inappropriate to assume 

that the relationship between an explanatory variable and SSBit was the same throughout the 

year.  

2.3.2. Group 2: Temporally dynamic variables 

 Salinity and Temperature 

 

Salinity and temperature can to alter crab spatial distribution in PS, and different 

sources believe that seasonal decreases in each might be responsible for cueing female 

spawning migration (see Section 1.1).  Thus, year-to-year fluctuations in these variables 
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might affect not only the spatial distribution of SSBit across the survey area in a particular 

time period, but also the proportion of the population of mature females within the survey 

area at a given time.  The previous salinity tabular EDA indicated a potential non-linear 

relationship between SSBit and salit that could vary by month (Table 1), so we entertained 

salit, salit
2
, and their interactions with monthit in both adjustment and aggregation models.  A 

second tabular EDA revealed a similar month-specific relationship between SSBit and tempit 

(Table 2).  These results warranted the examination of tempit, tempit
2
, tempit*monthit, and 

tempit
2
*monthit in both models.  Both salit and tempit, in addition to all other explanatory 

variables considered in this analysis, were centered before they were squared or interacted 

with monthit by subtracting their mean.  

 Dissolved Oxygen 

Bell et al. (2003) observed that decreases in DO concentration frequently incited 

movement of mature females in PS.  While many researchers believe DO is critical to the 

determination of blue crab spatial distribution patterns (Breitburg 2002, Eby and Crowder 

2002, and others), we were unable to include it as an explanatory variable due to data 

limitations.  However, this omission should not seriously impact the results of either model.   

Decreasing concentrations of DO should not affect the proportion of the mature female crab 

population within the survey area in a given time period (and thus, not affect the adjustment 

model), because hypoxic ([DO] < 2 mg/L) conditions typically occur in deep-water areas 

where stratification of the water column is possible (G. Bell, pers. comm.), and the survey 

area contains all PS areas deeper than two meters.  In addition, the spatiotemporal extent of 

hypoxic conditions when they are observed is frequently finer than the sampling resolution of 
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the survey (Bell et al. 2003), making any relationship between DOit and SSBit difficult to 

detect in our dataset.  Without a detectable relationship, this factor would have been excluded 

from the aggregation model during variable selection procedures.       

 Rainfall, Freshwater Influx, and Storm Events 

During the 2004 BC FMP revision, NCDMF scientists identified rainfall, freshwater 

influx (FWI), and storm events as additional factors that could affect the spatial distribution 

of SSB in PS.  While all three were associated with the same process believed to spur blue 

crab spatial distribution shifts (i.e. the rapid freshening and/or cooling of PS waters), we 

suspect that crabs were not responding to these factors individually, but rather to the abiotic 

change they collectively produced.  For this reason, we include salinity and temperature 

instead of rainfall, FWI and storm events as the former factors integrate changes produced by 

the latter.   

2.3.3. Group 3: Temporally static 

 Distance to inlet 

Previous research has indicated that mature female crabs migrate to the nearest inlet 

to spawn (Medici et al. 2006, Eggleston et al. 2009).  Therefore, the closest_inlet_distit 

variable created during salinity modeling (Ch. 1; Sect. 2.5) might exhibit a negative 

relationship with SSBit during the spawning season.  Unfortunately, results from a number of 

studies have produced conflicting theories as to how and when spawning migration begins.  

It is currently unclear whether mature females (a) travel back and forth across the estuary 

with each brood, up to seven times per season (Tankersley et al. 1998, R. Howell, pers. 

comm.), (b) migrate down-estuary once and remain in the eastern sound throughout the 
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season as they produce multiple broods (Medici et al. 2006), or (c) continue eastward 

migration with each successive brood, eventually leaving the sound and spawning in the 

coastal ocean (Hench et al. 2004, Forward et al. 2005).  This combined research led us to 

wonder whether the SSB responsible for producing the September peak in post-larval 

abundance (Eggleston et al. in press) was (a) moving down-estuary toward the nearest inlet 

in late August/September, (b) accumulating throughout the spawning season in the eastern 

half of PS, or (c) residing just outside of PS, having traveled down-estuary in summer.  In 

light of these questions, and because month-specific non-linear relationships between 

closest_inlet_distit and SSBit were observed with tabular EDA (Table 4), we entertained four 

distance to closest inlet variables.  The objective here was not to determine which hypothesis 

was correct but to account for all three when considering potential functional forms of the 

relationship between closest_inlet_distit and SSBit.   

Closest_inlet_distit is included to investigate a linear relationship between SSB and 

distance to the nearest inlet, irrespective of month.  If (b) is true, more mature females could 

be located near the inlets in both June and September if they are actively spawning at these 

times. The interaction between monthit and closest_inlet_distit accounts for differences in the 

June and September relationships between SSBit and closest_inlet_distit.  If (a) is true, we 

might see a linear relationship between SSBit and closest_inlet_distit in September but not in 

June.  

Closest_inlet_distit
2
 investigates a possible non-linear relationship between this factor 

and SSBit.  If (b) is true, peak SSB might occur at some intermediate distance from the closest 

inlet in both June and September if crabs remain in the eastern portion of the sound for the 
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entire season and only move toward the inlet immediately prior to larval release.  The 

interaction between monthit and closest_inlet_distit
2
 accounts for differences in the June and 

September relationships between SSBit and closest_inlet_distit
2
.  If  (c) is true, we might 

expect to observe peak SSB at intermediate distances from the closest inlet in June, as crabs 

begin to migrate.  In September, as crabs inseminated in late summer prepare to over-winter 

en-route to inlets and complete migration the following spring, we might observe peak SSB 

at distances farther from the inlet.  In this scenario, by September the SSB producing the 

maximum post-larval abundance is already concentrated offshore outside of the survey area.        

 Depth 

In the Chesapeake Bay, post-copulatory female crabs follow deep basin corridors 

(>10 m) to the bay mouth to spawn (Lipcius et al. 2003).  Medici et al. (2006) suggested that 

mature females in PS might also use migration corridors to orient towards inlets, which 

might yield a positive relationship between SSBit and depthit during the spawning season.  

Again, in light of conflicting evidence regarding the exact timing of the blue crab spawning 

migration and the results of a tabular EDA examining SSBit in different depth bins (Table 5), 

we considered four depth variables.  Depthit accounts for a possible linear relationship 

between SSBit and depthit irrespective of month if crabs are continually migrating.  The 

interaction between monthit and depthit accounts for month-specific differences in the SSBit / 

depthit relationship in the event that the majority of mature females migrate in one month 

only.  Depthit
2
 addresses a possible non-linear relationship between SSBit and depthit, if 

females are either en-route to inlets or temporarily residing in eastern PS waiting for 

successive brood maturation.  In this case, the largest values of SSB would occur at 
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intermediate depths and shift to deeper depths only when spawning is imminent.  The 

interaction between monthit and depthit
2
 again accounts for month-specific relationship 

differences.  If mature females are actively releasing larvae or just beginning migration in 

June, the largest values of SSB should occur at both deep and shallow depths.  If they are in 

the process of migrating in September but preparing to over-winter, the largest values of SSB 

might occur at intermediate depths.   

 Spatial coordinates (northing and easting) 

The location of survey sites could account for variability in SSBit not explained by 

other factors.  Thus, we chose to evaluate northingit, eastingit, northingit*eastingit in the 

aggregation model.  Because redundancies in the proportion of variability in SSB explained 

by these spatial coordinate variables and other, more process-based variables are likely; we 

consider them in a separate final step and include them only if they explain additional 

variability not accounted for by other variables already selected for the model. 

2.4. Coding a generalized linear mixture model  

 Zero-inflated gamma models are not included in any off-the-shelf statistical software 

packages. The SAS
® 

proc NLMIXED procedure (SAS Institute
©
 2009), however, allows the 

user to specify a non-standard probability distribution by writing code to represent the 

likelihood function.  Appendix 2 gives sample NLMIXED code for a model that includes 

salit, salit
2
, and a single intercept for all time periods in both the ZI and Γ mixture 

components.   

 We used a variation of this simple model, replacing the single intercept in both ZI and 

Γ with time-period-specific intercepts (time_periodit), to choose parameter starting values for 
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all model runs used to perform variable selection in the exercises that follow.  Testing 

multiple starting values is important to ensure that the fitting algorithm converges to the true 

global minimum rather than a local minimum of the -2 log-likelihood (-2ll).  We ran this 

simple model for a wide variety of intercept starting values, sometimes specifying a single 

starting value to be used for all time periods, other times specifying different starting values 

for each time period‘s intercept.  To determine what values to try, we used a logical thought 

process based upon the data, but we also considered arbitrarily chosen values.  Starting 

values for the slope coefficients of all explanatory variables were set equal to zero, which is 

the value they would have if they had no effect on the response.  We ultimately chose the 

intercept starting values that gave us the smallest -2ll while satisfying all model constraints.  

Based on this exercise, the remainder of analyses here will use one starting value for all time 

period intercepts in ZI and another for all intercepts in Γ.   

 Prior work (Stefansson 1996) suggests that the probability of zero SSBit should be a 

function of explanatory variables just as is the relative value of SSBit.  Examining tabular 

EDA output for all explanatory variables in Γ (Tables 1-4), the proportion of zeros appeared 

to increase with depth in September; decrease with salinity in June; increase, then decrease 

with salinity and temperature in September; and decrease, then increase with temperature and 

distance to the nearest inlet in June.  We used our simple model to determine whether the 

inclusion of explanatory variables and time-specific intercepts in the ZI component improved 

model results enough to offset the increase in model complexity and decrease in error 

degrees of freedom.  Table 6 gives fit statistics for the six model parameterizations used to 

make this decision.  All models were fit to a base dataset that contained a randomly-chosen 
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90% of the total number of observations (NB=1890), and parameter estimates obtained were 

used to predict SSBit in a test dataset containing the remaining 10% of the observations that 

were withheld from model fitting procedures (NE=210).  Seven criteria were used to evaluate 

model fit.  Three, –2ll, Akaike‘s information criterion (AIC), and Bayesian information 

criterion (BIC), were base dataset model fit statistics.  These criteria identify the best-fitting 

model given the data; better fitting models in general have lower –2ll, AIC, and BIC when 

compared appropriately.  The remaining four criteria, root mean squared error (RMSE) 

between predicted and observed SSBit, and the slope, intercept, and coefficient of 

determination (R
2
) of the regression of observed SSBit on predicted SSBit, were calculated 

from test dataset predictions.  These criteria indicate which model generates the most 

accurate predictions of withheld data.  More accurate predictions have lower RMSE, slopes 

closer to one, intercepts closer to zero, and R
2
 closer to one.  Because test dataset criteria 

were virtually identical for all six models (Table 6), models were compared using BIC.  BIC 

and AIC are both appropriate for comparing likelihood models with different numbers of 

explanatory variables because they penalize model complexity (i.e. the number of parameters 

in model).  BIC was chosen in this instance because it has a larger penalty than AIC, and 

therefore tends to favor less-complex models than AIC.  Because models that included time-

period specific intercepts in ZI had smaller BICs than models that did not, and because the 

model with the overall smallest BIC contained salinity in ZI, we decided to include all 

explanatory variables in both components.   
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2.5. Variable selection I: Adjustment model 

 The fully-parameterized adjustment model included eight potential explanatory 

variables (salit, salit
2
, salit*monthit, salit

2
*monthit, tempit, tempit

2
, tempit*monthit, and 

tempit
2
*monthit) and different time-specific intercepts (time_periodit) in both the ZI and Γ 

mixture components (96 variables total). Using previously identified starting values, we fit 

this full model (Model I) to the base dataset, generated SSBit predictions, and recorded the 

parameter estimates and corresponding p-values for each explanatory variable (Table 8) in 

addition to the same seven evaluation criteria used previously (Table 7).  In Table 8, we 

observed that parameter estimates for both tempit
2 
and tempit

2
*monthit in the ZI component 

were not significantly different from zero using a t-test with α=0.05.  Thus, we performed a 

hand-iterated backwards elimination variable selection procedure.  With each iteration, we 

removed the insignificant explanatory variable whose test statistic was closest to zero and 

then re-fit the model until the highest order of all terms included was significant.  After two 

removal steps, the resulting model (Table 7, Model II) had significant parameter estimates 

for all highest-order terms or interactions (Table 9).  We selected this as the final adjustment 

model because it had a smaller BIC than the full model and identical test dataset criteria 

(Table 7).  We re-ran Model II using the full dataset to obtain predictions of π and μ for 

every SSBit observation.  To calculate an environmentally-adjusted SSB index, we predicted 

π and μ at a single hypothetical location h in every time period t where salht and tempht were 

set equal to the mean value of salit and tempit observed over the entire data series.  The 

annual (or in this case, time period) mean adjusted SSB was equal to the mean of the 

conditional probability distribution of SSB at this hypothetical location, calculated by the 
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formula (1- π ht)*μht.  Figures 5 and 6 depict this new environmental adjustment for SSB over 

time in June and September time periods, respectively.  The series titled ―grand mean 87-03‖ 

in both figures is the mean of environmentally-adjusted annual means from an additional fit 

of the final model to only data collected between 1987 and 2003.  With this additional fit, we 

can directly compare this new SSB adjustment to both previous adjustment attempts (i.e. 

adjusted CPUE: NCDMF 2004 and salinity-adjusted SSB: Eggleston et al. 2004).  

 To examine trends over time in these two adjustment time series, we fit a reduced 

model to the full dataset that included the same explanatory variables as the final adjustment 

model, but instead estimated only two intercepts in ZI and Γ:  one for samples collected in 

June (june* yearit) and another for samples collected in September (sept* yearit).  Yearit is a 

class variable corresponding to the year in which a specific space-time location was sampled 

(where yearit = 1987:2006), and both june and sept are indicator variables that equal 1 if the 

space-time location is sampled in that month and 0 otherwise.  Parameter estimates for 

intercept variables in this new temporal trends model are listed in Table 10. 

2.6. Variable selection II: Aggregation model 

 The aggregation model used the final adjustment model as a base and additionally 

included 11 temporally-static process variables (closest_inlet_distit,
 
closest_inlet_distit

2
, 

closest_inlet_distit
 
*monthit, closest_inlet_distit

2
*monthit, depthit, depthit

2
, depthit

 
*monthit, and 

depthit
2
*monthit) and three spatial coordinate variables (northingit, eastingit, and 

northingit*eastingit).  We selected candidate variables from each group using the same 

methods documented in adjustment model variable selection.  After the addition of the 

temporally-static variable group, the reduced model (Table 11, Model B) fit the observed 
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data better than the full model (Model A), when fit was judged based on test dataset 

evaluation criteria and BIC.   

When the spatial coordinate variable group was added to the reduced aggregation 

model from the previous step (Model B), we noticed that some previously significant 

parameter estimates were now insignificant.  To determine whether or not to retain the 

variables corresponding to these newly insignificant estimates, we performed two different 

backwards elimination routines and calculated model evaluation criteria for each.  The first 

routine removed only insignificant spatial coordinate terms at successive iterations and 

retained all previously-selected process variables (Model C), while the second removed both 

insignificant spatial coordinate terms and insignificant process variables in decreasing 

polynomial order (Model D).  Both models C and D have a lower BIC, a lower RMSE, and a 

larger R
2
 than model B, the process model without spatial coordinate variables, indicating 

that both parameterizations improve model fit based on evaluation criteria (Table 11).  Even 

though model D has the smaller BIC of the two, model C has the smaller RMSE when 

predicting to the test dataset and a larger R
2
 between observed and predicted SSBit.  Because 

it was of greater concern to us to select the model that generated the most accurate 

predictions (i.e. those that were the closest to actual observations in the test dataset), we 

ultimately chose model C as the best aggregation model for our objectives.  We fit this model 

to the full dataset and generated predictions of both πat and μat at lattice dataset locations, 

where the subscript a indexes a specific unsampled spatial location in the lattice dataset 

nested within a particular time period (a=1, ... ,1346).  With these predictions, we created 

retrospective maps for each time period of the mean of the conditional probability 
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distribution of SSB (hereafter, atSSB ), which where atSSB =(1- π at)* μat.  ( atSSB is 

considered the mean of the conditional probability distribution of SSB at unsampled 

locations because spatial coordinate variables are included in the final aggregation model. 

The ―at‖ subscript is used to remind readers that this mean is unique for every space-time 

location, however, it is also conditional on the values of other explanatory variables in the 

model.)  

 

3. RESULTS 

3.1. Adjustment model 

 The presence of significant interactions between monthit and both tempit and salit in ZI 

and Γ (Table 9) signifies that the effect of both temperature and salinity on the probability of 

SSB=0 and the mean of the probability distribution of non-zero values of SSB varied 

according to month.  Interpretation of the absolute effect of either explanatory variable on the 

overall mean of the SSB probability distribution, however, is not straightforward.  If SSB had 

been normally distributed, it might have been modeled using standard linear regression.  In 

this case, the mean of the SSB probability distribution would be a linear function of the 

explanatory variables and a positive parameter estimate for salinity would indicate that mean 

SSB increased with salinity.   

 Using a GLM, it is not the mean, but rather the linear predictor of the mean that is a 

linear function of the explanatory variables.  To infer relationships between explanatory 

variables and the mean, the linear predictor must be transformed using the appropriate link 

function.  Using a ZIG mixture distribution model, the mean of the overall SSB probability 
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distribution is a function of the means of two component distributions where the mean of 

each component is a different linear function of explanatory variables.  In combining these 

two frameworks, the overall mean of the SSB probability distribution is a function of the 

mean of each component distribution, which is itself a different transformation of the linear 

predictor for that component.  Thus the combined effects of temperature and salinity on 

month-specific SSB were examined using contour plots.   These plots were constructed from 

predictions of SSB generated from estimated model parameters and the intercept values for a 

single time period using hypothetical conditions that spanned the range of observed 

temperatures and salinities in each month group.   

 The contour plot for June SSB predictions illustrates that predicted SSB is largest at 

intermediate values of temperature and high values of salinity, but that these optimal settings 

are each conditional on the values of the other variable (Figure 5).  For example, predicted 

SSB is highest at intermediate temperatures in general, but within this optimal temperature 

range, SSB predictions increase with increasing salinity.  Although this figure is generated 

using an intercept estimated for a single time period, these same patterns would be observed 

in contour plots generated for all June time periods.  Using a different intercept would not 

change the shape of the contours; it would merely alter the absolute value assigned to each 

one.  We can thus report that in June time periods, predicted SSB is largest when temperature 

is between 23.5° and 26.5°C and salinity is above 28.         

 It is clear when examining the contour plot of September SSB predictions why it was 

important to include interactions between both temperature and salinity and month in the 

adjustment model (Figure 6).  This figure is visually quite different from the June SSB 
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contour plot (Figure 5), indicating that the effects of salinity and temperature on SSB in 

September are different from their effects on SSB in June.  In September, predicted SSB 

increases as both salinity and temperature decrease, but these relationships are still 

conditional on the value of the other factor.  As was true for the June contour plot, these same 

patterns would be observed in contour plots created for all September time periods.  Thus, in 

September time periods, predicted SSB is largest when temperatures less than 21°C and 

salinities less than 14.     

 Annual means of June and September environmentally-adjusted SSB were graphed 

separately over time (Figures 7 and 8).  In addition to the mean, each figure includes the 

upper and lower 95% CI for the mean estimate and the ―grand adjustment mean‖ or the mean 

of annual adjusted means from 1987 to 2003 along with its 90% CI.  This specific year range 

and confidence level were selected to match those used when the adjusted CPUE index was 

last examined by the NC MFC to consider an upper size limit for mature female blue crabs.  

After adjustment, the relative population size of mature female crab in PS exhibited different 

patterns over each monthly time series (Figures 7 and 8).   

 The June adjustment (Figure 7) varies over time with an occasional strong year class 

(1990-91, 1999, 2004) occurring every four or more years separated by groups of years 

(1988-89, 1992-98, 2000-03) with similar values of mean adjusted SSB (average range 

between adjusted SSB means in a group: 0.42 kg).  A general negative trend in relative 

population size over time is also visually apparent in this series.  Before 2000, means of 

adjusted June SSB were above the lower 90% CI (1.02 kg) for the grand adjustment mean in 

10 out of 14 years.  From 2000-2006, mean adjusted June SSB was above this CI in only one 
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year (2004) and it was still below the grand adjustment mean (1.37 kg).  Results from the 

temporal trends model corroborated this observed negative trend.  Despite decreases in both 

the probability of observing SSB=0 and in the mean of all non-zero SSB observations 

(indicated by parameter estimates in Table 10 for june* yearit in ZI and Γ, respectively), time 

period-specific calculations of (1- π ht)*μht showed that the entire ZIG distribution mean was 

decreasing over time.  Comparing annual mean unadjusted SSB in June time periods with 

this annual June SSB adjustment, it is visually apparent that the overall range of the 

adjustment time series is smaller than that of the unadjusted series (Figure 9), due to the 

portion of SSB variability explained by the model.  Mean adjusted June SSB was larger than 

unadjusted June SSB in 13 of the 20 time periods examined, indicating that the unadjusted 

index underestimated relative mean SSB in June time periods more than it overestimated it.    

 Mean adjusted September SSB (Figure 8) was visually quite different from mean 

adjusted June SSB (Figure 7).  The September adjustment time series appears to have two 

phases:  pre- and post-1999.  Nine out of twelve years prior to 1999 had annual adjusted SSB 

means that were at or above the 1987-2003 grand mean (0.91 kg), and all yearly means were 

above the lower 90% CI for the grand mean (0.71 kg; Figure 8).  Beginning in 1999, not only 

were all annual adjusted SSB means below the grand mean, but the entire 95% CI was below 

the lower 90% CI for the grand mean (Figure 8).  The mean of annual means from 1999-2006 

(0.31 kg) is 3.5 times smaller than the mean of annual means from 1987-1998 (1.14 kg; 

Figure 8).  Similarly, parameter estimates from the temporal trends model for sept* yearit in 

both ZI and Γ indicated that annual mean adjusted SSB was decreasing over time (i.e. an 

increasing probability of SSB=0 coupled with a decreasing mean SSB for all non-zero 
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observations).  Again, adjusted SSB was larger than unadjusted SSB in the majority (16 out 

of 20) of September time periods (Figure 10).  All four time periods where mean SSB was 

adjusted down (1996, 1999, 2003, and 2004) were time periods are where a hurricane made 

landfall in coastal NC in the sixty days prior to survey sampling.  Only five time periods in 

our series contained hurricanes in the two months before the survey was performed.  SSB 

was adjusted up in the fifth time period (September 1998), however the difference between 

the unadjusted and adjusted means was small (0.06 kg; Figure 10).   

3.2. Aggregation model 

 Parameter estimates for the final aggregation model are listed in Table 12.  Despite 

preferential selection of process-based variables for the model, we chose to refrain from 

interpreting all parameter estimates individually.  Relationships between explanatory 

variables and SSBit are much less straightforward than in the adjustment model due to 

increased model complexity.  This decision was justified considering both the aggregation 

model‘s intended purpose (to predict atSSB at unsampled locations) and the understanding 

that no single explanatory variable alone determines the spatial distribution of SSB.  Thus, 

we were more interested in the model‘s performance as a whole than in the significance of 

any single variable, assuming that all variables selected for the final model were important 

predictors of atSSB .   

 Examining predictions for each mixture component separately, the mean of all 

53,840 π predictions (0.31) was similar to the proportion of zeros in the observed data set 

(0.30).  The largest difference between the mean of π for an individual time period and the 
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proportion of zero observations in that time period was 0.004.  The overall range of π 

predictions was large (0.003:0.96), but the middle 50% (interquartile) of these predictions 

ranged from 0.11 to 0.46, indicating that the majority (> 50%) of sites had a 11-46% 

predicted chance of observing SSB=0.  Similarly, at the majority of all prediction locations 

where SSB was not zero, mean SSB was between 0.75 to 1.34 kg, as this was the value of the 

interquartile range of predicted μ across all time periods (overall mean μ=1.22 kg). Time 

period-specific means of μ predictions were also similar to observed mean SSBit per time 

period calculated from all non-zero observations with a RMSE of 0.069 kg between the two.  

atSSB predictions calculated from both components had an overall mean of 0.95 kg and an 

interquartile range of 0.42 to 1.14 kg, while their standard errors had mean 0.17 kg and 

interquartile range of 0.09 to 0.18 kg.  Coefficients of variation (CVs), calculated by dividing 

standard errors by their respective atSSB predictions, indicated that more than 99.5% of 

atSSB predictions were significantly different from zero (i.e. they had standard errors that 

were less than half of their means or CVs<0.5) using an α of 0.05.      

We examined the spatial distribution of itSSB by creating two sets of time-period 

specific PS maps.  To compare the magnitude of predictions among all time periods in either 

June or September, the maps in the first set have the same legend based on percentiles (%) of 

the probability distribution of predicted atSSB across all time periods:  minimum value to 

5%; 5-10%; 10-25%; 25-50%; 50-75%; 75-90%; 90-95%; and 95% to maximum value.  To 

locate areas with the largest and smallest predictions within each time period separately, the 

maps in the second set have different legends for each time period that were based on the 
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probability distribution of predicted atSSB  from that time period alone using the same 

percentile groups.  Maps in this second set facilitate the examination of possible changes in 

the spatial distribution of atSSB  under different environmental conditions.  We selected two 

time periods from June (1992 and 2003) and three from September (1998, 1999, and 2000) to 

illustrate trends in space and time.   

3.2.1. June 

We chose to compare an early time period (1992) with a late one (2003) to look for 

differences in the spatial distributions of predicted atSSB  as mean June environmentally-

adjusted SSB decreased over time.  In 1992 (Figure 11A), greater than 85% of 

atSSB predictions ranged from 0.72 to 2.31 kg as is visually indicated by the amount of PS 

area that is colored orange, pink, and red.  The transition of the color ramp from cool to 

warm colors illustrates that atSSB  increases moving northeast (NE) across PS.  Predictions 

were highest in the vicinity of Oregon Inlet on both the eastern and western shores of PS, but 

decreased slightly in waters adjacent to the inlet.  Smallest predictions of atSSB were located 

in the Neuse River (NR) and near both Hatteras and Ocracoke Inlets.   

The same general spatial pattern was observed in 2003 (Figure 11B):  increasing 

atSSB  moving from southwest (SW) to NE, with smallest values predicted in Neuse River 

and near both southerly inlets.  As expected, predictions in this time period are smaller 

overall.  Two-thirds of SSB predictions in June 2003 were between 0.23 and 0.72 kg, while 

predictions near Hatteras and Ocracoke Inlets and in NR were less than 0.14 kg. 
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Despite the fact that 1992 had on average lower observed temperatures, higher 

observed salinities, and lower FWI in both the two months and one week before the survey, 

the spatial distribution pattern of atSSB  is strikingly similar when map legends are based on 

percentiles of predictions within an individual time period (Figure 12).  The same general 

spatial patterns were evident in all June time period maps, regardless of prevailing abiotic 

conditions or total observed SSB.  Two summary maps further illustrate this pattern while 

identifying potential aggregation areas: the first shows predictions of SSB at or above the 

99
th
 percentile for their time period (Figure 13A) and the second includes all predictions, 

regardless of time period, larger than 7 kg, or the 99
th
 percentile of all June SSBit observations 

(Figure 13B).  In both maps, the largest predictions of atSSB occur in the northern regions of 

PS (north of 35.5°N latitude) near, but not adjacent to, Oregon Inlet.     

3.2.2. September 

The pre- and post-1999 framework for interpreting the September adjusted SSB time 

series in Section 3.1, motivates the following comparison of spatial patterns of atSSB .  

Recall from Figure 8 that 1998 (1.05 kg) was the last year that the September adjusted SSB 

fell above the 1987-2003 grand mean, that mean adjusted SSB decreased by a factor of two 

(0.44 kg) between 1998 and 1999, and that this decline continued to and beyond September 

2000 (0.39 kg), albeit at a slower rate.  This decline in annual relative SSB over successive 

Septembers is visually apparent when comparing maps with the same legend of atSSB for 

these three time periods (Figure 14).  The most noticeable decrease occurred in 2000, when 
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predictions at almost every space-time location were one or two percentile groups lower than 

predictions at the same locations in either of the other two time period maps (Figure 14).     

As was the case in June, despite variable abiotic conditions and differences in 

observed SSB, spatial distribution patterns of atSSB  predictions were similar in all 

September time periods.  The largest predictions of atSSB  in 1998, 1999, and 2000 all occur 

in the NE corner of PS and in the Pamlico River (Figure 15).  The SW-NE pattern of 

increasing atSSB identified in June time periods can still be observed in September time 

period maps, but an area of low predicted atSSB in central PS that extends southward to 

Ocracoke and Hatteras Inlets interrupts the gradient (Figure 15).  The spatial distribution of 

predictions above the 99
th
 percentile for their time period are more dispersed in September 

summary maps (Figure 16A) than they were in June summary maps (Figure 13A), but these 

high predictions still occupy the same general areas as those larger than 5 kg (the 99
th
 

percentile of all September SSBit observations; Figure 16B).  Both September summary maps 

indicate potential aggregation areas near Croatan Sound and on the NW shore of PS, between 

Pains and Wysocking Bays on the western shore of PS, and near the mouth of the Pamlico 

River (Figure 16).  Predictions of atSSB  are relatively high in Pamlico and Pungo Rivers 

within certain time periods (Figure 16A), but do not appear to be absolutely high when 

compared to predictions in all September time periods (Figure 16B).      
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4. DISCUSSION 

We created two models each of which addresses a management need for mobile blue 

crabs in Pamlico Sound, NC.  The first adjusts for temporally dynamic abiotic variables that 

affect catchability so that the adjusted annual mean is a reliable index of the year-to-year 

variability of blue crab spawning stock biomass.  When the September environmentally-

adjusted SSB index is examined over time, it does not contradict conclusions drawn from the 

previous salinity-adjustment analysis (Eggleston et al. 2004) and instead corroborated 

anecdotal evidence that the size of the blue crab population has declined over the past 20, 

especially post-1999.  A variant of this model that specifically investigated temporal trends in 

each monthly time series indicated that blue crab spawning stock size is indeed decreasing 

over time in both June and September time periods.   

Second, to model the spatial distribution of SSB, we additionally incorporated 

temporally static abiotic variables.  Separate examinations of June and September maps of 

atSSB  show that the highest predictions consistently occur in the same PS areas.  These 

results suggest additional areas for consideration of no-take sanctuaries to protect the 

population of mature female crabs more effectively during the spawning season.  Information 

gained from these two models will help improve management efforts designed to sustain blue 

crab spawning stock biomass over time.  In addition, the approach taken in this study can be 

applied to a wide range of fishery-independent surveys whose target species also varies in 

space and time in response to environmental variables, thereby affecting their availability to 

survey gear.  
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This analysis improves on previous blue crab SSB modeling efforts by incorporating 

the actual probability distribution of the data.  The application of models that address zero 

inflation in ecological datasets has become increasingly popular in recent history (Maunder 

and Punt 2004, Martin et al. 2005).  Both the GENMOD and COUNTREG procedures in 

SAS Version 9.2 allow the specification of a zero-inflated Poisson or a zero-inflated negative 

binomial model with a few lines of additional coding (SAS Institute Inc. 2009), though these 

two models are appropriate for discrete data only.  Models that deal with zero-inflated 

continuous data, a common outcome of fisheries stock assessment surveys, however, are less 

common.  A few researchers (Stefansson 1996, Syrjala 2000) have addressed this issue using 

the delta method, a two-step process where the probability of obtaining a zero catch and the 

CPUE given that the catch is non-zero is modeled separately.  Candidate probability 

distributions for non-zero observations include log-normal (Syrjala 2000) and gamma 

(Stefansson 1996).  While similar to Stefansson‘s (1996) delta-gamma model, the ZIG 

mixture model used here maximizes the likelihood of both mixture components concurrently.  

Fitting the two distributions simultaneously was the more appropriate procedure in this case 

because the quantity of interest was the mean of the entire mixture, as opposed to separate 

means of the zero and non-zero mixture components (Tu 2002).  This simultaneous fitting 

procedure also allows for estimation of standard prediction errors for the overall distribution 

mean, as opposed to just estimating standard errors for π and μ separately.     

4.1. Possible model improvements  

Though this work represents a significant update to Eggleston et al. (2004), there 

remains room for improvement.  We modeled relationships between explanatory variables 
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and SSB using linear and quadratic terms in the linear predictors for π and μ.  While the 

increasing and then decreasing (or decreasing and then increasing) relationships seen in the 

tabular EDA‘s provide some support for the use of these functional forms, improvements to 

this model might consider more flexible functional forms, possibly using non-parametric 

techniques.  Further expansion of the methods might include modeling spatial correlation.  

Including spatial random effects in zero-inflated mixture distributions is an area of active 

development in the statistical community; such an expansion would represent a non-trivial 

research project. 

4.2. Adjustment model outcomes 

This analysis demonstrates that relationships exist between observed SSBit and both 

salit and tempit.  By adjusting annual mean SSB for mean temperature and salinity, we 

produce a valid index to track changes in relative SSB over time.  Comparing this September 

SSB environmental adjustment (Figure 8) to NCDMF‘s adjusted CPUE (Figure 1), the index 

on which the mature female upper slot limit management rule was based, we see a very 

different story of blue crab spawning stock size over time.  Instead of a relative stock size 

between the grand mean and the lower 90% CI for seven out of the nine years between 1987 

and 1995 (Figure 1), there is now a time series in which relative stock size is at or above the 

mean in eight out of the same nine years (Figure 6).  There is still a peak in 1996 in the 

September environmentally-adjusted SSB time series, but it is much smaller relative to other 

environmentally-adjusted SSB means (Figure 8) than the 1996 peak in the adjusted CPUE 

time series was compared to the other adjusted CPUE means (Figure 1).  Differences 

between the two adjustments are most apparent beginning in 1999.  The adjusted CPUE 
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index predicts relative spawning stock size to be below the 90% CI for four (non-

consecutive) years between 2000 and 2004, interrupted by a large increase in adjusted CPUE 

in 2003 almost equal to the mean from 1996 (Figure 1).   Not only is each annual 

environmentally-adjusted SSB mean from 1999 to 2006 below the lower 90% CI for the 

grand mean, but in all cases the entire 95% CI is below the grand mean (Figure 8).   

Comparing these two figures (Figures 1 and 8) clearly illustrates the need for an 

environmentally-adjusted SSB index.  Looking just at the index of adjusted CPUE, it appears 

in general as if relative spawning stock size was relatively invariable at the beginning of the 

time series and was more variable towards the end, with both years of relatively high CPUE 

(1996-1999, 2003) and relatively low SSB (2000-2002, 2004) (Figure 1).  This figure does 

not depict a population in decline; but rather a population that is more inter-annually variable 

at the end of the time series than at the beginning.  Looking at the September 

environmentally-adjusted SSB time series (Figure 8), one sees a relative population that, 

although variable with a few years of high mean adjusted SSB, was consistently between 0.5 

and 1.5 kg annually before 1999, and has since been less than 0.5 kg in every year.  This 

graph portrays a population in decline.  It is unknown whether an immediate enaction of the 

upper slot limit regulation in 2004 would have made a difference, since according the 

September environmentally-adjusted SSB time series (Figure 8) the stock had already been at 

historic lows for five consecutive years.  However, if this environmental adjustment had been 

available to managers during the 2004 BCFMP revision, it might have caused more concern 

over the health of the population.     
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The interpretation of our September SSB environmental adjustment time series 

(Figure 8) matches Eggleston et al.‘s (2004) interpretation of the salinity-adjusted SSB time 

series (Figure 2).  Both figures (2 and 8) illustrate a marked decline in blue crab relative 

population size in the late 1990s and a subsequent lack of recovery to prior abundance levels.  

While Eggleston‘s salinity adjustment makes it appear that mean adjusted SSB increases 

slightly in 2003 from record lows in 2000-2002 (Figure 2), the environmental SSB 

adjustment shows no such increase (Figure 8).  According to the latter, the population has 

been at a record low level since 1999.  This result is most likely due to the fact that both 

temperature and salinity were low in September 1999 (possibly as a result of hurricane-

induced FWI), causing a larger proportion of the population to occur within the survey area 

and resulting in an observed mean SSB that over-estimates true population size.  This finding 

also corroborated anecdotal evidence from fishers who were observing masses of blue crabs 

moving from the river into the mainstem sound following Hurricane Floyd.  In fact, because 

the September 1999 survey was delayed for two weeks until hurricane floodwaters receded, it 

left blue crabs exposed to intense fishing pressure for two weeks longer than they were prior 

to any other September survey.  It is thus likely that mean unadjusted SSB was even lower 

than it might have been if samples had been collected immediately after the hurricane.   

Land-falling hurricanes were observed in the 60 days prior to survey sampling in five 

September time periods.  Mean unadjusted SSB overestimated the size of the spawning stock 

in four of these time periods (1996, 1999, 2003 and 2004; Figure 8).  These four time periods 

also had the largest combined FWI during both the two months and the week before survey 

sampling.  Because there was a September time period that had a hurricane but did not have 
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high FWI (1998) and a time period that had high FWI but no hurricane (2000), there appears 

to be an interactive effect of high FWI and hurricane presence that causes a greater 

proportion of the population of mature females to occur within the survey area, inflating the 

unadjusted estimate of spawning stock size.  While explanatory variables corresponding to 

site-specific FWI and time period-specific storm events are unnecessary in this analysis (see 

Section 2.3.2), a further examination of the relationships between observed SSB and both 

FWI and hurricane presence is warranted.   

4.3. Aggregation model outcomes 

The aggregation model provides information about the spatial distribution of 

observed SSB, regardless of the proportion of the mature female population that is present 

within the survey area.  Comparing groups of maps from time periods that exhibited similar 

conditions of each temporally dynamic environmental variable (e.g. maps with low mean PS 

salinity, high mean PS temperature, high overall FWI, hurricane presence, etc.) did not reveal 

any consistent patterns in locations of high or low atSSB .  This illustrates the point that 

patterns of observed spatial distribution cannot be attributed to a single environmental factor 

in isolation.  Rather, observed spatial distributions are the result of interactions between 

multiple factors.  Areas of high and low predicted atSSB  are observed in the same absolute 

spatial locations across all June and all September time periods (Figures 12 and 15), 

regardless of an individual time period‘s range of predicted atSSB  or the proportion of the 

mature female population within the survey area.   Time periods in both month groups have 

consistently high predictions of atSSB  in locations that occur on survey area borders (Figures 
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13 and 16).  These areas of high mean atSSB likely continue to locations outside the survey 

area, indicating that there are large portions of the population also outside the survey area.  

This observation provides further evidence to support the aforementioned belief that the 

survey area does not contain the same proportion of the population at all times and thus 

further validates the need for an adjusted population index. 

Predicted atSSB  was lowest in upriver regions of NR and near Ocracoke and Hatteras 

Inlets in both June and September maps (Figures 12 and 15, respectively), with low 

predictions radiating from the inlets to include regions in the SE corner of PS in September.  

Recall that these inlet areas are the locations of blue crab spawning sanctuaries.  Additional 

results from at least two other studies (Medici et al. 1996 and Eggleston et al. 2009) are 

consistent with the finding that mature female crabs do not aggregate near inlets.  While 

tracking mature female crab in and around inlet sanctuaries in August 2003, Medici et al. 

(1996) noted that only females with late-stage egg masses (< 3 days from hatching) exhibited 

directed movement towards inlets.  All other mature females, even those with early-stage egg 

masses, appeared to move randomly and were recaptured inside and outside of spawning 

sanctuaries with similar frequency.  Using sampling methods modeled after those used in the 

NCDMF Program 195 trawl survey, Eggleston et al. (2009) observed that mature female 

abundance inside inlet sanctuaries in June, August, and September 2002 was not different 

from abundance observed outside the sanctuaries.  This combined information will hopefully 

prompt managers to reconsider the siting of select area closures for the blue crab fishery.      
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5. CONCLUSIONS 

We successfully created statistical models to better inform management of the North 

Carolina blue crab fishery by accounting for both differences in environmental conditions 

over time and employing new analysis methods to correctly model the probability 

distribution of observed blue crab spawning stock biomass.  The adjustment model validated 

conclusions drawn from previous analyses and field observations that the size of the NC blue 

crab spawning stock has decreased over the past 20 years.  The aggregation model identified 

areas in Pamlico Sound with both high and low probability of observing mature female crab, 

which will assist an evaluation of the efficacy of current spawning sanctuaries at protecting 

mature female crabs.  This information can facilitate effective policy during the 2010 

revision of the NC blue crab FMP.  In a broader context, it is important to consider the effect 

of environmental change on the spatial distribution of any mobile species when assessing 

population abundance over time.  Data for factors known to affect species spatial 

distributions (salinity, temperature, DO, current speed and direction, etc.) are often already 

collected during assessment surveys at the same space-time locations as biological samples; 

it should be straightforward to use both the methods presented in this study to explore 

potential relationships and the statistical code to perform a similar analysis with any surveyed 

species. 
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Table 1. Characteristics of the June and September distribution of SSBit in different bins of 

salinity.  Listed is the number of observations in the bin out of a total of 1053 for June (NJ) or 

1047 for September (NS), the mean and variance of SSBit for the bin, the number of 

observations where SSBit=0, and the proportion of zero observations in the bin (calculated by 

dividing # 0‘s by either NJ or NS).   

 

 With Zeros Without Zeros  

Bin # Month Salinity 

range 

N Mean 

SSB 

Variance 

SSB 

Mean  

SSB 

Variance 

SSB 

# 0's % 0's 

1 6 0-5 36 0.49 0.37 0.80 0.35 14 38.9 

2 6 5-10 85 0.65 0.85 0.86 0.94 20 23.5 

3 6 10-15 197 0.92 2.53 1.19 2.96 45 22.8 

4 6 15-20 421 1.43 10.24 1.75 11.94 76 18.1 

5 6 20-25 252 1.58 9.36 1.97 10.92 50 19.8 

6 6 25-30 62 1.42 7.99 1.63 8.84 8 12.9 

1 9 0-5 30 1.03 1.58 1.24 1.64 5 16.7 

2 9 5-10 67 1.85 15.62 2.43 19.18 16 23.9 

3 9 10-15 156 1.03 10.06 1.74 15.88 64 41.0 

4 9 15-20 334 0.72 2.66 1.22 3.89 136 40.7 

5 9 20-25 339 0.55 1.28 0.97 1.87 148 43.7 

6 9 25-30 121 0.40 0.43 0.64 0.54 46 38.0 
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Table 2. Characteristics of the June and September distribution of SSBit in different bins of 

temperature.  Listed is the number of observations in the bin, the mean and variance of SSBit 

for the bin both including and excluding observations where SSBit=0, and the number and 

proportion of zero observations per bin (# 0‘s / NJ or NS).  We see different non-linear 

relationships between mean SSB and temperature in the two months; in June, mean SSB 

increases from bins 1-2 and decreases from bins 2-5.  In September, mean SSB begins high 

in bin 1, decreases in bins 2-4, and increases again from bins 4-5.  Month-specific non-linear 

relationships can similarly be observed across bins of percent zeros. 

  With Zeros Without Zeros  

Bin # Month Temp 

range 

(°C) 

N Mean 

SSB 

Variance 

SSB 

Mean  

SSB 

Variance 

SSB 

# 0's % 0's 

1 6  < 23 104 0.72 3.54 0.98 4.55 27 26.0 

2 6 23-24 102 1.99 32.27 2.51 39.43 21 20.6 

3 6 24-25 246 1.37 7.49 1.72 8.81 50 20.3 

4 6 25-26 281 1.37 5.42 1.64 6.05 47 16.7 

5 6 > 26 320 1.07 2.36 1.36 2.60 68 21.3 

1 9  < 23 152 1.14 11.73 1.68 16.45 49 32.2 

2 9 23-24 127 0.71 2.26 1.14 3.16 48 37.8 

3 9 24-25 198 0.70 3.13 1.31 5.07 92 46.5 

4 9 25-26 326 0.59 1.18 1.00 1.59 133 40.8 

5 9 > 26 244 0.80 4.28 1.29 6.30 93 38.1 
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Table 3. Characteristics of the June and September distribution of SSBit in different bins of 

distance to the closest inlet.  Listed is the number of observations in the bin, the mean and 

variance of SSBit for the bin both including and excluding observations where SSBit=0, and 

the number and proportion of zero observations per bin (# 0‘s / NJ or NS).  We see different 

relationships between mean SSB and distance to the closest inlet in the two months.  In June, 

we observe a non-linear relationship as mean SSB increases from bins 1-2 and decreases 

from bins 2-5.  In September, we observe a linear relationship with mean SSB beginning 

high in bin 1 and decreasing in bins 2-5.  A non-linear relationship can similarly be observed 

across bins of percent zeros in June, but there appears to be no discernable relationship in 

September. 

  With Zeros Without Zeros  

Bin 

# 

Month Distance 

range (km) 

N Mean 

SSB 

Variance 

SSB 

Mean  

SSB 

Variance 

SSB 

# 0's % 0's 

1 6  < 18.5 217 1.11 3.02 1.42 3.42 47 21.7 

2 6 18.5 – 37.0 509 1.49 11.99 1.85 14.28 101 19.8 

3 6 37.0 – 55.6 157 1.42 4.80 1.67 5.24 24 15.3 

4 6 55.6 – 74.1 114 0.95 2.08 1.12 2.28 18 15.8 

5 6 > 74.1 56 0.29 0.17 0.49 0.19 23 41.1 

1 9  < 18.5 216 0.82 10.03 1.62 18.49 106 49.1 

2 9 18.5 – 37.0 505 0.82 3.07 1.25 4.13 173 34.3 

3 9 37.0 – 55.6 148 0.63 1.75 1.09 2.55 63 42.6 

4 9 55.6 – 74.1 123 0.65 1.09 1.05 1.34 47 38.2 

5 9 > 74.1 55 0.43 0.48 0.82 0.61 26 47.3 
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Table 4. Characteristics of the June and September distribution of SSBit in different bins of 

depth.  Listed is the number of observations in the bin, the mean and variance of SSBit for the 

bin both including and excluding observations where SSBit=0, and the number and proportion 

of zero observations per bin (# 0‘s / NJ or NS).  We see different relationships (or a lack 

thereof) between mean SSB and distance to the closest depth in the two months.  In June, 

there appears to be no discernable relationship with either mean SSB or the percent zeros per 

bin.  In September, we observe non-linear relationship with both mean SSB and percent 

zeros. 

 

  With Zeros Without Zeros  

Bin 

# 

Month Depth 

range 

(m) 

N Mean 

SSB 

Variance 

SSB 

Mean  

SSB 

Variance 

SSB 

# 0's % 0's 

1 6 2 – 3  122 1.36 5.02 1.66 5.63 22 18.0 

2 6 3 – 4 272 1.07 3.34 1.39 3.90 63 23.2 

3 6 4 – 5 272 1.62 14.12 1.87 15.87 37 13.6 

4 6 5 – 6 265 1.11 5.94 1.40 7.12 56 21.1 

5 6 > 6 122 1.26 7.22 1.77 9.25 35 28.7 

1 9 2 – 3  125 0.95 9.53 1.43 13.72 42 33.6 

2 9 3 – 4 248 1.15 7.47 1.70 10.16 81 32.7 

3 9 4 – 5 286 0.83 2.66 1.26 3.50 98 34.3 

4 9 5 – 6 278 0.45 0.79 0.89 1.17 136 48.9 

5 9 > 6 110 0.22 0.26 0.47 0.43 58 52.7 
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Table 5. Summary of the decisions regarding whether or not to consider each variable in 

either the adjustment or the aggregation models.  An ―X‖ in the column signifies the 

consideration of an individual variable for a particular model.   

 

 

 Variable Model it was considered 

in: 

Adjustment Aggregation 

G
ro

u
p

 1
 

time_periodit X X 

monthit as an interaction only 

G
ro

u
p

 2
 

salit, salit
2
, salit*monthit, 

salit
2
*monthit 

X X 

tempit, tempit
2
, 

tempit*monthit, 

tempit
2
*monthit 

X X 

DOit, rainfallit, 1wk_ and 

2mo_FWIIit, storm_eventst 
  

G
ro

u
p

 3
 

depthit  X 

closest_inlet_distit  X 

northingit, eastingit, 

northingit*eastingit 
 X 
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Table 6.  Fit statistics for models used to examine the effects of including explanatory variables in the ZI mixture component. 

Boldface type indicates rejection of the appropriate null hypothesis at the α=0.05 level of significance: 

H01: αt =0; H02: βsal =0; H03: βsal2=0; H04: β1=1; H05: β0=0.  There are 40 total time period variables, the number of those where H01 was 

rejected is listed in parentheses.    

# of 

variables 

in model 

Predictors in ZI Predictors in Γ  -2 ll AIC BIC RMSE 

(kg) 

Slope/ 

β1 

Intercept/ 

β0 

R
2
 

85 time period (28) 

sal sal2  

time period (40) 
sal sal2 

5322.7 5492.7 5964.0 1.67 0.99 -0.59 0.19 

84 time period (29) 

sal  

time period (40) 
sal sal2 

5322.7 5490.7 5956.4 1.67 0.99 -0.59 0.19 

83 time period (30)  time period (40) 

sal sal2 

5331.4 5497.4 5957.6 1.67 0.99 -0.59 0.19 

46 sal sal2 time period (40) 

sal sal2 

5650.6 5742.6 5997.7 1.67 0.98 -0.59 0.19 

45 sal  time period (40) 
sal sal2 

5650.6 5740.6 5990.1 1.67 0.98 -0.59 0.19 

44 

  
time period (40) 
sal sal2 

5653.1 5741.1 5985.0 1.67 0.98 -0.59 0.19 
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Table 7.  Fit statistics for the full adjustment model (I) and the final adjustment model (II).  ―df‖ is the total number of model degrees 

of freedom, or the total number of predictor variables in the model minus one.  RMSE is calculated based on SSB in kg.  Boldface 

type indicates rejection of the appropriate null hypothesis at the α=0.05 level of significance:  H01: αt =0; H02: βZI =0 for any 

explanatory variables in the ZI component; H03: βΓ =0 for any explanatory variables in the Γ component; H04: β1=1; H05: β0=0.  There 

are 40 total time period variables, the number of those where H01 was rejected is listed in parentheses.    

 

 df Predictors in ZI Predictors in Γ  -2 ll AIC BIC RMSE 

(kg) 

Slope/ 

β1 

Intercept/ 

β0 

R
2
 

I 

95 time period (26) sal 

sal2 sal*month 

sal2*month temp 

temp2 temp*month 

temp2*month 

time period (40) sal 

sal2 sal*month 

sal2*month temp 

temp2 temp*month 

temp2*month 

5236.9 5430.9 5968.7 1.67 0.82 -0.37 0.21 

II
 

93 time period (29) sal 

sal2 sal*month 

sal2*month temp 

temp*month  

time period (40) sal 

sal2 sal*month 

sal2*month temp 

temp2 temp*month 

temp2*month 

5238.3 5428.3 5955.0 1.67 0.82 -0.37 0.21 

 

 

 



 

121 

Table 8.  Parameter estimates and corresponding p-values for explanatory variables when the full adjustment model (Model I) was fit.  

Boldface type indicates that the estimate for that variable was statistically different from zero using a t-test with an α=0.05 level of 

significance.  

 

 Variable Parameter 

Estimate 

Standard 

Error 

T-test 

statistic 

p-value 

Z
I 

co
m

p
o
n

en
t 

sal 0.024 0.027 0.86 0.3903 

sal2 0.003 0.002 1.29 0.1985 

sal*month 0.026 0.034 0.75 0.4536 

sal2*month -0.007 0.003 -2.31 0.0207 

temp -0.118 0.086 -1.36 0.1738 

temp2 -0.018 0.021 -0.87 0.3865 

temp*month 0.324 0.113 2.86 0.0042 

temp2*month 0.011 0.031 0.36 0.7215 

Γ
 c

o
m

p
o

n
en

t 

sal -0.015 0.004 -3.96 <.0001 

sal2 -0.001 0.000 -1.41 0.1596 

sal*month 0.050 0.007 6.86 <.0001 

sal2*month 0.002 0.001 3.27 0.0011 

temp -0.014 0.013 -1.07 0.2867 

temp2 0.015 0.005 2.71 0.0068 

temp*month 0.104 0.025 4.08 <.0001 

temp2*month -0.030 0.011 -2.68 0.0074 
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Table 9.  Parameter estimates and corresponding p-values for explanatory variables when the final adjustment model (Model II) was 

fit.  Boldface type indicates that the estimate for that variable was statistically different from zero using a t-test with an α=0.05 level of 

significance. 

 

 Variable Parameter 

Estimate 

Standard Error T-test 

statistic 

p-value 

Z
I 

co
m

p
o
n

en
t 

sal 0.025 0.027 0.92 0.3588 

sal2 0.003 0.002 1.33 0.1846 

sal*month 0.025 0.034 0.73 0.4672 

sal2*month -0.008 0.003 -2.39 0.0170 

temp -0.079 0.076 -1.05 0.2933 

temp*month 0.292 0.104 2.82 0.0049 

Γ
 c

o
m

p
o
n

en
t 

sal -0.015 0.004 -3.96 <.0001 

sal2 -0.001 0.000 -1.39 0.1634 

sal*month 0.050 0.007 6.86 <.0001 

sal2*month 0.002 0.001 3.27 0.0011 

temp -0.014 0.013 -1.08 0.2797 

temp2 0.015 0.005 2.74 0.0063 

temp*month 0.103 0.025 4.08 <.0001 

temp2*month -0.030 0.011 -2.62 0.0088 
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Table 10.  Parameter estimates and corresponding p-values for intercepts used to examine temporal trends in annual environmentally-

adjusted SSB over time.  Boldface type indicates that the estimate for that variable was statistically different from zero using a t-test 

with an α=0.05 level of significance. 

 

 Variable Parameter 

Estimate 

Standard Error T-test 

statistic 

p-value 

Z
I 

june*year -0.080   0.0074 -10.86 <.0001 

sept*year 0.010   0.0063 1.60 0.1101 

Γ
 june*year 0.076 0.0043 17.70 <.0001 

sept*year 0.066 0.0044 15.19 <.0001 
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Table 11.  Fit statistics for four different iterations of the aggregation model. A denotes the full model with only process-based 

variables.  B is the process-only model after backwards elimination.  After both the addition of spatial coordinate variables and a 

second backwards elimination, C is the final aggregation model if all previous variables were retained, and D is the final model if 

newly-insignificant non-spatial coordinate terms were also removed.  ―df‖ is the total number of model degrees of freedom, or the 

total number of predictor variables in the model minus one.  RMSE is calculated based on SSB in kg.  Boldface type indicates 

rejection of the appropriate null hypothesis at the α=0.05 level of significance:  H01: αt =0; H02: βZI =0 for any explanatory variables in 

the ZI component; H03: βΓ =0 for any explanatory variables in the Γ component; H04: β1=1; H05: β0=0.  There are 40 total time period 

variables, the number of those where H01 was rejected is listed in parentheses.    
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Table 11 Continued 

 df Predictors in ZI Predictors in Γ  -2 ll AIC BIC RMSE 

(kg) 

Slope   

(β1) 

Intercept 

(β0) 

R
2
 

A
 

110 time period (34) sal sal2 

sal*month sal2*month temp 

temp*month 

closest_inlet_dist 

closest_inlet_dist2 

closest_inlet_dist*month 
closest_inlet_dist2*month 

depth depth
2
 depth

 
*month 

depth2*month 

time period (39) sal sal2 sal*month 

sal2*month temp temp2 

temp*month temp2*month 
closest_inlet_dist closest_inlet_dist

2 

closest_inlet_dist*month 
closest_inlet_dist

2
*month  depth  

depth2 depth
 
*month depth

2
*month 

5048.4 5270.4 5885.8 1.64 0.84 -0.32 0.20 

B
 

106 time period (34) sal sal2 

sal*month sal2*month temp 

temp*month  
closest_inlet_dist 

closest_inlet_dist
2  

depth depth
2
 depth

 
*month 

time period (39) sal sal2 sal*month 

sal2*month temp temp2 

temp*month temp2*month 
closest_inlet_dist closest_inlet_dist

2 

closest_inlet_dist* month depth 

depth2  depth
 
*month depth

2
*month 

5052.4 5266.4 5859.7 1.64 0.83 -0.31 0.20 

C
 

109 time period (32) sal sal2 

sal*month  sal2*month  

temp temp*month  

closest_inlet_dist 

closest_inlet_dist
2  

depth depth
2
 depth

 
*month 

north 

time period (40) sal sal2 sal*month 

sal2*month temp temp2 

temp*month temp2*month 

closest_inlet_dist closest_inlet_dist
2 

closest_inlet_dist* month  

depth depth
2
 depth

 
*month 

depth
2
*month north  east 

4828.7 5048.7 5658.6 1.56 1.02 -0.43 0.24 

D
 

103 time period (32) sal sal2 

sal*month closest_inlet_dist 

closest_inlet_dist
2  

depth depth
2
 depth

 
*month 

north 

time period (40) sal sal2 sal*month 

sal2*month temp temp*month  

closest_inlet_dist   closest_inlet_dist
2  

depth depth
2
 depth

 
*month 

depth
2
*month north  east 

4839.2 5047.2 5623.8 1.58 0.98 -0.36 0.21 

 



 

126 

Table 12.   Parameter estimates and corresponding p-values for explanatory variables when 

the final aggregation model (Model C) was fit.  Boldface type indicates that the estimate for 

that variable was statistically different from zero using a t-test with an α=0.05 level of 

significance. 

 

 Variable Parameter 

Estimate 

Std. 

Error 

T-test 

statistic 

p-value 

Z
I 

co
m

p
o
n

en
t 

 

sal 0.047 0.036 1.32 0.19 

sal2 -0.001 0.003 -0.24 0.81 

month*sal 0.037 0.036 1.03 0.30 

month*sal2 -0.008 0.004 -2.14 0.03 

temp 0.045 0.085 0.54 0.59 

month*temp -0.068 0.117 -0.58 0.56 

closest_inlet_dist -0.016 0.011 -1.44 0.15 

closest_inlet_dist2 0.003 0.001 6.24 <.0001 

depth 0.089 0.084 1.06 0.29 

depth2 0.147 0.047 3.16 0.002 

month*depth 0.246 0.109 2.27 0.02 

north -0.055 0.006 -9.12 <.0001 

Γ
 c

o
m

p
o
n

en
t 

sal -0.006 0.005 -1.22 0.22 

sal2 0.0001 0.0003 0.18 0.86 

month*sal 0.045 0.010 4.7 <.0001 

month*sal2 0.002 0.001 2.8 0.01 

temp 0.024 0.015 1.6 0.11 

temp2 0.010 0.006 1.71 0.09 

month*temp 0.073 0.023 3.16 0.002 

month*temp2 -0.017 0.012 -1.37 0.17 

closest_inlet_dist -0.011 0.002 -4.61 <.0001 

closest_inlet_dist2 0.001 0.0001 4.37 <.0001 

month* closest_inlet_dist 0.004 0.004 1.19 0.24 

depth -0.008 0.007 -1.14 0.26 

depth2 -0.020 0.006 -3.18 0.002 

month*depth 0.111 0.031 3.63 0.0003 

month*depth2 0.100 0.017 5.74 <.0001 

north -0.008 0.001 -5.66 <.0001 

east -0.006 0.001 -4.13 <.0001 
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FIGURE LEGENDS 

 

Figure 1. Adjusted CPUE for mature females collected in the Program 195 September 

survey from 1987-2004.  CPUE is in units of total carapace width (CW) of mature females 

caught per station divided by number of tows in a time period.  This figure is reproduced 

from the BC FMP (NCDMF 2004). 

 

Figure 2. Index of annual salinity-adjusted SSB means over time overlaying mean 

unadjusted SSB from the September survey over time.  The pink line depicts the mean of the 

unadjusted annual means from 1987-2003.  The orange line depicts the mean of the annual 

salinity-adjusted means from 1987-2003.  

 

Figure 3.  Map of depths at survey locations sampled over the entire space-time domain.  In 

this figure, N=2100.  Colors depict the observed depth in meters at each station with cool 

colors representing shallower depths and warm colors indicating deeper depths. 

 

Figure 4.  Frequency histogram of the distribution of SSB (in g/tow). 

 

Figure 5.  Contour plots of predicted June SSB from the adjustment model as a function of 

temperature and salinity. 
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Figure 6.  Contour plots of predicted September SSB from the adjustment model as a 

function of temperature and salinity. 

 

Figure 7.  Annual mean environmentally-adjusted SSB for June.  Figure depicts adjustment 

over time for samples collected in June.  Blue broken lines represent the 95% CI for each 

individual annual mean.  The purple line depicts the mean of yearly means from 1987-2003, 

and the broken purple lines enclose the 90% CI for this grand mean. 

 

Figure 8.  Annual mean environmentally-adjusted SSB for September.  Figure depicts 

adjustment over time for samples collected in September.  Blue broken lines represent the 

95% CI for each individual annual mean.  The purple line depicts the mean of yearly means 

from 1987-2003, and the broken purple lines enclose the 90% CI for this grand mean. 

 

Figure 9.  Difference between unadjusted and environmentally-adjusted mean SSB across 

June time periods. 

 

Figure 10.  Difference between unadjusted and environmentally-adjusted mean SSB across 

September time periods. 
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Figure 11.  Map images of predicted atSSB  as generated from the best-fitting aggregation 

model for A:  June 1992 and B: June 2003.  Legend quantiles are based on the distribution of 

atSSB  predictions across all time periods and are the same for both maps.   

 

Figure 12.  Map images of predicted atSSB  as generated from the best-fitting aggregation 

model for A:  June 1992 and B: June 2003.  Legend quantiles are based on the distribution of 

atSSB  predictions within each time periods and are thus different for both maps.   

 

Figure 13.  Summary maps of atSSB predictions across all June time periods.  Predictions in 

map A were at or above the 99
th
 percentile of all predations in their individual time period, 

while predictions in map B were all those larger than 7 kg, or the 99
th

 percentile of all June 

SSBit observations, regardless of time period. 

 

Figure 14.  Map images of predicted atSSB  as generated from the best-fitting aggregation 

model for A:  September 1998, B: September 1999, and C: September 2000.  Legend 

quantiles are based on the distribution of atSSB  predictions across all time periods and are 

the same for all three maps. 
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Figure 15.  Map images of predicted atSSB  as generated from the best-fitting aggregation 

model for A:  September 1998, B: September 1999, and C: September 2000.  Legend 

quantiles are based on the distribution of atSSB  predictions within each time periods and are 

thus different for all three maps.   

 

Figure 16.  Summary maps of atSSB predictions across all September time periods.  

Predictions in map A were at or above the 99
th
 percentile of all predations in their individual 

time period, while predictions in map B were all those larger than 5 kg, or the 99
th
 percentile 

of all September SSBit observations, regardless of time period
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Figure 1. Adjusted CPUE for mature females collected in the Program 195 September 

survey from 1987-2004.
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Figure 2. Index of annual salinity-adjusted SSB means over time overlaying mean unadjusted SSB from the September 

survey over time.    
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Figure 3.  Map of depths at survey locations sampled over the entire space-time domain. 
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Figure 4.  Frequency histogram of the distribution of SSB (in g/tow).
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Figure 5.  Contour plots of predicted June SSB from the adjustment model as a function of temperature and salinity.  
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Figure 6.  Contour plots of predicted September SSB from the adjustment model as a function of temperature and 

salinity.
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Figure 7.  Annual mean environmentally-adjusted SSB for June. 
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Figure 8.  Annual mean environmentally-adjusted SSB for September. 
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Figure 9.  Difference between unadjusted and environmentally-adjusted mean SSB across June time periods. 
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Figure 10.  Difference between unadjusted and environmentally-adjusted mean SSB across September time periods.
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Figure 11.  Map images of predicted atSSB  as generated from the best-fitting aggregation model for A:  June 1992 and 

B: June 2003 where legend quantiles are the same for both maps. 

A. B. 



 

142 

      

Figure 12.  Map images of predicted atSSB  as generated from the best-fitting aggregation model for A:  June 1992 and 

B: June 2003 where legend quantiles are time-period specific. 

A. B. 
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Figure 13.  Summary maps of atSSB predictions across all June time periods.   

A. B. 
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Figure 14.  Map images of predicted atSSB  as generated from the best-fitting aggregation model for A: September 1998, 

B: September 1999, and C: September 2000 where legend quantiles are the same for all three maps.   

     

A. B. C. 
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Figure 15.  Map images of predicted atSSB  as generated from the best-fitting aggregation model for A: September 1998, 

B: September 1999, and C: September 2000 where legend quantiles are time-period specific. 

A. B. C. 
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Figure 16.  Summary maps of atSSB predictions across all September time periods.  

A. B. 
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Appendix 1. Derivation of the probability density function for a ZIG distribution. 

Consider the discrete random variable Z , which has point mass at zero.  Specifically, the 

probability mass function for Z  is given by  

 
1 0

( ) ( )
0 0

Z

z
f z P Z z

z
. 

The expected value of Z  is given by 0EZ , and the variance is ( ) 0Var Z .  We refer to 

Z as a degenerate random variable because it has zero variance. 

 

Also consider the continuous random variable X , which has a Gamma distribution.  The 

probability density function under the usual parameterization is given by 

 11
( )

( )

x

Xf x x e ,  

where 0x , 0 , 0 .  Then EX , and 2( )Var X .  Re-parameterizing by 

setting so that 0 , EX , and ( )Var X  allows representation of the 

expected value with a single parameter.  The resulting pdf is given by 

 11
( )

( )

x

Xf x x e . 

 

Now consider the random variable Y , which is equal to Z  with probability and to X with 

probability (1 ) , where we take X  and Z  to be independent. The probability density 

function for Y  is given by ( ) ( ) (1 ) ( )Y Z Xf y f y f y , or, equivalently, by  
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 1

0

( ) 1
(1 ) 0

( )

yY

y

f y
y e y

. 

The expected value of Y is derived as follows: 

 
0

0 (0) (1 ) ( ) (1 ) (1 )Z XEY f y f y dy EX  . 

The variance is similarly derived: 

 
22

0

( ) [0 (1 ) ] (0) (1 ) (1 ) ( )Z XVar Y f y f y dy  

 (1 ) 4 3 . 
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Appendix 2. SAS
®
 proc NLMIXED code sample 

 

Here we model the means of the ZI and Γ components as functions of salinity and 

salinity
2
 (salinity2).  This model as coded has a single intercept in both ZI and Γ for all time 

periods. Including time_periodit changes the model to have different intercepts (a0 and b0) 

for each time period. 

 
proc NLMIXED data = saladj_ssb maxiter = 1000 maxfunc = 5000; 

 

parameters a0=-0.90 a1=0 a2=0 b0=0.88 b1=0 b2=0; 

 

linppi =  a0+ a1*salinity+ a2*salinity2; 

/* linppi=linear predictor for the zero inflation probability pi */ 

 

pi = 1 /(1+exp(-linppi)); 

/* pi = zero inflation probability and logistic function of linppi*/ 

 

oneminuspi=1-pi; 

/* oneminuspi = probability of observing a non-zero value*/ 

 

linpmu = b0+ b1*salinity+ b2*salinity2; 

/* linpmu=linear predictor for mu, the mean of the gamma distribution*/ 

 

mu = (linpmu)**(-1); 

/*mu= inverse of linpmu*/ 

 

alpha = mu/beta; 

/* since mean of Γ = alpha*beta and alpha and beta are part of the gamma 

log likelihood function */ 

 

/* if/else statements build the ZIG log likelihood */ 

if ssb = 0 then ll = log(pi) ; 

 

else ll =  

log( (1-pi)*ssb**(alpha-1)*exp(ssb/beta)/(gamma(alpha)*beta**(alpha))); 

 

model  ssb~ general(ll); 

 

predict pi out=saladj_pi_preds; 

 

predict mu out=saladj_mu_preds; 

 

predict oneminuspi*mu out=saladj_mean_preds; 

 

run; quit; 


