
Abstract
SUDARSANAM, YASASWINI. Implementation of Double Precision Floating Point
Arithmetic. (Under the guidance of Dr.Paul Franzon.)

 Floating Point Arithmetic is extensively used in the field of medical imaging,

biometrics, motion capture and audio applications, including broadcast, conferencing,

musical instruments and professional audio. Many of these applications need to solve

sparse linear systems that use fair amounts of matrix multiplication.

 The objective of this thesis is to implement double precision floating point cores

for addition and multiplication .These cores are targeted for Field Programmable Gate

Arrays because FPGAs give the designer good control over the number of I/O pins and

utilization of on chip memory. FPGAs are also comparable to floating point processors in

their power consumption.

The multiplier and adder cores conform to the IEEE 754 standard for double

precision. The design is implemented on Xilinx ISE 8.2i and has been simulated on

ModelSim 6.1i.The thesis pays significant attention to the analysis of the adder and

multiplier cores in terms of pipelining and area so as to maximize throughput in any

manner possible. It further throws light on variations of power with pipelining. Power

measurements are done using XPower provided by ISE.

 Implementation of a Double Precision Floating Point Arithmetic

by

Yasaswini Sudarsanam

A thesis submitted to the graduate faculty of

 North Carolina State University
 in partial fulfillment of the

 requirements for the Degree of
 Master of Science

Computer Engineering

Raleigh, North Carolina

2006

Approved by:

__________________________ __________________________

Dr.Xun Liu Dr.W.Rhett Davis

Dr.Paul Franzon

Chair of Advisory Committee

 ii

To amma and appa

 iii

Biography

 Yasaswini Sudarsanam was born in Chennai, India in June 1983. She graduated from

the University of Madras, with a Bachelors degree in Electronics and Communication

Engineering in April 2004. From May to August 2004 she worked with iNautix

Technologies India Pvt. Ltd, Chennai. In August 2004, she joined North Carolina State

University as a graduate student. In summer and fall of 2005, she interned with Sony

Ericsson Mobile Communications, RTP, NC. She did another internship in Qimonda

North America, formerly Infineon Technologies, Cary, NC in the summer of 2006. While

working towards her Masters Degree, she worked on her thesis under the guidance of

Dr.Paul Franzon.

 iv

Acknowledgement

 Thanks to the almighty for whatever little I have achieved till today. I would like to

thank my mother who is my first school. All my learning in measures small or large, I

owe it to her strong will, determination and even and carefully measured amounts of care

and control. I owe it to my father to take success and failure in stride. His conversations

though casual were always filled with deep inner thought and meaning. They have guided

me even as I stayed away from home during my Masters. This Masters would have

remained just a dream if not for my parents’ foresighted thinking and patience with me

during insane moments.

 My sincere thanks to my advisor Dr.Paul Franzon for his support during the course of

my thesis. The independence in both thought and execution that he has allowed has gone

a long way in helping me understand the nuances of research per se. I am equally

thankful to Dr.Rhett Davis and Dr.Xun Liu for their consent to be on the committee and

for their valuable feedback on the thesis document. I would like to acknowledge

Dr.Trussell’s valuable suggestions and interest regarding my plan of work towards my

Masters.

 I would like to thank Manav and Ambrish for their help many a time during the

course of the thesis. Thanks to Steve Lipa for help with regard to the licenses. My thanks

are due in large proportions to John English of Aware Inc., Boston, MA for his prompt

replies and help at various points during the course of my thesis. His suggestions from his

vast industry experience have gone a long way in moulding my thought and preparation

before design.

 Special thanks to Sreeram, Raju, Suresh, Savitha, Subathra and Arundhati for

making my stay at NC State eventful. I sincerely thank Srivats for the wonderful support,

good cheer and encouragement he has offered during my graduate study. It has been

absolutely wonderful staying with you guys.

 Thanks to my friends Manasee, Anu and Priya for just being there when I needed

them the most!

 v

Contents
List of Figures ………………….……………………………………….....................vii

List of Tables……………………………………………………viii

1 Introduction ……………………...1

1.1 Importance …………………………………………………………………………1

1.2 Idea of Floats ………………………………………………………….……………1

1.3 Motivation ……………………………………………………………..……………1

1.4 Outline of Thesis ……………………………………………………………………2

2 Double Precision ………………………………………………………………………3

2.1 Introduction ………………………………………………………………………3

2.2 Scientific Notation ……………………………………………………………………3

2.3 Floating Point Unit ………………………………………………………………4

2.3.1 Real Number System …………………………………………………………........4

2.3.2 Normalization ……………………………………………………………………6

2.3.3 Biased exponent …………………………………………………………………7

2.3.4 Signed Exponent, Signed Infinity and NaN …………………………………7

2.4 Flipside of Floating Point …………………………………………………………9

3 Design and Implementation ……………………………………………………….11

3.1 IEEE 754 format for Double Precision ……………………………………………11

3.2 A Simple Example ………………………………………………….........................12

3.3 Description of Floating Point ………………………………………………………12

3.3.1 The Floating Point multiplier …………………………………………………13

3.3.1.1. Module denormalizer ………………………………………………………….13

3.3.1.2 Module multiplier ………………………………………………………………14

3.3.1.3 Module normalizer and rounding ………………………………………………18

3.3.2 Floating point adder ………………………………………………………………18

3.3.2.1 Module denormalizer …………………………………………………………19

3.3.2.2 Module shifter ………………………………………………………................19

3.3.2.3 Module adder ………………………………………………………………….20

 vi

3.3.2.4 Module rounding ………………………………………………………………21

3.3.2.5 Module sign …………………………………………………………………23

3.4 The Sparse Matrix …………………………………………………………………23

3.4.1 Row Compressed Format ……………………………………………………….24

3.4.2 Basic Architecture ……………………………………………………………….24

3.4.2.1 Module descriptions …………………………………………………………25

4 Verification ………………………………………………………………………….29

5 Results …………………………………………………………………………31

5.1 Simulation ………………………………………………………………………….31

5.2 Synthesis …………………………………………………………………………32

6 Conclusions and future work ………………………………………………………43

References ………………………………………………………………………….44

Appendix A: Verilog HDL for multiplier and adder cores ………………………47

 vii

LIST OF FIGURES
Fig 3.1 Double precision representation ……………………………………………11

Fig 3.2 Expression to calculate value from IEEE 754 format ………………………12

Fig 3.3 High level view of Floating point multiplier core …………………………14

Fig 3.4 Comparator v8.0 ……………………………………………………………15

Fig 3.5 Fixed Point mantissa multiplier ……………………………………………16

Fig 3.6 Floating point adder/subtractor core v7.0 ………………………………17

Fig 3.7 Top view – Denormalizer ……………………………………………………20

Fig 3.8 Bit sequence after right shift ………………………………………………….21

Fig 3.9 Priority encoding in rounding module …………………………………………22

Fig 3.10 A sample sparse matrix ………………………………………………………24

Fig 3.11 A simple matrix multiplication architecture ………………………………….25

Fig 3.12 Pipelined divider v3.0 …………………………………………………………26

Fig 5.1 Simulation results from adder ………………………………………………….32

Fig 5.2 Simulation results from the multiplier ………………………………………….33

Fig 5.3 Variation of power with pipelines in 64 bit adder ………………………………39

Fig 5.4 Variation of freq/area vs. pipelines in 64 bit adder ……………………………40

Fig 5.5 Snapshot of the 64 bit multiplier after place and route …………………………41

Fig 5.6 Snapshot of the 64 bit adder after place and route …………………………….42

 viii

LIST OF TABLES

Table 2.1 Example of floating point format …………………………………………5

Table 2.2 Representation of a number in sign, mantissa & exponent format …………….5

Table 2.3 Gradual underflow ……………………………………………………………7

Table 2.4 Signed Infinities …………………………………………………………8

Table 3.1 Sign, Exponent & Mantissa limits in IEEE 754 format ……………………12

Table 3.2 Allowable bit widths & depth of pipelines in comparator v8.0 ……….……16

Table 3.3 Rules for rounding ………………………………………………………18

Table 3.4 Determination of sign …………………………………………………………23

Table 5.1 Variation of freq/area with pipelining for 64 bit multiplier …………………34

Table 5.2 Comparison of results from the synthesis of multiplier ……………………36

Table 5.3 Power vs. pipelining for 64 bit multiplier …………………………………36

Table 5.4 Synthesis results from 64 bit adder ………………………………………37

Table 5.5 Comparison of minimum, maximum and optimal metric for adder …………37

Table 5.6 Table of metric comparisons for 64 bit adder ………………………………38

Table 5.7 Variation of power with pipelining in 64 bit adder ………………………….39

1

Chapter 1

Introduction

1.1 Importance

 Floating point arithmetic is no longer as esoteric as before because of its

increasing importance in computer systems. Manipulating floating points efficiently is an

utmost necessity as can be seen from the fact that every language supports a floating

point data type. Every computer has a floating point processor or a dedicated accelerator

that fulfills the requirements of precision using detailed floating point arithmetic. The

main applications of floating points today are in the field of medical imaging, biometrics,

motion capture and audio applications, including broadcast, conferencing, musical

instruments and professional audio. Their importance can be hardly over emphasized

because the performances of computers that handle such applications are measured in

terms of the number of floating point operations they perform per second or FLOPS /sec.

1.2 Idea of “Floats”

 Decimal numbers are also called Floating Points because a single number can

be represented with one or more significant digits depending on the position of the

decimal point. Since the point floats between the mass of digits that represent the number

such numbers are termed Floating Point Numbers. Floating point formats and number

representations are discussed in detail in subsequent chapters.

1.3 Motivation

 Constraints in representation of mathematical values using existing precision

bring about the necessity for cores that can manipulate double precision floating point

numbers. Evolving video applications in particular are switching from single to double

precision cores because modern graphical processor units or GPUs need to support

diverse applications such as an in-game physics simulation to conventional computational

sciences. 32 bit floating points are high enough for most applications but not all. With

2

arithmetic intensity of computations portraying a historic growth rate of 71% per year,

double and quadruple precision floating points have come to stay.

 The double precision cores for addition and multiplication discussed in this thesis are

targeted for Virtex II Pro FPGA. In general, the most significant and inherent advantage

of FPGAs over a Von Neumann platform is their iteration level parallelism that is one

to two orders of magnitude than is available with CPUs. Current FPGAs provide a large

amount of on chip memory and abundant I/O pins. Thus they are able to offer a large

amount of on-chip and off-chip memory bandwidth to I/O bound applications. This

eliminates latencies due to cache misses.

 The clock frequency of traditional processors is about 20 times that of typical FPGA

implementations. However the efficiency advantage because of the overlap of control and

data flow and elimination of some instruction on the FPGA outweigh this advantage

resulting in a speedup that is one to two orders in magnitude.[1]. For example, a stand

alone hardware implementation of the GIMPS algorithm is reported to be capable of 12-

million digit numbers in fewer than 34 milliseconds which is identified as a 1.76 times

performance improvement compared to a fast Pentium. [2].

 Implementation of 64 bit multiplier and adder cores is an important part of this thesis.

In order to demonstrate one of the applications of these cores, basic level matrix

multiplication architecture is established. The performance of the cores are evaluated

individually and compared with results obtained from different sources. Power

consumption for different levels of pipelining are also tabulated and analyzed .The

implementation uses Xilinx ISE 8.2i Verilog with ModelSim 6.1i for simulation, XST for

synthesis.

1.4 Outline of Thesis

 Chapter 2 explains the basics of floating point numbers, double precision formats,

normalization and errors related to floating point arithmetic. Design and implementation

of floating point multiplication and addition cores is covered in Chapter 3. Chapter 3 also

discusses the basic architecture for matrix multiplication. Chapter 4 talks about a few

verification steps to ensure that addition and multiplication cores are functionally correct

Comparisons and analysis of these cores is detailed in Chapter 5. Chapter 6 talks about

conclusions and future work in this area.

3

Chapter 2

Double Precision

2.1 Introduction

 When infinitely large real numbers are to be stored using a finite number of bits,

some form of approximation in representation is needed. Most processors use a single

word to represent a number and hence these representations of floating point values are

called single precision. Double precision floating points are named relative to the single

precision representation in the sense that they have twice as much precision and hence

twice as many bits as a regular floating point number. This also means that when

represented in scientific notation double precision floating points carry more digits to the

right of the decimal point. If a single precision number requires 32 bits, a double requires

64 bits. These extra bits also allow an increase in the range of values that can be

represented. However this increase is dependent on the program format for a floating

point representation. Double precision provides a greater range, approximately 10** (-

308) to 10** 308 and about 15 decimal digits of precision compared to a single precision

whose approximate range is 10** (-38) to 10**38, with about 7 decimal digits of

precision.

2.2 Scientific Notation

Before the discussion of available floating point formats, it is worthy to understand

scientific notations. A scientific notation is just another way to represent very large or

very small numbers in a compact form such that they can be easily used for

computations.

Any number can be represented as a number between 1 and 10 multiplied by a power

of 10 that indicates the position of the decimal point as seen in the original number.

Numbers greater than 10 are expressed as positive powers of 10 and numbers less than 10

as negative powers. Greater the number, better the impact on storage size of the resulting

number. For example, the speed of light which is as high as 30,000,000,000 cm per sec

4

can be simply represented as 3*1010 cm per sec. This involves storage of only the

mantissa namely 3 and the exponent which is 10 here.

Scientific notations are mandatory in computation because they greatly simplify

multiplications or divisions into mere addition or subtraction of related exponents or

powers of 10 used in their representation. For example, multiplication of 132,000,000 by

0.0000231 involves conversion to scientific notation first. This means multiplying 1.32 *

108 by 2.31 * 10-5. This reduces to (1.32 * 2.31) * 10 (8 -5 =3). Extending the idea of such a

representation to the binary system helps understand the IEEE 754 format for 64 bit

numbers.

2.3 Floating Point Unit

 This section describes the real number system and the floating point unit. It introduces

terms like normalized numbers, denormalized numbers, biased exponents, and signed

zeros and NaNs. It further expands to the understanding of Floating point formats,

specific merits and demerits as well as their individualistic applications. It also explains

the choice of IEEE floating point format.

 2.3.1 Real Number System

The real number system consists of the entire spectrum of numbers between – infinity

and + infinity. The limitation on size and number of registers in a computer leaves us

with the ability to use only a subset of the real number continuum in calculations. This is

just an approximate representation of the real number system, the range and precision

being determined by the format of the floating point unit.

A Floating Point Unit or an FPU generally contains 3 parts:

1. Sign

2. Significand

3. Exponent

5

Sign is a 1 bit number that indicates whether the number is positive or negative. The

significand has two parts , a one bit binary integer and a binary fraction The one bit

binary integer is also known as the J-bit and is an implied value. The significand is also

termed the mantissa.

Mantissa and Significand

Mantissa was originally the fractional part of the logarithm while the characteristic was

the integer part. Since logarithmic tables were replaced by computers eventually, though

not in the pure form, mantissa and significand are used interchangeably in common

parlance. A logarithmic table is a table of mantissas. Therefore, mantissa is just the

logarithm of the significand.

The exponent indicates the positive or the negative power to which the radix should be

raised in the computation of the value of a number that is being represented. For example,

if 0.0002 is represented in decimal and binary in the sign, mantissa and exponent format

it would be as shown in the table 2.1.

Table 2.1 Example of floating point format

Sign Mantissa Exponent Radix

0 2.000 - 4 10

0 1.1101 -13 2

Table 2.2 .Representations of a number in the sign, mantissa and exponent format

Sign Mantissa Exponent

0 1.0 0

0 0.1 1

0 10.0 -1

6

Each floating point number has multiple representations because of the inherent nature of

the decimal point to float between each of the individual digits. Therefore a simple

number say 1 can take different forms in a given radix. Table 2.2 lists a few of the

possible sign, magnitude and exponent format of the number ‘1’.

Every number can be represented by applying the following on the sign, mantissa and the

exponent.

 Value = (-1) sign * Mantissa * radix exponent

However, each number has only one normalized form and hence the importance of

normalization in floating point arithmetic.

2.3.2 Normalization

 A floating point number is said to be normalized if it obeys the following rule:

 1/r <= M < 1,

where r is the radix of the system of representation and M is the mantissa.

 Most formats that have been standardized prefer normalized numbers for operations.

Denormalized values are those that do not conform to this rule. Handling denormalized

values involves more complexity in hardware compared to normalized values. A

normalized mantissa has its binary point or the base-two equivalent of a decimal point to

the left of the most significant non-zero digit. A representation of binary digits would

always have a normalized mantissa whose most significant digit is one. Processors handle

the process of denormalization by a procedure called “Gradual underflow”.

Denormalization helps represent very small numbers whose value is close to zero.

Though it is preferred that the leading bit of mantissa be a one, values that are

infinitesimally small cannot be accommodated within the range of exponents, normalized

floating point numbers allow. The process of “Gradual underflow” leads to a loss of

precision, however it does allow the accommodation of such numbers in the floating

point format. Table 2.3 depicts “Gradual underflow “.

7

Table 2.3. Gradual Underflow

 Step True exponent Significand

1 - 132 1.00000100101010

2 -131 0.10000010010101

3 -130 0.01000001001010

4 -129 0.00100000100101

5 -128 0.00010000010010

6 -127 0.00001000001001

In Table 2.3, step 1 shows the actual result of an operation. The process of gradual

underflow does one right shift in each successive step until the exponent reaches a value

that which added to the constant bias yields zero. The table depicts the process of

denormalization for a 32 bit floating point number where in the bias is +12710.

2.3.3 Biased Exponent

 A biased exponent is one that is obtained by adding a constant value to the original

exponent. It is done so as to accommodate negative exponents in the chosen format. The

choice of the bias is made depending on the number of bits available for representing

exponents in the floating point format used. Always when a bias is chosen, one should be

able to reciprocate the smallest normalized number without having to deal with problems

of overflow. A 32 bit number has a bias of +127 while a 64 bit number has a bias of

+1023. If the number of bits allowed for exponent representation is n, the bias is 2n – 1 - 1.

2.3.4 Signed Zero, Signed Infinity and NaN

 Zero is known as the neutral number with regard to sign. Both encodings of zero,

a plus or a minus are equal in value .The sign of zero depends on two factors:

1. The operation

8

2. Rounding mode

 Signed zeros are a useful aid in implementing interval arithmetic. During

approximations of a real number by a floating point number system, one can adopt the

usage of one floating point number or two. In case of the latter, there is an additional

expense but if these two numbers are on either side of the real number under

consideration, then it is possible to say that the number belongs to a set of real numbers

bounded by the two floating point numbers. Therefore, any operation executes on this

interval. Outward rounding confirms that the result of the computation is always within

the resulting interval. Sign of a zero can mean one of the following two:

1. The direction on the number line from which underflow occurred.

2. The sign of infinity reciprocated.

 Signed infinity represents the maximum positive and minimum negative number that

can be accommodated in a given format. Signed infinity is represented by a zero in the

mantissa and the maximum exponent that the representation allows.

For example, in IEEE 754 format for single precision, +∞ and -∞ are represented as

in Table 2.4.

 Table2.4 Signed Infinities

NaN or “Not A Number” refers to those values whose mantissas are nonzero and

exponent exceeds the maximum allowable value for a format. NaNs are classified as

Quiet NaNs and Signaling NaNs. Quiet NaNs are passed by processors without

exceptions when encountered but signaling NaNs might raise exceptions.

Number Sign Exponent Mantissa

+∞ 0 255 0

-∞ 1 255 0

9

2.4 Flipside of Floating Points

 Much as floating points provide greater range of precision as compared to integers,

results of floating point calculations can be strange and seemingly inexact. Floating point

representation on digital systems is base 2 but the external representation is always base

10. This explains the misconception that a recurring decimal like 1/3 may not be exactly

represented but 0.1 or 0.01 can be. However the representation of 0.01 may also be

0.009999 when converted from the binary equivalent that gets stored.

 Another noticeable fact is that the exponent and density of numbers represented are

inversely proportional. Since there is always approximation to the nearest value in case of

non representable values, it is found mathematically that there can be as many as

8,338,607 single precision numbers between 1 and 2 and only 8191 numbers between

1023 and 1024. Rounding can lead to different values even with mathematically

equivalent expressions. An example is the use of a divide and multiply operation with a

number and its reciprocal respectively.

When such floats are converted to integer, inaccuracies can be well detected. A

number written in decimal as xx.ff can be converted to integer by means of a multiply by

100 operation. The result surprisingly is not xxff but xxff – 1. This is because there is no

rounding, only truncation during its assignment from float to Integer.

Conversions from single precision to double can be a little dangerous if they need to

be eventually converted to integers because the computer inherently pads zeros in the

binary representation to extend single to double. The decimal equivalent of the new value

can display way more than the actual value.

Another important precaution to be exercised when using floats is use of good and

safe comparisons. One of the better ways to compare floats is to compare the absolute

difference of two floating point numbers with an approximate epsilon value using

relational operators like approximately equal ,definitely greater than etc.

10

The size of intermediate registers during arithmetic operations on floating point

numbers is of vital importance. Use of randomly sized registers and assignments can lead

to rounding or truncation related issues with little or absolutely nil sources for

verification later. As is well known the worst case bit error probability is always 50% and

not 100% since there are only 2 bits. Hence intermediate storage in registers should be

able to accommodate overflow or underflow as a means to track errors in elaborate

design. These have been borne in mind during the implementation of these double

precision cores as well.

11

Chapter 3

Design and Implementation

This chapter deals with the design and implementation of the floating point

cores for the sparse matrix multiplier. It explains the hierarchy of modules, the function

of each module, implementation details and issues during their simulation and synthesis.

The following sections are dedicated to the discussion of the implementation details of

the floating point multiplier and adder for double precision. The algorithms for

implementation of the adder and multiplier have been adapted for use in the problem

from [3]. The idea of the design is drawn from [4].

3.1 IEEE 754 Format for Double Precision

 Before delving into design, it is advantageous to understand the IEEE 754 format for

double precision that forms the basis of these computations. [5]

 Fig 3.1 Double Precision Representation

Fig 3.1 shows the structure of a double precision floating point number with the Most

Significant Bit (MSB) as the sign bit. A positive number has an MSB of 0 and a negative

number has an MSB of 1. The absolute values of the exponent and mantissa are

represented by E and M .The Mantissa deserves special attention here. Though called a

64 bit floating point number, the actual representation involves 65 bits that includes an

implied bit of 1 before the mantissa. The mantissa can then be read as M = 1.f where f

corresponds to the 52 bits. The exponent E is biased with the bias value taken as 1023.

Given a double precision floating point number X, it can always be represented by the

equation given in Fig 4.2. * * is used to show exponentiation.

12

1.F*1023)-(E* *S*(-1)X 

 Fig 3.2 Expression to calculate value from IEEE 754 format

The valid range of values for the exponent, mantissa and sign are shown in table 3.1.

 Table 3.1 Sign, Exponent and Mantissa limits in IEEE 754 format

Sign Exponent Mantissa Value /Classification

X 2047 Nonzero NaN

1 2047 zero Infinity

0 2047 zero Infinity

S 0<E<2047 Nonzero (-1)**S*2**(E-1023)*1.f

S 0 Nonzero (-1)**S*2**(-1022) *0.f

1 0 Zero 0

0 0 Zero 0

3.2 A Simple Example

 Consider the number 0.15625. In order to represent it as a 64 bit number we do the

following

1. Convert 0.15625 to binary which is 0.001012. This conversion can be stopped

depending on the precision we require in the binary equivalent.

2. Represent the equivalent in standard notation. This becomes 1.01 * 2-3

3. Determine biased exponent by adding 1023 to original exponent .This gives 1020.

4. Mantissa is 1.01 .Make leading 1 implicit so that effective representation becomes

0 for sign bit

01111111100 for biased exponent

01 for mantissa.

 5. Fill in the remaining bits of mantissa with zeros.

3.3 Description of Floating Point Cores

13

 The following section describes the two floating point cores required for matrix

multiplication. The two cores operate on each entry of the sparse matrix bringing the total

number of floating point operations to twice the number of nonzeros in the sparse matrix.

3.3.1 The Floating Point Multiplier

 The algorithm for double precision multiplication is based on the simple idea of

multiplication of two numbers expressed in scientific notation.

Given 2 numbers A and B with A = m.decimal * 10 eA and B = n.decimal * 10 eB ,the

product AB is computed by multiplication of the values m.decimal and n.decimal and

addition of exponents i.e. to say that AB = (m.decimal * n.decimal) * 10 (eA + eB) .Further

the product can be expressed in scientific notation if needed.

The following modules make up the multiplier:

1. Denormalizer

2. Fixed Point mantissa multiplier

3. Fixed point adder / subtractor

4. Normalizer

5. Rounding module

The design is fully synchronous. The top module of the multiplier is shown in Fig 4.3

3.3.1.1 Module Denormalizer

 This implementation restricts itself to handling normalized values alone. More

on handling denormal numbers is found in [9]. The denormalizer essentially makes the

implied bit explicit. IEEE 754 format expects 52 bits of Mantissa with 1 in the 53rd bit

that remains hidden and is implicit. For the purpose of multiplication the mantissa needs

to be of the form 1.f. The denormalizer checks to see if the exponent of any of the

operands is not zero. This is because numbers with zero exponents are unnormalized and

are out of the scope of this design. The range of values that are considered normalized is

provided in table 3.1.

 The denormalizer uses 11 bit comparator cores provided by Xilinx 8.2i for comparing

the exponent with zero. While port A of the core is fed an exponent of float A, port B is

given a constant 11 bit input of zero. The outputs are registered.

14

DENORM

NORM &
ROUNDING

RESET

CLK

Done

A

B

Exponent

Sign

MantissaR S

s1

s2

M1

M2

E1

E2

Product

MULTIPLIER

Fig 3.3: High level view of Floating Point multiplier core

 Description of the Comparator core

 The Xilinx comparator core v8.0 provides comparison logic for A=B, A<=B, A>=B,

A>B, A<B and A<>B. It operates on two’s complement signed or unsigned data and can

take 1 to 256 bits of input. Additionally it provides options for comparisons with a

constant as well as optional clock enable synchronous and asynchronous controls for

synchronous outputs. The core is shown in Fig 3.4. The depth of pipelining is constrained

by the width and / or the operation being performed.[12]. For comparisons versus a

constant B value of widths unto 16 bits, only two pipeline stages are possible. The degree

of pipelining allowed and the corresponding operations are summarized in table 3.2.

3.3.1.2.Module Multiplier

 The outputs of the denormalizer are registered and given to the multiplier shown in

Fig.3.3. The multiplier houses a fixed point mantissa multiplier core from Xilinx. Once

the product is computed, the multiplier calculates the XOR of the sign bits of A and B

and outputs the resultant sign bit. Use of XOR yields a negative result for one negative

15

input and a positive result for two negative inputs.

 Fig 3.4 Comparator v8.0

The multiplier module also yields the sum of the two exponents and deducts the bias of

1023 from the result. There is a pipeline stage inserted between the adder and the

subtractor to increase frequency. Exponent addition and subtraction is also achieved by

Xilinx cores whose pipelines can be varied for increasing frequency.

Fixed Point Mantissa Multiplier

 The mantissa multiplier takes two 54 bit inputs and yields a registered output

that is 108 bits long. The mantissa of a 64 bit number inclusive of the hidden or the

implied bit is only 53 bits long. However a 54 bit pipelined core is needed as the 53 bit

core in Xilinx ISE 8.2i does not work well with overflow. Depth of pipelining of the

multiplier module is dependent to a great extent on the depth of pipelining in this core.

Multiplier v8.0 provides only two values; 0 for no pipelining and 1 for full pipelining and

the default is 1. The latency of the multiplier will depend on the width of the two inputs

A and B .The core is shown in Fig 3.5.

 Comparator v8.0

A [N: 0]

B [N: 0]

SCLR

 CE

<OUT>

 < Q_OUT>

ACLR

ASET

 CLK

SSET

Courtesy: www.xilinx.com

16

 Table 3.2: Allowable bit widths and depth of pipelines in comparator v8.0

 Fig 3.5 Fixed Point Mantissa Multiplier

Operation Bit width Pipelining

 < Max = 256 1(+ 1 optional o/p register)

<> Max = 256 Max = 5

= Variable B >2 1

= Variable B >8 2

= Variable B >32 3

=Variable B > 128 4

= Const B > 4 1

= Const B >16 2

= Const B >64 3

<= Max = 256 1(+ 1 optional o/p register)

>= Max = 256 1(+ 1 optional o/p register)

> Max = 256 1(+ 1 optional o/p register)

ACLR SCLR

 Multiplier v8.0 courtesy: www.xilinx.com

A Q

A_signed Load done

B

Load B RFD
Swap B

ND

CLK RDY

CE

17

Fixed Point Adder/Subtractor

 The multiplier module also houses a fixed point adder/subtractor for adding the

exponents and subtracting the bias from the sum. The adder/subtractor is a 11 bit core

that Xilinx provides and can be readily instantiated .A pipeline stage can be inserted

between the adder and the subtractor to increase frequency. The core is shown in Fig 3.6.

The adder/subtractor core can create adders for A+B, subtractors for A-B or adder

/subtractors that operate on both signed and unsigned data.

ADD
OVFL

C_OUT

S[P:0]

BYPASS

CIN

D_ OVFL

D_C_OUT

D[P:0]

BYPASS

CE

ASET SSET

Q_ OVFL

Q_C_OUT

Q[P:0]

ACLR SCLR AINIT SINIT

A[N:0]

A_ SIGNED

B_ SIGNED

B[M:0]

X9078

CLK

Fig 3.6 Fixed point adder/subtractor core v7.0 (courtesy: www.xilinx.com)

18

3.3.1.3 Module Normalizer and Rounding

 Once the product of the two 54 bit mantissas is obtained, we can

conveniently disregard the first 2 bits for any further calculation. Our interest now lies in

bits 0 through 105 as the maximum number of bits in the product of two n bit inputs is

2n. The product of a normalized floating point number with another normalized floating

point number is bound to yield a value that has at most two significant digits and hence

there needs to be a shift of at most two digits and a corresponding adjustment in the

exponent. This uses a shifter and an exponent subtractor. A pipeline stage can be inserted

between the shifter and the exponent subtractor for increasing the frequency. The shifter

is clock controlled and each shift takes a single clock cycle.

 Rounding of the final value takes place to the nearest, depending on the conditions

listed in table 3.3. [3]

 Table 3.3 Rules for Rounding

Rounding mode Sign of Result >= 0 Sign of Result < 0

Nearest +1 if(r xor p0) or (r xor s) +1 if r xor p0 or r xor s

+∞ +1 if r xor s

-∞ +1 if r xor s

 In table 3.3, r represents the round bit, s the sticky bit and p0 is the pth most significant

bit of the result. Blanks mean that the p most significant bits of the result are the result

bits themselves. If condition is true, we add one to the pth most significant bit of the result

[3].

3.3.1 Floating Point Adder

 The floating point adder computes the sum or the difference of two floating point

numbers depending on the sign of the inputs .It uses two’s complement arithmetic to

determine difference of two numbers wherever necessary.

The adder comprises the following modules:

1. Denormalizer

2. Shifter

3. Adder

4. Rounding

19

5. Sign

3.3.2.1 Module Denormalizer

The denormalizer has the same function as that of the denormalizer module of the

multiplier. It makes the hidden bit explicit. It further unpacks the floating point numbers

to its corresponding exponents, mantissas and sign bits. As mentioned in the description

of the denormalizer of the multiplier, the design does not handle denormals. So the

module includes a comparator core v8.0 described in section 3.3.1.1 in order to check if

the exponents are zero. An additional check that the denormalizer does is to compare the

two exponents with each other to determine if E1 < E2, where E1 is A’s exponent and E2

is B’s exponent. This comparison uses comparator v8.0 with certain modifications. The

module encapsulates the functions of the denormalizer, 11 bit comparators for generating

logical equal to and less than functions and a swapper. The 11 bit comparators can be

pipelined similar to the one described in section 3.3.1.1.

 The result of the comparator drives the swapper .Once the comparator outputs high,

the swapper swaps the mantissas and the exponents. The exponent of the final result is

always set to E1. A pipeline stage is inserted between the comparator and the multiplexer

in order to increase frequency.

The signs of the two inputs are given to a two input xor gate. If the signs are

different, then the two’s complement of the second operand is evaluated. There is a

pipeline inserted between the evaluation of the two’s complement and the swap in case

the signs are opposite. The module also needs to output the difference of the exponents in

order to keep a tab on the number of shifts to get a normalized result. A 11 bit exponent

subtractor determines the difference of exponents. A 11 bit subtractor core v7.0 is used

for the purpose. The core is explained in 3.3.1.1. A view of the denormalizer is shown in

Fig 3.7.

3.3.2.2 Module Shifter

 The denormalizer outputs the difference between the exponents so as to align the

mantissas for addition or subtraction according to this difference. The shifter maintains a

counter that decrements from this value until zero while simultaneously shifting M2 to

the right once every decrement. From the shifted bits, the first shifted bit is registered as g

or the guard bit, the second as r and the rest are OR ed together to form a sticky bit s. All

20

these bits are given to the rounding module to complete the process of packing the result

to the required precision. This is illustrated in fig 3.8.

 Fig 3.7 Mantissa Swapping and Exponent determination in Denormalizer

3.3.2.3 Module Adder

 The adder uses a Xilinx adder core v7.0 for 54 bit addition of the mantissas. The 54th

bit of the sum in itself yields the Carry because the mantissas are originally only 53 bits

long and the sum of two n bit numbers has a maximum of n+ 1 bits. The adder core has

already been discussed in 3.3.1.1. The core has options for add, subtract and add/subtract

and can take care of signed and unsigned options. It is possible to have an add/subtract

instantiation in the design and avoid calculation of the two’s complement as is done in

the denormalizer. The add/subtract in its signed implementation takes care of the

calculation of two’s complement intrinsically and prevents the need to generate the two’s

complement of the result again. However, creating a two’s complement within the

module gives better control to experiment with possible pipelining effects. The

computation of the sign of the result depends on swapping and complement

determination in these modules. More is explained in table 3.4. So it is mandatory to

register if a complement is done by asserting the “Complemented” signal high. The entire

module is enabled by a SHIFTDONE signal received from the shifter.

21

0 1 1 0 …………………… .0 0 1 1 0 1

0th bit

s

g

 r

 Fig 3.8 Bit sequence after right shift

3.3.2.4 Module Rounding This module takes care of the shifting of the sum and

rounding it to the nearest available precision. It synthesizes to a priority encoder whose

main functions are captured in Fig 3.9.

22

XOR
S1
S2

MSB

C1

1

1
2C SUM

 S

SUM

C2

Shift right
once, push in

carry out
R = SUM[0]

S = g|r|s

Shift left until
normalized,push

g,push 0,
Exp = Exp - 1

 Fig 3.9 Priority encoding in rounding module

The priority encoder operates on the sum from module adder in the following order:

1. If signs of A and B differ, MSB of sum is 1, there is no carry out then result needs

to be replaced by its two’s complement.

2. If signs of A and B are the same and there is a carry out then shift right once .Also

shift the carry out into the sum.

3. Else shift left until the mantissa is normalized taking care to shift in the g bit and

then zeros successively each left shift.

4. For a right shift, set rounding bit (r) to the LSB of sum before shifting. Set sticky

bit is equal to OR of the guard bit, rounding bit and sticky bit.

5. If there is no shift ,set the rounding bit and guard bits to the same value ,the sticky

bit to OR of round bit and sticky bit

6. If there are more than two left shifts set rounding bit and sticky bit to zero.[3]

23

3.3.2.5 Module Sign

 The sign of the final result can be determined from the table given below. The table is

implemented as a look up table. Swapped and Complemented are outputs from the

denormalizer and the rounding module. Sign of the output is registered. Rounding is now

done in accordance with table 3.3.

 Table 3.4 Determination of sign [3]

3.4 The sparse matrix

 By definition, a sparse matrix holds a large number of common values .This

eliminates the need to store all the individual entries of the sparse matrix with their rows

and columns .Rather, there is an enormous savings in memory if the row and column

values of the uncommon entries alone can be saved. In matrix A, these common entries

are all zero.

The nonzero entries are 64 bit precision values and can be stored in one of the following

well known formats for sparse matrix storage.

1. Row compressed format

2. Column compressed format

Swapped Complemented SignA1 SignA2 Sign of

 result

Yes X + - -

Yes X - + +

No No + - +

No No - + -

No Yes + - -

No Yes - + +

24

 3.4.1 Row compressed Format

 2.5 0 0 0

 A = 0 1.4 0 0

 0 0.9 1.23 0

 0 0 0 -1.4

 Fig 3.10 A sample sparse matrix

Consider the 4*4 matrix given in fig 3.10.

 Nonzero entries = { 2.5 , 1.4 , 0.9 , 1.23, -1.4 }

 Column values for Nonzero entries = { 0 , 1 ,1, 3 }

 Position index of the first nonzero in each row in the array of Nonzero =

 {0, 1, 2, 4}

 Length of each row = {1, 1, 2, 1}

 The length of each row is found from the array of position indices by subtracting the

first entry from the second, the second from the third and so on. The length of the last

row can be found by subtracting the last value of the array of position indices from the

total number of nonzero entries in the matrix.

3.4.2 Basic Architecture

 The floating point cores discussed in the previous sections form cardinal

computational cores for many applications. One such application is matrix multiplication.

Here is a basic architecture with the cores put in place. It is primarily used to demonstrate

the usefulness of the cores built so far, so matrix product computation is done only when

the number of non zero entries per row is a multiple of the number of subrows per row.

More elaborate and functionally complex architectures have been explored in [6].

25

Subrow sum
Accumulator

Control
Unit

Down
Counter

Multiplier

Multiplier

Multiplier

Multiplier

Number of
sub rows

Zero

Cu sel

Mem done

+

+

+

M
E
M
O
R
Y

 Fig 3.11 A simple matrix multiplication architecture

The architecture comprises a control unit, a counter, memory, a set of floating point

multiplier storage units, a binary tree of floating point adders and a sub row sum

accumulator. The following sections talk more about each of these modules.

3.4.2.1 Module Descriptions

Control Unit

The control unit has an enable signal that is active high. It encapsulates a

divider core that determines the number of subrows in each row. The divider receives two

inputs; the number of nonzeros in a given row and the number of multiplier storage units

that is held constant throughout the implementation. The control unit receives these

variable inputs from the test bench after the counter asserts the zero signal high. The

control unit is enabled by cu sel signal which is asserted only when the zero signal is

asserted low. The divider core is explained below.

 Divider

 The divider module is an IP core offered by Xilinx and can be simply instantiated for

the purpose of design .It is compatible with ModelSim 6.1 and can be customized.

Determination of the number of sub rows for a given row is critical to the design because

this determines the number of additions that sub row sum accumulator does before

26

writing the sum of products to the output memory or the C matrix. The divider takes in a

byte long input for the divisor and dividend and yields the quotient in one clock cycle.

 Additional pins provided by the core include CE, SCLR, ACLR and RFD.CE refers

to clock enable. CE is active high. Therefore the module retains its state when CE is

deasserted. SCLR refers to Synchronous Clear. Core flip-flops used in the design of the

divider can be synchronously initialized using this assert. ACLR refers to Asynchronous

Clear. Core flip-flops used in the design of the divider can be asynchronously initialized

using this assert. RFD refers to Ready for Data and is an indication of the cycle number at

which the input data gets sampled by the core. RFD changes with the rising edge of CE if

available.

 Fig 3.12: Pipelined Divider v3.0

Within the core, RFD always appears at the output .However it is applicable only when

an internal parameter called divclk_sel equals 1. In our design, the core is fully pipelined.

The value of divclk_sel within the IP core is set to 1. This also means that the core

samples the inputs on every enabled clock rising edge and RFD is always set to 1.

 Counter

The counter is latched with an input of the total number of subrows in a given

row. It steadily decrements values as well as generates memory addresses for accessing

A and B values .The counter decrements as and when the mem done signal goes high.

Dividend RFD

Divisor Quotient

Clock Remainder

27

Memory

 Memory is modeled as register files .The test bench populates these register files with

the nonzero entries, their column values and the number of nonzero entries per row. The

primitive $readmemh allows hex values to be read off the file and dumped into register

files. The register file of nonzero values is 64 bits long and holds about 256 values. The

bit widths held in the other two register files is dependent on the maximum length of

rows that the sample file holds.

Multiplier

 Each of these units receives the 2 floating point numbers to be multiplied .This is the

floating point multiplication core that was discussed earlier. The number of multiplier

units that need to be operated in parallel is dependent on the sparsity structure of the

matrix. Analysis of sparsity structure of matrix requires detailed statistics about the

matrix and the number of nonzero entries. Also the number of Floating point units that

can be configured on the FPGA is limited by the available resources. This

implementation does not depend on the sparsity structure of the matrix

 In order to input two double precision values to the multiplier the FPGA chosen must

atleast accommodate 128 input pins. Simulation on devices that are constrained by IOBs

or input output ports are bound to report an warning during synthesis and a subsequent

error during mapping and translation onto the FPGA.

Binary tree of adders

 The outputs from the multipliers are fed into a binary tree of adders. Each of these

adders is the double precision core described earlier. Two of the four products go into the

nodes of the tree .It is to be noted that the total number of leaf nodes is only four. So the

tree has three levels. The root node of the tree passes the cumulative sum of products

from one sub row only. Therefore this module does not keep a tab on the number of

subrows whose products and sums have been calculated.

Sub row Sum Accumulator

 The sub row sum accumulator checks to see if the counter has reached a value of

zero. This means that it has accumulated the sum from each of the individual sub rows.

When it sees a high zero it asserts cu sel high. The control unit now writes the value to

memory.

28

If the size of each row is k, then the sum accumulator is not required as the root node

itself yields the final result. However the values are still allowed to pass through the

accumulator to maintain the simplicity of implementation.

29

Chapter 4

Verification

 Design verification is defined as the reverse process of design. It takes in an

implementation as an input and confirms that the implementation meets the

specifications. Though design verification includes functional verification, timing

verification, layout verification and electrical verification, functional verification is by

default termed design verification.

 Two popular forms of verification are the simulation based approach and the

formal verification approach. The most important difference between the two approaches

is that simulation based approaches need input vectors while formal verification

approaches do not. In the former, we generate input vectors and derive reference outputs

from them. However a formal verification approach differs in that it predetermines what

output behavior is desirable and uses the formal checker to see if it agrees or disagrees

with the desired behavior. This shows that simulation based approach is input driven

while formal approach is output driven. Since formal verification methodology operates

on an input space as against chosen vectors, it can be more complete. Simulation based

approach takes a point in the input space at a time and therefore samples few points only.

However, this can be justified due to the extensive use of memory and long runtime that

formal verification uses. Besides when memory overflow is encountered, the tools are at

a loss to show what is the right problem and its fix. [7]

 This design has been verified using a simulation based approach. In order to verify

the functionality of the cores, it is mandatory to have inputs with variable combination of

signs. This ensures if the sign determination modules abide by the rules provided within

the look up tables. Hence a combination of (+, +), (- ,-), (+,-), (-, +) were provided to the

adder and multiplier. Since an explicit two’s complement determination unit is used, the

cores must be able to distinguish between similar and variable signs to pass the operands

through the two’s complement and shifter when need arises.

30

 The design is also checked with variable exponents. This is done in order to check the

alignment of the two exponents in favor of the larger. This check is important because it

checks the functionality of the shifter. The design is capable of handling only normalized

inputs. A check for denormalized inputs is already embedded in the design. However we

need to verify if the accelerator gracefully terminates with zero outputs when such inputs

are given.

 The Normalizer or the priority encoder is the main part of the module that prepares

the adder for rounding and sign determination. This module needs to be completely

verified. Hence inputs are so designed that each case in the priority encoder gets

exercised. Verification of this module covers a large number of values from the input

space.

 Lastly, the design is verified for overflow and underflow cases. A value of exponent

greater than 2047 should set the result to infinity and a value of zero is set when the

exponent is zero and the mantissa is also zero.

31

Chapter 5

Results

 This chapter discusses results and interpretations from simulation and synthesis

of the floating point cores. It throws light on the tradeoffs made in various points in

design as well as a few nuances of FPGA design that come to fore during emulation.

 5.1 Simulation

 This design has been implemented using Xilinx ISE 8.2i, simulated on ModelSim

6.1i and synthesized using XST for Verilog. The HDL code uses Verilog 2001 constructs

that provide certain benefits over the Verilog 95 standard in terms of scalability and code

reusability. Simulation based verification is one of the methods for functional verification

of a design. In this method, test inputs are provided using standard test benches. The test

bench forms the top module that instantiates other modules. Simulation based verification

ensures that the design is functionally correct when tested with a given set of inputs.

Though it is not fully complete, by picking a random set of inputs as well as corner cases,

simulation based verification can still yield reasonably good results.

The following snapshots are taken from ModelSim 6.1 after the timing simulation of the

adder and multiplier cores.

Consider the inputs to the floating point adder.

 A = -1.25

 B = 1.5

The inputs to the adder were the corresponding hex values obtained from [13].

A = 64’hBFF4000000000000

B = 64'h3FF8000000000000

The output of the adder should be 0.25 .After regrouping the bits from the resulting 64 bit

number; the sum is interpreted.

From fig 5.1 ,the sign of the result is 0 ,mantissa is 1 followed by 0…….1011011,a total

of 53 bits and the exponent after subtracting the bias gives -2.This implies

1.000000…………1011011 * 2 -2 which is 2.5000000000000505e-1.

32

 Fig 5.1 Simulation results from adder

Let us now consider two inputs to the multiplier.

A = 1.0

B = -1.3

Expected product = -1.3

Product = -1.3000000000000003

The results from simulation are provided in Fig 5.2. On regrouping the sign, mantissa and

the exponent we obtain -1.3000000000000003.

5.2 Synthesis

 Synthesis is defined as the process of converting an HDL description of a design into

an optimized gate-level representation. Synthesizing modules on an FPGA involves

mapping them to logic resources like Look up tables (LUTs), block RAMs and flip flops.

The Xilinx synthesis tool generates the area and timing reports that provide an estimate of

device utilization and performance. The device utilization and performance report lists

the compiled cells in the design, as well as information on how the design is mapped in

the FPGA. [11]. A few settings that are configurable on the FPGA are optimization

33

effort, area goal, timing goal, resource sharing, register retiming etc. The synthesis tool

provides default settings for optimum performance over generalized applications. A large

portion of the synthesis uses these default settings.

 There are certain applications that may require customization of these settings but

caution should be exercised. A typical example would be resource sharing for reducing

gate count ,but resource sharing cannot be used in timing critical paths.

 Fig 5.2 Simulation results from the multiplier

During design it is helpful to keep a model of synthesized logic in mind and not allow it

to grow so complex that it becomes a problem for the synthesis tool. One of the well

established methods of taking advantage of the synthesis tool’s capability is to minimize

and pack logic effectively by not creating purely combinational modules. This is because

none of the popular FPGA architectures have purely combinational elements and there is

a good chance of one or more registers getting wasted when a pure combinational block

needs to be implemented.[10] The results from XST clearly depict this. The entire design

is fully synchronous and there are no pure combinational blocks. The design uses a single

clock.

34

 There are two methods to improve performance of design. One is to assist the

synthesis tool in identifying critical logic blocks by use of timing constraints. The other

method involves writing a code that gives the synthesis tool an easier problem to solve.

This also means use of pipelines or fast structural elements to implement logic.

 One of the most important metrics to determine performance of a hardware

accelerator is throughput. In general, pipelining is one of the most effective methods to

improve throughput. It is found through synthesis that the depth of pipeline directly

affects throughput. Pipelining offers an overall saving in time for execution of all

instructions put together. It does not affect individual instruction time. However the

flipside to pipelining in use of increased resources and a subsequent increase in area.

Since throughput is a ratio of clock speed and area, it is necessary to strike a fine balance

so as to be able to maintain high throughputs. For this reason, it is often necessary to play

around with values at both ends of the clock speed and area spectrum until a point of

diminishing returns is reached.

 Table 5.1 Variation of Freq/Area with pipelining for 64 bit multiplier

A sample of the timing report and device utilization summary generated using XST is

shown below. The report was generated for maximum pipelining.

 * Final Report *

===

No of pipelines

(adder)

Area

(Slices)

Clock Rate

(MHz)

Freq/Area

(MHz/slice)

Minimum 424 65.996 0.1556

Maximum 964 176.585 0.1831

35

Device utilization summary:

Selected Device: 2vp40fg676-7

 Number of Slices: 1956 out of 19392 10%

 Number of Slice Flip Flops: 3405 out of 38784 8%

 Number of 4 input LUTs: 3480 out of 38784 8%

 Number used as logic: 3292

 Number used as Shift registers: 188

 Number of IOs: 195

 Number of bonded IOBs: 195 out of 416 46%

 Number of GCLKs: 1 out of 16 6%

===

TIMING REPORT

Clock Information:

-----------------------------------+------------------------+-------+

Clock Signal | Clock buffer (FF name) | Load |

-----------------------------------+------------------------+-------+

Clock | BUFGP | 3593 |

-----------------------------------+------------------------+-------+

Asynchronous Control Signals Information:

--

No asynchronous control signals found in this design

Timing Summary:

Speed Grade: -7

 Minimum period: 5.663ns (Maximum Frequency: 176.585MHz)

 Minimum input arrival time before clock: 3.224ns

 Maximum output required time after clock: 3.340ns

 Maximum combinational path delay:

 No path found

36

--

A comparison of throughputs between earlier implementations and ours is shown in table

5.2.

Table 5.2 Comparison of results from the synthesis of multiplier

 Total power consumed can also be estimated in Xilinx ISE 8.2i using XPower. Table

5.3 tabulates power for minimum and maximum pipelining in the multiplier core. Xilinx

XPower is a power analysis software tool. It uses device knowledge and design data to

estimate device power and power utilization in the nets. [13].

 Table 5.3 Power vs. pipelining for 64 bit multiplier

S.no Level of pipelining wrt

multiplier core

Power (mW)

1. Minimum 260

2. Maximum 511

Synthesis results from 64 bit adder

 The double precision adder core is also synthesized using Xilinx XST. The details

from the device utilization summary and timing reports for various levels of pipelining

are captured in table 5.4.

PRECISION

64 BITS

NCSU USC NEU

Area (slices) 964 910 477

Clock Rate

(MHz/slice)

176.585 205 90

Freq/Area

(MHz/slice)

0.1831 0.225 0.188

37

 Table 5.4 Synthesis results from 64 bit adder

A comparison between our implementation and previous implementations has been

drawn and summarized in table 5.5 and table 5.6. In table 5.5, Opt stands for optional

which denotes highest frequency/area ratio. This is because we investigate tradeoffs in

frequency and area by extensively pipelining the core until we reach the point of

diminishing returns. The Max value in the table captures this precisely. There is no point

in increasing the depth of pipelines beyond the point of diminishing returns.

 Table 5.5 Comparison of minimum, maximum and optimal metric for adder

No. of

Pipeline

Stages

Area

(slices)

LUTS Flip flops Clock Rate

(MHz)

Freq/Area

MHz/slice

12 876 1075 1168 176.177 0.2011

16 877 1097 1168 180.442 0.2057

18 924 1042 1182 182.121 0.197

19 930 1100 1183 184.312 0.198

USC NCSUPrecision

64 bits Min Max Opt Min Max Opt

Pipelines 6 21 19 8 19 16

Area (slices) 633 1133 933 548 930 877

LUTS 1049 1032 976 976 1100 1097

Flip flops 443 1543 1148 598 1183 1168

Clock (MHz) 50 220 200 69.97 184.3 180.4

Freq/Area

MHz/slice

0.078 0.194 0.216 0.127 0.198 0.206

38

 Table 5.6 Table of metric comparisons for 64 bit adder

Experimental results from USC and NEU are provided in [4] and [8]. Relation between

the depth of pipelines and throughput is shown in Fig 5.4. Table 5.7 captures the variation

of power as measured on Xpower with pipelining. The Xilinx Synthesis tool translates,

maps and does a place and route for a design after which it uses XPower to computer the

total power consumed by the device. Power measurements are summarized in table 5.7

and the variation is graphically captured in Fig 5.3.

Metric NCSU USC NEU

No of pipeline

stages

16 19 8

Area (slices) 877 933 770

Clock Rate

(MHz)

180.4 200 54

Freq/Area

(MHz/slice)

0.206 0.216 0.07

39

 Table 5.7 Variation of power with pipelining in 64 bit adder

 Fig 5.3 Variation of power with pipelines in 64 bit adder

S.no No of

pipelines

Power (mW)

1 8 360

2 10 355

3 12 420

4 16 420

5 18 477

6 19 510

Power(mW) vs Pipeline stages

0

100

200

300

400

500

600

0 5 10 15 20

No of pipelines

P
ow

er
(m

W
)

Power(mW)

40

Fig 5.4 Variation of freq/area vs. pipelines in 64 bit adder

The placed and routed design for the multiplier and adder are shown in Fig 5.5 and Fig

5.6. Xilinx ISE 8.2i provides means to implement the design and realize it on the FPGA

by providing functions for translation, mapping and finally place and route. Let’s take the

case of the multiplier. The report from the place and route tool states that about 9% of the

area has been utilized. Since area is not a big constraint here, we can focus more on

timing related constraints more and try to improve the frequency of operations through

more pipelining. But for every application, it’s a question of whether an addition in time

or area is really affordable or not. The design needs to be tweaked in accordance with

such a requirement. The choice of the FPGA is crucial during the synthesis of the design.

In case of a 64 bit operation, be it a multiplier or an adder, it only makes sense to have

atleast 64 input ports and better still 128 for two inputs to be fed to the device. Often

times during synthesis, if the device utilization summary reports “more than 100% of

resources are being used” or anything similar, it only makes sense to upgrade to a higher

Freq/Area(MHz/slice)

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20

No of pipeline stages

F
re

q
/A

re
a
(M

H
z
/S

li
c
e
)

Freq/Area(MHz/slice)

41

device, since we do not want to be constrained with regard to fundamental resources on a

board.

 Fig 5.5 Snapshot of the 64 bit multiplier after place and route

42

 Fig 5.6 Snapshot of the 64 bit adder after place and route

The snapshots were obtained after the synthesis, mapping and translation of the cores on

Virtex 2P XC2VP40 (package FG676) run at a speed grade of -7.

43

Chapter 6

Conclusion and Future Work

Double precision floating point arithmetic significantly increases the levels of

precision when compared to single precision floating point or integer arithmetic.

However there might be situations where double precision calculation results in a

numerically unstable solution. This could mean that double precision is insufficient to

obtain an accurate result. In such a case, quadruple or multiple precision floating point

arithmetic can be used. A typical example is a Bessel function calculation J1(x) for |x| up

to a few hundreds. Though it is a convergent series for small values of x, in case of large

values, the result is unstable. The final sum of the series is often 10-15 orders lower in

magnitude than the intermediate sum which reduces confidence in any of the digits in the

final sum. [14].

 Though we have implemented a basic architecture for matrix multiplication using the

double precision cores, as an extension, it is possible to implement advanced

architectures for handling very large sparse matrices with refinement in the sum

accumulator and at the cost of hardware complexity. Further the algorithm for sum and

product computations can be extended to the implementation of more complex arithmetic

or better precision arithmetic with the use of quadruple precision or multiple precision

floating points.

Additionally, in an application such as sparse matrix multiplication, the latency

involved in shifting within the floating point adder or the multiplier core should not be

largely variable. In order to cater to this, barrel shifters need to be explored to better

optimize the latency of the entire matrix multiplication unit.

44

References
[1] Z. Guo, W. Vahid, and K. Vissers, “Quantitative Analysis of the Speedup Factors of

FPGAs over Processors”, Proceedings of the 2004 ACM / SIGDA 12th international

symposium on Field--programmable gate arrays, Monterey, CA, February 2004.

[2] S. Craven, C. Patterson, and P. Athanas, “Super-sized Multiplies: How Do FPGAs

Fare in Extended Digit Multipliers?”, Proceedings of the 7th Annual Conference on

Military and Aerospace Programmable Logic Devices, Washington DC, September 2004.

[3] J.L. Hennessey, D.A. Patterson, Computer Architecture, A Quantitative Approach,

Morgan Kaufmann, Third Edition; 2002.

[4] G. Govindu, L. Zhuo, S. Choi, V. Prasanna, “Analysis of high-performance floating

point arithmetic on FPGAs”, Proceedings of 18th International Parallel and Distributed

Processing Symposium, April 2004.

[5] IEEE standard for binary-floating point arithmetic, ANSI/IEEE Std 754-1985, The

Institute of Electrical and Electronic Engineers Inc., New York, August 1985.

[6] L. Zhuo, V.K. Prasanna, “Sparse Matrix Vector Multiplication of FPGAs”,

Proceedings of the 2005 ACM / SIGDA 13th international symposium on Field-

programmable gate arrays, Monterey, CA, February 2005.

[7] W.K. Lam, Hardware Design Verification, New Jersey; Prentice Hall, 2005.

[8] P. Belanovic, M. Lesser, “A Library of Parameterized Floating Point Modules and

their use”, Proceedings of 12th International Conference on Field Programmable Logic

and Application, Montpellier, France, September 2002.

45

[9] E.M. Schwarz, M. Schmookler, S. Trong, “Hardware Implementation of

Denormalized Numbers.” Proceedings of 16th IEEE Symposium on Computer Arithmetic,

June 2003.

[10] K. Coffman, Real world FPGA Design with Verilog, New Jersey; Prentice Hall,
2000.

[11] M.R. Shah, “Design of a self-test vehicle for ac coupled interconnect technology”,

Master’s thesis, NC State University, March 2005.

[12] Comparator v8.0, User guide, Xilinx Incorporation.

[13] XPower, Web Power tools User guide, Xilinx Incorporation.

[14] D.M. Smith, “Using multiple precision arithmetic”, Computing in Science and

Engineering, vol.5, no.4, August 2003.

[15] IEEE 754 Calculators, Queen’s college, CUNY [online], Available:

http://babbage.cs.qc.edu/ IEEE-754/64bit.html

46

APPENDIX

47

APPENDIX A

Verilog HDL for Multiplier and Adder Cores

VERILOG HDL FOR MULTIPLIER

TEST BENCH FOR 64 BIT MULTIPLIER

`timescale 1ns / 1ps
//
// Company : North Carolina State University
// Engineer : Yasaswini Sudarsanam
//
// Module Name: Rounding
// Project Name: Double precision floating point arithmetic cores (Multiplication)
// Device : Xilinx Virtex 2 pro - XC2VP20
// Description : Testbench for multiplier core
//
// Ports : None
//
// Sub modules: topmult
//
// Revision : 0.01 - File Created (9/15)
// 0.02 - Variation in test inputs from here on
// 0.03 - Creation of topmult to encapsulate all submodules.Elimination of
// sub modules from the test bench
//
//
module test();
reg clock;
reg done;
reg reset;
reg [63:0] floatA;
reg [63:0] floatB;
wire [51:0] final_product;
wire [10:0] exp_sumAB;
initial
clock = 1'b0;
always
#5 clock = ~clock;
topmult t1(clock,reset,done,floatA,floatB,final_product,exp_sumAB,sign_A_B);
initial
begin
floatA = 64'hBFF0000000000000;

48

floatB = 64'hBFF4CCCCCCCCCCCD;
done = 1;
reset = 1;
#10 reset = 0;
end

endmodule

TOP MODULE FOR MULTIPLIER

`timescale 1ns / 1ps

//
// Company : North Carolina State University
// Engineer : Yasaswini Sudarsanam
//
// Module Name: Rounding
// Project Name: Double precision floating point arithmetic cores (Multiplication)
// Device : Xilinx Virtex 2 pro - XC2VP20
// Description : Topmodule for multiplier. Encapsulates the denormalizer, multiplier
// and rounding modules
// Ports : Clock - Clock input
// reset - Synchronous Reset
// floatA - 64 bit multiplicand
// floatB - 64 bit multiplier
// final_product - Product after rounding
// exp_sumAB - exponent after rounding
// sign_A_B - Sign of product
//
// Submodules: None
//
//
// Revision : 0.01 - File Created (9/9)
//
//
//
module topmult(clock,reset,done,floatA,floatB,final_product,exp_sumAB,sign_A_B);
input clock;
input done;
input [63:0] floatA;
input [63:0] floatB;
input reset;
wire sign_bitA;
wire sign_bitB;
wire [53:0] mantissaA;
wire [53:0] mantissaB;

49

wire [10:0] exponentA;
wire [10:0] exponentB;
wire denormalized;
wire [107:0] productAB;
wire [10:0] exponent_sum;
wire prod_done;
output [51:0] final_product;
output [10:0] exp_sumAB;
output sign_A_B;
wire sign_A_B;
wire reset;
wire [51:0] final_product;
wire [10:0] exp_sumAB;
denorm
d1(clock,reset,done,floatA,floatB,sign_bitA,sign_bitB,mantissaA,mantissaB,exponentA,e
xponentB,denormalized);
multiplier
m1(clock,reset,denormalized,sign_bitA,sign_bitB,mantissaA,mantissaB,exponentA,expo
nentB,productAB,exponent_sum,sign_A_B,prod_done);
rounding
r1(clock,reset,productAB,exponent_sum,prod_done,final_product,exp_sumAB);
endmodule

MODULE DENORMALIZER

`timescale 1ns/1ps
//
// Company : North Carolina State University
// Engineer : Yasaswini Sudarsanam
//
// Module Name: Rounding
// Project Name: Double precision floating point arithmetic cores (Multiplication)
// Device : Xilinx Virtex 2 pro - XC2VP20
// Description : Topmodule for multiplier. Encapsulates the denormalizer, multiplier
// and rounding modules
// Ports : Clock - Clock input
// reset - Synchronous Reset
// done - Handshaking signal with an external module whose logic includes this
// core
// floatA - 64 bit multiplicand
// floatB - 64 bit multiplier
// sign_bit1 - 1 bit sign of A
// sign_bit2 - 1 bit sign of B
// mantissa1 - 53 bit mantissa of floatA, includes implicit 1,
// extended to 54 bits for ease of use with Xilinx core
// mantissa2 - 53 bit mantissa of floatB, includes implicit 1,

50

// extended to 54 bits for ease of use with Xilinx core
// exponent1 - 11 bit exponent of floatA
// exponent2 - 11 bit exponent of floatB
// denormalized - 1 bit assertion to denote end of operations in the denormalizer
// final_product - Product after rounding
// exp_sumAB - exponent after rounding
// sign_A_B - Sign of product
//
// Submodules: Constant Port B comparator//
//
// Revision : 0.01 - File Created (9/9)
//
//
//
module
denorm(clock,reset,done,floatA,floatB,sign_bit1,sign_bit2,mantissa1,mantissa2,exponent
1,exponent2,denormalized);
input clock;
input done;
input reset;
input [63:0] floatA;
input [63:0] floatB;
output sign_bit1;
output sign_bit2;
output [53:0] mantissa1;
output [53:0] mantissa2;
output [10:0] exponent1;
output [10:0] exponent2;
output denormalized;
reg sign_bit1;
reg sign_bit2;
reg [10:0] exponent1;
reg [53:0] mantissa1;
reg [10:0] exponent2;
reg [53:0] mantissa2;
reg [10:0] zero_reg;
wire qA1;
wire qA2;
reg denormalized;
 comp c1(qA1,clock,floatA[62:52]);
 comp c2(qA2,clock,floatB[62:52]);
always @(posedge clock)
begin

if(!reset)
begin

if(done && !denormalized && !qA1 && !qA2)

51

begin
sign_bit1 <= floatA[63];
sign_bit2 <= floatB[63];
exponent1 <= floatA[62:52];
exponent2 <= floatB[62:52];
mantissa1 <= {1'b1,floatA[51:0]};
mantissa2 <= {1'b1,floatB[51:0]};
denormalized <= 1;
end

end
else
begin
mantissa1 <= 54'b0;
mantissa2 <= 54'b0;
exponent1 <= 11'b0;
exponent2 <= 11'b0;
sign_bit1 <= 1'b0;
sign_bit2 <= 1'b0;
denormalized <= 1'b0;
zero_reg <= 11'b0;
end

end
endmodule

MODULE MULTIPLIER
`timescale 1ns / 1ps
//
// Company : North Carolina State University
// Engineer : Yasaswini Sudarsanam
//
// Module Name : Rounding
// Project Name: Double precision floating point arithmetic cores (Multiplication)
// Device : Xilinx Virtex 2 pro - XC2VP20
// Description : Topmodule for multiplier. Encapsulates the denormalizer,multiplier
// and rounding modules
//
// Ports : Clock - Clock input
// reset - Synchronous Reset
// denormalized - Enable signal
// floatA - 64 bit multiplicand
// floatB - 64 bit multiplier
// sign_bitA - 1 bit sign of A
// sign_bitB - 1 bit sign of B
// mantissaA - 53 bit mantissa of floatA, includes implicit 1 ,

52

// extended to 54 bits for ease of use with Xilinx core
// mantissaB - 53 bit mantissa of floatB, includes implicit 1 ,
// extended to 54 bits for ease of use with Xilinx core
// exponentA - 11 bit exponent of floatA
// exponentB - 11 bit exponent of floatB
// prod_done - 1 bit assertion to denote end of operations in the multiplier
// productAB - Mantissa product
// exponent_sum - exponent after multiplication
// sign_A_B - Sign of product
//
// Submodules: 54 BIT MULTIPLIER CORE
//
//
// Revision : 0.01 - File Created (9/9)
//
//
//
module
multiplier(clock,reset,denormalized,sign_bitA,sign_bitB,mantissaA,mantissaB,exponent
A,exponentB,productAB,exponent_sum,sign_A_B,prod_done);
input clock;
input denormalized;
input reset;
input sign_bitA;
input sign_bitB;
output sign_A_B;
input [10:0] exponentA;
input [10:0] exponentB;
input [53:0] mantissaA;
input [53:0] mantissaB;
output [107:0] productAB;
output [10:0] exponent_sum;
output prod_done;
reg [10:0] exponent_sum;
reg sign_A_B;
reg [11:0] exp_temp;
wire [107:0] productAB;
reg prod_done;
mult m1(clock,mantissaA,mantissaB,productAB);

always@ (posedge clock)

if(!reset)
begin

if(denormalized)
begin

53

//This addition is replaced by the 11 bit Xilinx core
exp_temp = exponentA + exponentB;

 //While experimenting with number of pipelines ,
 //this subtraction can use a core and be pipelined with addition from above

exponent_sum <= exp_temp - 1023;
end

 sign_A_B <= sign_bitA ^ sign_bitB;
 prod_done <= 1;
end

 else
begin
prod_done <= 0;
sign_A_B <= 0;
end

endmodule

MODULE ROUNDING

`timescale 1ns / 1ps
//
// Company : North Carolina State University
// Engineer : Yasaswini Sudarsanam
// Module Name: Rounding
// Project Name: Double precision floating point arithmetic cores (Multiplication)
// Device : Xilinx Virtex 2 pro - XC2VP20
// Description : This module takes care of rounding the product to the nearest
// Ports : clock - Clock input
// reset - Synchronous Reset
// productAB - product of mantissas
// exponent_sumAB - Exponent sum
// prod_done - module enable signal that says product calculation is done and
// rounding can begin
// final_product- Rounded product
// exp_sum - Exponent after rounding
//
//
// Submodules: None
//
//
// Revision : 0.01 - File Created (9/9)
//
//
//
module rounding (

54

clock, reset, productAB, exponent_sumAB, prod_done, final_product, exp_sum);
input clock;
input reset;
input [107:0] productAB;
input [10:0] exponent_sumAB;
output [51:0] final_product;
output [10:0] exp_sum;
reg [51:0] final_product;
reg [105:0] productA_B;
reg [10:0] exp_sum;
input prod_done;
integer n;
integer r;
reg inputset;
reg expset;

always @ (posedge clock)
if(!reset)
begin
 if(inputset == 1)

begin
if (productA_B[105] == 1'b1 && productA_B != 0)
//pipeline with Xilinx core for addition

 exp_sum[10:0] <= exp_sum[10:0] + 11'b1;
else

begin
if(productA_B[104] == 1'b1 && productA_B != 0)
productA_B <= productA_B ;

end
expset <= 1;
end
if(expset)
begin

if(productAB != 0)
begin

if(productA_B[54] == 1'b0)
begin
 if(productA_B[105] == 1'b1)
 final_product <= productA_B[104:53];
 else if(productA_B[105] != 1'b1 && productA_B[104] == 1'b1)
 final_product <= productA_B[103:52];
end
else if(productA_B[54] == 1'b1)
begin

55

 if(productA_B[105] == 1'b1)

 //replaced with Xilinx core for addition
 final_product[51:0] <= productA_B[104:53] + 52'b1;
 else if(productA_B[105] != 1'b1 && productA_B[104] == 1'b1)
 final_product[51:0] <= productA_B[103:52] + 52'b1;
end

end
end
if(prod_done == 1 && productAB != 0)
begin
productA_B[105:0] <= productAB[105:0];
exp_sum[10:0] <= exponent_sumAB;
inputset <= 1;
end

end
else
begin

n <= 107;
r <= 54;
productA_B <= 0;
final_product <= 52'b0;
inputset <= 0;
expset<=0;

end
endmodule

VERILOG HDL FOR ADDER

TEST BENCH

`timescale 1ns / 1ps
//
// Company : North Carolina State University
// Engineer : Yasaswini Sudarsanam
// Module Name : Test bench for adder
// Project Name: Double precision floating point arithmetic cores (Addition)
// Device : Xilinx Virtex 2 pro - XC2VP20
// Description : This module provides inputs for simulation based verification of the
adder core
//
//

56

module test();
reg clock;
reg reset;
reg done;
reg [63:0] floatA;
reg [63:0] floatB;
wire sign_res;
wire [52:0] Sum_final;
wire [10:0] exp_final;
initial
clock = 1'b0;
always
#5 clock = ~ clock;

initial
begin
reset = 1'b1;
#15 reset = 1'b0;
floatA = 64'hBFF4000000000000;
floatB = 64'h3FF8000000000000;
done = 1'b1;
end
topadd tadd1(clock,reset,done,floatA,floatB,sign_res,exp_final,Sum_final);
endmodule

MODULE TOPADD

`timescale 1ns / 1ps
//
// Company : North Carolina State University
// Engineer : Yasaswini Sudarsanam
// Module Name : Top module for adder
// Project Name: Double precision floating point arithmetic cores (Addition)
// Device : Xilinx Virtex 2 pro - XC2VP20
// Description : This module takes care of rounding the product to the nearest
// Ports : clock - Clock input
// reset - Synchronous Reset
// done - Assertion from external module
// floatA - input1 to the adder
// floatB - input2 to the adder
// sign_res - Sign of the final result
// exp_final - Exponent of the final result
// Sum_final - Final sum after rounding
// Submodules: None
// Revision : 0.01 - File Created (9/9)
//

57

//
//

module topadd(clock,reset,done,floatA,floatB,sign_res,exp_final,Sum_final);
input clock;
input reset;
input [63:0] floatA;
input [63:0] floatB;
input done;
output sign_res;
output [10:0] exp_final;
output [52:0] Sum_final;
wire sign_bit1;
wire sign_bit2;
wire [53:0] mantissa1;
wire [53:0] mantissa2;
wire [10:0] exponent1;
wire denormalized;
wire [10:0] expdiff;
wire [10:0] expres;
wire [53:0] m2;
wire shiftdone;
wire g;
wire r;
wire s;
wire [53:0] sum;
wire add_done;
wire [10:0] exp_out;
wire [52:0]Sm;
wire sign_res;
wire [52:0] Sum_final;
wire [10:0] exp_final;
denorm
d1(clock,reset,done,floatA,floatB,sign_bit1,sign_bit2,mantissa1,mantissa2,exponent1,exp
diff,expres,denormalized,swapped);
shift sh1(clock,reset,mantissa2,expdiff,denormalized,m2,shiftdone,g,r,s);
adder ad1(clock,reset,m2,mantissa1,shiftdone,sum,add_done);
round_compute
r_c1(clock,reset,expres,sum,sign_bit1,sign_bit2,add_done,r,s,g,r1,s1,Sm,complement,exp
_out,rounding_computed);
finaldpfpsum
f1(clock,reset,swapped,complement,rounding_computed,sign_bit1,sign_bit2,Sm,r1,s1,ex
p_out,sign_res,exp_final,Sum_final);

endmodule

58

MODULE DENORMALIZER

`timescale 1ns / 1ps
//
// Company : North Carolina State University
// Engineer : Yasaswini Sudarsanam
// Module Name : Denormalizer
// Project Name: Double precision floating point arithmetic cores (Addition)
// Device : Xilinx Virtex 2 pro - XC2VP20
// Description : Handles denormalization
// Ports : clock - Clock input
// reset - Synchronous Reset
// done - Assertion from external module
// floatA - input1 to the adder
// floatB - input2 to the adder
// sign_bit1 - Sign bit of float A
// sign_bit2 - Sign bit of float B
// mantissa1 - Mantissa of float A
// mantissa2 - Mantissa of float B
// exponent1 - 11 bit exponent of float A
// expdiff - Difference of exponents
// denormalized - assertion to indicate module operation completion
// swapped - assertion to indicate if swap has been done
// Submodules: None
//
//
//

module
denorm(clock,reset,done,floatA,floatB,sign_bit1,sign_bit2,mantissa1,mantissa2,exponent
1,expdiff,expres,denormalized,swapped);
input clock;
input done;
input reset;
input [63:0] floatA;
input [63:0] floatB;
output sign_bit1;
output sign_bit2;
output swapped;
output [53:0] mantissa1;
output [53:0] mantissa2;
output [10:0] exponent1;
output [10:0] expdiff;
output [10:0] expres;
output denormalized;
reg sign_bit1;

59

reg sign_bit2;
reg [10:0] exponent1;
reg [53:0] mantissa1;
reg [53:0] mantissa2;
reg [10:0] expdiff;
reg [10:0] expres;
reg swapped;
wire qA1;
wire qA2;
wire qexp;
reg denormalized;
 comp c1(qA1,clock,floatA[62:52]);

 comp c2(qA2,clock,floatB[62:52]);
 expcompare c3(clock,qexp,floatA[62:52],floatB[62:52]);

always @(posedge clock)

if(!reset)
begin

if(done && !denormalized && !qA1 && !qA2)
begin
sign_bit1 <= floatA[63];
sign_bit2 <= floatB[63];
 if(qexp)

begin
exponent1 <= floatB[62:52];
expdiff <= floatB[62:52] - floatA[62:52];
expres <= floatB[62:52];
mantissa1 <= {1'b1,floatB[51:0]};
swapped <= 1;

 //pipeline complement and addition here
if(floatA[63] ^ floatB [63] != 1'b1)
mantissa2 <= (~ {1'b1,floatA[51:0]}) + 52'b1;
else
mantissa2 <= {1'b1,floatA[51:0]};

 end
else
begin

exponent1 <= floatA[62:52];
expdiff <= floatA[62:52] - floatB[62:52];
expres <= floatA[62:52];
mantissa1 <= {1'b1,floatA[51:0]};
if(floatA[63] ^ floatB [63] == 1'b1)
mantissa2[52:0] <= (~{1'b1,floatB[51:0]}) + 52'b1;
else

60

mantissa2[52:0] <= {1'b1,floatB[51:0]};
end

denormalized <= 1;
 end
end

 else if(reset)
begin
mantissa1 <= 54'b0;
mantissa2 <= 54'b0;
exponent1 <= 11'b0;
sign_bit1 <= 1'b0;
sign_bit2 <= 1'b0;
denormalized <= 1'b0;
expdiff <= 11'b0;
expres <= 11'b0;
swapped <= 1'b0;
end

endmodule

MODULE SHIFT

`timescale 1ns / 1ps
//
// Company : North Carolina State University
// Engineer : Yasaswini Sudarsanam
// Module Name : Shifter
// Project Name: Double precision floating point arithmetic cores (Addition)
// Device : Xilinx Virtex 2 pro - XC2VP20
// Description : Alignment of exponents
// Ports : clock - Clock input
// reset - Synchronous Reset
// mantissa2 - 54 bit mantissa
// expdiff - Difference of exponents
// denormalized - assertion from denormalizer
// shiftdone - Assertion to denote completion of shift
// g - guard bit
// r - rounding bit
// s - sticky bit
//
//
//
//

module shift(clock,reset,mantissa2,expdiff,denormalized,m2,shiftdone,g,r,s);
input clock;

61

input reset;
input [53:0] mantissa2;
input [10:0] expdiff;
input denormalized;
output [53:0] m2;
output g;
output r;
output s;
output shiftdone;
reg shiftdone;
reg [10:0] counter;
reg [53:0] m2;
reg r;
reg g;
reg s;
reg counterset;
integer i;

always @(posedge clock)
if(!reset)
begin

if(denormalized)
begin
if(expdiff != 0)
begin
counter <= expdiff;
counterset <= 1;
end
else
begin
counter <= 0;
counterset <= 0;
m2 <= mantissa2;
shiftdone <= 1'b1;
end
end

 if(!shiftdone && denormalized && counterset)
begin
 if(i == 0)

begin
g <= mantissa2[0];
m2 <= mantissa2 >> 1;
i <= i + 1;
end

else if(i== 1)
begin

62

r <= mantissa2[1];
m2 <= m2 >> 1;
i <= i + 1;
end

else
 begin

s <= s | mantissa2[i];
m2 <= m2 >> 1;
i <= i + 1;

 end
 if(i == counter- 1)

 shiftdone<= 1;
 end

end
else
begin

shiftdone <= 0;
m2 <= 54'b0;
s <= 1'b0;
g <= 1'b0;
r <= 1'b0;
i <= 0;

end
endmodule

MODULE MANTISSA ADD

`timescale 1ns / 1ps
//
// Company : North Carolina State University
// Engineer : Yasaswini Sudarsanam
// Module Name : Mantissa Adder
// Project Name: Double precision floating point arithmetic cores (Addition)
// Device : Xilinx Virtex 2 pro - XC2VP20
// Description : Addition of mantissas
// Ports : clock - Clock input
// reset - Synchronous Reset
// m1 - 54 bit mantissa float A
// m2 - 54 bit mantissa float B
// shiftdone - Assertion to denote completion of shift
// sum - Result of addition
// add_done - End of addition
//
//
//
module adder(clock,reset,m2,m1,shiftdone,sum,add_done);

63

input clock;
input reset;
input [53:0] m2;
input [53:0] m1;
input shiftdone;
output add_done;
reg add_done;
reg add_done_1;
output [53:0] sum;
wire [53:0] sum;
//add a1(m1,m2,Q_C_OUT,sum,clock,shiftdone);
add a1(m1,m2,sum,clock,shiftdone);
always @ (posedge clock)
if(!reset)
begin

if(shiftdone)
add_done_1 <= 1'b1;
if(add_done_1 == 1'b1)
add_done <= 1'b1;

end
else
 add_done_1 <= 1'b0;

endmodule

MODULE ROUND_COMPUTE

`timescale 1ns / 1ps
//
// Company : North Carolina State University
// Engineer : Yasaswini Sudarsanam
// Module Name : Round_compute
// Project Name: Double precision floating point arithmetic cores (Addition)
// Device : Xilinx Virtex 2 pro - XC2VP20
// Description : Rounding
// Ports : clock - Clock input
// reset - Synchronous Reset
// expres - Exponent of result
// sum - sum from mantissa adder
// signA1 - Sign of float A
// signA2 - Sign of float B
// add_done - Assert from module addition
// r - rounding bit
// s - sticky bit
// g - guard bit
// r1 - intermediate value of rounding bit

64

// s1 - intermediate value of sticky bit
// Sm - intermediate sum for rounding
// complement - set assertion for sign determination
// exp_out - intermediate exponent for rounding
// round_computed - Assertion to indicate completion of computation of
rounding values
//
module
round_compute(clock,reset,expres,sum,signA1,signA2,add_done,r,s,g,r1,s1,Sm,complem
ent,exp_out,rounding_computed);
input clock;
input reset;
input [53:0] sum;
input [10:0] expres;
input add_done;
input r;
input g;
input s;
input signA1;
input signA2;
output [10:0] exp_out;
output complement;
output [52:0] Sm;
output r1;
output s1;
output rounding_computed;
reg [52:0] Sm;
reg complement;
reg rounding_computed;
reg [5:0] i;
reg [10:0] exp_out;
reg r1;
reg s1;
reg left_shifted;
reg right_shifted;
//reg rounding_computed_1;
reg exp_done;
reg complement_1;
always @ (posedge clock)
if(!reset)
begin

if(add_done)
begin
if((signA1 ^ signA2 == 1'b1) && sum[53] == 1'b0 && sum[52]== 1'b1
&& !complement)

begin

65

//Pipeline here between complement finding and addition
Sm <= ~sum[52:0] + 1;
complement <= 1;
exp_out <= expres;
end
else if((signA1 ^ signA2 == 1'b0) && sum[53] == 1'b1 &&
!rounding_computed)
begin
Sm <= sum >> 1;
exp_out <= expres + 1;
r1 <= sum[0];
s1 <= g|r|s;
rounding_computed <= 1'b1;
end
if(complement == 1'b1)
begin
complement_1<= 1'b1;
Sm <= Sm + 1'b1;
end
if(complement_1 == 1'b1)
begin

if(Sm[52]!= 1'b1)
begin

if(i == 0)
begin
Sm <= Sm << 1;
left_shifted <= 1;
i <= i + 1;
end
else
begin
Sm <= Sm<<1;
left_shifted <= 1;
i <= i + 1;
if(i >= 1)

begin
r1 <= 0;
s1 <= 0;
rounding_computed <= 1;
end

 end
if(left_shifted == 1'b1)
begin
exp_out <= exp_out - 1;
exp_done <= 1;
end

66

end
else if(Sm[52] == 1'b1 && i == 0)
begin
r1 <= g;
s1 <= r | s;
rounding_computed <= 1;
end

end

end
end
else

begin
 r1 <= 0;

s1 <= 0;
complement <= 1'b0;
Sm <= 53'b0;
exp_out <= 11'b0;
left_shifted <= 1'b0;
right_shifted <= 1'b0;
exp_done <= 1'b0;
i <= 0;
end

endmodule

MODULE FINALDPFPSUM

`timescale 1ns / 1ps
///
// Company : North Carolina State University
// Engineer : Yasaswini Sudarsanam
// Module Name : finaldpfpsum
// Project Name: Double precision floating point arithmetic cores (Addition)
// Device : Xilinx Virtex 2 pro - XC2VP20
// Description : Final sum calculation
// Ports : clock - Clock input
// reset - Synchronous Reset
// swapped - Assertion indicating swapping done/not done
// complement - Assertion indicating complement done/not done
// rounding_computed - Assertion indicating rounding bits set/ not set
// sign_bit1 - Sign bit of float A
// sign_bit2 - Sign bit of float B
// S - final sum
// r1 - rounding bit from rounding_compute module
// exp_final- Final exponent

67

// sum_final - Final sum
//
module
finaldpfpsum(clock,reset,swapped,complement,rounding_computed,sign_bit1,sign_bit2,S
,r1,s1,exp_out,sign_res,exp_final,Sum_final);
input clock;
input reset;
input swapped;
input rounding_computed;
input complement;
input sign_bit1;
input sign_bit2;
input [10:0] exp_out;
input [52:0] S;
output [52:0] Sum_final;
output [10:0] exp_final;
input r1;
input s1;
reg signset;
reg add_one;
wire add_done;
output sign_res;
reg sign_res;
reg [53:0]S_final;
reg [52:0]Sum_final;
reg [53:0] Sum_temp;
wire [53:0] Sum;
reg [10:0] exp_final;
reg S_final_Set;
adder add1(clock,reset,S_final,54'b1,add_one,Sum,add_done);
always @(posedge clock)
if(!reset)
begin

if(rounding_computed == 1'b1)
begin
 casex({swapped,complement,sign_bit1,sign_bit2})

4'b1x01: sign_res <= 1'b1;
4'b1x10: sign_res <= 1'b0;
4'b0001: sign_res <= 1'b0;
4'b0010: sign_res <= 1'b1;
4'b0101: sign_res <= 1'b1;
4'b0110: sign_res <= 1'b0;
4'bxx11: sign_res <= 1'b1;
4'bxx00: sign_res <= 1'b0;
endcase
signset <= 1;

68

S_final <= S;
end

if(signset == 1'b1)
begin

if((r1 ^ S[52]) || (r1 ^ s1))
add_one <= 1;
else
add_one <= 0;

end
if(add_done == 1'b1)
begin
 Sum_temp <= Sum;
 S_final_Set <= 1’b1;
end
if(S_final_Set == 1'b1)

 begin
 if(Sum_temp[53] == 1'b1)

begin
Sum_final <= Sum_temp >>1;
//Addition can be substituted with a 11 bit Xilinx core
exp_final <= exp_out + 1;
end
else
begin
Sum_final <= Sum_temp;
exp_final <= exp_out;

 end
end

end

else
begin
add_one <= 1'b0;
sign_res <= 1'bx;
exp_final <= 11'b0;
Sum_final <= 54'b0;
S_final <= 54'b0;
end
endmodule

