
Abstract 
SUDARSANAM, YASASWINI.  Implementation of Double Precision Floating Point 
Arithmetic.  (Under the guidance of Dr.Paul Franzon.) 
 
                Floating Point Arithmetic is extensively used in the field of medical imaging, 

biometrics, motion capture and audio applications, including broadcast, conferencing, 

musical instruments and professional audio. Many of these applications need to solve 

sparse linear systems that use fair amounts of matrix multiplication.  

  The objective of this thesis is to implement double precision floating point cores 

for addition and multiplication .These cores are targeted for Field Programmable Gate 

Arrays because FPGAs give the designer good control over the number of I/O pins and 

utilization of on chip memory. FPGAs are also comparable to floating point processors in 

their power consumption.  

The multiplier and adder cores conform to the IEEE 754 standard for double 

precision. The design is implemented on Xilinx ISE 8.2i and has been simulated on 

ModelSim 6.1i.The thesis pays significant attention to the analysis of the adder and 

multiplier cores in terms of pipelining and area so as to maximize throughput in any 

manner possible. It further throws light on variations of power with pipelining.  Power 

measurements are done using XPower provided by ISE. 
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Chapter 1

Introduction

1.1 Importance 

             Floating point arithmetic is no longer as esoteric as before because of its 

increasing importance in computer systems. Manipulating floating points efficiently is an 

utmost necessity as can be seen from the fact that every language supports a floating 

point data type. Every computer has a floating point processor or a dedicated accelerator 

that fulfills the requirements of precision using detailed floating point arithmetic. The 

main applications of floating points today are in the field of medical imaging, biometrics, 

motion capture and audio applications, including broadcast, conferencing, musical 

instruments and professional audio. Their importance can be hardly over emphasized 

because the performances of computers that handle such applications are measured in 

terms of the number of floating point operations they perform per second or FLOPS /sec.

1.2 Idea of  “Floats”

            Decimal numbers are also called Floating Points because a single number can 

be represented with one or more significant digits depending on the position of the 

decimal point. Since the point floats between the mass of digits that represent the number 

such numbers are termed Floating Point Numbers. Floating point formats and number 

representations are discussed in detail in subsequent chapters.

1.3 Motivation

             Constraints in representation of mathematical values using existing precision 

bring about the necessity for cores that can manipulate double precision floating point 

numbers. Evolving video applications in particular are switching from single to double 

precision cores because modern graphical processor units or GPUs need to support 

diverse applications such as an in-game physics simulation to conventional computational 

sciences. 32 bit floating points are high enough for most applications but not all. With 
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arithmetic intensity of computations portraying a historic growth rate of 71% per year, 

double and quadruple precision floating points have come to stay.

       The double precision cores for addition and multiplication discussed in this thesis are 

targeted for Virtex II Pro FPGA. In general, the most significant and inherent advantage 

of   FPGAs  over a Von Neumann platform is  their iteration level parallelism that is one 

to two orders of magnitude than is available with CPUs. Current FPGAs provide a large 

amount of on chip memory and abundant I/O pins. Thus they are able to offer a large 

amount of on-chip and off-chip memory bandwidth to I/O bound applications. This 

eliminates latencies due to cache misses.

      The clock frequency of traditional processors is about 20 times that of typical FPGA 

implementations. However the efficiency advantage because of the overlap of control and 

data flow and elimination of some instruction on the FPGA outweigh this advantage 

resulting in a speedup that is one to two orders in magnitude.[1].  For example, a stand

alone hardware implementation of the GIMPS algorithm is reported to be capable of 12-

million digit numbers in fewer than 34 milliseconds which is identified as  a 1.76 times 

performance improvement compared to a fast Pentium. [2].

     Implementation of 64 bit multiplier and adder cores is an important part of this thesis. 

In order to demonstrate one of the applications of these cores, basic level matrix 

multiplication architecture is established. The performance of the cores are evaluated 

individually and compared with results obtained from different sources. Power 

consumption for different levels of pipelining are also tabulated and analyzed .The 

implementation uses Xilinx ISE 8.2i Verilog with ModelSim 6.1i for simulation, XST for 

synthesis.

1.4 Outline of Thesis 

       Chapter 2 explains the basics of floating point numbers, double precision formats, 

normalization and errors related to floating point arithmetic. Design and implementation 

of floating point multiplication and addition cores is covered in Chapter 3. Chapter 3 also 

discusses the basic architecture for matrix multiplication. Chapter 4 talks about a few 

verification steps to ensure that addition and multiplication cores are functionally correct 

Comparisons and analysis of these cores is detailed in Chapter 5. Chapter 6 talks about 

conclusions and future work in this area.
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Chapter 2

Double Precision 

2.1 Introduction

       When infinitely large real numbers are to be stored using a finite number of bits, 

some form of approximation in representation is needed. Most processors use a single 

word to represent a number and hence these representations of floating point values are 

called single precision. Double precision floating points are named relative to the single 

precision representation in the sense that they have twice as much precision and hence 

twice as many bits as a regular floating point number. This also means that when 

represented in scientific notation double precision floating points carry more digits to the 

right of the decimal point. If a single precision number requires 32 bits, a double requires 

64 bits. These extra bits also allow an increase in the range of values that can be 

represented. However this increase is dependent on the program format for a floating 

point representation. Double precision provides a greater range, approximately 10** (-

308) to 10** 308 and about 15 decimal digits of precision compared to a single precision 

whose approximate range is 10** (-38) to 10**38, with about 7 decimal digits of 

precision.

2.2 Scientific Notation

Before the discussion of available floating point formats, it is worthy to understand 

scientific notations. A scientific notation is just another way to represent very large or 

very small numbers in a compact form such that they can be easily used for 

computations.

Any number can be represented as a number between 1 and 10 multiplied by a power 

of 10 that indicates the position of the decimal point as seen in the original number. 

Numbers greater than 10 are expressed as positive powers of 10 and numbers less than 10 

as negative powers. Greater the number, better the impact on storage size of the resulting 

number. For example, the speed of light which is as high as 30,000,000,000 cm per sec 
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can be simply represented as 3*1010 cm per sec. This involves storage of only the 

mantissa namely 3 and the exponent which is 10 here. 

Scientific notations are mandatory in computation because they greatly simplify 

multiplications or divisions into mere addition or subtraction of related exponents or 

powers of 10 used in their representation. For example, multiplication of 132,000,000 by 

0.0000231 involves conversion to scientific notation first. This means multiplying 1.32 * 

108 by 2.31 * 10-5. This reduces to (1.32 * 2.31) * 10 (8 -5 =3).  Extending the idea of such a 

representation to the binary system helps understand the IEEE 754 format for 64 bit 

numbers.

2.3 Floating Point Unit

     This section describes the real number system and the floating point unit. It introduces 

terms like normalized numbers, denormalized numbers, biased exponents, and signed 

zeros and NaNs. It further expands to the understanding of Floating point formats, 

specific merits and demerits as well as their individualistic applications. It also explains 

the choice of IEEE floating point format. 

 2.3.1 Real Number System 

The real number system consists of the entire spectrum of numbers between – infinity 

and + infinity. The limitation on size and number of registers in a computer leaves us 

with the ability to use only a subset of the real number continuum in calculations. This is 

just an approximate representation of the real number system, the range and precision 

being determined by the format of the floating point unit. 

A Floating Point Unit or an FPU generally contains 3 parts:

1. Sign

2. Significand

3. Exponent
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Sign is a 1 bit number that indicates whether the number is positive or negative. The 

significand has two parts , a one bit binary integer and a binary fraction The one bit 

binary integer is also known as the J-bit and is an implied value. The significand is also 

termed the mantissa.

Mantissa and Significand

Mantissa was originally the fractional part of the logarithm while the characteristic was 

the integer part. Since logarithmic tables were replaced by computers eventually, though 

not in the pure form, mantissa and significand are used interchangeably in common 

parlance. A logarithmic table is a table of mantissas. Therefore, mantissa is just the 

logarithm of the significand. 

The exponent indicates the positive or the negative power to which the radix should be 

raised in the computation of the value of a number that is being represented. For example, 

if 0.0002 is represented in decimal and binary in the sign, mantissa and exponent format 

it would be as shown in the table 2.1.

Table 2.1 Example of floating point format

Sign Mantissa Exponent Radix

0 2.000 - 4 10

0 1.1101 -13 2

Table 2.2 .Representations of a number in the sign, mantissa and exponent format

Sign Mantissa Exponent

0 1.0 0

0 0.1 1

0 10.0 -1
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Each floating point number has multiple representations because of the inherent nature of 

the decimal point to float between each of the individual digits. Therefore a simple 

number say 1 can take different forms in a given radix. Table 2.2 lists a few of the 

possible sign, magnitude and exponent format of the number ‘1’.

Every number can be represented by applying the following on the sign, mantissa and the 

exponent.

               Value =   (-1) sign * Mantissa * radix exponent

However, each number has only one normalized form and hence the importance of 

normalization in floating point arithmetic.

2.3.2 Normalization

        A floating point number is said to be normalized if it obeys the following rule:

     1/r   <= M < 1, 

where r is the radix of the system of representation and M is the mantissa.

   Most formats that have been standardized prefer normalized numbers for operations. 

Denormalized values are those that do not conform to this rule. Handling denormalized 

values involves more complexity in hardware compared to normalized values. A 

normalized mantissa has its binary point or the base-two equivalent of a decimal point to 

the left of the most significant non-zero digit. A representation of binary digits would 

always have a normalized mantissa whose most significant digit is one. Processors handle 

the process of denormalization by a procedure called “Gradual underflow”. 

Denormalization helps represent very small numbers whose value is close to zero. 

Though it is preferred that the leading bit of mantissa be a one, values that are 

infinitesimally small cannot be accommodated within the range of exponents, normalized 

floating point numbers allow. The process of “Gradual underflow” leads to a loss of 

precision, however it does allow the accommodation of such numbers in the floating 

point format. Table 2.3 depicts “Gradual underflow “.
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Table 2.3. Gradual Underflow

 Step True exponent Significand

1 - 132 1.00000100101010

2 -131 0.10000010010101

3 -130 0.01000001001010

4 -129 0.00100000100101

5 -128 0.00010000010010

6 -127 0.00001000001001

In Table 2.3, step 1 shows the actual result of an operation. The process of gradual 

underflow does one right shift in each successive step until the exponent reaches a value 

that which added to the constant bias yields zero. The table depicts the process of 

denormalization for a 32 bit floating point number where in the bias is +12710.

2.3.3 Biased Exponent

          A biased exponent is one that is obtained by adding a constant value to the original 

exponent. It is done so as to accommodate negative exponents in the chosen format. The 

choice of the bias is made depending on the number of bits available for representing 

exponents in the floating point format used. Always when a bias is chosen, one should be 

able to reciprocate the smallest normalized number without having to deal with problems 

of overflow. A 32 bit number has a bias of +127 while a 64 bit number has a bias of 

+1023. If the number of bits allowed for exponent representation is n, the bias is 2n – 1 - 1.

2.3.4 Signed Zero, Signed Infinity and NaN

             Zero is known as the neutral number with regard to sign. Both encodings of zero, 

a plus or a minus are equal in value .The sign of zero depends on two factors:

1. The operation 
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2. Rounding mode

    Signed zeros are a useful aid in implementing interval arithmetic. During 

approximations of a real number by a floating point number system, one can adopt the 

usage of one floating point number or two. In case of the latter, there is an additional 

expense but if these two numbers are on either side of the real number under 

consideration, then it is possible to say that the number belongs to a set of real numbers 

bounded by the two floating point numbers. Therefore, any operation executes on this 

interval. Outward rounding confirms that the result of the computation is always within 

the resulting interval. Sign of a zero can mean one of the following two:

1. The direction on the number line from which underflow occurred.

2. The sign of infinity reciprocated.

  Signed infinity represents the maximum positive and minimum negative number that 

can be accommodated in a given format. Signed infinity is represented by a zero in the 

mantissa and the maximum exponent that the representation allows.

For example, in IEEE 754 format for single precision, +∞ and -∞ are represented as 

in Table 2.4.

          Table2.4 Signed Infinities

NaN or “Not A Number” refers to those values whose mantissas are nonzero and 

exponent exceeds the maximum allowable value for a format. NaNs are classified as 

Quiet NaNs and Signaling NaNs. Quiet NaNs are passed by processors without 

exceptions when encountered but signaling NaNs might raise exceptions.

Number Sign Exponent Mantissa

+∞  0 255 0

-∞ 1 255 0
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2.4 Flipside of Floating Points      

          Much as floating points provide greater range of precision as compared to integers, 

results of floating point calculations can be strange and seemingly inexact. Floating point 

representation on digital systems is base 2 but the external representation is always base 

10. This explains the misconception that a recurring decimal like 1/3 may not be exactly 

represented but 0.1 or 0.01 can be. However the representation of 0.01 may also be 

0.009999 when converted from the binary equivalent that gets stored. 

      Another noticeable fact is that the exponent and density of numbers represented are 

inversely proportional. Since there is always approximation to the nearest value in case of 

non representable values, it is found mathematically that there can be as many as 

8,338,607 single precision numbers between 1 and 2 and only 8191 numbers between 

1023 and 1024. Rounding can lead to different values even with mathematically 

equivalent expressions. An example is the use of a divide and multiply operation with a 

number and its reciprocal respectively. 

When such floats are converted to integer, inaccuracies can be well detected. A 

number written in decimal as xx.ff can be converted to integer by means of a multiply by 

100 operation. The result surprisingly is not xxff but xxff – 1. This is because there is no 

rounding, only truncation during its assignment from float to Integer. 

Conversions from single precision to double can be a little dangerous if they need to 

be eventually converted to integers because the computer inherently pads zeros in the 

binary representation to extend single to double. The decimal equivalent of the new value 

can display way more than the actual value.

Another important precaution to be exercised when using floats is use of good and 

safe comparisons. One of the better ways to compare floats is to compare the absolute 

difference of two floating point numbers with an approximate epsilon value using 

relational operators like approximately equal ,definitely greater than etc.
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The size of intermediate registers during arithmetic operations on floating point 

numbers is of vital importance. Use of randomly sized registers and assignments can lead 

to rounding or truncation related issues with little or absolutely nil sources for 

verification later. As is well known the worst case bit error probability is always 50% and 

not 100% since there are only 2 bits. Hence intermediate storage in registers should be 

able to accommodate overflow or underflow as a means to track errors in elaborate 

design. These have been borne in mind during the implementation of these double 

precision cores as well.
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Chapter 3

Design and Implementation 

This chapter deals with the design and implementation of the floating point 

cores for the sparse matrix multiplier. It explains the hierarchy of modules, the function 

of each module, implementation details and issues during their simulation and synthesis. 

The following sections are dedicated to the discussion of the implementation details of 

the floating point multiplier and adder for double precision. The algorithms for 

implementation of the adder and multiplier have been adapted for use in the problem 

from [3]. The idea of the design is drawn from [4].

3.1 IEEE 754 Format for Double Precision

     Before delving into design, it is advantageous to understand the IEEE 754 format for 

double precision that forms the basis of these computations. [5]

     Fig 3.1 Double Precision Representation

Fig 3.1 shows the structure of a double precision floating point number with the Most 

Significant Bit (MSB) as the sign bit. A positive number has an MSB of 0 and a negative 

number has an MSB of 1. The absolute values of the exponent and mantissa are 

represented by E and M .The Mantissa deserves special attention here. Though called a 

64 bit floating point number, the actual representation involves 65 bits that includes an 

implied bit of 1 before the mantissa. The mantissa can then be read as M = 1.f where f 

corresponds to the 52 bits. The exponent E is biased with the bias value taken as 1023.

Given a double precision floating point number X, it can always be represented by the 

equation given in Fig 4.2. * * is used to show exponentiation.
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1.F*1023)-(E*   *S*(-1)X    

                  Fig 3.2 Expression to calculate value from IEEE 754 format

The valid range of values for the exponent, mantissa and sign are shown in table 3.1.

                  Table 3.1 Sign, Exponent and Mantissa limits in IEEE 754 format

Sign Exponent Mantissa Value /Classification

X 2047 Nonzero NaN

1 2047 zero Infinity

0 2047 zero Infinity

S 0<E<2047 Nonzero (-1)**S*2**(E-1023)*1.f

S 0 Nonzero (-1)**S*2**(-1022) *0.f

1 0 Zero 0

0 0 Zero 0

                

      

3.2 A Simple Example 

       Consider the number 0.15625. In order to represent it as a 64 bit number we do the 

following

1. Convert 0.15625 to binary which is 0.001012. This conversion can be stopped 

depending on the precision we require in the binary equivalent.

2. Represent the equivalent in standard notation. This becomes 1.01 * 2-3

3. Determine biased exponent by adding 1023 to original exponent .This gives 1020.

4. Mantissa is 1.01 .Make leading 1 implicit so that effective representation becomes

0 for sign bit

01111111100 for biased exponent

01 for mantissa. 

       5. Fill in the remaining bits of mantissa with zeros.

3.3 Description of Floating Point Cores
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              The following section describes the two floating point cores required for matrix 

multiplication. The two cores operate on each entry of the sparse matrix bringing the total 

number of floating point operations to twice the number of nonzeros in the sparse matrix. 

3.3.1 The Floating Point Multiplier 

     The algorithm for double precision multiplication is based on the simple idea of 

multiplication of two numbers expressed in scientific notation. 

Given 2 numbers A and B with A = m.decimal   *   10 eA  and B = n.decimal  * 10 eB  ,the 

product AB is computed by multiplication of the values m.decimal and n.decimal and 

addition of exponents i.e. to say that AB = (m.decimal * n.decimal) * 10 (eA + eB) .Further 

the product can be expressed in scientific notation if needed. 

The following modules make up the multiplier:

1. Denormalizer

2. Fixed Point mantissa multiplier

3. Fixed point adder / subtractor

4. Normalizer

5. Rounding module

The design is fully synchronous. The top module of the multiplier is shown in Fig 4.3

3.3.1.1 Module Denormalizer

              This implementation restricts itself to handling normalized values alone. More 

on handling denormal numbers is found in [9]. The denormalizer essentially makes the 

implied bit explicit. IEEE 754 format expects 52 bits of Mantissa with 1 in the 53rd bit

that remains hidden and is implicit. For the purpose of multiplication the mantissa needs 

to be of the form 1.f. The denormalizer checks to see if the exponent of any of the 

operands is not zero. This is because numbers with zero exponents are unnormalized and 

are out of the scope of this design. The range of values that are considered normalized is 

provided in table 3.1.

    The denormalizer uses 11 bit comparator cores provided by Xilinx 8.2i for comparing 

the exponent with zero. While port A of the core is fed an exponent of float A, port B is 

given a constant 11 bit input of zero. The outputs are registered.
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Fig 3.3: High level view of Floating Point multiplier core

 Description of the Comparator core

   The Xilinx comparator core v8.0 provides comparison logic for A=B, A<=B, A>=B, 

A>B, A<B and A<>B. It operates on two’s complement signed or unsigned data and can 

take 1 to 256 bits of input. Additionally it provides options for comparisons with a 

constant as well as optional clock enable synchronous and asynchronous controls for 

synchronous outputs. The core is shown in Fig 3.4. The depth of pipelining is constrained 

by the width and / or the operation being performed.[12]. For comparisons versus a 

constant B value of widths unto 16 bits, only two pipeline stages are possible. The degree 

of pipelining allowed and the corresponding operations are summarized in table 3.2.  

3.3.1.2.Module Multiplier 

    The outputs of the denormalizer are registered and given to the multiplier shown in 

Fig.3.3. The multiplier houses a fixed point mantissa multiplier core from Xilinx. Once 

the product is computed, the multiplier calculates the XOR of the sign bits of A and B 

and outputs the resultant sign bit. Use of XOR yields a negative result for one negative 
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input and a positive result for two negative inputs. 

                                           Fig 3.4 Comparator v8.0

The multiplier module also yields the sum of the two exponents and deducts the bias of 

1023 from the result. There is a pipeline stage inserted between the adder and the 

subtractor to increase frequency. Exponent addition and subtraction is also achieved by 

Xilinx cores whose pipelines can be varied for increasing frequency.

Fixed Point Mantissa Multiplier 

              The mantissa multiplier takes two 54 bit inputs and yields a registered output 

that is 108 bits long. The mantissa of a 64 bit number inclusive of the hidden or the 

implied bit is only 53 bits long. However a 54 bit pipelined core is needed as the 53 bit 

core in Xilinx ISE 8.2i does not work well with overflow. Depth of pipelining of the 

multiplier module is dependent to a great extent on the depth of pipelining in this core. 

Multiplier v8.0 provides only two values; 0 for no pipelining and 1 for full pipelining and 

the default is 1. The latency of the multiplier will depend on the width of the two inputs 

A and B .The core is shown in Fig 3.5.

     Comparator v8.0

A [N: 0]

B [N: 0]

SCLR

    CE

<OUT>

 < Q_OUT>

ACLR

ASET

   CLK

SSET

Courtesy: www.xilinx.com
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    Table 3.2:  Allowable bit widths and depth of pipelines in comparator v8.0

                                  Fig 3.5 Fixed Point Mantissa Multiplier 

Operation   Bit width Pipelining

 <   Max = 256 1(+ 1 optional o/p register)

<>  Max = 256 Max = 5

= Variable B >2 1

= Variable B >8 2

= Variable B >32 3

=Variable B > 128 4

= Const B > 4 1

= Const B >16 2

= Const B >64 3

<= Max = 256 1(+ 1 optional o/p register)

>= Max = 256 1(+ 1 optional o/p register)

> Max = 256 1(+ 1 optional o/p register)

ACLR         SCLR

         Multiplier v8.0    courtesy: www.xilinx.com

A                                          Q

A_signed               Load done

B

Load B                            RFD
Swap B

ND

CLK                              RDY

CE
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Fixed Point Adder/Subtractor

          The multiplier module also houses a fixed point adder/subtractor for adding the 

exponents and subtracting the bias from the sum. The adder/subtractor is a 11 bit core 

that Xilinx provides and can be readily instantiated .A pipeline stage can be inserted 

between the adder and the subtractor to increase frequency. The core is shown in Fig 3.6.

The adder/subtractor core can create adders for A+B, subtractors for A-B or adder 

/subtractors that operate on both signed and unsigned data. 

ADD
OVFL

C_OUT

S[P:0]

BYPASS

CIN

D_ OVFL

D_C_OUT

D[P:0]

BYPASS

CE

ASET SSET

Q_ OVFL

Q_C_OUT

Q[P:0]

ACLR SCLR AINIT SINIT

A[N:0]

A_ SIGNED

B_ SIGNED

B[M:0]

X9078

CLK

Fig 3.6 Fixed point adder/subtractor core v7.0 (courtesy: www.xilinx.com)
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3.3.1.3 Module Normalizer and Rounding

                    Once the product of the two 54 bit mantissas is obtained, we can 

conveniently disregard the first 2 bits for any further calculation. Our interest now lies in 

bits 0 through 105 as the maximum number of bits in the product of two n bit inputs is 

2n. The product of a normalized floating point number with another normalized floating 

point number is bound to yield a value that has at most two significant digits and hence 

there needs to be a shift of at most two digits and a corresponding adjustment in the 

exponent. This uses a shifter and an exponent subtractor. A pipeline stage can be inserted 

between the shifter and the exponent subtractor for increasing the frequency. The shifter 

is clock controlled and each shift takes a single clock cycle. 

      Rounding of the final value takes place to the nearest, depending on the conditions 

listed in table 3.3. [3]

                                Table 3.3 Rules for Rounding 

Rounding mode Sign of Result >= 0 Sign of Result < 0

Nearest +1 if( r xor p0 ) or (r xor s) +1 if r xor p0 or r xor s

+∞ +1 if r xor s

-∞ +1 if r xor s

                               

    In table 3.3, r represents the round bit, s the sticky bit and p0 is the pth  most significant 

bit of the result. Blanks mean that the p most significant bits of the result are the result 

bits themselves. If condition is true, we add one to the pth most significant bit of the result 

[3].

3.3.1 Floating Point Adder 

     The floating point adder computes the sum or the difference of two floating point 

numbers depending on the sign of the inputs .It uses two’s complement arithmetic to 

determine difference of two numbers wherever necessary.

The adder comprises the following modules:

1. Denormalizer

2. Shifter

3. Adder

4. Rounding
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5. Sign 

3.3.2.1 Module Denormalizer 

The denormalizer has the same function as that of the denormalizer module of the 

multiplier. It makes the hidden bit explicit. It further unpacks the floating point numbers 

to its corresponding exponents, mantissas and sign bits. As mentioned in the description 

of the denormalizer of the multiplier, the design does not handle denormals. So the 

module includes a comparator core v8.0 described in section 3.3.1.1 in order to check if 

the exponents are zero. An additional check that the denormalizer does is to compare the 

two exponents with each other to determine if E1 < E2, where E1 is A’s exponent and E2 

is B’s exponent. This comparison uses comparator v8.0 with certain modifications. The 

module encapsulates the functions of the denormalizer, 11 bit comparators for generating 

logical equal to and less than functions and a swapper. The 11 bit comparators can be 

pipelined similar to the one described in section 3.3.1.1.

          The result of the comparator drives the swapper .Once the comparator outputs high, 

the swapper swaps the mantissas and the exponents. The exponent of the final result is 

always set to E1. A pipeline stage is inserted between the comparator and the multiplexer 

in order to increase frequency. 

The signs of the two inputs are given to a two input xor gate. If the signs are 

different, then the two’s complement of the second operand is evaluated. There is a 

pipeline inserted between the evaluation of the two’s complement and the swap in case 

the signs are opposite. The module also needs to output the difference of the exponents in 

order to keep a tab on the number of shifts to get a normalized result. A 11 bit exponent 

subtractor determines the difference of exponents. A 11 bit subtractor core v7.0 is used 

for the purpose. The core is explained in 3.3.1.1. A view of the denormalizer is shown in 

Fig 3.7.

3.3.2.2 Module Shifter

    The denormalizer outputs the difference between the exponents so as to align the 

mantissas for addition or subtraction according to this difference. The shifter maintains a 

counter that decrements from this value until zero while simultaneously shifting M2 to 

the right once every decrement. From the shifted bits, the first shifted bit is registered as g 

or the guard bit, the second as r and the rest are OR ed together to form a sticky bit s. All 
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these bits are given to the rounding module to complete the process of packing the result 

to the required precision. This is illustrated in fig 3.8.

      Fig 3.7 Mantissa Swapping and Exponent determination in Denormalizer

3.3.2.3 Module Adder

       The adder uses a Xilinx adder core v7.0 for 54 bit addition of the mantissas. The 54th

bit of the sum in itself yields the Carry because the mantissas are originally only 53 bits 

long and the sum of two n bit numbers has a maximum of n+ 1 bits. The adder core has 

already been discussed in 3.3.1.1. The core has options for add, subtract and add/subtract 

and can take care of signed and unsigned options. It is possible to have an add/subtract 

instantiation in the design and avoid calculation of the two’s complement as is done in 

the denormalizer. The add/subtract in its signed implementation takes care of the 

calculation of two’s complement intrinsically and prevents the need to generate the two’s 

complement of the result again. However, creating a two’s complement within the 

module gives better control to experiment with possible pipelining effects. The 

computation of the sign of the result depends on swapping and complement 

determination in these modules. More is explained in table 3.4. So it is mandatory to 

register if a complement is done by asserting the “Complemented” signal high. The entire 

module is enabled by a SHIFTDONE signal received from the shifter.
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0   1    1     0   …………………… .0      0   1       1    0     1 

0th  bit

s

g

  r

                           Fig 3.8 Bit sequence after right shift

3.3.2.4 Module Rounding     This module takes care of the shifting of the sum and 

rounding it to the nearest available precision. It synthesizes to a priority encoder whose 

main functions are captured in Fig 3.9.
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XOR
S1
S2

MSB

C1

1

1
2C                SUM

    S

SUM

C2

Shift right 
once, push in 

carry out
R = SUM[0]

S = g|r|s

Shift left until 
normalized,push 

g,push 0,
Exp = Exp - 1

           Fig 3.9 Priority encoding in rounding module    

The priority encoder operates on the sum from module adder in the following order:

1. If signs of A and B differ, MSB of sum is 1, there is no carry out then result needs 

to be replaced by its two’s complement.

2. If signs of A and B are the same and there is a carry out then shift right once .Also 

shift the carry out into the sum.

3. Else shift left until the mantissa is normalized taking care to shift in the g bit and 

then zeros successively each left shift.

4. For a right shift, set rounding bit (r) to the LSB of sum before shifting. Set sticky 

bit is equal to OR of the guard bit, rounding bit and sticky bit.

5. If there is no shift ,set the rounding bit and guard bits to the same value ,the sticky 

bit to OR of round bit and sticky bit

6. If there are more than two left shifts set rounding bit and sticky bit to zero.[3]
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3.3.2.5 Module Sign

    The sign of the final result can be determined from the table given below. The table is 

implemented as a look up table. Swapped and Complemented are outputs from the 

denormalizer and the rounding module. Sign of the output is registered. Rounding is now

done in accordance with table 3.3.

                       Table 3.4 Determination of sign [3]

3.4 The sparse matrix 

               By definition, a sparse matrix holds a large number of common values .This 

eliminates the need to store all the individual entries of the sparse matrix with their rows 

and columns .Rather, there is an enormous savings in memory if the row and column 

values of the uncommon entries alone can be saved. In matrix A, these common entries 

are all zero.

The nonzero entries are 64 bit precision values and can be stored in one of the following 

well known formats for sparse matrix storage.

1. Row compressed format

2. Column compressed format

Swapped   Complemented SignA1 SignA2 Sign of

 result

Yes X + - -

Yes X - + +

No No + - +

No No - + -

No Yes + - -

No Yes - + +
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 3.4.1 Row compressed Format             

                                             

                           2.5    0     0      0

     A     =                  0    1.4    0      0

                                              0    0.9   1.23  0

                                              0     0      0    -1.4

                                 Fig 3.10 A sample sparse matrix 

Consider the 4*4 matrix given in fig 3.10.

        Nonzero entries  = { 2.5 , 1.4 , 0.9 , 1.23, -1.4 }

       Column values for Nonzero entries = { 0 , 1 ,1, 3 }

       Position index of the first nonzero in each row in the array of Nonzero = 

        {0, 1, 2, 4}

       Length of each row = {1, 1, 2, 1}

       The length of each row is found from the array of position indices by subtracting the 

first entry from the second, the second from the third and so on. The length of the last 

row can be found by subtracting the last value of the array of position indices from the 

total number of nonzero entries in the matrix. 

3.4.2 Basic Architecture 

            The floating point cores discussed in the previous sections form cardinal 

computational cores for many applications. One such application is matrix multiplication. 

Here is a basic architecture with the cores put in place. It is primarily used to demonstrate 

the usefulness of the cores built so far, so matrix product computation is done only when 

the number of non zero entries per row is a multiple of the number of subrows  per row. 

More elaborate and functionally complex architectures have been explored in [6].
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                          Fig 3.11 A simple matrix multiplication architecture

The architecture comprises a control unit, a counter, memory, a set of floating point 

multiplier storage units, a binary tree of floating point adders and a sub row sum 

accumulator. The following sections talk more about each of these modules.

3.4.2.1 Module Descriptions

Control Unit    

The control unit has an enable signal that is active high. It encapsulates a 

divider core that determines the number of subrows in each row. The divider receives two 

inputs; the number of nonzeros in a given row and the number of multiplier storage units 

that is held constant throughout the implementation. The control unit receives these 

variable inputs from the test bench after the counter asserts the zero signal high. The 

control unit is enabled by cu sel signal which is asserted only when the zero signal is 

asserted low. The divider core is explained below.

 Divider

      The divider module is an IP core offered by Xilinx and can be simply instantiated for 

the purpose of design .It is compatible with ModelSim 6.1 and can be customized. 

Determination of the number of sub rows for a given row is critical to the design because 

this determines the number of additions that sub row sum accumulator does before 
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writing the sum of products to the output memory or the C matrix. The divider takes in a 

byte long input for the divisor and dividend and yields the quotient in one clock cycle.

        Additional pins provided by the core include CE, SCLR, ACLR and RFD.CE refers 

to clock enable. CE is active high. Therefore the module retains its state when CE is 

deasserted. SCLR refers to Synchronous Clear. Core flip-flops used in the design of the 

divider can be synchronously initialized using this assert. ACLR refers to Asynchronous 

Clear. Core flip-flops used in the design of the divider can be asynchronously initialized 

using this assert. RFD refers to Ready for Data and is an indication of the cycle number at 

which the input data gets sampled by the core. RFD changes with the rising edge of CE if 

available.

      Fig 3.12: Pipelined Divider v3.0 

Within the core, RFD always appears at the output .However it is applicable only when 

an internal parameter called divclk_sel equals 1. In our design, the core is fully pipelined. 

The value of divclk_sel within the IP core is set to 1. This also means that the core 

samples the inputs on every enabled clock rising edge and RFD is always set to 1.

 Counter       

The counter is latched with an input of the total number of subrows in a given 

row. It steadily decrements values as well as generates memory addresses for accessing 

A and B values .The counter decrements as and when the mem done signal goes high. 

Dividend                RFD        

Divisor             Quotient

Clock            Remainder
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Memory  

     Memory is modeled as register files .The test bench populates these register files with 

the nonzero entries, their column values and the number of nonzero entries per row. The 

primitive $readmemh allows hex values to be read off the file and dumped into register 

files. The register file of nonzero values is 64 bits long and holds about 256 values. The 

bit widths held in the other two register files is dependent on the maximum length of 

rows that the sample file holds.

Multiplier   

        Each of these units receives the 2 floating point numbers to be multiplied .This is the 

floating point multiplication core that was discussed earlier. The number of multiplier 

units that need to be operated in parallel is dependent on the sparsity structure of the 

matrix. Analysis of sparsity structure of matrix requires detailed statistics about the 

matrix and the number of nonzero entries. Also the number of Floating point units that 

can be configured on the FPGA is limited by the available resources. This 

implementation does not depend on the sparsity structure of the matrix  

       In order to input two double precision values to the multiplier the FPGA chosen must 

atleast accommodate 128 input pins. Simulation on devices that are constrained by IOBs 

or input output ports are bound to report an warning during synthesis and a subsequent 

error during mapping and translation onto the FPGA.

Binary tree of adders

       The outputs from the multipliers are fed into a binary tree of adders. Each of these 

adders is the double precision core described earlier. Two of the four products go into the 

nodes of the tree .It is to be noted that the total number of leaf nodes is only four. So the 

tree has three levels. The root node of the tree passes the cumulative sum of products 

from one sub row only. Therefore this module does not keep a tab on the number of 

subrows whose products and sums have been calculated.

Sub row Sum Accumulator

       The sub row sum accumulator checks to see if the counter has reached a value of 

zero. This means that it has accumulated the sum from each of the individual sub rows. 

When it sees a high zero it asserts cu sel high. The control unit now writes the value to 

memory.
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If the size of each row is k, then the sum accumulator is not required as the root node 

itself yields the final result. However the values are still allowed to pass through the 

accumulator to maintain the simplicity of implementation.
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Chapter 4

Verification

    

         Design verification is defined as the reverse process of design. It takes in an 

implementation as an input and confirms that the implementation meets the 

specifications. Though design verification includes functional verification, timing 

verification, layout verification and electrical verification, functional verification is by

default termed design verification.

          Two popular forms of verification are the simulation based approach and the 

formal verification approach. The most important difference between the two approaches 

is that simulation based approaches need input vectors while formal verification 

approaches do not. In the former, we generate input vectors and derive reference outputs 

from them. However a formal verification approach differs in that it predetermines what 

output behavior is desirable and uses the formal checker to see if it agrees or disagrees 

with the desired behavior. This shows that simulation based approach is input driven 

while formal approach is output driven. Since formal verification methodology operates 

on an input space as against chosen vectors, it can be more complete. Simulation based 

approach takes a point in the input space at a time and therefore samples few points only.

However, this can be justified due to the extensive use of memory and long runtime that 

formal verification uses. Besides when memory overflow is encountered, the tools are at 

a loss to show what is the right problem and its fix. [7]

         This design has been verified using a simulation based approach. In order to verify 

the functionality of the cores, it is mandatory to have inputs with variable combination of 

signs. This ensures if the sign determination modules abide by the rules provided within 

the look up tables. Hence a combination of (+, +), (- ,-), (+,-), (-, +) were provided to the 

adder and multiplier. Since an explicit two’s complement determination unit is used, the 

cores must be able to distinguish between similar and variable signs to pass the operands 

through the two’s complement and shifter when need arises.
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     The design is also checked with variable exponents. This is done in order to check the 

alignment of the two exponents in favor of the larger. This check is important because it 

checks the functionality of the shifter. The design is capable of handling only normalized 

inputs. A check for denormalized inputs is already embedded in the design. However we 

need to verify if the accelerator gracefully terminates with zero outputs when such inputs 

are given. 

    The Normalizer or the priority encoder is the main part of the module that prepares 

the adder for rounding and sign determination. This module needs to be completely 

verified. Hence inputs are so designed that each case in the priority encoder gets 

exercised. Verification of this module covers a large number of values from the input 

space.

      Lastly, the design is verified for overflow and underflow cases. A value of exponent 

greater than 2047 should set the result to infinity and a value of zero is set when the 

exponent is zero and the mantissa is also zero.
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Chapter 5

Results 

            This chapter discusses results and interpretations from simulation and synthesis 

of the floating point cores. It throws light on the tradeoffs made in various points in 

design as well as a few nuances of FPGA design that come to fore during emulation.

 5.1 Simulation

             This design has been implemented using Xilinx ISE 8.2i, simulated on ModelSim 

6.1i and synthesized using XST for Verilog. The HDL code uses Verilog 2001 constructs 

that provide certain benefits over the Verilog 95 standard in terms of scalability and code 

reusability. Simulation based verification is one of the methods for functional verification 

of a design. In this method, test inputs are provided using standard test benches. The test 

bench forms the top module that instantiates other modules. Simulation based verification 

ensures that the design is functionally correct when tested with a given set of inputs. 

Though it is not fully complete, by picking a random set of inputs as well as corner cases, 

simulation based verification can still yield reasonably good results.

The following snapshots are taken from ModelSim 6.1 after the timing simulation of the 

adder and multiplier cores.  

Consider the inputs to the floating point adder. 

 A = -1.25

  B = 1.5

The inputs to the adder were the corresponding hex values obtained from [13].

A = 64’hBFF4000000000000

B = 64'h3FF8000000000000       

The output of the adder should be 0.25 .After regrouping the bits from the resulting 64 bit 

number; the sum is interpreted.

From fig 5.1 ,the sign of the result is 0 ,mantissa is 1 followed by 0…….1011011,a total 

of 53 bits and the exponent after subtracting the bias gives -2.This implies 

1.000000…………1011011 * 2 -2 which is  2.5000000000000505e-1.
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                                   Fig 5.1 Simulation results from adder

Let us now consider two inputs to the multiplier.

A = 1.0

B = -1.3

Expected product = -1.3

Product = -1.3000000000000003

The results from simulation are provided in Fig 5.2. On regrouping the sign, mantissa and 

the exponent we obtain -1.3000000000000003.

5.2 Synthesis 

     Synthesis is defined as the process of converting an HDL description of a design into 

an optimized gate-level representation. Synthesizing modules on an FPGA involves 

mapping them to logic resources like Look up tables (LUTs), block RAMs and flip flops. 

The Xilinx synthesis tool generates the area and timing reports that provide an estimate of 

device utilization and performance. The device utilization and performance report lists 

the compiled cells in the design, as well as information on how the design is mapped in 

the FPGA. [11]. A few settings that are configurable on the FPGA are optimization 
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effort, area goal, timing goal, resource sharing, register retiming etc. The synthesis tool 

provides default settings for optimum performance over generalized applications. A large 

portion of the synthesis uses these default settings. 

 There are certain applications that may require customization of these settings but 

caution should be exercised. A typical example would be resource sharing for reducing 

gate count ,but resource sharing cannot be used in timing critical paths.

                        Fig 5.2 Simulation results from the multiplier

During design it is helpful to keep a model of synthesized logic in mind and not allow it 

to grow so complex that it becomes a problem for the synthesis tool. One of the well 

established methods of taking advantage of the synthesis tool’s capability is to minimize 

and pack logic effectively by not creating purely combinational modules. This is because 

none of the popular FPGA architectures have purely combinational elements and there is 

a good chance of one or more registers getting wasted when a pure combinational block 

needs to be implemented.[10] The results from XST clearly depict this. The entire design 

is fully synchronous and there are no pure combinational blocks. The design uses a single 

clock.
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      There are two methods to improve performance of design. One is to assist the 

synthesis tool in identifying critical logic blocks by use of timing constraints. The other 

method involves writing a code that gives the synthesis tool an easier problem to solve. 

This also means use of pipelines or fast structural elements to implement logic. 

      One of the most important metrics to determine performance of a hardware 

accelerator is throughput. In general, pipelining is one of the most effective methods to 

improve throughput. It is found through synthesis that the depth of pipeline directly 

affects throughput. Pipelining offers an overall saving in time for execution of all 

instructions put together. It does not affect individual instruction time. However the 

flipside to pipelining in use of increased resources and a subsequent increase in area.

Since throughput is a ratio of clock speed and area, it is necessary to strike a fine balance 

so as to be able to maintain high throughputs. For this reason, it is often necessary to play 

around with values at both ends of the clock speed and area spectrum until a point of 

diminishing returns is reached.

        Table 5.1 Variation of Freq/Area with pipelining for 64 bit multiplier

             

               

A sample of the timing report and device utilization summary generated using XST is 

shown below. The report was generated for maximum pipelining.

                      *                            Final Report                               *

===============================================================

No of pipelines 

(adder )

Area 

(Slices)

Clock Rate

(MHz)

Freq/Area 

(MHz/slice)

Minimum 424 65.996 0.1556

Maximum 964 176.585 0.1831
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Device utilization summary:

---------------------------

Selected Device: 2vp40fg676-7 

 Number of Slices:                    1956 out of 19392    10%  

 Number of Slice Flip Flops:          3405 out of 38784     8%  

 Number of 4 input LUTs:              3480 out of 38784     8%  

    Number used as logic:             3292

    Number used as Shift registers:    188

 Number of IOs:                        195

 Number of bonded IOBs:                195 out of    416    46%  

 Number of GCLKs:                        1 out of     16     6%  

===============================================================

TIMING REPORT 

Clock Information:

-----------------------------------+------------------------+-------+

Clock Signal                       | Clock buffer (FF name) | Load |

-----------------------------------+------------------------+-------+

Clock                                  | BUFGP                          | 3593 |

-----------------------------------+------------------------+-------+

Asynchronous Control Signals Information:

----------------------------------------

No asynchronous control signals found in this design

Timing Summary:

---------------

Speed Grade: -7

   Minimum period: 5.663ns (Maximum Frequency: 176.585MHz)

   Minimum input arrival time before clock: 3.224ns

   Maximum output required time after clock: 3.340ns

   Maximum combinational path delay: 

    No path found
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--------------------------------------------------------------------------------------------------------

A comparison of throughputs between earlier implementations and ours is shown in table 

5.2.

Table 5.2 Comparison of results from the synthesis of multiplier

         

   Total power consumed can also be estimated in Xilinx ISE 8.2i using XPower. Table 

5.3 tabulates power for minimum and maximum pipelining in the multiplier core. Xilinx 

XPower is a power analysis software tool. It uses device knowledge and design data to 

estimate device power and power utilization in the nets. [13].

                Table 5.3 Power vs. pipelining for 64 bit multiplier 

S.no Level of pipelining wrt 

multiplier core

Power (mW)

1. Minimum 260

2. Maximum 511

Synthesis results from 64 bit adder

    The double precision adder core is also synthesized using Xilinx XST. The details 

from the device utilization summary and timing reports for various levels of pipelining 

are captured in table 5.4.

PRECISION

64 BITS

NCSU USC NEU

Area (slices) 964 910 477

Clock Rate

(MHz/slice)

176.585 205 90

Freq/Area

(MHz/slice)

0.1831 0.225 0.188
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      Table 5.4 Synthesis results from 64 bit adder

A comparison between our implementation and previous implementations has been 

drawn and summarized in table 5.5 and table 5.6. In table 5.5, Opt stands for optional 

which denotes highest frequency/area ratio. This is because we investigate tradeoffs in 

frequency and area by extensively pipelining the core until we reach the point of 

diminishing returns. The Max value in the table captures this precisely. There is no point 

in increasing the depth of pipelines beyond the point of diminishing returns.

       Table 5.5 Comparison of minimum, maximum and optimal metric for adder

     

No. of 

Pipeline

Stages

Area 

(slices)

LUTS Flip flops Clock Rate 

(MHz)

Freq/Area 

MHz/slice

12 876 1075 1168 176.177 0.2011

16 877 1097 1168 180.442 0.2057

18 924 1042 1182 182.121 0.197

19 930 1100 1183 184.312 0.198

USC NCSUPrecision

64 bits Min Max Opt Min Max Opt

Pipelines 6 21 19 8 19 16

Area (slices) 633 1133 933 548 930 877

LUTS 1049 1032 976 976 1100 1097

Flip flops 443 1543 1148 598 1183 1168

Clock (MHz) 50 220 200 69.97 184.3 180.4

Freq/Area 

MHz/slice

0.078 0.194 0.216 0.127 0.198 0.206
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         Table 5.6 Table of metric comparisons for 64 bit adder

                       

                                            

Experimental results from USC and NEU are provided in [4] and [8]. Relation between 

the depth of pipelines and throughput is shown in Fig 5.4. Table 5.7 captures the variation 

of power as measured on Xpower with pipelining. The Xilinx Synthesis tool translates, 

maps and does a place and route for a design after which it uses XPower to computer the 

total power consumed by the device. Power measurements are summarized in table 5.7 

and the variation is graphically captured in Fig 5.3.

                     

Metric NCSU USC NEU

No of pipeline 

stages

16 19 8

Area (slices) 877 933 770

Clock Rate 

(MHz)

180.4 200 54

Freq/Area 

(MHz/slice)

0.206 0.216 0.07
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                           Table 5.7 Variation of power with pipelining in 64 bit adder

    

              

                  

                     

                 Fig 5.3 Variation of power with pipelines in 64 bit adder 
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Fig 5.4 Variation of freq/area vs. pipelines in 64 bit adder

The placed and routed design for the multiplier and adder are shown in Fig 5.5 and Fig 

5.6. Xilinx ISE 8.2i provides means to implement the design and realize it on the FPGA 

by providing functions for translation, mapping and finally place and route. Let’s take the 

case of the multiplier. The report from the place and route tool states that about 9% of the 

area has been utilized. Since area is not a big constraint here, we can focus more on 

timing related constraints more and try to improve the frequency of operations through

more pipelining. But for every application, it’s a question of whether an addition in time 

or area is really affordable or not. The design needs to be tweaked in accordance with 

such a requirement. The choice of the FPGA is crucial during the synthesis of the design. 

In case of a 64 bit operation, be it a multiplier or an adder, it only makes sense to have 

atleast 64 input ports and better still 128 for two inputs to be fed to the device. Often 

times during synthesis, if the device utilization summary reports “more than 100% of 

resources are being used” or anything similar, it only makes sense to upgrade to a higher 
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device, since we do not want to be constrained with regard to fundamental resources on a 

board.

        Fig 5.5 Snapshot of the 64 bit multiplier after place and route
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    Fig 5.6 Snapshot of the 64 bit adder after place and route

The snapshots were obtained after the synthesis, mapping and translation of the cores on 

Virtex 2P XC2VP40 (package FG676) run at a speed grade of -7.
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Chapter 6

Conclusion and Future Work

Double precision floating point arithmetic significantly increases the levels of 

precision when compared to single precision floating point or integer arithmetic.

However there might be situations where double precision calculation results in a 

numerically unstable solution. This could mean that double precision is insufficient to 

obtain an accurate result. In such a case, quadruple or multiple precision floating point 

arithmetic can be used. A typical example is a Bessel function calculation J1(x) for |x| up 

to a few hundreds. Though it is a convergent series for small values of x, in case of large 

values, the result is unstable. The final sum of the series is often 10-15 orders lower in 

magnitude than the intermediate sum which reduces confidence in any of the digits in the 

final sum. [14].

 Though we have implemented a basic architecture for matrix multiplication using the 

double precision cores, as an extension, it is possible to implement advanced 

architectures for handling very large sparse matrices with refinement in the sum 

accumulator and at the cost of hardware complexity. Further the algorithm for sum and 

product computations can be extended to the implementation of more complex arithmetic 

or better precision arithmetic with the use of quadruple precision or multiple precision 

floating points.

Additionally, in an application such as sparse matrix multiplication, the latency 

involved in shifting within the floating point adder or the multiplier core should not be 

largely variable. In order to cater to this, barrel shifters need to be explored to better 

optimize the latency of the entire matrix multiplication unit.
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APPENDIX A

Verilog HDL for Multiplier and Adder Cores

VERILOG HDL FOR MULTIPLIER

TEST BENCH FOR 64 BIT MULTIPLIER

`timescale 1ns / 1ps
////////////////////////////////////////////////////////////////////////////////////////////
// Company     : North Carolina State University
// Engineer    : Yasaswini Sudarsanam
//
// Module Name: Rounding
// Project Name: Double precision floating point arithmetic cores (Multiplication)
// Device          : Xilinx Virtex 2 pro - XC2VP20 
// Description : Testbench for multiplier core 
//
// Ports            : None
//
// Sub modules: topmult 
//
// Revision    : 0.01 - File Created (9/15)
//                     0.02 - Variation in test inputs from here on
//                     0.03 - Creation of topmult to encapsulate all submodules.Elimination of    
//                     sub modules from the test bench
//
////////////////////////////////////////////////////////////////////////////////////////////
module test();
reg clock;
reg done;
reg reset;
reg [63:0] floatA;
reg [63:0] floatB;
wire [51:0] final_product;
wire [10:0] exp_sumAB;
initial 
clock = 1'b0;
always
#5 clock = ~clock;
topmult t1(clock,reset,done,floatA,floatB,final_product,exp_sumAB,sign_A_B);
initial
begin
floatA = 64'hBFF0000000000000;
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floatB = 64'hBFF4CCCCCCCCCCCD;
done = 1;
reset = 1;
#10 reset = 0;
end

endmodule

TOP MODULE FOR MULTIPLIER

`timescale 1ns / 1ps

////////////////////////////////////////////////////////////////////////////////////////////
// Company     : North Carolina State University
// Engineer    : Yasaswini Sudarsanam
//
// Module Name: Rounding
// Project Name: Double precision floating point arithmetic cores (Multiplication)
// Device      : Xilinx Virtex 2 pro - XC2VP20 
// Description : Topmodule for multiplier. Encapsulates the denormalizer, multiplier
//               and rounding modules 
// Ports   :  Clock - Clock input
//               reset - Synchronous Reset
//               floatA - 64 bit multiplicand 
//               floatB - 64 bit multiplier
//               final_product - Product after rounding
//               exp_sumAB - exponent after rounding
//               sign_A_B  - Sign of product 
//
// Submodules: None
//
//
// Revision    : 0.01 - File Created (9/9)
//
//
////////////////////////////////////////////////////////////////////////////////////////////
module topmult(clock,reset,done,floatA,floatB,final_product,exp_sumAB,sign_A_B);
input clock;
input done;
input [63:0] floatA;
input [63:0] floatB;
input reset;
wire sign_bitA;
wire sign_bitB;
wire [53:0] mantissaA;
wire [53:0] mantissaB;
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wire [10:0] exponentA;
wire [10:0] exponentB;
wire denormalized;
wire [107:0] productAB;
wire [10:0] exponent_sum;
wire prod_done;
output [51:0] final_product;
output [10:0] exp_sumAB;
output sign_A_B;
wire sign_A_B;
wire reset;
wire [51:0] final_product;
wire [10:0] exp_sumAB;
denorm 
d1(clock,reset,done,floatA,floatB,sign_bitA,sign_bitB,mantissaA,mantissaB,exponentA,e
xponentB,denormalized);
multiplier 
m1(clock,reset,denormalized,sign_bitA,sign_bitB,mantissaA,mantissaB,exponentA,expo
nentB,productAB,exponent_sum,sign_A_B,prod_done);
rounding 
r1(clock,reset,productAB,exponent_sum,prod_done,final_product,exp_sumAB);
endmodule

MODULE DENORMALIZER

`timescale 1ns/1ps
////////////////////////////////////////////////////////////////////////////////////////////
// Company     : North Carolina State University
// Engineer    : Yasaswini Sudarsanam
//
// Module Name: Rounding
// Project Name: Double precision floating point arithmetic cores (Multiplication)
// Device      : Xilinx Virtex 2 pro - XC2VP20 
// Description : Topmodule for multiplier. Encapsulates the denormalizer, multiplier
//                        and rounding modules 
// Ports    : Clock - Clock input
//               reset - Synchronous Reset
//               done - Handshaking signal with an external module whose logic includes this 
//               core
//               floatA - 64 bit multiplicand 
//               floatB - 64 bit multiplier
//               sign_bit1 - 1 bit sign of A 
//               sign_bit2 - 1 bit sign of B
//               mantissa1 - 53 bit mantissa of floatA, includes implicit 1,
//                           extended to 54 bits for ease of use with Xilinx core
//               mantissa2 - 53 bit mantissa of floatB, includes implicit 1,
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//                           extended to 54 bits for ease of use with Xilinx core
//               exponent1 - 11 bit exponent of floatA
//               exponent2 - 11 bit exponent of floatB
//               denormalized - 1 bit assertion to denote end of operations in the denormalizer
//               final_product - Product after rounding
//               exp_sumAB - exponent after rounding
//               sign_A_B - Sign of product 
//
// Submodules: Constant Port B comparator//
//
// Revision    : 0.01 - File Created (9/9)
//
//
////////////////////////////////////////////////////////////////////////////////////////////
module 
denorm(clock,reset,done,floatA,floatB,sign_bit1,sign_bit2,mantissa1,mantissa2,exponent
1,exponent2,denormalized);
input clock;
input done;
input reset;
input [63:0] floatA;
input [63:0] floatB;
output sign_bit1;
output sign_bit2;
output [53:0] mantissa1;
output [53:0] mantissa2;
output [10:0] exponent1;
output [10:0] exponent2;
output denormalized;
reg sign_bit1;
reg sign_bit2;
reg [10:0] exponent1;
reg [53:0] mantissa1;
reg [10:0] exponent2;
reg [53:0] mantissa2;
reg [10:0] zero_reg;
wire qA1;
wire qA2;
reg denormalized;
     comp c1(qA1,clock,floatA[62:52]);
     comp c2(qA2,clock,floatB[62:52]);
always @(posedge clock)
begin

if(!reset)
begin

if(done && !denormalized && !qA1 && !qA2 )
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begin
sign_bit1 <= floatA[63];
sign_bit2 <= floatB[63];
exponent1 <= floatA[62:52];
exponent2 <= floatB[62:52];
mantissa1 <= {1'b1,floatA[51:0]};
mantissa2 <= {1'b1,floatB[51:0]};
denormalized <= 1;
end

end
else
begin
mantissa1 <= 54'b0;
mantissa2 <= 54'b0;
exponent1 <= 11'b0;
exponent2 <= 11'b0;
sign_bit1 <= 1'b0;
sign_bit2 <= 1'b0;
denormalized <= 1'b0;
zero_reg <= 11'b0;
end

end
endmodule

MODULE MULTIPLIER
`timescale 1ns / 1ps
////////////////////////////////////////////////////////////////////////////////////////////
// Company     : North Carolina State University
// Engineer    : Yasaswini Sudarsanam
//
// Module Name : Rounding
// Project Name: Double precision floating point arithmetic cores (Multiplication)
// Device      : Xilinx Virtex 2 pro - XC2VP20 
// Description : Topmodule for multiplier. Encapsulates the denormalizer,multiplier
//               and rounding modules 
//
// Ports       : Clock - Clock input
//                  reset - Synchronous Reset
//                 denormalized - Enable signal
//                 floatA - 64 bit multiplicand 
//                 floatB - 64 bit multiplier
//                 sign_bitA - 1 bit sign of A 
//                 sign_bitB - 1 bit sign of B
//               mantissaA - 53 bit mantissa of floatA, includes implicit 1 ,
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//                           extended to 54 bits for ease of use with Xilinx core
//               mantissaB - 53 bit mantissa of floatB, includes implicit 1 ,
//                           extended to 54 bits for ease of use with Xilinx core
//               exponentA - 11 bit exponent of floatA
//               exponentB - 11 bit exponent of floatB
//               prod_done - 1 bit assertion to denote end of operations in the multiplier
//               productAB - Mantissa product 
//               exponent_sum - exponent after multiplication
//               sign_A_B - Sign of product 
//
// Submodules: 54 BIT MULTIPLIER CORE
//
//
// Revision    : 0.01 - File Created (9/9)
//
//
////////////////////////////////////////////////////////////////////////////////////////////
module 
multiplier(clock,reset,denormalized,sign_bitA,sign_bitB,mantissaA,mantissaB,exponent
A,exponentB,productAB,exponent_sum,sign_A_B,prod_done);
input clock;
input denormalized;
input reset;
input sign_bitA;
input sign_bitB;
output sign_A_B;
input [10:0] exponentA;
input [10:0] exponentB;
input [53:0] mantissaA;
input [53:0] mantissaB;
output [107:0] productAB;
output [10:0] exponent_sum;
output prod_done;
reg [10:0] exponent_sum;
reg sign_A_B;
reg [11:0] exp_temp;
wire [107:0] productAB;
reg prod_done;
mult m1(clock,mantissaA,mantissaB,productAB);

always@ (posedge clock)

if(!reset)
begin

if(denormalized)
begin
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//This addition is  replaced by the 11 bit  Xilinx core 
exp_temp = exponentA + exponentB;

                        //While experimenting with number of pipelines ,
                        //this subtraction can use a core and be pipelined with addition from above

exponent_sum <= exp_temp - 1023;
end

   sign_A_B <= sign_bitA ^ sign_bitB;
   prod_done <= 1;
end

           else
begin
prod_done <= 0;
sign_A_B <= 0;
end

endmodule

MODULE ROUNDING

`timescale 1ns / 1ps
////////////////////////////////////////////////////////////////////////////////////////////
// Company     : North Carolina State University
// Engineer    : Yasaswini Sudarsanam
// Module Name: Rounding
// Project Name: Double precision floating point arithmetic cores (Multiplication)
// Device      : Xilinx Virtex 2 pro - XC2VP20 
// Description : This module takes care of rounding the product to the nearest 
// Ports       :  clock - Clock input
//                   reset - Synchronous Reset
//                 productAB - product of mantissas
//                   exponent_sumAB - Exponent sum 
//                   prod_done - module enable signal that says product calculation is done and    
//                   rounding can begin
//                   final_product- Rounded product 
//                   exp_sum - Exponent after rounding 
//
//
// Submodules: None
//
//
// Revision    : 0.01 - File Created (9/9)
//
//
////////////////////////////////////////////////////////////////////////////////////////////
module rounding (
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clock, reset, productAB, exponent_sumAB, prod_done, final_product, exp_sum);
input clock;
input reset;
input [107:0] productAB;
input [10:0] exponent_sumAB;
output [51:0] final_product;
output [10:0] exp_sum;
reg    [51:0] final_product;
reg    [105:0] productA_B;
reg    [10:0] exp_sum;
input  prod_done;
integer n;
integer r;
reg inputset;
reg expset;

always @ (posedge clock)
if(!reset)
begin
  if(inputset == 1)

begin
if (productA_B[105] == 1'b1 && productA_B != 0)
//pipeline with Xilinx core for addition

         exp_sum[10:0] <= exp_sum[10:0] + 11'b1;
else 

begin
if(productA_B[104] == 1'b1 && productA_B != 0)
productA_B <= productA_B ;

end
expset <= 1;
end
if(expset)
begin

if(productAB != 0)
begin

if(productA_B[54] == 1'b0)
begin
  if(productA_B[105] == 1'b1)
  final_product <= productA_B[104:53];
  else if(productA_B[105] != 1'b1 && productA_B[104] == 1'b1)
  final_product <= productA_B[103:52];
end
else if(productA_B[54] == 1'b1)
begin
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  if(productA_B[105] == 1'b1)
  
  
  //replaced with Xilinx core for addition 
  final_product[51:0] <= productA_B[104:53] + 52'b1;
  else if(productA_B[105] != 1'b1 && productA_B[104] == 1'b1)
  final_product[51:0] <= productA_B[103:52] + 52'b1;
end

end
end
if(prod_done == 1 && productAB != 0)
begin
productA_B[105:0] <= productAB[105:0];
exp_sum[10:0] <= exponent_sumAB;
inputset <= 1;
end

end
else
begin

n <= 107;
r <= 54;
productA_B <= 0;
final_product <= 52'b0;
inputset <= 0;
expset<=0;

end
endmodule

VERILOG HDL FOR ADDER 

TEST BENCH  

`timescale 1ns / 1ps
////////////////////////////////////////////////////////////////////////////////////////////
// Company     : North Carolina State University
// Engineer    : Yasaswini Sudarsanam
// Module Name : Test bench for adder
// Project Name: Double precision floating point arithmetic cores (Addition)
// Device      : Xilinx Virtex 2 pro - XC2VP20 
// Description : This module provides inputs for simulation based verification of the 
adder core
// 
////////////////////////////////////////////////////////////////////////////////////////////
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module test();
reg clock;
reg reset;
reg done;
reg [63:0] floatA;
reg [63:0] floatB;
wire sign_res;
wire [52:0] Sum_final;
wire [10:0] exp_final;
initial
clock = 1'b0;
always
#5 clock = ~ clock;

initial 
begin
reset = 1'b1;
#15 reset = 1'b0;
floatA = 64'hBFF4000000000000;
floatB = 64'h3FF8000000000000;
done = 1'b1;
end
topadd tadd1(clock,reset,done,floatA,floatB,sign_res,exp_final,Sum_final);
endmodule

MODULE TOPADD

`timescale 1ns / 1ps
////////////////////////////////////////////////////////////////////////////////////////////
// Company     : North Carolina State University
// Engineer    : Yasaswini Sudarsanam
// Module Name : Top module for adder
// Project Name: Double precision floating point arithmetic cores (Addition)
// Device      : Xilinx Virtex 2 pro - XC2VP20 
// Description : This module takes care of rounding the product to the nearest 
// Ports       :     clock - Clock input
//                   reset - Synchronous Reset
//                   done - Assertion from external module
//                   floatA - input1 to the adder
//                   floatB - input2 to the adder
//                   sign_res - Sign of the final result 
//                   exp_final - Exponent of the final result
//                   Sum_final - Final sum after rounding
//                   Submodules: None
// Revision    : 0.01 - File Created (9/9)
//
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//
////////////////////////////////////////////////////////////////////////////////////////////

module topadd(clock,reset,done,floatA,floatB,sign_res,exp_final,Sum_final);
input clock;
input reset;
input [63:0] floatA;
input [63:0] floatB;
input done;
output sign_res;
output [10:0] exp_final;
output [52:0] Sum_final;
wire sign_bit1;
wire sign_bit2;
wire [53:0] mantissa1;
wire [53:0] mantissa2;
wire [10:0] exponent1;
wire denormalized;
wire [10:0] expdiff;
wire [10:0] expres;
wire [53:0] m2;
wire shiftdone;
wire g;
wire r;
wire s;
wire [53:0] sum;
wire add_done;
wire [10:0] exp_out;
wire [52:0]Sm;
wire sign_res;
wire [52:0] Sum_final;
wire [10:0] exp_final;
denorm 
d1(clock,reset,done,floatA,floatB,sign_bit1,sign_bit2,mantissa1,mantissa2,exponent1,exp
diff,expres,denormalized,swapped);
shift sh1(clock,reset,mantissa2,expdiff,denormalized,m2,shiftdone,g,r,s);
adder ad1(clock,reset,m2,mantissa1,shiftdone,sum,add_done);
round_compute 
r_c1(clock,reset,expres,sum,sign_bit1,sign_bit2,add_done,r,s,g,r1,s1,Sm,complement,exp
_out,rounding_computed);
finaldpfpsum 
f1(clock,reset,swapped,complement,rounding_computed,sign_bit1,sign_bit2,Sm,r1,s1,ex
p_out,sign_res,exp_final,Sum_final);

endmodule
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MODULE  DENORMALIZER

`timescale 1ns / 1ps
////////////////////////////////////////////////////////////////////////////////////////////
// Company     : North Carolina State University
// Engineer    : Yasaswini Sudarsanam
// Module Name : Denormalizer
// Project Name: Double precision floating point arithmetic cores (Addition)
// Device      : Xilinx Virtex 2 pro - XC2VP20 
// Description : Handles denormalization
// Ports       :     clock - Clock input
//                   reset - Synchronous Reset
//                   done - Assertion from external module
//                   floatA - input1 to the adder
//                   floatB - input2 to the adder
//                   sign_bit1 - Sign bit of float A
//                   sign_bit2 - Sign bit of float B
//                   mantissa1 - Mantissa of float A
//                   mantissa2 - Mantissa of float B
//                   exponent1 - 11 bit exponent of float A
//                   expdiff - Difference of exponents 
//                   denormalized - assertion to indicate module operation completion
//                   swapped - assertion to indicate if swap has been done
//                   Submodules: None
// 
//
////////////////////////////////////////////////////////////////////////////////////////////

module 
denorm(clock,reset,done,floatA,floatB,sign_bit1,sign_bit2,mantissa1,mantissa2,exponent
1,expdiff,expres,denormalized,swapped);
input clock;
input done;
input reset;
input [63:0] floatA;
input [63:0] floatB;
output sign_bit1;
output sign_bit2;
output swapped;
output [53:0] mantissa1;
output [53:0] mantissa2;
output [10:0] exponent1;
output [10:0] expdiff;
output [10:0] expres;
output denormalized;
reg sign_bit1;
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reg sign_bit2;
reg [10:0] exponent1;
reg [53:0] mantissa1;
reg [53:0] mantissa2;
reg [10:0] expdiff;
reg [10:0] expres;
reg swapped;
wire qA1;
wire qA2;
wire qexp;
reg denormalized;
     comp c1(qA1,clock,floatA[62:52]);   

  comp c2(qA2,clock,floatB[62:52]);
  expcompare c3(clock,qexp,floatA[62:52],floatB[62:52]);

always @(posedge clock)

if(!reset)
begin

if(done && !denormalized && !qA1 && !qA2 )
begin
sign_bit1 <= floatA[63];
sign_bit2 <= floatB[63];
   if(qexp)

begin
exponent1 <= floatB[62:52];
expdiff <= floatB[62:52] - floatA[62:52];
expres  <= floatB[62:52];
mantissa1 <= {1'b1,floatB[51:0]};
swapped <= 1;

                                                           //pipeline complement and addition here
if(floatA[63] ^ floatB [63] != 1'b1)
mantissa2 <= ( ~ {1'b1,floatA[51:0]})  + 52'b1;
else
mantissa2 <= {1'b1,floatA[51:0]};

  end
else
begin

exponent1 <= floatA[62:52];
expdiff <= floatA[62:52] - floatB[62:52];
expres  <= floatA[62:52];
mantissa1 <= {1'b1,floatA[51:0]};
if(floatA[63] ^ floatB [63] == 1'b1)
mantissa2[52:0] <= (~{1'b1,floatB[51:0]}) + 52'b1;
else
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mantissa2[52:0]  <= {1'b1,floatB[51:0]};
end

denormalized <= 1;
  end
end

    else if(reset)
begin
mantissa1 <= 54'b0;
mantissa2 <= 54'b0;
exponent1 <= 11'b0;
sign_bit1 <= 1'b0;
sign_bit2 <= 1'b0;
denormalized <= 1'b0;
expdiff <= 11'b0;
expres <= 11'b0;
swapped <= 1'b0;
end

endmodule

MODULE SHIFT

`timescale 1ns / 1ps
////////////////////////////////////////////////////////////////////////////////////////////
// Company     : North Carolina State University
// Engineer    : Yasaswini Sudarsanam
// Module Name : Shifter
// Project Name: Double precision floating point arithmetic cores (Addition)
// Device      : Xilinx Virtex 2 pro - XC2VP20 
// Description : Alignment of exponents 
// Ports       :     clock - Clock input
//                   reset - Synchronous Reset
//                   mantissa2 - 54 bit mantissa
//                   expdiff - Difference of exponents 
//                   denormalized - assertion from denormalizer
//                   shiftdone - Assertion to denote completion of shift
//                   g - guard bit
//                   r - rounding bit
//                   s - sticky bit 
// 
//
//
////////////////////////////////////////////////////////////////////////////////////////////

module shift(clock,reset,mantissa2,expdiff,denormalized,m2,shiftdone,g,r,s);
input clock;
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input reset;
input [53:0] mantissa2;
input [10:0] expdiff;
input denormalized;
output [53:0] m2;
output g;
output r;
output s;
output shiftdone;
reg shiftdone;
reg [10:0] counter;
reg [53:0] m2;
reg r;
reg g;
reg s;
reg counterset;
integer i;

always @(posedge clock)
if(!reset)
begin

if(denormalized)
begin
if(expdiff != 0)
begin
counter <= expdiff;
counterset <= 1;
end
else
begin
counter <= 0;
counterset <= 0;
m2 <= mantissa2;
shiftdone <= 1'b1;
end
end

 if(!shiftdone && denormalized && counterset)
begin
   if(i == 0)

begin
g <= mantissa2[0];
m2 <= mantissa2 >> 1;
i <= i + 1;
end

else if( i== 1)
begin
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r <= mantissa2[1];
m2 <= m2 >> 1;
i <= i + 1;
end

else 
   begin

s <= s | mantissa2[i];
m2 <= m2 >> 1;
i <= i + 1;

    end
 if(i == counter- 1)

                   shiftdone<= 1;
   end

end
else
begin

shiftdone <= 0;
m2 <= 54'b0;
s <= 1'b0;
g <= 1'b0;
r <= 1'b0;
i <= 0;

end
endmodule

MODULE MANTISSA ADD

`timescale 1ns / 1ps
////////////////////////////////////////////////////////////////////////////////////////////
// Company     : North Carolina State University
// Engineer    : Yasaswini Sudarsanam
// Module Name : Mantissa Adder
// Project Name: Double precision floating point arithmetic cores (Addition)
// Device      : Xilinx Virtex 2 pro - XC2VP20 
// Description : Addition of mantissas 
// Ports       :     clock - Clock input
//                   reset - Synchronous Reset
//                   m1 - 54 bit mantissa float A
//                   m2 - 54 bit mantissa float B
//                   shiftdone - Assertion to denote completion of shift
//                   sum - Result of addition
//                   add_done - End of addition
//
//
////////////////////////////////////////////////////////////////////////////////////////////
module adder(clock,reset,m2,m1,shiftdone,sum,add_done);
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input clock;
input reset;
input [53:0] m2;
input [53:0] m1;
input shiftdone;
output add_done;
reg add_done;
reg add_done_1;
output [53:0] sum;
wire [53:0] sum;
//add a1(m1,m2,Q_C_OUT,sum,clock,shiftdone);
add a1(m1,m2,sum,clock,shiftdone);
always @ (posedge clock)
if(!reset)
begin

if(shiftdone)
add_done_1 <= 1'b1;
if(add_done_1 == 1'b1)
add_done <= 1'b1;

end
else
    add_done_1 <= 1'b0;

endmodule

MODULE ROUND_COMPUTE

`timescale 1ns / 1ps
////////////////////////////////////////////////////////////////////////////////////////////
// Company     : North Carolina State University
// Engineer    : Yasaswini Sudarsanam
// Module Name : Round_compute
// Project Name: Double precision floating point arithmetic cores (Addition)
// Device      : Xilinx Virtex 2 pro - XC2VP20 
// Description : Rounding
// Ports       :     clock - Clock input
//                   reset - Synchronous Reset
//                   expres - Exponent of result
//                   sum - sum from mantissa adder
//                   signA1 - Sign of float A
//                   signA2 - Sign of float B
//                   add_done - Assert from module addition
//                   r - rounding bit
//                   s - sticky bit
//                   g - guard bit
//                   r1 - intermediate value of rounding bit
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//                   s1 - intermediate value of sticky bit
//                   Sm - intermediate sum for rounding
//                   complement - set assertion for sign determination
//                   exp_out - intermediate exponent for rounding
//                   round_computed - Assertion to indicate completion of computation of 
rounding values
////////////////////////////////////////////////////////////////////////////////////////////
module 
round_compute(clock,reset,expres,sum,signA1,signA2,add_done,r,s,g,r1,s1,Sm,complem
ent,exp_out,rounding_computed);
input clock;
input reset;
input [53:0] sum;
input [10:0] expres;
input add_done;
input r;
input g;
input s;
input signA1;
input signA2;
output [10:0] exp_out;
output complement;
output [52:0] Sm;
output r1;
output s1;
output rounding_computed;
reg [52:0] Sm;
reg complement;
reg rounding_computed;
reg [5:0] i;
reg [10:0] exp_out;
reg r1;
reg s1;
reg left_shifted;
reg right_shifted;
//reg rounding_computed_1;
reg exp_done;
reg complement_1;
always @ (posedge clock)
if(!reset)
begin

if(add_done)
begin
if((signA1 ^ signA2 == 1'b1) && sum[53] == 1'b0 &&  sum[52]== 1'b1     
&& !complement)

begin



65

//Pipeline here between complement finding and addition
Sm <= ~sum[52:0] + 1;
complement <= 1;
exp_out <= expres;
end
else if((signA1 ^ signA2 == 1'b0) && sum[53] == 1'b1 && 
!rounding_computed)
begin
Sm <= sum >> 1;
exp_out <= expres + 1;
r1 <= sum[0];
s1 <= g|r|s;
rounding_computed <= 1'b1;
end
if(complement == 1'b1)
begin
complement_1<= 1'b1;
Sm <= Sm + 1'b1;
end
if(complement_1 == 1'b1)
begin

if(Sm[52]!= 1'b1)
begin

if(i == 0)
begin
Sm <= Sm << 1; 
left_shifted <= 1;
i <= i + 1;
end
else
begin
Sm <= Sm<<1;
left_shifted <= 1;
i <= i + 1;
if(i >= 1)

begin
r1 <= 0;
s1 <= 0;
rounding_computed <= 1;
end

          end
if(left_shifted == 1'b1 ) 
begin
exp_out <= exp_out - 1;
exp_done <= 1;
end
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end
else if(Sm[52] == 1'b1 && i == 0)
begin
r1 <= g;
s1 <= r | s;
rounding_computed <= 1;
end 

   
end

end
end
else

begin
            r1 <= 0;

s1 <= 0;
complement <= 1'b0;
Sm <= 53'b0;
exp_out <= 11'b0;
left_shifted <= 1'b0;
right_shifted <= 1'b0;
exp_done <= 1'b0;
i <= 0;
end

endmodule

MODULE FINALDPFPSUM

`timescale 1ns / 1ps
/////////////////////////////////////////////////////////////////////////////////////////////
// Company     : North Carolina State University
// Engineer    : Yasaswini Sudarsanam
// Module Name : finaldpfpsum
// Project Name: Double precision floating point arithmetic cores (Addition)
// Device      : Xilinx Virtex 2 pro - XC2VP20 
// Description : Final sum calculation
// Ports       :     clock - Clock input
//                   reset - Synchronous Reset
//                   swapped - Assertion indicating swapping done/not done
//                   complement - Assertion indicating complement done/not done
//                   rounding_computed - Assertion indicating rounding bits set/ not set
//                   sign_bit1 - Sign bit of float A
//                   sign_bit2 - Sign bit of float B
//                   S - final sum
//                   r1 - rounding bit from rounding_compute module
//                   exp_final- Final exponent
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//                   sum_final - Final sum 
////////////////////////////////////////////////////////////////////////////////////////////
module 
finaldpfpsum(clock,reset,swapped,complement,rounding_computed,sign_bit1,sign_bit2,S
,r1,s1,exp_out,sign_res,exp_final,Sum_final);
input clock;
input reset;
input swapped;
input rounding_computed;
input complement;
input sign_bit1;
input sign_bit2;
input [10:0] exp_out;
input [52:0] S;
output [52:0] Sum_final;
output [10:0] exp_final;
input r1;
input s1;
reg signset;
reg add_one;
wire add_done;
output sign_res;
reg sign_res;
reg [53:0]S_final;
reg [52:0]Sum_final;
reg [53:0] Sum_temp;
wire [53:0] Sum;
reg [10:0] exp_final;
reg S_final_Set;
adder add1(clock,reset,S_final,54'b1,add_one,Sum,add_done);
always @(posedge clock)
if(!reset)
begin

if(rounding_computed == 1'b1)
begin
   casex({swapped,complement,sign_bit1,sign_bit2})

4'b1x01: sign_res <= 1'b1;
4'b1x10: sign_res <= 1'b0;
4'b0001: sign_res <= 1'b0;
4'b0010: sign_res <= 1'b1;
4'b0101: sign_res <= 1'b1;
4'b0110: sign_res <= 1'b0;
4'bxx11: sign_res <= 1'b1;
4'bxx00: sign_res <= 1'b0;
endcase
signset <= 1;
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S_final <= S;
end

if(signset == 1'b1)
begin

if((r1 ^ S[52]) || (r1 ^ s1))
add_one <= 1;
else
add_one <= 0;

end
if(add_done == 1'b1)
begin
   Sum_temp <= Sum;
   S_final_Set <= 1’b1;
end
if(S_final_Set == 1'b1)

            begin
 if(Sum_temp[53] == 1'b1)

begin
Sum_final <= Sum_temp >>1;
//Addition can be substituted with a 11 bit Xilinx core
exp_final <= exp_out + 1;
end
else
begin
Sum_final <= Sum_temp;
exp_final <= exp_out;

         end
end

end
  
else
begin
add_one <= 1'b0;
sign_res <= 1'bx;
exp_final <= 11'b0;
Sum_final <= 54'b0;
S_final <= 54'b0;
end
endmodule


