
ABSTRACT

ARJUN, VINOD. A Database Level Implementation To Enforce Fine Grained Access
Control. (Under the direction of Dr. Ting Yu).

As privacy protection has gained significant importance, organizations have been

forced to protect individual preferences and comply with many enacted privacy laws. This

has been a strong driving force for access control in relational databases. Traditional re-

lation level access control is insufficient to address the increasingly complex requirements

of access control policies where each cell in the relation might be governed by a separate

policy. In order to address this demand, we are in need of a more fine grained access

control scheme, at the row-level or even the cell-level. A recent research paper proposed

correctness criteria for query evaluation algorithms enforcing fine grained access control

and showed that existing approaches did not satisfy the criteria. In addition, the paper

proposed a query modification approach to implement a sound and secure query evaluation

algorithm enforcing fine grained access control. To evaluate queries involving moderate

table sizes of 50000 and 100000 records we experimentally find that the implementation

takes approximately 8 and 32 seconds respectively. This is approximately 10 times, on an

average, slower than query evaluation algorithms without access control. This performance

gap increases significantly with increase in table size, thus rendering it impractical. In this

thesis, we modify the query evaluation engine of POSTGRESQL to enforce fine grained

access control at the database level. We address a few challenges and propose optimizations

to counter inefficiencies that we encounter when moving the access control scheme to the

database level. We analyze the performance of our implementation using data sets with

various properties and find that it performs approximately 10 times better compared to the

query modification approach on moderate table sizes of 50000 and 100000 records. Also, we

find that our implementation scales well with table size. Experimental results show that our

implementation is comparable to the performance of query evaluation algorithms without

access control and hence is practical.
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Chapter 1

Introduction

As privacy protection has gained significant importance, organizations have been

forced to protect individual preferences and comply with many enacted privacy laws. This

has been a strong driving force for access control in databases. For example, in a typical

bank setting, the bank database would contain the account information of many customers.

When one customer tries to view his account details it is imperative that he view only his

account information and not of any other customers’. The primary means of achieving this

requirement is by enforcing appropriate access control.

Much work has been done on the specification of database access control policies [13,

15, 16]. Traditional policies treat tables or columns as the basic access control unit. Re-

cently, security policy models have emerged to specify row-level or cell-level access control.

Conceptually, with fine-grained access control, a policy defines for each cell whether it can

be accessed by a user. In this thesis we focus on enforcing access control policies while

evaluating a query issued by the user. We assume that the access control policies for each

user are already in place. Hence, we do not focus on the specification of such policies.

1.1 Enforcing Fine Grained Access Control

There are two approaches to ensure the enforcement of access policies when a user

queries a database. In the first approach, the access control is implemented as a middleware

between the user and the DBMS. As shown in Figure 1.1, when the user issues a query Q,

the middleware rewrites query Q to another query Q′ , where Q′ ensures only authorized



2

cells are accessed by the query, thus enforcing the access policies for that user. The rewritten

query Q′ is passed on to the DBMS for execution.

User 
Issues 

Query Q

Middleware 
Rewrites Query Q 

to Query Q’ 
Enforcing Access 

DBMS 
Executes 
Query Q’Q y Q g

Control
Query Q  

Figure 1.1: Application Level Access Control [1]

In this approach the underlying DBMS need not be changed. It is required only to write

the middleware between the user and the DBMS in order to rewrite the query to enforce

access control. It is easy to deploy in existing systems. On the other hand, the rewritten

queries can be too expensive to execute. In addition, if the user has direct access to relations

in the DBMS then he can bypass the middleware that rewrites the query, in which case the

access policies do not get enforced [5].

In the second approach, access control is placed at the database level, as shown in Fig-

ure 1.2. In this approach, the query Q that the user issues does not get rewritten by a

middleware as in the first approach. Instead, the DBMS receives and executes the query Q

taking into account the access control policies formulated for the issuer of the query.

User 
Issues 

Query Q
Middleware

DBMS Executes 
Query Q Taking 
into Account the 
Access Control 

P li i S ifi dPolicies Specified 
for the User

Figure 1.2: Database Level Access Control [1]

In this approach, the access control functionality is integrated into the DBMSs. As a

result, it is possible to have optimizations targeted at access control. Another advantage

with this approach is that it is harder to bypass the enforcement of access control policies
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when they get integrated into the DBMS. The major drawback with this approach is that

the underlying DBMS would have to be changed to support access control [5].

Some of the existing approaches to enforce fine grained access control include Oracle’s

Virtual Private Database [7], query modification in INGRES [8], access control in DB2 [9],

and work in Hippocratic Databases [6]. How do we actually know that the results obtained

by these query evaluation algorithms enforcing access control are indeed correct? Recently,

Wang et al. [5] have proposed three correctness criteria that an ideal query evaluation

algorithm enforcing fine grained access control should possess, namely, sound, secure and

maximal. The algorithm is sound if the answer returned by it is consistent with the answer

when there is no fine-grained access control. The algorithm is secure if the returned answer

does not leak information not allowed by the policy. The algorithm is maximal if it returns

as much information as possible, while satisfying the first two properties. In addition to

the above stated three properties, the algorithm should be scalable, i.e. be able to handle

databases of arbitrary size.

Unfortunately, none of the existing approaches satisfy all the correctness criteria proposed

by Wang et al [5]. They argue that the existing approaches do not strive to achieve the

maximal property. To appreciate this argument let us assume that there are two tables that

are linked through an attribute A. If A is considered sensitive, then the existing approaches

replace the cells in A with NULL value. As a result, it becomes impossible to maintain the

association between the two tables. They also argue that the exisiting approaches violate the

soundness property. They attribute this to the way in which existing approaches evaluate

the SQL set difference operation. We encourage the readers to see the example in Section

3.1.1 to appreciate this argument.

Wang et al. have proposed a query evaluation algorithm to enforce fine grained access

control, which satisfies the three correctness criteria of security, soundness and maximality.

In their algorithm, they use named variables to mask unauthorized cells. If the attribute

A involved in the association between two tables is considered sensitive, then they replace,

consistently in both tables, each value of A with a different variable. This preserves the

association between the two tables. In order to make their algorithm sound, they have in-

troduced two different modes to evaluate queries and have proposed an evaluation technique
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for queries involving SQL set difference operation, which have been discussed in Section 3.3.

They have implemented their algorithm using a query modification approach.

Though their query evaluation algorithm was novel, Wang et al. were not able to show

good performance through their query modification approach. For moderately sized tables

having 50000 and 100000 records, their approach takes about 8 and 32 seconds to evaluate

queries involving SQL set difference operation. For time critical applications this is not fast

enough. Also, their approach does not scale well with tables of larger sizes. Thus, there is

scope for further research in this area and this has precisely been the motivating factor for

this thesis.

1.2 Our Contribution

• We have implemented a query evaluation algorithm that enforces fine grained access

control at the database level. We have chosen to modify the query evaluation en-

gine of POSTGRESQL, which is an open source database management system, to

incorporate the access control features. In this way, the overhead that is involved in

query rewriting is overcome. Though the task of incorporating access control into the

DBMS is difficult, the performance increase compared to the query rewriting approach

is substantial, as can be observed from the graphs in chapter 5.

• We have come up with a few optimizations to improve the performance of the database

level implementation. We have used an index structure, which has been discussed in

chapter 4, to efficiently evaluate queries involving SQL set difference operation.

• Another challenging issue that we have addressed is that of scalability. When relations

of arbitrarily large sizes are used in queries, then memory management becomes an

important issue. The main memory might not be sufficient enough to hold the entire

relation, in which case we might have to turn to the secondary disk as an alternative.

Our implementation tries to make use of the main memory in an adaptive fashion,

i.e. try to use as much main memory as available. We have also tried out a few

optimizations in this regard, which are discussed in chapter 4.

• We have run extensive experiments to analyze the performance of our implementation

and compare it with the performance of the query modification approach proposed by
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Wang et al. [5]. The experimental results, which are presented in chapter 5, conclu-

sively show that our database-level implementation to enforce access control presented

in this thesis performs substantially better compared with the query modification ap-

proach. In fact, the results presented in chapter 5 show that the performance of the

DBMS with access control implemented within it is comparable to the original imple-

mentation of the DBMS that has no access control features. This implies that it is

not too expensive to incorporate access control within DBMSs and hence is practical.

The rest of the thesis is organized as follows. In Chapter 2, we discuss some of the work

done by other researchers related to access control in databases. In Chapter 3, we discuss the

correctness criteria, a sound and secure query evaluation algorithm to enforce fine grained

access control and the query modification approach to implement the algorithm, proposed

by Wang et al. [5]. In Chapter 4, we elaborate on our proposed implementation. We explain

the index structure and other optimizations that play a significant role in achieving good

efficiency. We also present some of the challenges that we encounter when access control

features are implemented within the DBMS, and propose solutions. In chapter 5, we discuss

the experiments that we performed, and analyze the results that we obtained. In Chapter

6, we conclude this thesis and outline some of the work that we wish to undertake at some

point in the future.
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Chapter 2

Related Work

The work presented in this thesis is related to access control, privacy policy specifi-

cation and access control enforcement. We first discuss the basic concepts of access control.

Towards this end, we first discuss the modeling of access policies and then elaborate on

modeling the system state that is relevant to access control. We then discuss the existing

work with regard to specification of access control policies in DBMS. Finally, we discuss

some of the most relevant work in enforcing access control policies in DBMS.

2.1 Basic Concepts of Access Control

Two major ways to model access control policies include Discretionary Access

Control (DAC) and Mandatory Access Control (MAC).

In the DAC scheme, the access control policies are formulated by the owner of the ob-

ject. There is no notion of system-wide access control policies. DAC is supported by many

of the operating systems, including UNIX. For example, if Alice owns a file called ”secu-

rity concepts.doc”, then she has all privileges on that file. In addition, she can decide as to

which users get read, write and execute rights. Thus, one good aspect of DAC is that it is

flexible and allows the owner to authorize those who can have access to the object she owns.

On the contrary, this scheme does not impose any kind of restriction on information flow.

Let’s suppose that Alice is an instructor for the CSC574 class at NCSU. She gives read, and

write access to a file named ”security concepts.doc” to all the students in the class. Bob,

who is registered for the class, gets read and write access to the file. He in turn copies this



7

file into a new file called ”chapter1.doc” and gives his friend Carol read and write accesses

to the file. Thus, Carol, who isn’t registered for the CSC574 class, gets access to the file

that she isn’t supposed to. For this reason, the DAC scheme is subject to Trojan Horse

attacks. Figure 2.1 illustrates the typical way a Trojan Horse attack is carried out.

File F

Principal A

executes A: r

ACL

Software Game

Trojan Horse

File Fread A: w

B
File Gwrite B: r

A: w

Figure 2.1: Trojan Horse Attack [3]

In the scenario depicted in Figure 2.1, user B wants to know the contents of file F for

which she does not have read access. User A has read and write access to file F. In this

situation, B embeds a Trojan Horse program into a program that A trusts, like a software

game, and entices A into executing it. Also, B creates another file G, gives read access to

herself and write access to A. When A plays the game thus executing it, the Trojan Horse

program embedded within the game can access the contents of file F since it is running on

behalf of A. Now, it copies the contents of file F into file G due to the permissions granted

to A on file G. Hence, B can now read the contents of file F that has been copied into file G.

Clearly, the DAC scheme has a weakness against Trojan Horse attacks. The MAC scheme,

which is discussed subsequently, is designed to overcome this drawback.

In the MAC scheme, access control policies are formulated centrally by system adminis-

trators. The access of subjects to objects is restricted through the introduction of security

labels. The data objects are assigned classification levels such as Top Secret, Secret, Un-

classified etc., and each user is assigned a clearance level. The following two restrictions for

access control are adopted in the MAC scheme [4].

• Simple Security: Subject S can read object O only if the clearance level of S dominates

the security label of O. Intuitively, this restriction vouches for ”no read up”.
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• Star Property: Subject S can write object O only if the security label of O dominates

the clearance level of S. Intuitively, this restriction vouches for ”no write down”.

The Star Property stated above enables the MAC scheme to overcome the Trojan Horse

attacks, as elaborated in Figure 2.2.

File F

Principal A

executes A: r

ACL

Software Game

Trojan Horse

File Fread A: w

B
File Gwrite

B: r
A: w

Figure 2.2: MAC preventing Trojan Horse Attack [3]

As shown in Figure 2.2, when principal A executes the program containing the Trojan

Horse, the program can read the contents of file F since the program, executing on behalf

of A, has the required permissions to do so. The program is prevented from writing the

contents of file F into file G as this would otherwise violate the Star Property. Hence the

Trojan Horse attack is thwarted. The MAC scheme is used for highly secure systems such as

military applications, but turns out to be inappropriate when it comes to governmental and

industrial environments where a lot if information is unclassified, but sensitive. Role-Based

Access Control (RBAC), which is discussed subsequently, is used in such environments.

In the RBAC scheme [2], the system administrator assigns permissions to roles. When

a user assumes a particular role, she would inherit the permissions that go with that role.

Roles in an organization would fall into a neat hierarchy. Often, roles within the organiza-

tions remain fixed, but, the role that a user assumes varies from time to time depending on

what job the user has to accomplish. Generally, the principle of least privilege has to be

followed while assigning roles to the user. It is required that the user be given no higher

privilege than what is needed to perform the job.

Now, having discussed ways to model access control policies, we briefly outline the mod-

eling of system state pertaining to access control.
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System state relevant to access control can be modeled as a matrix as shown in Figure 2.3.

The rows of the matrix correspond to the various subjects. Subjects can be principals, or

programs executing on behalf of the principals. The column of the matrix represents objects.

Objects are anything on which subjects can perform operations, such as file, directory,

memory segments etc., or they can be subjects too with operations like kill, suspend etc.

The cells specify the access of the subject to the object.

Objects (and Subjects)

r w rU

F G

Objects (and Subjects)

S
u r w

own
r

r w

U

V

u
b
j
e
c

own
V

t
s

Figure 2.3: Access Control Matrix [3]

Access Control Matrices are not efficient to represent system state pertaining to access

control. This is because, very often, they are sparsely populated, as a result of which too

much space gets wasted. There are two alternatives to the matrix modeling, namely, Access

Control List (ACL) and Capability List.

U: r
U: w
U: own

F

U: r
V: r
V: w

G

V: own

Figure 2.4: Access Control List [3]

In ACL, each column of the access matrix is stored along with the access permissions of

the subjects appearing in that column. Figure 2.4 shows ACLs for two files F and G. The

ACL for F indicates that the subject U has read, write, and own privileges on it. The ACL

for G indicates that the subject U has only read permission, whereas the subject V has

read, write and own privileges on it. In this method of modeling, it is easy to determine
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all the subjects that have access rights on a given object, and is also easy to revoke all the

subject’s access rights on a given object, but, it is hard to revoke all the access rights of

a given subject. This is because, to revoke all the access rights of a given subject, it is

required to scan the ACLs of all the objects.

F/r, F/w, F/own, G/rU

G/r G/w G/ownV G/r, G/w, G/ownV

Figure 2.5: Capability List [3]

In Capability Lists, each row of the access matrix is stored along with the access permis-

sions to objects appearing in that row. Figure 2.5 shows the Capability Lists of two subjects

U and V. It indicates that the subject U has read permissions on both objects F and G.

In addition, U has write and own privileges on object F. Subject V has read, write and

own privileges on object G. Capabilities provide for superior access review on a per-subject

basis, but, it is hard to revoke all the access permissions on a particular object [3].

2.2 Specification of Privacy Policies

The GRANT command in SQL [13] can be used to specify access restrictions at

the table or relation level. When a user creates a new table, then he is entirely responsible

for that table, and he can give privileges to whomever he wishes to. The privileges that

the user can grant on a table include the ability to use that table in a query (READ), and

ability to perform INSERTs, UPDATEs and DELETEs on the table. The syntax for the

GRANT command is as follows.

GRANT {All Rights/<privileges>/All but <privileges>} ON <table> TO <user-list>

[WITH GRANT-OPTION]

The table creator can specify the ”All Rights” option to grant all privileges to the users,

or he can specify the privileges explicitly, or he can use the ”All but <privileges>” option

if there arises a necessity to grant almost all privileges except a very few. The creator

of the table can specify the GRANT-OPTION that would enable the grantees to further
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grant their privileges on the table to other users. For example, let’s suppose that user Alice

creates a table named ”ExamSchedule” to maintain the semester exam schedules. She,

being helpful, decides to give her friend Bob the privilege to read from the table so that he

too can benefit from it. In addition, she decides to give Bob the privilege to grant to other

students hoping that other students too would make use of it. In order to accomplish this

task, she issues the following GRANT statement.

Alice: GRANT READ ON EXAMSCHEDULE TO Bob WITH GRANT-OPTION

Griffiths et al. [14] extended this approach to handle conflicts that could possibly arise

when multiple users grant conflicting privileges on a table to other users. They have done

significant work in handling privilege revocations. One major observation to be made here is

that the GRANT command of SQL allows a user to grant privileges at the table or relation

level. However, this approach isn’t sufficient enough to handle very complex privacy policies

that are prevalent these days. There is a necessity for a scheme to specify access control

policies at a more fine-grained level.

In their work on Hippocratic databases, Agarwal et al. [16] have specified access control

in a ”table-format”. Their approach can be used to specify access control policies easily

at the column level. For each purpose and for each attribute (column) accessed for that

purpose, they identify the external recipients (whom the information can be given out to),

the retention period (how long the information is stored), and the authorized users (those

who can access this information). This is captured in two tables, namely, privacy-policies

and privacy-authorizations. The schemas for the two tables are as follows.

Privacy-Policies (purpose, table, attribute, external recipients, retention)

Privacy Authorizations (purpose, table, attribute, authorized users)

The privacy-policies table specifies the external recipients and the retention period in

addition to the purpose, and hence captures the privacy policy. The privacy-authorizations

table specifies the specific users who are authorized to access the data, and hence captures

the access control. Though this approach can be used to specify access control at the column

level, it is quite difficult to extend it to specify access control at cell level.
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Agarwal et al. [15] have provided access control constructs to specify access restrictions

at the column level, row level and cell level. Figure 2.6 depicts the syntax, as defined by

Agarwal et al., for specifying access restrictions. It states that those belonging to auth-

name-1 list, but not belonging to auth-name-2 list, have restricted access on table-x. The

restrictions can be specified at the column level by providing the list of columns to which the

restriction applies, or at the row level by providing some search-condition in the WHERE

clause or at the cell level by combining the restrictions at the row and column level. The

syntax also allows the specification of a purpose, which determines the way the query result

is going to be used, and recipient, which determines the users who would be using the query

result. The restriction can be applied to any or all of select, insert, update and delete

statements. Agarwal et al. have provided means to combine multiple restrictions that may

be defined for a single user on a single table. In such a scenario, multiple restrictions can

be combined using intersection or union operation. In the intersection approach, the user is

allowed to access data that is defined by the intersection of the restrictions, thus reducing

the user’s access when more restrictions are added. In the union approach, the user is

allowed to access data that is defined by the union of all the applicable restrictions, thus

giving the user more access when restrictions are added.

create restriction restriction-name
on table xon table-x
for auth-name-1 [except auth-name-2] 
( (    (to columns column-name-list)

| (to rows [where search-condition])
| (to cells (column-name-list [where search-condition])+)

)
[for purpose purpose-list]
[for recipient recipient-list]

)+
command restrictioncommand restriction

Figure 2.6: Fine Grained Restriction Syntax [15]

There are certain drawbacks of this construct. In many situations, the time at which the

user tries to access the database is critical. The location of access might be very critical too.

For example, some organizations do not allow the user to access tables from outside the

organization. This construct does not allow the specification of restrictions in terms of time
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or location. In spite of these limitations, this method can be very effective in restricting

access to data at column, row or cell level.

2.3 Enforcement of Privacy Policies

Traditionally privacy policies were enforced in relational databases through views.

Let’s suppose there exists a relation named ”Student” with attributes Student Id, Name,

Date of Birth, and CGPA, and the privacy policy states that every student is allowed to

view his details alone and should not be able to view records corresponding to any other

students’. In this scenario, the system administrator would have to create views for each

of the students. For example, if we assume that the ”Student” relation contains a record

corresponding to Student-Id 1001, then the view would be manually created as follows.

CREATE VIEW Student1001 as SELECT Student Id, Name, Date of Birth, CGPA from

Student WHERE Student Id = 1001;

The same thing would have to be repeated for each student, replacing the view name

and the student id present in the WHERE clause. Once the views have been created, the

system administrator would have to grant permissions for each user to access his view. One

major drawback is that this approach isn’t scalable with the increase in number of users.

Also, minor modifications in privacy policies would lead to the manual creation of a number

of additional views. These limitations make the trivial view based approach unsuitable for

enforcing access control policies.

Stonebraker et al. [8] proposed an algorithm to enforce access control in INGRES that

is similar to the view based approach. In their approach, they collect and store the access

permissions for each user in access control interactions, which is quite similar to views.

When the user issues a query, the algorithm would search for the access control interactions

associated with that user. Among those, it finds the interactions that contain the attributes

used in the query. It would then combine the qualifications or conditions used in the query

with that present in the user interactions using AND operator. If the user interactions turn

out to be complex as a result of the policies being complex, then the query modification

approach might turn out to be an expensive one. As pointed out by Wang et al. [5], this
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algorithm fails to specify clearly the manner in which operators such as set difference need to

be handled, which apparently requires special treatment. If while handling the set difference

operator, the algorithm treats the ”incomplete” or ”hidden” information as ”NULL”, then

it fails to obey the soundness property. This has been explained with example in chapter 3.

Oracle’s Virtual Private Database (VPD) approach [10], which is yet another query mod-

ification approach, overcomes the drawbacks of the trivial view based approach by dynam-

ically modifying the queries issued by the users in order to enforce access control as shown

in Figure 2.7. In the scenario depicted in Figure 2.7, two users, one with an id of ’10’

and another with an id of ’20’, try to access the ”ORDERS” relation. The privacy policies

formulated by the database administrator allows the user with id ’10’ to access his record

alone, but does not allow the user with id ’20’ to access the relation. Now, when the user

with id ’10’ issues a select query over the ”ORDERS” relation, the Oracle server dynami-

cally generates a predicate, that is a ’where’ clause and appends it to the user query, thus

modifying the query transparently to the user. When the modified query is issued against

the relation, the result contains the record pertaining to the issuer of the query. In the sec-

ond case, when the user with id ’20’ issues the select query, the server, as before, appends

the predicate generated to the query. Since the issuer does not have access to the relation,

as reflected by the predicate generated, the result returned is NULL.

SELECT * 
FROM 

where terr_id = 10;

Oracle 9i
ORDERS;

where terr_id = 20;

Figure 2.7: Oracle’s Virtual Private Database Approach [10]

Generally, the predicates are generated by policy functions that can include callouts to

other functions. It is possible to embed C or Java callouts within the policy functions,

thus giving a greater flexibility. The policy functions would generate different predicates

for different users based on the context of the queries. For each user, a secure application

context is created in the database, which would contain user-specific information. This
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information is used by the policy functions to generate predicates for different users. One

major drawback with this dynamic query modification approach is that the predicates that

are appended to the user issued query can be complex, for example, they can be sub-queries

by themselves. In that case, the execution time of the modified query can greatly increase.

The column level VPD [7] allows one to enforce row-level security when a column that

is considered sensitive is used in a query. It has two modes of operation, one is a default

behavior and the other is a column masking behavior. In the default behavior, the number

of rows returned as result is restricted. In the masking behavior, all rows are displayed,

but the sensitive columns are replaced with NULL values. As pointed out by Wang et

al. [5], the default behavior violates the ”maximality” criteria, and the column masking

behavior violates the ”soundness” property, both of which have been briefly discussed about

in chapter 1. It is explained in detail with an example in chapter 3 as to why the soundness

property is violated when incomplete data is treated as ”NULL” value. A more formal

definition of the correctness criteria can be found in chapter 3.

In addition to the above listed drawbacks of Oracles’ VPD approach, as pointed out by

Rizvi et al. [11], quite often the results returned by this approach can be misleading to

the user. For example, if a student issues a query to a ”Student” relation to obtain the

average grade for a particular course, and the privacy policy allows the student to access

only his own record, then the average grade returned would be the student’s grade itself.

Thus, the student is misled into believing that his grade is the average grade of the class in

that particular course.

Rizvi et al. [11] came up with yet another query rewriting approach in order to avoid

misleading the users while enforcing access control. They have introduced the concept of

parameterized authorization views, which are similar to the SQL views, but make use of

parameters like user-id, time, user-location etc. Contrary to the trivial view based approach

that required creation of views for each user, parameterized authorization views can be used

to define a single view applicable for multiple users. For example, let’s suppose we have

a ”Student” relation with three attributes, namely, StudentId, Name and CGPA. Let’s

suppose that the privacy policy states that each student can view only his record. Using

parameterized authorization views, we can achieve this using the following query.
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CREATE AUTHORIZATION VIEW MyRecord as SELECT StudentId, Name, CGPA

from Student WHERE StudentId = $userid;

$userid appears as a parameter in this view definition. Thus, this single view definition

would suffice for all the students. Based on the privacy policies established, multiple au-

thorization views could possibly be defined for each user. Rizvi et al. try to validate the

query before actually executing it. In order to do so, they determine if the issued query can

be answered based on the authorization views associated with the issuer. If it’s possible

to do so, then they execute the query unmodified over the appropriate authorization view

and return the result, else they reject the query. By rejecting the query, they violate the

”maximality” criteria [5].

Bond et al. [9] used a label based approach to enforce access control in DB2. The concept

of security label is central to the label based access control scheme. As defined in IBM’s

document [12], a security label component is defined as ”a database object that represents a

criterion you want to use to determine if a user should access a piece of data”. For example,

in order to view the grades of all students in a course, the criterion could be that the user is

an instructor or a teaching assistant for that course. A security policy describes the criteria

that will be used to decide who has access to what data. When the security policy is in

place, security labels, which are a collection of security label components, can be associated

with cells in a relation to protect it. If the user needs to access data in a particular cell,

then he must obtain the appropriate security label from the database administrator, which

is also called a credential. When a user tries to access protected data, that user’s security

label is compared to the security label protecting the data. If the user has no access to

that column, then an error message is flagged. If the user has no access to the row in which

the data is present, then those rows are hidden from the user, violating ”soundness” and

”maximality” principle.

LeFevre et al. [6] came up with an algorithm to enforce access control that is based

on a cell level disclosure policy. This policy would specify the cells that could be used in

order to answer a given query Q. Those cells that have been prohibited from accessing for

a given query Q are then replaced with NULL values. Once this is done, the query Q is run

on the new version of the relation obtained by applying the cell level disclosure policy on
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the original relation. While executing the query on the new relation, it is considered that

NULL 6= NULL and NULL 6= c, for any constant c. As pointed out by Wang et al. [5]

and illustrated by an example in chapter 3, replacing incomplete or sensitive information

with NULL leads to the violation of the soundness property.
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Chapter 3

A Sound and Secure Query

Evaluation Algorithm to Enforce

Fine Grained Access Control

In this chapter we discuss the correctness criteria for query evaluation algorithms

enforcing fine grained access control proposed by Wang et al. [5]. We then introduce some

important concepts that lead to a sound and secure query evaluation algorithm to enforce

fine grained access control, also proposed by Wang et al. These play a significant role in

enabling the readers understand our contribution.

3.1 Correctness Criteria

We use the same notations and terminology used by Wang et al. [5]. Let A be

the query evaluation algorithm enforcing access control in database D. Let P be the access

control policy that decides which portion of D could be used in evaluating a query Q over

D, Q being issued by the user U . In most cases, P depends on U , the purpose of Q, the

place and time Q was issued, and many other factors. For simplicity, Wang et al. assume

that there is a policy P for each query Q based on the context of Q. Thus the input to the

algorithm A would be the query Q, the policy P , and the database D. The output or result

of the algorithm is defined as R = A(D,P,Q). How do we decide if the result R that was

obtained from the algorithm A is indeed correct? Wang et al. [5] provide an answer to this
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question by formulating three correctness criteria, which seem to be very intuitive. Their

three correctness criteria are as follows.

3.1.1 Sound

Let S be the algorithm that evaluates a query Q over a database D when there

is no access control. The result returned in this scenario is S(D,Q). Now, the soundness

criterion requires that A(D,P,Q) ⊆ S(D,Q). The intuition behind this is that, the policy

P actually limits information from D that can be used to answer Q. The information that

could be used to answer Q, when there is fine grained access control, would be a portion of

the entire relation that would be used to answer Q, when there is no access control. Thus,

the result obtained while enforcing access control is a portion of the result that is obtained

without access control. Wang et al. formalize this criterion as follows.

∀P∀Q∀DA(D,P,Q) v S(D,Q)

Now, let us look into an example that illustrates why the approach that treats hidden

information as simply NULLs is unsound. The example is similar to the one that Wang et

al. [5] have used to illustrate the idea.

Let us consider a relation titled ”Student” with schema Student(Student ID, Name,

DEPT, CGPA), which is shown in Figure 3.1(a). Cells marked as ”(Y)” are allowed by

the policy and cells marked as ”(N)” are not allowed by the policy, when answering a query

Q.

Consider the query Q = ”SELECT Student ID, Name FROM Student EXCEPT SELECT

Student ID, Name FROM Student WHERE CGPA ≥ 3.00”. The query is of the form Q =

Q1 - Q2, where Q1 = ”SELECT Student ID, Name FROM Student” and Q2 = ”SELECT

Student ID, Name FROM Student WHERE CGPA ≥ 3.00”. When the there is no access

control, the result is as shown in Figure 3.1(e). When the algorithm proposed by LeFevre

et al. [6] is used, the result is as shown in Figure 3.1(d). The result would be the same

for all algorithms that treat unauthorized cells as simply NULLs. We can clearly observe

that the algorithm proposed by LeFevre et al. leaks more information than what is allowed

when there is no access control policy. Thus the class of query evaluation algorithms that
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Student ID Name DEPT CGPA

1011 (Y) John (Y) Computer 
Science (Y)

3.56 (Y)

1012 (Y) Linda (Y) Physics (N) 3 15 (N)

Student ID Name

1011 John
1012 (Y) Linda (Y) Physics (N) 3.15 (N)

1013 (Y) Megan (Y) Chemistry 
(N)

3.40 (Y)

1014 (Y) Andrew (Y) Computer  2.90 (Y)

1012 Linda

1013 Megan

1014 AndrewScience (N)

(a)

1014 Andrew

(b)

S d ID N S d ID NStudent ID Name

1011 John

1013 Megan

Student ID Name

1012 Linda

1014 Andrew

Student ID Name

1014 Andrew

(c) (d) (e)

Figure 3.1: Example to illustrate why existing approaches are not sound

treats unauthorized cells as simply NULLs and use the fact that NULL 6= NULL, and

NULL 6= c, where c is a constant, are unsound.

3.1.2 Secure

Wang et al. [5] argue that ”a policy P defines an equivalence relation, represented

as ≡P , among database states”. They claim that two database states D and D′ are equiva-

lent, i.e. D ≡P D′, if on applying policy P to both D and D′ results in disclosing the same

information in order to answer a query Q. This ensures that the user, by issuing a query Q

and analyzing the result returned by the query evaluation engine, cannot determine if the

database state is D or D′. More formally, they claim that a query evaluation algorithm is

secure if and only if the following condition holds.

∀P∀Q∀D∀D′
[
(D ≡P D′)→ (A(D,P,Q) = A(D′, P,Q))

]
They refer to this condition as ”weak security”, since this just ensures that a single

user cannot gain knowledge about information not disclosed by a policy by issuing a single

query. In practice, there are scenarios where a single user issues a sequence of queries or

many malicious users might collude to gain information that they are not supposed to know.

The query evaluation algorithm enforcing access control should provide resistance from such

attacks too. This, being a tedious requirement, Wang et al. refer to as ”strong security”.
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More formally they argue that, if the policies for the colluding users are P1, P2, P3 · · ·Pn

and the two database states D and D′ are equivalent under each of these policies, then it

should not be possible for the colluding users to differentiate D from D′.

Wang et al. [5] model the notion of strong security using an adversary argument as follows.

The adversary knows that the database is either in state D or D′. He tries to identify which

of the two is the current state of the database by issuing queries on behalf of the colluding

users. Upon issuing queries and collecting the query results, he computes a function f based

on the results, and tries to use this function to identify whether the current state is either

D or D′. If it is ensured that the adversary fails always regardless of what queries he issue

or what function he computes, then strong security has been achieved. Wang et al. define

the notion of strong security more formally as follows.

∀i∈[1,n](D ≡Pi
D′)

→ ∀f∈F (f(A(D,P1, Q1), · · · , A(D,Pn, Qn))

= f(A(D′, P1, Q1), · · · , A(D′, Pn, Qn)))

where F is the set of all possible functions the adversary can compute; Q1, Q2 · · ·Qn are

the queries that the adversary issues on behalf of the colluding users, and the policies

P1, P2 · · ·Pn are the policies, corresponding to each of the n queries, that restricts access to

data.

Wang et al. have proved that weak security is equivalent to strong security and hence

weak security is a sufficient condition upon satisfying which an algorithm can be considered

secure. The proof is summarized below.

It is quite obvious that on substituting n = 1 and f(R) = R in the condition for strong

security, we arrive at the condition of weak security, which means an algorithm has the

weak security property if it possesses the strong security property. To prove the other way

round, we make use of the condition for weak security yet again. Wang et al. argue that

an algorithm satisfies weak security requirement if and only if

∀P∀Q∀D∀D′
[
(D ≡P D′)→ (A(D,P,Q) = A(D′, P,Q))

]
.
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Now, since D ≡Pi D
′, we have A(D,Pi, Qi) = A(D′, Pi, Qi).

This further means that

∀i∈[1,n]A(D,Pi, Qi) = A(D′, Pi, Qi)

At this juncture, it is easy to observe that, in the condition for strong security, the inputs

to the function f on both sides of equality are the same, which means that f gives the same

output, and hence the equality holds. Thus, weak security implies strong security. It is

sufficient for an algorithm to possess weak security to be considered secure.

3.1.3 Maximal

This criterion requires that the query evaluation algorithm returns as much infor-

mation as possible while satisfying the sound and secure criteria. Wang et al. [5] argue

that an algorithm that returns no information still preserves soundness and security, but

is certainly not a useful answer. They however point out that it is difficult to achieve the

maximal criterion. Let us consider the Student relation shown in Figure 3.1(a). Let the

query issued be ”SELECT Student ID, Name from Student where CGPA ≥ 3.0 AND CGPA

≤ 3.0”. Though Linda’s CGPA is not to be disclosed, it doesn’t hurt to include Linda in

the result since the Where clause is a tautology. As pointed out by Wang et al. there are

some clauses that involve integer multiplication and equality that have been proved to be

undecidable [17].

3.2 A Labeling Mechanism for Masking a Database

We have seen that by replacing unauthorized values by NULL the resulting query

evaluation algorithm would become unsound, and thus produce incorrect results. In addition

, as Wang et al. point out, replacing unauthorized values by NULL would lead to information

loss. For example, let us suppose we have the following two relation schemas.

Employee (EmpID, Name, Age, Salary)

Department (EmpID, DeptName, Manager)
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EmpID is used to link the two relations Employee and Department. Let us assume that

an employee considers his EmpID to be sensitive, but does not mind letting others know

his manager and the department he is working for. In this scenario, by replacing EmpID

with NULL, the linking between the Employee and the Department relations would be lost,

as a result of which it is not possible to find out the manager and the department name for

a given employee, which is not considered to be sensitive information. Thus, we need an

alternative approach to represent unauthorized information. Wang et al. have introduced

two different kinds of variables, which they call ”type-1” and ”type-2”, in order to represent

unauthorized cells.

A type-1 variable is represented by an alphabet. If v1 and v2 are two different type-1

variables, they claim that ”v1 = v1” is true, but it is not known if ”v1 = v2” and ”v1 = c”

are true, where c is any constant. A type-2 variable is represented as a pair (α, d), where

α is the name of the variable and d is the domain of the variable. If α, β are two different

alphabets and d1, d2 are two different doamins, they claim that ”(α, d1) = (α, d1)” and

”(α, d1) 6= (β, d1)” are true, but ”(α, d1) = (β, d2)”, ”(α, d1) = v1” and ”(α, d1) = c” are

not known, where v1 is a type-1 variable and c is any constant. Using these two kinds

of variables, Wang et al. [5] have proposed a two-pass labeling algorithm to mask the

unauthorized cells in a database.

In the first pass, two different cases are considered. The first case considers all those

tables T in the database that are either not linked with any other table, or the tables that

have been linked with T have not yet been masked. Let attribute A be the primary key

of T , and let the linking between T and other tables be through attribute A. In such a

scenario, all the unauthorized cells of the attribute A are replaced by new type-2 variables

of the same domain. The second case considers all those tables T in the database that are

linked to any table T1, T1 has already been masked, which means that the attribute A over

which the linking takes place has already been masked in T1. In such a scenario, for every

cell in T1 of attribute A, replace the corresponding cell of A in T using the same type-2

variable. Upon doing this, if there still exist cells of A in T1 that are not yet but need to

be masked, use new type-2 variables of the same domain.
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The second pass deals with attributes declared as foreign keys. For all tables T in the

database, for each attribute B in T that has been declared as a foreign key pointing to the

primary key A of T1, Wang et al. suggest that the cells in B of T that are unauthorized

be replaced by the same type-2 variable that was used in the corresponding cell of A in T1.

Also, all the unauthorized cells of the remaining attributes are replaced with new type-1

variables.

An example similar to the one provided by Wang et al. [5], based on the two pass labeling

mechanism, is shown in Figure 3.2. As can be observed from Figure 3.2, the EmpID attribute

that has been used to link the Employee and Department relations has been replaced by

type-2 variables. As a result, the linking between the two relations is still preserved in spite

of hiding the unauthorized cells. The unauthorized cells in other attributes such as Age

and Salary have been replaced by new type-1 variables.

EmpID Name Age Salary

1011 
(N)

John (Y) 35 (Y) 90000 
(Y)

1012 Linda 50 (N) 100000

EmpID DeptName Manager

1011 (N) Sales (Y) Arnold (Y)
1012 
(N)

Linda 
(Y)

50 (N) 100000 
(N)

1013 
(N)

Megan 
(Y)

21 (N) 85000 
(N)

d ( )

1012 (N) Research 
(Y)

Stephen 
(Y)

1013 (N) Production 
(Y)

Ashley (Y)

1014 
(N)

Andrew 
(Y)

28 (Y) 90000 
(Y) 1014 (N) Sales (Y) John (Y)

(a) (b)

EmpID Name Age Salary

(α, d1) John 35 90000

(β, d1) Linda v1 v3

EmpID DeptName Manager

(α, d1) Sales Arnold

(β, d1) Research Stephen

(γ, d1) Megan v2 v4

(δ, d1) Andrew 28 90000

(γ, d1) Production Ashley

(δ, d1) Sales John

(c) (d)(c) (d)

Figure 3.2: Example to illustrate labeling mechanism

We would like to point out to the readers that in the rest of this thesis we assume that

such a masked version of a database is readily available and that this mechanism proposed

by Wang et al. has been discussed here to show to the readers that it is indeed possible to
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come up with such a masked version of a database.

3.3 A Sound and Secure Approach to Query Evaluation

Let Q be a single query, i.e. a query with no sub-queries within it. Let Q be issued

over the masked version of the database D, say mask(D). Wang et al. [5] argue that for

query evaluation algorithm to be sound, Q must return only those tuples that are definitely

correct, for which the unauthorized cells are treated in a conservative fashion. They term

this as low evaluation of Q, represented as Q−. If on the other hand Q is of the form

Q = Q1 − Q2, then for the whole query Q to be sound, it is required that Q2 return not

only those tuples that are definitely correct, but also those that are possibly correct. Wang

et al. term this as high evaluation of Q2, represented as Q−2 . Before analyzing how possibly

correct tuples arise, let us briefly discuss about tuple compatibility.

Let t1 = (x1, x2 · · ·xn) and t2 = (y1, y2 · · · yn) be two tuples of the same schema. Wang

et al. claim that the tuples t1 and t2 are not compatible if either, xi and yi are two different

constants, or xi and yi are both different type-2 varibales of the same domain. The other

possibilities are listed below.

• xi is a type-1 variable and yi is a constant or vice versa

• xi and yi are different type-1 variables

• xi is a type-2 variable and yi is a type-1 variable or vice versa

• xi is a type-2 variable and yi is a constant or vice versa

• xi and yi are both type-2 variables of different domains

In all the above cases, the comparison between xi and yi would lead to an unknown

result. If Q = Q1 −Q2 is to be evaluated in low-mode, then we do not include those tuples

in the result that would involve the above listed comparisons, which lead to an unknown

value, thus returning only definitely correct tuples. If on the other hand Q = Q1 − Q2 is

to be evaluated in high mode, then we include those tuples in the result that would involve

comparisons, which lead to an unknown value, thus returning possibly correct tuples.
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The sound and secure query evaluation algorithm proposed by Wang et al. is shown in

Figure 3.3. Wang et al. define a function IsUn(x), which return TRUE if x evaluates to

an unkown value. We would like to refer the readers to [20] for the proof of soundness and

security of the algorithm in Figure 3.3.

Given a query Q:

• if Q = R, where R is a relation in a database, then Q− = Q− = R′, where

R′ is the masked version of R.

• if Q = σcQ
′, then Q− = σcQ

′
− and Q− = σc∨IsUn(c)Q

′−

• if Q = πa1,...,an
Q′, then Q− = πa1,...,an

Q′− and Q− = πa1,...,an
Q′−.

• if Q = Q1 ×Q2, then Q− = Q1− ×Q2− and Q− = Q1
− ×Q2

−.

• if Q = Q1 ∪Q2, then Q− = Q1− ∪Q2− and Q− = Q1
− ∪Q2

−.

• if Q = Q1 − Q2, then Q− contains all tuples t ∈ Q1− such that there

exists no tuple in Q2
− that is compatible with t (we call the operation

to compute Q− aggressive minus, denoted as −a), and Q− contains all

tuples t ∈ Q1
− such that t 6∈ Q2− (we call the operation to compute Q−

conservative minus, denoted as −c).

Figure 3.3: Sound and Secure Query Evaluation Algorithm [5]

As pointed out in chapter 1, there are two approaches to implement access control in re-

lational databases, namely query modification approach and query evaluation engine modi-

fication approach. Wang et al. have opted for a query modification approach to implement

the algorithm outlined in Figure 3.3. Their approach is outlined in Figure 3.4. Since existing

DBMSs do not have provisions for type-1 and type-2 variables, the unauthorized cells are

masked using NULLs. As a result, it might not be possible to return the maximal result,

but it is possible to guarantee soundness and security of the algorithm.

The significant difference between this approach proposed by Wang et al. and the one

proposed by LeFevre et al. [6] lies in the way the minus operator has been handled, which

arises as a result of having two modes of evaluation, namely, low and high. As a result, the

performance of the query modification approach of Figure 3.4 was analyzed using queries
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of the form Q = Q1 −Q2 on tables of varying sizes. Experimental results, which have been

reported in chapter 5, clearly show that even for nominal table sizes of 50000 and 100000

tuples, this approach takes 8 to 32 seconds to complete evaluation of query. Also, this

approach does not scale well with larger table sizes. One of the main reasons for this rather

bad performance lies in the complexity of the join conditions, shown in Figure 3.4, when

evaluating a query involving minus operator. One way to improve the performance is to

modify the query evaluation engine to identify the modes of evaluation of sub-queries within

a query, differentiate aggressive minus from conservative minus, and modify the semantics

of the minus operator based on the notion of tuple compatibility discussed above. This

approach, which is our contribution, is discussed in detail in chapter 4.
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Input: a query Q

Output: Q−, i.e. the low evaluation of Q

• Case Q = T , where T is a table:

Q− = Q− = mask(T )

where mask(T ) replaces unauthorized cells in T with NULL.

• Case Q = “SELECT a1, · · · , an FROM Q1, · · · , Qm WHERE conds”:

Q− = SELECT a1, · · · , an FROM Q1−, · · · , Qm− WHERE conds

Q− = SELECT a1, · · · , an FROM Q−1 , · · · , Q−m WHERE addNull(conds)

where addNull(conds) adds “IS NULL” predicates to selection condition conds. For in-

stance, let conds = “Age ≥ 25 AND Salary < 80000”. We have, addNull(conds) = “(Age

≥ 25 OR Age IS NULL) AND (Salary < 80000 OR Salary IS NULL)”.

• Case Q = “Q1 MINUS Q2”, where Q1 and Q2 select attributes a1, · · · , an:

Q− = Q−1 MINUS Qc

where Qc = SELECT T1.a1, · · · , T1.an FROM Q1− T1, Q2
− T2 WHERE (T1.a1 = T2.a1)

AND · · · AND (T1.an = T2.an)

Q− = Q1− MINUS Qa

where Qa is as follow
SELECT T1.a1, · · · , T1.an FROM Q1−T1,Q2

−T2WHERE ((T1.a1=T2.a1) OR (T1.a1IS

NULL) OR (T2.a1IS NULL)) AND · · · AND ((T1.an=T2.an) OR (T1.anIS NULL) OR

(T2.anIS NULL))

Figure 3.4: Query Modification Approach [5]



29

Chapter 4

A Database Level Implementation

to Enforce Fine Grained Access

Control

In this chapter we discuss the various algorithms, data structures, and optimiza-

tions that we have introduced to implement the sound and secure query evaluation algorithm

outlined in Figure 3.3 to efficiently enforce fine grained access control at the database level.

We would like to reiterate the fact that we have replaced unauthorized cells using the NULL

value since existing DBMSs do not have the provisions to use type-1 and type-2 variables.

In order to overcome this limitation of the DBMSs we use the following two rules.

• To compute definitely correct tuples, we use the rule that NULL matches any value,

i.e. NULL = NULL and NULL = c for any constant c

• To compute possibly correct tuples, we use the rule that NULL does not macth any

value, i.e. NULL 6= NULL and NULL 6= c for any constant c

This is pretty obvious since the NULL value is now equivalent to the type-1 and

type-2 variables used in the labeling mechanism discussed in section 3.2. In order to imple-

ment the algorithm shown in Figure 3.3 at the database level, firstly we modify the query

evaluation engine of the DBMS to assign low and high modes of operation to sub-queries.

Secondly we modify the manner in which the minus operator is implemented in existing
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DBMSs to incorporate the semantics of aggressive and conservative minus. Since the mod-

ifications have to be made at the database level, we opt for POSTGRESQL, which is an

open source DBMS. However, the algorithms that we present in this chapter are generic

to all DBMSs. POSTGRESQL does not provide a minus operator as such, but the except

operator that it provides is similar to what the minus operator does in Oracle. The terms

except and minus are used interchangeably and mean set difference.

4.1 Assigning Modes of Evaluation to Sub-Queries

As discussed earlier, when the query Q is of the form Q1 − Q2, then we would

need to evaluate Q1 in low mode (Q1−) and Q2 in high mode (Q−2 ) in order to ensure that

we evaluate Q in a sound fashion. Now, the query Q can be as complex as (Q1 − (Q2 −
(Q3

⋃
Q4))). To evaluate Q in a sound fashion, we would have to evaluate the sub-query

Q1 in low mode (Q1−) and the sub-query Q2 − (Q3
⋃
Q4) in high mode, which further

requires that we evaluate Q2 in high mode (Q−2 ) and the sub-query Q3
⋃
Q4 in low mode

(Q3−
⋃
Q4−). Thus, it is required to parse the input query Q to differentiate sub-queries

that need to be evaluated in low mode from those that need to be evaluated in high mode.

For those sub-queries that need to be evaluated in high mode, we add predicate(s) to its

WHERE clause in order to include those tuples in the result that are possibly correct. We

accomplish this task by modifying the query parser of the DBMS, as shown in Algorithm 1.

Suppose Q is the query issued by the user, the initial call to the rewriteSelectStmt pro-

cedure would pass the parse tree of Q and 0 (or low mode) as the parameters. This ensures

that the query Q is evaluated in low mode and thus the result returned is sound. When the

operator is a minus, the left sub-query is evaluated in the same mode as its parent query,

and the right sub-query is evaluated in the alternative mode. For other operators, both

left and right sub-queries are evaluated in the same mode as their parent query. It can be

observed that if the mode of a sub-query is found to be 1 (or high mode), predicate(s) is

added to include those tuples in the result that are possibly correct. We would also like

to point out to the readers that while we assign modes of evaluation to sub-queries, we

also determine whether the except present in the query needs to be treated aggressively or

conservatively.
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Algorithm 1 rewriteSelectStmt(stmt, mode): Takes as input the parse tree of SELECT

query (SelectStmt∗stmt)and mode (integer) of evaluation and outputs modified parse tree
if stmt→ op = MINUS then

rewriteSelectStmt(stmt→ larg, mode)

stmt→ mode = mode

rewriteSelectStmt(stmt→ rarg, 1−mode)
else if (stmt→ op = UNION) OR (stmt→ op = INTERSECT ) OR . . . then

rewriteSelectStmt(stmt→ larg, mode)

rewriteSelectStmt(stmt→ rarg, mode)

else if mode = 0 then

return

else

rewrite stmt to include tuples that are possibly correct

return

end if

Having assigned modes of evaluation to queries while parsing them, the next step is

to redefine the semantics of the minus operator to implement aggressive and conservative

minus.

4.2 Implementing Aggressive and Conservative Minus

For the convenience of the readers, we restate the definition of aggressive and

conservative minus, which has already been provided in Figure 3.3. Let the query Q be

of the form Q = Q1 − Q2. Aggressive minus, which is the operation to compute Q− and

represented as Q1 −a Q2, contains all tuples t ∈ Q1− such that there exists no tuple in Q−2

that is compatible with t. Conservative minus, which is the operation to compute Q− and

represented as Q1 −c Q2, contains all tuples t ∈ Q−1 such that t 6∈ Q2− [5].

In today’s DBMS, a query Q1 − Q2 is typically handled through a process similar to

merge join, in which tuples are sorted by treating NULL as the smallest value. However,

while computing aggressive and conservative minus, we regard NULL as a special value that

matches every other value. Thus, existing implementation of MINUS needs to be revised

to implement aggressive and conservative minus. A straightforward approach to implement

aggressive and conservative minus has been shown in Algorithm 2 and Algorithm 3 respec-
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tively, but has been found experimentally to be inefficient. Hence we have implemented the

aggressive and conservative minus in an efficient way by using an index structure, which

has been discussed in detail in section 4.2.2.

4.2.1 Straightforward Approach to Implement Aggressive and Conserva-

tive Minus

From Algorithm 2 and Algorithm 3 it can be observed that the straightforward

approach involves scanning all tuples in the result of Q2 for every tuple in the result of of

Q1. While computing aggressive minus, if we encounter tuples T1 in the result of Q1and T2

in the result of Q2, with one having a NULL value in attribute i and another with a NULL

or constant value in the same attribute, then we do not include T1 in the result, provided the

same situation occurs corresponding to all other attributes or values in the corresponding

attributes are the same constants. On the other hand, while computing conservative minus,

we include T1 in the result if the value in any attribute of T1 is NULL or if we cannot find

any compatible tuple T2 in the result of Q2 using the same procedure that we used to check

for compatibility while computing aggressive minus.

Experimental results suggest that this straightforward approach is not efficient. Hence

we need a better approach to compute aggressive and conservative minus.

We can clearly observe that checking for compatibility to compute aggressive and con-

servative minus is almost the same, except for the difference in the way we treat NULL

value in each case. Thus, it is easy to comprehend that performing the tuple compatibility

check is the major operation while computing aggressive and conservative minus. In the

next section we have introduced a data structure, which we call the ”Bucket” structure to

perform this tuple compatibility check in an efficient manner.

4.2.2 An Indexed Approach to Implement Aggressive and Conservative

Minus

In this section we discuss an index structure, which we call the ”Bucket” structure,

that we use to efficiently compute aggressive and conservative minus. It is similar to the trie

structure used in prefix matching [21]. Its generic structure is shown in Figure 4.1. From
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Algorithm 2 aggressiveExcept(Q1, Q2): Input is a query of the form Q = Q1 − Q2, and

output is Q−, which is the low evaluation of Q
RESULT = NULL

for each tuple T1 in the result of Q1 do

for each tuple T2 in the result of Q2 do

compatible = FALSE

for i = 1 to number of columns in the schema do

xi = value at column i in T1

yi = value at column i in T2

if (xi = NULL) OR (yi = NULL) OR (xi = yi) then

if i is the last column in the schema then

compatible = TRUE

break

end if

end if

end for

if compatible = TRUE then

break

end if

end for

if compatible = FALSE then

Add T1 to RESULT

end if

end for
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Algorithm 3 conservativeExcept(Q1, Q2): Input is a query of the form Q = Q1−Q2, and

output is Q−, which is the high evaluation of Q
RESULT = NULL

for each tuple T1 in the result of Q1 do

for each tuple T2 in the result of Q2 do

compatible = FALSE

for i = 1 to number of columns in the schema do

xi = value at column i in T1

yi = value at column i in T2

if (xi = NULL) then

break

end if

if xi = yi then

if i is the last column in the schema then

compatible = TRUE

break

end if

end if

end for

if compatible = TRUE then

break

end if

end for

if compatible = FALSE then

Add T1 to RESULT

end if

end for
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Figure 4.1 we can observe that each level of the structure corresponds to an attribute of the

relation for which the ”Bucket” structure is built. We discuss subsequently, in detail, how

we build this index structure for a given relation and how we make use of this to efficiently

compute aggressive and conservative minus.

a1,1 a2,1 … aw,1
Level 0 – Attribute 1

a1,2 … ae,2 ae+1, 2 … ak,2 as,2 … ay,2…
Level 0 – Attribute 2

a1,n … ac,n ai,n … ak,n as,n … az,n…

………

Level n-1 – Attribute n
1,n c,n i,n k,n s,n z,n……

Figure 4.1: Generic Form of the ”Bucket” structure

Let the query under consideration be of the form Q = Q1−Q2. Let T1 correspond to the

result of Q1 and T2 correspond to the result of Q2. To implement the tuple compatibility

check more efficiently we build the ”Bucket” structure corresponding to T2. The algorithm

for building the ”Bucket” structure is outlined in Algorithm 4.

The ”struct Bucket”, which we refer to as simply bucket, holds the value of a cell in a given

column and points to an array of buckets associated with this bucket. This bucket forms

the building block for the ”Bucket” structure that we intend building. The way in which

we build the ”Bucket” structure is as follows. The initial call to the buildIndex procedure

would pass T2 (table for which the ”Bucket” structure is to be built) and 1 (indicating that

we start with first column). We first group the tuples of the table based on the values in

attribute 1. Let R1, R2 · · ·Rn be the resulting groups. All tuples within a given group, say

Ri (∀i ∈ [1..n]), have the same value corresponding to attribute 1. We now build a bucket

for each group of tuples Ri corresponding to attribute 1, and recurse on the second attribute

to build the list of sub-buckets. We do this for each attribute within a given group and for

all groups. The resulting structure would be as shown in Figure 4.1.
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Algorithm 4 buildIndex(R, colNumber): Takes as input sorted Relation R for which the

”Bucket” structure is to be built and a columnNumber that is initially 1, and the output

is the ”Bucket” structure for relation R
struct Bucket

{
int value;

struct Bucket ∗subBuckets;
};
Group tuples of R into R1, R2 · · ·Rn such that all tuples within each Ri (∀i ∈ [1..n]) have the

same value at columnNumber

Initialize Bucket array, Buckets[n]buckets

Initialize index = 0

for each group of tuples S in R1, R2 · · ·Rn do

buckets[index].value = value at columnNumber in tuples of S {All tuples in S have the same

value in column columnNumber}
if columnNumber is the last column in the schema then

buckets[index].subBuckets = NULL

else

buckets[index].subBuckets = buildIndex(S, columnNumber + 1)

index = index+ 1

end if

end for

return buckets
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The example shown in Figure 4.2 illustrates Algorithm 4 clearly. Figure 4.2(a) shows the

unsorted table for which we intend to build the ”Bucket” structure. Figure 4.2(b) shows the

”Bucket” structure corresponding to the sorted version of the table shown in Figure 4.2(a)

that was built using the algorithm outlined in Algorithm 4. From Figure 4.2(b) it is clear

that there are 4 buckets corresponding to the column V A with values NULL, 1, 2 and 3. By

bucket, we mean the (value, sub− buckets) pair. There is only 1 sub-bucket corresponding

to V A = NULL that has a value V B = 2, which in turn has only 1 sub-bucket with value

V C = NULL. Now, there are 2 sub-buckets corresponding to V A = 1. The values in both

these sub-buckets are NULL (which in turn has 2 sub-buckets with values V C = NULL

and V C = 1) and 3 (which has only 1 sub-bucket with value V C = 2). The remainder of

the ”Bucket” structure is to be interpretted in a similar fashion.

VA VB VC

1 3 2

2 2 NULL
NULL 1 2 3

1 NULL NULL

3 2 2

2 1 2

2 NULL 3 1 2 1 2

3 1 NULL

3 2 1

NULL 2 NULL

1 NULL 1

NULL

NULL 1 2

2 NULL

NULL 1 1 2

1 NULL 1

3 1 1

(a) (b)

Figure 4.2: Example to demonstrate building of ”Bucket” structure

Having discussed the algorithm to build the ”Bucket” structure, we now present and dis-

cuss algorithms to compute aggressive and conservative minus using the ”Bucket” structure.

Upon encountering a query with a SQL set difference operation we invoke Algorithm 5.

The inputs to Algorithm 5 include the query Q of the form Q1 −a Q2 or Q1 −c Q2, and the

mode in which query Q has to be evaluated. The mode of evaluation of query Q is decided

by the query parser, as shown in Algorithm 1. Algorithm 5 invokes Algorithm 4 to build the

”Bucket” structure for the result of Q2, after sorting it. Then, depending on whether the

mode is aggressive or conservative, Algorithm 5 invokes Algorithm 6 or Algorithm 7 for each

tuple T in the result of Q1. If the invoked algorithm returns FALSE, then Algorithm 5
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adds the tuple T to the result of query Q.

Algorithm 5 except(Q1, Q2, mode): Takes as input query Q = Q1 − Q2 and mode of

except, whether aggressive or conservative, and then invokes Algorithm 6 or Algorithm 7

accordingly
Let relation R be the result of executing Q2

Sort the tuples of R by each column

Bucket[] buckets = buildIndex(R, 0)

RESULT = NULL

if mode is aggressive then

for each tuple T in the result of Q1 do

if aggressiveExcept(T, 0, buckets) returns FALSE then

add T to RESULT

end if

end for

else if mode is conservative then

for each tuple T in the result of Q1 do

if conservativeExcept(T, 0, buckets) returns FALSE then

add T to RESULT

end if

end for

end if

We now discuss the indexed approach to compute aggressive minus . We would like to

remind the users that we treat NULL = NULL and NULL = c for any constant c, while

computing aggressive minus. Algorithm 6 shows the way we compute aggressive minus

using the ”Bucket” structure. The inputs to Algorithm 6 include the tuple T (for which a

decision has to be made whether or not include it in the result of the evaluation of aggressive

minus), the column number (which is initially 1) and the ”Bucket” structure. For a given

column number (or attribute) i we look at the buckets at level i− 1. If the value of tuple T

in the ith attribute (column) is NULL, then we search in the sub-buckets of every bucket

in the level i− 1. If the value of tuple T in the ith attribute is not NULL, but there exists

a bucket in level i − 1 with value NULL, then we first search in the sub-buckets of that

bucket. If we still do not succeed in finding a tuple compatible to T or if there is no bucket

in level i− 1 with value NULL, then we search in the buckets in level i− 1 to find a bucket
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having value same as the value in tuple T in the ith attribute. If the search is successful,

we proceed to the next level (attribute). If the search is unsuccessful we declare that there

is no tuple in the ”Bucket” structure compatible to tuple T . We begin this entire process

with attribute 1 of tuple T .

We now elaborate, through the use of an example, the way in which aggressive minus is

computed using Algorithm 6. Let T1 be the table shown in Figure 4.3(a). Let T2 be the

table shown in Figure 4.3(b). Let Q1 be ”Select * from T1;” and Q2 be ”Select * from T2;”.

We are interested in computing Q1 −a Q2.

VA VB VC

NULL NULL 2

NULL 3 2

1 1 1
B0

NULL 1 2 3

2 NULL 3 1 2 1 2

1 1 1

2 1 2
(a) B1 B2 B3 B4

2

NULL

NULL 3 1 2

2 NULL

1 2
VA VB VC

1 3 2

2 2 NULL

1 NULL NULL

B5

B6 B7

B8 B9

B10 B11

NULL 1 2 NULL 1 1 2
1 NULL NULL

3 2 2

2 1 2

3 1 NULL
(c)

6 7 10 11

3 1 NULL

3 2 1

NULL 2 NULL

1 NULL 1

3 1 1
(b)

Figure 4.3: Example to illustrate computation of aggressive minus

We first sort the tuples of T2 and build the ”Bucket” structure, which is shown in Fig-

ure 4.3(c). For convenience, we have labeled each node of the ”Bucket” structure. We now

consider the first tuple of T1, call it t1. We can see that the value in attribute V A in t1 is

NULL. Since NULL matches any value, we should search in the sub-buckets corresponding

to every bucket in B0, which includes B1 through B4, before we can declare that t1 has

to be included in the result. We begin with B1. The value in t1 in attribute V B is also

NULL. So we search the sub-bucket B5. We can see that there is only one bucket in B5

with value NULL. Since NULL matches anything, we have found that there is a match in
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Algorithm 6 aggressiveExcept(T , columnNumber, buckets): Takes as input the tuple T

from the result of Q1, the column number, and the ”Bucket” structure for the result of Q2,

and returns TRUE if T is in the result of Q1 −a Q2

x = value at columnNumber in tuple T

if x = NULL then

if columnNumber is the last column in the schema then

return TRUE

else

for each bucket in buckets do

aggressiveExcept(T, columnNumber + 1, bucket.subBuckets)

end for

end if

end if

if buckets[0].value = NULL then

if columnNumber is the last column in the schema then

return TRUE

else

aggressiveExcept(T, columnNumber + 1, buckets[0].subBuckets)

end if

end if

perform binary search to search for x in buckets[0].value, buckets[1].value · · · buckets[n].value and

store the return value in index

if index = −1 then

return FALSE

else

if columnNumber is the last column in the schema then

return TRUE

else

aggressiveExcept(T, columnNumber + 1, buckets[index].subBuckets)

end if

end if
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T2 for t1. Thus, we return TRUE for t1.

We now consider the second tuple in T1, call it t2. Since value in t2 in attribute V A is

NULL, we would have to search the sub-buckets of every bucket in B0. This includes B1

through B4. The value in t2 in attribute V B is 3. We can observe that the search in B1

is not fruitful. Now we retract to B0 and search in the sub-buckets B2 of the bucket in B0

with value 1. In B2 there is a bucket with value NULL. So we search in its sub-bucket B6.

B6 has a bucket with value NULL, which allows us to stop the search and declare that we

have found a tuple in T2 compatible to t2.

We now proceed to the third tuple of T1, let’s call it t3. Since there is a bucket in B0

with value NULL, we search in its sub-buckets, i.e. B1, though value in t3 in attribute

V A is 3. This is because, NULL macthes any value. The value in t3 in attribute V B is

1. We can observe that the search in B1 is not fruitful. Thus, we retract to B0. Now, we

perform a binary search in B0 and arrive at the bucket with value 1. Now, we search in its

sub-buckets B2. In B2 there is a bucket with value NULL. So we search in its sub-bucket

B6. B6 has a bucket with value NULL, which allows us to stop the search and declare that

we have found a tuple in T2 compatible to t3.

We now proceed to the fourth tuple of T1, let’s call it t4. Value in t4 in attribute V A is 2.

As in t3, search in the sub-buckets B1 of the bucket with value NULL in B0 is not fruitful.

So we perform a binary search in B0 and arrive at the bucket with value 2. So we proceed

with the search in its sub-buckets, i.e. B3. The value in t4 in attribute V B is 1. In B3 there

is no bucket with NULL value. So performing a binary search leads us to the bucket with

value 1. So we continue the search in its sub-buckets, i.e. B8. The value in t4 in attribute

V C is 2. In B8 there is no bucket with NULL value. So performing a binary search leads

us to the bucket with value 2, which apparently is the only bucket in B8. Since V C is the

last attribute and we have found a match in it, we declare that t4 has a compatible tuple

in T2. Thus, we find that there is some tuple in T2 that is compatible with every tuple in

T1. Hence, the result contains 0 rows.

Having discussed in detail the computation of aggressive minus we now focus on the

computation of conservative minus using our ”Bucket” structure. We would like to remind
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the readers that, while computing conservative minus, NULL does not match any value,

i.e. NULL 6= NULL and NULL 6= c for any constant c. Algorithm 7 shows the way

we compute conservative minus using the ”Bucket” structure. The inputs to Algorithm 7

include the tuple T , for which a decision has to be made whether or not include it in the

result of the evaluation of conservative minus, the column number that is initially 0 and the

”Bucket” structure. For a given column number (or attribute) i we look at the buckets at

level i− 1. If the value of tuple T in the ith attribute (column) is NULL, then we stop our

search and declare that T has no compatible tuple in the ”Bucket” structure. If the value

of tuple T in the ith attribute is not NULL, then we search in the buckets in level i− 1 to

find a bucket having value same as the value in tuple T in the ith attribute. If the search is

successful, we proceed to the next level (attribute). If the search is unsuccessful we declare

that there is no tuple in the ”Bucket” structure compatible to tuple T . We begin this entire

process with attribute 1 of tuple T . Since Algorithm 7 to compute conservative minus is

quite similar to the Algorithm 6 to compute aggressive minus, we believe that the readers

would be able to comprehend it without an example.

Algorithm 7 conservativeExcept(T , columnNumber, buckets): Takes as input the tuple

T from the result of Q1, the column number, and the ”Bucket” structure for the result of

Q2, and returns TRUE if T is in the result of Q1 −c Q2

x = value at columnNumber in tuple T

if x = NULL then

return FALSE

end if

perform binary search to search for x in buckets[0].value, buckets[1].value · · · buckets[n].value and

store the return value in index

if index = −1 then

return FALSE

else

if columnNumber is the last column in the schema then

return TRUE

else

conservativeExcept(T, columnNumber + 1, buckets[index].subBuckets)

end if

end if
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So far we have assumed that the entire ”Bucket” structure that we build fits into the

main memory. This may well not be the case for large tables. In this scenario we need

to find a way to build the ”Bucket” structure in disk and find efficient ways to retrieve

it while computing aggressive and conservative minus. The way we build the ”Bucket”

structure in the disk is pretty much similar to what we do in main memory, except that

we flush the buckets into the disk when there is no more space in the main memory. Also,

we ensure that each disk block contains buckets of a single attribute (column). In addition,

buckets corresponding to a given column may span multiple blocks. The logical view of the

”Bucket” structure in disk is shown in Figure 4.4. As in the ”Bucket” structure in memory,

the ”Bucket” structure in disk has the buckets corresponding to each attribute in a separate

level, with the buckets corresponding to the first attribute at the root. If the buckets of an

attribute cannot be fit into a single disk block, we pack the extra buckets into an overflow

block and make it accessible from the original disk block. This is the reason for the ”links”

among blocks at the same level in Figure 4.4.

a1,1 … ap,1 ap+1,1 … aq,1 … as,1 … aw,1 Level 0 – Attribute 1

Level 1 – Attribute 2

a1,2 … ac,2 ac+1,2 … ad,2 … ae,2 … af,2 af+1,2 … ag,2 … ………..

a1,n … ak,n ak+1,n … al,n … au,n … ay,n ay+1,n … az,n …

Level n-1 – Attribute n

Figure 4.4: Logical View of ”Bucket” Structure in disk

We now illustrate, with an example, exactly how we store the ”Bucket” structure in the

disk. Let’s revisit the table shown in Figure 4.2(a). Figure 4.5 shows the ”Bucket” structure

built in the disk for that table. Each bucket, which originally held a value and main memory

location of its sub-buckets, now includes a block number in which its sub-buckets are located

in the disk instead of the actual main memory location. In the context of the ”Bucket”

structure stored in disk, bucket means the (value, block number) pair.
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Figure 4.5: Example illustrating storage of ”Bucket” structure in disk

In Figure 4.5 the block numbers are used to identify each block of the ”Bucket” structure.

This is a number that we assign for our reference. All the buckets corresponding to the

attribute V A are written in Block 0. The first integer in each block represents the number

of buckets stored in that block. The number of buckets corresponding to the attribute V A

is 4, and hence the first integer in Block 0 is 4. The same holds true for other blocks too.

Following the number of buckets are (value, block-number) pairs. The value represents

the value in the bucket and the block-number represents the block number in which its

sub-buckets can be found. For example, in Block 0, (NULL, 1) means that the value in

that bucket is NULL and its sub-buckets can be found in Block 1. Suppose in a bucket,

the block-number in the (value, block-number) pair is −1, it means that there are no sub-

buckets associated with this bucket. This is usually true for buckets corresponding to the

last column. The last integer in any block, say block i, is used to represent the block number

in which the buckets that overflow from block i are stored. The overflow occurs due to the

limitation of the block size in disk, which is usually 1 KB or 2 KB or 4 KB. If the last integer

in the block is −1, then it means that there are no overflow buckets, as in this example.

These blocks can be written to a file so that they can be loaded into main memory, in

parts, at a later point in time to evaluate queries. The file, which we call as index file, can

be named after the table for which it has been created to avoid name conflicts. The same

file can be used whenever the underlying table is involved in the computation of aggressive
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or conservative minus. However, we need to build the index file again if the underlying

table is modified.

Now that we have built the ”Bucket” structure in disk, we need to load it into main

memory to compute aggressive or conservative minus. We have come up with two loading

strategies, namely, pre-fetching and on-demand. In the pre-fetching scheme we try to

take advantage of as much main memory as available and try to load as many of the blocks

from the disk into main memory as possible. In the on-demand scheme we load blocks from

the disk into main memory as and when required.

The on-demand scheme might seem pretty obvious, but to help the readers visualize the

pre-fetching scheme we use the ”Bucket” structure shown in Figure 4.5. Let us assume

that the main memory can accommodate 13 buckets. In the pre-fetching scheme, we

would load blocks 0 through 6 into main memory initially. More generally, we use a depth

first loading strategy with respect to the buckets in each block. The reason for this is an

optimization we have come up with, which we discuss subsequently using an example.

Let the query that we are trying to evaluate be Q = Q1 −a Q2, where Q1 is ”Select *

from T1;”, and Q2 is ”Select * from T2;”. Let the schemas of T1 and T2 consist of three

attributes V A, V B, and V C. Let us assume that we have already built the index file

(”Bucket” structure) for T2. To evaluate the query Q, we need to scan the index file of

T2, for each tuple of T1. Let us further assume that, in the index file of T2, there are two

blocks of buckets corresponding to the attribute V A, each block holding 100 buckets. If

the tuples of T1 are such that the first tuple has a V A value that is present in the first

block corresponding to attribute V A of the ”Bucket” structure, second tuple has a V A

value that is present in the second block corresponding to attribute V A of the ”Bucket”

structure, third tuple has a V A value that is present in the first block corresponding to

attribute V A of the ”Bucket” structure and so on, then the blocks are scanned back and

forth multiple times. Also, in this scenario we can never claim that a block of the ”Bucket”

structure is never going to be used in evaluating the aggressive minus because we might

always encounter a tuple of T1 with V A = NULL, which requires us to scan in the index

file all the blocks corresponding to V A. In other words, if the tuples in T1 are in some

random order, then the disk accesses turn out to be very expensive.
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Obviously we cannot guarantee a perfect sequential access of the index file, but we can

definitely reduce the back and forth scans of blocks by sorting the tuples of T1. It should

now seem pretty obvious why, in the pre-fetching scheme, we perform depth-first loading

with respect to the buckets in each block. Since the tuples in T1 are sorted and the ”Bucket”

structure of T2 is built by sorting the tuples of T2, we would intuitively expect the attributes

of the first few tuples of T1 to have a match in the first few blocks of the ”Bucket” structure.

We now provide an example to illustrate both our loading strategies. As before, let us

suppose we are evaluating the query Q = Q1 −a Q2, and Q1 = ”Select * from T1;” and Q2

= ”Select * from T2;”. T1, T2 and the ”Bucket” structure for T2 are shown in Figure 4.6(a),

Figure 4.6(b) and Figure 4.6(c) respectively. We now process the first tuple of T1, call it

t1. In the on-demand scheme, we would load the first (root) block B0 from the disk. Since

it has a bucket with value NULL we proceed with our search in its sub-buckets no matter

what the value in t1 corresponding to attribute V A is. So we load B1 from the disk and

search for bucket with value 2. On performing binary search we arrive at the bucket with

value 2. So we load its sub-buckets, i.e. block B3, from the disk and search for bucket with

value 5. On doing a binary search in B3 we find a bucket with value 5. So we do not include

t1 in the result. We now consider the next tuple of T1, call it t2. We search in B0, which is

already in main memory. That leads us to block B1, which is also already in main memory.

Performing a binary search in B1 leads us to the bucket with value 1, which is what we

are looking for. We then load its sub-buckets, i.e. B2, from the disk and perform a binary

search to arrive at the bucket with value 2. Since we find a tuple in T2 that is compatible

with t2, we do not include t2 in the result.

On the other hand, in the prefetching approach we load as much ”Bucket” structure as

possible into the main memory. In the best case, if we have enough main memory to load

the entire ”Bucket” structure we do so. In this scenario, we load blocks B0, B1, B2 and B3

into the main memory. Having loaded all the blocks into the main memory, we compute

the aggressive minus as illustrated previously. What do we do if the main memory cannot

accomodate the entire structure? We discuss this scenario, with an example, subsequently.

Let us revisit the example in Figure 4.3. Let T1 be the table shown in Figure 4.3(a).

Let T2 be the table shown in Figure 4.3(b). Let Q1 be ”Select * from T1;” and Q2 be
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VA VB VC

120 2 5

130 1 2

VA VB VC

NULL 1 2

NULL 1 3

(a)

NULL

B0

BNULL 1 3

NULL 1 4

NULL 1 5

NULL 2 5

1 2

B1

NULL 2 6

NULL 2 7

NULL 2 8
(b)

2 3 4 5 5 6 7 8

B2 B3

( )(b) (c)

Figure 4.6: Example to illustrate performance of on-demand and prefetching schemes

”Select * from T2;”. We are interested in computing Q1−aQ2. Let us assume that we have

already constructed the ”Bucket” structure for T2, shown in Figure 4.3(c), in the disk. Let

us further assume that the main memory is sufficient to load only 11 buckets.

In this scenario, in our prefetching scheme we initially load blocks B0, B1, B2, B5, B6

and B7. We can observe that, in order to process the first 3 tuples of T1 the blocks we

have already loaded into main memory suffice. To process the fourth tuple of T1, we require

blocks B3 and B8. To load these blocks into main memory we need to deallocate some of

the blocks currently in main memory. One key observation we make here is that we are

currently processing a tuple in T1 with V A = 2. Since the tuples in T1 are sorted we are

sure not to further encounter any tuple in T1 with V A = 1. This suggests that the bucket

in B0 with value 1 and its sub-buckets in blocks B2, B6 and B7 that are currently in main

memory would not be used any further in evaluating the query. Hence this observation

allows us to deallocate these buckets from the main memory. Now, we load the required

blocks B3 and B8 and continue with the query evaluation.

Having discussed in detail the building of the ”Bucket” structure and elaborating on how

we use it to compute aggressive and conservative minus, we would like to briefly discuss why

we opted for the ”Bucket” structure and not used an existing data structure such as a B+

tree. To start with, we cannot use the existing B+ tree search algorithm as such in trying

to check for tuple compatibility. In the existing B+ tree search algorithm, at each point we
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follow a single branch upon comparing with the key value. This would not be sufficient in

our query evaluation algorithm. Since NULL matches any value, we would have to modify

the B+ tree search algorithm to search multiple branches.

Secondly, B+ trees are usually built on key values corresponding to a single attribute. In

our algorithm, we would require an index on all attributes, since all attributes in a relation

can be deemed sensitive in the worst case. As a result, if we use a B+ tree, then the B+

tree needs to be indexed on all attributes. As a result, each key value in the B+ tree node

would be replaced by values of all attributes. Typically, the size of the B+ tree node is

chosen such that it would fit into a single disk block. Let’s assume that the disk block size

is 1 KB. Let us further assume that we have n attributes, all integers. Thus, the effective

number of keys stored in the B+ tree node is (1024/4n), i.e. 256/n. We have 256/n values

in the node corresponding to the first attribute. In contrast, in our ”Bucket” structure, each

block contains values corresponding to a single attribute, which means a single disk block

contains 256 values corresponding to the first attribute. This implies that the coverage for

a given attribute is greater in the ”Bucket” structure than in B+ trees. As a result, we

used the ”Bucket” structure instead of B+ trees.
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Chapter 5

Experimental Results and Analysis

In this chapter we discuss the experiments that we perform to analyze and compare

our database level implementation to enforce access control with the query modification

approach proposed by Wang et al. [5] as well as the existing approach to evaluate queries

without access control. We restrict ourselves to queries involving the SQL set difference

operation.

In order to measure performance we use the following parameters.
Parameter Description
Table Size Number of tuples (records) in the

table
Execution Time Time to execute a query of the

form Q1 −Q2

Sensitivity Number of attributes considered
sensitive

Disclosure Probability Probability with which a sensitive
attribute’s value is authorized to
be disclosed

Range Set of values an attribute can take
Main Memory Available Amount of main memory available

to hold the ”Bucket” structure

We first discuss the experimental setup in which we elaborate on the data set and the

type of queries we used for our experiments, and also the configuration of the computer in

which we performed the experiments. We then discuss the various experiments, their intent

and analyze the results. Our experiments were targetted to observe how well our database

level implementation scales with table size. We study the difference in behavior between our
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Attribute Description
ID1 (number) Primary key, sequential order
ID2 (number) Candidate key, random order
VA (number) Value 0-k, k = TabSize/Uniformity
VB (number) Value 0-k, sensitive attribute
VC (number) Value 0-k, sensitive attribute

Select-25 (number) Values 0-1 (25% = 1)
Select-50 (number) Values 0-1 (50% = 1)
Select-75 (number) Values 0-1 (75% = 1)

Disclose-50-B (number) Values 0-1 (50% = 1), governs VB
Disclose-75-B (number) Values 0-1 (75% = 1), governs VB
Disclose-90-B (number) Values 0-1 (90% = 1), governs VB
Disclose-50-C (number) Values 0-1 (50% = 1), governs VC
Disclose-75-C (number) Values 0-1 (75% = 1), governs VC
Disclose-90-C (number) Values 0-1 (90% = 1), governs VC

Figure 5.1: Description of benchmark datasets.

database level implementation and the query modification approach [5] by varying Range

and Disclosure Probability parameters. We then compare the performance of the pefetching

and the on-demand schemes. We finally analyze how our prefetching scheme performs by

varying the main memory made available to load the ”Bucket” structure.

5.1 Experimental Setup

The tables used in our experiments were generated based on the Wisconsin bench-

mark [18], the description of which is shown in Figure 5.1.

All the experiments were run on the POSTGRESQL database management system. The

machine on which the experiments were performed has a system memory of 512 MB, clock

speed of 1.80 GHz, cache size of 256 KB, bus speed of 100 MHz, and a block size of 1 KB.

All the queries in the experiments had the form Q1 − Q2. Neither Q1 nor Q2 contain

sub-queries. One or two of the three attributes (Va, Vb and Vc) are sensitive. We avoid

having all three attributes sensitive in order to avoid the situation where one tuple in the

result of Q2 contains all unauthorized values, in which case every tuple of Q1 would then
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match this tuple of Q2. When loading the ”Bucket” structure from the disk into the main

memory we disable the kernel readahead in order to avoid any caching of the index file.

We use the following terminology while plotting graphs.

• SoundDB - The database level implementation proposed in this thesis

• SoundQM - The query modification approach Wang et al. [5]

• Unmodified - The original algorithm with no sensitive attributes

• Prefetching - The approach where the ”‘Bucket”’ structure is loaded in the main

memory in a greedy fashion

• On-Demand - The approach where buckets are loaded into main memory as and when

they are necessary

5.2 Results and Analysis

The first set of experiments were performed in order to compare the performance

of SoundDB, SoundQM and Unmodified approaches.The results are reported in Figure 5.2.

We would like to point out to the readers that the execution time reported for the

SoundDB approach in Figure 5.2 includes both the index building time and the query

evaluation time. From Figure 5.2, we can observe that the performance of SoundDB is bet-

ter compared to the performance of SoundQM. This is because the overhead of computing

the join operation in SoundQM has been eliminated in SoundDB approach by modifying

the query evaluation engine of POSTGRESQL. Many optimizations targetted specifically at

access control, such as building the ”‘Bucket”’ structure to efficiently search for compatible

tuples, make the performance of SoundDB better compared to SoundQM. For moderately

sized tuples, with 100000 records, the performance of SoundDB is comparable to that of

Unmodified.

Figure 5.3 compares the performance of SoundDB and Unmodified for larger table sizes.

Figure 5.3 also reports the break-up of SoundDB into index building and query evalua-

tion. For tables with upto 300000 tuples, building the bucket structure on-the-fly for the
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Figure 5.2: Comparison of SoundDB, SoundQM and Unmodified approaches. Other pa-
rameters: Range = 1000, Sensitivity = 2, Disclosure Probability = 75%
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Figure 5.3: Break up of SoundDB into index building and query evaluation. Other param-
eters: Range = 1000, Sensitivity = 2, Disclosure Probability = 75%

SoundDB approach does not affect the performance much. For larger tables, it is the index

building time that dominates over the query evaluation time in SoundDB approach. In



53

such scenarios it might be wise to make the index building a one time task. Once the index

structure is built, the query evaluation does not take much time and its performance is even

slightly better than Unmodified. This is because, in POSTGRESQL, the except operator is

implemented in a manner similar to merge join. Since we have already built the ”Bucket”

structure, the time spent on sorting, which is the major bottleneck in merge join, is avoided

when evaluating the query using SoundDB.

Our next set of experiments was targetted at observing the manner in which the SoundQM

and SoundDB approaches performed with different Ranges. Figure 5.4 reports the behavior

of SoundQM and Figure 5.5 reports the behavior of SoundDB with varying Range values.
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Figure 5.4: Behavior of SoundQM with varying Range. Other parameters: Sensitivity = 2,
Disclosure Probability = 75%

From Figure 5.4 we can observe that the execution time of SoundQM increases with

decrease in Range. This is because, for a given table size, when the range is 500, the

number of tuples having the same value in an attribute is more compared to the number of

tuples having the same value in an attribute when the range is 1000. As a result, the join

operation in SoundQM takes a longer time to execute since each tuple in the result of Q1 has

to be compared to more number of tuples in the result of Q2. In contrast, we can observe
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Figure 5.5: Behavior of SoundDB with varying Range. Other parameters: Sensitivity = 2,
Disclosure Probability = 75%

from Figure 5.5 that the execution time for SoundDB increases with increase in Range.

This is because, the number of buckets corresponding to a column is larger when range is

1000, than when the range is 500. As a result, the search space for each column increases

with increase in Range. Due to this reason, the performance of SoundDB is reduced, in

other words the execution time increases, when Range increases.

Our next set of experiments were conducted to analyze the behaviour of SoundQM and

SoundDB when the disclosure probability and the number of sensitive attributes are varied.

Figure 5.6 and Figure 5.7 report the results for these experiments.

From Figure 5.6, we observe that SoundQM performs better when the number of sensitive

attributes are less, or in other words, SoundQM performs better when more cells can be

disclosed. This is because, we use the rule that NULL matches any vaue, and existing

DBMSs do not have optimization for this. When the disclosure probability of an attribute,

say a1, is 100%, the join condition simply becomes (T1.a1 = T2.a1) instead of ((T1.a1 =

T2.a1)OR(T1.a1isNULL)OR(T2.a1isNULL)). In contrast, SoundDB performs significantly

better when there are more sensitive attributes, or in other words, SoundDB performs better
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Figure 5.6: Behavior of SoundQM with varying Disclosure Probability. Other parameters:
Sensitivity = 2, Table Size = 100000, Range = 1000

 0

 500

 1000

 1500

 2000

 2500

 3000

 50  60  70  80  90  100

Ti
m

e 
(m

ill
is

ec
on

d)

Disclosure Probability (Percentage)

SoundDB with Sensitivity=1

SoundDB with Sensitivity=2

PDF created with pdfFactory Pro trial version www.pdffactory.com

Figure 5.7: Behavior of SoundDB with varying Disclosure Probability. Other parameters:
Sensitivity = 2, Table Size = 100000, Range = 1000

when less number of cells can be disclosed, which is evident from Figure 5.7. The intuition

behind this is that, when more number of cells in the result of Q2 are unauthorized the more
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number of tuples of Q1 have a match in the result of Q2, and this match is obtained quickly

since the unauthorized cells, which are represented using NULL values, occur earlier in the

”Bucket” structure compared to other values. The evidence for this argument is presented

in Figure 5.8.
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Figure 5.8: Number of Tuples in T1 having a match in sub-buckets corresponding to the
NULL bucket in the ”‘Bucket”’ structure of T2 vs Disclosure Probability. Other parameters:
Sensitivity = 2, Table Size = 100000, Range = 1000

Figure 5.8 shows the number of tuples in the result of Q1, say T1, having a match

corresponding to the NULL buckets in the ”Bucket” structure built for the result of Q2, say

T2. In T2, for each distinct value of VA (between 0 and 999, since range is 1000) we have one

tuple with VB and VC as NULL, when the disclosure probability is 50%. This is precisely

why all 100000 tuples of T1 hit the NULL buckets corresponding to the ”Bucket”’ structure

of T2. In T2, even when the disclosure probability was 95% there were 229 values of VA

which had VB and VC as NULL. For these 229 values of VA we need not go about doing

a binary search like how we would do for non-NULL buckets (when disclosure probability

is 100%). This is the reason why SoundDB performs better when disclosure probability is

low.
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In general, when disclosure probability decreases, there are more NULLs in the tables,

which could lead to more matching and thus more comparison operations. For example,

given two tuples (x1, x2, x3) and (y1, y2, y3), x3 needs to be compared with y3 only if x1

matches y1 and x2 matches y2. If there are more NULLs, then the probability that x2

matches y2 increases, which increases the expected number of times x3 is compared with

y3 and leads to longer execution time. Our database level implementation is optimized to

handle NULLs, through the ”Bucket” structure, and it shows in the experimental results

that this optimization indeed works.

Our next set of experiments were targetted at comparing the performance of the on-

demand scheme and the prefetching scheme of SoundDB. Figure 5.9 reports the result that

we obtained for this experiment.
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Figure 5.9: Comparison of prefetching and ondemand schemes of SoundDB approach.
Other parameters: Sensitivity = 1, Disclosure Probability = 0%, Sensitive Attribute = VA,
Range = 1000

We can see from Figure 5.9 that when the table size is less than 500000, the

performance of the two schemes are comparable. When the table size increases beyond

500000, the performance gap becomes marginal, with prefetching scheme performing better

than the on-demand scheme. In order to analyze this graph we would like to revisit the
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example in Section 4.2.2 that we use to illustrate the working of our on-demand loading

strategy (refer Figure 4.6). We can observe that the on-demand scheme leads to a non-

sequential acess of the index file (i.e. ”Bucket” structure in disk). For a given range, the

number of tuples corresponding to a given value in an attribute is less when the table size is

less and increases with increase in table size. Thus, the non-sequentiality access of the index

file increases with increase in table size. This is precisely the reason why the performance

of the on-demand scheme is marginally less compared to the prefetching scheme.

On analyzing both the schemes in detail, intuitively, we expect the prefetching scheme to

out perform the on-demand scheme. Unfortunately, the results show that their performance

is quite comparable. In this experiment the attribute V A was completely undisclosed.

As a result, there is only 1 bucket corresponding to the attribute V A in the ”Bucket”

structure. So there is no appreciable non-sequentiality with respect to attribute V A in the

on-demand scheme. As a result, we conduct experiments varying the disclosure probability

of attribute V A and study the difference in performance between the two loading strategies.

The performance of the prefetching and the on-demand schemes with varying disclosure

probability are reported in Figure 5.10. Figure 5.11 reports the performance difference (i.e.

On-demand execution time - Prefetching execution time) with varying disclosure probability.

We can see that the performance gap increases with increase in disclosure proba-

bility. The extent of non-sequentiality in the on-demand scheme increases with increase in

disclosure probability. As we increase the disclosure probability we reduce the NULLs in

the table, thus reducing the chances of finding a ”match” (i.e. compatible tuple) early in

the ”Bucket” structure. As a result, the index file has to be scanned back and forth multiple

times, once to search in the sub-buckets of bucket with NULL value and another for the

bucket with the corresponding value. Also, even when the disclosure probability is 100%,

the prefetching scheme performs better. This is because, the on-demand scheme leads to a

linear search with respect to the blocks in the disk (although we do binary search within

each block), whereas in the prefetching scheme we do a ”perfect” binary search.

We would like to point out to the readers that the performance gap is actually less

when the disclosure probability is 100%, than when it is 90% or 95%. This is because of

the presence of NULLs. The sub-buckets of the bucket with value NULL get searched first.

When a match is not found we then go about with our binary search process. Obviously, the



59

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 0  20  40  60  80  100

Ex
ec

ut
io

n 
Ti

m
e 

(m
ill

is
ec

on
d)

Disclosure Probability

OnDemand

Prefetching

PDF created with pdfFactory Pro trial version www.pdffactory.com

Figure 5.10: Comparison of prefetching and ondemand schemes of SoundDB approach.
Other parameters: Sensitivity = 1, Table Size = 1000000, Sensitive Attribute = VA, Range
= 1000
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Figure 5.11: Performance difference between prefetching and ondemand schemes of
SoundDB approach. Other parameters: Sensitivity = 1, Table Size = 1000000, Sensitive
Attribute = VA, Range = 1000
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search in sub-buckets of the bucket with NULL value is avoided when disclosure probability

is 100%.

Our last experiment was conducted to analyze the performance of the prefetching scheme

of SoundDB with varying amounts of system memory. Figure 5.12 reports the result of this

experiment.
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Figure 5.12: Performance of SoundDB prefetching scheme with varying amounts of system
memory. Other parameters: Sensitivity = 2, Disclosure Probability = 75%, Table Size =
1000000, Range = 1000

The index size for the table T2 was found to be approximately 32 MB. In this experi-

ment, both VA and VB were considered to be sensitive attributes. The size of the index

corresponding to the NULL bucket of VA was found to be around 4 MB. We can certainly

say that the sub-buckets associated with the NULL bucket of VA would be used to answer

almost every tuple of T1, but we can not say much about the sub-buckets corresponding to

the NULL bucket of Vb as they would occur corresponding to many buckets of VA, and

also it is not guaranteed that they would be used for answering every tuple of T1. So we

focus our attention on the NULL buckets corresponding to the attribute V A.
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When the system memory available is between 5MB and 10MB the performance of the

prefetching scheme of SoundDB is best. When the memory is more, we try to greedily load

buckets into the system memory, and as a result we end up loading many buckets that are

not going to be used at all. The more the system memory available, the more the number of

unwanted buckets we would load into memory and hence greater the execution time. When

the system memory falls below 4 MB, which is the size of the index corresponding to the

unauthorized value (NULL) of V A, the performance falls drastically. This is because, the

sub-buckets of the NULL bucket of V A is swapped back and forth between main memory

and disk, which turns out to be pretty expensive.

5.3 Discussion

On analyzing the process of building our ”Bucket” structure, we find that we build

redundant buckets. To make this point clearer, we elaborate with an example. Consider

the table shown in Figure 5.13(a). The corresponding ”Bucket” structure is shown in

Figure 5.13(b).

VA VB VC

NULL 1 3

NULL 1 2B0

B1 B2 B3
NULL 1 3

1 1 3

2 NULL 4

2 2 4

1 1 NULL 2

3 3 4 4

B4 B5 B6 B7

(a) (b)

Figure 5.13: Example to illustrate redundancy in ”Bucket” structure

We can observe that there are 3 distinct buckets (with values NULL, 1 and 2) corre-

sponding to attribute V A in block B0. Also, the sub-buckets of the buckets with values

NULL and 1 are the same. While evaluating the query Q1 −a Q2, where Q1 = ”Select *

from T1;” and Q2 = ”Select * from T2;” (T2 is the table in Figure 5.13(a)), if a tuple in

T1 is not going to be compatible with the tuple (NULL, 1, 3) of T2, then it is obviously

not going to be compatible with the tuple (1, 1, 3) of T2. This suggests that the bucket

with value 1 in block B0 and the buckets in blocks B2 and B5 are not required. Also, the

bucket in block B3 with value 2 and the bucket in block B7 are not required for the same
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reason. This further suggests that we need not have built those buckets while constructing

the ”Bucket” structure. How does this improve the performance of our approach? We

discuss this subsequently.

By not constructing the non-required buckets (like those in the above example) we reduce

the size of the index file. Thus, the time required to load the index file into main memory

decreases as a result of a lesser seek time. This in turn improves the performance of the

query evaluation. In addition, by getting rid of the non-required buckets, we make sure

that ”useful” buckets get loaded into the main memory while prefetching the index file

from the disk in our prefetching scheme. This again suggests performance improvement

while evaluating aggressive minus.

On the contrary, we need to preprocess the table for which we wish to construct the

”Bucket” structure in order to remove the tuples that lead to non-required buckets (such

as the ones provided in the above example). By doing so, we increase the time to build the

”Bucket” structure. This is a trade-off that we need to consider. If the ”Bucket” structure

needs to be built on-the-fly, then it might not be worth to spend extra time on building

it. On the other hand, if the aggressive minus is computed frequently and the table used is

relatively stable, then spending the extra time in building the ”Bucket” structure might be

worth in the long run.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we present a database level implementation to efficiently enforce fine

grained access control. We modify the query evaluation engine of POSTGRESQL to evalu-

ate queries in a sound and secure fashion. Though the query evaluation algorithm that we

implement is not our contribution per se, we would like to bring to the notice of the readers

that the database level implementation of the algorithm is certainly not a trivial task. We

find, through experiments, that the most straightforward approach to implement the query

evaluation algorithm is inefficient. As a result we introduce an index structure, which we

call the ”Bucket” data structure, and suggest optimizations to improve the performance of

the database level implementation. We also address challenges in the form of main mem-

ory constraints. We introduce memory management schemes so that our implementation

tries to make use of the main memory available in an adaptive fashion. We measure the

performance of our implementation against various parameters, and prove experimentally

that it performs better compared to the query modification approach of implementation

proposed by Wang et al. [5]. Experimental results also suggest that the performance of our

implementation to enforce fine grained access control is comparable to POSTGRESQL’s

implementation without access control, which shows that our implementation is practical.
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6.2 Future Work

In our prefetching scheme, we prefetch blocks from the disk blindly, without mak-

ing an effort to determine if the block we prefetch is actually going to be useful. As a result,

we end up loading blocks from the disk that are never used for the query evaluation, which

degrades the performance to a certain extent. We propose to improve the performance of

the prefetching scheme by looking ahead tuples of the table on the left handside of the

minus operator to determine the usefulness of a block, before it is prefetched from the disk,

in answering the query.

As an alternative to our ”Bucket” structure, we can use R-tree to compute aggressive

minus. We can do so by treating each tuple in the relation as a single multidimensional

attribute, i.e. a point in space. We propose to modify the insertion algorithm of R-tree

to suit our semantics of NULL. It would be interesting to compare the performance that

we would obtain using the R-tree with the performance we obtained with our ”Bucket”

structure. We would like to study this comparison sometime in the future.

Exisitng DBMSs do not have provisions for the type-1 and type-2 variables used in the

labeling mechanism proposed by Wang et al. [5]. As a result we use NULLs to represent

unauthorized cells, which does not guarantee the satisfaction of maximal criterion. Also,

without type-2 variables, it is difficult to preserve the linking between tables if the attribute

involved in linking is replaced by NULL. We propose to incorporate type-1 and type-2 vari-

ables in POSTGRESQL and implement the labeling mechanism proposed by Wang et al.

sometime in the future. Currently, our implementation ensures the sound and secure en-

forcement of fine grained access control at the database level, assuming that policies for each

query context are in place. Luo et al. [19] discuss ways to store XML access control policies

in relational DBMSs. We propose to implement something similar in POSTGRESQL to

allow policies specified in languages such as XACML to be stored in relational DBMSs.

This together with implementing the labeling mechanism introduced by Wang et al. [5] in

POSTGRESQL would make it a more complete access control system.
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