
ABSTRACT 

SETHURAM, AMRUTHA SHREE. Reconstruction of Lambertian Surfaces from 
Photometric Stereo. (Under the direction of Dr. Wesley E. Snyder) 
 

 The objective of this thesis is to implement and compare two algorithms to 

reconstruct the shape of an object from photometric stereo. Photometric stereo is a practical 

technique for determining an object’s shape and surface reflectance properties at a distance. 

The implementation proposes the use of three images of an object, recorded from the same 

viewpoint but with different illumination. The first algorithm employs the Fourier transform 

method to solve the minimization problem. The gradient data is obtained by incorporating 

photometric stereo method on image triplets. The Fourier transform of the unknown surface 

is then expressed as a function of the Fourier transform of the gradients. The relative depth 

values are then obtained by applying an inverse Fourier transform of the function. The 

second algorithm is based on iterative reconstruction which minimizes the cost function by 

gradient descent and annealing. Both these algorithms are implemented to reconstruct both 

real and synthetic surfaces and the results are compared. It is also shown that better 

reconstruction results are obtained by adopting the second algorithm in the presence of 

discontinuities in the image. Noise sensitivity of the frequency-domain method is also 

evaluated. An experimental setup to obtain real world images is also presented. 
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Chapter 1 

Introduction 

Smooth variations in the brightness or shading of objects in an image are an 

important cue in human vision for estimating the shape of objects. Researchers in human 

vision have attempted to understand and simulate the mechanisms by which the human eyes 

and brain use this shading information to recover three dimensional shapes. The problem of 

reconstruction of shape of an object from image shading has been of great interest to 

researchers in the field of computer vision. Approaches addressing the problem of 

reconstructing a surface given a brightness image are referred to as “Shape-From-Shading” 

(SFS) methods. SFS methods use a single image for shape recovery while “Photometric 

Stereo” techniques are shape recovery techniques which use more than one image. Various 

other methods used in reconstruction of surfaces include Shape-from-stereo, motion, texture, 

etc. The shading of an object depends on the shape of the object, reflectance properties of 

the surface and the distribution of light sources. The surfaces can be classified as 

Lambertian, specular and hybrid depending on their reflectance properties. Lambertian 

surfaces reflect light in all directions and have diffused reflectance while specular surfaces 

reflect all of incident light along a single direction. Hybrid surfaces are those with 

reflectance properties which are a combination of Lambertian and specular surfaces. In this 

thesis, we will restrict our study to Lambertian surfaces. The aim of this thesis is to examine 

the problem of reconstruction of Lambertian surfaces from photometric stereo. Two 

algorithms used to reconstruct the surface are implemented. Both these algorithms are based 

on reconstructing the surface by minimizing a cost function. This objective function 
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integrates surface derivatives, using the integrability constraints with the surface area and 

curvature constraints to solve the discontinuity problem.  

The first algorithm employs the Fourier transform method to solve the minimization 

problem. The gradient data is obtained by incorporating a photometric stereo method on 

image triplets. The Fourier transform of the unknown surface is then expressed as a function 

of the Fourier transform of the gradients. The relative depth values are then obtained by 

applying an inverse Fourier transform of the function.  

The second algorithm is based on iterative reconstruction and annealing. Both these 

algorithms are implemented to reconstruct both real and synthetic surfaces and the results 

are compared. Noise sensitivity of the frequency-domain method is also evaluated. An 

experimental setup to obtain real world images is also presented.   

This thesis work is organized as follows. The problem description is presented in 

detail in Chapter 2. Chapter 3 is dedicated to literature survey. This is followed by a chapter 

which describes the approach. The details of the algorithms are presented in chapter 5 and 

chapter 6. The results obtained are presented in chapter 7. The conclusions and future work 

are presented in the last chapter. 
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Chapter 2  

 Problem Description 

 

Photometric Stereo [1], introduced by R.J.Woodham is a novel technique used to 

recover shape of an object. The technique makes use of more than one image of the object, 

recorded from the same viewpoint but with different illumination. The central observation of 

this approach is that: 

“Grey-levels recorded by an imaging system are measurements which result from 

real physical processes. Such a measurement may be viewed as a constraint on the possible 

interpretation of surface element that gave rise to it.” 

Photometric techniques may be applied when imaging variables, such as illumination 

and viewing geometry, can be controlled or at least known. It is probably the least 

computationally expensive method available for determining object shape. The investigation 

of this technique has been provided in [2]. Shape reconstruction techniques developed for 

photometric images can also be used to reconstruct the three-dimensional surface that 

corresponds to Scanning Electron Microscope (SEM) images [37]. SEM has been a principal 

tool for investigating materials in a wide range of fields from biological sciences to 

integrated circuit inspection and quality control. The algorithms that are implemented in this 

thesis can also be used to reconstruct the three-dimensional surface from surface orientations 

recovered from SEM images. 
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The main objective of this thesis is to examine the problem of reconstructing 

photometric stereo images. Two algorithms are implemented for the reconstruction of these 

photometric stereo images. The first algorithm is a regularization method which combines 

the integrability constraints, surface curvature, and area constraints into a single functional 

which is then minimized. The minimization is done by using Fourier transforms. This thesis 

also deals with the noise sensitivity of the Fourier transform method. The second algorithm 

is based on iterative reconstruction. This thesis shows that the algorithm based on iterative 

reconstruction procedure is more robust than the algorithm based on Fourier transform 

approach. 

In the next section, some basic definitions from surface geometry are introduced. 

 

2.1 Definitions 

 The image of a three-dimensional object depends on its shape, its reflectance 

properties, and the distribution of light sources. It also depends on the position of the object 

relative to the imaging system and on the object’s attitude in space. A knowledge of 

radiometry is essential to understand how the brightness at a particular point in the image is 

determined as discussed in this section. 

 

2.1.1 Radiometry 

 The amount of light falling on a surface is called the irradiance. It is the power per 

unit area incident on the surface. The amount of light radiated from a surface is called the 

radiance. It is the power per unit area per unit solid angle emitted from the surface. 

Brightness is determined by the amount of energy an imaging system receives per unit 
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apparent area. It is proved in [3] that the image irradiance E is proportional to the scene 

radiance L . 

 Scene radiance depends on the amount of light that falls on a surface and the fraction 

of the incident light that is reflected. It also depends on the geometry of light reflection. 

These directions are described in terms of a local coordinate system erected on the surface as 

shown in Figure 2.1 

    

  Figure 2.1 The direction of incident and emitted light rays are        
          specified in a local coordinate system using θ  and φ  
     
 

  The Figure 2.1 shows a perpendicular to the surface i.e. the normal n̂  and an 

arbitrary reference line drawn on the surface. Directions are described by specifying the 

angle θ  between a ray and the normal and the angle φ between a perpendicular projection of 

the ray onto the surface and the reference line on the surface. These angles are called the 

polar angle and azimuth, respectively. They are used to specify the direction ( )ii φθ , from 

which light falls on the surface and the direction ( )ee φθ , into which it is emitted towards the 

viewer as shown in Figure 2.2 

n̂  

θ  

φ
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   Figure 2.2 Diagram to illustrate BRDF 

 

 The bidirectional reflectance distribution function (BRDF) ( )eeiif φθφθ ,;, is a 

measure of how bright a surface appears when viewed from one direction while light falls on 

it from another. If the light falling on the surface from the direction ( )ii φθ , i.e. the irradiance 

is ( )iiE φθδ , and the brightness of the surface as seen from the direction ( )ee φθ ,  i.e. the 

radiance ( )eeL φθδ , , the BRDF is defined as the ratio of radiance to irradiance i.e. 

    ( ) ( )
( )ii

ee
eeii E

Lf
φθδ
φθδ

φθφθ
,
,

,;, =              (2.1) 

 

2.1.2 Lambertian Surface 

 An ideal Lambertian surface is one that appears equally bright from all viewing 

directions and reflects all incident light, absorbing none. From this definition, it can be 

deduced that the BRDF of an ideal Lambertian surface must be a constant. A Lambertian 

surface is one having perfect matte properties i.e. which obeys Lambert’s cosine law. 

EYE 

SOURCE 

( )ii φθ ,  

( )ee φθ ,  

n̂  
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Lambert’s cosine law states that “The radiance in any direction from an element of a 

perfectly diffusing surface varies as the cosine of the angle between the direction of 

incidence and the normal vector of the surface at that element”. Using the BRDF for a 

Lambertian surface, it can be shown that [3], 

    iEL θ
π

cos1
=   for 0≥iθ              (2.2) 

It can be seen that equation 2.2 is independent of the viewing direction i.e. the brightness of 

a Lambertian surface is a constant regardless of the direction from which it is viewed. An 

example of such a Lambertian surface is as shown in Figure 2.3 

   

   

   Figure 2.3 An Ideal Lambertian surface. 

Surfaces covered with finely powdered transparent materials, such as barium sulphate or 

magnesium carbonate, come closest to obeying Lambert’s law. It is a reasonable 

approximation for many other materials, such as paper, snow, and matte paint. 

Incident Ray 

Reflected Rays 
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2.1.3 Surface Orientation 

A reasonable notation for surface orientation has been developed in [3]. A smooth 

surface has a tangent plane at every point. The orientation of the tangent plane can represent 

the orientation of the surface at that point. The surface normal, a unit vector perpendicular to 

the tangent plane, is appropriate for specifying the orientation of this plane. The normal 

vector has two degrees of freedom, since it is a vector with three components and one 

constraint i.e. the sum of squares of the components must equal one. It can also be imagined 

that this vector is placed with its tail at the center of a unit sphere, called the Gaussian 

sphere.  

 

Figure 2.4: Representation of a surface point P on the Gaussian sphere through  
              slant σ and tilt θ  
 

x 
y 

r 

σ  
P 

θ  

-z 

P′  

)sin(σlength  
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The head of the vector touches the sphere at a particular point, which can be used to 

denote surface orientation as shown in Figure 2.4. The position of the point can be specified 

by two variables, slant and tilt. 

A surface can be represented by a real valued function ℜ→×YXz : . This implies 

that a surface z will have a unique height ℜ∈),( yxz at each point ),( yx in the domain      

ℜ×ℜ∈×YX .              (2.3) 

The gradient of a differentiable surface z at a point ),( yx is defined by 

   [ ]T
yx yxqyxpz ),(),(),( =∇               (2.4) 

where  

),(),( yx
x
zyxp

∂
∂

=     and   ),(),( yx
y
zyxq

∂
∂

=              (2.5) 

are the slopes of the surface in the −x and −y directions. 

The gradient of a surface at a given point then corresponds to a point in the gradient 

space QP × . The upward unit surface normal at a point is given by 

221
)1,,(ˆ

qp
qp T

++

−−
==

n
nn               (2.6) 

 

Both the surface gradient and the surface normal describe the orientation of a surface 

at a point ),( yx . 

  

2.1.4 The Reflectance Map 

The reflectance map [4] encodes information about surface reflectance properties 

and light-source distributions. It is a representation tool used in developing methods for 
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recovering surface shape from images. It is a real-valued function defined on the gradient 

space which quantifies the brightness value to be observed at a point given the surface 

orientation at that point. It is well known [3, 5] that surface orientation affects the observed 

brightness. The brightness observed at a point depends on several factors: surface 

reflectivity, intensity of incident light, direction of incident light, and the viewing direction. 

Surface reflectivity is the ratio of power of reflected light from the surface to that incident 

on it. This is usually represented by a factor called albedo which indicates how much light 

the surface reflects relative to some ideal surface with the same geometry.  Thus, if we 

measure the image irradiance ),( yxE , it is proportional to the radiance at the corresponding 

point on the surface imaged. If the surface gradient at that point is )),(),,(( yxqyxp , then the 

radiance at that point is )),(),,(( yxqyxpR . Thus by setting the constant of proportionality to 

one, we obtain 

   ),( yxE  =  )),(),,(( yxqyxpR .    (2.7) 

  This image irradiance equation is fundamental to the method developed for recovering 

surface shape. 

 It is often convenient to plot the surface ( )qpR ,  as a function of the gradient ( )qp, . 

The −pq plane is called the gradient space, and every point in it corresponds to a particular 

surface orientation. As already explained in the previous section, a Gaussian sphere is used 

to represent the direction in which the surface normal is pointing. Sometimes, because of the 

curved surface of the Gaussian sphere, the points on the sphere are usually projected onto a 

plane to obtain the gradient space as shown in Figure 2.5. The gradient space is obtained my 

projecting the upper hemisphere of the Gaussian plane onto an infinite plane as shown in 

Figure 2.5 and is referred to as the gnomic projection. But in some cases, if the occluding 
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boundary is to be dealt with, another type of projection called the stereographic projection is 

used. In this type of projection, the whole sphere except for one point, is projected onto a 

plane, called the stereographic plane as shown in Figure 2.6 

   

    Figure 2.5 Gnomic Projection 

 

      

    Figure 2.6 Stereographic Projection 
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2.2 Problem Statement 

The objective of this thesis is to obtain photometric stereo images and to reconstruct 

the object from these images. Given three photometric stereo images, this work aims at 

initially obtaining the surface derivatives, p and q , and later reconstructing the surface from 

these gradients. Two algorithms are implemented to reconstruct the surfaces from the 

gradients. This thesis shows that the algorithm based on iterative reconstruction procedure is 

more robust than the algorithm based on Fourier transform approach.  

The idea of photometric stereo [1] is to vary the direction of the incident illumination 

between successive views while holding the viewing direction constant. This thesis makes 

use of image triplets of an object whose surface is to be reconstructed. This is achieved by 

having a constant viewing direction and using different non-collinear light sources which are 

powered one at a time.  In this section, it is shown as to how photometric stereo using three 

images can be employed to evaluate the surface normal and hence the derivatives 
x
z

∂
∂  

and
y
z

∂
∂ . 

Suppose three images ),(1 yxI , ),(2 yxI and ),(3 yxI are obtained by varying the 

direction of incident illumination. Since there has been no change in imaging geometry, each 

picture element ),( yx in the three images correspond to the same object point and hence to 

the same gradient ),( qp . The effect of varying the direction of incident illumination is to 

change the reflectance map ),( qpR that characterizes the imaging situation. Thus we have 

three independent equations: 
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   ),(),( 11 qpRyxI =       (2.8) 

   ),(),( 22 qpRyxI =       (2.9) 

   ),(),( 33 qpRyxI =       (2.10)  

For reflectance characterized by ),( qpRa above, the three views uniquely determine 

both the surface orientation and the reflectance factor ρ at each image point. Let 

[ ]′= 321 ,,~ IIII  be the column vector of intensity values recorded at a point ),( yx in each 

of the three views. Further, let [ ]′= 1312111 ,,~ nnnn  , [ ]′= 2322212 ,,~ nnnn and 

[ ]′= 3332313 ,,~ nnnn be unit column vectors which point in the direction of three directions 

of incident illumination. Let matrix N be defined by 
















=

333231

232221

131211

nnn
nnn
nnn

N      (2.11) 

 Let [ ]′= 321 ,,~ nnnn  be the column vector corresponding to a unit surface normal 

at ),( yx . Then 

    nNI ~~ ρ=       (2.12) 

so that 

    INn ~~ 1−=ρ       (2.13) 

provided the inverse 1−N  exists. The inverse exists if and only if the three vectors 1
~n , 2

~n and 

3
~n do not lie in a plane. In this case, the reflectance factor and unit surface normal at 

),( yx are given by: 

    IN ~1−=ρ       (2.14) 
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    INn ~1~ 1−








=

ρ
     (2.15) 

The above scheme can be generalized to any number of images k  where 3>=k , 

with increased noise robustness due to the over determined system. However, when 3>k , 

the matrix N is rectangular and thus a pseudo-inverse of the matrix should be computed. 

Thus having obtained the surface normals at each point on the image, the problem at hand is 

now directed towards reconstructing the surface of the object from these normals. Let us 

suppose that we have determined surface orientation over the region Ω . The relative depth 

of surface points may be determined from the gradient ( )qp, by means of the equality 

   yqxpz δδδ +=  

that relates infinitesimal changes in yx, and z . Integrating along a curve C from 

( )00 , yx to ( )yx, , we obtain 

    ( ) ( ) ( )∫ ++=
C

qdypdxyxzyxz 00 ,,                                      (2.16) 

A depth value obtained at some point depends on the integration path that was taken to get 

there. If the surface orientation is known, elevation of the surface above some reference 

plane can be determined by integration along curves in the image. As shown in Figure 2.7, 

elevation of point ( )yx,  can be determined with reference to a point ( )00 , yx   

 

 

 

 

 



 

 15 

   

 

 

 

  Figure 2.7 Integration along a closed path 

 

 However, in case of objects with discontinuities, the height of the surfaces can only 

be found up to an additive constant. In the figure 2.8 shown below, the difference in height 

between surfaces S1 and S2 i.e. h cannot be uniquely determined. 

 

 

Figure 2.8 Object with discontinuities 
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Chapter 3 

Literature Review 

In the field of computer vision, the techniques used to reconstruct shape from brightness 

images are known as Shape-From-X techniques, where X can be one of shading, stereo, 

motion, texture, etc. Modern day researches in the field of human vision show that a human 

visual system makes use of all these cues while interpreting the shape of a three dimensional 

object. We shall however focus on Shape-From-Shading techniques since our goal is to 

relate image brightness at each pixel to the surface orientation at that pixel and recover 

shape from the recovered surface orientation. 

 

3.1   Shape from Shading 

“Shading appears to me to be of supreme importance in perspective, because, without it 

opaque and solid bodies will be ill-defined……” Leonardo Da Vinci, Notebooks 

Human perception of objects in the real world strongly depends on shading of objects. 

Shading should not to be confused with shadowing. Shading provides cues all over the 

surface, not just along the special contours like shadowing. Artists have used this concept of 

shading for many centuries now, to convey the impression of a three-dimensional shape. 

Makeup artists exploit this effect to make a nose appear sharper by applying a thin line of 

light make-up along its ridge. Similarly, modern day computer graphics use shading to 

depict the illusion of the third dimension. It should be noted that given a surface and certain 

illumination conditions, it is fairly easy to determine the shading pattern. This is because the 

mapping from surface orientation to image brightness is unique [5]. However, the inverse 
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problem is generally not. The recovered shape can be expressed in several ways viz. 

depth ),( yxz , surface normal [ ]321 ,, nnn , surface gradient ),( qp  , surface slant, φ  and 

tiltθ . Depth can be considered as the relative distance between camera plane and surface 

points or the relative surface height above the yx − plane. The surface normal is the 

orientation of a vector perpendicular to the tangent plane on the object surface. The surface 

gradient is the rate of change of depth in the x and y directions. The surface slant and tilt are 

related to the surface normal as [ ]321 ,, nnn = [ ]φθφθφ cos,sinsin,cossin lll , where 

l  is the magnitude of a vector in the direction of the surface normal. 

The earliest work on the quantitative use of shading information was made in 1950-60 

on recovering the shape of parts of the lunar surface in preparation for the human 

exploration of the moon [6]. In the field of computer vision, the problem was first 

formulated by Berthold K.P. Horn in 1970 in his PhD thesis [7]. Since then, a considerable 

amount of research has been undertaken in this field. In his work, Horn shows that the shape 

of an object can be obtained from shading if the reflectivity function and the position of light 

sources are known. He shows that a general solution of the shape-from-shading problem 

revolves around the image irradiance equation: 

   ),( yxE  =  )),(),,(( yxqyxpR      (3.1) 

where ),( yxE is the image irradiance at the point ),( yx , while )),(),,(( yxqyxpR is the 

radiance of a surface patch. 

The reflectivity and gradient of a surface are related by a non-linear first order partial 

differential equation in two unknowns. Horn solves this equation by setting up an equivalent 

set of five ordinary differential equations, three for the coordinates and two for the 

components of the gradient. These five equations are then integrated numerically along 
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certain curved paths. He argues that a component of the gradient can be found in one special 

direction since the gradient cannot be determined locally and repeats this process. This curve 

traced out of the object is called as characteristic curve. The projection of such a curve into 

the image is called a base characteristic. The characteristic curve, along with the orientation 

defines a characteristic strip on the surface. However, to start the solution, an initial known 

curve is constructed near the singular points using spherical approximation. Singular points 

are those with maximum intensity. Thus the shape information is propagated simultaneously 

along the characteristic strips, assuming no crossover of adjacent strips. The direction of 

characteristic strips is identified as the direction of intensity gradients. Many closely spaced 

strips define the shape of the surface. 

 

Oliensis [8] treats shape from shading as a partially well constrained problem. The 

author argues that the surface is uniquely determined over most of the image, but infinitely 

ambiguous in small regions bordering the image boundary, even though the image contains 

singular points. It is observed that the surface shape can be reconstructed from singular 

points instead of occluding boundary. It is also shown that the characteristic strips are curves 

of steepest ascent on the imaged surface.  

The problem of surface reconstruction when viewed as an inverse problem on a non-

linear first order differential equation in surface height can be solved through calculus of 

variations. The search for a function that minimizes an integral expression is the major 

concern of the calculus of variations [14]. Here, we find the valuable result that the extrema 

of functionals must satisfy an associated Euler equation. A solution is constructed by 

seeking global optimum of a cost function that corresponds to the partial differential 
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equation under consideration, using variational calculus techniques and Euler equations. 

Since Euler equations nullify the partial derivatives of the cost function at all local extrema, 

any local minimum is treated as a global minimum. Thus a surface recovery problem can be 

transformed from one of minimizing a functional to one of solving one or more partial 

differential equations. Dupuis and Oliensis [9] constructed an algorithm based on calculus of 

variations which takes advantage of singular point constraints. Their algorithm does not use 

regularization and is capable of dealing with some orientation discontinuities. They have 

developed a solution using dynamic programming. 

Based on the idea of [9], Bichsel and Pentland [10] developed an algorithm which is 

based on a minimum downhill principle which guarantees continuous surfaces and stable 

results. The authors believe that singular points play a key-role in shape from shading since 

each singular point introduces a three-fold ambiguity i.e. locally convex, concave or saddle 

shape to the solution and that a minimum downhill principle can remove this ambiguity. The 

authors also claim that the algorithm is applicable to a broad variety of objects and 

reflectance maps and converges in fewer than 10 iterations.  

The main goal of a SFS problem is to obtain   ),( yxp  and ),( yxq such that the image 

irradiance equation is satisfied. Since each surface point has two unknowns for the surface 

gradient and each pixel in the image provides one gray value, we have an underconstrained 

problem. This causes the number of solutions to be infinite. To overcome this problem, 

additional constraints such as smoothness, integrability etc. should be introduced to limit the 

number of solutions to a few, preferably one. The general form of the optimization function 

to be minimized is given by: 

( ){ }dxdyyxSyxqyxpRyxEW ∫∫ +−= ),()),(),,((),( 2 λ      (3.2) 
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where ),( yxS is a penalty term that penalizes deviation from some definition of regularity or 

smoothness. 

Ikeuchi and Horn [11] were the first to use variational calculus in the derivation of 

iterative schemes for shape from shading. They employed the stereographic plane to express 

the orientations of surface patches, rather than the more commonly used gradient space. The 

use of the stereographic plane (shown in Figure 2.6) made it possible for them to incorporate 

occluding boundary information, but forced them to employ only a smoothness constraint. 

They solve the set of equations arising from the smoothness constraint and the image-

irradiance equation iteratively, using occluding boundary information to supply boundary 

conditions. To ensure convergence, good initial values found at certain points were used. 

One disadvantage of the stereographic parameterization is that it is somewhat harder to 

express the condition of integrability. Thus the authors have chosen to ignore integrability, 

instead minimizing the integral of an unsmoothness penalty term. (The integrability 

condition does not allow the two partial derivatives of a function of two variables to be 

specified independently. Also, it requires that they must satisfy the condition that the two 

mixed derivatives of second order are the same. Mathematically, integrability condition can 

be written as xyyx zz = . This condition is referred to as integrability, since one can recover 

the underlying surface ( )yxz , by evaluating line integrals of ( )qdypdx + along arbitrary 

contours if the surface orientation information satisfies this constraint.) 

 

Brooks and Horn [12], [15] expressed this minimization term in terms of surface normal. 

The authors point out that surface orientation has to obey an integrability constraint if it is to 

correspond to an underlying smooth surface and regularization methods do not guarantee 
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that the surface orientation recovered satisfies this constraint. They formulate a least-squares 

method for recovering height from estimates of the partial derivatives. They found that 

strictly enforcing the integrability condition does not lead to convergent iterative schemes. 

However, a convergent iterative scheme can be obtained by introducing a penalty term 

derived from the integrability constraint instead of enforcing integrability. The penalty term 

provided the iterative process with a sense of direction and the approach allowed one to 

recover surface gradients that are approximately integrable. The drawback however was that 

occluding boundary information could not be incorporated. This difficulty was overcome by 

expressing the integrability penalty term in terms of unit surface normal and its derivatives.  

 

Frankot and Chellappa [16] enforced the integrability constraint in Brooks and Horn’s 

algorithm in order to recover integrable surfaces, where integrability is defined by 

),(),(),( yxyxzyxz yxxy ∀=      (3.3) 

They represent a nonintegrable estimate of surface slopes by a finite set of basis 

functions and enforce integrability by calculating the orthogonal projection onto a vector 

subspace spanning the set of integrable slopes i.e.  they express surface orientations that 

correspond to integrable surfaces as a linear combination of a finite set of orthogonal Fourier 

basis functions and enforce integrability by projecting the nonintegrable surface slope 

estimates onto the nearest integrable surface slopes. Mapping the estimates to the nearest 

integrable field of surface orientations was done by finding the closest set of coefficients, in 

a least-squares sense, that also have the property of integrability. Their algorithm showed 

improvements both in accuracy and efficiency when compared to [12]. 
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Later in his work, Horn [13] replaced the smoothness constraint by the integrability 

constraint of equation 3.3. Vega and Yang [19] developed a heuristic-based algorithm in 

which the heuristics were derived based on the geometrical interpretation of Brooks and 

Horn [12]. They performed their experiments using synthesized objects based on 

superquadric equations. The performance of their heuristic algorithm known as the “Shading 

Logic Algorithm” achieves a better performance than variational approaches and improves 

the stability of [12]. Additional techniques have been proposed to enforce the integrability 

constraint by several authors. Kim and Park [17] proposed an algorithm in which the 3D 

surface was approximated by Legendre polynomials and the relationships between the 

surface and its derivatives were represented in matrix forms using a polynomial coefficient 

vector. They have proposed shape from shading and photometric stereo algorithms in which 

the relative depth and its derivatives are iteratively updated. 

Zheng and Chellappa [20] developed an iterative scheme using calculus of variations 

and a linear approximation of the reflectance map. They make use of a cost function that 

does not use the quadratic regularization term but instead, they implement the smoothness 

constraint by requiring the gradients of the reconstructed image to be close to the gradients 

of the input image. 

 

It can be observed that a problem common to all the minimization techniques is their 

slow rate of convergence. To work around this problem, Szeliski [18] expressed the cost 

function purely from a discrete point of view using discrete approximation to the surface 

gradient on a regular grid, as opposed to previous techniques which developed iterative 

schemes on continuous coordinates using calculus of variations and discretized them later 
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for computations. The discrete formulation then enabled the use of functional optimization 

techniques such as the gradient descent that could provide faster convergence. On the basis 

of this theory, he employed a gradient descent method with Jacobi iteration and used 

hierarchical basis representations of height and gradient fields to further improve the rate of 

convergence. 

Rather than using variational calculus techniques, Leclerc and Bobick [21] used a 

method that directly solved for surface height. By using a discrete formulation of the 

problem, they were able to achieve good convergence by employing numerical solution 

techniques. Further, they used a smoothness constraint to ensure convergence and used 

stereo processing to provide initial and boundary conditions. 

Lee and Kuo [22] proposed to combine a triangular element surface model with a 

linearized reflectance map to formulate the shape-from-shading problem. They 

approximated a smooth surface by the union of triangular surface patches called “Triangular 

Elements” and expressed the approximating surface as a linear combination of a set of nodal 

basis functions. They determine the surface heights by minimizing a quadric cost functional 

corresponding to the squares of brightness errors which is solved by multigrid computation 

technique. Their algorithm does not require any integrability constraint or depth 

initialization. 

Pentland [23], [24] recovered shape information from brightness patterns in small 

patches. His approach was to make an assumption about the surface shape instead of 

requiring prior information about the imaging environment. An assumption that the surface 

is locally spherical was made and a solution was sought based on the first and second partial 

derivatives of brightness. Based on the local intensity measurements, he estimated the 
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surface type to be one of planar, cylindrical, doubly curved or saddle and solved for surface 

orientations. He also could estimate the illumination direction based on intensity gradients. 

Based on the same assumption, that the surface is spherical, Lee and Rosenfeld [25], 

[26], [27] formulated a method of estimating Lambertian surface shape with the help of a 

coordinate system having one axis in the assumed direction of the light source. They solved 

for estimates of slant and tilt angles in the coordinate system of the light source that are 

based on first-order derivatives of image brightness in contrast to the method adopted by 

Pentland [23] which used second order derivatives. 

Pentland, later in his work in [28] used a linear approximation of the reflectance function 

in terms of surface gradient and applied the Fourier transform to the linear function to derive 

a closed form solution for the depth at each point. Further, the solution does not employ any 

assumptions about surface smoothness. Similarly, Tsai and Shah [29] used a linear 

approximation approach, the major difference being that they first used the discrete 

approximations for surface normal using finite differences and then linearized the 

reflectance function in depth instead of the surface normal. They employ a Jacobi iterative 

scheme for computing the depth map.   

In general, shape from shading techniques can be divided into four groups: 

i. Minimization Approaches: These approaches obtain solution by minimizing an 

energy function.  [16], [15], [13], [11], [21], [22], [18], [19], [20] are minimization 

approaches. 

ii. Propagation Approaches: These propagate the shape information from a set of 

surface points viz. singular points to the whole image. [10], [9], [7], [8] are 

propagation approaches. 
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iii. Local approaches: These derive shape based on the assumption of surface type. [23], 

[24], [25] are local approaches. 

iv. Linear Approaches: These compute the solution based on the linearization of 

reflectance map. [28], [29] are linear approaches. 

Zhang et al. [30] have conducted a survey on various shape-from-shading techniques and 

have implemented six algorithms to supplement their comparison and performance analysis. 

They found that the performance of each of the algorithms implemented were not very 

consistent across all the images. They have however inferred that minimization approaches 

are robust while the other approaches are faster. 

 

3.2   Photometric Stereo 

We have seen from the previous section that the problem of solving for surface 

orientation given a single brightness image is underconstrained. Shape-from-shading 

techniques as discussed in the previous section attempt to solve this underconstrained 

problem by introducing additional constraints such as smoothness constraint, integrability, a 

brightness constraint, etc. However, in situations where the imaging conditions can be 

controlled, a straightforward approach to constrain the problem can be developed by taking 

additional measurements under varying conditions. Thus we can convert this 

underconstrained problem into a constrained or overconstrained problem by taking 

additional images of the object under varying conditions. This is the fundamental theory of 

photometric stereo [1] as was  explained in section 2.2. 

In [31], Woodham assumes that three images of a surface with uniform reflectance 

properties are obtained from the same viewing angle but under different illumination 
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conditions. A fixed viewing direction eliminates the correspondence problem between image 

pixels. He then shows, using explicit formulations for various reflectance maps, that in a true 

image triplet not corrupted by noise or distortion, the three isophote curves intersect at only 

one point which is the true surface gradient (In this context, an isophote curve is a curve in 

gradient space ( )qp,  to which the possible solutions of equation 3.1 are limited. We thus 

have three isophote curves, one for each image). He points out that the images required for 

photometric stereo can be obtained either by explicitly moving a single light source, or by 

using multiple light sources calibrated with respect to each other or by rotating the object 

surface and imaging hardware together to simulate the effect of a moving light source. He 

also comments that the equivalent of photometric stereo can be achieved in a single view by 

using multiple illuminations which can be separated by color. 

While using photometric stereo with three images, Zhang and Shah [32] opine that shape 

can only be recovered in the areas that are illuminated in all the three images. They consider 

a large sequence of images at any given time. Their process can be viewed as cascading 

shape from photometric stereo, which is formulated in the framework of a linear Kalman 

filter in order to iteratively recover and refine the shape and surface albedo. Their algorithm 

iteratively updates depth and albedo estimates calculated from subsequent photometric 

stereo triplets. 

It can be noted that when the number of light sources is reduced to two, an ambiguity 

arises in the surface orientations. As clear from [31], the number of possible orientations in a 

two-image photometric stereo is two. [33] and [34] work around this problem by 

considering local integrability and convexity of surfaces respectively.  
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In all our discussion above, we have assumed uniform reflectance properties throughout 

the surface. This might not be the case in real surfaces. The non-uniformity can be attributed 

to albedo variations in the surface. It should be noted that we require four images to resolve 

albedo together with the set of surface orientations, except in special cases like Lambertian 

surfaces where only three images suffice both the recovery of surface orientation and albedo 

[3]. This technique of using four brightness images to estimate albedo together with surface 

normals is referred to as “Extended Photometric Stereo” [35]. 

Many of the shape-from-shading and photometric techniques work very well for 

continuous surfaces but fail when applied to discontinuous objects. Karacali and Snyder [36] 

describe an adaptive surface reconstruction method from a given gradient field that allows 

discontinuities in the solution. They formulate the problem in a discrete setting to relax the 

uniform integrability assumption to partial integrability to reconstruct discontinuous 

surfaces. Their method computes an optimal surface that corresponds to a given gradient 

field by projecting the gradient field onto a feasible subspace spanned by a set of 

orthonormal gradient fields. Further Karacali, in his PhD thesis [37] develops methods to 

reconstruct a three-dimensional surface together with a characterization of the surface 

composition given one or more images obtained from the same viewing direction. He 

applies his algorithm to scanning Electron Microscopy (SEM) images to extract specimen 

surface topography and material type information. 

Wei and Klette [38] propose two improvements for reflectance-based shape recovery. 

Their algorithm is a more general version of Frankot-Chellappa-algorithm [16]. To improve 

the accuracy and robustness and to strengthen the relation between the depth map and 
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surface normals, they introduce two additional constraints into the cost function so that the 

partial derivatives of the unknown surface are as close as possible to the measured gradients.    

   2

2

x
zz xx ∂

∂
=                (3.4) 

and   2

2

y
zz yy ∂

∂
=                (3.5) 

The two new constraints model the behavior of the second-order derivatives such that 

the changes of depth maps will be more regular. They use Fourier transforms, as in [16], to 

solve for the unknown. 

Wei and Klette further modified their algorithm in [39] and [40] by adding another 

surface curvature term into the cost functional to be minimized. Thus the new functional 

which they minimize is: 

( ) ( ) ( )∫∫ ∫∫ ∫∫
Ω Ω Ω

+++++−+−= dxdyzzzdxdyzzdxdyqzpzW yyxyxxyxyx

2222222 2µλ

           (3.6)  

In the above cost function, the second term on the right hand side is a small deflection 

approximation of the surface area and the third term is a small deflection approximation of 

the surface curvature. The non-negative regularization parameters λ  and µ  establish a 

trade-off between the constraints. They express the Fourier transform of the unknown 

surface as a function of the given gradient’s Fourier transforms. The relative depth values 

are then obtained by an inverse Fourier transform and by choosing associated weighting 

parameters.  
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Chapter 4 

 Approach 

The two main steps involved in the reconstruction process are: 

• Computation of surface gradients: This is done by employing the method of 

photometric stereo. As explained in section 2.2, three images of the object are 

obtained under different illumination conditions but with a fixed view. The surface 

normals and gradients are obtained at each point of the image using the equations 

shown in section 2.2 

• Reconstruction from gradient vector fields. 

 Suppose the surface function ),( yxz  of an object is formed by an orthographic, i.e. 

parallel, projection of the surface into the −xy image plane, and defined in the image plane 

over a compact region Ω . The gradient values of this surface at discrete points Ω∈),( yx , 

xz
x

yxzyxp =
∂

∂
=

),(),( and yz
y

yxzyxq =
∂

∂
=

),(),(    (4.1) 

are computed from the first step. The algorithm used to find the gradient values is discussed 

in section 4.5 

 

4.1 Projection Model 

 An orthographic projection i.e. orthogonal parallel projection is assumed in the 

implementation of the algorithms. For this kind of projection, every point ( )ZYX ,,=P  of 

3R is projected unambiguously onto a point ( )yx,=p of the image plane (projection plane), 

with the projection equations 
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    Xx =   and  Yy =               (4.2) 

As shown in Figure 4.1, the projection center is a point at infinity.  

 

 

Figure 4.1 Orthogonal parallel projection of a point P onto a point p  

 

Let f be the focal length of the camera. The real space 3R  i.e. −XYZ  space can be 

described by homogenous coordinates ( )wvut ,,, .  The corresponding general parallel 

projection equation can be written as 
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 In homogenous coordinates, a scene point 
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is projected into the image point ( )fyx ,, , with 
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This use of orthogonal projection model is a valid assumption when objects are small 

compared to the camera constant or when objects are relatively far away from the camera. 

 

4.2 Range Map, Depth Map, Height Map, Gradient Map 

 For parallel projection, the ray of projection into the scene space can be modeled as 

    ( ) ( )tyxt ,,=γ , with ft ≥ .             (4.6) 

This ray passes through a certain image point ( )fyx ,,=Q  and is parallel to the optical axis. 

In this case the projection center is a point at infinity. 

 

 

 Figure 4.2 A ray of projection for parallel projection model 
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  A surface point ( )ZYX ,,=P is projected into an image point ( )yx,=p of the image 

plane if a ray of projection exists which intersects the object surface at ( )ZYX ,,=P for the 

first time (i.e. for the smallest ft ≥ ) after passing through the image point ( )fyx ,,=Q . 

This definition of projection into the image plane specifies at most one surface point for 

each image point. This excludes the situation in the case of parallel projection in which all 

those object surface points with identical −XY coordinates are geometrically projected into 

the same point ( )yx,  (e.g. surface points on a face which is orthogonal to the image plane). 

In general, if several surface points are incident with the same ray of projection, then that 

point with the smallest −t coordinate value is selected for purposes of reconstruction. If a 

surface point is projected into an image point then this surface point is visible with respect to 

the model. 

 This definition allows synthetic objects to be dealt with as follows: given a surface 

function i.e. a synthetic model of a real-world object that is to be reconstructed, then the ray 

coordinates ( )tγ  can be substituted into the given surface equation in one variable t . The 

given equation in three variables ZYX ,, is transformed into an equation in one variable t . 

The solution(s) of this equation define the intersection point(s) of the ray of projection with 

the given surface. By specifying image coordinates ( )yx, , the relevant projected surface 

point(s) can be calculated. For such an approach, it can be assumed that the focal length f is 

given, and the generated images can be used to evaluate shape recovery techniques because 

the shape of the synthetic object i.e. the ground truth is known.  
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 The depth map respectively the height map, and the gradient map are functions over 

the image grid ( ){ }NyMxyx ≤≤∧≤≤ 11:, . The value distribution in depth maps or 

height maps can simple be visualized by gray value images. In the ideal case, at each 

point ( )yx, , a depth map ( )yxZZ ,= states the depth Z of that surface point ( )ZYX ,,=P  

that is projected into the image point ( )yx,=p . 

 A height map ( )yxH , is defined relatively to an assumed background plane of height 

zero, which is parallel to the image plane. In the ideal case at each point ( )yx, the value 

( )yxH , is equal to the height of those surface points ( )ZYX ,,=P that is projected into the 

image point ( )yx,=p . Height is measured with respect to the chosen background plane. 

Visualizations of the depth map and height map behave approximately like a positive and 

negative to each other.  

 For visualizing or representing −D2
12  reconstructions the calculation of a range 

image is another option. However the Euclidean distance 

    ( ) ( ) ( ) ( )222
2 , fZyYxXd −+−+−=QP            (4.7) 

between the visible point ( )ZYX ,,=P and the projected point ( )fyx ,,=Q in the image 

plane are geometrically equivalent to depth Z . Sensors such as scanning lasers are often 

used to produce a range map. In this thesis, depth maps are used to present the final 

reconstruction of surfaces. 

 A gradient map is another representation of object surfaces. In the ideal case at each 

image point ( )yx, a gradient map states the gradient ( )Tqp, of the object surface point 

( )ZYX ,,=P that is projected into this image point assuming that such a gradient is defined 
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at the projected point. Thus a gradient map can be viewed by two gray value images 

depicting the functions ( )yxp , and ( )yxq , . 

 

4.3 Backprojection 

 Surfaces of scene objects are projected into the image plane by projections as 

discussed above. The inverse mapping of projected object surfaces into the 3D space is 

generally called Backprojection. Depth maps (or height maps) and gradient maps provide 

important but differing information for such a back projection. 

 

4.4 Visualization of Gradient Maps 

 Needle Diagrams are used to visualize gradient maps. Known gradient vectors are 

entered into the needle diagram as line segments starting at the image points where they are 

determined. For the representation of these gradient vectors as a needle diagram, it is 

assumed that values of calculated normals or gradients are given at image points ( )yx, as 

input. The given vectors are either assumed as vectors of arbitrary length in 

−XYZ coordinates or as unit normals in coordinates of the Gaussian sphere (i.e. slant and 

tilt). A needle is defined to represent a normal as a line segment. A given normal 

( )T
ZYX nnn ,,=n in the −XYZ coordinate system with a non-scaled length is represented by 

its unit normal ( )Tnnn 321
0 ,,=n since an un-normalized length would complicate the visual 

interpretation of the needle diagram. For the unit normal the representation of the Gaussian 

sphere is used as a basis for representation as shown in Figure 2.4. A needle diagram 

obtained for the Beethoven image is illustrated in Figure 4.5 
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 The direction of the line segment is determined by θ and the length of the line 

segment is determined by ( )σsin . Therefore for the coordinate differences that have to be 

calculated it holds that 1nx =∆ and 2ny =∆ with 1,0 ≤∆∆≤ yx . 

 Since these −∆ values lie inside the interval [ ]1,0  a scaling factor s is used for the 

length of the line segment. Then the segment is drawn on the screen from the image point 

( )yx, that is the projective image of an object surface point P to an image 

point ( )ysyxsx ∆⋅+∆⋅+ , . Furthermore, only the thr line segment is drawn. It is also 

assumed that for every image point ( )yx, at most one surface normal starting at ( )yx, has to 

be represented.  

    

4.4.1 Algorithm for needle map generation 

 The algorithm used to generate needle map of objects is shown below. 

Algorithm: Needle map generation 

1. for every image point ( ) ( )jriryx ⋅⋅= ,, , in which a normal n  was determined 

2.     begin 

3.         if (n  determined in XYZ coordinates) then 

4.             begin 

5.   let ( )T
ZYX nnn ,,=n ; 

6.   222: ZYX nnn ++=n ; 

7.   if 0=n then {error in normal determination} 

8.       begin 0:;0: =∆=∆ yx  end 
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9.   else 

10.       begin 

11.    nn
YX nynx =∆=∆ :;: ; 

12.       end 

13.   end 

14.      else {n  is a unit normal given in spherical coordinates θσ , } 

15.   begin 

16.       ( ) ( );sincos: σθ ⋅=∆x  

17.       ( ) ( );sinsin: σθ ⋅=∆y  

18.   end 

19.      ;:;: ysyxsx ∆⋅=∆∆⋅=∆  

20.      draw a line from ( )jrir ⋅⋅ , to ( )yjrxir ∆+⋅∆+⋅ ,  

21.     end 

 

 

4.5 Methodology 

 As explained in the beginning of this chapter, the first step in the process of surface 

reconstruction is the generation of gradient maps. The method of Photometric stereo is 

incorporated for the generation of these maps. The theory of Photometric stereo was 

explained in section 2.2. This section highlights the generation of gradient maps, needle map 

and a general reconstruction procedure for a set of three photometric stereo images [41] as 

shown in the Figure 4.3. 
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        Beet1.jpg                      Beet2.jpg  Beet3.jpg 

 Figure 4.3 Photometric stereo image triplet of Beethoven 

 

Figure 4.3 shows three images of Beethoven from three different light sources which vary in 

their direction and strength. Table 4.1 shows these details of light source direction and 

strength for the images shown above.  

 

Table 4.1 Light source direction and strength of Beethoven image triplet 

Filename Light Source Direction Strength 

Beet1.jpg [-0.257723, -0.081351, -1] 1.0 

Beet2.jpg [0.017145, 0.202009, -1] 0.96688741 

Beet3.jpg [0.270128, -0.102021, -1] 1.03973 

 

 

4.5.1 Step 1: Generation of gradient maps using Photometric Stereo 

 For the given set of images and their light source directions, the first step is to 

generate gradient maps. The algorithm used to generate gradient maps using Photometric 

stereo is explained below. 
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Algorithm: Generation of gradient maps using Photometric stereo 

1. Input set of three photometric stereo images ),(1 yxI , ),(2 yxI and ),(3 yxI  

2. Input light source direction vectors  

3. Find the corresponding unit vectors [ ]′= 1312111 ,,~ nnnn , [ ]′= 2322212 ,,~ nnnn  

 and [ ]′= 3332313 ,,~ nnnn  

4. Form matrix 















=

333231

232221

131211

nnn
nnn
nnn

N  

5. Compute 1−N i.e. the inverse of matrix N (Note: Inverse exists only if the three 

 sources are non-collinear. 

6. for each image point ( )yx, do 

7.  find column vector [ ]′= 321 ,,~ IIII where 321 ,, III are intensity values at 

  point ( )yx,  in the three images 

8.  compute  IN ~1− and IN ~1−=ρ  

9.  compute INn ~1~ 1−








=

ρ
 where ],,[~ ′= zyx nnnn  

10.  compute 
z

x
n

np = and 
z

y
n

nq =  

11. end 

12. Display gradient maps. 
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 The gradient maps are generated by the above algorithm for the images shown in 

Figure 4.3. The resulting gradient maps i.e. the two gray value images depicting the 

functions ( )yxp , and ( )yxq , of Figure 4.3 are as shown in Figure 4.4 below. 

   

    

     (a) 

 

    

     (b) 

  Figure 4.4: (a) Gray value image depicting ( )yxp ,  
                 (b) Gray value image depicting ( )yxq ,  
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4.5.2 Step 2: Generation of needle map 

 The next step is the generation of a needle map in accordance with the algorithm 

explained in section 4.4.1. Figure 4.5 shows the needle map generated for the Beethoven 

image triplet. A low sampling frequency (sampling interval =8) was used for the same. It 

should be noted that needles are dots for object faces that are oriented parallel to the image 

plane i.e. the normal is orthogonal to the image plane and ( ) 0sin =σ .Better results can be 

obtained with sophisticated graphics procedure to draw line segments. 

    

 

    

  Figure 4.5 Needle Map of Beethoven image triplet 

 

 

4.5.3 Step 3: Reconstruction from gradient maps 

 Having found the gradient maps from step 1, it would seem that an obvious approach 

to reconstruct the surface is by direct integration of p and q values at each point. This is 
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made clear by equation 4.1 which suggests that the surface z can be obtained by performing 

integration of both p and q values at each point on the surface. Such a technique is termed 

as a local integration technique. This method is conceptually simple and is based on the 

following curve integral: 

    ( ) ( ) ( ) ( )∫ ++=
γ

dyyxqdxyxpyxzyxz ,,,, 00                         (4.8) 

where γ  is an arbitrarily specified integration path from ( )00 , yx to ( )yx, . Starting with this 

initial height value, this technique propagates height values over the surface. The center of 

the image which lies within the object was chosen as an initial reference point. The height of 

every other point on the surface was found with respect to this reference point. Two 

different algorithms were implemented for the same. In the first algorithm, integration from 

the reference point to every other point on the surface was performed in two steps: first in 

direction of q gradient and next along the p gradient. In the second algorithm, integration 

was performed from the reference point to every point on the surface along the shortest path 

connecting the two. The reconstruction of the surface is depicted by range maps. The 

resulting surface obtained from both the algorithms is shown in Figure 4.6. A Hot Metal 

color map is used to display the same.  
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           (a) 

 

      

           (b) 

   
 Figure 4.6 Range images showing reconstruction of Beethoven triplet 
         obtained by direct integration  
        a) Algorithm A   b) Algorithm B 
 
 
   

 It can be seen from Figure 4.6 that the direct integration method (local integration 

technique) resulted in poor reconstruction of the surface due to the fact that some of the 

assumptions made were not valid. Specifically, 
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• the surface is integrable at every point. 

• the gradients exist at every point on the surface.  

• all the points along the line of integration lie on the surface. 

 Also, in this approach, the locality of the computations propagates errors, i.e. this 

approach strongly depends on data accuracy. More often than not, the gradients obtained are 

corrupted by noise and hence the data available is not very accurate. To account for the 

drawbacks inherent in the above algorithm, two other algorithms were implemented. A 

global integration technique was adopted in these algorithms. This was done by minimizing 

a cost function and hence these algorithms can be classified as minimizing approaches. 

Regularization terms are introduced in this cost function which account for surface area and 

curvature. In chapter 5, an algorithm proposed by [40] is implemented. In this algorithm, 

Fourier transform of the unknown surface is expressed as a function of the Fourier transform 

of the gradients. The relative depth values are then obtained by an inverse Fourier transform. 

In chapter 6, unknown surface ),( yxz  is solved by minimizing the cost function by adopting 

iterative reconstruction. 
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Chapter 5 

 Algorithm 1: Fourier transforms approach 

 It was seen from the previous chapter that local integration methods do not perform 

well when the data is not accurate. Also, assuming that the gradient field is integrable meant 

that p and q could be added to get a depth map and the resulting surface would not be 

dependent on the choice of integration. It should be noted that integrability of surface 

orientations p and q  means that the following equality holds 

   ( ) ( ) ( )yxyxqyxp xy ,,, ∀=               (5.1) 

This is also equivalent to having the equality 

   ( ) ( )( ) 0,, =+∫
C

dyyxqdxyxp               (5.2) 

hold over all closed curves C in the surface domain. The method proposed by [16] enforced 

integrability by expressing surface orientations that correspond to integrable surfaces as a 

linear combination of Fourier coefficients.  

 Global integration techniques are based on minimizing the following cost function: 

    ( )∫∫
Ω

−+−=
z

dxdyqzpzW yx

22                                        (5.3) 

In the algorithm discussed below, the above functional is modified to reduce the error 

between the estimated surface and the original surface. The functional is modified as shown 

below. 
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( ) ( ) ( )∫∫ ∫∫ ∫∫
Ω Ω Ω

+++++−+−=
z z z

dxdyzzzdxdyzzdxdyqzpzW yyxyxxyxyx
2222222 2µλ

            

                    (5.4) 

where the subscripts indicate partial derivatives. In the above cost function, the second term 

measures small deflection approximation of surface area. The third term is related to surface 

curvature. λ  and µ  are regularization parameters to adjust the weighting of the constraints 

and are non-negative. The objective now is to solve for the unknown ),( yxz using an 

optimization process which minimizes the above cost functionW . Fourier transforms are 

employed to solve this problem.  

 

 

5.1 Theory and derivation 

 Suppose that the Fourier transform of the surface function ),( yxz is: 

∫∫
Ω

+−=
z

dxdyeyxzvuz vyuxj
F

)(),(),(             (5.5) 

and the inverse Fourier transform is 

∫∫
Ω

+=
F

dudvevuzyxz vyuxj
F

)(),(
2
1),(
π

           (5.6) 

where j is the imaginary unit. According to the differentiation properties of the Fourier 

transform, we have 

 

  ),(),( vuzujyxz Fx ↔               (5.7) 
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  ),(),( vuzvjyxz Fy ↔               (5.8) 

  ),(),( 2 vuzuyxz Fxx −↔               (5.9) 

  ),(),( 2 vuzvyxz Fyy −↔             (5.10) 

  ),(),( vuzvuyxz Fxy −↔             (5.11) 

Let ),( vuP and ),( vuQ be the Fourier transforms of ),( yxp and ),( yxq respectively. Taking 

the Fourier transform of the cost function and using the above differentiation properties and 

using Parseval’s formula, 

   ∫∫ ∫∫
Ω Ω

=
Z F

dvduvuzdydxyxz F
22 ),(

2
1),(
π

,         (5.12) 

 

we obtain a new objective function to minimize:  

 

[ ]

[ ]

∫∫

∫∫

∫∫

Ω

Ω

Ω





 −+−+−+

++

−+−

F

F

F

dvduvuzvvuzvuvuzu

dvduvuzvjvuzuj

dvduvuQvuzvjvuPvuzuj

FFF

FF

FF

22222

22

22

),(),(2),(
2

),(),(
2

),(),(),(),(
2
1

π
µ

π
λ

π

  

                  (5.13) 

 The above expression can be expanded as 

 

[ ]

( ) ( ) dvduzzvvuudvduzzvu

dvduQQQzvjQzvjzzvPPPzujPzujzzu

FFFF

FFFFFFFF

FF

F

∗

ΩΩ

∗

Ω

∗∗∗∗∗∗∗∗

∫∫∫∫

∫∫

+++++

++−+++−

422422

22

2
22

2
1

π
µ

π
λ

π

                  (5.14) 
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where  ∗  denotes the conjugate. Differentiating the above expression with respect to Fz  and 

∗
Fz , we can deduce the following minimal conditions for the cost function: 

 

0=++ QvjPujzC Fuv            (5.15) 

0=−− ∗∗∗ QvjPujzC Fuv            (5.16) 

 

where ( ) ( ) ( )222221 vuvuC uv ++++= µλ  .  Adding the above two equations 

together, then subtracting the first one from the second one, results in the following 

equations: 

  ( ) ( ) ( ) 0=−+−++ ∗∗∗ QQvjPPujzzC FFuv          (5.17) 

and   ( ) ( ) ( ) 0=++++− ∗∗∗ QQvjPPujzzC FFuv          (5.18) 

solving the above equations except for ( ) ( )0,0, ≠vu , we obtain 

  
( ) ( ) ( )222221

),(),(),(
vuvu

vuQvjvuPujvuzF
++++

−−
=

µλ
          (5.19) 

where  ( ) ( )0,0, ≠vu . Therefore the Fourier transform of the surface is expressed as a 

function of the Fourier transforms of given gradients ),( yxp and ),( yxq . Thus the result 

may be summarized as: 

 

The cost function W is minimized by the surface ),( yxz whose Fourier transform 

( )vuzF ,  satisfies                 
( ) ( ) ( )222221

),(),(),(
vuvu

vuQvjvuPujvuzF
++++

−−
=

µλ
 . 
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5.2 Algorithm 

 The proposed method to calculate the depth from gradients uses the transformation 

as specified above. Final depth values are obtained by performing an inverse Fourier 

transform. These depth values are then displayed as a depth image. The step by step 

procedure in execution of this algorithm is presented below. 

Algorithm: To compute height from gradient using Fourier transforms 

1. input gradients ),( yxp , ),( yxq , λ and µ  

2. for 1,0 −≤≤ Nyx  do 

3.       if ( )pqpq yxqyxp max),(&max),( <<  then 

4.            Initialize the complex variable );,(),( yxpyxP =  

5.             Initialize the complex variable );,(),( yxqyxQ =  

6.       else 

7.            Initialize the complex variables to zero 

8.       endif 

9. end for 

10. Calculate the Fourier transforms of ),(:),( vuPyxP  

11. Calculate the Fourier transforms of ),(:),( vuQyxQ  

12. for 1,0 −≤≤ Nvu  do 

13.       if ( )0&0 ≠≠ vu   then 

14.             ( ) ( ) ( ) ;1
22222 vuvu ++++=Λ µλ  

15.             ( ) ( );),(Im),(Im1 vuQvvuPu ×+×=∆  

16.             ( ) ( );),(Re),(Re2 vuQvvuPu ×−×−=∆  
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17.             ;1),(1 Λ
∆=vuH  

18.             ;2),(2 Λ
∆=vuH  

19.       else 

20.             ;0)0,0(2;)0,0(1 == HH δ  

21.       endif 

22. end for 

23. Calculate inverse Fourier transforms of );,(2),,(1:),(2&),(1 yxHyxHvuHvuH  

24. for 1,0 −≤≤ Nyx  do 

25.         ;),(1),( valueBackgroundyxHyxz +=  

26. end for 

 

5.3 Implementation details 

 For any given set of photometric stereo images, the gradient values are computed as 

explained in section 4.5.1. These gradient values along with the parameters λ and µ  serve 

as inputs to the algorithm. To avoid any kind of distortion in reconstructed surface, a 

maximum value of p and q is allowed in the algorithm. For the purpose of experimentation, 

performance of the algorithm was evaluated on a synthetic range image (obtained from 

[42]). When the input is a synthetic range image, the corresponding gradient values can be 

obtained by differentiating the image in x and y directions separately. The resulting gradient 

values were used as input to the algorithm. The resulting reconstructed surface is also a 

range image. It should be noted that the source image can be used as the ground truth in the 
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case of synthetic range images. The final reconstructed image can be compared with that of 

the ground truth and hence the error surface can be easily found.  

 The algorithm was tested on both the Beethoven image triplet and synthetic range 

image. The results obtained are shown in Chapter 7.   
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Chapter 6 

 Algorithm 2: Iterative Reconstruction 

The previous chapter dealt with the reconstruction of the surface by minimizing the 

functional shown below by using Fourier transforms. 

( ) ( ) ( )∫∫ ∫∫ ∫∫
Ω Ω Ω

+++++−+−= dxdyzzzdxdyzzdxdyqzpzW yyxyxxyxyx

2222222 2µλ  

                    (6.1) 

It was also seen that the functional had a form which made the application of Fourier 

transforms feasible. It should be noted that the surface which minimizes the second term on 

the right hand side will be one which has low values of the derivatives. This is because the 

term penalizes noise in a non-linear way. Thus the optimization process results in a solution 

with no sharp edges and thus the images appear blurred. This blurring can be avoided by 

changing the term to an exponential. In other words the second term on the right hand side 

can be changed to 

    ( )( ) dxdyzz yx∫∫
Ω

+−− 22expλ                                               (6.2) 

Similarly, the third term can be expressed in terms of the exponential as 

    ( )( ) dxdyzzz yyxyxx∫∫
Ω

++−− 222 2expµ                                   (6.3) 

Thus the new function to be minimized is 

( ) ( )( ) ( )( )∫∫ ∫∫ ∫∫
Ω Ω Ω

++−−+−−−+−= dxdyzzzdxdyzzdxdyqzpzH yyxyxxyxyx
2222222 2expexp µλ

                               (6.4) 
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Techniques like Mean Field Annealing (MFA) [43, 44, and 45] are used to minimize 

objective functions which result in a restored image that resembles the data (in the least 

squares sense) while at the same time preserve edges. The introduction of exponential terms 

makes it difficult for the functional to be represented by Fourier transforms. Instead, the 

above cost function can be minimized iteratively using gradient descent. 

 

6.1 Using kernels to estimate derivatives 

 It can be seen from equation 6.4 that derivatives of the surface z should be computed 

in the process of minimization. This is usually done by using kernels to estimate derivatives.  

In this work, kernel operators are used to estimate both first and second order derivatives. 

The kernels used to differentiate in the −x and −y directions are as shown in table 6.1 and 

table 6.2 respectively. 

  Table 6.1 Kernels to estimate first derivate  
  

 

                       xg - in the −x  direction 
        
            yg - in the −y direction 
 
 
    
  Table 6.2 - Kernels to estimate second partial derivates  
 
 
 

   
6

1        
6

1        

 
 
               xxg      yyg     xyg  

-0.5 

0 

0.5 

-0.5 0 0.5 

0 0 0 
1 -2 1 

0 0 0 

0 1 0 
0 -2 0 

0 1 0 

-0.5 0 0.5 
0 0 0 

0.5 0 -0.5 
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As an alternative, 2 X 1 kernels which are more robust to noise can be used to obtain higher 

resolution.  

 

Thus equation 6.4 in terms of kernel operators can now be written as  

( ) ( )( )∫∫ ∫∫
Ω Ω

⊗+⊗−−−⊗+−⊗= dxdygzgzdxdyqgzpgzH yxyx
2222 )()(exp)()( λ  

 ( ) ( ) ( )( )( ) dxdygzgzgz yyxyxx∫∫
Ω

⊗+⊗+⊗−− 222 2expµ           

                                          (6.5) 

 

6.2 Function minimization 

 Gradient descent approach can be employed to minimize the function shown in 

equation 6.5. In the simplest implementation of gradient descent, surface z is updated by  

    
i

k
i

k
i z

Hzz
∂
∂

−=+ α1               (6.6) 

where k denotes the iteration, i denotes the pixel on surface z and α is a constant. 

 While performing gradient descent, most local minima can be avoided by 

incorporating an annealing term, also referred to as the temperature in literature, into the 

functional. This term represented by τ is initialized to a large value in the beginning of the 

process. As the gradient descent iterations are in progress, this annealing term τ is slowly 

reduced. Annealing helps in faster convergence of the algorithm. 

 The function H containing kernel operators can be differentiated as explained in 

[43]. In the expression for the differential of H using kernel operators, the exponentials are 

just added instead of putting the summation in the argument of the exponential since 
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minimizing either of them results in a piecewise-linear image. Thus differential of H can be 

written as 

 

( )( ) ( )( ) yrevyxrevxz gqgzgpgzH ⊗−⊗+⊗−⊗=∇ 22  

 ( ) ( )












⊗














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

 ⊗
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x
x ggzgz 2

2

2 2
exp1

τττ
λ  
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                   (6.7) 

 

where τ in the above equation is the annealing term and xyrevyyrevxxrevyrevxrev ggggg ,,,,  are the 

reverse kernels of xg , yg , xxg , yyg  and xyg respectively. 

 



 

 55 

 

6.3 Algorithm 

 As explained in the previous section, this algorithm uses gradient descent to 

minimize the cost function. In each iteration, the surface values are updated. The steps 

involved in the implementation of this algorithm are as explained below. 

 

 Algorithm: To compute height from gradient using gradient descent 

1. Input gradient images 

2. Initialize the surface image to a pixel value of one 

3. Initialize kernels and their respective reverse kernels 

4. Initialize parameters λα ,  and µ  

5. Set the initial value of  τ  = initialτ  (problem dependent parameter) 

6. while τ  > finalτ  do 

7.  implement equation number 6.7 

8.  solve Hzz z
kk ∇−=+ α1  (gradient descent) 

9.  set annealing parameter ττ 99.0=  

10. end  

11. Display the resulting reconstructed surface z  
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6.4 Implementation details 

 The above algorithm was implemented for reconstruction of Beethoven image from 

the existing photometric stereo images. The results obtained are shown in chapter 7. The 

algorithm was also implemented on some of the range images obtained from [42]. The 

performance of the algorithm depends heavily on the choice of different parameters viz.  

α , λ , µ and the initial temperature initialτ . These values are specific to the given image and 

hence these parameters can be considered as problem dependent. Having chosen an 

optimum initialτ  for the given image, iterating through the algorithm until τ  is reduced by 

two orders of magnitude usually gives good reconstruction. Since this is an iterative process, 

it was observed that it was much slower than Algorithm1. 
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Chapter 7 

Experimental Results 

 

7.1 Introduction 

 The description and implementation details of the algorithms were described in 

chapters 5 and 6. The results obtained for these surface reconstruction procedures are 

presented in this chapter. In section 7.2, results obtained for the reconstruction of the 

Beethoven image is presented for both the algorithms. This is followed by a section in which 

the results obtained for synthetic images are presented. In section 7.4, an experimental set-

up used to obtain real world images is discussed and the results obtained in reconstructing 

these real world images are also presented.  

 In addition to experimental results, noise-sensitivity of the frequency-domain 

algorithm i.e. Algorithm 1 was evaluated. This was performed on both the Beethoven image 

and a synthetic image. Noise sensitivity curves obtained for these images are presented in 

sections 7.2.1 and 7.3.1 . 

 

7.2 Beethoven Image 

 The photometric stereo images used for the algorithm are shown in Figure 7.1. These 

images were obtained from [41]. The results obtained for surface reconstruction of these 

images by direct integration method are shown in Figure 4.7. 
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        Beet1.jpg                      Beet2.jpg  Beet3.jpg 

 Figure 7.1 Photometric stereo images of Beethoven 

  

 The gradient maps obtained for the above photometric stereo images by adopting 

algorithm 4.5.1 are reproduced below in Figure 7.2. 

 

     

   (a)      (b) 

 

  Figure 7.2: (a) Gray value image depicting ( )yxp ,  
                 (b) Gray value image depicting ( )yxq ,  
 

 



 

 59 

 The gradient values obtained were used as input to the algorithms explained in 

chapters 5 and 6. The results obtained for surface reconstruction form these gradient maps 

are as shown below. 

 

7.2.1 Algorithm 1: Results 

 Fourier transform methods were used to reconstruct surfaces in this algorithm. The 

theory, derivation and other details were explained in chapter 5. It is evident from the 

algorithm that for a given set of gradient images, the reconstruction process depends on the 

variables i.e. regularization parameters λ  and µ .  

7.2.1.1 Reconstruction Results 

 The experiment was conducted for varying values of λ and µ . The reconstruction 

results are as shown in the figures below. Figure 7.3 shows the results when both λ and µ  

are equal to zero. Figure 7.4 shows the results for a fixed µ and varying λ while Figure 7.5 

shows the results for a fixed λ and varying µ . 

      

            (a)               (b) 

  Figure 7.3: Reconstruction of Beethoven image by Algorithm1 
         with 0=λ and 0=µ  
        (a) Using Hot-Metal colormap    (b) Grayscale representation 
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      (c) 

 

    

               (d)           (e)      

   

Figure 7.3: Profile of reconstructed Beethoven image by Algorithm1 
                  (c)Reconstructed image       (d) Profile along the VV axis  
                  (e) Profile along the HH axis 
 

VV 

HH 
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            (a)               (b) 
 
 
   

              
 
              (c) 
 
   
  Figure 7.4: Reconstruction of Beethoven image by Algorithm1 
          with 1.0=λ and  
         (a) 1.0=µ      (b) 3.0=µ      (c) 5.0=µ  
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           (a)              (b) 

 

      

       (c) 

  

  Figure 7.5: Reconstruction of Beethoven image by Algorithm1 
           with 0=µ and  
           (a) 2.0=λ      (b) 3.0=λ      (c) 5.0=λ  
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  Figure 7.6: Reconstruction of Beethoven image by Algorithm1 
           with 5.0=µ and 5.0=λ       
 

 

It can be inferred from the above results that better results are obtained for a lower value 

of λ . All the results shown above were reconstructed from gradient images without 

additional additive noise. In the next section, the effect of noise (present in the gradient 

images) on the reconstruction process is considered. 

 

7.2.1.2  Noise Sensitivity 

 

 More often than not, the gradient values available to the algorithm for the purpose of 

reconstruction are corrupted by noise. To simulate this condition, zero-mean Gaussian noise 

at signal-to-noise (SNR) levels 20, 10 and 0 dB were added to the gradient images shown in 

Figure 7.2 prior to the process of reconstruction. Since the actual range image of Beethoven 

was not available for comparison purposes, the noise free reconstruction shown in Figure 7.3 

was used as the ground truth. Mean Squared Error (MSE) was used as a measure to quantify 

the reconstruction error. Error images i.e. images showing the difference between the noisy 
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reconstruction and the original (ground truth) were constructed. Some of these error images 

(grayscale) are shown in Figure 7.7 and Figure 7.8 

 

  

    

             (a)      (b) 

     

                 (c) 

 
 
Figure 7.7: Error images constructed by taking the difference between the 
reconstructed images of noisy gradients (SNR = 10dB) and the original reconstructed 
image of Beethoven by Algorithm1  with 1.0=λ and       (a) 1.0=µ      (b) 5.0=µ      
(c) 0.10=µ  
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(a) (b) 

 

     

      (c) 

 

Figure 7.8: Error images constructed by taking the difference between the 
reconstructed images of noisy gradients (SNR=10dB) and the original reconstructed 
image of Beethoven by Algorithm1  with 0=µ and       (a) 1.0=λ      (b) 3.0=λ      
(c) 5.0=λ  
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 The mean squared error obtained in the reconstruction process for varying λ is 

tabulated in Table 7.1 and that of varying µ is tabulated in Table 7.2 

 

  Table 7.1 Mean Squared Error as a function of λ and 0=µ  

 

 

 

 

 

 

   

  Table 7.2 Mean Squared Error as a function of µ  

 

 

 

 

 

 

 

 

SNR λ =0 λ =0.1 λ =0.2 λ =0.3 λ =0.4 λ =0.5 

       

0 db 0.505391 3.613326 10.9498 20.528 31.196 42.2787 

10 db 0.005054 3.12373 10.4743 20.0681 30.753 41.851 

20 db 0.000051 3.111976 10.4582 20.049 30.732 41.829 

SNR λ  µ =0.1 µ =0.3 µ =0.5  µ =2.0 µ =10.0 

              

0 db 0.1 3.58583 3.583367 3.5956 3.7545 4.714896 

10 db 0.1 3.137 3.1653 3.1933 3.3963 4.409 

20 db 0.1 3.1256 3.154 3.1824 3.3856 4.399 
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 In Figure 7.9, graph of the mean squared error as a function of the variance of noise 

is shown. 
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MSE vs Variance of Noise added to Q
Source: Beethoven
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           (b) 

  Figure 7.9 Error as a function of variance of noise added to 
          (a) P   (b) Q (Source: Beethoven Image) 
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 In Figure 7.10, noise sensitivity curves are graphed as a function of λ  

and µ  
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     (b) 
 
  
  Figure 7.10   Noise sensitivity as a function of  
          (a) λ    (b) µ   (Source: Beethoven Image)  
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Inference: 

• It can be inferred from Figure 7.9 that the error increases with the amount of noise 

added to the gradient images. Large amount of noise added to the gradient images give rise 

to larger errors in the reconstructed images.  

• It can be inferred from Table 7.1 and from Figure 7.10(a) that the reconstruction 

error increases with the increase in the value of λ . 

• It can be inferred from Table 7.2 and from Figure 7.10 (b) that for higher noise 

present in the image, the reconstruction error can be decreased by increasing the value of  

µ to a certain extent (as is evident from Table 7.2 for 0dB SNR) 

 However it should be noted that, since the ground truth was not available for 

comparing the reconstruction error, the inference made from the Beethoven image only 

indicates that higher values of λ lead to higher reconstruction errors. A more positive and 

definite conclusion can only be made by analyzing the results on a synthetic image where 

the ground truth is available for comparison purposes. This is shown in section 7.3.1.2. 

 

7.2.2 Algorithm 2: Results 

 The methodology used in this algorithm was iterative reconstruction. The cost 

function was minimized adopting the gradient descent approach. The details of the algorithm 

itself were presented in chapter 6. In this section, results obtained for the reconstruction of 

the Beethoven image from the gradient images of Figure 7.2 by this iterative process are 

presented. Figure 7.11(a) shows one of the reconstructed images by Algorithm2. The 

profiles along the vertical and horizontal axes are presented in Figure 7.11 (c) and (d). 
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Figure 7.12 shows reconstructed images for varying  µ and reconstructed images for varying 

λ are shown in Figure 7.13. 

      

   (a)         (b) 

 

         

 

            (c)       (d)   

           

Figure 7.11 (a) Reconstruction of Beethoven image by Algorithm2 
                     (b)Reconstructed image showing profile axes 
                     (c) Profile along the VV axis  
                     (d) Profile along the HH axis 

   

VV 

HH 
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(a) (b) 

 

  

         (c) 

 

  Figure 7.12: Reconstruction of Beethoven image by Algorithm2 
             with 0.1=λ and  
             (a) 0.1=µ      (b) 0.5=µ      (c) 0.10=µ  
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(a)      (b)  

 

  

   (c) 

 

  Figure 7.13: Reconstruction of Beethoven image by Algorithm2 
             with 0.5=µ and  

          (a) 0.3=λ      (b) 0.5=λ      (c) 0.10=λ  
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7.3 Synthetic Images 

 Synthetic range images used for this part of the experimentation were obtained from 

[42]. The advantage of using synthetic images is that the ground truth is known apriori to 

evaluate reconstruction results. One such synthetic range image used to evaluate the noise 

sensitivity of the frequency domain reconstruction is shown in Figure 7.14 along with the 

corresponding gradient images constructed from finite differences. Three more synthetic 

range images were used for this experiment and the reconstruction results are produced in 

section 7.3.3 

     

            (a) 

     

(b) (c) 

Figure 7.14: (a) Synthetic range image of a car   
(b) Gray value image depicting ( )yxp ,  of a). (c) Gray value image depicting ( )yxq , of     
         a) 
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7.3.1 Algorithm 1: Results 

 As explained in section 7.2.1, Fourier transform methods were used to reconstruct 

the synthetic range images from their respective gradient images. As in the case of 

Beethoven, various λ and µ values were tried. The results obtained were similar to those 

obtained in section 7.2.1 in that better results were obtained for a smaller value of λ . Noise 

sensitivity was also evaluated for the reconstruction of synthetic range image of Figure 7.14 

and the plots are shown in section 7.3.1.2 

 

7.3.1.1  Reconstruction Results 

 The results were obtained for different values of λ and µ as in the case of 

Beethoven. The best reconstruction was obtained for 1.0=λ  and 0=µ .1. The 

reconstruction result is as shown in Figure 7.15 

 

    

                                             (a)                                                       (b) 

 Figure 7.15: Reconstruction of the synthetic car image by Algorithm1 
            with 1.0=λ  and 1.0=µ  
                                  (a)HotMetal ColorMap                  (b) Grayscale 
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                                        (a) 

 

 

                                

                         (b)       (c) 

 

Figure 7.16: Profile of reconstructed synthetic car image by Algorithm1 
                  (a)Reconstructed image       (b) Profile along the VV axis  
                  (c) Profile along the HH axis 
 

 

 

 

VV 

HH 



 

 76 

7.3.1.2  Noise Sensitivity 

  

 The same procedure as explained in section 7.2.1.2 was followed to evaluate the 

noise sensitivity of the Fourier domain for synthetic images. The original range image 

shown in Figure 7.14 was used as ground truth. Zero mean Gaussian noise at SNR levels 20, 

10 and 0 dB was added to the gradient maps of Figure 7.14 for evaluation purposes. As in 

section 7.2.1.2, mean squared error (MSE) was used as a measure to quantify the 

reconstruction error. Error images i.e. images showing the difference between the noisy 

reconstruction and the original (ground truth) were also constructed.  

 It should be noted that since the ground truth is available in the form of the original 

range image, the noise sensitivity plots obtained for the synthetic range image are more 

realistic. These noise sensitivity plots obtained for the synthetic image of Figure 7.14 are 

shown in Figure 7.17 and Figure 7.18. The MSE values obtained for different levels of SNR 

for varying λ and µ are tabulated in Table 7.3 and Table 7.4. 

 The mean squared error obtained in the reconstruction process of the synthetic range 

image of Figure 7.14 for varying λ is tabulated in Table 7.3 and that of varying µ is 

tabulated in Table 7.4 
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  Table 7.3 Mean Squared Error as a function of λ and 10=µ  

SNR λ =0 λ =0.1 λ =0.2  λ =0.3  λ =0.4 λ =0.5   

              

0 db 4102.66 4126.39 4148.04 4167.42 4184.78 4200.44 

10 db 1912.25 1922.55 1931.83 1940.08 1947.47 1954.13 

20 db 1854.77 1864.17 1872.49 1879.89 1886.5 1892.43 

 

   

 

   Table 7.4 Mean Squared Error as a function of µ  

 

 

 

 

 

 

 

  

 

  

 

 

SNR λ  µ =0.1 µ =0.3 µ =0.5  µ =2.0 µ =10.0 

              

0 db 0.1 4690.48 4589.89 4558.08 4421.97 4126.39 

10 db 0.1 2194.84 2172.77 2156.62 2075.613 1922.55 

20 db 0.1 2122.73 2103.06 2087.94 2010.92 1864.17 
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 In Figure 7.17, graph of the mean squared error as a function of the variance of noise 

added to the synthetic image is shown. 
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MSE vs Variance added to Q
Source: Synthetic Image
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     (b) 

 Figure 7.17 Error as a function of variance of noise added to 
          (a) P   (b) Q   (Source: Synthetic Image) 
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In Figure 7.18, noise sensitivity curves are graphed as a function of λ and µ  
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     (b) 

  Figure 7.18   Noise sensitivity as a function of  
    (a) λ    (b) µ  (Source: Synthetic Image) 
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Inference: 

• It can be inferred from Figure 7.17 that the error increases with the amount of noise 

added to the gradient images as was inferred from the Beethoven images.  

• From Figure 7.18 (a), it can be again inferred that the reconstruction error increases 

with the increase in the value of λ . This can be attributed to the fact that higher values of 

λ tend to blur the image and hence give rise to more inaccurate results. 

• From Figure 7.18 (b), it can be inferred that higher values of µ   give rise to better 

reconstruction results and hence lower reconstruction errors. 

 

 

7.3.2 Algorithm 2: Results 

 As explained in section 7.2.2, the methodology used in this algorithm was iterative 

reconstruction and the cost function was minimized by adopting the gradient descent 

approach. The details of the algorithm itself were presented in chapter 6. The algorithm was 

implemented for various values of λ and µ . The best reconstruction result obtained for this 

algorithm is shown in Figure 7.19. 

 Mean Squared Error (MSE) between the original source image (Figure 7.14) and the 

reconstructed image (Figure 7.19) was computed. This reconstructed error was then graphed 

as a function of the parameters of the algorithm (viz. temperature). Figure 7.20 shows the 

graph of reconstruction error as a function of temperature. Table 7.5 and Table 7.6 show the 

values of reconstruction error as a function of λ  and µ  respectively. 
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           (a) 
 
    

     
                               (b) 
 

    
         

(c)                     (d) 
Figure 7.19 (a)Reconstruction of synthetic image by Algorithm2 ( 0.1=λ and  )0.10=µ  
         (b)Profile Axes on reconstructed image (c)Profile along the VV                                     
         axis  (d) Profile along the HH axis 

VV 

HH 



 

 82 

 

MSE vs Temperature
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 Figure 7.20 Graph of reconstruction error as a function of Temperature 
                             ( 0.1=λ and 0.10=µ )  (source: Auto.ifs) 
 
 
 
  Table 7.5 Mean Squared Error as a function of λ for Algorithm2 
     (Source: Auto.ifs) 
 
    

λ   ( )0.10=µ  MSE 

0.5 420 

1.0 301 

5.0 2193 

 
 
  Table 7.6 Mean Squared Error as a function of µ for Algorithm2 
     (Source: Auto.ifs) 
        

µ   ( )0.1=λ  MSE 

10.0 301 

20.0 670.76 

50.0 1580.91 
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 It is clear from Figure 7.20, as the iterative process proceeds, the temperature 

decreases and the reconstruction error decreases as the temperature decreases. It can be 

inferred from Table 7.5 and Table 7.6 that there is an optimum value for λ and µ for which 

the algorithm produces a minimum reconstruction error. Also, these values are problem 

dependent and need to be evaluated for every input image. 

 

Comparison of Algorithm1 and Algorithm2: 

 The performance of both the algorithms can be evaluated by comparing the Mean 

Squared Error (MSE) obtained for each of these algorithms. The mean squared error 

obtained between the source image (Figure 7.14) and the images reconstructed by each of 

these algorithms, i.e. Algorithm1 (Figure 7.15) and Algorithm2 (Figure 7.19), were 

computed for different values of λ   and µ . The results obtained are tabulated in Table 7.7 

below. 

 

        Table 7.7 MSE obtained for Algorithm1 and Algorithm2 (Source: Auto.ifs) 

 

ALGORITHM1 ALGORITHM2 

λ  µ  MSE λ  µ  MSE 

0.1 0.1 2189.21 0.5 10.0 420.3 

0.1 10.0 1929.75 1.0 10.0 301.1 

0.1 20.0 1870.09 5.0 10.0 2193 

0.5 10.0 1958.07 1.0 20.0 670.76 

1.0 10.0 1985.57 1.0 50.0 1580.91 
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 It can be seen from Table 7.7 that, the MSE obtained for the iterative method i.e. 

Algorithm2 is much lower than the MSE obtained for the Fourier transforms method i.e. 

Algorithm1. Thus it can be inferred that Algorithm2 produces more accurate reconstruction 

than Algorithm1.  

  

7.3.3 More synthetic images 

 Algorithm1 and Algorithm2 were implemented on more synthetic range images 

obtained from [42]. The results of both the algorithms are shown in Figure 7.21 to Figure 

7.23. However it should be noted that, if the object to be reconstructed has flat surfaces, the 

gradients of such surfaces are zero. Thus little information is available to the algorithms to 

reconstruct the surface. This leads to a poor reconstruction of the object as shown in Figure 

7.22. It is evident in this figure that surfaces that make the body of the airplane are almost 

flat which means that the gradients at these surfaces are zero. Since not much information is 

available for the reconstruction process, the result obtained is rather poor. 
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            (a) 

    

   (b)      (c) 

    

         (d)                 (e) 

 

  Figure 7.21    (a) Source Image (b) Gradient map ),( yxP  
               (c)  Gradient Map ),( yxQ  
    (d) Reconstruction by Algorithm1 
    (e) Reconstruction by Algorithm2 
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      (a) 

 

    

 (b)     (c) 

       

  (d)     (e) 

  Figure 7.22    (a) Source Image (b) Gradient map ),( yxP  
               (c)  Gradient Map ),( yxQ  
    (d) Reconstruction by Algorithm1 
    (e) Reconstruction by Algorithm2 
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             (a) 

    

         (b)      (c) 

    

          (d)                 (e) 

 

  Figure 7.23    (a) Source Image (b) Gradient map ),( yxP  
               (c)  Gradient Map ),( yxQ  
    (d) Reconstruction by Algorithm1 
    (e) Reconstruction by Algorithm2 
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 In Figure 7.24 below, the profile along the HH axis of the reconstructed synthetic 

frog image for both the algorithms is shown. 

 

           

       (a)       (b) 

 

      

 

      (c)       (d) 

 

Figure 7.24    (a) Reconstructed image of frog by Algorithm1 showing profile axis. 
            (b) Reconstructed image of frog by Algorithm2 showing profile axis. 
            (c) Profile along HH axis for Algorithm1 
            (d) Profile along HH axis for Algorithm2 
     

 

HH HH 
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 In the process of reconstruction, the reconstruction error i.e. MSE between the original 

source images and the reconstructed images was computed. For Algorithm2 (iterative 

method), this reconstructed error was then graphed as function of the temperature of the 

algorithm. The graphs obtained for reconstruction error as a function of temperature for each 

of the synthetic images of Figure 7.21-Figure 7.23 are shown in Figure 7.25-Figure 7.27. 
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Figure 7.25  Graph of MSE as a function of  temperature   (Source: banana.ifs) 
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MSE vs Temperature
Source: fighter.ifs
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Figure 7.26  Graph of MSE as a function of  temperature   (Source: fighter.ifs) 

 

   

 

MSE vs Temperature
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Figure 7.27  Graph of MSE as a function of temperature   (Source: frog.ifs) 
 



 

 91 

Comparison of Algorithm1 and Algorithm2: 

 It should be noted that when an image has a discontinuity, reconstruction cannot be 

performed by direct integration. Special techniques need to be developed to get perfect 

surface reconstruction of objects with discontinuities. One such technique is presented in 

[37] where the author relaxes the uniform integrability condition to partial integrability 

conditions. However, in the presence of discontinuities, the performance of the algorithms 

can be evaluated by comparing their MSE values. Among the algorithms described above, 

Algorithm2 gives better results when compared to Algorithm1 in the presence of 

discontinuities as is evident from Figure 7.22. The reconstruction error (MSE) obtained for 

both Algorithm1 and Algorithm2 in the process of reconstruction of synthetic images of 

Figure 7.21 – Figure 7.23 is tabulated in Table 7.8 below. 

 

    Table 7.8 MSE obtained for Algorithm1 and Algorithm2 in reconstruction of     
         synthetic images 
 

 
Source 

 
MSE obtained for 

Algorithm1   

 
MSE obtained for 

Algorithm2    
 

 
Banana.ifs 

 
2791.37 

 
902.28 

  
Fighter.ifs 

 
1635.39 

 
1592.55 

 
Frog.ifs 

 
1233.809 

 
104.96 

  

  From the above table, it is clear that the reconstruction error obtained for Algorithm2 

is lower than the reconstruction error obtained for Algorithm1. It can thus be inferred that 

Algorithm2 produces better reconstruction than Algorithm1 even in the presence of 

discontinuities. 
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7.4 Real World Images 

 The experiments were conducted on some real world images obtained from the 

imaging lab. As explained in chapter 2, the idea of photometric stereo is to vary the direction 

of the incident illumination between successive views while holding the viewing direction 

constant. This is achieved by having a constant viewing direction and using different non-

collinear light sources which are powered one at a time. Since there has been no change in 

imaging geometry, each picture element ),( yx in the three images correspond to the same 

object point and hence to the same gradient ),( qp . The effect of varying the direction of 

incident illumination is to change the reflectance map ),( qpR that characterizes the imaging 

situation. Thus, it becomes necessary to capture three (or more) images of an object, each 

image corresponding to one light source. In section 7.4.1, an outline of the experimental 

setup is presented and in section 7.4.2, some real world images and the results obtained by 

reconstruction algorithms is presented. 

 

7.4.1 Experimental Setup  

 A system was setup in the imaging lab to obtain real world images to aid in this 

process of experimentation. A large wooden box was installed and was covered on the inside 

with black matte sheets to avoid any reflections on the object by the sides of the box. Three 

non collinear point light sources were mounted inside the box. A camera was mounted on 

the ceiling of the box with the lens pointing directly on the object. The objects chosen were 

such that their surface could be modeled as Lambertian reflectors since the algorithms are 

based on Lambert’s cosine law.  
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 Since both the camera and the light sources were stationary, any error in 

measurement of the distances between the object and the camera and also the object and the 

light sources was thereby reduced. Care was taken to see that the camera axis and the z  axis 

of the object coincided with each other. The distance between the object and the light source 

was such that every point on the object could be considered equidistant from a particular 

light source. Three images were captured – one image at a time corresponding to a particular 

light source. Distances of each light source from the object were measured. All this data was 

used as input to the algorithm 4.5.1 to generate gradient images by photometric stereo. 

These gradient images were used as input to the algorithms to reconstruct surfaces. Some 

real world images obtained from this setup are presented in the next section. 

 

 

7.4.2 Experimental images and results 

 Some of the images obtained from the experimental setup and the reconstructed 

images are shown in Figure 7.28 to Figure 7.30 
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  (a)    (b)    (c) 

 

    

         (d)                 (e) 

 

 

Figure 7.28  (a), (b), and (c) Photometric stereo images of a real object, each obtained 
        from a different light source 
                              (d)  Reconstructed image by Algorithm1 
                     (e)   Reconstructed image by Algorithm2 
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  (a)             (b)               (c) 

 

    

          (d)      (e) 

 

 

Figure 7.29  (a), (b), and (c) Photometric stereo images of a real object, each obtained 
        from a different light source 
                               (d) Reconstructed image by Algorithm1 
                      (e)  Reconstructed image by Algorithm2 

 

 

 

 



 

 96 

 

 

 

       (a)     (b)    (c) 

 

    

         (d)      (e) 

 

Figure 7.30  (a), (b), and (c) Photometric stereo images of a real object, each obtained 
        from a different light source 
                               (d)  Reconstructed image by Algorithm1 
                      (e)   Reconstructed image by Algorithm2 

 

Discussion: 

 It can be seen from the real world images presented above that, the photometric 

stereo images obtained have shadows present in them. But in the analysis of the photometric 
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stereo method with three light sources, it was assumed that all the irradiances were positive 

i.e. the shadows were excluded from the analysis. Thus, the shadows present in the real 

images were manually removed prior to the generation of gradient images used in the 

reconstruction algorithms. The reconstructed images shown in the above figures were 

obtained from these preprocessed photometric stereo images. However, when the objects 

were reconstructed in the presence of shadows, the reconstruction results obtained for both 

the algorithms are as shown in Figure 7.31. In Figure 7.31, a1, a2 and a3 show the 

reconstructed images of the real world photometric stereo images with shadows, obtained 

from Algorithm1. The results obtained from Algorithm2 are shown in b1, b2 and b3. 
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         (a1)     (b1) 

    

    (a2)     (b2) 

    

    (a3)     (b3) 

 

Figure 7.31 (a1), (a2) and (a3) Reconstruction of images with shadows by Algorithm1 
         (b1), (b2) and (b3) Reconstruction of images with shadows by Algorithm2 
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Chapter 8 

Conclusion and Future work 

In this thesis, the problem of reconstruction of Lambertian surfaces from photometric 

stereo was addressed. Gradient maps were obtained by the theory of photometric stereo. 

Two algorithms were implemented to reconstruct surfaces from photometric stereo images. 

The results of these reconstruction algorithms were presented in chapter 7. It can be 

summarized that, 

• Algorithm1 was based on the Fourier transforms approach. The algorithm was 

implemented on the Beethoven, synthetic and real images. The results were shown in 

chapter 7.  

• Algorithm2 was an iterative reconstruction approach based on minimizing a cost 

function by gradient descent. This algorithm was implemented on the Beethoven, synthetic 

and real images. The results obtained were shown in chapter 7. 

• In addition, the noise sensitivity of Algorithm1 was tested on both the Beethoven and 

synthetic image. Noise sensitivity plots were obtained for both these images. 

• Algorithm1 was found to have a lower computation time (10 seconds) than 

Algorithm2 (25-30 minutes) since it was a non-iterative process. 

• The regularization term µ  was found to have a positive effect in the reconstruction 

process when the gradient images were corrupted by noise. 

• Algorithm2 was found to be more robust than Algorithm1 i.e. it produced better 

reconstruction results than Algorithm1 even in the presence of discontinuities in the image. 
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Future work: 

• The algorithms can be modified to make them more robust to the discontinuities 

present in the image. 

• More than three light sources can be adopted to increase the efficiency of the 

algorithms on real images. 

• Computer vision algorithms like erosion or other thresholding algorithms can be 

implemented to eliminate the shadows present in the real images. 
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