Abstract

D’SOUZA, ERWIN. Automating the enumeration of sequences defined by digraphs. (Under the
direction of Carla D. Savage.)

We consider sequences of nonnegative integers S = (s, s2,...,8,) defined by systems of con-
straints represented as weighted directed graphs in which edge (s,4,ss) of weight w indicates con-
straint s, > sp + w. We propose a set of seven rules and a decomposition technique for obtaining
multi-variable and single-variable generating functions for families of such graphs. Our method com-
pares to existing techniques by offering an elegant and intuitive approach to obtaining generating
functions and recurrences, albeit only for a subset of the partition and composition enumeration
problems addressed by other techniques. The decomposition technique we propose remains relevant,
nevertheless, to a wide range of applications, including several well-known ones. Moreover, our ob-
jective is to obtain recurrences for generating functions so as to assist the formulation and proof of
their closed-form solutions. For integer sequences defined by directed graphs with w € {0,1}, we
prove that our technique holds sufficient.

We describe the formulation of finite-variable generating function recurrences from multi-variable
ones and provide a set of rules to determine the variables chosen. The construction tree is introduced
as the tree representation of the construction of a generating function from the decomposition of
a weighted directed graph. Given such a construction tree, automation of the process of building
the multi-variable and finite-variable recurrences is possible, and we implement it as a computer
program.

Finally, we apply our techniques and tools to a wide range of famous problems, including 2-
rowed plane partitions, up-down compositions and hexagonal plane partitions, as well as some new
problems, and obtain recurrences to each. We find that our methods are not only effective but also

easy and simple to use.
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Chapter 1

Introduction

Integer partitions hold a special place in the vast field of Combinatorics. Despite a very straightfor-
ward definition, that of being an unordered collection of integers summing up to some integer n, they
are surrounded by several interesting and not-so-trivial problems. Applications of integer partitions
are widespread, ranging from the theory of symmetric functions to Statistical Physics. Euler made
a breakthrough in enumerating partitions when he used generating functions for presenting their
solutions [27], thereby introducing a reasonable way of counting them, though not quite directly.
The generating function approach has gained much momentum, evolving into enumeration prob-
lems not merely of integer partitions but also of sequences of integers satisfying arbitrary systems
of constraints. Recent work has involved the automation of the construction of generating functions
for a given set of inequalities that produce only integer solutions (diophantine inequalities) and the
derivation of recurrences for assisting not only in the guessing of solutions but also in the proofs of
them. In this thesis, we restrict our attention to those systems of constraints defined by inequalities
of the form s, > s, +w where s, and s, belong to the sequence under consideration, (s1, 82, ..., $m),
and w is an integer. We devise a simple set of rules for obtaining generating function recurrences for
these restricted systems and find that our technique stays elegant and simple while still being appli-
cable to a wide range of well-studied problems. We demonstrate also that the process is mechanical
enough to be automated.

Euler’s investigations in the enumeration of partitions led to easy-to-explain generating functions
of the form

1

Fe)=a—pa=m a=a

wherein the coefficient of ™ gives the number of partitions of n into m parts or fewer. MacMahon
introduced Partition Analysis [27] as a technique for obtaining the generating function of a sequence

of integers defined by a set of diophantine inequalities. The method based itself upon the ) operator
>
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that sought to remove all invalid solutions from a generating function. An accompanying collection
of twelve ‘Omega rules’ helped perform this task. The Partition Analysis approach lost steam,
however, and was only recently reintroduced by Andrews, Paule and Riese in a succession of papers
[3,4,6,10,7,8,9,5, 1, 2] that solved several interesting partition enumeration problems. As part
of these efforts, the Omega package [6, 7] was designed to automate the Omega rules so as to take
advantage of computer algebra methods. Despite its being undoubtedly powerful, a limitation of the
Omega package was its inflexibility in handling families of constraint systems. The Five Guidelines
approach proposed by Corteel, Lee and Savage in [18] attempts to get around this disadvantage by
focusing on obtaining recurrences for the generating functions. This technique built upon what was
reasoned to be the core of the Omega rules and was successful in constructing recurrences for several
well-known problems. We find, however, that the technique can be simplified to make the solving of
simpler systems of constraints more intuitive.

Restricting the type of inequalities allowable to only those between two integer parts, i.e., those
that could be expressed as

Sq > 8p+w (1.1)

for some integer w, allows us to greatly simplify the procurement of generating function recurrences
for systems defined on them. Moreover, these constraints can be expressed in the form of a directed
graph wherein the integer parts are represented by vertices and each constraint (1.1) by an edge
(sa,8p) of weight w. As we shall see, this representation allows us to devise a technique whose
application is not merely intuitive but also, arguably, fun. Potential applications of such a tech-
nique include problems that have been well studied in the past such as, for example, 2-rowed plane
partitions [28, 4].

1.1 Owur contribution

We restrict our attention to those systems of constraints that can be represented as directed graphs
with weighted edges, as already described. A set of six simple rules is proposed, along with a
technique for applying the rules upon a directed graph in a way that allows construction of the
generating function for the system it represents. The rules we propose derive from the Five Guidelines
and are simplified for the restricted problems we consider. We prove the sufficiency of these rules
for certain classes of directed graphs.

We then take the technique a step further by incorporating an additional rule that enables us
to treat sequences of directed graphs and obtain multi-variable recurrences for their generating
functions. Defining finite-variable versions for these recurrences involves deciding which variables to

keep and which to discard. We show how to overcome this non-trivial stumbling-block.
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Several aspects of the technique we propose are noticeably mechanical, therefore suggesting an
automated alternative. We develop a Maple package that constructs generating function recurrences
for given families of directed graphs.

Finally, we approach several well-known problems and some new ones with the new set of tech-
niques and tools we have thus acquired. Famous problems we consider include 2-rowed plane par-
titions (with or without diagonals) [28, 4, 1], up-down sequences [14], 1-compositions [26], plane

partition hexagonals (with or without diagonals) [2] and plane partition diamonds [9].

1.2 Organization

This chapter gave an brief introduction to the ideas and motivation behind this thesis. In Chapter 2,
we give an overview of the basic concepts that form the theme for this thesis, including enumerative
combinatorics, generating functions, formal grammars and parsing techniques. Chapter 3 details
prior work conducted in the field of enumerating partitions and compositions, and forms the basis of
the research presented in the rest of the thesis. In Chapter 4, we propose seven rules for decompo-
sition of graphs and describe the constraint graph technique. We also prove sufficiency of the rules
and investigate the creation of finite-variable generating function recurrences from multi-variable
ones. Chapter 5 describes the structure and functioning of the program we developed to automate
construction of generating functions, and also serves as a manual for future users. In Chapter 6,
we use the tools and techniques developed to obtain generating functions for several well-known
problems as well as a few new ones. Chapter 7 summarizes our contributions, formulates some of

the open problems and concludes the thesis.



Chapter 2

Background

This chapter constitutes a broad overview of subjects relevant to this thesis, with the intention of
putting the work into context. We begin in Section 2.1 with an overview of problems in combina-
torics that deal with enumeration and counting. Section 2.2 introduces generating functions and
emphasizes the innate power of the concept. We also demonstrate how generating functions can be
tailored to solve combinatorics problems such as that of enumerating partitions and compositions.
Finally, in preparation for the automation of the constraint graph technique in Chapter 5, Section

2.4 presents an overview of formal grammars and parsing techniques.

2.1 Enumeration problems

In this section, we provide an overview of those problems in combinatorics that deal with enumeration
and counting. This includes an introduction to integer compositions and partitions, which will form
the basis of this thesis.

Combinatorics is the field of mathematics that deals with orderings and arrangements of objects.
There are three basic problems of combinatorics [31]. Enumeration problems seek to count or list out
all possible solutions, ezistential problems pose the question of whether or not there exists a solution,
and, optimization problems deal with finding the best one. In this section, we are interested only
in enumeration problems and we provide a series of examples illustrating them. Some problems
we encounter have no direct formula, thereby setting the stage for generating functions, which we
explore in Section 2.2. Note that we use the term enumeration in this thesis to refer to the listing
out of solutions, as opposed to the term counting which we use to refer to the determination of the

number of them.
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Permutations of a set

Consider the problem of enumerating and counting all orderings of a set of n distinct objects. The
first object in every ordering can be selected in n ways, the second in n — 1 ways, and so on. Since
the number of ways of selecting each object is independent of the objects already picked, there are

a total of n! orderings.

Permutations of a multiset

Consider the ordering of a collection of n objects that contains r; similar objects of one type, r2 of
another, and so on up to ry, where r1 +ro + ...+ ry = n. The number of solutions is

n!
’I‘1!7‘2! .. .’I‘k!

n

and can be represented as ( k), called the multinomial coefficient [29]. This equation can be

T1,72,...T
explained as the taking away of the number of permutations of objects for each type, r;!, from the

number of permutations of n distinct objects, n!.

Combinations

Consider the problem of counting the number of possible subsets of a set of n distinct objects. We
see that there must be exactly 2" of them by observing that every object is either present or absent
from each subset, independent of other objects.

Now consider the same problem with the difference that every subset must contain exactly r
objects. This can be equated to the problem of ordering a multiset of n labels, with r elements
labelled ‘Y’ and n — r, ‘N’, such that Y’ corresponds to the selection of the object at that location

in the ordering and ‘N’ corresponds to its non-selection. This can be obtained from the multinomial

n _ n!
rn—r)  rlin—r)’

coefficient of n, as

represented as C(n,r).

r-Permutations

Consider the problem of finding all r-subsets of a set of n elements, where order is important. Observe
that if order is irrelevant, there are C(n,r) such subsets. Since each of these can be permuted in 7!
ways, we find that the number of solutions to the problem is

P(n,r) = rlC(n,r)

n!
(n—r)l"
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Figure 2.1: Ferrer’s diagrams for a partition of 15 as (6,4,2,2,1)

Selection with replacement

The number of ways of making ordered selections of r objects from n wherein every object may be
selected more than once is n”, since every element of the ordering can be independently selected in n

different ways. If order is irrelevant, however, the number of ways of doing this is C(r+n—1,r) [29].

Integer compositions

Define a composition of an integer n into m parts as a sequence of positive integers (s1, 82, ..., 5m)
where s1 + s2 + ... + s, = n. For example, the compositions of 5 into 3 parts are (1,1,3), (1,2,2),
(1,3,1),(2,1,2), (2,2,1) and (3,1,1). The number of compositions of n into m parts is C(n—1,m—1),
obtained as follows. Represent the integer n as a series of n dots. These dots create n — 1 spaces
in between them. Filling m — 1 of these n — 1 spaces with “walls” splits the series of n dots into
m smaller series. The values for s1,s3,... 5, can be read off from these m series, thereby giving a
valid composition of n. Observing that there are exactly C(n —1,m — 1) ways of filling n — 1 spaces
with m — 1 walls leads directly to the result.

The number of compositions of n into any number of positive parts can be shown to be 2771,

using a similar approach as above.

Partitions

Define a partition of an integer n into m parts as a sequence of positive integers (s1, S2, . . . , $;,,) where
$1+ 82+ ...+ s, = n and the order is not relevant. Since order is ignored, an arbitrary ordering
can be applied, for convenience. By convention, partitions are represented in a non-increasing order,
ie.,81>8>...25n,.

A useful representation of a partition (s1, 82, ..., Sm) is its Ferrer’s diagram, depicted as m rows
of dots, the ith row containing s; of them. For example, Figure 2.1 shows the Ferrer’s diagrams for
one possible partition of 15 into 5 parts. An interesting result can be obtained from the Ferrer’s

diagram of a partition of an integer n into m parts. If we “transpose” this diagram so that the rows
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become columns and the columns become rows, the resulting Ferrer’s diagram represents a partition
of n with largest part m. This one-to-one correspondence indicates that there are as many partitions
of n into m parts as there are of n with largest part m.

We see in Section 2.2 that generating functions prove very useful in enumerating and counting

solutions to partition problems.

Set partitions

The Stirling number of the second kind, S(n,m), is defined as the number of ways of partitioning a
set of n distinct elements into m non-empty subsets. In general, S(n,m) can be computed as

m—1

Stnm) = 30 (<07 (7 ) om -y

i=1

Some special cases are S(n,1) =1, S(n,2) =2""' — 1, S(n,n — 1) = (}) and S(n,n) = 1.

2.2 Generating functions

A generating function is a power series whose coefficients encode information about a sequence.

Given a sequence of integers {ag, a,as, ...}, the generating function is defined as

2 4
ag + a1T + axx +a3x3 +a4x” + ...
oo

E anx™.

n=0

This representation of the sequence is especially useful when no direct formula for a,, is available but

g(z)

a closed-form representation for g(z) is. Often, this closed-form generating function can be obtained
from the recurrence that defines the sequence, if such a recurrence is known. The following is a
sampling of the other advantages of generating functions.
e The closed-form representation of a generating function provides a compact representa-
tion for the sequence.
e A generating function may lead to a direct formula for the elements of the sequence.
e Sequences of two different problems can be proved equal by showing that their generating
functions are the same.
e Several generating functions may be combined or multiplied together in a meaningful
way, often to provide simpler solutions to problems.
e Expressing a problem as a generating function may provide new insights into it.
We now offer several examples of the applications of generating functions. In Section 2.3, we will

demonstrate their utility in dealing with integer compositions and partitions.
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Placeholder for a sequence

Consider a sequence whose elements are defined by a closed formula that is already known, say,

an = 2", n > 0. The generating function for the sequence (ay,as, .. .,a,) is then
g(z) =1+ 2z + 42 + 82 + 162" + ...
where the coefficient of z" is a,. Using the algebraic identity
1 2 3 4
—=14+z+2"+z°+2"+ ...,
1—z

we can represent g(x) in a closed form, as

This example demonstrates how generating functions can be treated simply as a placeholder for a
sequence of integers. As Wilf articulated in [39], “a generating function is a clothesline on which we

hang up a sequence of numbers for display.”

A two-term recurrence

We now consider a sequence whose closed form solution is unavailable, but whose elements are
defined by the recurrence
Qny1 = 2a, + 1 (2.1)

where n > 0 and ap = 0. We seek a generating function of the form

g(z) = Z anx".

n>0

Multiplying (2.1) with ™ and summing over the values of n for which the recurrence is valid, we

get

Z Q12" = Z(Zanm" +z")

n>0 n>0
!)(;E)T_ao - 29(:E)+1i$
9@ = Foaa=2)

The unknown numbers a,, are now available in g(z) as the coefficients of z”. After expanding the
generating function and observing the coeflicients, we can additionally obtain an explicit formula

for the sequence as a, = 2" — 1, n > 0.
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Fibonacci series

Consider the well-known Fibonacci series 1,1,2,3,5,8,13, ... defined by the three-term recurrence,
Fn+1 =F,+F,

where, n > 1, Fy = 0 and F; = 1. Following an approach similar to the one above, we obtain the

generating function as
(2) = T—
) = e—a2
The explicit formula can then be obtained by expanding this generating function in partial fractions.

Thus, the closed formula for the nth Fibonacci number is found to be

1
F,=—@l —1r"
\/5(+ )

where r1. = (14 +/5)/2 and n > 0.

2.2.1 Analytical and formal power series

We now address the issue of convergence of generating functions, since we have defined them as
power series. In this regard, we can treat generating functions either as analytical power series or
as formal power series.

Treating a generating function g(x) as an analytical object involves defining the region of z over
which g(z) is convergent. This is usually done by assuming that the generating function is defined
over a positive radius of convergence, so that g(x) is convergent at points close to 0.

The question of convergence can be avoided altogether if the generating function is considered to
be a formal power series. A formal power series has no analytical significance and is thus considered
simply as a placeholder for the coefficients of its terms. However, treating generating functions as
formal power series necessitates definition of various algebraic operations and identities, as explained
in [30].

In this thesis, we treat generating functions as formal power series.

2.3 Partitions and compositions

In this section, we tackle the combinatorial problems of integer compositions and partitions with
the algebraic tool of generating functions. We first consider the role of generating functions in

enumerating integer compositions and then explore its role with integer partitions.
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2.3.1 Compositions

Introduced in Section 2.1, we saw that a composition of an integer n into m positive parts is a
sequence of positive integers (s1, 82, - - ., S;,,) such that s;+ss+. ..+ s, = n. Consider the generating
function

x x
1-2)(1-2)
= @4+ +23 42+ )@+ + 2+t +0)

g(z) =

In order to determine the coefficient of, say, 2° in this generating function, we observe that it can
be obtained by exactly the four products z'z*, %23, z32% and z*2'. The coefficient of z° in g(z) is
thus the number of ways of adding two positive integers such that the sum is 5, i.e., the number of
compositions of 5 into 2 positive parts. In general, the number of compositions of n into m positive

parts is the coefficient of ", a,,, in the generating function

z.m
g9(z) = m

Using Newton’s generalized binomial theorem, we find that

o) = amy("FIT )

i>0
4 m—1
i>0
- > (7))
et m—1

Therefore, a, = (*_%) for n > m > 0. Similarly, we can find ([27]) that the generating function for
the total number of compositions is

Y (@+a”+a7 2t 4. )" =
m>1

1-—22’

in which the coefficient of z", a,, = 2" L.

Generating functions thus take advantage of the circumstance that the product of algebraic
terms in z corresponds to the sum of the powers of the terms. Additionally, the use of generating
functions has hereby effectively converted the combinatorial problem of counting compositions into

an algebraic one.

2.3.2 Partitions of integers

Integer partitions were introduced in Section 2.1, where we defined them similar to compositions
except that their order was irrelevant. We now demonstrate how generating functions can be used

to enumerate them.
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Consider the generating function

1 ) ) , )
—— =140+ (@) + @) + (@)

+ ...

where each term (z%)" is considered to contribute r parts of size i. Then, the coefficient of 2™ in

11 1_1$i =(1+z+ @) +..)0+22+ @) +..) ... A+ + )2 +..) (2.2)
0<i<k
is the number of ways of putting together, heedless of order, parts of size 1,2, 3,...% so that they
sum to n. Equation (2.2) therefore represents the generating function for the partitions of n into
parts no greater than k.
Now consider, instead of a restriction on the largest part, a restriction on the number of parts.

In the generating function
1

9(z,y) = g A=yz)’ (2.3)
the coefficient of y™z™ gives the number of partitions of n into exactly m parts, with no restriction
on the size of parts. Furthermore, the coefficient of y™ in g(z,y) gives us the generating function for
partitions into exactly m parts. MacMahon shows in [27] how the fraction of (2.3) can be expanded

in ascending powers of y to obtain

_ yz y’z® y'e'
g(z,y) =1+ 7+ 1—2)1 - 22) +"'+(1_m)(1—x2)...(1—xi)

+...,

from which it is clear that the coefficient of y™ is

1-2)(1—-22)...(1—2m)

g(z) = (

In this generating function, the coefficient of ™ gives the number of partitions of n into exactly m
parts. As MacMahon points out in [27], it is interesting to note that this value is the same as the

coefficient of ™™™ in
1

1-2z)(1—-22)...(1 —zm)’

which suggests that n has as many partitions into m parts as n — m has with no part exceeding

(2.4)

m. This becomes evident once the Ferrer’s diagram of the partition of n into exactly m parts is
considered. When the first column, containing exactly m dots, is removed, we see that the resulting
Ferrer’s diagram represents a partition of n — m into at most m parts. If transposed, this diagram
represents a partition of n — m with no part greater than m, thus explaining the equivalence. We
similarly observe that (2.4) is in fact the generating function for partitions into no more than m

parts.
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2.3.3 Finite-variable and multi-variable generating functions

The generating functions presented until now are all defined on a constant number of variables that
is independent of the number of parts of the partition. We therefore refer to them as finite-variable
generating functions. If such a generating function is defined on a single variable, it can also be
called a single-variable generating function, or a counting generating function since the coefficient of
2™ counts the number of solutions with sum n.

Generating functions can also prove very useful when they are defined on as many variables as
there are parts. Let S = (s1, $2,83,...,8k) be a composition of k parts whose weight is defined as
|S| = s1+ 82+ 83+...+ sk. Let S be the set containing all possible solutions for S. Consider the
generating function

— 81 ,,82,,83 Sk
9(x1,T2,23,...,21) = E G ok P

SeSc
from which we pick all terms 27" z5°z5° . .. ;" with |S| = n. These terms enumerate the compositions
of n into k parts, the size of the ith part being the value of the exponent of x;. Such generating
functions we call multi-variable generating functions or enumerating generating functions. They
serve to represent the enumeration of all solutions to a given problem.

The multi-variable generating function for partitions of n into at most m parts can be obtained
as follows. Consider the Ferrer’s diagram of a partition (s1, $2, 83, .. ., $m), modified so that the dots
are labelled by the parts they belong to. Since s; > s9 > s3 > ... > s, for every dot labelled m
there is at least one labelled i for 1 < i < m. These s,, columns of dots can be represented in the
generating function by the factor 1/(1 —z1z23 . . . 2, ). Similarly, for every dot labelled m — 1 there
is at least one labelled i for 1 < i < m — 1, thereby contributing a factor of 1/(1 — 12223 ... Tm—1)
and so on. The multi-variable generating function for partitions into at most m parts is therefore

1
1—21)A —z122)(1 — 212223) ... (1 — 21223 ... Tp)

(2.5)

g(r1, 22,23, -, Tm) = (

wherein the terms 7' x5°z3® ... 22~ with |S| = n enumerate the partitions of n into at most m parts.

Note that replacing all x; in (2.5) by x results in the single-variable generating function,

, 1
9(2) = 9@z, . 8) = TS A A ) (0 =)

which is the same as (2.4). As another example, replacing all odd-numbered z; by z and even by y

in (2.5) gives us the finite-variable generating function,

9"(@,y) = 9,9, 3,y,...,7,y) = Y _ a*y’

where the coefficient of z®°y®e represents the number of ways of partitioning n such that the sum of

the odd parts is s, and that of the even parts is s, and s, + s, = n. Note that ¢"(z,z) = ¢'(z).
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2.4 Grammars and parsing techniques

In preparation for the automation of the constraint graph technique in Chapter 5, we present here
an overview of formal grammars and parsing techniques.

Parsing is the process of structuring an input sequence according to a fixed set of guidelines. The
input sequence is called a sentence and the set of guidelines a grammar. A language is the set of all
possible sentences that a given grammar can represent. A parser for a given grammar is a program
that parses any sentence that the grammar can represent.

Formally, a grammar is a 4-tuple (V, Vr, R, S) where

e Vy is the finite set of non-terminal symbols,

e V7 is the finite set of terminal symbols,

e R is the set of production rules or pairs (P,Q), where P is a sequence of one or more

symbols from Vy U Vr and @ is a sequence of zero or more symbols from Vy U Vr, and

e S € Vy is the start symbol.

To illustrate, we define the grammar G by Vy = {4, B}, Vi = {2,+,x}, S =B and R as

B+ B
A
Ax A

s o W

L4l

2. (2.6)

Some of the sentences this grammar can parse are ‘2°, ‘24+2+2’and 2x2+2 x 2 x 2°.

As we see here, terminal symbols are what constitute the sentences of a grammar. Non-terminal
symbols, however, may not be a part of a sentence. The start symbol S indicates that the first rule
applied must replace the specified non-terminal symbol. The set of production rules, R, dictates how
a sequence of symbols can be replaced by a different sequence of symbols. Grammars are classified
into several types based on the restrictions imposed on these production rules. We describe the

Chomsky hierarchy and other classifications in Section 2.4.2.

2.4.1 Parsing

Parsing is the process of structuring an input sequence according to a given grammar. This is done
in order to construct a structure that can be processed according to the semantics of the grammar.
A parse tree of an input sentence I is a tree representation of the structure of I after it is parsed
according to the rules of some grammar GG. The root node of the parse tree is the start symbol of

G. The leaves are all terminal symbols, and if read from left to right, form the sentence I. Consider
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+

2 X 2 f X 2
2 2

X

Figure 2.2: Parse tree for 2 x2+2 x 2 x 2

the grammar G and rules R defined in (2.6). The parse tree for the input sequence ‘2x2+2x 2 x 2’
is shown in Figure 2.2.
There are several ways in which parsers and parsing techniques can be classified. We discuss the

prominent classifications below.

Top-down and bottom-up parsing

In top-down parsing, the parse tree is constructed from the root downwards. Beginning with the
start symbol, rules are selected and applied in such a way that the end product is the input sentence.
In bottom-up parsing, the parse tree is constructed from the leaves upwards. Starting from the input
sentence, right-hand sides of rules are matched and replaced with the left-hand sides in such a way

that the end product is the start symbol.

Directionality

A parser may either be directional or non-directional. Directional parsers process the input in a fixed
direction, either from left to right or from right to left. Non-directional parsers, on the other hand,
process the input sentence in any order that seems fit. The disadvantage is that the entire input
needs to be available to the parser before parsing can begin. There are several ways to implement
non-directional parsers, most notably the Unger method [37] and the CYK method [36].

Directional parsers can further be classified into deterministic and non-deterministic parsers.
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Deterministic and non-deterministic parsers

For some classes of grammars, it is possible to build parsers that do not need to perform a search
in order to determine which rule to apply next. Such parsers are therefore deterministic. Non-
deterministic parsers are those that do need to include the search functionality. Deterministic

parsers are generally more efficient than non-deterministic ones.

Search technique

For non-deterministic parsers, the process of searching for the rule to apply at any given point
can be done in two ways, depth-first search and breadth-first search. Depth-first search begins by
applying the first matching rule it encounters. If this rule does not lead to the desired sequence, it
backtracks and applies the next matching rule, and so on. In breadth-first search, the parser applies
all matching rules simultaneously, thereby producing several states for the parse tree. These are
then further processed in a similar manner, simultaneously, to obtain additional parse tree states,

and so on, until the desired sequence is reached.

2.4.2 Grammars

There are several ways in which grammars can be classified. We discuss here the Chomsky hierarchy

and some other important classifications.

The Chomsky hierarchy

In [16], Chomsky defines four classes of grammars, each subsequent class more restrictive than the
previous one. We define each of these grammars below.

o Type 0 grammars generate all languages that can be recognized by Turing machines.
They have no restrictions and may convert any sequence of symbols into any other.

e Type 1 grammars, also called contexrt-sensitive grammars, are Type 0 grammars with
the restriction that when a rule is applied, only one non-terminal on the left hand side
may be replaced, the remaining terminals and non-terminals staying in the same relative
order.

o Type 2 grammars are like Type 1 grammars, except that the left hand side of a rule may
contain only a single symbol, a non-terminal symbol. These grammars are also known
as context-free grammars because the application of a rule is independent of the context
in which the non-terminal appears.

o Type 3 grammars are like Type 2 grammars, with the additional constraint that the right

hand side of a rule may contain no more than one non-terminal symbol, and this symbol
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may only occur as the last one.
It is impossible to construct an algorithm to recognize sentences of arbitrary Type 0 grammars in
finite time [25]. Although some algorithms may work for certain classes of Type 0 grammars, a
generalized algorithm can never be built. For Type 1 grammars, it is always possible to build such
an algorithm, though building an efficient one is not straightforward [23]. Several efficient algorithms
exist for Type 2 grammars, which are the most common in practice. Top-down parsing and bottom-
up parsing can both be implemented easily for these grammars. Type 3 grammars are the simplest,

and are best handled using top-down parsers.

Other classifications

Semantic grammars are grammars that are associated with semantic information. This information
allows a parser to extract the meaning of a sentence from its parse tree. In such grammars, every
rule is associated with a semantic clause that defines the meaning of that rule.

Leftmost derivation is a parsing technique wherein at any given point, the non-terminal symbol
chosen for replacement is always the leftmost one. If all sentences of a grammar can be parsed from
left to right with leftmost derivation and a look-ahead of at most k tokens (terminal symbols), it is

called an LL(k) grammar.
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Literature review

In this chapter, we explore and review the research that has been conducted in the field of partition
and composition enumeration. In Section 3.1, we give an overview of the method of Partition
Analysis. Section 3.2 introduces the constraint matrix technique. Finally, we review the Five
Guidelines technique in Section 3.2, upon which our methods are largely based.

The treatment of partition enumeration problems using generating functions was first carried
out by Euler. His investigations led to intuitive generating functions of the form

1
l1-z)(1-22)...(1—2m)

F(z) =

wherein the coefficient of ™ gives the number of partitions of n into parts no greater than m (see
Section 2.3.2). A famous result due to Euler is the proof of the number of partitions into odd parts

being equinumerous with the number of partitions into distinct parts.

3.1 Partition Analysis

In [27], MacMahon takes a different approach towards partitions than that taken by Euler. He
begins by treating a partition of an integer n as a sequence of integers that is explicitly defined by
a set of diophantine inequalities and that sum to n, i.e., if S = {s1, $2,83,...,8m,} is the integer

sequence, the diophantine relations defining an ordinary partition are

$1 2> 8
2 > 83
Sp_1 > Sm- (3.1)

17
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He then considers the generating function

1

(1—Xz)(1 - f\‘—fx)(l - i—z.z') (1= )\:’_Lla:)

and notes that it expands to have the general term

Ail—SZ /\;2—83 )\sm—ll—sm ASm $31+sz+...+sm
ce A m .

If this term is to represent a solution to the diophantine inequalities, then no A; in the term should
have a negative exponent. He consequently defines the omega operator () as the operator that
>

eliminates all such terms from the generating function. Subsequent application of
AM=Xh=A=...=,=1

would result in the desired generating function. For the ordinary partitions of (3.1), for example,
we can define the generating function as

1

(1—z)(1— i—fx)(l — i—zx) (1= }:‘"’zlw)'

Z$s1+82+83+---+5m — Q (32)

MacMahon provides a series of identities that can be used for performing the Omega operation, such

as
1 1
S (1= MAjar)(1— A2gpe) (1= Aper)(1— Ay Ayari+2) (3:3)

intended to help implement the operator. Applying (3.3) iteratively on (3.2) results in the generating

function
1

1-z)1—-2>)(1—-2%)...(1—2m)’

which is the same as that reached by Euler.

Z pSitsetsstotsm —

Some of the ordinary partition problems for which MacMahon uses this Partition Analysis tech-
nique include ordinary partitions with only odd parts, ordinary partitions with largest part con-
strained, and ordinary partitions with each part constrained.

Significant strides were made in Partition Analysis by a series of papers [3, 4, 6, 10,7, 8,9, 5, 1,
2] by Andrews, Paule and Riese that used the technique to obtain generating functions for a large
range of interesting problems. Andrews first applied Partition Analysis in [3] to address the lecture
hall partition problem that was first defined and solved by Bousquet-Mélou and Eriksson in [11] and
further refined in [13]. This problem can be considered a finite version of Euler’s classical partition
theorem. They defined lecture hall partitions as a sequence of integers S = (s1,82,83,---,8m)
constrained by the inequalities

0<t<Z<c <™

S1 52 Sm
1 2 m’
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In [13] they prove that the generating function for these partitions is

T
— g2i+1°
i=0 1 q '

which is the same as that of partitions into odd parts no greater than 2m — 1. In his first paper
[3] on Partition Analysis, Andrews demonstrates that Partition Analysis techniques can be applied
to the lecture hall partition problem. This involves the use of two new omega rules, both derived
from MacMahon’s original rules. (Lecture hall partitions were subsequently further generalized by
Bousquet-Mélou and Eriksson in [12].)

Andrews’ second paper on Partition Analysis [4] deals with integer-sided triangles and partitions
in which both first and second difference of parts are non-negative, proving that they are equinumer-
ous. Andrews also derives MacMahon’s generating function for 2-rowed plane partitions, a problem
area, which MacMahon was unable to solve using Partition Analysis techniques beyond the trivial
case.

In [6], Andrews, Paule and Riese treat solid partitions on a cube, a generalization of Hermite’s
problem and k-gon partitions. A bijective proof of the refined lecture hall partition is presented in
[10]. Also offered is a treatment of Cayley’s compositions [15], which are defined as sequences of
integers such that “the first part is unity, and that no part is greater than twice the preceding part.”
They obtain a recurrence for the problem and offer a proof of Cayley’s theorem but are unable to
obtain solve for the generating function. In [7], the authors apply Partition Analysis techniques
to the enumeration problem of magic squares and magic pentagrams. In [8], they restrict their
attention to instances where the number of diophantine inequalities equals the number of variables.
Andrews, Paule and Riese further apply these techniques to solve plane partition diamonds in [9],
introduce new results for k-gon partitions in [5] and obtain generating functions for two-rowed and
hexagonal plane partitions with diagonals in [1, 2]. In most of these investigations, they were aided

by the computer algebra package Omega that they developed.

3.1.1 The Omega package

From their investigations in MacMahon’s Partition Analysis, Andrews, Paule and Riese note that
the process of obtaining generating functions for a given set of diophantine inequalities using the
Omega rules can be automated using computer algebra software. They thus build the Omega package
as an implementation of these rules.

Judging from the Omega rules and the Partition Analysis technique, the authors observe that a
general algorithm for evaluating

2@

1=z )1 =z22) ... 1=z, )1 =-4)(1-%)...(1 - &)

Q
2
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is all that is necessary. This is done with the help of the Fundamental Recurrence that they establish
in [6]. They describe the Mathematica implementation, and demonstrate with straight-forward as
well as more involved applications the potential of the package. In [7], the authors introduce an im-
provement to the package by providing a faster reduction algorithm. Further possible improvements

are suggested in [8].

3.2 Constraint matrices

In [21], Savage, Corteel and Wilf introduce a simple technique, a refinement of that proposed in
[20], of constructing generating functions for the enumeration of integer sequences defined by linear
inequalities.

Consider a sequence of integers S = {s1, s2, 83, .., S} defined by a set of linear constraints of
the form s; > 377", Ali, jls; where A[1...m,1...m] is any matrix of integers. If B = A~! has
only nonnegative integer entries, then the generating function is obtained as
1
where b; is the sum of entries in column i of B. This technique also produces a natural bijection
between solutions for S and partitions into parts from {by, bs,...,b,}.

In [21], the constraint matrix technique is applied successfully to a wide range of problems,
including lecture hall partitions (Section 3.1), Hickerson partitions [24] and Santos’ interpretation of
Euler [32, 35, 34]. Despite its simplicity and its many successful applications, there are many simple

systems of constraints that the technique cannot address. We see an example in the next section.

3.3 Five guidelines

In [18], Corteel, Lee and Savage present a new approach to obtaining generating functions for
partition enumeration problems which overcomes the limitations of the constraint matrix technique
and that proves as powerful as the Partition Analysis techniques. They propose five guidelines that
can be strategically applied on a system of homogenous inequalities to build a generating function
for the sequences of integers constrained by them. In particular, their emphasis is on obtaining
a recurrence for the generating function when applicable. These guidelines can be viewed as a
generalization of the constraint matrix technique or as a simplification of Partition Analysis. We
present here a brief overview of the five guidelines.

Consider the sequence of integers S = {s1, $2, 83, - . ., 8m } defined by the set of linear constraints,

C, each constraint ¢ € C of the form ag + Y ;" a;s; > 0 where a; are integer constants (possibly
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negative). Assume, in addition, that C always contains the constraints s; > 0 for 1 < i < m. We

wish to find the multi-variable generating function
Fo = Z xitey . xi,
SeS¢
where S¢ is the set of all solutions to the integer sequences subject to the constraints in C.

The Five Guidelines proposed in [18] are

1. If C contains only the single constraint s; > t, for integer ¢ > 0, then

t

T
Fo(z) =at + 2t + 2P + 2002 . = . L
—
2. If C is a set of constraints on variables s1,...,s; and C5 is a set of constraints on variables
8j41,---;8n, then
Fo,ycs(@1,...,20) = Foy (21, ..., 25) Fo, (Tj41, . ., Tn).

3. If a constraint of the form s; — as; > 0 is implied by C for any integer a, then

Fc(Xn) = FC (Xn;.Z'j «— iI?j.CL'g').

oiesitas;
4. For any constraint ¢ with the same variables as the set C,

Fo(Xa) = Fo ey (Xn) + Foyg-c (Xn)-
5. For any constraint ¢ € C,

Fo(Xn) = Fo_{ey(Xn) — Fo_{ey U{—c} (Xn)-

Here, X, represents the variables z1,22,...,%,.

Guideline 1 gives a trivial generating function that allows s; to be assigned any integer value
greater than or equal to t. Guideline 2 indicates that if two generating functions are based on
mutually exclusive sets of variables, then the generating function for the combined set of constraints
can be obtained by multiplying the two together. Intuitively, this guideline encourages breaking the
problem into several independent sub-problems, solving them separately and finally combining their
results together. Guideline 3 allows the uniform modification of a variable across all constraints in
C with the intention of obtaining a simplified set of constraints, and also dictates the effect this
modification has on the generating function. Guideline 4 enables us to define a new constraint ¢ and

split the set of solutions for the system into two, one containing solutions that satisfy this constraint,
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and the other containing those that do not. Guideline 5 is similar, allowing us to choose a constraint
¢ and split the set of solutions into two, one containing solutions that are not constrained by ¢
and the other containing those that are constrained by —c¢ but not ¢. The difference between these
two sets represents the required set of solutions. Intuitively, this guideline allows us to convert a
‘troublesome’ constraint into two others that are preferred.

The following is a simple example of the application of the five guidelines technique. The example
can be solved easily using Partition Analysis but, incidentally, not by the constraint matrix technique.

Consider the sequence of integers S = {s1, 2, s3} defined by the constraint set C,

$1 2> S
s1 2 83
82,83 > 0. (34)

By guideline 5, we can define Fo (1,2, x3) = G(x1,22,23) — H(x1,T2,13), where G(z1,x2,x3) is

the generating function for

Y

S1 52

52,83 Z 0 (35)
and H(x1,x2,x3) is that for

S1

v

52

vV

S3 s1+1

s2,83 > 0.
Applying guideline 3 in (3.5) as s; < s1 + s2 gives us constraints
$1,82,83 >0 (3.6)
and we get G(x1,x2,23) = G'(21,T122, x3). Generating function G'(x1, z2, z3) can be obtained from

guidelines 1 and 2 as
1

(1 — .Z'l)(l — 1172)(1 — 1'3) )

GI($1,$2,$3) =

Therefore,
1

(]. - .'L'l)(]. - .731.’1:2)(]. - IL'3) )

G(.Z'l, T2, 1'3) =

Similarly, H(x1,z2,23) can be shown to be

z3
(1 - z1m2w3)(1 — z123)(1 — T3)

H(z1,22,23) =
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Subtracting H from G gives

1-— .Z'%.’L'Q.Z':;
1- .’171)(]. - .’1!1.732)(]. - .’L'1.733)(]. - .’171.’132;123)

FC($17$2;1’3) = (

the generating function for (3.4).

The advantage of the five guidelines technique over Partition Analysis and the Omega package is
that it is tailored for obtaining recurrences for generating functions, thereby providing not only a
blueprint for a computer implementation of the generating function but also, significantly, a means
to prove a closed-form solution of the generating function, if found.

In this thesis, we consider a subset of the partition and composition enumeration problems
addressed by the Five Guidelines. In particular, we consider only those systems of constraints that
contain inequalities of the form s, > sp +w where s, and s, belong to the sequence of integers under

examination and w is any integer.



Chapter 4

Sequences defined by directed graphs

In this chapter, we describe how certain sequences defined by inequalities can be expressed as
directed graphs of constraints. In Section 4.2, we propose a technique for constructing the generating
functions of sequences defined by these graphs. This method involves strategically decomposing the
graph in stages, choosing from a set of simple rules at each stage. We present six rules that can be
used for this decomposition and provide examples to illustrate their application. We further prove
that the six rules are sufficient for the construction of generating functions of certain families of
sequences. In Section 4.3, we consider sequences of constraint graphs and cite the utility of defining
them recursively. An additional rule is introduced in order to support the recursive decomposition of
these constraint graphs. We then introduce sequence descriptions, explore multi-variable recurrences
of generating functions and propose a technique to derive their finite-variable versions. Finally, in
preparation for automating the procedure in Chapter 5, we formulate in Section 4.4 the construction

tree as a representation of the decomposition process of a constraint graph.

4.1 Directed graphs and sequences

While the Five Guidelines technique (Section 3.3) and the methods of Partition Analysis (Section
3.1) are well suited to obtaining generating functions for any system of homogeneous diophantine
inequalities, we find that reducing the scope of investigation to simpler systems enables us to de-
vise simpler techniques that are intuitive yet powerful. In this section, we propose six rules that
can be used to construct generating functions for a restricted system of homogenous diophantine
inequalities.

Consider a sequence of integers S = (s1, 82, 83, - - -, S;) and a set of linear constraints C' containing
constraints of the form

$; > 8; tw

24
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where 1 < 4,5 < m and w is an integer, and also constraints s; > 0 for every i, 1 < i < m.
This system of constraints can be represented as a weighted directed graph G = (V, E) where
V ={s1,82,...,8m} and every vertex s; in V corresponds to the variable s; in the sequence S. In
this graph, a directed edge (s;, s;) € E if and only if the constraint s; > s; + w exists in C' and its
weight is w. Additionally, every vertex s; in G implies the constraint s; > 0.

In this way, we can express certain sequence enumeration problems as directed graphs which we

refer to as constraint graphs. For example, the constraints

vV

S1 S9

S2 s3+1

v

51,82,53 2 0

can be represented by the constraint graph

S1 0 S9 1 S3
e —— > 0 ——> 0.

For convenience, an unlabelled edge is considered to have weight 0, and a double-arrowed edge, of

weight 1. The above constraints can therefore also be represented by the graph

S1 52 53
@O ——>» @ —>»>> 0 .

As another example, the constraints

82 2 81
83 > 81
S4 > Sa+2
84 > s3+1
sy > so+1
s5 > s3+3
S¢ =S4
s > S5

81, 82,83,54,85,86 > 0

on the sequence S = (s1, $2, 83, 84, S5, Sg) can be represented by the constraint graph of Fig. 4.1.
Despite the restrictions that constraint graphs have on the type of inequalities they can represent,

their scope is large enough to encompass several famous problems, such as two-rowed plane-partitions
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Y

Figure 4.1: Example of a constraint graph representing a given system of constraints.

Son—1 Son—3 S5 53 S1
o —» 0 ——> e —» @ ——>> O
o —» 0 ——> e —» @ ——>> O
Son Son—2 S6 5S4 52

Figure 4.2: Constraint graph for 2-rowed plane partitions [4]

M\/\/ \/

3n $3n 3

Figure 4.3: Constraint graph for plane partition diamonds [9]
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AVARAVAY

.—».—». .—».—».

Sn Sp—2 Sn—4 S5 53 S1

Figure 4.4: Constraint graph for Gordon partitions [22]

[28] of Figure 4.2, plane-partitions diamonds [9] of Figure 4.3 and Gordon partitions [22] of Figure
4.4.
We next show how the generating function of a sequence enumeration problem may be derived

from its constraint graph by systematic application of the simple rules that we propose.

4.2 Constructing generating functions for constraint graphs

In this section, we present a technique for the construction of generating functions for sequences
defined by constraint graphs and propose six rules, consisting of two terminal graph cases and four
graph operators, as the tools that can be applied in conjunction with this technique.

We begin by describing the technique. Let G be a constraint graph whose generating function
we wish to obtain. To construct the generating function of G, we follow a recursive approach.
If G corresponds to one of the terminal graph cases, its generating function can be constructed
directly. Otherwise, we strategically apply one of the four graph operators to G, obtain the generating
functions of the resulting simpler constraint graphs, and then use these generating functions to build
the generating function of G.

In this approach, our goal at each step is to strategically select the graph operator to be applied,
in such a way that each of the resulting constraint graphs is in some way closer to being a terminal
graph. This process of reducing a constraint graph into simpler forms we call decomposing of the
constraint graph. There may be more than one way of decomposing a given constraint graph, each
of which may differ in complexity or elegance but eventually produce the same generating function.
The two terminal graph cases we propose are

e single vertex graph, and

e inconsistent graph.

The four graph operators we propose are

e independent vertex operator,
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e redundant edge operator,

e incoming edge operator, and

e inclusion-exclusion operator.

In the next subsection, we define the two terminal graphs and describe how to handle them. In
Subsection 4.2.2, we introduce the four graph operators that we propose for decomposition. We then
illustrate with an example in Subsection 4.2.3 how generating functions can be constructed using
these tools. Finally, in Subsection 4.2.4 we prove that the six rules are sufficient for obtaining the

generating function of any constraint graph with edges all of weight either 0 or 1.

4.2.1 Terminal graph cases

The generating functions for constraint graphs corresponding to the following two cases can be

constructed directly without need for a recursive approach.

Single vertex graph

Constraint graph G = (V, E) is a single vertex graph if and only if |V| =1 and E = §. The only
constraint that G represents, therefore, is s, > 0 for the single vertex s,. Guideline 1 of the Five
Guidelines (Section 3.3) gives us the generating function for G directly as

1
1—24

Fg(ma) =

Inconsistent graph

Define an inconsistent cycle C in a constraint graph G as a directed cycle in which the sum of the
weights of edges is positive. An inconsistent graph is a constraint graph that contains at least one
inconsistent cycle. For example, the constraint graph of Fig. 4.5 is inconsistent because it contains

inconsistent cycle ((s2, s3), (83, 4), (54, 85), (85, 87), (7, 82)) of total weight 1.

Theorem 1 The generating function of an inconsistent graph G is
Fo(z1,...,2m) =0.

Proof. Let C = ((s1,$2),(52,53),---,(Sk_1,5k), (Sk,51)) be an inconsistent cycle in G with corre-
sponding edge weights (wy,ws,...,wg). Then, in terms of constraints, s; > s;4+1 +w; (1 < i < k)

and s > s1 + wg. Adding all constraints, we get

(81+82+83+...+$k) > (31+82+$3+...+8k)+(UJ1+’UJ2+U)3+...+’U)k)

0 > wi4wy+ws+...+wg, (41)
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/yo——>—>o

1\\\

o — > o35,

S5

Figure 4.5: An inconsistent graph

which is impossible, since by definition of an inconsistent cycle,
w1 +wo +wsz + ...+ wp > 0.
Since no sequence $1, S2,. .., S, can satisfy these constraints,
Fo(z1,...,2m) =0.

[ |
We show in Section 4.2.4 how an inconsistent graph may be introduced during the decomposition

of some constraint graph.

4.2.2 Graph operators

We propose the following graph operators for application on a constraint graph G when none of the

terminal graph cases apply.

Independent vertex operator

For a directed edge e = (u,v), u is called the tail of e and v the head of e. For a constraint graph G
and a vertex v of G, the outdegree of v is the number of edges with tail v and the indegree of v is
the number of edges with head v. The degree of v is the sum of its outdegree and indegree.

Define an independent vertex of a graph G to be a vertex v with degree 0. The independent vertex
operator allows us to remove an independent vertex s, from the graph G, obtain the generating
function Fg for the resulting graph G’, and then derive the generating function for G, Fg by
suitably modifying Fg/. Formally, the independent vertex operator, V, takes a vertex s, and a
graph G' not containing s, as operands, and returns a graph G containing s,. It can be expressed
as

G =V (sq,G").
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The generating function for the single vertex graph of s, is
1
1—z,

F, =

as shown in Section 4.2.1. Using Guideline 2 (Section 3.3) to combine F, and Fg/, we get the
generating function of G as

FGI(:cl,...,a:n)

Fo(z1,y...,Tn,Te) = T
a

As an example, assume we know the generating function of the following constraint graph G’,

S2 S1
@ ———m> 0

to be
1

(1 — 1‘2)(1 — .CL'1.’E2) )
To find the generating function of the graph G,

Foi(z1,22) =

S3 S92 S1
° e — > o,

we apply the independent vertex operator as
G = V(Sg, GI)

and thus obtain generating function as follows.
1
Fg(z1,72,83) = FG’($13$27$3)m
1

(]. - .'Ez)(]. - .’L'1$2)(]. - .773) ’

Redundant edge operator

If, for an edge e = (sq4,5p) in a constraint graph G, the set of sequences satisfying G = (V, E) is the
same as the set of sequences satisfying G' = (V, E — e), e is considered redundant. For example, in
the constraint graph of Fig. 4.6, the edges (s3, s2) and (s3, s4) are redundant.

The redundant edge operator allows us to remove a redundant edge (sq,sy) from a graph G
without modifying its generating function. Formally, the redundant edge operator, R, takes an edge
(8a, 8p), its weight w and a graph G’ containing s, and s, but not (s,,s;) as operands, and produces

a graph G containing (s,, sp) as the result. It can be expressed as
G = R((s4,5),w,G").

Since the removal of a redundant edge from a constraint graph does not in any way change its set

of solutions, the generating function is not affected, i.e.,

Fo(zy,y...,zn) = For(x1,. .., 20)
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Figure 4.7: Incoming edge (sq, sp)

Incoming edge operator

Define an incoming edge of a graph G to be an edge (s,, sp) where vertex s, has outdegree 1 and
indegree 0. In Fig. 4.7, edge (s,,sp) of weight w is an incoming edge.

The incoming edge operator allows us to remove any incoming edge (s, sp) of nonnegative weight
w and vertex s, from the graph G, obtain the generating function Fg for the resulting graph G',
and then derive the generating function for G, Fg, by suitably modifying Fg.

Formally, the incoming edge operator, I, takes an edge (s, sp), its weight w, and a graph G’
containing s, but not s, and (s,, 8p), and vertex s,, as operands and produces a graph G containing

Sq and (sq,8p). It can be expressed as
G = I((8aq, ), w,G").
As seen in Section 3.3, the generating function for G is

For(z1,. .., ZpZgy. . Tn)T?
Fa(®1, . Ty ooy Ty, @) = G (@1, ToTas -+, n) a

1—xz,

Thus, once Fg: has been obtained, Fg can be obtained by replacing all occurrences of x; in Fg
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by zpx, and then multiplying the result by z%¥/(1 — z,). For example, assume that we know the
generating function of the following constraint graph G’

592 S1
@ ———m> 0

to be
1

(1 — 3&'2)(1 — 1’11172) )
We can find the generating function of the graph G,

For(z1,22) =

53 3 52 S1
o ——— > 06— o,

by applying the incoming edge operator as
G= I((537 52)a 37 GI)
and thus obtain the generating function as

Fg(v1,22,83) = FG'($1,$2$3)m
3

(]. - :L'g)(]. - iL‘z.’L‘g)(]. - .731.772.733) ’

Inclusion-exclusion operator

Let (s;,s;) be a directed edge in G of weight w. As defined in Section 4.1, the constraint c represented
by this edge is

8; > 8; +w.

Consider the complement of this constraint, ¢/,
$i<s;t+w

or equivalently,

8;>8;+1—w.

This new constraint ¢’ can be represented by the edge (s;, s;) of weight (1 —w). Therefore, replacing
a constraint ¢ by its complement ¢’ is equivalent to replacing the edge (s;,s;) of weight w by the
edge (s;,s;) of weight (1 —w). We call this the reversal of an edge in a constraint graph G.

Let (sq,sp) be any arbitrary edge in constraint graph G and let w be its weight. Let G’ be the
graph obtained by removing (s,,sp) from G. Let G” be the graph obtained from G by reversing
(84, 8)- The inclusion-exclusion operator allows us to derive from G the graphs G' and G", obtain

their generating functions Fgr and Fgr respectively, and then define the generating function of G,
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53 S2 S1
e —> 00— 0

e —>> 0 —> 0

56 S5 5S4
G
S3 S2 S1 53 52 S1
o — @ —> O e —>»> 00— O
o — @ —> O e —>»> 00— O
56 S5 S4 S6 S5 5S4
GI GII

Figure 4.8: Application of the inclusion-exclusion operator to define G in terms of G' and G"

33

Fg, in terms of Fgr and Fgn. Formally, the inclusion-exclusion operator, —, takes an edge (sq, Sp),

its weight w, a graph G’ containing s, and s, but not (s,, sp), and a graph G" containing (sp, s,)

of weight 1 — w but not (s,, sp), as operands and produces a graph G containing (s, s3)- It can be

expressed as
G = —((s4, %), w,G",G").

From Guideline 5 (Section 3.3), since constraint ¢ represented by (s,,s5) and weight w is present in

G but not in G' or G" and since G" additionally contains constraint —c in the form of (sp,s,), the

generating function of G can be obtained as

Fo(z1,...,zn) = Far(x1,...,20) — Fgn(x1,...,20).

For instance, in Fig. 4.8, the generating function for G can be obtained from that of G’ and G" by

application of the inclusion-exclusion operator,
G = _((335 84)5 0; GI; G”)
and the generating function is thus

Fa(z1, %2, 3,24, 25,26) = Far (T1, T2, T3, T4, T5,T6) — Fgr (x1, 22, 3, T4, T5, T6)-
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52 S1
e —>> 0

o —> 0

53 5S4

Figure 4.9: Constraint graph G

We summarize the six rules in the following theorem.

Theorem 2 Let G be a constraint graph. The Six Rules for constraint graph decomposition are as
follows.

o Rule 1: If G is a single vertex sq, Fg = 1/(1 — z,).

o Rule 2: If G is inconsistent, Fg = 0.
Rule 3: If G =V (s4,G'") then Fg = 11};;,@'
Rule 4: If G = R((Sa, ), w,G"), then Fg = Fgr.
Rule 5: If G = I((84,50), w,G"), then Fg(T1,...,Tpy-- -, Tn, Ta) = FG’(“""’lw_"i:"“’“)w:.
Rule 6: If G = —((Sq, 8p),w,G',G"), then Fg = Fg: — Fgn.

Every application of a rule therefore corresponds to some graph operation or terminal graph case.
We define the decomposition of a graph G as a sequence of rule applications that decomposes G into
one or more terminal graphs. In the next subsection, we demonstrate the technique decomposition

with an example.

4.2.3 Construction of generating functions: example

Consider the constraint graph G in Figure 4.9 whose generating function we wish to obtain. Applying

the inclusion-exclusion operator for the edge (s2, s3), we can represent the graph as
G= _((527 83)7 07 G17 G2)

where G; and G are the graphs in Figure 4.10. So, by Rule 6, the generating function for G can

be expressed as
FG(Z-17$27$33$4) = FGl ($1,$2,$3,Z’4) - FG2 ($1,$2,$3,.’L’4). (42)
Graph (G; can be represented as the application of the incoming edge operator upon graph G3 as

G1 = I((s3,54),0,G3)
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Sa S1 S2
e — > o

|

———————
° P

|

S3 S4 S3 S4

Gl G2

Figure 4.10: Application of the inclusion-exclusion operator on constraint graph G; and Gs

52 S1
e —> O

Sa

Gs

Figure 4.11: Constraint graph G3

where (3 is the constraint graph in Figure 4.11. By Rule 5,

Fa,(x1,22,2324)

FG1 (371,322,2737104) = (1 —1’3) (4-3)
Graph G5 can be expressed as
G2 = R((s3,54),0,G4)
where G4 is shown in Figure 4.12. By Rule 4, the generating function remains the same,
Fg,(z1,22,23,%4) = Fg,(x1,%2,%3,T4). (4.4)
Constraint graph G4 can be expressed as
G4 = I((83, 82), ]., G3)
and its generating function, by Rule 5, is
F,
Fo (31,3, 53, 14) = 202 (21, %322, T4)T3 (4.5)

(]. — .733)
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]

S3 S4

S2
%

Gy

Figure 4.12: Constraint graph G4

S1
o

S4

Gs

Figure 4.13: Constraint graph G3

Graph G3 can be obtained by applying the incoming edge operator for (s2,s1) upon the graph G5
of Figure 4.13 since
G3 = I((Sz, 81), 0, G5)

By Rule 5,
FG5 (5172551,554)

(1= 22) (4.6)

Fg,(x1,22,24) =

Graph G5 can be described in terms of graph Gg as
Gs = 1((s1,54),0,G6)

where G is the single vertex graph with vertex s4. Rule 5 gives the generating function of G5 as

Fg, (2124) (4.7)

Fo,(z1,24) = —zp)

and Rule 1 gives that of Gg as
Fg, =1/(1 — x4).
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S1 S92
) )
) )

S3 S4

Figure 4.14: An empty graph

Replacing the value of Fg, in (4.7), we get

1
(]. - ;L'l)(]. - .731.’23'4) )

Fgy(r1,74) =

Substituting the value of Fg, in (4.6), we get

1
1-— .Z'g)(]. — .’EQ.CL‘l)(]. — 1'2.1‘1.234) )

Fg,(z1,22,24) = (

Replacing Fg, in (4.3) gives us

1
1—23)(1 —22)(1 — z221)(1 — T2x123%4)

FG1($17$27$37m4) = (

and, similarly, replacing Fg, in (4.5) gives us

Z3
1—23)(1 — z322)(1 — z32221) (1 — 23222124)

Fg,(w1,22,23,74) = (

Substituting Fg, in (4.4), we get

Z3
1-— 1’3)(1 — .’L’3."L'2)(1 — 1’3372.%’1)(1 — .’E3.’L’2.’E1.’E4) )

FG2(£U1,ZU2,.'L'3,SL'4) = (

Finally substituting values of Fg, and Fg, in (4.2), we get the desired generating function

1
F = _
a1, 22, 33, 74) (1—23)(1 = 22)(1 — z221) (1 — Z2212324)
z3

(]. — 273)(]. — 1'3.’11'2)(1 — .’L'31'2.’L'1)(1 — 183.7;'22711}4),

the multi-variable generating function for constraint graph G.

4.2.4 Sufficiency of Operators

We now prove that the Six Rules outlined in Theorem 2 are sufficient for constructing the generating
function of any constraint graph with all edges of weights either 0 or 1.
Define an empty graph G = (V, E) as a constraint graph in which the set E is empty. For example,

the constraint graph of Figure 4.14 is an empty graph because it contains no edges.
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Lemma 1 The Siz Rules (Theorem 2) are sufficient for constructing the generating function of any

empty graph G = (V,E). If V = {s1,83,...,5,}, the generating function is

T 1
Fo(zy,...,2) =H

o (T—m)
where n = |V|.

Proof. We prove this by induction on n.
Let n = 1. The graph is a single vertex graph with vertex s;. By Rule 1, its generating function
is
1
(]. - £E1) ’
Assume Lemma, 1 is true for all n < k. We now prove that the above proposition is true for

Fg(z) =

n = k. Let Gy, = (Vi, Ex) be an empty graph with Vi = {sy, sa,..., sk }. It can be represented as
Gy = V(Sk,Gk_1)

where Gy 1 = (Ve—1, Ex—1) with Vi1 = {s1,82,...,8:1}. By Rule 3,

FG - (xla"'awk—l)
FGk (.’L‘l, ... ,Z‘k,1,$k) = bl 1 (48)
— T
Observe that, by induction, the generating function of G’ is
k—1 1
F i, Tp1) = 4.9
Gk—l(m].? y Lk 1) P (1 _:L'i) ( )
Replacing this value of Fg,_, in 4.8,
k—1
1 1
F ceey T =
G (@1, Tp—1, Tk) 1—37k.1;[1(1—$i)
-
i (=)
|

Define an outgoing edge in a constraint graph G as an edge (s,, sp) where the indegree of sp is 1
and the outdegree is 0. Define the underlying undirected graph of a graph G, denoted by U(G), to
be the undirected graph that possesses the same set of vertices V' and set of edges F as in G, except

that the edges in U(G) are undirected.

Lemma 2 Let G be a constraint graph with edges of weights either 0 or 1, such that U(G) contains
a cycle C. Let E' be the set of directed edges in G that correspond to the edges in C. There exists a
subset E" C E' such that reversing the direction of the edges in E" creates an inconsistent (directed)

cycle in G.
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Proof. Let Ef C E' be an edge set such that reversing all edges in E] makes E' a directed cycle.
Let Ef = E' — Ef. Define W; as

Wi=wig+wia+...+wi,
where wy ; is the weight of edge e; € Ef, and r = |E{|. Similarly, define W, as
Wy =wa1 +waa+...+ w2 pnr
where ws ; is the weight of edge e; € E and n = |E'|. Note that |E}| =n — 7.
If we reverse all edges in Ej, the new sum of the weights of edges can be computed as
Wi = Q-wi1)+Q-wig)+...+(1—wi,)
W = r-Ww.
The sum of weights of edges in the directed cycle E' is then
Wr, = Wi+W,
Wp, = =W+ Ws.

If W, > 0 the directed cycle is inconsistent, the required edge set E"” = E] and the proof is

done. Otherwise,

Wr, < 0
r—Wi+Ws, < 0
Wi-Wy > r (4.10)

If we reverse all edges in E) instead of those in Ej, the sum of the weights of edges in E} is now
Wy, = (1—wai)+ 1 —wap)+...+ (1 —wsp_y)
Wy = (n—r)—Ws.
The sum of weights of edges in the directed cycle E' is
Wr, = Wi+W,
Wr, = Wi+(n—r)—Wa.
Substituting for W; — Wa from equation 4.10,

Wr, > r+(n—r)

> n.

Since any cycle in G must contain at least 3 edges, n > 3. Hence, Wr, is positive, and the resultant

directed cycle is inconsistent. The required edge set E" = E} and the proof is done. [ |
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Theorem 3 Let G = (V, E) be a constraint graph with edges of weights either O or 1. The Six Rules

(Theorem 2) are sufficient for the construction of the generating function for G.

Proof. We prove the theorem by induction on the number of edges, |E|.

If |E| = 0, the graph is an empty graph. By Lemma 1, its generating function can be directly
constructed using only the Six Rules. Hence, the proposition is true for |E| = 0.

Assume that the proposition is true for 0 < |E| < k. We now show that the proposition holds
true for |E| = k as well.

Let |E| = k. If G is an inconsistent graph, then by Rule 2 its generating function can be directly
inferred and the proposition is true.

Otherwise, if there exists a redundant edge (s, s3) in G, by Rule 4, G can be expressed as
G = R((Sa, Sb): w, Gl)

where w is the weight of (s, s5) and G’ is a graph containing s, and s, but not (s, s)- Since G' has
k — 1 edges, its generating function Fg: can be obtained inductively. Rule 4 defines the generating
function of G in terms of Fgr and the proposition is therefore true.

If no redundant edge exists in G, we look for an incoming edge (sq4,8p) in G. If such an edge is

present, by Rule 5, G' can be expressed as
G = 1((34, 8p),w,G")

where w is the weight of (s,,s;) and G’ is a graph containing s, and s, but not (s,, sp), and G” is
a graph containing s,, sp and (s, s,) of weight (1 — w) but not (s,, sp).

Since G’ has k — 1 edges, its generating function Fg+ can be obtained inductively. Rule 5 defines
the generating function of G in terms of Fz: and hence the proposition is true.

Otherwise, if there exists an outgoing edge (s,, sp) in G, by Rule 6, G can be expressed as
G= _((SIZJ Sb)7 w, GI7 G”)

where w is the weight of (s,,sp), G' is a graph containing s, and s, but not (s, sp), and G" is a
graph containing (sp, s,) of weight 1 — w but not (s,, sp). Since the number of edges in G’ is k — 1,
its generating function Fg: can be inductively obtained using only the Six Rules. Edge (s, 84) in
G" is an incoming edge. The generating function of G" can be obtained using only the Six Rules, in
a similar fashion as shown for the incoming edge case above. Finally, Rule 6 defines the generating
function of G, Fg, in terms of Fzr and Fgr and hence the proposition is true.

If none of the above cases apply, the degree of every vertex in G must be at least 2. Graph
U(G) must therefore contain at least one cycle C [38]. Let E' be the set of directed edges in G
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that correspond to the undirected edges in C. By Lemma 2, there exists a subset of E' such that
reversing the direction of the edges in E" creates an inconsistent cycle in G. Let E"” be one such
subset.

If |[E"| > 0, we remove an edge (sq, sp) from E” and apply Rule 6,
G= _((50»7 Sb)a w, Gla G“)

where w is the weight of (s, sp), G' is a graph containing s, and s but not (s,,ss), and G" is a
graph containing (s, s,) of weight 1 — w but not (sq,ss). Since the number of edges in G' is k — 1,
its generating function Fg can be inductively obtained using only the Six Rules. If |E"| > 0, the
generating function of G, Fgr, can be obtained by repeating the process recursively, taking G"
instead of G as the graph under consideration. Otherwise, all edges have been reversed and G" is

inconsistent. By Rule 2, Fg can be obtained directly and the proposition is therefore true. |

4.3 Sequences of constraint graphs

Let G1,Ga, ... be a sequence of graphs which can be defined recursively by first specifying G, some
specific graph with b vertices, and then recursively specifying G,, as being obtained from G,_; in
a prescribed way by adding ¢ new vertices and certain additional edges. Can we get the generating
function for G,, if we know the generating function for Gi and G,,_1? In this section, we extend
the Six Rules of Theorem 2 by incorporating a new rule that facilitates handling of sequences of
constraint graphs. We discuss multi-variable recurrences of generating functions and propose the
Special Variable Rules for obtaining finite-variable recurrences.

While the ability to obtain the generating function of any graph in the sequence is clearly useful,
the utility of dealing with constraint graph sequences mainly lies in the recurrences obtained for
the generating functions, which can help obtain and prove a direct form of the generating function.
In this section, therefore, we are primarily interested in sequences of constraint graphs that can be
defined recursively.

For example, the 2-rowed plane partition of Figure 4.2 exhibits a simple pattern in which G,
is the graph G,_1 of Figure 4.15 with additional vertices sa, and s2,—1 and edges (San, S2n—2),
(s2n—1, S2an—3) and (82,1, S25,)- In the next section, we introduce a new rule that allows us to specify
the decomposition of G,, by taking advantage of this pattern and without having to decompose the
entire graph.

Other examples of sequences with simple recursive patterns include those represented by figures
4.3, 4.4 and 4.16.
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Son—3 S5 53 S1
o — > e —mm>> 00— 0
o — > e —mm>> 00— 0

Son—2 S6 S4 52

Figure 4.15: Constraint graph G,,_1 for 2-rowed plane partitions

Sn Sp—1 52 51
e ——mmm>»> @ ——>» - —_— @ —> @

Figure 4.16: Linear partitions

4.3.1 Graph instance

Consider a constraint graph sequence Sg = (G1,Gs,...). A constraint graph G’ produced during
the decomposition of a constraint graph G,, in S can be treated as a graph instance if it is identical
to some graph G,,_, in Sg, where 1 < 7 < n. The graph instance G’ is represented simply as G, .,
and is considered a terminal graph (see Section 4.2.1).

The generating function of the graph instance G,,—, is the same as that of the constraint graph
G, € Sg, since the graphs are identical.

We summarize the seven rules of decomposition in the following theorem.

Theorem 4 Let G be a constraint graph. The Seven Rules for constraint graph decomposition are
as follows.

e Rule 1: If G is a single vertex s, Fg =1/(1 —z,).

o Rule 2: If G is inconsistent, Fg = 0.

e Rule 3: If G = V(s4,G") then Fg = 111‘;"1.

e Rule 4: If G = R((8q,585),w,G"), then Fg = Fgr.

e Rule 5: If G = 1((54, ), w,G"), then Fg(T1,...,Tp,..,Tpn,Tg) = FG'(wl""’lwfi:"”’w")w:.

e Rule 6: If G = —((S4,8),w,G",G"), then Fg = Fg — Fgn.

e Rule 7: If G is a graph instance G,—,, Fg = Fg, _..-

The decomposition of a graph G, in a constraint graph sequence Sg = (G1,Ga, .. .) is said to be

recursive if it involves at least one application of Rule 7.
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S1

[ ]

[ ] [ ]

So S2
Gy GV

Figure 4.17: Base case GG for 2-rowed plane partitions

4.3.2 Constraint graph sequence description

Let DY be a decomposition of G, € Sg for all n € N = {n;,n2,n3,...}. We call N the
indez set of DM . Since N™) may not cover the whole range over which Sg is defined, there may
additionally exist decompositions D®, D®) D@ applicable over index sets N NG N@®)
respectively, such that the N, j > 1, are pairwise disjoint and their union completely covers Sg.
This collection of decompositions and corresponding index sets we call the constraint graph sequence
description or sequence description of Sg, and represent it as Zg,,.

Given a sequence of constraint graphs, S, the goal of the decomposition process is then to obtain
a sequence description Zg, for Sg. While the set of decompositions obtained need not necessarily
contain a recursive decomposition, it is beneficial if it does so since recursive decompositions translate

to generating function recurrences.

4.3.3 Example

We demonstrate the formulation of sequence descriptions for graph sequences by returning to the 2-
rowed plane partitions of Figure 4.2. In order to obtain Zg,, for the sequence Sg = (G1,G2,G3,...),
we first consider the decomposition of Gy (Figure 4.17). This graph can be expressed as the appli-

cation of the incoming edge operator upon graph Ggl) as
G1 = I((s1,5),0,G1")
where Ggl) is the single-vertex graph in Figure 4.17. By Rule 5,

F{) (2122)

F1($1,£E2): (1—.’1:'1)

(4.11)
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Son—1 Son—3 S5 S3 S1
O ——— > 06— e —— > 06— > o
1
S
O ——— > 06— e —— > 06— > o
Son Son—2 S6 S4 52
Son—1 Son—3 S5 53 51
O —» 0 —> o — @ —>> O
2
G A
O —» 0 —> o — @ —>> O
Son Son—2 S6 S4 S2

Figure 4.18: Graphs GV and G2

Since, by Rule 6, F\" (z5) = 1/(1 — 25), we have in (4.11),

1
(]. — .Z‘l)(]. — .CL'11‘2) )

We next consider graph G,, (Figure 4.2) and attempt to decompose it into G,,—; (Figure 4.15)

Fl(.'li'l,ib'z) = (412)

using the 7 Rules. Applying the inclusion-exclusion operator for the edge (s2n—1,52,), G can be

represented as
Gn = —((s2n_1,520),0,GV G2

where G and G{? are the graphs in Figure 4.18. So, by Rule 6, the generating function for G,

can be expressed as
Fo(z1,2,. .. Ton_1,%n) = FD (21,29, ..., on_1, o) — FD(z1,29, ..., Bon_1,T2n).  (4.13)
Graph Gsll) can be represented as the application of the incoming edge operator upon graph Gg) as
G%l) = I((s2n,89n_2),0, GS’))
where G(n3) is the constraint graph in Figure 4.19. By Rule 5,

1) F7£3) (z1,22,...,TonTan—2,Tan—1)
Fn (x17$27---7$2n71;$2n) = (1 — ) . (414)
n
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Son—1 Son—3 S5 S3 S1
O — > @ — > e —>»> 06— 0
o —— > e —— > oe—— > o

Son—2 S6 S4 52

Figure 4.19: Graph el

Son—1 Son—3 S5 53 51
o —>»> 0 — > e —» @ ——>> O
o o — e — > @ ——>» O
Son Son—2 Se S4 52

Figure 4.20: Graph el

Graph Gslz) can be expressed as
Gg) = R((s2n, $2n—2),0, Ggf))
where Ggl) is shown in Figure 4.20. By Rule 4, the generating function remains the same,
FT(LQ) (Z1,%2, ..., Ton—1,Tan) = F,(f) (1,2, ..., Ton—1,%2n). (4.15)
Constraint graph G#) can be expressed as
G = I((s2n,52n-1),1,G)

and its generating function, by Rule 5, is

(3)
Ey/(z1,22,. .., Zan—2, Tan—1L2n)T2n

FT(L4)(-'171,-’1:27---7$2n—17x2n) = (1 T )
— 42n

(4.16)

Graph ngs) can be obtained by applying the incoming edge operator for (s2,—1,82,—3) upon the
graph G of Figure 4.21 since

G£13) = I((S2n—1; S2n—3)7 05 G5L5))
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Son-3 S5 S3 S1
@ — @ —>» 00— O
@ — @ —>» 00— O
Son—2 Se S4 S2

Figure 4.21: Graph el

By Rule 5,
(3) Y (1,2, ..., Tan—1T2n—3, Tan—2)
FyY (w1, 72, .., Tan 2,2 1) = (4.17)
(1—=22,-1)
Graph GS) is simply the graph instance G,,_1. By Rule 7,
FT(L5) (1’1; L2y ,552"72) = Fn,1($1,$2, ey T2p—3, 1’2",2). (418)

Substituting the value of FY® in (4.17), we get

FO® (21,2 :c Tom 1) = Fr1(21, 2, ..., Tan—1Z2n—3, Tan—2)
15L2y -y L2n—2,L2n—-1) =
" (1 - $2n—1)
Replacing F\\*) in (4.14) gi
eplacing F,” in (4.14) gives us
F(l) (-'El T Tom_1, T2 ) _ Fn71($1;$2; -+, T2n—1T2n-3, $2n72m2n)
n ? A n—1» n) —

(1= z2p-1)(1 — 720)
and, similarly, replacing F® in (4.16) gives us

Foo1(z1,22, ..., ZonTon—1%2n—3, Tan—2)Tan

F4) e Do =
" (1.171.2, 2n 17'77271) (]- - x?n)(]- - $2n$2n—1)

Substituting F\* in (4.15), we get

Foo1(z1,22,. .., TonTon—1%2n—3, Tan—2)Tan

F® ey Dap_1,Tapn) =
n ($17$27 » L2n 171.2”) (1—$2n)(1—$2n$2n_1)

Finally substituting values of F,(Ll) and F,(f) in (4.13), we get the desired generating function

Fro1(z1,%2,...,Ton 1%2n_3, Tan—2%2n)
Fn(wl,xQ,...,xQn_l,xgn) (1_1-2 1)(1_m2 ) —_
n— n
Fn 1(z1,22,...,Z0nTon 1T2n—3, Tan—2)T2n

(1 = 29,)(1 — TonZon_1) (4.19)
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This generating function is recursively defined in terms of the generating function of smaller versions
of the graph. Since it is defined over all variables z,xs,...,%2,, it is called the multi-variable
recurrence of the generating function. In conjunction with the generating function for the base case
(i1, this recurrence defines the generating function for any graph G,, of Sg.

We have thus obtained, from a simple set of decomposition rules and some clever graph manip-
ulation, a formula for the enumerating generating function of any 2-rowed plane partition. This is
clearly an improvement over earlier techniques that required separate derivations for different sizes
of partitions. Moreover, the generating function recurrences thus obtained can be programmed on
a computer to easily represent the generating function for any desired graph size. Although the
derivation of the recurrence above seems tedious, it is in fact sufficiently mechanical for a computer
program to perform. We describe in Chapter 5 a program we thus developed to construct generating
function recurrences for any sequence description provided.

Returning to the multi-variable recurrence of (4.19), define recurrence Hy,(q, Z2n—1,T2,) as the
recurrence obtained from F, by replacing all z; with ¢, except for zs,_1 and zs,, and all recursive

calls to F,,_; with calls to H,_1, i.e.,

Hy 1(q,9%2n-1,9%2n)  Hp-1(¢, ¢T2nTon—-1,q)%2n
it _ = n1lg ’ - ’ ’ . 4.20
n(@@n-1,mn) = N T 1= 2am) (L — anman 1) (4.20)

Since H,(q,T2n—1,%2,) is defined on the variables ¢, za, 1 and za,, it allows us to compute
Hy,_1(q,9%2n-1,q9T2n) and Hy_1(q, gTanTan—1,q) using the same recurrence, (4.20).
Defining H,,(q, Z2n—1,%2,) for the base case of (4.12) in a similar way, we get

1

1—22p-1)(1 — 2on—1225)

Hn(Q7m2n71;$2n) = ( (421)

for n = 1.

The recurrence H, of (4.20), unlike F),, is defined on a fixed set of variables and is therefore
called the finite-variable recurrence for the generating function. In conjunction with the base case,
it can be used to obtain the counting generating function of any G, as H,(q, q,q). The next section

describes a technique for deducing finite-variable recurrences from their multi-variable counterparts.

4.3.4 Finite variable recurrence

For most problems that involve obtaining generating functions for graphs in decomposable graph se-
quences Sg = (G1, G, . . .) we are interested in finding explicit non-recursive formulae for their single-
variable generating functions. A useful approach is to compute and compare single-variable gener-
ating functions of arbitrary graphs in the sequence, for example Fg(q,q,q,...) and Fr(q,q,q,...),
and to then guess the solution. To assist this process, we would like to automate the computa-

tion of single-variable generating functions from the multi-variable recurrences. Finally, we would
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also like to prove this conjecture, if true, by mathematical induction. Unfortunately, multi-variable
recurrences are ill-equipped for both automation and inductive proofs, as we now explain.

Consider the 2-rowed plane partitions of Section 4.3.3 and some arbitrary graph in the sequence,
say G4. The single-variable generating function of G4, can be obtained as Fi(q,q,4,9,4,4,9,q)-
From (4.19), we see that

P4, 0,04 0.4.4, ) = F(2,4,.9994¢) _F©9999998 9q
aA\4 4949 49 49,44, (1_(])(1_(]) (1_q)(1_q2)

Unfortunately, even though Fy and F3 use the same recursive definition, knowledge of computing

F1(4,9,49,4,4,9, 9, q) does not imply that of F3(¢,q,4,4,4°,4%) or F3(q,4,4,9,49,4,4%,q)- Hence, it is
not possible to use multi-variable recurrence as the inductive step for a proof of the solution. Finite

variable recurrences overcome this shortcoming by defining the recurrences over a set of chosen
variables, whereby every possible non-¢ value has a variable parameter to be assigned to.

An additional advantage of finite-variable recurrences over multi-variable ones is apparent when
the storage requirements of each are compared. Implemented as a program, the multi-variable
recurrences take up a lot of memory space when they are expanded entirely before substituting all
variables by ¢. Finite variable recurrences take up comparatively less space, hence making single-
variable generating function computation for larger n more feasible.

Define a linear sequence description of a decomposable graph sequence Sg as a sequence de-
scription Zg, in which the set of decompositions is finite and every rule-application references only
vertices and edges of the form z,,(n)—o and (T (n)—a,> Tm(n)—as) for non-negative constants a, a1
and as independent of graph index n, and where m(n) = |V(G,)|. In this section, we consider only
decomposable graph sequences Sg = (G1,Ga, . ..) that exhibit the following properties.

e Vertices of Gy, are labelled sequentially as z;, 1 < i < m(n), m(n) = |[V(G,)|.

e Graph G; is a subgraph of G, for i < n.

e There exists a linear sequence description Zg, for Sg.

We refer to these sequences Sg as linear graph sequences.

Consider a linear sequence description Zg, of a linear graph sequence Sg. The multi-variable
generating function F,, of every graph G,, in Sg is defined upon a sequence of variables of the form
L1,y Tm(n)—1> Tm(n) Where m(n) = |V(G,)|. Consider one such generating function, Fy(z1,...,
Tm(a)—1s Tm(a))> that includes a recursive call to Fy(21,. .., Zm(p)—1,Tmp))- Let zc, 1 < ¢ < m(a),
be one of the variables upon which Fj, is defined. In generating function F,, we represent z. as
Tp(n)—c for n = a, where ¢’ = m(a) — c. However, z, cannot be represented as ,(n)—o in Fp
because n = b. Therefore, x. is represented here as &, (n)— 4+ instead, where t = m(a) — m(b).
Hence, whenever a generating function F;, makes a recursive call to F,,_,, r > 0, with graph G,,_,

possessing t fewer vertices than G,,, there occurs an implicit shift of all variables by ¢ positions to
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the right, relative to the position of the last variable z,,(,). Also, after a recursive call, the shifted
variables Zp,(n) 41, Tm(n)+25 - - - » Tm(n)+¢ i0 Fn_, are disregarded because they correspond to vertices
that belong to G, but not to G,,_,.. We refer to these variables as being new in G,, with respect to
Gp—r-

Consider a linear sequence description Zg, and a finite set of integers A = {a1,az,as,...,a;}.
For every recursively defined generating function F corresponding to some decomposition D in Zg,
applicable over some index set N, we construct a recursive function H defined upon the recursion
F Dby replacing all variables %, (n)_a’» a' ¢ A, by ¢ and all recursive calls to F,_, by calls to Hy,_,.
We also define the parameter list for H as ¢, Tm(n)—a; s Tm(n)—azs - - - » Tm(n)—a; and the index set for
H as N. We similarly construct, for every non-recursively defined generating function F' in Zg,,
a non-recursive function H defined upon F' by replacing all variables 2, (n)—a, @' ¢ A, by ¢ and
setting the parameter list t0 ¢, Zim(n)—a1> Tm(n)—aszs - - - » Lm(n)—a; -

If A is defined such that all Hy(q, Zm(n)—ai> Tm(n)—ass - - - » Tm(n)—a;) SO constructed respect the
property

H,(q,4,4,---,9:9) = Fal9,90:9,---,4,9)

for every G, in S, we have obtained valid finite-variable versions for the multi-variable generating
functions of Zs, and we call A the special variable specification for Zs,. We next propose the Special

Variable Rules that specify the composition of such a set A.

Special Variable Rules

Let D,, be a decomposition in the sequence description Zg, of Si. Consider the generating function
F,, obtained from D,,, applicable over all n € N for some index set N. Let F),, be defined upon
m(n) variables and contain one or more recursive calls to smaller generating functions Fy,_,, r > 0.
Consider a recursive call to one such smaller generating function Fj,_,, defined upon m(n) — ¢
variables. The special variable specification for Zg,, A, must satisfy the following Special Variable
Rules with regards to this recursive call from F), to Fj,_,.

e SVR(1) — If the decomposition from G,, to Gp—, includes an incoming-edge operation

of the form I((Sp(n)—a’» Sm(n)—a), w,G") for some a’, w, G', and a > ¢, then a — t € A.

e SVR(2) —If a € A for some a > ¢, then a — ¢ € A.
The special variable specification A for Zg, is obtained by applying the above rules across all
recursive calls F,,_, of all generating function recurrences F,, in Zg,.

Consider a linear sequence description Zg, and its special variable specification A obtained
through the Special Variable Rules. For every decomposition D in Zg,, we observe the following,.

e Rule SVR(1) implies only a finite number of integer constants a; € A because D contains

only a finite number of incoming-edge operations.
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e For each recursive call in the generating function F' of D causing a shift of ¢ variables,

SVR(2) implies as members of A the integers a — t,a — 2t,...,a — ut for a > ut. Here,

u must be finite because it is bounded by a and ¢, both of which are independent of n.
Since there are only a finite number of decompositions in Zg,, we see that the Special Variable

Rules result in only a finite set A.

Theorem 5 Let Zs, be a linear sequence description and A = {a1,az2,a3,...,a;} be the special
variable specification inferred from the Special Variable Rules. For every recursively defined gener-
ating function F' corresponding to some decomposition D in Zs, applicable over some index set N,
construct a recursive function H defined upon the recursion F by replacing all variables T (n)—ar,
a ¢ A, by g and all recursive calls to Fp_, by calls to H,_,.. Also define the parameter list
for H as q,Zm(n)—a1)Tm(n)—azs- -+ Tm(n)—a;, nd the index set for H as N. Construct similarly,
for every non-recursively defined generating function F in Zs,, a non-recursive function H de-

fined upon F by replacing all variables p,(n)_q, @' ¢ A, by q and setting the parameter list to

4 Tm(n)—a1r Tm(n)—azr- - - Tm(n)—ar- The property
H,(4,4,9,---,9) = Fal,90,9,---,9)
is satisfied for all F), in Zg,.

Proof. For non-recursive F', the proof is trivial, since all z; in H are replaced by ¢ anyway. For
recursive F', the two essential differences between F and H are (1) the replacement of all T (n)—a!
in F,a' ¢ A, by ¢ in H and (2) the replacement of all recursive calls to F,,_, by calls to H, .. The
second difference is merely cosmetic since it has no effect on the computations. We therefore focus
only on the first. We demonstrate the validity of H by showing that no 2, (n)—a, @’ ¢ A, could have
a value other than ¢ at any point during the computation of F,(q,q,q,--.,q)-

Observe that the only two instances in which the value of a variable z,,(,)_, may be modified

from its default value of ¢ are

1. when 8,,(n)—, participates in an incoming edge operation I((Sm(n)—a’ Sm(n)—a), W, G") for some

Sm(n)—a’> w and G', and

2. when z,,(n)_, is assigned the value of variable z,,(,)_,—; due to a shift of ¢ positions for some

recursive call from Fjy to Fe.

The first instance is handled by SVR(1), and the second instance by SVR(2). In both cases, the
rules ensure that a € A. Since these are the only two possibilities, we see that no Z,,(n)—a, @' ¢ 4,

could ever have a non-q value. [ |
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Example: 2-rowed plane partitions

In Section 4.3.3, we presented a finite-variable recurrence for 2-rowed plane partitions, H,, by
replacing all z; in F, by ¢, except for x5, ; and z3,. Although these two variables seem to have
been selected arbitrarily, we now demonstrate that the Special Variable Rules suggest the same pair
as well.

The decomposition of base case G is not recursive and hence does not contribute to the special

variable specification A. We summarize the decomposition of graph G, as
Gn = _((3271,—17sQn)JO;G(nl),G%Z))
(

Gsz,l) = I( S2n, $2n—2)’07G£L3))
G(nQ) = R((SQn, 32n—2)7 07 G(n4))

Gs{l) = I((Sgn,SQn—l); 1aG513))
G$1,3) = I((SQn—1;32n—3)707G£L5))
GS’) - G (4.22)

Note that graphs Gg) and G£L4) are both defined upon G,(f). When F,(Ll) and F,§4) recursively call
F,(l3), however, they do so with different sets of parameters, and the subsequent decompositions must
therefore be treated separately. For simplicity, we consider instead of a single G%g), two disparate
graphs G%Ba) and Gs?b), the former obtained from G,(f) and the latter from Gsf). We similarly adopt
graphs GSG), G%‘r’b), Ggf_)l and Gg’ll for the two separate decomposition sequences.

Identification of the special variables is now approached by analyzing both G(H‘Z)l and G 511721- Note
that m(n) = |V(G,)| = 2n. We first apply the Special Variable Rules to nga_)l, where the shift is t =
2. The incoming-edge operations leading to this graph instance are GV =1 ((s2n, $2n—2),0, GEEG))
and GPY = I((san_1,82n_3),0,GP?). By SVR(1), s9n_o indicates 2 —t = 0 € A and sa,_3,
3—t=1¢€¢ A. Rule SVR(2) does not offer any new members for A because 0,1 < t. We next
consider Gg’ll,

graph are GY = I((szn,s%_l),l,Gg)) and G = I((32n_1,32n_3),0,G%5)). Rule SVR(1) does
not apply to sz, 1 because 1 2 ¢, but does apply to s2,_3, indicating 3 —¢t =1 € A. Rule SVR(2)

where again the shift is t = 2. The only incoming-edge operations leading to this

does not offer any new members for A because 1 < ¢.
Thus, we find that A = {0, 1}, thereby suggesting z2,_1 and 2, as the special variables.

4.4 Construction tree

The individual steps in the decomposition of a constraint graph G using the Seven Rules (Theorem 4)

are specified in a recursive manner, with each graph operation decomposing a graph into one or more
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other graphs, which are then further decomposed by other graph operations, and so on. This process
can be represented as a tree with the root node corresponding to the first operation performed on G
and its children corresponding to the subsequent operations performed on the resulting graphs, and
so on. Since every rule application describes not only the decomposition of a constraint graph G
but also the construction of its generating function Fig, the generating function construction process
mirrors the decomposition process and can therefore be represented as a tree as well. We call this
tree the construction tree. We describe in Section 4.4.2 how an application of a given rule can be
represented as a node in this tree. Before we do that, however, we identify in Section 4.4.1 certain

rules whose applications can be simplified in the construction tree or omitted from it altogether.

4.4.1 Decomposition preprocessing

Consider a decomposition D of a graph G. We first show that if G is not inconsistent, then D
need contain no application of the inconsistent graph rule of the Seven Rules. We then describe
how applications of the redundant edge rule can be omitted from the construction tree of D as well.

Finally, we simplify applications of the incoming-edge rule in the construction tree.

Eliminating Rule 2 (Inconsistent graph)

Lemma 3 Let G = —((sq4, 8p),w, G',G") be an application of the inclusion-exclusion rule (Rule 6)
anywhere in the decomposition D,, of a graph G, such that G" is inconsistent and G is not. Then,

edge (sa,8p) must be redundant in G.

Proof. Let wi,ws,...,w,, w' be the weights of the edges e1, ez, e3,...,¢e., € of an inconsistent cycle
in G”, where €' is the edge (sq,sp) after reversal, i.e, e’ = (sp,5,) with weight w' = 1 — w. By

definition of an inconsistent cycle,

witwy+...+w,+w > 0
witwe+...+w,+1—w > 0
wrF+wr +...+w, > w. (423)
In graph G, the edge (s,, sp) implies the constraint
Sq > Spt+w (4.24)

and the edges e, es,..., e, together imply the constraint

Sqg 2 Sptwr +way+ ...+ w,. (4.25)
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From (4.25) and (4.23),

Sq > Sp +Ww

which is the same as (4.24). Thus, (sq, $p) is redundant in G. ]

Define a consistent graph as a graph that contains no inconsistent cycle.

Theorem 6 Application of the inconsistent graph rule (Rule 2) of the Seven Rules in the decompo-

sition of a consistent graph G,, is unnecessary.

Proof. Let (01,02,0s3,...,04) be the sequence of rule applications that defines D. Let Oy,
1 < b < d, be an application of Rule 2 in D for some inconsistent graph G" such that there exists
no 0;, 1 <i < b, that applies Rule 2. We show that Op can be eliminated from D.

Observe that b cannot be 1 because G, is consistent. There therefore exists a graph operation
0., 1 < a < b, that decomposes some graph G into one or more graphs, of which one is G”. Note
that O, can only be of the form G = —((s,, sp),w,G',G") for some s,, sp, w and G’, because no
other rule application can introduce an inconsistent cycle in a consistent graph. From Lemma 3,
we find that (s, sp) must be redundant in G. Notice that the graph obtained by applying the
redundant edge rule on G for this edge is G'. Thus, O, can be replaced in D by the operation
G = R((84, ), w,G"). This causes Oy to become irrelevant in D and we can hence eliminate it.

By induction, every application of the inconsistent graph rule (Rule 2) in the decomposition of

G, can be safely eliminated. [ |

Eliminating Rule 4 (Redundant edge)

From the definition of the Seven Rules in Theorem 4, we know that for an application of Rule 4 of
the form G = R((sq, sp),w,G"), the resulting generating function is Fg = Fgr. From the point of
view of constructing a generating function, Rule 4 thus makes no contribution and can be ignored.
We consequently do not include applications of Rule 4 in the construction tree, and instead replace

each G = R((sq, $p), w,G") by the subsequent rule application on G'.

Simplifying Rule 6 (Inclusion-exclusion)

From the definition of the Seven Rules in Theorem 4, we know that for an application of Rule 6
of the form G = —((sq, 8p), w, G',G"), the resulting generating function is Fg = Fg — Fgr. Since
the computation of Fz does not depend on s,, sy or w, we can eliminate that information from all

applications of Rule 6 in the construction tree.
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Figure 4.22: Construction tree for the decomposition of G,, for 2-rowed plane partitions

4.4.2 Construction tree creation

Let G,, be a consistent graph and D,, a decomposition for G,, that contains no application of the
inconsistent graph rule (Rule 2). The description of the construction tree T¢; for any rule application
defining G in D,, is dependant on the rule applied, as specified below.
o If G is a single vertex s, (Rule 1), then Tg is a leaf node with label s,.
o If G = V(s,,G") (Rule 3), then the root node of T is a node labelled ‘V°, with first
child a node labelled ‘s,’ and second child the construction tree of G'.
e If G = R((s4,85), w,G") (Rule 4), then Tg is T, the construction tree of G'.
e If G =I((sq,55),w,G") (Rule 5), then the root node of T¢ is labelled ‘I’, with first child
anode labelled ‘(s,, s3)’, second child a node labelled ‘w’ and third child the construction
tree of G'. For convenience, the second child can be eliminated if w = 0 and the root
node is labelled ‘7, or if w = 1 and the root node is labelled ‘7x’.
e If G = —((sq,58),w,G',G") (Rule 6), then the root node of T is a node labelled ‘—’,
with first child T¢: and second child T, where T and T are the construction trees
of G' and G" respectively.
e If G is a graph instance G,,—, (Rule 7), T is a leaf node with label ‘G, _,’".

Example

To illustrate how the decomposition process can be represented as a construction tree, consider the
decomposition of G, in the 2-rowed plane partitions example of Section 4.3.3 as summarized in

(4.22). This decomposition can be represented by the construction tree of Figure 4.22.
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Construction trees play an important role in the automation of the construction of generating

functions, as we will see in the next chapter.



Chapter 5

Automation of generating function construction

The decomposition technique introduced in Chapter 4 enables us to obtain generating functions
for a wide range of enumeration problems dealing with sequences defined by directed graphs. The
technique, as we saw, also extends itself to sequences of constraint graphs and can produce generating
function recurrences that emerge powerful not only for solving any arbitrary constraint graph in the
sequence but also for solving and proving a direct form for the generating function. We noted in
Section 4.3.3 that once the decompositions for a constraint graph sequence have been established,
obtaining the generating functions and recurrences is mechanical and can be automated. In this
chapter, we describe the GFPartitions package that we developed for this purpose. We begin
by giving an overview of the package in Section 5.1. We then define, in Section 5.2, the input
requirements of the package and demonstrate with an example. The output generated by the
package is presented and explained in Section 5.3. Finally, in Section 5.4, we present a detailed

description of the working of the package.

5.1 Overview of the package

The GFPartitions package is designed essentially to simplify the task of constructing generating
functions. It does this by automating those portions of the construction process that are relatively
mechanical and time-consuming. By doing so, the user is able to concentrate on the more interesting
and challenging aspects of the problem, such as the decomposition process and the guessing of
solutions to the recurrences. The package also automates definition of the finite-variable versions of
multi-variable recurrences, thereby providing the user with inductive steps for proofs of the solution.

The GFPartitions package expects as input an encoding of the sequence description for the
given problem, each decomposition being specified by a construction tree. Using this information, the

package builds and outputs multi-variable and finite-variable recurrences of the generating functions.
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Encoding qf . GFPartitions Generating functions
sequence description and recurrences

Figure 5.1: Flow of data into and out of the GFPartitions package.

The package also outputs a procedure that constructs the complete generating function for any
desired constraint graph in the sequence. Figure 5.1 demonstrates the flow of data in the system.
Detailed descriptions of the input and the output are provided in the next section.

The GFPartitions package handles only those sequence descriptions Zgs, for constraint graph
sequences Sg = (G1,G2,Gs,...) that satisfy the following.

e Sequence description Zg,, is linear.

e No constraint graph in Sg is inconsistent.

e Every constraint graph G;, i > 2, contains exactly a vertices more than G;_1, for some

fixed a > 1.

The package is implemented as a Maple module and consists of several procedures. The procedure
Recurrence, though, is the only procedure that is exposed to the user, since all other procedures
are used only internally.

We next describe the input specification for the package.

5.2 Input

In order to be able to construct the generating function recurrences and the complete generating
function for a constraint graph sequence Sg, the GFPartitions package expects as input the con-
struction tree of every decomposition in the sequence description Zs, of Sg. In this section, we

define construction tree lists and description lists and give examples of how they can be formed.

5.2.1 Construction tree list

As described in Section 4.4, the construction of the generating function or recurrence defined by
a given decomposition can be represented as a construction tree. For convenience of input to the

GFPartitions package, we define a linear representation of this tree as follows.
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Define a proper subtree of a tree T as any subtree of T other than T itself. The traversal of a
tree T' is the action of visiting every node in T'. Preorder traversal of a tree T is accomplished by
first visiting the root node of T' and then making a preorder traversal of each of its proper subtrees
from left to right. The preorder representation of a tree T is the linear sequence of all nodes of T
arranged in the order in which the nodes are visited in a preorder traversal of T.

Define the construction tree list of a construction tree T' as the preorder representation of T'. This
is the representation in which we will feed construction trees as input to procedure GFPartitions.

Consistent with the above definition, construction tree lists can be defined by the grammar

Graph — X (5.1)
Graph — "." X Graph (5.2)
Graph — "I" X X N Graph | "i" X X Graph | "i*" X X Graph (5.3)
Graph — "-" Graph Graph (5.4)
Graph — "W4" N | "%4" (5.5)

X — "x[an+b]" (5.6)

N - 0|1|2]3]... (5.7)

where
e vertex Sqn+p iS labelled as a function of n and is represented as "x[an+b]", the variable

it is associated with in the generating function,

edge (San+b, Sentd) is represented as two adjacent symbols, "x[an+b]" and "x[cn+d]",

5.1) corresponds to Rule 1 (single vertex) of the Seven Rules,

corresponds to Rule 3 (independent vertex) of the Seven Rules,

(
(5.2)

e (5.3) corresponds to Rule 5 (incoming edge) of the Seven Rules,
(5.4) corresponds to Rule 6 (inclusion-exclusion) of the Seven Rules,
(

5.5) corresponds to Rule 7 (graph instance) of the Seven Rules and graph instance G,
is represented as two symbols, ‘"%%"’ and the integer value of r, and graph instance G,,_;
is represented simply as ‘"%"’.
In this grammar, the set of non-terminal symbols is {Graph, X, N}, the set of terminal symbols is
{nIry A mgan oo g g iy [an+b] ", 0,1,2,3,...} and the start symbol is Graph.

The construction tree list is input into the Recurrence procedure of the GFPartitions package
in the form of a Maple 1ist, each terminal symbol occurring as a separate item in the list. We
demonstrate with an example.

In Section 4.4.2, we represented the decomposition of G, of 2-rowed plane partitions as a con-

struction tree (Figure 4.22). We can now convert this tree into a construction tree list, as
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e

(1)
(52n—1;52n) @ Gl

Figure 5.2: Construction tree for G of 2-rowed plane partitions

G

["-", "iv, x[2%n], x[2%n-2], "i", x[2*n-1], x[2*n-3], "%%", 1,
"ix", x[2%n], x[2*%n-1], "i", x[2*n-1], x[2*n-3], "%%", 1].

5.2.2 Specifying the sequence description

While a construction tree sufficiently describes how to build the generating function for a given
decomposition, a sequence description Zg, may possess more than one decomposition, such as for
example, a decomposition for even indices, another for odd and a third for the base case. This
necessitates specification of several construction trees, one for each decomposition, in order to com-
pletely describe the construction of generating functions and recurrences for Sg. The GFPartitions
package therefore accepts as input a list of d construction tree lists along with a specification of

the index set for each. This description list can be specified as
[treegefauit, cond, treey, conds, trees, ..., condq_1, treeq_i]

where tree; is a construction tree list applicable over all indices n that satisfy cond; but not cond;,
1 < j < 4, and treegefqut is the construction tree list applicable over all indices that satisfy no
cond;, 1 <j<d.

We demonstrate formulation of the description list by returning to the 2-rowed plane partitions
example. In Section 4.4.2, we obtained the construction tree of G,,, and in Section 5.2.1, converted
it into a construction tree list. Before we build the description list, we first need to obtain the
construction tree list for the base case G;. The construction tree corresponding to the decomposition

of G performed in Section 4.3.3 is shown in Figure 5.2 and its construction tree list is therefore
["i", x[2*n-11, x[2*n], x[2*n]]

forn = 1.

The description list can now be formed as

[ ["-", "i", x[2*%n], x[2*n-2], "i", x[2*n-1], x[2*n-31, "%",
"ik" ) x[2#n], x[2*n-1], "i", x[2*n-1], x[2*n-3], "%"],
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n=1,

["i", x[2*n-1], x[2*n], x[2*n]] ]

and can be used as the first parameter for input. The package also expects a second parameter,
a list of variable names to replace the “ugly” names of the special variables in the finite-variable
recurrences finally output. In this example, we conjecture that there may only be 2 special variables
and thereby specify arbitrarily the list [s, t] as the second parameter for input.

Thus equipped with all required input parameters, we finally call the Recurrence procedure of

GFPartitions as

GFPartitions[Recurrence] ([
["-", "i", x[2%n], x[2%n-2], "i", x[2*%n-1], x[2%n-3], "%",
nixn x[2%n], x[2%n-1], "i", x[2*n-1], x[2%n-31, "%"1,
n=1,
["i", x[2*n-1], x[2*n], x[2*n]l] 1,
[s, t1)

We describe the output in the next section.

5.3 Output

The Recurrence procedure in the GFPartitions package displays as output the multi-variable and
finite-variable recurrences of the generating function as well as the complete generating function.

For the 2-rowed plane partitions example of Section 5.2.2, the output generated is

==== Multi-variable recurrence

Case "default"

Ry Riszon

(I—2zap-1)(1—22,) (1—22p-122,) (1 —224)

R[15] -- F(n-1)

x[2*n-3] <--- x[2*n-3]*x[2*n-1]*x[2*n]
R[8] -- F(n-1)
x[2*n-2] <--- x[2*n-2]*x[2*n]
x[2*n-3] <--- x[2*n-3]*x[2*n-1]
Casen =1
1

(1—-2zap—122,) (1 — 229—1)
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————————————— Finite-variable recurrence
x[2*n-1] --> s

x[2*%n] --> t

H(/n/)q’ Sﬁt)
if n = 1 then
1
(1—st)(1—s)
else
H(n_ laqaqsaqt) _ H(TL— 15q7q3taq)t
1—s)(1-1) 1—st)(1-1)

fi;

The displayed output thus contains both the multi-variable recurrence F', and its finite-variable
version H. The recurrences are presented separately for each case or set of applicable indices. In
the multi-variable recurrence output, every recursive call is replaced by a placeholder R,, which is
described immediately in the subsequent lines. For each placeholder R, the generating function
F,,_ to be invoked as a recursive call is specified as ‘F(n-k)’, and is followed immediately by a
specification of values for parameters of F;, j, each parameter x; cited only if its value is not simply
x; itself.

The finite-variable recurrence, on the other hand, is displayed in a processed form that is ready
for implementation in Maple. Note that the variables we provided as input to the program, s and
t, have been used to replace variables x[2*n-1] and x[2*n] respectively as the special variables
in H. Also observe that H, as defined here, is identical to the definition (4.20) of H that we
obtained in Sections 4.3.3 and 4.3.4, except that variables z2,_1 and z3, have been replaced by s
and t respectively. Simple copy-and-paste from the finite-variable output allows us to define the
procedure H(n,q,s,t) in Maple. A call to H(n,q,q,q) for any n > 1 gives us the single-variable
generating function for 2-rowed plane partitions of size n.

Besides the multi-variable and finite-variable recurrences displayed, the program also outputs the
complete enumerating generating function for the problem, albeit indirectly. The return value of the
program is a procedure GFInstantiator(n) that can be used to obtain the enumerating generating
function for any desired size of the problem, n. If, for instance, the return value from the example
above is assigned to a variable GF2Rowed, the call to GF2Rowed (2) returns the Maple function

w§$4m1 —1
(=1 + z324)(—1 + z32421)(—1 + 23) (=1 + 2321) (=1 + ToTa2321)

(1'171'2,1'3,1'4) —
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which is the complete generating function for 2-rowed plane partitions of size 2.
A quick comparison between the finite-variable recurrence H and the complete generating function

GF2Rowed can be made by executing
simplify(H(4,q,q,q9) / GF2Rowed(4)(q,9,9,9,9,9,9,9)) .

The value returned is 1, thereby showing that they both result in the same single-variable (counting)

generating function.

5.4 'Working

In this section, we describe the inner-workings of the GFPartitions package. We first give an
overview of the structure of the module along with descriptions of its main procedures. Then, in
Sections 5.4.2 and 5.4.3, we describe how these procedures determine and display the multi-variable
and finite-variable recurrences. Finally, in Section 5.4.4, the construction of the multi-variable

generating function procedure is explained.

5.4.1 Overview

The GFPartitions package is implemented as a Maple module and consists of the procedures
Recurrence, G and ListWrap. Of the three, Recurrence is the only procedure that is exposed
to the user, and therefore plays a central role in the operations of the package. Procedures G and
ListWrap are internal procedures used by Recurrence. We now describe Recurrence and G in

further detail. The role of ListWrap is minor and will be explained later in Section 5.4.4.

Procedure Recurrence

This procedure accepts as input from the user a description list for the problem and a variable list
for the special variables. For each construction tree list 7" in the description list, Recurrence calls G
to parse and derive the generating function and recurrences for 7', as well as obtain other valuable
information about it. The procedure then displays the multi-variable recurrences, with placeholders
replacing recursive calls and a list of parameter assignments for each such placeholder. The special
variables are determined next and the finite-variable recurrences are subsequently constructed and
displayed. While in the process of determining the above multi-variable and finite variable output,
Recurrence also builds, in conjunction with G and ListWrap, the Maple procedure GFInstantiator

and returns it to the user in the end.
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Procedure G

This procedure is responsible for parsing a construction tree list and building the generating function
defined by its construction tree. We presented the grammar of construction tree lists in Section
5.2.1. We now identify what type of parser G should implement in order to handle sentences of this
grammar.

As discussed in Section 2.4.2, LL(k) grammars are those grammars that generate sentences that
can be parsed deterministically with a lookahead of no more than k£ symbols. They can be handled
by simple deterministic top-down parsers. An LL(1) grammar is one in which a look-ahead of one
token is sufficient to parse any sentence. A simple LL(1) grammar (or SLL(1) grammar) has the
additional restriction that the right-hand side of every production rule must begin with a different
terminal symbol. This ensures that there is always only one possible choice of rule that matches,
thereby making SLL(1) parsers very efficient. Observe that the production rules (5.1) through (5.7)
abide by this clause, therefore indicating that the grammar for construction tree lists is of type
SLL(1). Since the grammar also contains semantic information (generating function specifications)
associated with its production rules it can also be classified as an attribute grammar. The semantic
attributes in this grammar are derived-attributes, since the generating function information travels
up the tree.

Since the grammar is SLL(1), we implement G as a simple top-down SLL(1) parser, as follows.
Procedure G takes as input a construction tree list, considers the first symbol, and determines the
production rule that applies. There can only one such rule, say r. The procedure then knows the
structure of the next few symbols because of the right hand side of r and therefore proceeds to process
them as per the semantics attached to r. During the parsing of the list in G, every terminal symbol
encountered is handled immediately and is never processed again, i.e., the symbols are consumed
once processed. When G encounters a non-terminal in the right hand side of r, it makes a recursive
call to itself, providing as input the unconsumed portion of the construction tree list for further
parsing. If the construction tree list originally provided as input satisfies the grammar, the entire
list will have been consumed when the G finishes parsing.

While procedure G parses the construction tree list, it also constructs portions of the generating
function at each stage so that sufficient information about the generating function is available to the
calling procedure when it returns. We discuss the generating function semantics in further detail in

the next section.
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x[1] x[1]
x[2] x[2]
x[3] x[3]

x[19] x[171x[19]

x[20] x[18]1x[19]x[20]

Figure 5.3: Example of the contents of vRtable.

5.4.2 Multi-variable generating function recurrences

This section describes how procedures Recurrence and G work together to output the multi-variable
generating functions and recurrences for a given input. As we saw in Section 5.4.1, procedure
Recurrence iterates through the input description list, sending each construction tree list to G to
assemble information about the generating function for the corresponding construction tree. We
describe G’s role in composing the required information first, and then explain how Recurrence

outputs the information to screen.

Information composed by G

During the process of parsing the input construction tree list, procedure G collects useful informa-
tion about the generating functions that later helps Recurrence display the multi-variable output.
Central to the collection of this information is the table vRtable that keeps track of the variable
substitutions that occur while traversing down the construction tree. For example, the incoming
edge operation ‘I((sq, 8p),w,G')’ causes the variable z; to be assigned the new value of z,xyp, if s; is
represented by x; in the generating function. The modified value of a variable z; remains in effect
during the traversal of the entire subtree of that operation and not beyond. This is implemented in
G as follows. When a variable var; is first referenced, it is assigned the value var; in table vRtable.
Whenever a graph operation needs to modify the value of var;, it does so in vRtable against the
entry of var;, and the modification remains in effect for the scope of the subtree of that operation.
When the subtree has been completely traversed, the modification is reverted. Figure 5.3 shows a

possible snapshot of the contents of vRtable at some point in the parsing of the construction tree.
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The actual generating function or recurrence is constructed in G as follows. The generating
function is defined directly if the applicable production rule contains no non-terminals in the right
hand side ((5.1) and (5.5)). Otherwise it is obtained by first calling G recursively for every such
non-terminal and then performing the required operation upon the generating functions returned
by G.

In the case of production rule (5.5) (corresponding to Rule 7 of the Seven Rules), the generating
function implied is a recursive call of the form F,,_j; but G does not return it as such. Instead, G
simply returns a unique placeholder of the form ‘R,’. Accompanying details of the recursive call are
stored in a table called substs under an entry for ‘R,’. These details include a copy of table vRtable,
which contains information about variable substitutions that have occurred until this point, and the
integer value k. The end result is a multi-variable generating function of the form shown in Section

5.3, where all recursive calls are replaced by placeholders.

Processing and displaying by Recurrence

Procedure Recurrence iterates through the description list provided and sends each construction
tree list T to G. For every such T it sends, Recurrence receives back a generating function F(?)
and a table substs that contains information relating to each placeholder in F(?),

Next, the procedure iterates through the variable substitutions of every recursive call in every
generating function to find the variable with the largest index. For example, in the set {z2,_1,
Zon+t1, T2n, Tan—2}, variable o,y is considered the one with the largest index. This index is stored
in variable max.

Procedure Recurrence finally displays, for every condition ¢(? in the description list, the con-
dition ¢@ itself, followed by its corresponding generating function F(®. Every F() is followed
immediately by a description of the recursive call Fj,_j, that each placeholder R, in the equation
represents. The recursive call is first specified as ‘F(n-k)’ and is then followed by a list of the
variable substitutions recorded in its vRtable. Note that, since every F,, is defined over a more
variables than F,,_;, every variable can be expressed as Zgp+p. A jump of index from n to n — k
therefore causes a shift of ka positions. The variables x 4,45, where b is such that (an + b) + ak >
max, are therefore new variables with respect to Fj,_, thus rendering their substitutions irrelevant
and thence disregarded. After each of the conditions and corresponding recurrences are displayed,

the same is done for the default case as well.

5.4.3 Finite-variable generating function recurrences

We now describe how finite-variable generating functions and recurrences are determined and output.

The only information required for this process is that already obtained prior to the display of the
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multi-variable recurrences. Consequently, procedure G does not play any additional role here and
can be ignored for the present. All of the following processing takes place in procedure Recurrence.

We introduced the Special Variable Rules in Section 4.3.4, along with a technique for obtaining
finite variable recurrences. Procedure Recurrence implements essentially the same rules and tech-
nique. To begin with, the special variables are identified in two stages, mirroring the two Special
Variable Rules, as follows. In the first stage, every variable that occurs on the left hand side of any
substitution is identified as a special variable unless its index a(n + k) + b > max, as in the previous
section. This is equivalent to rule SVR1, since m = max, ¢t = ka and the incoming-edge rule always
results in a substitution. In the second stage, for every special variable x4, identified in the first
stage, all Z,(n44)+4 are made special variables, where i > 0 and a(n +1) +b < max. This is equivalent
to SVR2.

Once the special variables have been identified, the rest of the processing is straightforward.
Procedure Recurrence sorts the special variables in ascending order of index value. This is the
order in which they will appear in the parameter list of the finite-variable recurrence. Next, for
each generating function recurrence, the placeholders are replaced by recursive calls to function
“H”, providing as parameters the values of the special variables identified above. Following this, all
variables in the generating functions that are not special variables are replaced one at a time by
the generic common variable ¢q. As a finishing touch, each of the special variables is replaced by a
prettier one from the variable list provided at input (see Section 5.2.2). For sake of reference, these
replacements are noted in the output.

Finally, the procedure displays for each of the conditions cond?, the condition itself, followed
by the corresponding finite-variable generating function. When all the conditions are exhausted,
the generating function for the default case is displayed. This output is tailored to allow easy

implementation of the finite variable recurrence H in Maple by copying and pasting.

5.4.4 Complete generating function

While the focus in sections 5.4.2 and 5.4.3 was on obtaining recurrences for generating functions
applicable over any index m, our focus in this section is on building the complete enumerating
generating function for only one given index n.

For the sake of clarity, we choose not to include index n as a parameter to procedure Recurrence
and decide instead to have Recurrence output a procedure GFInstantiator that takes as input a
value for n and returns as output the complete generating function for that index value. This new
procedure can be thought of as an implementation of the multi-variable recurrence for the complete
generating function. The essence of our method is then to build a function f that mimics the way

G builds the generating function recursively, along with another function CompleteGF that mimics
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Recurrence
G
User > —_— >
-«—o0 -«—o0
GFInstantiator f

GFInstantiator I ICompleteGF

ListWrap

Figure 5.4: Program control flow

Recurrence but does more than just display the generating functions, instead connecting the various
f together programmatically. Absent from both these new functions will be any aspect of parsing,
since that is handled by G and Recurrence.

As we will see, GFInstantiator uses the procedures CompleteGF and f as two mutually-recursive
procedures. Procedure G builds a hierarchy of functions £, while procedure Recurrence builds the
single procedure CompleteGF. The relation between these procedures is portrayed in figures 5.4 and
5.5.

We first describe the construction of CompleteGF in Recurrence and then the construction of

the £ hierarchy in G.

Procedures Recurrence and CompleteGF

As we saw in Section 5.4.2, procedure Recurrence iterates through the input description list, sending
each construction tree list to G. Procedure G then compiles the required information and returns it
to Recurrence. While this information is being collected, G and Recurrence simultaneously build
portions of the complete generating function. One of the objects returned to Recurrence from every
call to G is a Maple procedure f that represents the multi-variable recurrence for the construction tree
under consideration. Once all such procedures f are collected, Recurrence proceeds to dynamically

construct Maple procedure CompleteGF, defined as follows.
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User

o]

GFInstantiator

.

\
CompleteGF
\

Figure 5.5: Interaction between GFInstantiator, CompleteGF and f
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Procedure CompleteGF takes as input an index value n and a table vtable that represents the
parameter list of variables. It identifies the first condition that n satisfies, and calls the corresponding
procedure f, providing n and vtable as input. If none of the conditions are satisfied, the procedure
f corresponding to the default case is called. Procedure CompleteGF thus behaves as a switching

device, deciding for a given n the f it should call.

Procedures G and f

The main role of procedure G, as we have seen, is to parse the input construction tree list. We
also saw the role G played in determining the generating functions and recurrences in Section 5.4.2.
These generating functions, however, do not perform any variable substitutions and are therefore
useful only for display purposes. We now investigate a new role for G, that of building a generating
function recurrence that performs all the generating function manipulations required by the Seven
Rules. This procedure, f, takes as input an index value n and a table vtable that represents the
parameter list of variables, identical to CompleteGF.

Procedure G builds f in such a way that £ mimics all the generating function manipulations that G
performs, including variable substitutions. Internally, f may also call other versions of f and manip-
ulate the returned generating functions, much in the same way that G does. The result is a hierarchy
of procedures f, mirroring the construction tree of the list G parses and, consequently, the tree that
G traverses. In the case of the graph instance rule, procedure f is defined to simply call CompleteGF

with the new index value and the existing vtable that contains the variable substitutions.

Procedure GFInstantiator

The recurrence for the complete generating function is, as described above, defined by procedure
CompleteGF and hierarchy f, which are mutually recursive. Although CompleteGF seems capable of
handling any of the tasks that a multi-variable generating function recurrence is expected to, one of
its parameters, vtable, is undesirable because it does not lend itself to ease of use. Moreover, as a
collection of parameter variables, it is inconsequential when the recurrence is first called because there
are no preexisting variable substitutions. The list of parameter variables can in fact be generated
automatically based on the information in the construction tree lists provided to the parser G. We
therefore dynamically construct another Maple procedure, GFInstantiator, that wraps around
CompleteGF, accepting only index value n as input. Additionally, GFInstantiator converts the
resulting complete generating function equation into a Maple function before returning it to the user.
Thus, GFInstantiator presents the user with an interface that is easier to use. The construction
of this procedure is done in ListWrap, which is called by Recurrence for this very purpose. The

interaction between GFInstantiator, CompleteGF and f can be depicted by Figure 5.5.
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Examples

In this chapter, we approach several constraint graph problems using the Seven Rules of Theorem 4
and the GFPartitions module, and demonstrate the simplicity of the approach. Examples chosen
include simple straightforward problems, well-known problems that have been solved previously, as

well as new problems that we found interesting.

6.1 Ordinary partitions

We begin with the simplest of constraint graph sequences, the ordinary partitions, represented by
Figure 6.1. These sequences correspond to simple integer partitions as introduced in Section 2.1.
Integer partitions were first treated using generating functions by Euler, who presented several intu-
itive results. We described many of these generating functions in Section 2.3. We now demonstrate
how to approach the problem using the Seven Rules of Theorem 4 and the GFPartitions module.

The decomposition of the constraint graph G, of Figure 6.1 is fairly simple. The base case G
contains only a single vertex s;, and so, G; can be defined by the application of Rule 1 for vertex s .
The general case G, can be obtained from GS) (Figure 6.2) by an incoming-edge operation (Rule

5), and observing that GV is the graph instance G,,_1, i.e.,

Gn = I((Snasn—l)aOaGS))

GV = G,
Sn, Sn—1 S2 S1
e ——mmm>»> @ ——>» - ---- —_— @ —> @

Figure 6.1: Ordinary partitions; constraint graph G,

70
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Figure 6.2: Constraint graph GS), or Gy—1, for ordinary partitions

G1 Gn
Sn
////////// GSJ
(snysn—l) n—1

Figure 6.3: Construction trees for G; and G,, of ordinary partitions.

Thus, we obtain the construction trees of Figure 6.3 for the base case and the general case. The

construction tree list for the base case is simply [x[n]] and that of the general case is
[llill , X[n] , X[n_l] , Il\%ll] .

Assuming that the finite variable recurrence needs no more than one special variable, we invoke

procedure Recurrence of the GFPartitions package as

GFOrdinary := GFPartitions[Recurrence] (
[["i", x[nl, x[n-11, "%"1, n=1, [x[nl1l1],
1.

The output generated is

Multi-variable recurrence

Case "default"

Ry
1—=z,

R[4] -- F(n-1)

x[n-1] <--- x[n-1]*x[n]

Casen =1

11—z,
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————————————— Finite-variable recurrence

H(n,q,r)
if n = 1 then
1

1—r

else
H(n_ ]-anqr)

1—7r

fi;

In addition, the GFInstantiator procedure is provided as the return value, which we accept in
variable GFOrdinary. We can thereby obtain the complete generating function for ordinary partitions
of any size. For size n = 5, for instance, a call to GFOrdinary(5) returns the Maple function,

1
(1 —25)(1 — 2425)(1 — 232475) (1 — Tox37475) (1 — T, T2T3T4T5)

($1,$2,.’1§'3,$4,-’E5) —

Returning to the displayed output, we see that the multi-variable recurrence for Fg, is

1

R n=1
Fg,(x1,%2,...,Tn_1,%pn) = Fo (21,02, sZn2n)
nol T otherwise.
Similarly, the finite variable recurrence Hg, (q,7) = Fg,(q,q,---,q,7) is
H ﬁ n=1
(&7 =9 fe (gar) _ (6.1)
—r—— otherwise.

We illustrate the usefulness of the above finite variable recurrence by using it to prove the following

theorem, which allows us to then obtain the closed form generating function for ordinary partitions.

Theorem 7 The solution to the finite-variable recurrence of 6.1 is

n

1
Hg,(q,r) = H T—g1p (6.2)
=1

Proof. We prove this by induction on n. For n = 1, the proposition is clearly true. Assume it is also
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S3n 1 S3n 4

SN\ /\

Figure 6.4: Plane partition diamonds; constraint graph G,,

true for all n < k. Consider the case n = k. We have from (6.1),

HGk—l (qa (IT')
1-r
k—1

1 1
B 1—7“1,1;[1 1—qi~1gr

k
1 1
- l—ri:r[zl—qi—lr

HGk (QJI) =

k

1
= =

i=1
which proves the theorem. |
Observe that replacing r by ¢ in (6.2) gives us
LU |
Ho, (0,0 =[] 1 —7

i=1

which is the same as the single-variable generating function (2.4) that was intuitive in Section 2.3.

6.2 Plane partition diamonds

Plane partition diamonds (Figure 6.4) were introduced by Andrews, Paule and Riese in [9], wherein
they obtain the generating function for the family using MacMahon’s Partition Analysis and the
§>2 operator (see Section 3.1). The simplest case of the plane partition diamonds, G, was first
considered and solved by MacMahon in [27]. An alternative proof using combinatorial techniques
was presented by Corteel and Savage in [19].

We approach the plane partition diamonds problem using the constraint graph technique. We

begin the decomposition of graph G,, of Figure 6.4 by applying the inclusion-exclusion operator on
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Ssn 1 83n 4
Gy / \ / \ / \
o 7 \ 83}5/ ----------- \ /
3n 33n 3
S3n—1 S3p—4 S9
N / .\ / .\ / .\
S3n+1% 83”_?(.\ S3p—5® .SX\ /.81
./ Py °
S3n $3n—3 $3

Figure 6.5: Constraint graphs GS) and Gg) for plane partition diamonds

edge (83n+1,83n) Of G, as shown in Figure 6.5. Observe in Gg) that edge ($3n, $3n—_2) is redundant.

The entire decomposition can be represented as

Gn = —((ssns1,53n),0,GD, G
GO = I((s3m, 530 2),0,GP)
GY = I((s3nt1,830-1),0,GLY)
GO = I((s3n 1,5 2),0,G%)
GS) = Gp-1

GP = R((s3n,83n-2),0,GY)

G%ﬁ) = I((s3n,53n+1), 1, Gg))

GO = I((ssnt1,550-1),0,G)
G = I((ssn-1,53n-2),0,GY)

G® = Gn_1
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S3n 1 S3n 4

/NN /\

S3n+1® S3p—2 @ \ 83}5/ \ /

S3n—1 S3n—4 52

[ J [ ] [ ]
S3n—2® S3p—5 @ ® 51 /' 51

[ J [ J

53n—3 53

Figure 6.7: Constraint graph for Gg) and Gsf) for plane partition diamonds

75

where GS’) and G(n7) can be represented by Figure 6.6, G%) and G%s) can be represented by Figure

6.7 and G(n5) and G(ng) can be represented by Figure 6.8. The construction tree corresponding to this

decomposition is shown in Figure 6.9. Constraint graph Gy, the base case, is simply a single-vertex

graph with vertex sgn41.

Assuming that the finite variable recurrence needs no more than one special variable, we invoke

procedure Recurrence of the GFPartitions package as

GFPartitions[Recurrence] ([
[r=r, miv) x[3*n], x[3*n-2], "i", x[3*n+1], x[3*n-1],
"i" x[3*n-1], x[3*n-2], "%",
"ix" x[3*n], x[3*n+1], "i", x[3*n+1], x[3*n-1],
"i",x[3*n-1]1, x[3*n-21, "%"1,
n=0, [x[3*n+1]11],
[s]

The output generated is
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S3n—4 S92
o o
S3p—2 @ S3p—5 @ ® sy ®s5
[ J [ J
53n—3 53

Figure 6.8: Constraint graph G,,_; for plane partition diamonds

G©®

n

al

"\
@

] (3) . ("
(83n, $3n—2) <1> Gn ($3n,83n+1) Cl Gn

/ .

($3n+1,83n—1) @ (83n+1,83n—1) i

G,(f) / GS)

(s3n—1,53n—2) Gp-1 ($3n—1,53n—2) Grn_1

N

ad

Figure 6.9: Construction tree for GG,, for plane partition diamonds
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Multi-variable recurrence

Case "default"

R Ro1z3p,

(1—23n-123n41) (1 —23n41) (1 —23n) (1 —23n-123n+123n) (1 — Z3nt1230) (1 — z35)

R[21] -- F(n-1)

x[3*n-2] <--- x[3*n-2]*x[3*n]*x[3*n-1]*x[3*n+1]
R[11] -- F(n-1)
x[3*n-2] <-—- x[3*n-2]*x[3*n]*x[3*n-1]*x[3*n+1]

1
(]- - m3n+1)

————————————— Finite-variable recurrence

x[3%n+1] --> s

H(n,q,s)
if n = 0 then
1
(1—s)
else
H (n-1,q,¢%s) H(n-1,q9,¢%s)¢q
(I-gs)(1—-s)(1-¢q) (1-¢%s)(1—-¢gs)(1-9q)

fi;

Thus, the multi-variable recurrence is obtained as

Fg,(x1,---, %30 1,%3n, T3n11)
1 _
— (1—z3n41) n=0
Fa, _1(®1,,%3n—3,3n—23n—1T3n T3n+1) Fa, (1,30 3,30 — 2237 — 103 T3n+1) .
— otherwise
(1—z3n—1z3n+1)(1—z3n+1)(1—2z3n) (1—z3n—1z3n+1z3n)(1—z3n+1z3,)(1—2z3n)
and the finite-variable recurrence is
1
— n=>0
1—s
Hg, (g,8) = 09 (6.3)

Heg, _,(¢,4°s)(1+gs)
(1—¢%s)(1—gs)(1-s)

otherwise.

where HGn (q,S) = FGn (q,(b . -7q75)'
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This finite variable recurrence for plane partition diamonds was solved in [33]. We repeat the
process here in order to reiterate the significance of the recurrence and the simplicity of the approach.
Proving the following theorem will enable us to obtain the closed form generating function for the

problem.

Theorem 8 The solution to (6.3) is

n

(1+q3’ ’s)
R, (q,5) (1—2s) H (1= @s)(1— g 1s)(1 — g% 2s)

z=1

Proof. We prove this by induction over n. For n = 0, Hg,(q,s) = (1;) = Rg, (g,8). Assume
Hg, (q,8) = Ra,(q,s) for every k < n. We now prove that Hg, (q,s) = Rg, (¢, s) for k =n.

From the recurrence 6.3, we have,

Hg,_,(¢,¢*s)(1 + gs)
(1—¢%s)(1 —gs)(1 —s)

Since we assume that Hg, (¢,8) = Rg, (g, s) for every k < n, it must be true for k = n — 1. Hence,

Hg,(q,8) =

_ 1+ ¢s) 1 = (1+ g% 2¢%s)
Heu(@9) = u—qwu—s)Lr—f@l}(1—waX1—fzwsxl—fz% D)

Now consider

_ 1 " (1+q3i 2 )
Fo.l09) = (1—q)i1;[1(1—q3"q)( ¢*1q)(1 — g% 2q)
1 [Ti, (1 +q3l ')
(1-g¢ Il (1 - q3’+1)( (1 — g h)
[T, A+
e (- q)

This is the same as the generating function derived by Andrews, Paule and Riese in [9].

6.3 Up-down sequences

In this section, we consider the up-down sequences [14] of Figure 6.10 and use the Seven Rules and

GFPartitions package to find recurrences for its generating function.
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52 S4 Son—2 Son
[ ] [ ] [ ] o
o o [ ] o [ ] [ ]
S1 53 S5 Son—3 Sop—1 Son+1

Figure 6.10: Up-down sequences; constraint graph G,

Sop—2 Son

AN NS

S1 53 S5 Son—3 Sop—1 Son+1

Figure 6.11: Constraint graph G(nl) for up-down sequences

Son—2 Son

VAVARYAVAN

S1 53 S5 Son—3 Sop—1 Son+1

Figure 6.12: Constraint graph G%z) for up-down sequences
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52 S4 Son—2

[ ] [ ] [ ]
o o [ ] o [ ]
S1 53 S5 Son—3 Son—1

Figure 6.13: Constraint graph G,,_; for up-down sequences

Decomposition of up-down sequence G,, can proceed as follows. First, we handle the outgoing
edge (S2n+1, 82n) by applying the inclusion-exclusion operation on G, to obtain the graphs GV
(Figure 6.11) and el (Figure 6.12). Thereafter, simple applications of Rule 3 (single vertex graph),
Rule 5 (incoming edge) and finally Rule 7 (graph instance) complete the decomposition process of

G,,. Specifically, the decomposition is

G = ~((s2n,52n41),0,GD,G1)
GP = V((5211),GP)

G® = I((s3n,52-1),0,G®)
G%4) = Gp-1

GP = I((s2ns1,820),1,GP)
G® = I((sam,50n-1),0,G')
GO = G

where G,,_1 is the graph instance of Figure 6.13. The base case G is the graph with the single node
S2n41-
Procedure Recurrence can now be invoked as
GFPartitions[Recurrence] ([
[r-r, m.ov, x[2*n+1], "i", x[2*n], x[2*n-1], "%",
"ik" | x[2#n+1], x[2*n], "i", x[2*n], x[2*n-1], "%"],

n=0,

[x[2*n+1]] 17,

[

and the output generated is
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Multi-variable recurrence

Case "default"

Ry, B Ri4%2 41
(I—z2n) (I —zont1) (1 —22nZ2n41) (1 —Z2n41)
R[14] -- F(n-1)

x[2*n-1] <--- x[2*n-1]*x[2*n]*x[2*n+1]

R[7] -- F(n-1)
x[2*n-1] <-—- x[2*n-1]*x[2*n]

1
(1=22n41)

————————————— Finite-variable recurrence

x[2%n+1] --> r

H (n,q,r)
if n = 0 then
1
(1—r)
else
H(n-1,9,¢>) H(n-1,q,¢r)r
l-g(1-r) (A-g)(d-r7)
fi;

6.4 2-rowed plane partitions

81

The 2-rowed plane partitions of Figure 6.14 were first considered by MacMahon in [28]. In [4],

Andrews revisits 2-rowed plane partitions and obtains the generating function using MacMahon’s

Partition Analysis. Corteel, Lee and Savage approach the same problem in [18] using the Five

Guidelines technique. We now demonstrate the ease with which the Seven Rules in conjunction

with the GFPartitions package can handle this problem.

We described the entire process of obtaining a recurrence for 2-rowed plane partitions spread out

across sections 4.3.3, 4.3.4, 4.4.2, 5.2 and 5.3 of this thesis. We collate them here for convenience.
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Son—1 S9n—3 S5 53 S1
o —>» 00— e —>» 0 —> O
o —>» 00— e —>» 0 —> O
Son Son—2 S6 S4 52

Figure 6.14: 2-rowed plane partitions; constraint graph G,

Son—1 Son—3 S5 53 S1
e ——— > 06— e ——— > 06— o
1
v
o ——— > 06— e ——— > 06— o
Son Sop—2 Se S4 52
Son—1 Son—3 S5 53 S1
o ——>» 00— > e —>» 0 —> 0O
2)
n 1
o ——>» 00— > e —>» 0 —> 0O
Son S2n—2 S6 5S4 52

Figure 6.15: Graphs GS) and G,S?) for 2-rowed plane partitions
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Son—1 Son—3 S5 S3 S1
O — > @ — > e —>»> 06— 0
o —— > e —— > oe—— > o

Son—2 S6 S4 52

Figure 6.16: Graphs GS?“) and G%%) for 2-rowed plane partitions

The base case for 2-rowed plane partitions is simply the edge (s1,s2) which can be decomposed

easily by
Gl = I((32n71782n);07G§1))
Ggl) = Son-
The general case G, can be decomposed by first applying the inclusion-exclusion operator on

(s2n—1, S2n) to obtain Gg) and Gg) of Figure 6.15. Observe that (sap,S2n—2) in Gg) is redun-

dant. The rest is straightforward, and the entire decomposition of G,, into G,,_; can be represented

as

Gn = —((s3n_1,5),0,GD, G?)
G = I((s2n520-2),0,G)
GBY = I((s2n-1,52m3),0,GV)
Gsfa) = G,

G? = R((s2n,5m-2),0,GY)
G = I((sm820-1),1,G")
G%Bb) _ 1((3%71,32”,3),0,61”%5"))

GO = G, 1. (6.4)

where G%Ba) and G(n3b) are represented by Figure 6.16, Gg) by Figure 6.17, and G%sa) and G(n5b) by
Figure 6.18. The construction tree for the general case is shown in Figure 6.19.

We invoke procedure Recurrence as
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Son—1 Son—3 S5 S3

o —>»> 00— >

o o —— >

Son Son—2 S6 5S4

Figure 6.17: Graph Gsf) for 2-rowed plane partitions

Son—3 S5 S3 S1
@ — @ —>» 00— O
@ — @ —>» 00— O
Son—2 S6 S4 S2

Figure 6.18: Graph G,,_; for 2-rowed plane partitions

(s2n—1,52n—3) Gn 1 (s2n—1,52n—3) G 1

Figure 6.19: Construction tree for the decomposition of G,, for 2-rowed plane partitions

S1

e —>> 0 —> 0

e —> 0 —> 0

52

84
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GFPartitions[Recurrence] ([
["-", "i", x[2%n], x[2%n-2], "i", x[2*%n-1], x[2%n-3]1, "%",
"ix", x[2%n], x[2%n-1], "i", x[2*%n-1], x[2*n-3], "%"1,
n=1,
["i", x[2*%n-1], x[2*n], x[2*n]] 1,
[s, t1)

and the output generated is

Multi-variable recurrence

Case "default"

Ry _ Riszan
1—z2n-1)(1—22n) (1—22p-1%2n)(1—224)
R[15] -- F(n-1)

x[2*n-3] <--- x[2*n-3]*x[2*n-1]*x[2*n]

R[8] -- F(n-1)
x[2*n-2] <--- x[2*n-2]*x[2*n]
x[2*n-3] <--- x[2*n-3]*x[2*n-1]
Casen =1
1

(1—=2ap_1%2n) (1 —T2pn—1)

Finite-variable recurrence

x[2*n-1] --> s

x[2%n] --> t

H(”J qJSJt)
if n = 1 then
1
(I-st)(1-ys)

else

H(n_laqaqsaqt) _ H(n_lﬂQaqStaQ)t
1—9) (11 d—st)(1-1

fi;

85
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San+1 San—1 San—3 San—5 S4n—7 S5 53 S1
o ——mmm>» @0 — > @0 — >0 —> 0 O — > @0 ——> 0
o ——mmm > @0 — > @0 — >0 —> 0 O — > @0 ——> 0

San+2 S4n S4n—2 S4n—4 S4n—6 S6 5S4 52

Figure 6.20: Constraint graph G,, for 2-rowed plane partitions with diagonals

This recurrence can be solved to obtain the same generating function obtained in [18].

6.5 2-rowed plane partitions with diagonals

We consider here a variation of 2-rowed plane partitions. In [1], Andrews, Paule and Riese introduce
2-rowed plane partitions with diagonals (Figure 6.20) and user MacMahon’s Partition Analysis to
obtain a closed form of the single-variable generating function. We demonstrate application of the
Seven Rules and the GFPartitions package on the same problem.

Constraint graph G, can be decomposed as follows.

Gn = —((san41,54n42),0,G), GD))
GY = I((stnt1,510-1),0,G)
GP = —((s4nt2,542),0,G,G))
GW = I((sunt2 san_3),0,G®)
GO = ~((51n-1,54), 0, G, G
G = I((san-1,84n-3),0,G)
GO = I(san, 51n-),0,G41)
Gl = @G, 4

G® = R((sant2,84n),0,GI)
G = I((s4n, 84n1),1,G4?)
GUD = [((san_1,54n_3),0,GU?)

G$113) = Gn—l
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San+1 San—1 San—3 S4n—5
o ——mmm>» @0 — > @0 — >0 —> 0

o ——m> 00— >0 — >0 —> 0

San+2 S4n S4n—2 S4n—4 S4n—6

S4n—7

87

Sy S3 S1
o — >0 — >0

o ———> @0 —> 0

S6 5S4 52

Figure 6.21: Constraint graph GV for 2-rowed plane partitions with diagonals

n

GO = R((san 1,51 3),0, G
G = R((s4n, $4n-2),0,G{)
GI® = I((sin-1,51n),0,G4?)
G(nw) = I((S4n,54n+2), 1, Ggﬂ)
GUD = I((sins2, 8n-3),0,G)
Gslls) = Gp_1

GP = I((sams2, sans1),1,G4?)
G = I((san41,54n1),0,GF?)
GO = —((s4n-1,54n),0,G7V, G
GV = I((San-1,84n-3),0,G3?)
G = (340, 54n_2),0,GC)
G$L24) = Gp-1

G = R((sant2,54n),0,G3))
G = I((34n, 54n1),1,G29)
G = I(($4n1,84n—3),0,GED)
G5L27) = Gnpo1

(22))

where G%l) is represented by Figure 6.21, Gg) by Figure 6.22, Gg:l) by Figure 6.23, GS) by Figure
6.24, Gg) and Ggl) by Figure 6.25, Gsbs) and ng) by Figure 6.26 and G,,_; by Figure 6.27.

The construction tree for the general case is shown in Figure 6.28. The base case G is decomposed

simply as

G((]l) S4n+2-

I((84n+1, 54n+2)a 07 G((Jl))
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San+1 S4n—1 S4n—3 S4n—5 San—7 S5 53 S1
.—».—:.—».—». o ———>»> @ ——> 0
®----- > ——— > @ —— > @ —— > O o —— > @ ——> 0

San+2 San Sap—2 Sap—14 San—6 Se Sa S2

Figure 6.22: Constraint graph Gg) for 2-rowed plane partitions with diagonals

S4n—1 S4n—3 S4n—5 S4n—7 S5 53 S1

@ ——mm >0 — >0 —> 0 o —— >0 —> 0

[ J @ ——mmm>»> 00— >0 —> 0 O —m>> @ ——> 0
San+2 S4n Sdn—2 Sdn—4 S4an—6 56 S4 52

Figure 6.23: Constraint graph G%) for 2-rowed plane partitions with diagonals

San—1 S4n—3 S4n—5 San—7 S5 53 51

- ---- >0 ———> 0 ———>0 o —— >0 — >0

@ w—=<— @ ----- >0 ——» 0 ———> 0 o —>>0 —>0
San+2 S4n San—2 S4n—14 S4n—6 S6 S4 52

Figure 6.24: Constraint graph GS’) for 2-rowed plane partitions with diagonals

Sdn—1 S4n—3 Sdn—5 San—7 S5 53 S1
o ———mm @0 — > @ —> 0 @ ——>> 0 ——> @
o ———mm @0 — > @ ——> 0 @O ——m>> @0 ——> @

San Sap—2 Sap—4 S4n—6 S6 S4 52

Figure 6.25: Constraint graphs G'7 and GV for 2-rowed plane partitions with diagonals
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San—1 San—3 San—5 S4n—7
@ ——m >0 — >0 —> 0

89

S5 S3 S1
o —— >0 — >0

o ———m> 0 —> 0

56 S4 52

Figure 6.26: Constraint graphs G'Y and G?? for 2-rowed plane partitions with diagonals

S4n—3 S4n—5 San—7
O ——m>» @0 —> 0

o ———> 0 —> 0

S5 S3 S1
o ———> 0 —> 0

o ———> 0 —> 0

S4n—2 San—4 S4n—6 S6 84 S2
Figure 6.27: Constraint graph G,,_; for 2-rowed plane partitions with diagonals
We invoke procedure Recurrence as
GFPartitions[Recurrence] ([
[n-n,
miv, x[4*n+1], x[4*n-1],
=",
x[4*n+2], x[4*n], "i", x[4*n+2], x[4*n-3], "-",
"i", x[4*n-1], x[4*n-3], "i", x[4*n], x[4*n-2], "%",
"ix"  x[4*%n], x[4*n-1], "i", x[4*n-1], x[4*n-3]1), "%",
"i" o x[4*n-1], x[4*n]), "ix", x[4*n], x[4*n+2],
"i", x[4*n+2], x[4*n-3]1, "%",
"ix", x[4*n+2], x[4*n+1]), "i", x[4*n+1], x[4%n-1]1), "-",
min x[4*n-1], x[4*n-3]1), "i", x[4*n], x[4*n-2]), "%",
"ix"  x[4*n], x[4*n-11), "i", x[4*n-1]1, x[4*n-31), "%"1,
n=0, ["i", x[4*n+1], x[4*n+2], x[4*n+2]]1 1,
[s, t1)

and the output generated is
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/ /

(San+1,84n—1) (San+2, San+1)

/ Ga®)

(8an—1,84n) 65

o / o G40

ORI o

/ Gﬁf) / Gu® ngo)

(S4n+2; S4n—3) (san+2, San— 3) . ($an+1,54n—1)
G, —

\ (11) \ (25)
o Gr

¢ G
i () (i)

/ c® / G0 / G2 / G(29)
(San—1,84n—3) CD (San, San—1 1) (San—1,54n—3) CD (San, San—1 1)

()
N

=\

(10 Go® G G
n
(S4n,54n—2) Gp1 (84n—1,54n-3) Gp1 (84n,84n—2) G (S4n—1,84n—3) G,

Figure 6.28: Construction tree for G,, of 2-rowed plane partitions with diagonals
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Multi-variable recurrence

Case "default"

( Ry B ZTanRa3 ) 1
(1—24n) (I —24n-1T4ny1) (1 —Tan_1%Zant1%4n) (1 —24p)) (1 —Tapy2) (1 — T4pny1)
Ton—1Tant1T4nli33 1

(1 — T4 ni2Zan-1T4nt1%4n) (1 — Tan-1Z4nt1%an) (1 — Zan-1T4nt1) (1 — Zant1)

Rz _ R54Zan
(1—24n)(1—Tan—1Tant1Tant2) (1—Z4nt2Tan—1Tant1Tan)(1—Tan)

) T4 n+2

(1 = 24n41%4n42) (1 — Tony2)
R[47] -- F(n-1)
x[4*n-2] <--- x[4*n-2]*x[4*n]
x[4*n-3] <--- x[4*n-3]*x[4*n+2]*x [4*n-1]*x[4*n+1]
R[23] -- F(n-1)
x[4*n-3] <--- x[4*n-3]*x[4*n+2] *x [4*n-1]*x [4*n+1] *x [4*n]
R[16] -- F(n-1)
x[4*n-2] <--- x[4*n-2]*x[4*n]
x[4*n-3] <--- x[4*n-3]*x[4*n+2] *x [4*n-1] *xx [4*n+1]
R[33] -- F(n-1)
x[4*n-3] <--- x[4*n-3]*x[4*n+2] *x [4*n-1]*x [4*n+1]*x[4*n]
R[54] -- F(n-1)
x[4*n-3] <--- x[4*n-3]*x[4*n+2] *x [4*n-1]*x [4*n+1] *x [4*n]
Casen =0
1
(1 = Zan41%ant2) (1 — Tant1)
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Finite-variable recurrence
x[4*n+1] --> s

x[4*n+2] --> t

H(n,q,s,t)
if n = 0 then
-
(1-ts)(1—s)
else
(H(n—1,q,q2ts,q2) B H(n—l,q,q%s,q)q)
T-aq)(T-gs) 1-%s)(T-q) H (n—1,q,¢%s,q) ¢*s 1
(1-1) (1-¢*ts)(1—¢%s) (1 —gs) | (1—3s)
B (H (n—1,q,¢°ts, ¢?) H (n—1,q,¢%s,q) q) t
(1-4q)(1—gst) (1-¢ts)(1-¢q) ) (1—ts)(1—-1t)
fi;

It can be shown that this finite-variable recurrence leads to the closed-form generating function

found in [1].

6.6 Plane partition hexagonals

Plane partition hexagonals (Figure 6.29) were first considered by Andrews, Paule and Riese in [2]
wherein they obtained the generating function for the family. Here, we use the techniques developed
in this thesis and the GFPartitions package to find a recurrence for its generating function.

The general case G, for plane partition hexagonals is shown in Figure 6.29 and can be decomposed



Chapter 6. Examples

85n 1 S5n 3 55n 6 85" 8

/NN /\

5n Ssn 2 85n75 S5n—7 54 52

Figure 6.29: Plane partitions hexagonals; constraint graph G,,

as
Gn = —((ssnt1,85n-1); OJG%1)=G£LZ))
G = I((ssn41,55n),0,GF))
G = Tl(som . 0,6)
G® = I((ssn 2,850 4),0,GP)
GO = (o s0n-),0,G)
G = I((ssn-3,85n-1),0,G)
Gg) = Gpo1
Gg) = —((ssn-1,55n-3),0 GS’),GS}))
G%S) = I((s5n-1,85n41),1, ngm))
G = I((ssnt1,85n),0,GQY)
G = I((ssn,85n-2),0,G4?)
G = I((s5n-2,85n-4),0,G1)
GSB) = I((s5n—3;55n-4),0, G%M))
G = G,
G = R((s5n-3,85n-4):0,G0)
G = I((ssn—385n-1),1,G{9)

((

((5571,—1; 55n+1)a 1, G%m)
GUD = I((ssnt1,85n),0,G5Y)
GU® = I((5n,85n-2),0,G¢?)
GSQ) = I((55n_2,55n_4),0,G%20))
G = G,
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85n 1 S5n 3 55n 6 S5n 8

\/M\ /N

S5m Ssn 2 55n75 S5n—7 S4 52

Figure 6.30: Constraint graph GS) for plane partitions hexagonals

S5n 1 S5n 3 S5n 6 55n 8

VARV /\

Figure 6.31: Constraint graph Gg) for plane partitions hexagonals

where G(nl) is represented by Figure 6.30, Gg) by Figure 6.31, G(ns) by Figure 6.32, G%g) by Figure
6.33, and G,,—1 by Figure 6.34.  We build the construction tree for the general case as in Figure

6.35. The base case Gy is simply the vertex ss,+1. It is decomposed as

Go = Ssn41-

We use the GFPartitions package by calling
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Ssn 1 Ssn 3 Ssn 6 $5n 8

/N /\

Figure 6.32: Constraint graph G%B) for plane partitions hexagonals

S5n—1  S5n—3  S5n—6  S5n—8 S5 S3
.4—(—. o—> 0 o—> 0
\
\
85n+1 \ /.illl /. ---- .5\6 /.81
e —>o o —>eo
S5 85n 2 Ssn—5  Ssn—7 5S4 52

(9

Figure 6.33: Constraint graph Gn) for plane partitions hexagonals

Ss5n—6  Ssn—8
o—> 0

[N /H\

VAR

S5n—5 S5n—7 54 S92

Figure 6.34: Constraint graph G,_; for plane partitions hexagonals
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($5n+1, S5n)

N\

(5577.7 5571.—2)

(85n—2,85n—4)

($5m—1, S5n—3)

(55n—3,55n—4)

Figure 6.35: Construction tree for G,, of plane partitions hexagonals

Q\@
3R

(=)
N

!

(85n—1,85n+1)

N\
N\

($5n+1, S5n)

(55n, 55n—2)

N\

(85n—2,85n—4)

(S5n—3,85n—4)

()

e

()

aP

G%IO)

Gglll)

G"(’Ll2)

e

a

(s5n—3,85n—1)

(S5n—1,85n+1)
G"(ZIS)

($5m+1, S5n)

(35n7 55n—2)

(S5n—2,55n—4)

96
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GFPartitions[Recurrence] ([
[n-n,
"i" ) x[6%n+1], x[6*n], "i", x[5*n], x[6*n-2],
"iv, x[5*n-2], x[5*n-4], "i", x[5*n-1], x[5*n-3],
"iv, x[6*n-3], x[56%n-4], "%", "-",
"ix"  x[b*n-1], x[5*n+1], "i", x[5*n+1], x[5*n],

"i"  x[5*n],x[56*%n-2], "i", x[5*n-2], x[5*n-4],

"iv, x[5%n-3], x[5*n-4]1, "%",

"ix", x[5%n-3], x[5*n-1], "ix", x[5*n-1],x[6*n+1],

"iv, x[6*n+1], x[5*n], "i", x[5*n], x[5*n-2],
"iv, x[5*n-2], x[5*n-41, "%"1,

n=0, [x[5*n+1]11],

[s1

and the output generated is

Multi-variable recurrence

Case "default"
Rz
(1 —25n-3%5n-1) (1 —25n-1) (1 = Zsn—2T5nTsnt1) (1 — T5nZ5n41) (1 — Tsnt1)

R3szs5n1

97

(U= 25n3) (1 — Z5n 2T5 541250 1) (1 — Tsn5ni1@5n 1) (L — Tsni1Tsn 1) (1 — Ton1)

1 'R 2
+ ( _$5n—2$5n1’5n+1$5n—3$5n—1) 50L5n—3 T5n—1

(1 —25n25n125n—3T5n—1) (1 = T5n4125n—3T5n—1) (1 = T5n—3T5n—1) (1 — T50-3)

R[50] -- F(n-1)

x[5*n-4] <--- x[5*n-4]*x[5*n-2]*x[5*n] *x [5*n+1]*x [5*n-3]*x[5*n-1]

R[34] -- F(n-1)

x[5*n-4] <--—- x[5*n-4]*x[5*n-2]*x[5*n] *x [5*n+1]*x [6*n-3]*x[5*n-1]

R[17] -- F(n-1)

x[6*n-4] <--- x[6*n-4]*x[5*n-2]*x[5*n] *x [5*n+1]*x[5*n-3]*x[5*n-1]

Casen =0

(1—T5n41)
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S5n—1  S5n—3  S5n—6  S5n—8 S5 S3

o——> 0 o— 0 o—> 0
85n—|—1.\ /<L4 /' """ 'i / $1

o —>0 o —>0 o —>0

S5m S5n—-2 Ss5n—-5  Ss5n—7 S4 52

Figure 6.36: Plane partitions hexagonals with diagonals; constraint graph G,,

Finite-variable recurrence

x[5*n] --> s

H(n,q,s)
if n = 0 then
1
(1-s)
else
H(n-1,q,¢°s) H(n-1,q9,¢°s)q
I-@)(1-91-¢s)(1-gs)(1—5) (1-q)>(1—g3s)(1—q2s) (1 —gs)
n H(n—l,q,q5s) q
(1-¢*)(1—-¢%)(1-¢*s)(1—¢*) (1 —q)
fi;

The above recurrence can be shown to correspond to the generating function obtained in [2].

6.7 Plane partition hexagonals with diagonals

98

Andrews, Paule and Riese observed in [2] that when diagonals were added to plane partition hexag-

onals, they factored better. We find a recurrence for these partitions using the Seven Rules and the

GFPartitions package

The base case Gy is simply the vertex s5,+1. The general case G,, for plane partition hexagonals
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with diagonals is shown in Figure 6.36 and can be decomposed as

Gn
el
G®
G
G®
G\
G

G10)
Gt
G®
G5Ll2)
G
G
GQ»
G®
G419
GQn
GSB)
G
a0
G&v

(35n+15 35n)> 03 Gg) ) Gg))

I((85n+41585n-1), 0, GY)
- (SE’mfl;35n72);0aG%4)7G(n5))
I( S5n—1, 35n—3)7 0, G1(1,6))

I S5n—3, 85n74)7 07 ngg))
S5n,5 5571—2)7 07 G1(110))

S5n—2, 35n74); 07 Ggl))

~ N~

(
(
(
(
—((s5n, 53n-3),0,G\), GP))
(
(
(

(
(
(

)

n—1

R((s3n—3, $3n—1), 0, G4?))
((s5n—3, 85n), 1, G®)
((85m 55n-2),0,G4™)
((

S5n—2, 557),—4)) 0; ng15))

QN NN

n—1

R((85n, $5n—3), 0, GL9)
R((s5n-2, 530-4), 0, G47)
I((85m, S5m—2),0, G1®))
8502, $5n+1); L, nglg))
85n—1, S3n—3), 0, G20)

S5n—3, 857),—4)) 0; ngzl))

~ N~

((
((
((
I((
Gp-1
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Ssn—1 S5n 3 55n 6 85n 8 53

ANA NN /

..... .81

VAYAVAYARRVAY,

e —>>0
S5m S5n—-2 Ss5n—-5  Ss5n—7 S4 52

S5n+1®

Figure 6.37: Constraint graph GS) for plane partitions hexagonals with diagonals

G,(f) = R((s5n,85n-3),0, G%m))
GF = R{(35n:53n-2),0,G%)
G = I((ss5n,85n41),1,G2Y)
G = I((ssnt1,85n-1),0,G'2))
GEY = —((ssn-1,85n-5),0, G, GET)
GEY = H{(sn1,50-2),0,G%)
G?® = I((ssn_2,85n_4),0,GZ%)
Ggg) = I((s5n-3,85n-4),0, GSO))
G - G,

G?) = R((ssn—3,85n-4),0,GY)
GPY = I((ssn-3,85n-1),1,GE?)

(
G£L32) = I( 35n—1735n—2)507G£¢33))
G(n33) — I( S5n—2, 35n*4)7 07 ng34))
G(n34) = anl

where G(nl) is represented by Figure 6.37, Gg) by Figure 6.38, G(n4) by Figure 6.39, G%‘r’) by Figure
6.40, G\ by Figure 6.41, G'¥ by Figure 6.42, G$2% by Figure 6.43, G$2” by Figure 6.44 and Gp_1
by Figure 6.45. We build the construction tree for the general case as in Figure 6.46. The base

case G is decomposed simply as

Go = Ssnti1-

We use the GFPartitions package by calling
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Ss5n—1  Ss5n—3  S5n—6  S5n—8 S5 S3

Figure 6.38: Constraint graph Gg) for plane partitions hexagonals with diagonals

Ss5n—1  Ss5n—3  Ss5n—6  S5n—8 S5 S3

@o—> 0 o— 0 @ —
/ Y / - \ / A

5n $5n 2 $5n 5 Ssn 7 5S4 82

Figure 6.39: Constraint graph G£L4) for plane partitions hexagonals with diagonals

S5n—1  S5pn—3 S5n 6 S5n—8 S5 53
.—». —_— 0 @o— 0
S5n 4 & - ® Sg ® s
/
/
/
./—>. o —>0 o —>0
S5n S5m—2 Ssn—5  Sin—7 S4 52

Figure 6.40: Constraint graph Ggf) for plane partitions hexagonals with diagonals
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85n 3 55n 6 85n 8 83

\/\/

IAVAYERRVAY

S5n S5n—2 85n75 S5n—7 S4 S2

S1

Figure 6.41: Constraint graph Gg) for plane partitions hexagonals with diagonals

85n 3 Ssn 6 55n 8 S5 S3
@oQ—> 0

/ / i 4 / - \ / :
5n $5n 2 $5n 5 Ssn 7 5S4 82

Figure 6.42: Constraint graph GSS) for plane partitions hexagonals with diagonals

S5n—1  S5n—3  S5n—6  S5n—8 S5 53
[ ] o—> 0 o — >

/ Y / - \ / :
S5n 2 S5n 5 85n 7 S4 82

Figure 6.43: Constraint graph G£,26) for plane partitions hexagonals with diagonals
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Ssn 1 Ssn 3 $5n 6 Ssn 8 S5 53
@oQ—> 0

\ /i - / """ \ /'81
S5n 2 S5n 5 85n 7 S4 82

Figure 6.44: Constraint graph G%W) for plane partitions hexagonals with diagonals

55n 6 55n 8 53

S5m—5  S5n—7 5S4 52

Figure 6.45: Constraint graph G,,_1 for plane partitions hexagonals with diagonals
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(85n+1;85n—1)

($5m—1,85n—3)

\ .
Gg) G

/

(85n—3,85n—4)

/

(55n7 5571,72)

($5n—2,85n—4) Gn—

Figure 6.46: Construction tree for plane partitions hexagonals with diagonals

i

CD" (s5n—3,85n)

/

c®

/

)

(11) /

(S5n 2,85n— 4)

(55n; S5n— 2)

(s5n—2,55n+1)

(5571,—11 557

($5n—1, S5m—4)

i*

ol
(D) emmn (D)

n—l

o

G

/
/1
/

(=)
N

vl

(35n7 35n+1)

G20

o

(13)
(s5n—

G,(—,,l4)
(85n—

G1%)
‘I’L

(21)
’I’L

’IL*

/]

($5m+1, S5m—1)

G20

(D)

(25)

O

/

1,85n—2)

\

2,85n—4)

($5n—3,85n—4) G

0)

G®

e

CD" (s5n—1,55n—2)

G(30)

n—

(85n—3,55n—1)

A
/

/

. (s5n—2,85n—4) G

(=)

0)

)

G(sn

’I’L

G

G%BB)

GSM)

n—1
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GFPartitions[Recurrence] ([
["_Il
"i", x[5%n+1], x[5*n-1], "-",

"i", x[6*n-1], x[5*n-3],
"i" x[6*n-3], x[5*n-4], "i", x[5*n],x[5*n-2],

"i" x[5*n-2], x[5*n-4], "%",

i*", x[6*n-3], x[5*n], "i", x[5*n], x[5*n-2],
"i", x[5*n-2], x[5*%n-4]1, "%",

x[5*n-2], "ix", x[5*n-2], x[5*n-1],

ns3 || R X [5 *n]
"iv x[6*n-1], x[5*n-3], "i", x[5*n-3], x[5*n-4]1, "%",
"ix", x[6*n], x[5*n+1], "i", x[b*n+1], x[5*n-1], "-",

"i" x[56%n-1], x[5*n-2], "i", x[5*n-2], x[5*n-4],
"i" x[6*n-3], x[5*n-4], "%",

"ix"  x[5%n-3], x[5*n-1], "i", x[5*n-1], x[5*n-2],
"i", x[6*n-2], x[5*n-41, "%"],

n=0, [x[5*n+1]111,

[s1)

and the output generated is

Multi-variable recurrence

Case "default"

Ryg
(I—25n41) (I —25n—2%5n) (1 —25n) (1 —T5n—3%5n-1T5n41) (1 — Tsn—1T5n+41)

B (1=@5n41) " (1= Z5n1%5n41) " Rao5n_3%5n-15n41
(1 —25n—2ZT5nT5n—3T5n—1T5n+1) (1 — T5nT5n—3T5n—125 nt1) (1 — T5n—3%T5n—125n+1)

(1= Z5n41) " RasZsn_2sn

(1= Z5n_2%5nTsn—3T5n_1Z5n41) (1 — T5n1T5nt1T5n—2T5n) (1 — Tsn_2Zsn) (1 — Tsp)

Rsoxs
—Z5n) (1 = 250n-3) (1 — T5n—1Z5nt1T5n—2250) (1

B (1 — T5n41T5 n) (1 —T5n—-1T5n+1T5 n)

_ Re95 nT5n—3 (1 — T5nr1254)
(I—255) (1 — 25n—2%5nT5n—3T5n—1T5n+1) (1 — T5nT5n—3T5 n—125 nt1) (1 — T5n—3)
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R[42] -- F(n-1)

x[6*n-4] <--- x[5*n-4]*x[5%n-3]*x[5*n-1]*x [5*n+1] *x [5%n-2] *x [5*n]
R[59] -- F(n-1)

x[6*n-4] <--- x[5*n-4]*x[5*n-3]*x[5*n-1]*x [5*n+1] *x [5*n-2] *x [5*n]
R[29] -- F(n-1)

x[6*n-4] <--- x[5*n-4]*x[5*n-3]*x[5*n-1]*x [5*n+1] *x [5%n-2] *x [5*n]
R[19] -- F(n-1)

x[6*n-4] <--- x[5*n-4]*x[5*n-3]*x[5*n-1]*x [5*n+1] *x [5*n-2] *x [5*n]
R[69] -- F(n-1)

x[5*n-4] <--- x[6*n-4]*x[5*n-3]*x[5*n-1]*x [5*n+1]*x [5*n-2] *x [5*n]

Casen =0
1
(1= 25n41)

------------- Finite-variable recurrence

x[5*n+1] --> s

H(n,q,s)
if n = 0 then
1
(1-s)
else
H(n—l,q,qss) _ H(n—l,q,q5s)q25 H(n—l,q,q5s)q2
(1-¢*)A-9)(1-¢’s) (1—g*s)(1—¢%s)(A—q¢?s)  (1—q*s)(1-¢%s)(1—¢*)(1—0q)
(1—-sq)(1—s) (1-3s)
H(n—l,q,qss)q _ H(n—l,q,q‘as)q2
_(0-9d-¢*)(1-¢*s) (A-g*s)A-d%s)(1—q)
(1-s9)(1—q)

fi;

The above recurrence can be shown to correspond to the generating function obtained in [2].

6.8 Gordon sequences

In [22], Gordon provides a generalization of the Rogers-Ramanujan identities. Figure 6.47 corre-
sponds to a family of sequences enumerated in this theorem, such that every alternate integer must

differ by at least 2.
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.—> .
) —> ® —> o [ ] —> o —> [ ]
Sn Sp—2 Sn—4 S5 53 S1
Figure 6.47: Gordon sequences; constraint graph G,,
.—> .
° —> ° —> ° ° —» ° —» °

Sn Sn—2 Sn—4 85 S3 S1

Figure 6.48: Constraint graph G%l) for Gordon sequences

The general case G, for Gordon sequences can be decomposed as

Gn = —(($n,5n-1),0,G,G?)
GV = I((sn,5n 2),2,GD)
G® = Gn1

G® = R(($n-1,5n-2),0,G)
G = R((sn-1,50-3),2,GY))
G = I((sn-1,50),1,G)
GO = I((sn,50-2),2,G7)
Gg) = Gp_o

where GS) is represented by Figure 6.48, G%Z) by Figure 6.49, G,,_1 by Figure 6.50 and G,,_» by
Figure 6.51. 'We build the construction tree for the general case as in Figure 6.52.
We note that we need two base cases G; and G2 (Figure 6.53) because the general case is defined

upon both G,,_; and G,,_2. Graphs GG; and GG, can be decomposed as follows.
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—————— >o—>

LN NI

Sn Sp—2 Sn—4 S5 53 S1

Figure 6.49: Constraint graph Gg) for Gordon sequences

(VARUAVAN

Sp—2 Sn—4 S5 53 S1

Figure 6.50: Constraint graph G,,_1 for Gordon sequences

.—».—).

Sp—2 Sp—4 S5 S3 S1

Figure 6.51: Constraint graph G,,_s for Gordon sequences
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Gn

\ GSJ\)

/ GS) / G%e)
(5n55n72) 2 Gn—l (Snflasn) I)
/ Gt

(Snysn—2) 2 Gn_2

Figure 6.52: Construction tree for Gordon sequences

S92
[ J
[ ] [ ]
S1 S1
Gl GQ

Figure 6.53: Constraint graphs G; and G for Gordon sequences
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G1 = Sn
Gy = I((sn,5n-1),0,GS))
Ggl) = Sp_1

Procedure Recurrence is invoked as

GFPartitions[Recurrence] ([
["_Il R

ngn, x[n], x[n—2], 2, u%u’

"ix", x[n-11, x[nl, "I", x[n], x[n-21, 2, "%%", 21,

n=1, [x[nl],
n=2, ["i", x[n], x[n-1], x[n-1]1],
[s,t])

and the output generated is

Multi-variable recurrence

Case "default"

Rezn® Rz 2w, q®
1—z, (A—zpzn 1)l —2pn 1)
R[6] -- F(n-1)
x[n-2] <--- x[n-2]*x[n]
R[14] -- F(n-2)

x[n-2] <—— x[n-2]*x[n]*x[n-1]

1]
[y

Case n

1]
N

Case n

110
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Figure 6.54: 1-compositions; constraint graph G,

Finite-variable recurrence

x[n-1] --> s

x[n] --> t
H(”J qJSJt)

if n = 1 then

1

(1-1)

elif n = 2 then

1

(1—ts)(1—¢)
else
H (n - 17q7qt7 8) t2 H (’I’L - 27q7q7qt5) t283
1—1t (1—ts)(1—2s)

fi;

6.9 1-compositions

We apply the Seven Rules and the GFPartitions package to solve 1-compositions, defined by G,
of Figure 6.54. These were studied and solved in [26].
The base case G is simply the vertex s;. The general case G, for l-compositions can be

decomposed as

Gn = _((Sn—lasn)a_I;G(nl);Gg))
ngl) = V(Sna Gg))
G® = Gn_i

G(z) = I((Sn,sn—1)727G£L4))
G#) = Gn—l
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-1 —1 —1

o ——> 0 —>»> - — > @ = -=<— @

S1 52 Sp—1 Sn

Figure 6.56: Constraint graph Gg) for 1-compositions

where Gg) is represented by Figure 6.55, G(T?) by Figure 6.56, and G,,_; by Figure 6.57. The

general case has the construction tree of Figure 6.58. The base case (G; is decomposed simply as
Gﬁ = 8p-

The Recurrence procedure in the GFPartitions package is called as

GFPartitions[Recurrence] ([
Lr--,
nory x[nl, "%,
"1, x[n], x[n-11, 2, "%"]1,
n=1, [x[n]]1],
[s1)

and the output generated is

Figure 6.57: Constraint graph G,,_; for 1-compositions
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Gn

\ G’%Q)

(i)

/ B / )
5n G

n—1 (smysn-1) 2 Gp_i1

Figure 6.58: Construction tree for 1-compositions
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Multi-variable recurrence

Case "default"

R4 Rg.’L’n2
l—-z, 1-—=z,

R[4] -- F(n-1)
R[9] -- F(n-1)
x[n-1] <--- x[n-1]*x[n]
Casen =1

1
(1—2z,)

Finite-variable recurrence

x[n] --> s
H(n,q,s)

if n = 1 then

(1-s)
else
H(n_17qJQ) _ H(n_17q7q5)82
1-—s 1-—s

fi;
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Son—1 Son—3 S5 53
/ oQ—— 0 —> 0 o ——m > .\
Son .\ ----- /. S1
[ J > > @ e — >0
S2n—2 Son—4 5S4 52

Figure 6.59: 2-rowed plane partitions with double diagonals; constraint graph G,

6.10 2-rowed plane partitions with double diagonals

Consider the sequence of constraint graphs represented by Figure 6.59, first investigated by Corteel
and whose generating function she conjectured [17] as

(=% ¢*)n—1

FG (n7 q) = (q q)Qn

(6.5)

We refer to these as 2-rowed plane partitions with double diagonals since they resemble the 2-rowed
plane partitions with diagonals of Figure 6.20 except that there are here twice as many diagonals.
We offer a proof for (6.5) after obtaining a recurrence for it.

The general case G, for 2-rowed plane partitions with double diagonals can be decomposed as

Gn = —((s20,520-1),0,GP,G)
GO = I((s2n,52n-2),0,G)
GP® = —((s2n-1,52n3),0,GH, GO)
G = I((san-1,%2n4),0,G)
G(nﬁ) = Gpo1
G® = R((s2n 3,82 5),0,G7)
GO = R((san3,50m—s),0,G®)
G® = R((san-2,5n-1),0,G1)
G = I((s2n—2,82n-3),0,GIY)

GUY = I((s2n-3,52a-1),1,G{V)

GV = I((s2n-1,82n-1),0,G{?)

G%IQ) — Gn—2
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Son—1 Son—3 S5 53
oQ———— > @0 —> 0 o ————m> 0

we NN o
"\.. /

= @ = @ o — >0

S2n—2 Son—4 5S4 52

Figure 6.60: Constraint graph GV for 2-rowed plane partitions with double diagonals

Son—2 Son—4 S4 S2

Figure 6.61: Constraint graph G(T?) for 2-rowed plane partitions with double diagonals

G? = R((san-1,52n3),0,G1¥)
G = R((san_1,52n_4),0,GY)
GUY = I((s3nm1,820),1,G9)
GI = I((s2n,82n 2),0,G9)
GU® = @, ,

115

where G(nl) is represented by Figure 6.60, Gg) by Figure 6.61, G(n4) by Figure 6.62, G%‘r’) by Figure
6.63, Gn—1 by Figure 6.64. and G,—2 by Figure 6.65. The construction tree for the general case is

shown in Figure 6.66.

There are two base cases for 2-rowed plane partitions with double diagonals because G, is defined

over both G,,_; and G,,_2. Base cases G; and G5 are shown in Figure 6.67 and can be decomposed
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Son—1 Son—3
[ J o——> 0
[ J > @ > @
Son—2 Son—4

116

Figure 6.62: Constraint graph G for 2-rowed plane partitions with double diagonals

52n—3

Son—1

Son—2 Son—4

S5 53

Figure 6.65: Constraint graph G,,_» for 2-rowed plane partitions with double diagonals
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(14)
O G
G(3) G’,ELI5)

(82 so 2 (52n 1752n)
nyS2n—

/ (9) / »
GW "

(5277,7 5271,72) Gn—l
/ G(e) G(m)

(s2n—1,52n—4) (s2n— z,SZn 3)

G

(s2n—3,52n—1) D

/ G(12)

(S2n—1,82n—4) n 2

Figure 6.66: Construction tree for the decomposition of G,, for 2-rowed plane partitions with

double diagonals

[ ] o — >0

S2 S4 Sa

G1 G2

Figure 6.67: Constraint graphs GG; and G for 2-rowed plane partitions with double diagonals
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as follows.

We invoke procedure Recurrence as

I((s2n, 520-1),0,G1")
Soap—1

—((82m, 82n-1),0, G5, G{P)
((52n, 520-2),0,G5”)
(($3n_2, S2n_3),0,GSY)
(8201, 82n_3),0,G5)
$2n—3
R((s2n_1,82n_3),0,G®)
I((52n——1752n)=17(;§7))
I((s2n, 52n-2),0,G5”)
I((s2n—2, S2n—3),0, Ggg))

I
I
I

S2n—3.

GFPartitions[Recurrence] ([

[H_Il .

miv, x[2*n], x[2*n-2], "-",

iv, x[2*n-11, x[2%n-41, "%", "i", x[2*n-2], x[2*n-31,

ni*n’ X[Q*n—sj, x[2*n—1], niu’

"ix", x[2%n-1], x[2*n], "i", x[2*n], x[2*n-2], "%"],

n=1,

["i", x[2*n], x[2*n-1], x[2*n-1]],

n=2,

[H_Il .

niv, x[2#n], x[2%n-2], "i",

x[2*n-2], x[2*n-3],

"iv, x[2*n-1], x[2*n-3], x[2*n-3],
"ixt, x[2xn-11, x[2+n], "i", x[2*n], x[2%n-2],

miv, x[2*xn-2], x[2*n-3], x[2*n-3]1]],

[r,tD

and the output generated is

x[2*n-1], x[2*n-4]1, "%A4",
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2,
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Multi-variable recurrence

Case "default"

Ry _ R19Zon-3%Z2n—2%2n
1—22n—1 (1—2on—122n—322n—2%2n)(1—T2n—3T2n—2T2,)(1—T2n—_2T2n)
1—-z2n
Rorwan 1

(1=z2pnton_1)(1—22p_1)

R[19] -- F(n-2)

x[2*n-4] <--- x[2*n-4]*x[2*n-1]*x[2*n-3]*x[2*n-2] *x[2*n]
R[27] -- F(n-1)

x[2*%n-2] <--- x[2*n-2]*x[2*n]*x[2*n-1]
R[9] -- F(n-1)

x[2*n-2] <--- x[2*n-2]*x[2#n]

x[2*n-4] <--- x[2*n-4]*x[2*n-1]

Casen =1
1
(1 —22nTan 1) (1 —z2n)
Case n = 2
1
(1—2op_1Z2n—3%T2n—2%2n) (1 —2an_1) (1 — Zap_2224,) (1 —z2,)
T2n—1

(1—2on-1%2n-3T2n—2%2n) (1 —Tan 2Z2nZ2n-1) (1 = Z2nzon_1) (1 — Z2n_1)
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Finite-variable recurrence
x[2*n-2] --> r

x[2%n] --> t

H(n,q,r,t)
if n = 1 then
1
(1-tg)(1~1)
elif n = 2 then
1 q
A—@rt)A—q)(1—rt)(1—t)  (1—¢?rt) (1 —qrt) (1 —tg) (1 —g)

else

H(n-1,q,4%,rt) H(n—2,q,q,¢°rt)qrt

g T @i _ebar Hm—-1,q,q,qrt)q
(1—1) - (-tg)(1—9)

fi;

Theorem 9 The solution to the recurrence for 2-rowed plane partitions with double diagonals is

-2 1+q%rt
i qrt) = (1= ¢r?) [ e egay= g
EOY T T (1 — gt (1 — 61— gt) (L — ¢2rt)
forn >2 jand
1
HI n7q7T7t =
(ma.r) = T

forn=1.

Proof. We prove by induction on n. For n = 1 and n = 2 the proof is direct. Assume H'(n —
1,q,r,t) = H(n — 1,¢q,r,t) for some n > 2. We prove that H'(n,q,r,t) = H(n,q,r,t). From the
recurrence, we know that for n > 2,
H(’I’L— 17q7q277.t) t H(’I’L—Q,q,q,qut) H(’I’L— l,q,q,th)
—qr —q
1-t)1-q) (I =rt)(1 =1)(1 —qrt)(1 — ¢°rt) (I-qt)(1-q)

Since H(n — 1,q,r,qt) = H'(n — 1, ¢q,7,t),

H(n7 q7 T? t) =

Hl(n_17Q5q27Tt) H'(n—2,q,q,q3rt) H’(n—l,q,q,qrt)
H = - -
(07 %) 1-00-9 "0 ma-00-gn0d ¢ < 1-a—qg
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3 2,9\ qn-3 (1+¢* "1 g3rt)
(1 —=r*t) [, (1—q% ¢3rt) (1—q= F1g3rt)

(1-1)(1-q)(1 —g*rt)(1 — ¢rt)(1 —rt)(1 — grt)(1 — grt)
n—4 1—¢*1¢%rt
qrt(l - q8r2t2) Hz’:l (1—q21(q57't)(1—q2’+1q5rt)
I=g?rt) (1 —grt)(1 —rt)(A —t)(1 — g*rt)(1 — ¢®rt)(1 — g3rt)(1 — ¢*rt)(1 — ¢brt)
n—3 1—¢*'¢%rt
q(1— l]47‘2t2) Hi:l (1_q2§q3£)(1_qqzi+)1qsrt)
(1-gt)(1 —q)(1 = ¢*rt)(1 — ¢®rt)(1 — grt)(1 — ¢*rt)(1 — g*rt)

3 9.0 N2 (14+¢% L qrt)
(]- —q°rt )Hi:z (1—q2iqrg)(1—g;+1q7‘t)

(1-1)1 -q)(1 —rt)(1 —grt)(1 — g*rt)(1 — g3rt)(1 — g*rt)
n—2 1 2i—1 rt
qrt(1 — q8r2t2) Hz’:S (1_,12(1;,?)(1_32,11(1”)
1=t =7rt)(1 —qrt)(1 — ¢?rt)(1 — ¢&rt)(1 — ¢*rt)2(1 — ¢5rt) (1 — ¢rt)

4 9,49 n—2 (144¢%~1qrt)
g(1—g'r’t )Hi:z (1—¢%"qrt)(1—¢%+1gri)

(1-qg)(1 —qt)(1 —qrt)(1 — ¢*rt)*(1 — ¢3rt)(1 — ¢'rt)
s o sriem (1= Fre)(1 + gir)
(1 —g’rt)(1 — ¢3rt)(1 — g*rt) [(1 = @°rt)(1 — ¢®rt)(1 = t)(1 — q)(1 — rt)(1 — grt)
qrt(1 — ¢®r?t?)
1 =81 —7rt)(1 — qrt)(1 — ¢g*rt)(1 — ¢°rt)(1 — ¢brt)

B g(1 = ¢*r?*¢*)(1 + ¢*rt)
(1=g®rt)(1 —gbrt)(1 — q)(1 — gt)(1 — grt)(1 — ¢*rt)
n—2 14+q% Lqrt
e e i) )
(1=g?rt)(1 = g3rt)(1 — g*rt) [(1 —-t)(1 —q)(1 —rt)(1 - qrt)
_ qrt(1 — ¢*rt) _ a(1 - ¢*r’t?)
(1=t =rt)(1 —grt)(L —g*rt) (1 —q)(1 —qt)(1 —grt)(1 —g*rt)
Hn72 (14+¢%~1qrt)
i=2 [T art)(1—¢ +1qrD)

(1 —g?rt)(1 — ¢®rt)(1 — ¢*rt)
[(1 —¢r’t*)(1 —qt) — grt(1 —qt)(1 — q) —q(1 4+ ¢*rt)(1 = t)(1 - Tt)]
(1=t)(1 —qt)(1 —grt)(1 —rt)(1 —q)

Hn—2 (1+q2i_1qrt)
i=2 (1—¢%qrt)(1—g>*Tigrt)

(1—=¢*rt)(1 —g*rt)(1 — g*rt)(1 — t)(1 — qt)(1 — qrt)(1 — rt)
[(1 +@rt)((¢*t*r —qt —qrt + 1) — (¢ + qrt®> — qrt — qt))]
(1-q)

9 n—2 (1+ 2i—t t)
(1 —qrt®) [T, (1_q2iqrg)(1—g;+1wt)

(1 —7rt)(1 — grt)(1 — )(1 — qt)(1 — ¢3rt)
= H'(n,q,1,1).
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Note that replacing r and ¢ by ¢ in H'(n,q,r,t) gives

-2 1 2§42
H'(n,q,q,9) = (1-¢" T, W
» 4,4, (1—q2)(1—q3)(1—q)(1_q2)(1_q4)

n—2 (1+q2i+2)
Hi:o A—2F3)(1_¢ZiF0)

(1-9)(1-g%)
anl 1 2i
i=1 T (1 ¢%F7)
(1-9)(1-g%)
(=% ¢*)n—1
(@5 9)2n

thus proving Corteel’s conjecture [17].

6.11 Left-shifted 2-rowed plane partitions

We now consider the left-shifted 2-rowed plane partitions of Figure 6.68.

The general case G, for left-shifted 2-rowed plane partitions can be decomposed as

G = (820, 53n-1),0,GV,G)
GO = I((s2n,52n-2),0,G)
G513) = I((32n71732n74)707G$14))
G%4) = Gp_1

GP = R((sn-1,50-4),0,G)
G® = I((s2n-1,24),1,G9)

GO = I((s2n,52n-2),0,G{7)
Gg) = Gpo1

where GS) is represented by Figure 6.69, Gg) by Figure 6.70, and G,,—1 by Figure 6.71. The
construction tree for the general case is shown in Figure 6.72.

There are two base cases for left-shifted 2-rowed plane partitions (Figure 6.73). In addition to
G1 we need the decomposition for G2 since the labelling of the vertices does not allow G,, to be

applied for n = 2. Graph G5 can be decomposed as

Gy = —((s2:5201),0,G5",GP)
G = I((s3m, 59m_2),0,G)
GgB) = I((SZn—1;82n—3)70’Gg4))

G = G.,
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Son—3

|

Sopn—2

Son

—

|

S3 S1

o —> @

Sy S4 S9

|
|

.

|

e —> 0

58 S6 S5

Son—6

|

Son—8

Son—4

oO——— >0 ———— >

|

Son—5

oO— >0 — >0 ——— >

Son—1

Figure 6.68: Left-shifted 2-rowed plane partitions; constraint graph G,

Son—-3 Son—6

e —— > 0 —> 05y, g

Son—4
—_— —_—
Sop—02 ® o ® Son—5

(] [
S2n Son—1

Figure 6.69: Constraint graph GS) for left-shifted 2-rowed plane partitions
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S2n Son—1
Figure 6.70: Constraint graph G'?) for left-shifted 2-rowed plane partitions

Son—3 Son—6
® —————> 0 —————> @ Sy, 3

Son—4
—_— —_—
Sop—o ® o ® Son—s

Figure 6.71: Constraint graph G,,—; for left-shifted 2-rowed plane partitions

‘ @ / o)

(52n, 52n—2) (S2n—1,52n) <1>

(s2n—1,52n—1) G-t (s2n, S2n—2) Gn-1

Figure 6.72: Construction tree for GG,, of left-shifted 2-rowed plane partitions
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S1 S3 S1
[ ] o ——> 0
[ ] o ——> 0
S92 S4 S92
Gl G2

Figure 6.73: Constraint graphs G; and G» for left-shifted 2-rowed plane partitions

G2

\ Gg5)

(3) / Ggﬁ)

G2

/ o / G

(5271,71;5271,73) Gn—l (52n7 -5'211,72) Gn—l

Figure 6.74: Construction tree for Gy of left-shifted 2-rowed plane partitions

6P = R((san 1,52 4),0,G5)
G = I((san-1,520),1,G5)
G = I((s2n,s2n-2),0,G5)
Gg) = Gn_1

and the corresponding construction tree is shown in Figure 6.74. Base case G is simply the edge
(3211; 521171)-

We invoke procedure Recurrence as



Chapter 6. Examples 126

GFPartitions[Recurrence] ([
["_",
miv, x[2xn], x[2*n-2],
"in x[2%n-1], x[2*n-4]1, "%",
"ix", x[2%n-1],x[2%n],

"iv o x[2%n], x[2*n-2], "%"],

n=1,
["i", x[2*n], x[2*n-11, x[2*n-11],
n=2,
--,
"iv ) x[2%n], x[2*n-2],
"iv x[2*%n-11, x[2*n-3], "4%",
"ix" x[2*%n-1],x[2*n],
vin, x[2+n], x[2¢n-2], "1,
[s,t])

and the output generated is

Multi-variable recurrence

Case "default"

Ry Riszon1

(1—zopn-1)1—22n) (1 —z2nZ2n-1)(1—22n-1)

R[15] -- F(n-1)

x[2*n-2] <--- x[2*n-2]*x[2*n]*x[2*n-1]
R[8] -- F(n-1)
x[2*n-2] <--- x[2*n-2]*x[2#n]
x[2*n-4] <--- x[2*n-4]*x[2*n-1]
Casen =1

1

(1—-2z2p229-1) (1 — Z24)
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Case n = 2

Ry

Riszon1

(I—22p-1) (1 —225)

R[15] -- F(n-1)
x [2*n-2]
R[8] -- F(n-1)
x [2*n-3]
x[2*n-2]

x[2*%n-2] --> r

x[2%n-1] --> s

x[2%n] --> t

if n = 1 then

elif n = 2 then

H (TL - ]-anqa qS,T’t)

<-—- x[2*n-2] *x[2*n] *x [2*n-1]

<-—— x[2*n-3]*x[2*n-1]
<——- x[2*n-2] *x[2*n]

(1—22n®ap-1) (1 —229-1)
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Finite-variable recurrence

H(n7 q7 T? 87 t)
1
1—ts)(1—1)

H(n_ l,q,q,q,TtS)S

1-s)(1-1) (1—-ts)(1—ys)

else

H(n -

17q7q87Q7rt) H(n—l,q,q,q,rts)s

1-s)(1—1) (1—ts)(1—s)

fi;




Chapter 7

Conclusion

In this thesis, we have formulated the constraint graph decomposition technique and the Seven Rules
as a new set of tools for building generating functions for sequences of integers defined by directed
graphs. We further automated the construction of generating functions and their recurrences in the
GFPartitions package. Thus equipped, we tackled several well-known problems in a much simpler

and more powerful way than done earlier. In this chapter, we summarize our contributions and

consider future directions for research.

7.1

Summary of contributions

Our contributions in this thesis include the following.

Seven Rules: We proposed the Seven Rules of decomposition for the construction of
generating functions and recurrences for constraint graphs.
Sufficiency proof: We proved the sufficiency of the technique for the decomposition of
any constraint graph with edge weights 0 or 1.
Special variable rules: We proposed a technique for the formulation of finite-variable
generating function recurrences from their corresponding multi-variable ones.
Automation tool GFPartitions: We designed and created a Maple package for the au-
tomation of the construction of generating functions and recurrences for a family of
constraint graphs given the construction tree of its decomposition.
Generating function recurrences: We illustrated the elegance and ease of procuring gen-
erating function recurrences for several well-known problems,

e 2-rowed plane partitions (with diagonals and without),

e plane partition hexagonals (with diagonals and without),

e Gordon sequences,
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3
7

S @€ ————>= 0 S3
Figure 7.1: A constraint graph which the Seven Rules cannot handle

e 1-compositions,

e up-down sequences and

e plane partition diamonds,

as well as some new ones,

e 2-rowed plane partitions with adjacent diagonals and

o left-shifted 2-rowed plane partitions.
We thus find that restricting the system of constraints addressed allows us to build a set of tools
and techniques that are simple to use, yet powerful enough to handle several interesting problems.
The intuitiveness of the approach and the automation of its tedious aspects elevates its appeal even
further. While not guaranteed to produce recurrences for all problems in the considered domain,
the technique proves significant if the recurrences are indeed obtained. At the very least, the tools
and techniques we developed accelerate research by enabling speedier investigations of interesting

problems in the field of enumerating partitions and compositions.

7.2 Open problems and future directions

While this thesis does make an appreciable contribution to the area of combinatorics under con-
sideration, several problems remain open and unsolved. We present here a list of some interesting
questions and possible directions for future research.

e How would we need to upgrade the Seven Rules to guarantee a decomposition for con-
straint graphs where edge weights are not restricted to 0 and 17 A simple example of a
constraint graph which the Seven Rules cannot handle (but the Five Guidelines easily
can) is shown in Figure 7.1.

e The Seven Rules, although sufficient for obtaining generating functions for constraint
graphs with edge weights 0 and 1, does not guarantee recurrences for them. A simple
example of a constraint graph sequence for which we found no recursive decomposition
(using the Seven Rules) is shown in Figure 7.2. Note that the inclusion of a new rule

that mirrored the fourth of the Five Guidelines by permitting the introduction of new
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Figure 7.2: A constraint graph with no recursive decomposition (using the Seven Rules)

edges into the graph would solve this issue. What other rules may we additionally need
to incorporate in order to guarantee recurrences, if that is at all possible?

e How would our techniques and rules need to be modified if some vertices of the constraint
graph represent integer constants instead of variables?

e Isit possible to extend the constraint graph technique to handle non-integer edge weights?

e Some famous problems, such as the family of k-rowed plane partitions [27], are defined
over more than one variable (n and k in the case of k-rowed plane partitions). This
prevents us from obtaining finite-variable recurrences because a non-finite selection of
special variables becomes necessary. Can we extend our technique to obtain recurrences
for such 2-dimensional families?

e While the GFPartitions package successfully produces multi-variable and finite-variable
recurrences given a decomposition as input, can we develop an efficient algorithm to
obtain an optimal decomposition for a given sequence of constraint graphs?

e How do we automate the Five Guidelines technique?

e How do we automate the solution of recurrences, where possible?

We thus note that there remains much scope for further investigation in future research.
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Appendix A

Program listing for GFPartitions (Maple 9.0)

GFPartitions := module() export Recurrence; local B, G, ListWrap;

Recurrence := proc(treelList::list, specialVariables::list)
local f, i, fR, fTable, fRTable, condTable, vRtable, Hf, t, nT, nTi,
CBaseProc, substTable, subst::table, sub, subList, max, min, vMin,
allVars::table, SV::table, sVar, varIndlList, varInd, indList, ind,
svIndList, sVarList, svOp, paramlList, pList, pHolder, sNewVar,

svRewind, valueList, subI;

vRtable := table();

table();

allVars :

nT:=nops(treelist);

# default case
condTable[1] := "default";
substTable[1] := table();
(fTable[1], i, fRTable[1]) :=
G(treeList[1], 1, vRtable, substTable[1], allVars);

# parse all other cases
for t from 2 to nT by 2 do

nTi := nTi + 1;

134



Appendix A. Program listing for GFPartitions (Maple 9.0) 135

condTable[nTi] := treeList[t];
substTable[nTi] := table();
(fTable[nTil, i, fRTable[nTi]) :=
G(treeList[t+1], 1, vRtable, substTable[nTi], allVars);
od;

nT := nops([indices(condTable)]);

# - Create the multi-variable g.f. B
# define C
CBaseProc := proc(t::integer, vtable: :table, n_::integer)

if eval(condTable[t], n=n_) then
return fTable[t] (vtable, n_);
elif t<nT then
return CBaseProc(t+1, vtable, n_);
else
return fTable[1] (vtable, n_);
fi;

end proc;

# define B
B := proc(vtable::table, n::integer)
return CBaseProc(2, vtable, n);

end proc;

# Finding index of max element
varIndList := [indices(allVars)];
max := op(varIndList[1][1]);
for varInd in varIndList do
if op(varInd[1])-max>0 then max:=op(varInd[1]); fi;
od;

printf ("\n========== "),

printf (" Multi-variable recurrence ");

printf (" \n\n") ;
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for t from 1 to nT do
printf ("Case %a", condTable[t]);
print (fRTable[t]);
subList := [indices(substTable[t])];
for subl in subList do # for each place holder
vRtable := substTable[t] [subI[1]];
indList := [indices(vRtable)];

printf ("\t %a -- F(n-%a)\n", subI[1], vRtable["levelJump"]);
for ind in indList do # for each substitution
if ind[1]<>"newVars"
and ind[1]<>"levelJump"
and ind[1]<>vRtable[ind[1]]
then
sVar := eval(ind[1], n=n+vRtable["levelJump"]);
if max-op(sVar)>=0 then

printf ("\t\t\t %a <-—- ", ind[1]);
printf ("%a\n", vRtable[ind[1]1]);
fi;
fi;
od;
od;
od;
printf ("\n "y
printf (" Finite-variable recurrence ");
printf ("==s========== =\n\n") ;
# o——mmmm———e Obtain and display finite-variable recurrence
# ---—- Step 1

# Finding Special Variables - Round 1

SV := table();

for t from 1 to nT do # for each case
subList := [entries(substTable[t])];

for sub in subList do # for each place holder
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vRtable := sub[1];
indList := [indices(vRtable)];
for ind in indList do # for each substitution
if ind[1]<>"newVars"
and ind[1]<>"levelJump"
and ind[1]<>vRtable[ind[1]]
then

sVar := eval(ind[1], n=n+vRtable["levelJump"]);

if max-op(sVar)>=0 then
SV[sVar] := sVar;
fi;
fi;
od;
od;
od;

# Finding Special Variables - Round 2
svIndList := [indices(SV)];
min := op(svIndList[1][1]);
vMin := svIndList[1][1];
for sVar in svIndList do
svOp := op(sVar[1]);
if min-svOp>0 then min:=sv0p; vMin:= sVar[1]; fi;
for i from 1 while (max-subs(n=n+i,sv0p) >= 0) do
sNewVar := subs(n=n+i, sVar[1]);
if not(assigned(SV[sNewVar])) then SV[sNewVar] := sNewVar; fi;
od;
od;

# ---- Step 2

# get an ordered list of the special variables
sVarList := [];
for i from 0 to (max-min) do

sVar := subs(op(vMin)=min+i, vMin);
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if assigned(SV[sVar]) then
sVarList := [op(sVarList), sVar];
fi;
od;

paramlList := [n, q, op(sVarList)];

# "Expand" the placeholders
unassign(H);
for t from 1 to nT do
pList := [indices(substTable[t])];
for pHolder in plList do
vRtable := substTable[t] [pHolder[1]];
valueList := [];
for sVar in sVarList do
svRewind := eval(sVar, n=n-vRtable["levelJump"]);
if not(assigned(vRtable[svRewind])) then
vRtable[svRewind] :=svRewind;
allVars[svRewind] :=svRewind;
fi;
valuelList:=[op(valuelList), vRtable[svRewind]];
od;
Hf := apply(H, n-vRtable["levelJump"], q, op(valuelList));
fRTable[t] := subs(pHolder[1]=Hf, fRTable[t]);
od;
od;

# ---—- Step 3

# replace non-SVs with q
varIndList := [indices(allVars)];
for varInd in varIndList do
if not(assigned(SV[varInd[1]])) then
for t from 1 to nT do
fRTable[t] := subs(varInd[1]=q, fRTable[t]);
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od;
fi;
od;

if nops(specialVariables)<nops(sVarList) then
printf("Insufficient special variables. Needed %d", nops(sVarList));
printf (" but received %d.\n", nops(specialVariables));
print(apply(H, n, q, op(sVarList)));
for t from 2 to nT do
printf ("if %a then\n", condTable[t]);
print (fRTable[t]);
printf ("el");
od;
printf("se ");
print (fRTable[1]);
printf("fi;");
return B;
elif nops(specialVariables)>nops(sVarList) then
printf ("Extra special variables discarded. Needed ");
printf ("%d but received %d.\n", nops(sVarList), nops(specialVariables));
fi;

for i from 1 to nops(sVarList) do
printf (" %a --> %a\n",sVarList[i],specialVariables[i]);
od;

# ---- Step 4, 5

# unapplying and applying user’s variables, and displaying

print(apply(H, n, q, op(1l..nops(sVarList),specialVariables)));

for t from 2 to nT do
printf("if %a then\n", condTable[t]);
print (apply (unapply(fRTable[t], paramList), n, q, op(specialVariables)));
printf("el");

od;

printf("se ");
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print (apply(unapply (fRTable[1], paramList), n, q, op(specialVariables)));

printf("fi;");

return ListWrap(B);

end proc;

140

G := proc(tree::list, j::integer, vRtable::table, substs::table, allVars::table)

local t, a, b, £, f2, £fSub, m, i, ir, fR, fR1, fR2, ftype, cVRtable, lJump;

i:=j;
t := treelil;
i = i+1;
if t="1i" or t="ix" or t="I" then
# add edge a->b
(a,b) := (treel[il],treel[i+1]);

m := 0;

if t="i*" then
m := 1;

elif t="I" then
m := treel[i+2];
i = i+1;

fi;

if not(assigned(vRtable[a])) then vRtable[a]:
if not(assigned(vRtable[b])) then vRtable[b]:

allVars[a] := a; # keeping track of all variables ever referenced
allVars([b] := b;
vRtable[b] := vRtable[b] * vRtablel[a];

(fSub, i, fR) := G(tree, i+2, vRtable, substs, allVars);

vRtable[b] := vRtable[b] / vRtable[a];

fR := fR * vRtable[a]"m / (1-vRtable[a]);

f := proc(vtable::table, n_::integer)
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local al, bl, fS;

al := eval(a, n=n_);

bl := eval(b, n=n_);

if not(assigned(vtable[al])) then vtable[all:=al; fi;
if not(assigned(vtable[bl])) then vtable[bl]:=bl; fi;
vtable[bl] := vtablel[bl] * vtablelall;

fS := fSub(vtable, n_) * vtable[al]l™m / (1-vtablel[all);
vtable[b1] vtable[bl] / vtablel[al];

return fS;
end proc;
elif t="-" then
(fSub, i, fR1)
(f, i, fR2) := G(tree, i, vRtable, substs, allVars); # subtract graph 2
f := fSub - £;
fR := fR1 - fR2;
elif t="+" then

G(tree, i, vRtable, substs, allVars); # read graph 1

(fSub, i, fR1) := G(tree, i, vRtable, substs, allVars); # read graph 1
(f, i, fR2) := G(tree, i, vRtable, substs, allVars); # add graph 2
f := fSub + £f;
fR := fR1 + fR2;
elif t="." then
a := tree[il;
(fSub, i, fR) := G(tree, i+1, vRtable, substs, allVars);
f := proc(vtable::table, n_::integer)
local al, f£S;
al := eval(a, n=n_);
if not(assigned(vtable[al])) then vtable[all:=al; fi;
fS := fSub(vtable, n_) / (1-vtablel[al]);
return fS;
end proc;
if not(assigned(vRtable[a])) then vRtable[al:=a; fi;
allVars[a] := a;
fR := fR / (1-vRtable[al);
elif t="J%" or t="}%" then

if t="%" then
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# G_n-1
1Jump := 1;

elif t="%%" then
# G_n-k

1Jump := treel[i];
i:=1i+1;
fi;
f := (vtable::table, n::integer) -> B(vtable, n-1Jump);
ftype := F[n-1Jump];
fR := R[j];
cVRtable := copy(vRtable);
cVRtable["levelJump"] :=1Jump;
substs[R[j]] := cVRtable;
else # t is a single node
f := proc(vtable::table, n_::integer)
local al, f£S;
al := eval(t, n=n_);
#print("sn",al);
if not(assigned(vtable[al])) then vtable[all]:=al; fi;
fS := 1 / (1-vtablelall);
return fS;
end proc;
if not(assigned(vRtable[t])) then vRtable[t]:=t; fi;
allVars[t] := t;
fR := 1 / (1-vRtable[t]);
end if;
return (f, i, fR);

end proc;

ListWrap := proc(B2::procedure)
local GFInstantiator;
GFInstantiator := proc(n::integer)

local vtable, vList, b3, var, itable, max,i;

# obtain generating equation
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vtable := table();
b3 := simplify(B2(vtable, n));

# find and sort parameter variables
vList := [indices(vtable)];
max := -1;
for var in vlist do
itable[op(var[1])] := var[1];
if (op(var[1])>max) then max := op(var[1]); fi;
od;
vlist := [];
for i from 0 to max do
if (assigned(itable[i])) then
vList := [op(vList),itable[il];
fi;
od;
unapply (b3, vList);

end proc;

return GFInstantiator;

end proc;

end module;



